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Abstract

This thesis examines the nature of eddy-mean flow interactions in western boundary
current jets and recirculation gyre dynamics from both theoretical and observational
perspectives. It includes theoretical studies of eddy-mean flow interactions in idealized
configurations relevant to western boundary current jet systems, namely (i) a study
of the mechanism by which eddies generated from a localized forcing drive mean
recirculation gyres through the process of nonlinear rectification; and (ii) a study of
the role of eddies in the downstream evolution of a baroclinic jet subject to mixed
instabilities. It also includes an observational analysis to characterize eddy-mean flow
interactions in the Kuroshio Extension using data from the downstream location of
maximum eddy kinetic energy in the jet.

New insights are presented into a rectification mechanism by which eddies drive the
recirculation gyres observed in western boundary current systems. Via this mecha-
nism, eddies drive the recirculations by an up-gradient eddy potential vorticity flux
inside a localized region of eddy activity. The effectiveness of the process depends
on the properties of the energy radiation from the region, which in turn depends
on the population of waves excited. In the zonally-evolving western boundary cur-
rent jet, eddies also act to stabilize the unstable jet through down-gradient potential
vorticity fluxes. In this configuration, the role of eddies depends critically on their
downstream location relative to where the unstable time-mean jet first becomes sta-
bilized by the eddy activity. The zonal advection of eddy activity from upstream
of this location is fundamental to the mechanism permitting the eddies to drive the
mean flows. Observational results are presented that provide the first clear evidence
of a northern recirculation gyre in the Kuroshio Extension, as well as support for the
hypothesis that the recirculations are, at least partially, eddy-driven. Support for
the idealized studies’ relevance to the oceanic regime is provided both by indications
that various model simplifications are appropriate to the observed system, as well as
by demonstrated consistencies between model predictions and observational results
in the downstream development of time-mean and eddy properties.
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Chapter 1

Introduction

This thesis is an effort to extend our understanding of the role of eddy variability and

eddy-mean flow interactions in the dynamics of western boundary current (WBC)

jets and their recirculation gyre systems. It was motivated by the Kuroshio Exten-

sion System Study (KESS), which provides an unprecedented suite of observations

uniquely suited to study the jet, its eddy variability, and their interactions. As such,

there existed a unique opportunity to understand how our theoretical ideas about

eddy-mean flow interactions in various idealized configurations apply to the actual

oceanic system.

1.1 Background and Motivation

The Gulf Stream (GS) and the Kuroshio Extension (KE) current systems are among

the most energetic current systems in the world ocean and are dominant features of the

North Atlantic and North Pacific Oceans circulations respectively. After separating

from their respective coasts at Cape Hatteras and the Boso peninsula, these WBCs

turn eastwards, and flow into the deep ocean. Here they are no longer constrained

by topography, and they become free, inertial, unstable jets, characterized by large

amplitude meanders and pinched-off eddies (Figure 1-1). These WBC jets are of

fundamental importance to the dynamics of steady basin-scale circulations, as regions

of enhanced exchange of potential vorticity (PV) and energy, and by acting to restore

11



Figure 1-1: Instantaneous snapshots of the GS (left) and KE jets (right) (from Sea-
WiFS satellite measure of ocean color (left) and sea surface height in the 1/16◦ global
Naval Research Laboratory (NRL) Layered Ocean Model (NLOM) (right)).

global balances between forcing and dissipation. Understanding their dynamics is

fundamental to improving our understanding of the ocean general circulation.

Observations of various types in all oceans indicate that eddy kinetic energy (EKE)

is strongly (orders of magnitude) spatially inhomogeneous, reaching maxima in the

vicinity of strong currents such as these WBC jets (Ducet and Le-Traon, 2001) (Figure

1-2). The GS and KE regions are prime examples of this, where the meandering of

the streams results in an increase in the eddy kinetic and potential energies by orders

of magnitude along the climatological mean path of the jet at all depths (Schmitz,

1984; Hogg, 1988; Bower and Hogg, 1992; Malanottte-Rizzoli, 1994). Given such high

levels of eddy activity in these regions, our description of WBC jet dynamics clearly

needs to include an understanding of the effects of this eddy variability.

An investigation into the role of eddy variability in WBC jet dynamics is important

because eddies (defined for the remainder of this discussion as simply the deviation

from an appropriately defined temporal mean) can play an important role in the

dynamics of the system. Through their fluxes of momentum and vorticity, eddies can

be important in determining the character of the mean flow, not only as a source of

dissipation but also as a driving force through nonlinear eddy-eddy and eddy-mean

flow interactions. In addition, eddy fluxes of active tracers such as temperature,

salinity, momentum and PV can significantly influence the overall dynamics of the

system. In WBC jet systems in particular, some examples of the anticipated effects

12



Figure 1-2: Ocean circulation variability (root mean square of variations in dynamic
topography) derived from combined observations by the TOPEX/Poseidon, ERS-1
and ERS-2 satellites between October 1992 and November 1998 (from Centre National
d’Etudes Spatiales (CNES)).

of eddy variability on system dynamics include:

1. Altering mean jet strength, structure and stability: It has been suggested that eddy

variability may be playing a role in driving the mean jet, given that the observed

mean circulation in these regions contains short meridional scales similar to the EKE

distribution (Schmitz, 1980) and has a strength several times that expected from

wind or buoyancy forcing. Analysis of in situ observations in the GS (Thompson,

1977, 1978; Dewar and Bane, 1989; Hogg, 1992) confirm this, suggesting that eddy

variability is not only playing a role in altering the mean jet strength, but also its

structure and stability properties, and how these characteristics evolve in time and

downstream.

2. Driving recirculations through fluxes of potential vorticity: Eddies also play a

potential role in driving recirculations, the phenomenon through which the down-

stream transport of the separated jet is increased many-fold by flanking, weakly

depth-dependent gyres (e.g. Richardson, 1985; Hogg, 1992; Schmitz and McCartney,

1993) (Figure 1-3). A number of dynamical explanations have been offered for the

existence of these gyres. A consequence of eddy form drag resulting from baroclinic

13



Figure 1-3: Scheme for the recirculation in the GS system that is consistent with
transport observations made by current meters. Heavy lines are streamlines. To the
north of the central jet is the northern recirculation gyre (NRG) carrying 40-60 Sv
and to the south of the jet is the Worthington gyre (WG) also carrying 40-60 Sv
(from Sheremet (2002); adapted from Hogg (1992)).

instability in the westward moving Sverdrup flow (Rhines and Holland, 1979) to more

direct driving by eddies in the jet itself (e.g. Thompson, 1978; Haidvogel and Rhines,

1983; Spall, 1994; Jayne et al., 1996; Jayne and Hogg, 1999) are potential candidates.

3. Driving deep abyssal motions: In addition, eddy variability appears to be impor-

tant in coupling the strong motions in these baroclinic jets to deep abyssal circula-

tions. One of the primary (and unexpected) scientific results of the Synoptic Ocean

Prediction Experiment (SYNOP) was the discovery of strong, transient, nearly depth-

independent cyclones in the deep ocean that formed beneath the large amplitude GS

meander troughs that routinely formed in the GS’s path (Shay et al., 1995; Howden,

2000; Watts et al., 2001) (Figure 1-4). While strong velocities in the deep ocean

near this location had been observed before (Luyten, 1977; Hogg, 1981), it was not

until SYNOP that these flows were clearly seen to be part of well-organized mesoscale

cyclones, strongly coupled to the evolution of the GS path in the upper ocean and in

particular the troughs of the baroclinic jet.

14



Figure 1-4: Case study of a GS meander trough steepening over a two-week period
illustrating the spin-up of a deep cyclone beneath from SYNOP analysis. Four dif-
ferent measurements are superimposed: thermocline depth (thin solid lines, contour
interval 200 m), the perturbation pressure field at 3500 m (in color), velocity vec-
tors at 3500 m (speeds proportioned to the compass arrow), and locations of several
RAFOS floats (triangles and squares) (from Howden (2000)).

And these deep eddies, through their fluxes, likely have a significant effect on

the mean circulation, both in the baroclinic jet and in the abyssal ocean. Cronin

(1996) demonstrated that in the GS statistics of eddy fluxes and their divergences

observed during SYNOP, eddies played an important role in affecting the mean flow,

controlling both the speed and direction of the time-mean GS jet. In addition, these

eddy fluxes are likely to be important in driving the deep recirculation gyres. Hogg

(1983, 1985, 1993) examined the issue of eddy effects on the deep circulations from the

point of view of vorticity dynamics, and suggested that (given relatively large error

bars) lateral relative vorticity and thickness eddy fluxes appear to have gradients

of the proper sign and strength to drive a deep recirculation of the right order of

magnitude.

4. Modulating low-frequency variability: Finally, eddies and eddy-mean flow inter-

actions are potentially important in modulating the low-frequency variability ob-

served in these systems. Both the GS and KE exhibit low-frequency fluctuations in

15



their transport, the degree of their meandering intensity / EKE, and their associ-

ated recirculation structure (e.g. Lee and Cornillon, 1995; Kelly et al., 1996; Qui and

Chen, 2005), transitioning back and forth from a state with a weakly meandering jet

and strong recirculation to one with a strongly meandering jet and small recircula-

tion. There are many possible explanations for the source of this variability ranging

from external (e.g. atmospheric) forcing (Qui, 1995) to multiple state equilibria as-

sociated with highly inertial dynamics (e.g. McCalpin and Haidvogel, 1996; Berloff

and Meacham, 1998; Primeau, 1998; Berloff and McWilliams, 1999; Meacham, 2000).

Eddy effects may be important as well. For example, Spall (1996), Qui (2000) and

Berloff et al. (2007a) have all shown that the process of eddies fluxing PV away from

the detached jet can lead to natural low-frequency oscillations (i.e. even without at-

mospheric coupling) in jet/recirculation gyre systems. It is likely that the source of

the low-frequency variability in the oceanic system is a complicated mixture from a

number of sources, with atmospheric forcing, inertial dynamics, and eddy effects all

contributing. An appreciation of any potential roles of eddy effects alone however can

be thought of as an important step in sorting out this complicated picture.

In summary, understanding WBC jet dynamics is important in our overall un-

derstanding of the large-scale ocean circulation, and given the importance of eddy

variability in these systems, this understanding must include an appreciation of the

effects of the eddy-mean flow interactions in the system. Eddy effects are potentially

of first order importance in altering the strength, structure and stability of the mean

jet, driving recirculations, coupling the strong motions in these baroclinic jets to deep

abyssal circulations, and finally in modulating the low-frequency variability observed

in these systems. An understanding of all of these features, and the role of eddy

variability in them, is a necessary part of our overall picture of the WBC jet system.

1.2 Past Work and Present State of Knowledge

Given the importance of WBC jets and their recirculation gyres, work on the subject

of their dynamics, and in particular the role that eddy variability may play, has had
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Figure 1-5: The contrast in the jet’s meandering in the strongly meandering state
(1999-2001) vs. the weakly meandering state (2002-2004) as seen by superimposed
paths of the Kuroshio and Kuroshio Extension defined by the 170-cm contours in the
weekly SSH fields. Here paths are plotted every 14 days (from Qui and Chen, 2005).
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a long history.

(a) Theoretical Studies

Much has been learned about these systems, and their recirculation gyres in par-

ticular, through idealized theoretical studies, i.e. via analytical analysis or a numerical

simulation of the solutions of various forms of the simplified equations of motion in

simplified configurations. Theoretical studies that lay the foundation onto which the

work described here will build can be thought of dividing into the following three

categories:

1. inertial theories in which time-mean recirculation gyres can arise from the

steady-state time-mean advection of PV alone (e.g. Fofonoff, 1954; Marshall

and Nurser, 1986; Greatbatch, 1987; Cessi, 1990)

2. eddy-driven theories in which the effects of a directly prescribed vorticity forcing

generates mean rectified flows through eddy-mean flow and eddy-eddy interac-

tions (e.g. Haidvogel and Rhines, 1983; Cessi et al., 1987; Malanotte-Rizzoli

et al., 1995; Berloff, 2005)

3. unstable jet studies in which the generation of mean recirculations arise from

unstable jets in which eddy effects (arising from jet instabilities) and inertial

effects can both play a role (e.g. Spall, 1994; Jayne et al., 1996; Beliakova, 1998;

Jayne and Hogg, 1999)

Collectively these approaches demonstrate that recirculations can arise from the

steady-state inertial terms, or the rectification of eddy fluxes, or potentially both.

Steady-state inertial theories show that closed recirculation gyres are steady solutions

to the nonlinear equations of motion forced by a balance between the inertial term (the

mean advection of PV) and dissipation. At the same time, time-dependent numerical

simulations demonstrate that zonal flows and closed recirculations can be generated

solely from rectification effects through nonlinear eddy-mean flow and eddy-eddy in-

teractions. Finally, rectified mean flows can also result from forcing by an unstable jet.
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In this case, mean recirculations to the north and south of the jet are produced by ed-

dies, generated by the jet’s instability, acting to smooth the PV anomalies associated

with the jet, and in the process produce homogenized regions in which essentially in-

ertial recirculations can develop. It is interesting that recirculations generated in this

way in barotropic models are able to predict recirculation strength quite accurately

in spite of their reliance on the barotropic instability mechanism.

(b) Observational Studies

It is challenging to obtain enough observational data to accurately calculate vari-

ous eddy statistics. As a consequence, diagnostic studies of the relation between the

mean or low-frequency state and eddies using direct observations of the ocean circu-

lation have been rare. Some attempts have been made with limited data on regional

scales. For example, several investigators have attempted to infer crude properties

of the eddy-mean flow interactions in the vicinity of the GS through the analysis of

current meter data, attempting to evaluate either quantities related to the effective

eddy forcing on the mean (such as the sign of the eddy momentum flux gradients or

the eddy vorticity flux divergence), or by examining various terms in the eddy energy

budget (e.g. Thompson, 1977, 1978; Dewar and Bane, 1989; Hogg, 1993; Cronin and

Watts, 1996; Cronin, 1996). With similar aims, Chester et al. (1994) used acoustic

tomography to estimate the eddy potential vorticity flux to diagnose the properties of

eddy-mean flow interactions in the GS jet. In general, the overall picture was greatly

expanded by SYNOP, that resulted in important new insights into the workings of

the meandering jet and its relationship to the surrounding ocean, and a fundamental

change in the scientific community’s understanding of the interconnected system of

currents, recirculations and eddies (see Hogg, 1992; Watts et al., 1995; Johns et al.,

1995; Shay et al., 1995; Bower and Hogg, 1996).

Collectively, the work of these investigators demonstrate that eddy variability, in

certain circumstances, has an order one importance in the dynamics of the mean

GS. Observations suggest that eddies may be playing a role in the net driving of the

mean jet by transferring momentum between the jet and the nearby inshore counter-
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current via cross-stream momentum flux convergences and divergences, making“eddy-

driving” a possible source for the excess momentum needed to drive the mass trans-

port in the GS above the expected Sverdrup value (Thompson, 1977, 1978). In the

abyssal ocean too, observations suggest eddies play a role in driving mean flows. For

example, abyssal ocean measurements by Hogg (1993) suggest that the eddy relative

vorticity flux divergence is of the right order of magnitude to drive a recirculation of

the observed strength. The role of eddies however appears to have important varia-

tions in the vertical, with important implications for an eddy effect on jet stability.

In current meter records analyzed by Dewar and Bane (1989), eddies acted to accel-

erate flows at abyssal levels but had the opposite effect (acting as a brake) for the

mean flow at thermocline depths, a signature of baroclinic energy conversion of the

standard type. The eddies therefore were acting not only to drive deep mean flows,

but also to alter the structure of the inertial jet which gave rise to them. In this way,

eddy variability may be playing a role in the evolving stability of the WBC jet, acting

to exchange PV in the cross-stream direction or in the vertical, thereby removing the

PV anomaly carried by it and driving the jet towards a state of marginal stability

downstream. Cronin and Watts (1996) and Cronin (1996) also suggest that eddy

fluxes and their divergences in the GS are playing a role in stabilizing the GS jet.

They argue this effect is via episodic large-amplitude trough formation events that

are a classic example of eddy-mean flow interactions whereby the GS, a baroclini-

cally unstable jet, generates eddies which in turn act back on the mean flow. The

eddy effect is to make the flow more barotropic (i.e. stable) through a divergent eddy

stretching potential vorticity flux that acts to spin up and accelerate the deep layer

flow.

In summary, theoretical and observational studies have both contributed to a

detailed understanding of the potential role of eddies in driving recirculation gyres,

as well as the role of eddies and eddy-mean flow interactions in real oceanic WBC jets.

Despite this however, several questions regarding the essential physics of WBC jet and

recirculation gyre systems and, in particular, the role of eddies in their dynamics, are
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still unresolved. What are the essential mechanisms of eddy-mean flow interaction

in WBC jet configurations and how do they depend on system parameters? How

does zonal dependence change our understanding of the zonal-mean eddy-mean flow

interaction problem? How does baroclinicity change our understanding of the essential

physics of the eddy rectification effects seen in idealized barotropic jet models? What

is the relative importance of inertial vs. eddy forcing in WBC jet systems? How

representative are the observations of eddy-mean flow interaction in the GS of WBC

jets in general? Are the dynamics at play significantly different in the KE? What

can improved remote-sensing, in situ observational, and computing abilities relative

to the days of SYNOP teach us further about eddy-mean flow interactions in actual

WBC jet systems? It is in essence these questions, and the opportunity provided by

the new KESS observations in the KE to make progress on them, that motivate the

work presented here.

1.3 Thesis Objectives

Motivated by these questions and the KESS dataset, this thesis addresses the nature

and the importance of eddy-mean flow interactions in WBC jets and recirculation

gyre dynamics from both theoretical and observational perspectives. The objectives

are:

1. to examine eddy-mean flow interactions in idealized configurations relevant to

WBC jet systems, in particular (i) the mechanism by which eddies drive mean

recirculation gyres through the rectification of a localized, transient forcing,

and (ii) the role of eddies and eddy-mean flow interactions in the downstream

evolution of a baroclinic jet subject to mixed instabilities.

2. to characterize eddy-mean flow interactions in the Kuroshio Extension using

KESS observations, satellite data, and data from past observational programs

in the region.

3. to test the relevance of the theoretical understanding derived from the idealized
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studies to the dynamics of the actual Kuroshio Extension jet-recirculation gyre

system.

It is the hope that the theoretical approach of studying idealized models will per-

mit a more lucid understanding of the essential physics of the system, while the

observational analysis can provide the necessary reality check to help understand the

relevance of the idealized system and the theoretical framework derived from it to the

real oceanic system. Taken together, the goal is to construct a tractable theoretical

framework in which to think about eddy-mean flow interactions in WBC jet systems,

that gives both an understanding of the dynamics from first principles, as well as an

understanding of its relevance to the actual oceanic system.

1.4 Thesis Outline

Work towards achieving these goals is presented in the following three chapters. Chap-

ter 2 presents the first of the theoretical studies of eddy-mean flow interactions in ide-

alized configurations relevant to WBC jet systems, that of eddy-driven recirculations

from the rectification of a localized, transient forcing. Here new insights into the rec-

tification mechanism, as well as explorations into how its effectiveness is influenced by

the variation of forcing parameters, stratification, the presence of a mean background

flow, and the degree of nonlinearity of the forced wave / eddy field, are presented.

Chapter 3 describes the second of the theoretical studies, that of eddy-mean flow

interactions in the downstream evolution of an idealized WBC jet. Here a diagnosis

of the eddy effect on the time-mean circulation, an examination of the mechanism

that permits the eddies to drive the time-mean recirculation gyres, a discussion of

the relative importance of eddy vs. steady-state inertial terms, and a comparison of

these mechanisms in barotropic, baroclinic and mixed instability jets is given. Fi-

nally, Chapter 4 addresses the second and third thesis objectives by presenting the

results of the observational study of eddy-mean flow interactions in the KE jet. Here

a characterization of the time-mean jet, its eddy variability, and indicators of their

interactions during the observational period, as well as an evaluation of the relevance
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of the idealized WBC jet study to the oceanic system by considering both the model

set-up and its results relative to observations, is given. Note that each of these chap-

ters is self-contained and can stand alone, independently describing the problem, the

methods, the results, and their implications. Chapter 5 summarizes the conclusions

for the thesis as a whole, as well as discussing implications of the work as a whole,

and suggesting directions for future research.
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Chapter 2

Eddy-Driven Recirculations From

A Localized, Transient Forcing

Abstract

The generation of time-mean recirculation gyres from the nonlinear rectification of a
vorticity forcing that is localized in space and oscillatory in time is re-examined both
analytically and numerically. I present new insights into the rectification mechanism
and explore how its effectiveness is influenced by the variation of forcing parameters,
stratification and the presence of a mean background flow. From this exploration
emerges an understanding that the effectiveness of the rectification depends on the
properties of the energy radiation from the forcing, which in turn depends on the
population of the waves that participate in the process. This population is selected
by the relation of the forcing parameters to the available free Rossby wave spectrum.
An enhanced response is achieved if the parameters of the problem are such to select
the Rossby wave with zero zonal group velocity and maximum meridional group
velocity which is optimal for producing rectified flows. Although formulated in a
weakly nonlinear wave limit, simulations in the fully turbulent (and more oceanically
relevant) system suggest that this understanding of the mechanism remains useful in
the strongly nonlinear regime with the addition of wave-mean flow interaction that
needs to taken into account. The problem is idealized but has general application in
the understanding of eddy-eddy and eddy-mean flow interactions as the contrasting
limit to that of spatially broad (basin-wide) forcing, and is relevant given many sources
of oceanic eddies are localized in space.
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2.1 Introduction

The effect of transient eddies on the time-mean state is a fundamental problem in the

theoretical studies of the circulation of the atmosphere and ocean. By redistributing

momentum, heat, and vorticity in a systematic fashion, eddy flux divergences of

momentum and potential vorticity (PV) are capable of having an important impact

on the large-scale, time-mean state.

One way eddies can affect the larger scale circulation is through the driving of

mean motions. Here I examine this phenomenon through a study of nonlinear recti-

fication, the generation of non-zero mean flow from a forcing with zero mean, in an

idealized set-up. Specifically I examine the time mean-flow response of a barotropic

and equivalently barotropic fluid subject to a simple vorticity forcing that is local-

ized in space and oscillatory in time. The emergence of the mean flow is a result of

nonlinear terms producing finite time-mean fluxes (Reynolds stresses) of momentum

and relative vorticity, whose convergences and divergences act as a driving force for

the time-mean flow.

2.1.1 Motivation

Interest in the problem was originally motivated by its potential relevance to the

specific application of the dynamics of deep recirculation gyres observed with the

eastward jet extensions of western boundary current (WBC) systems such as the

Gulf Stream and Kuroshio (Figure 2-1). One hypothesis for the driving of these

abyssal recirculations originating in historic eddy-resolving ocean circulation studies

(e.g. Holland and Rhines, 1980) is through the action of energetic surface eddies in

and above the thermocline, which act to provide localized sources and sinks of vor-

ticity (“plungers” of Ekman pumping velocity) to the deep ocean through fluctuating

thickness fluxes. It is my hope that understanding the details of the idealized rectifi-

cation problem considered here will aid in evaluating the relevance of this mechanism

to the deep recirculation gyres seen in recent WBC observations (e.g. Hogg, 1992;

Bower and Hogg, 1996; Chen et al., 2007; Jayne et al., 2008).
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The problem however has more general application in our understanding of wave/eddy

rectification from a localized forcing, serving as the contrasting limit to spatially broad

(basin-scale) forcing (e.g. Pedlosky, 1965; Veronis, 1966) and important given many

sources of ocean eddies are intermittent in space. For example, rectification from

localized forcing has potential relevance to the response of the ocean to a spatially

localized wind-stress pattern or a spatially localized concentration of eddy activity as

say generated by mean-flow instability. More generally, the generation of mean zonal

motion by the action of locally forced eddies, as is considered here, has relation to

the phenomenon of zonal jet formation, observed to occur spontaneously in turbulent

β-plane flows (e.g. Rhines, 1975, 1977; Williams, 1978). This process has recently

received renewed interest given the discovery of deep zonal jets in ocean observations

(Maximenko et al., 2005) and ocean GCMs (Richards et al., 2006). Finally, the prob-

lem can be considered a small contribution towards improving our understanding of

the varied effects of eddies on the large-scale and time-mean state, critical in our

search for better ways to parameterize unresolved eddy effects in general circulation

models.

2.1.2 Past Work

The work presented here extends earlier studies of eddy-driven mean flow from local-

ized forcing, specifically the pioneering laboratory experiments by Whitehead (1975)

and numerical simulations by Haidvogel and Rhines (1983) (hereafter HR83). The

former was the first experimental demonstration of the generation of mean zonal cur-

rents from localized, periodic forcing, whereas the latter examined this phenomenon

numerically through simulations of two-dimensional flow on a mid-latitude β-plane.

In their analysis, HR83 make many insights into the rectification mechanism that

are important as a starting point for the present study. First, they show the use-

fulness of an analytical solution in the form of a time-periodic Green’s function in

understanding the numerically simulated forced primary wave field. Second, from

analysis of their numerical simulations, they propose that the dynamics of the recti-

fied circulation is related to the mean eddy PV flux, v′q′, that a turbulent Sverdrup
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Figure 2-1: Time-mean sea surface height variance (measured by altimetry, source:
AVISO) (left) showing a localized concentration of eddy energy along the axis of
the Gulf Stream. The time-mean dynamic pressure field at 1000 m (measured by
subsurface floats) (source: Jayne (2006))(right) showing the pair of counter-rotating
deep recirculation gyres that exist below.

balance (βv = −∇ · v′q′) dominates in nearly all parts of the flow, and that regions

of counter (up) gradient potential vorticity fluxes provide the propulsion necessary

for fluid particles to cross the mean quasi-geostrophic contours. Finally, they show

that the strength of the induced circulation has a roughly quadratic dependence on

forcing amplitude and forcing scale, and decreases with increasing bottom friction

and decreasing forcing period.

2.1.3 Present Work Objectives

The present work seeks to extend this earlier study in a number of different ways.

Specifically the work presented here aims to:

1. examine the rectification mechanism in more detail from the perspective of eddy-

mean flow interactions (i.e. through examination of the eddy flux convergences

of momentum and vorticity, and eddy enstrophy generation).

2. extend the study of parameter variations (both of the forcing (amplitude, fre-

quency and length-scale) and the flow (the non-dimensional beta parameter)),

28



and to understand the mean-flow dependence on forcing parameters in terms of

the dynamics of the rectification mechanism.

3. consider the effects of stratification via the use of an equivalently barotropic

model.

4. consider the effects of a background mean flow.

5. extend these results from a weakly non-linear limit to the fully nonlinear regime,

and to examine which results from the small amplitude limit break-down and

why.

Finally, I seek to comment on the potential relevance of the mechanism in driving

mean-flows in an oceanic / atmospheric context.

2.1.4 Chapter Outline

This chapter is organized as follows: In Section 2.2, I outline my approach to the

problem that includes the use of both an analytical solution and numerical simula-

tions. Here details about the model set-up, the numerical method, and the design of

the numerical experiments are presented. In Sections 2.3 - 2.7 I present the results.

In Section 2.3 I present new insights into the rectification mechanism from both an

analytical expansion solution (valid in the weakly nonlinear limit) and from examin-

ing the nonlinear eddy-mean flow interaction terms in the fully nonlinear numerical

simulations. In Section 2.4 I discuss the results of numerical model parameter studies,

describing the dependence of the strength of the mean flow generated on various forc-

ing and flow parameters, and interpreting this dependence in terms of the rectification

effectiveness of the population of waves selected by the parameters of the problem.

In Sections 2.5 and 2.6 I examine the effects of stratification and a mean background

flow respectively, and similarly interpret their effect on rectification effectiveness in

terms of the rectification effectiveness of the population of waves they select. Finally,

in Section 2.7, I extend the numerical experiments from a weakly nonlinear regime to

a strongly nonlinear regime, and examine which aspects of our understanding of the
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problem formed from an analysis of the weakly nonlinear case remain valid, and also

where and why weakly nonlinear results break-down. In the final section, I summa-

rize the lessons learned from the study and discuss its relevance to atmospheric and

oceanic applications.

2.2 Methodology

Following HR83, I consider the problem via both analytical and numerical approaches.

2.2.1 Analytical Analysis

To gain insight into the rectification mechanism and the relation between forcing

parameters and rectified flow, like HR83, I appeal to an analytical description of the

forced waves. To introduce the effects of nonlinearity responsible for the rectification,

a solution to the nonlinear equation in terms of an expansion in the amplitude of the

forcing is sought. This provides a framework by which to connect the second order

mean flow to forcing by the time-mean Jacobian (relative vorticity flux divergence)

of the first order, linear forced wave field, a description that is valid in the weakly

non-linear limit (see Appendix A for details). I then compare the wave or eddy

flux divergence forcing and the mean flow it generates for various linear solutions

to the Rossby wave equation for different forcing functions. In particular I consider

the time-periodic Green’s function solution (for which an analytical form exists and

which was considered by HR83) and the solution for a forcing function with a finite

spatial extent (a particular solution obtained through the numerical integration of

the Green’s function convolution integral). As it will be seen, this comparison will

demonstrate the critical roles of the forcing extent and the east-west asymmetric

radiation of energy in the rectification mechanism. I also generalize the analytical

solution of HR83 to include the effects of stratification and comment on its influence

on rectification.
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2.2.2 Numerical Simulations

To examine the effect of the full nonlinearities on the problem, both in a weakly

nonlinear and fully nonlinear regime, I also perform numerical simulations.

The numerical model is essentially the one described in Jayne and Hogg (1999)

with the jet inflow and outflow conditions replaced by a prescribed forcing function in

the form of a narrow plunger fixed at the center of the basin. It is quasi-geostrophic,

barotropic or reduced gravity baroclinic, and on a mid-latitude β plane. It solves the

potential vorticity equation:

∂q

∂t
+ J(ψ, q) = F (x, y)eiωt −R∇2ψ (2.1)

with

q = ∇2ψ − 1

Bu
ψ + βy (2.2)

ψ being the streamfunction, Bu the Burger number (the square of the ratio of the

Rossby radius of deformation to the length scale of the motion), and R a non-

dimensional bottom friction coefficient.

Various forms of the forcing function F (x, y) were considered. For the mechanism

that will be described here, it is important only that the forcing be sufficiently local-

ized in space (an understanding of what “sufficiently localized” means will follow as

we gain insight into the rectification mechanism). To allow a large range of ampli-

tudes to be considered, it was convenient to use a forcing function of the form of a

normalized Gaussian:

F (x, y) = A
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such that at any instant in time, the basin-integral of the PV input due to the forcing

is zero. Results presented here will be from a forcing of this form. Note however that

the results described remain robust for other forms of F (x, y) including a standard

Gaussian as in HR83.
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Details on the numerical method can be found in Jayne and Hogg (1999). Briefly,

integration in time and space is done using a scheme that is center differenced in the

two spatial dimensions (an “Arakawa A-grid”) and forward stepped in time using a

third-order Adams-Bashforth scheme (Durran, 1991). Advective terms are handled

using the vorticity conserving scheme of Arakawa (1966). Dissipative sponge layers,

50 grid points wide, are placed next to all boundaries to absorb all waves leaving

the domain. Away from the sponge layers the explicit friction, R = 4x10−5 (non-

dimensional), is chosen to be as low as possible consistent with numerical stability

(dimensional values for the dissipation time scale range from ∼ 10 years at a non-

dimensional β, β = βdimL2

U
, value of 0.01 to ∼ 100 years at β = 0.15). The non-

dimensional grid spacing is 0.2 and the number of grid points is 751 (E-W) by 401

(N-S). With the origin at the center of the domain this puts the western boundary at

x = −75 and the northern boundary at y = 40 non-dimensional units.

The governing equation is solved in non-dimensional form with time scaled by the

advective time scale, T = L
U
. L and U are typical horizontal length and velocity scales

of the motions respectively. Values for the non-dimensional β parameter (β = βdimL2

U

where βdim is the meridional gradient of the earth’s planetary voriticty, hence the ratio

of the scales of the horizontal gradient in relative vorticity to that of the horizontal

gradient in planetary vorticity), as well as non-dimensional forcing parameters A (the

forcing amplitude), ω (the forcing frequency) and LF (the forcing length scale) are

specified. A typical run (around which parameter studies are varied) has a value of

β of 0.05 and forcing parameters LF = 5.0, ω = 0.01 and A = 0.001. Dimensionally

these would correspond to (taking a typical velocity scale of U = 1 m/s) a forcing

scale LF dim of ∼ 250 km, a forcing period ωdim of ∼ 60 days and a forcing amplitude

Adim corresponding to an Ekman pumping velocity of ∼ 1x10−3 m/s (or equivalently

a wind stress of ∼ 0.4 N/m2). Hence a typical run has scales typical of oceanic

synoptic scales. For reference, a summary of the suite of numerical experiments

varying various parameters that are reported on here, as well as their corresponding

dimensional scales to put the experiments in a physical context, are summarized in

Table 2.1.
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Table 2.1: Summary of Numerical Experiments

Parameter Range of Range of
Non-Dimensional Values Dimensional Scales

β 0.01 - 0.15 ∼1 m/s ≥ U ≤ ∼0.1 m/s
ω 0.001 - 0.015 ∼100 days ≥ T ≥ ∼10 days
LF 1 - 15 ∼50 km ≤ LF ≤ ∼750 km
Bu−1 0 - 0.3 infinite ≥ RD ≥ ∼100 km
U -0.1 - 0.1 ∼-1 cm/s ≤ U ≤ ∼1 cm/s
A 0.001 - 0.015 ∼0.1 N/ms2 ≤ τ ≤ ∼1 N/ms2

∼1 x 10−4 m/s ≤ wEk ≤ ∼1 x 10−3 m/s

Here Bu−1 is the inverse Burger number used to vary the importance of stratification,

and U is a mean background flow. See Sections 2.5 and 2.6 for more details.

2.3 Results: Insights into the Rectification Mech-

anism

As a first step in the analysis, I attempt to understand the mechanism by which the

waves or eddies rectify to produce the time-mean recirculation gyres. Insights are

gained from both the analytical expansion solution and an examination of the fully

nonlinear solution obtained by numerical simulation.

2.3.1 Insights From Analytical Analysis

An analytical solution in terms of an expansion in the amplitude of the forcing relates

the second order mean flow to forcing by the time-mean Jacobian (relative vorticity

flux divergence) of the first order, linear forced wave field. In particular, the order

amplitude squared rectified flow is given by the zonal integral of the eddy relative

vorticity flux divergence of the order amplitude waves (for details see Appendix A).

This relation provides a way to relate forcing parameters to properties of the rectified

mean-flow valid in a weakly nonlinear limit.

I compare the eddy relative vorticity flux divergence and its zonal integral for wave

solutions to the linear forced Rossby wave equation for various forcing functions.

33



From this I learn that a finite forcing extent is critical to produce rectified flow.

As is shown in Figure 2-2, the Green’s function solution (i.e. approximating the

spatial dependence of the forcing function by a delta function, as considered by HR83

and for which a closed-form solution exists) produces an east-west anti-symmetric

pattern of vorticity flux divergence that, because of its exact zonal asymmetry and

the dependence of the rectified flow on the zonal integral of the flux divergence,

does not produce rectified flow outside the immediate vicinity of the forcing. In

contrast, the particular solution for a forcing function with finite spatial extent (here

a localized Gaussian spatial dependence) does produce a pattern of vorticity flux

divergence whose zonal integral is consistent with the two gyre circulation pattern.

This observation highlights the fact that, at least in the weakly nonlinear limit, it is

necessary for the forcing to have a finite length scale in order to generate rectified flow

in the far field, a lesson that provides us with a new understanding of the rectification

mechanism. It implies that the mechanism that is generating the rectified flow is

occurring inside the forcing region (where the Green’s function and particular solution

differ) and not by the waves in the far field (where they do not). As it will be seen,

it is also highlighting the importance of introducing a zonal asymmetry in the wave

radiation pattern that is critical to the production of rectified flow, something that

will be elaborated on in subsequent sections.

2.3.2 Insights From Numerical Simulations

Examining various eddy-mean flow interaction diagnostic terms from the fully non-

linear numerical solutions expands our picture of the mechanism by which the wave

or eddy terms produce the rectified flow. In particular, visualization of the nonlin-

ear eddy fluxes (Reynolds stresses) of vorticity and momentum provide important

insights.

(a) Insights from eddy fluxes of vorticity

Examination of the Reynolds stresses of relative vorticity (Figure 2-3) show that

the key to the eddy generation of mean flows is a systematic up-gradient (northward)
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Figure 2-2: A comparison of properties of the analytical solutions for 1. a forcing
function with a Green’s function spatial dependence (top) vs. 2. a forcing function
with a Gaussian spatial dependence (bottom). The wave fields (left) show no qual-
itative difference, but the two solutions do exhibit a fundamental difference in the
vorticity flux divergence patterns (center) and consequently the time-mean rectified
flow forced by this flux divergence pattern (right).
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Figure 2-3: Eddy relative vorticity transport (u′q′~i+ v′q′~j) (vectors) overlaid on the
eddy relative vorticity transport divergence (J(ψ′,∇2ψ′)) (color), which in a small
amplitude limit is understood to force the mean rectified flow through the relation
ψ = −1

β

∫

J(ψ′,∇2ψ′)dx. The black circle indicates the plunger radius.

eddy flux of vorticity that occurs inside the forcing region. This eddy transport pro-

duces a flux convergence in the northern half and a flux divergence in the southern

half of the forced region that is responsible for the forcing of the time-mean recir-

culation gyres that extend outside the vicinity of the forcing. Given this picture, I

hypothesize that the properties of the mean-flow generated will therefore be closely

related to the process of eddy vorticity transport in the vicinity of the plunger.

Understanding rectification as a consequence of up-gradient eddy vorticity trans-

port provides further insights into the requirements for rectification. First, given

up-gradient transport is permitted only in the forcing region because of the source

of vorticity supplied there, one can now understand the requirement for a finite forc-

ing extent that one finds in the analytical analysis: with no (specifically meridional)

extent to the forcing region, no up-gradient flux is possible. Second, based on eddy

enstrophy budget considerations to be outlined below, one can also understand the

requirement that the forcing be “sufficiently localized”.

The requirement for an up-gradient eddy vorticity transport is equivalent to the

requirement that the eddy enstrophy generation term in the eddy enstrophy equation
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Figure 2-4: Eddy enstrophy destruction (~u′ζ ′·∇ζ) (color) which indicates the direction
of the eddy vorticity transport relative to the prevailing gradient (positive implies an
eddy vorticity flux up the mean vorticity gradient; negative implies an eddy vorticity
flux down the mean vorticity gradient).

(−u′ζ ′ · ∇q) is negative (i.e. eddy enstrophy destruction, −u′ζ ′ · ∇q, is positive).

This condition is met if the balance of the remaining terms in the time-mean eddy

enstrophy budget (−χ′ζ ′ + u · ∇1
2
ζ ′2, where χ′ represents the fluctuating relative

vorticity forcing) is negative, a condition that is met if (1) the stirring is the same

sign as the forcing so χ′ζ ′ > 0 (i.e. the forcing is “sufficiently localized”) and (2)

mean advection is small relative to the forcing. Visualization of the eddy enstrophy

destruction term for a typical set of parameters (Figure 2-4) confirms that indeed

these conditions are met and eddy enstrophy destruction is positive inside the forcing

region in the cases where rectified flow is produced. Given this picture, I hypothesize

that the rectification mechanism will be robust as long as this enstrophy balance is

maintained.

(b) Insights from eddy fluxes of momentum

Examination of the Reynolds stresses of momentum (Figure 2-5) provide an

alternative understanding of the rectification mechanism. In this framework, one

understands the mean zonal flows to be driven by eddy forces that arise from a

systematic eddy flux of zonal momentum towards the forcing region. This pattern of
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Figure 2-5: Eddy zonal momentum transport (u′u′~i+ v′v′~j) (vectors) overlaid on the
negative of the eddy zonal momentum transport divergence (− ∂

∂x
u′u′+ ∂

∂y
u′v′) (color),

the latter which can be interpreted as a parameterization of an effective steady zonal
eddy force in the prognostic non-eddy-resolving momentum equations of the large-
scale or slowly-varying flow.

eddy flux is a result of the outward energy radiation of the Rossby waves emanating

from the forcing, as first discussed by Thompson (1971). This produces an eddy

momentum flux convergence in the forced zone and eddy momentum flux divergences

north and south of the forcing. Through the interpretation of this eddy flux divergence

quantity as a parameterization of an effective steady zonal eddy force in the prognostic

momentum equations of the large-scale or slowly-varying flow in a non-eddy-resolving

model, this pattern then translates to a positive (eastward) eddy force at the latitude

of the forcing and negative (westward) eddy forces north and south of the forcing. In

this way, eddies are seen to act to accelerate the eastward jet at the forced latitudes

and drive the flanking westward flows. Given this picture, I hypothesize that the

properties of the eddy-driven mean-flow will therefore be closely tied to the properties

of the wave energy radiation away from the forcing.
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2.4 Results: Dependence on System Parameters

I examine the sensitivity of the rectification mechanism to various system parameters

to gain further insight. Specifically I vary the non-dimensional β parameter, β =

βdimL2

U
where βdim is the meridional gradient of planetary vorticity and L and U are

typical length and velocity scales of the flow (to be thought of as a measure of the

relative importance of the relative vorticity of the flow to the planetary vorticity), the

forcing frequency ω, and the plunger size L. Results from these parameter studies

are presented here.

2.4.1 Effect on Rectification Effectiveness

The most basic result of the parameter studies is the observation that rectification

effectiveness (the strength of the mean-flow generated as measured by the maximum

time-mean gyre transport, ψmax − ψmin) is a function of the various forcing and

environmental parameters. This dependence on β and plunger size L in physically

relevant parameter ranges is shown in Figure 2-6. A non-monotonic dependence of

mean flow strength on both of these parameters generates new questions about what

sets which parameter values generate an enhanced response.

2.4.2 Interpretation Via Wave Rectification

Examining this non-monotonic behavior provides additional understanding of the

rectification mechanism. In particular it highlights the importance of the relationship

between the scales of the forcing and the free Rossby waves that make-up the response

in setting the rectification strength. As it will be shown, a resonant-like response is

achieved when the forcing length scale L, is well matched to the spectrum of free

Rossby waves the forcing can excite (a function of the dispersion relation and hence

β and the frequency ω). In particular, a maximal response is achieved when the

forcing length scale corresponds to the wavelength associated with the wave at the

origin of the Rossby wave dispersion circle at k = −|l| = −B where B = β

2ω
(Figure

2-7).
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Figure 2-6: Dependence of mean rectified flow strength (ψmax − ψmin) (“rectification
effectiveness”) on select parameters of the problem: β (top) and forcing length scale
L (bottom). Dashed lines indicate the parameter value corresponding to the peak or
optimal response in the observed non-monotonic dependence of rectified flow strength
on each of these parameters.
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Figure 2-7: Demonstration that the “resonant” response occurs when the forcing
length scale L is equal to the wavelength associated with the wave with wavenumbers
|k| = |l| = B (where B = β

2ω
), λB.
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One can understand why this is the case based on the understanding of the rec-

tification mechanism outlined in the previous section. In short, varying which waves

on the dispersion circle that are excited (via the choice of forcing length scale and the

dispersion circle) changes the rectified flow response because it changes the properties

of wave energy radiation away from the forcing. This dictates the spatial distribu-

tion of wave activity which in turn impacts rectification because rectification depends

directly on the spatial gradients of the wave or eddy terms. As it will be seen, the

maximum response occurs when the forcing scale matches the wavenumber k = −B
because there are a number of properties of this particular wave’s energy radiation

that make it optimal for rectification. Specifically, by corresponding to the wave in

the available Rossby wave spectrum with zero zonal group velocity and maximized

meridional group velocity, it is the wave that is best suited to producing zonal asym-

metry in zonal energy radiation and a large meridional component of energy radiation,

both of which are necessary for effective rectification.

To illustrate, consider rectification from a fixed size plunger for three different

values of β: one corresponding to that required for the zonal wavenumber prefer-

entially excited by the plunger radius LF , kF = − 2π
LF

and the zonal wavenumber

k = −B to match (“βoptimal”, |kF | = B), one with β < βoptimal (|kF | > B) and one

with β > βoptimal (|kF | < B) (see Figure 2-8). The effect of changing β changes the

character of the waves that are excited by the forcing consistent with expectations

based on the intersection of the forcing scale on the dispersion curve: for β < βoptimal

the wave field is dominated by waves with large meridional scale relative to their

zonal scale (k >> l), while for β > βoptimal the wave field is dominated by waves with

comparable meridional and zonal wavelengths (k ∼ l) (Figure 2-9 top row).

This change in the “population” of waves that are excited changes the pattern

of the waves’ energy radiation. In particular, as β is varied from sub-optimal to

super-optimal, the wave population that is excited changes from one with waves with

predominantly eastward zonal group velocity, cgx, to one containing waves that have

a predominantly westward cgx component. Waves with a significant meridional group

velocity, cgy, are included in the excited spectrum when β is such to include waves

42



Figure 2-8: A visualization of the relation between the forcing scale (kF = 2π
L

) and the
free Rossby wave spectrum for the three values of non-dimensional β discussed in the
text. Forcing excites Rossby waves with k wavenumbers ≤ kF (shaded region) and l

wavenumbers given by the dispersion relation (a function of β and forcing frequency
ω) (circles). For β < βoptimal the wave population contains waves with |k| > B (with
eastward zonal group velocity), waves with |k| = B (with maximized meridional
group velocity), and waves with |k| < B (with westward zonal group velocity). For
β > βoptimal, the spectrum of waves excited contains waves with |k| < B (with
westward zonal group velocity) only.
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Figure 2-9: The effect of varying β from β < βoptimal to β > βoptimal on: (a) the
population of waves excited (1st row); (b) the orientation of energy radiation from
the forcing (2nd row); (c) the patterns of eddy relative vorticity flux divergence (3rd

row); (d) the patterns of eddy zonal momentum flux divergence (4th row).
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Figure 2-10: A visualization of the effect of changing the population of waves excited
by the forcing on energy radiation from the plunger. As β is increased from β <

βoptimal to β > βoptimal, waves with eastward zonal group velocity (cgx > 0) are
included in the population of excited waves. βoptimal is set by the conditions of cgx = 0
and cgy maximized at the forcing scale kF .

near |k| = B in the excited range (Figure 2-10). This is clearly seen in the differences

in the time-mean eddy kinetic energy distributions for the three special cases (Figure

2-9 second row).

The changing properties of energy radiation impact rectification effectiveness through

changing the spatial distributions of Reynolds stresses u′u′, u′v′ and v′v′, for this re-

sults in changing patterns of Reynolds stress gradients which are what determine

the eddy-mean flow interaction terms (the eddy flux divergences of vorticity and mo-

mentum) that produce the rectified flow. I find that both a zonal asymmetry and a

significant meridional component of energy radiation are required for effective recti-

fication, requirements that can be understood through consideration of the patterns

of eddy vorticity flux divergence and eddy momentum flux divergence respectively:

(a) Zonal energy radiation and the divergence of the eddy fluxes of vorticity
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As described above, shrinking β across the optimal threshold changes the popu-

lation of waves excited by the forcing from one with strictly waves with a westward

zonal component of their group velocity to one that includes waves with an eastward

zonal component as well. As a consequence, the zonal radiation of energy becomes

more and more zonally symmetric as β is decreased and more and more of the com-

plete Rossby wave spectrum is excited. This is important to rectification effectiveness

because it results in a significant change in the pattern of the eddy vorticity flux diver-

gence, from the two-lobed pattern (that drives the counter-rotating gyres west of the

forcing region) towards the zonally anti-symmetric four-lobed pattern (that results in

no mean flow generation outside the forcing region) (Figure 2-9, third row).

This new understanding of the importance of zonal energy radiation asymmetry to

rectification effectiveness provides another explanation for why the Green’s function

forcing fails to generate rectified flow. With a forcing length scale of essentially zero,

the forcing excites all values of k and hence the entire Rossby wave spectrum regards

of the Rossby wave parameters. With no asymmetry in the zonal energy radiation

of the population of waves excited, rectification does not extend outside the forced

region.

(b) Meridional energy radiation and the divergence of the eddy fluxes of mo-

mentum

Including waves near or at |k| = B (i.e. waves with a significant meridional compo-

nent to their group velocity) in the excited spectrum is also important to rectification

effectiveness because of its impact on the patterns of eddy zonal momentum flux

divergence. Comparing the patterns of this “zonal eddy force” for the three spe-

cial cases (Figure 2-9, bottom row) one sees it is necessary to excite waves with a

meridional component to their group velocity to separate (in latitude) the eddy mo-

mentum flux convergence in the forcing region (acting as an eastward force) from the

eddy momentum flux divergences (acting as westward forces) to avoid their mutual

cancellation. As the forcing scale and optimal wavenumber become mismatched, the

direction of energy radiation becomes less meridional and more zonal, and the regions
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of momentum flux convergence and divergence converge to the same latitude band.

As a result of the cancellation that then results, rectification diminishes.

Rectification is optimized when the forcing scale preferentially excites the wave

at |k| = B for different reasons depending on if one considers the eddy vorticity

flux divergence or eddy momentum flux divergence. Considering first the former,

note that a forcing scale equal to the wavelength corresponding to |k| = B excites

Rossby waves with |k| ≤ B and hence all the waves in the Rossby wave spectrum

with westward group velocity and none with eastward group velocity. Maximizing

the zonal asymmetry in zonal energy radiation is optimal for producing the two-

lobed eddy vorticity flux divergence pattern that drives the rectified flows. From

the perspective of eddy momentum flux divergence, note that the Rossby wave at

|k| = B has zero zonal group velocity and maximized meridional group velocity.

This is optimal for separating in latitude the zonal eddy momentum flux regions of

convergence and divergence and results in minimal self-cancellation of the effective

eddy eastward and westward forces. In summary, it is properties of both the zonal

and the meridional energy radiation of the optimal wave at |k| = B that make it best

suited to produce rectified flows by the mechanism proposed. Together they provide

a self-consistent explanation of why when the forcing scale is such to preferentially

excite this part of the spectrum, the rectification response is enhanced.

2.5 Results: The Effect of Stratification

The effects of stratification on the problem can be considered by posing the problem

for a 11
2

layer (reduced-gravity) fluid. Like the case of the barotropic problem, insights

come from both an analytical and numerical consideration of the problem.

2.5.1 Effect on Rectification Effectiveness

I first make progress on the stratified problem by extending the analytical solution of

HR83 to include a dependence on the inverse Burger Number, Bu−1, as appropriate

for the 11
2

layer problem. The inverse Burger number, Bu−1 =
(

L
RD

)2
i.e. the ratio
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of the horizontal length scale of the motion to the Rossby deformation radius, RD =

ND
f

1, represents a measure of the relative importance of rotation in the horizontal

to stratification in the vertical, and increases as the effects of stratification become

increasingly important.

With the addition of stratification in the reduced-gravity configuration, the Green’s

function problem becomes:

∂

∂t
∇2ψ −Bu−1 ∂

∂t
ψ + β

∂

∂x
ψ = δ(~x)eiωt (2.4)

The solution has the same form as the barotropic problem (ψ = Jo(γr)cos(Bx +

ωt) + Y o(γr)sin(Bx + ωt)) with a modification to γ, changing it from satisfying

γ2 = B2 in the barotropic case to γ2 = B2 − Bu−1 in the reduced-gravity case. This

immediately informs us of two important effects of stratification on the problem.

First, stratification reduces the wavenumber of the response shifting the excited wave

field to longer wavelengths than in the absence of stratification. Second, it introduces

a new cut-off: for sufficiently large values of the inverse Burger number (such that

γ becomes imaginary) radiating solutions no longer exist and as such we expect

rectification to cease.

I consider also the solution to the fully nonlinear problem using the numerical

model and explore the effect of stratification on rectification through varying the

Burger number and comparing properties of the wave field and its rectification effec-

tiveness. I consider a range of inverse Burger numbers from 0 to 0.3, equivalent to

varying the deformation radius from infinite (the barotropic case) to ∼ 100 km.

The result of the numerical parameter study reveals that, as with other system

parameters, rectification effectiveness has a non-monotonic dependence on stratifica-

tion as is shown in Figure 2-11. The dependence however is different in character

to that on β, ω and LF , suggesting two distinct regimes of behavior as opposed to a

resonant peak symmetric about an optimal value. For small values of inverse Burger

1Here N is the buoyancy frequency, D is the active layer depth in a reduced-gravity layered
configuration, and f is the Coriolis frequency.
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Figure 2-11: Dependence of mean rectified flow strength (ψmax−ψmin) (“rectification
effectiveness”) on the inverse Burger number, Bu−1.

number, increasing the stratification causes the strength of the rectified flow to in-

crease quadratically from the barotropic case. However at a critical value (here for

β = 0.05, ω = 0.01 and LF = 5 at Bu−1
critical ≈ 0.15 corresponding to a deformation

radius of order 130 km) the rectification response peaks and then drops off sharply

to values less than that for a barotropic fluid as the inverse Burger number is further

increased. This dependence raises several questions whose answers promise further

insight into the rectification mechanism: Why does rectification effectiveness increase

with stratification for small values of inverse Burger number? What sets the critical

Burger number corresponding to the peak response? Why does rectification become

ineffective for Bu−1 > Bu−1
critical?

2.5.2 Interpretation via Wave Rectification

One can understand changes in rectification effectiveness with varying stratification

as a result of both the effects revealed by the analytical solution and, as was the case

with the earlier parameter studies discussed, changes in the population of waves that

are selected to participate in the rectification process. In this case however, previous
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resonant arguments will not be appropriate and as such, this study will teach us about

additional requirements for effective rectification.

Stratification effects the Rossby wave dispersion relation by changing the radius

of the dispersion circle (Figure 2-12). This has two important implications for the

population of waves selected by the forcing. First, it reduces the spectrum of free

wavenumbers available and hence concentrates the forcing amplitude into a narrower

band of wavenumbers. Second, through the introduction of minimum zonal wavenum-

ber, kmin = −B+ 1
2ω

√
β2 − 4ω2Bu−1, it eliminates the longest, fastest westward prop-

agating waves from the available spectrum. Given it is only these waves that have

a large enough group velocity to escape the forcing region radius in the critical time

of half a forcing period, this increases the proportion of the forcing amplitude given

to the shorter eastward propagating waves that remain inside the forcing region and

participate in the rectification process (Figure 2-13). These effects can be seen in the

snapshots of the excited wave fields and the orientation of their energy radiation for

various values of Bu−1 in the upper two rows of Figure 2-14. As Bu−1 is increased

towards the critical value, the wave field becomes less diverse in its population of

waves, the waves become of larger amplitude, and there is an increasing dominance

of eastward energy radiation.

Figure 2-14 suggests that this changing selection of waves enhances the recti-

fication response for a few possible reasons. First, increased wave amplitudes (a

consequence of concentrating the same forcing amplitude into a narrower spectrum of

wavenumbers) results in larger values of the spatial gradients of the wave fluxes, and

hence larger magnitudes of the eddy forcing terms, the eddy relative vorticity and

zonal momentum flux divergences. Second, because increasing stratification tends to

concentrate the wave response into a narrow band of wavenumbers centered around

k = B, the waves selected as stratification is increased are the ones better suited to

producing rectified flows on account of the significant meridional component to their

group velocity and hence energy radiation. This results in a more effective separation

in latitude of the regions of eddy zonal momentum convergence and divergence as is

seen in the fourth row of Figure 2-14.
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Figure 2-12: A visualization of the effect of stratification on the Rossby wave disper-
sion relation and therefore the wave population available to participate in rectification.
Increasing Bu−1 shrinks the radius of the dispersion circle, reducing the range of k
and l in the available spectrum. This eliminates the longest, fastest waves from the
excited wave population by introducing a non-zero minimum k wavenumber, kmin,
which increases with increasing inverse Burger number.
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Figure 2-13: The energy radiation properties of the selected population of waves for
various stratifications increasing towards the critical inverse Burger number. The
zonal component (left) and the meridional component (right) of the wave’s group
velocity is shown as a function of zonal wavenumber for the range of wavenumbers in
the available spectrum. The gray shading denotes the range of group velocities small
enough such that the wave remains inside the forcing region in the critical time of
half a forcing period and hence participates in rectification.
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Figure 2-14: The effect of varying stratification by increasing Bu−1 towards the crit-
ical value on: (a) the population of waves excited (1st row); (b) the orientation of
energy radiation from the forcing (2nd row); (c) the patterns of eddy relative vorticity
flux divergence (3rd row); (d) the patterns of eddy zonal momentum flux divergence
(4th row).
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Figure 2-15: A comparison of the wave fields for the case Bu−1 < Bu−1
critical (left)

vs. Bu−1 > Bu−1
critical (right). For sub-critical inverse Burger numbers, the plunger

radiates waves outside the forcing region but for super-critical values, wave radiation
ceases.

Hence it appears that rectification effectiveness increases with increasing stratifica-

tion for small values of inverse Burger number as a result of concentrating the forcing

amplitude into a narrow band of wavenumbers, exciting waves that both remain in

the forcing region to participate in rectification, and that are also well suited to pro-

duce rectified flows on account of the orientation of their group velocity. But this

enhancement does not continue indefinitely. Eventually, the stratification becomes

large enough that the radius of the dispersion circle goes to zero and, as suggested

by the analytical solution, the forcing fails to radiate waves. For the current set of

parameters, this occurs at an inverse Burger number of Bu−1 = B2 = 0.16. This

condition defines the critical Burger number, and rectification effectiveness decays

rapidly for larger stratifications. The failure of the forcing to radiate waves beyond

this critical value in the numerical simulations is shown in Figure 2-15.
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2.6 Results: The Effect of a Mean Background

Flow

As a potentially useful model of localized wave radiation from an unstable jet, it is

interesting to consider the plunger in the presence of a background flow and investi-

gate its effect on the rectification process. To pose the simplest possible problem, I

consider the same barotropic problem with the addition of a constant, uniform zonal

background flow, U . The governing equation is modified to be:

∂q

∂t
+ J(Ψ + ψ, q) = F (x, y) − R∇2ψ (2.5)

where Ψ is the stream function of the background flow given by Ψ = −Uy in the case

of a constant, uniform zonal flow as is considered here.

2.6.1 Effect on Rectification Effectiveness

The addition of the nonlinear term to the governing equation due to the background

flow excludes a closed-form analytical Green’s function solution in the previous form,

so in this case I proceed directly to exploring the fully nonlinear problem with the

numerical model. I explore the effect of a background zonal flow U on rectification

through varying the magnitude and direction of U and comparing properties of the

wave field and its rectification effectiveness. I find that the addition of even a small

background flow has a significant effect on rectification effectiveness and hence con-

sider non-dimensional Us in the range of -0.01 (westward) to +0.01 (eastward) which

corresponds to dimensional flows of magnitudes on the order of 1 cm/s.

Again, similar to other system parameters, I find rectification effectiveness has a

non-monotonic dependence on U in a physically relevant parameter range as is shown

in Figure 2-16. In this case, the strength of the rectified flow increases with increasing

U as it varies from large and westward towards eastward, peaks at a critical inter-

mediate eastward speed (here for β = 0.05, ω = 0.01 and L = 5 at non-dimensional

Uoptimal = 0.004 corresponding to a dimensional value on the order of 4 mm/s), be-

55



−0.01 −0.005 0 0.005 0.01

0.02

0.04

0.06

0.08

0.1

U<U
optimal

U>U
optimal

U

re
ct

ifi
ca

tio
n 

st
re

ng
th

 (
ψ

m
ax

−
ψ

m
in

)

Figure 2-16: Dependence of mean rectified flow strength (ψmax−ψmin) (“rectification
effectiveness”) on the value of the constant zonal background flow U .

yond which it decreases again for large eastward values of U . Again, attempting to

understand this dependence of rectification effectiveness on the value of the back-

ground flow, and in particular what sets the critical value for the maximum response,

promises even more insight into the rectification mechanism.

2.6.2 Interpretation via Wave Rectification

In this case again I argue that the changing rectification response can be usefully

understood by considering the rectification effectiveness of a given population of waves

that are selected by the parameters of the problem, here the value of U . Similar to

the case of stratification, where selection was achieved via changing the proportion

of excited waves that remain in the forcing region based on a speed condition, here

selection is via a condition on the net speed of the waves and whether they are (with

the supplement or reduction provided by the background flow) sufficiently slow to

remain in the localized vicinity of the forcing (in the critical time of a half period)

to participate in the rectification that occurs there. Noting it is the net phase speed

(cphase + U where cphase is the intrinsic zonal wave speed) that matters, varying the

magnitude of U is a means not only of varying the spectrum of excited waves (by
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modifying the dispersion relation) but also of changing the fraction of the Rossby

wave spectrum that meet this speed condition, and as such, changing the proportion

of excited waves that rectify.

As a means of illustration, consider the fraction of the excited Rossby wave spec-

trum that meets the net phase speed requirement for three different values of U :

U < Uoptimal, U ≈ Uoptimal (that producing the peak response) and U > Uoptimal (Fig-

ure 2-17) and the properties of the rectification in each of these three cases (Figure

2-18). For U < Uoptimal (in this case a large westward background flow), it is only

the shortest, slowest waves (all with eastward group velocity) that aren’t advected

away from the plunger. Hence the waves that participate in rectification are limited

to a narrow range of the available free Rossby wave spectrum B << |k| < 2B. The

response is small because the waves with large meridional group velocity (|k| ≈ B)

are not included. As the magnitude of the westward flow is decreased however, the

relative impact of the background advecting flow diminishes and faster waves corre-

sponding to smaller values of |k| now remain inside the forcing region in the critical

time of a half period and so can now also participate in the rectification process. The

effectiveness of the rectification increases. The response is large if the wave population

that participates in the rectification includes the wave at |k| = B with the maximum

meridional group velocity while also maintaining asymmetry in zonal energy radia-

tion. As U is increased further however, an even larger fraction of the spectrum is

trapped, including now almost all the waves in the available spectrum with eastward

group velocity. The response diminishes due to an increasing symmetry in the zonal

radiation of energy to the east and west.

As seen in Figure 2-17, the peak response occurs when the background flow is such

(through modification to the dispersion relation + selection based on the above speed

criteria) to allow the optimal wave at k = B to participate in rectification. Further

insight is gained from the observation that Uoptimal is precisely the background flow

required to arrest, through the condition cphase + U = 0, the wave with the critical

wavenumber |k| = B. As such, the wave that is optimized for rectification (that with

maximum |l|, |cgy| and |u′v′|), is rendered stationary to make the most significant
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Figure 2-17: An illustration of the net wave speed condition that selects the popula-
tion of waves that will participate in the rectification for a given mean background
flow value. Curves show the net zonal phase speed (intrinsic zonal phase speed +
the advecting background flow speed) as a function of zonal wavenumber k for three
different characteristic values of U : sub-optimal (dashed), optimal (solid) and super-
optimal (dotted), while the shaded region denotes the range of net speeds that are
sufficiently slow such that the wave travels a distance less than a plunger radius in
the time of one-half a forcing period (before the sign of the forcing changes sign) such
that it remains “trapped” inside the forcing region. The intersection of the two de-
limit the range of k of the waves that participate in rectification, which is illustrated
relative to the Rossby wave dispersion relation (altered by the addition of the given
background flow) by the shaded region for each of the three cases on the right. Here it
can be seen that for U < Uoptimal and U > Uoptimal participating waves do not include
the optimum wave at |k| = B, while for U = Uoptimal the optimum wave is included.
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Figure 2-18: The effect of varying U from U < Uoptimal to U > Uoptimal on: (a) the
population of waves excited (top row); (b) the orientation of energy radiation from
the forcing (2nd panel); (c) the patterns of eddy relative vorticity flux divergence (3rd

row); (d) the patterns of eddy zonal momentum flux divergence (4th row).
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Figure 2-19: The dependence of mean rectified flow strength on the value of U as in
Figure 2-16, but with the x axis normalized by the magnitude of the intrinsic zonal
phase speed of the wave with the optimal zonal wavenumber |k| = B. The peak
response occurs near where the background flow is equal and opposite to the phase
speed of the wave with this optimal wavenumber, hence making the wave with the
optimal characteristics for rectification stationary.

contribution to the rectification process. As seen in Figure 2-19, this condition of

matching U to be equal and opposite to the zonal phase speed of the wave with the

optimal wavenumber |k| = B predicts the location of the peak response well.

Finally, thinking in terms of the rectification properties of the arrested wave is

useful also in explaining the asymmetry observed in the rectification response for

U < Uoptimal vs. U > Uoptimal. As it has been shown, the rectification strength is

directly related to the divergence of the eddy vorticity flux, which, as observed in

the numerical simulations, depends critically on the magnitude of the Reynolds stress

u′v′ in the vicinity of the plunger. Now one expects, at least in a weakly nonlinear

regime where the wave can be approximated as ψ ∝ ei(kx+ly−ωt), that u′v′ will vary as

kl (the product of the zonal and meridional wave numbers) and hence I examine how

this quantity varies with U . Taking the k and l associated with the arrested wave

as characterizing the population of rectifying waves, one sees that the Rossby wave

dispersion relation is such that this product shows the same asymmetry: the relative

size of u′v′ approximated as kl increases rapidly for the waves arrested by U < Uoptimal
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Figure 2-20: An explanation for the asymmetry in the rectification response for U <

Uoptimal vs. U > Uoptimal based on the changing relation between k and l for a Rossby
wave with |k| > B vs. |k| < B. For |k| > B (corresponding to U < Uoptimal if one
takes k to be the arrested wavenumber), k << l, but near |k| = B, l increases rapidly
to a comparable magnitude (left). This produces a rapid increase in the relative
magnitude of kl (characteristic of the size of u′v′) (right). For |k| < B (corresponding
to U > Uoptimal again if k is taken to be the arrested wavenumber) however, the change
in both k and l is much slower, and hence they remain of comparable magnitude over
a much larger range of k / U . This may account for the much slower change in
rectification effectiveness observed.

and declines much more slowly showing signs of saturation for the waves arrested by

U > Uoptimal (Figure 2-20). This suggests that it is this asymmetry between the

magnitudes of k and l for a Rossby wave with |k| > B vs. |k| < B that is responsible

for the asymmetry in rectification response observed.

2.7 Results: Extension to the Strongly Nonlinear

Regime

A final parameter variation that is of interest is of course the forcing amplitude.

As discussed in Section 2.3, in the limit of a small forcing amplitude, an analytical

expansion solution predicts that the mean rectified flow will be given by the zonal

integral of the relative vorticity flux divergence (the time-mean Jacobian) of the linear

forced wave field, and be of the order of the square of the forcing amplitude. But

what about rectification in a strongly nonlinear regime? Experiments varying system
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parameters, stratification and the background flow discussed thus far have all been

forced with a small forcing amplitude, and given the weak nonlinearity, interpretation

in terms of the rectification effectiveness of a given population of linear Rossby waves

has been appropriate. Where do the small-amplitude limit arguments break down

and why? Do lessons learned in the weakly nonlinear regime discussed thus far have

any use in understanding rectification in the strongly nonlinear regime?

2.7.1 Effect on Rectification Effectiveness

To examine the effect of forcing amplitude and the degree of nonlinearity on rectifica-

tion effectiveness, I conduct a number of simulations varying the forcing amplitude.

Results showing the dependence of rectification effectiveness on the forcing ampli-

tude for the typical set of system parameters (β = 0.05, ω = 0.01 and L = 5.0) are

given in Figure 2-21. Note that for all “small amplitude” simulations discussed so

far, the forcing amplitude was 0.001 (dimensionally equivalent to a wind stress of

0.1 N/ms2 or equivalently an Ekman pumping velocity of 1x10−4 m/s), hence I now

consider cases where the amplitude of the forcing is increased by more than an order

of magnitude from these “wave-like” cases.

Figure 2-21 shows that the results from these tests confirm the analytical predic-

tion of a quadratic dependence of mean flow strength on the forcing amplitude, A, for

small values of A. This dependence however is observed to break down as the forcing

amplitude / degree of nonlinearity of the flow is increased (for this set of parameters

the critical amplitude is of the order A = 0.005). Beyond this critical value, in a

regime where the degree of nonlinearity is large enough that the “weakly nonlinear”

classification is no longer valid, the mean flow response shows signs of saturation,

increasing much more slowly with an increase in forcing amplitude.

I am heartened however by the fact that despite this systematic change of behavior,

examination of both the wave fields and the time-mean rectified flow for the “weakly

nonlinear” and “strongly nonlinear” cases remain qualitatively very similar (Figure

2-22). This suggests that lessons learned about the rectification mechanism may

still have some use in the strongly nonlinear regime. There are of course also some
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Figure 2-21: Dependence of mean rectified flow strength (ψmax−ψmin) (“rectification
effectiveness”) on the forcing amplitude for the standard case β = 0.05, ω = 0.01,
L = 5.0. The transition between a quadratic dependence of rectification strength on
forcing amplitude to a much slower (∼ linear?) rate of increase defines the transition
between “weakly” and “strongly” nonlinear regimes.

important differences: when the system becomes strongly nonlinear, the wave field

becomes more “circular” and the time-mean rectified flow becomes zonally “trapped”

close to the forcing region while increasing its meridional extent. These changes hint

at differences that may explain the cause of saturation in rectification effectiveness

observed at large forcing amplitude.

2.7.2 Interpretation Via Wave Rectification Modified by Wave-

Mean Flow Interactions

In previous sections, rectification and variations in its effectiveness due to variations in

forcing and flow parameters have been interpreted via eddy momentum and vorticity

transport, enstrophy balances, and the rectification effectiveness of a given population

of linear Rossby waves selected by the parameters of the problem. As it will be shown,

these same factors will be important in understanding rectification in the strongly

nonlinear regime as well, but with an important modification due to the addition of

mean-flow interaction now being important.
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Figure 2-22: A comparison of wave fields (top) and their associated time-mean recti-
fied flows (bottom) for the “weakly nonlinear” (left) vs. “strongly nonlinear” (right)
case.
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I propose that a useful way to understand rectification in the strongly nonlinear

regime is via the same picture of the rectification mechanism developed in the weakly

nonlinear case with the addition of a mean flow and its associated wave-mean flow

interactions. This is a consequence of the rectified mean flow now being sufficiently

strong that the interaction between the waves and the mean flow is significant. This

interaction will be much more complicated than the case of a uniform mean back-

ground flow not only because the mean flow strength will be a direct function of the

rectification effectiveness, but also because the feedback it will have on the waves’

ability to rectify will have important spatial dependence, including, but not limited

to, making, in certain locations, a significant contribution to the effective background

PV gradient through which the waves are propagating. Despite this complexity how-

ever, as it will be shown, the net effect of its role will be to always counteract or

reduce the ability of the waves/eddies to rectify. It is this counteracting effect that

results in the saturation in the mean-flow strength at large forcing amplitude that is

observed.

To see how the contribution of the presence of the rectified mean flow reduces rec-

tification effectiveness at large forcing amplitudes I re-consider the dynamical quanti-

ties that were instructive in understanding rectification in the case of a small forcing

amplitude and compare them for the weakly vs. strongly nonlinear regimes.

(a) Vorticity flux balances

First, I consider the time-mean vorticity flux balances for each case (Figure 2-23).

In the weakly nonlinear case (Figure 2-23 top row), consistent with the simulations

of HR83, the balance is predominantly a two term balance between the eddy PV

flux divergence (J(ψ′,∇2ψ′)) and the planetary vorticity flux divergence (βv) (a bal-

ance often referred to as the “eddy Sverdrup balance”). Mean meridional motions

(northward north of the plunger and southward south of the plunger) are generated

to produce the planetary flux divergence required to balance the eddy flux divergence,

and it is these mean motions that are responsible for the homogenization of the mean

PV and indirectly, driving the time-mean recirculations.
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Figure 2-23: The time-mean vorticity balance: J(ψ′,∇2ψ′) + J(ψ,∇2ψ) + βv =
−R∇2ψ for the weakly nonlinear case (top) vs. the strongly nonlinear case (bottom).

In the strongly nonlinear case however (Figure 2-23 bottom row), as a result of

the mean zonal flows generated by the rectification becoming sufficiently strong, this

balance becomes three-way, as now the contribution of the mean relative vorticity flux

(J(ψ,∇2ψ) is also significant. Inside the time-mean jet, the mean relative vorticity

flux divergence has the opposite sign to the eddy relative vorticity flux divergence

and hence counteracts its effects. The mean meridional velocities required to balance

the eddy flux divergence don’t have to be as large, PV mixing is reduced and the

strength of the recirculations grows less quickly.

(b) Enstrophy balances

This picture of the mean advection now becoming a player and resulting in de-

creased rectification effectiveness is further suggested by an examination of the terms

in the enstrophy variance budget for the two cases. Recall that up-gradient eddy

PV transport, and hence rectification, requires the eddy enstrophy destruction to be

in some places positive, which in turn requires the sum of the other terms in the

time-mean enstrophy variance budget (enstrophy variance advection by mean and
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eddy velocities + dissipation) to be in some places negative. This could be achieved

in different ways, but by keeping advection small relative to dissipation (which is

always negative) this condition is guaranteed. This provides another explanation of

the break-down in rectification effectiveness at large forcing amplitudes: when the

mean rectified flows generated become sufficiently strong such that the mean enstro-

phy variance advection is no longer small (i.e. small relative to the eddy generation

and dissipation), it becomes significant in the enstrophy variance budget and in doing

so, acts to reduce the eddy up-gradient transport of PV responsible for the rectifica-

tion. This can be seen in Figure 2-24, which shows that the dominant balance in the

weakly nonlinear case (Figure 2-24 top row) is between eddy enstrophy destruction

(u′ζ ′ · ∇ζ) and dissipation (−R ζ′2
2

), whereas in the strongly nonlinear case (Figure

2-24 bottom row) all four terms in the budget are significant. The mean advection

of enstrophy variance (∇ · u ζ′2
2

) acts in the opposite sense to the eddy enstrophy

destruction inside the critical region of the forcing, and as such acts to reduce the

rectification effectiveness from that which would be achieved in the absence of mean

advection.

(c) Eddy zonal momentum fluxes

The importance of the mean flow interaction in the strongly nonlinear case can

be seen also in the eddy zonal momentum flux divergence field (Figure 2-25). In

the weakly nonlinear case (Figure 2-25 left), the regions of zonal momentum flux

divergence occur north and south of the forcing latitude, and result from the waves

radiating away from the forcing. As such, due to the separation in latitude of the

regions of momentum divergence and convergence, the waves/eddies are effective at

driving the westward recirculations. In the strongly nonlinear case (Figure 2-25

right) however, similar to the case of a strong eastward mean background flow, the

main source of momentum flux divergence now lies on the jet axis west of the forcing,

here resulting from the mean jet “running into” the westward propagating waves.

The eddy momentum flux divergence acts now not to accelerate westward flows but

instead to decelerate the mean eastward jet, and rectification effectiveness is reduced
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Figure 2-24: The time-mean enstrophy variance ( ζ′2

2
) budget: ∇ · u′ ζ′2

2
+ u · ∇ ζ′2

2
+

u′ζ ′ · ∇q = −R ζ′2

2
for the weakly nonlinear case (top) vs. the strongly nonlinear case

(bottom).

as a result.

2.8 Summary and Discussion

In summary, I have presented results from a study of eddy-driven mean flow in an

idealized set-up, specifically the generation of two counter-rotating time-mean recir-

culation gyres west of a localized oscillatory forcing.

From both an analytical analysis in terms of an expansion solution in the forcing

amplitude (valid in a weakly nonlinear regime) and the solution to the fully nonlin-

ear problem obtained from numerical simulations, one understands that the mean

flow is directly driven by the relative vorticity flux divergence of the forced wave

or eddy field. Visualization of the eddy-mean flow interaction terms from the fully

nonlinear numerical solutions show that rectified flow is produced because there is an

up-gradient eddy PV flux inside the forcing region (a consequence of positive eddy
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Figure 2-25: A comparison of the time-mean zonal “eddy force” (the negative of the
time-mean eddy zonal momentum flux divergence, ∂

∂x
u′u′ + ∂

∂y
u′v′) (color) with eddy

momentum transport (u′u′~i+v′v′~j) (vectors) overlaid for the “weakly nonlinear” (left)
vs. “strongly nonlinear” (right) case.

enstrophy destruction here) or equivalently because there is an eddy zonal momen-

tum flux towards the forcing region (a consequence of eddy/wave energy radiation

away from the forcing source). The existence of a forcing region (where enstrophy

is destroyed and waves/eddies are permitted to flux PV up-gradient) is critical and

highlighted by the fact that a Green’s function solution (where the forcing region is

reduced to a delta function in space) fails to produce rectified flows.

Numerical simulations show that the strength of the rectified flow that is gen-

erated is sensitive to system parameters and from this dependence one learns that

the properties of the population of waves that participate in the rectification process

determine how effective it is. Of particular importance is the nature of the energy ra-

diation of the selected population of waves, as this determines the spatial distribution

of wave activity and hence the spatial gradients of the wave/eddy terms. Rectification

is most effective when there is a large asymmetry in zonal energy radiation east vs.

west (as is achieved by exciting only a fraction of the Rossby wave spectrum) and

when there is a significant component of meridional energy radiation (as is achieved

if waves near |k| = B are excited). This ensures that the pattern of eddy vorticity

flux divergence is not perfectly asymmetric in x (and hence not self-canceling in the
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zonal integral) and that the pattern of eddy zonal momentum flux divergence has its

regions of convergence and divergence separated in latitude (again not self-canceling

in the zonal integral). Varying either the forcing length scale or the spectrum of

available free Rossby waves (by varying the dispersion relation through variation of

β or forcing frequency) is a means to vary the population of waves that are excited,

and as such vary the rectification effectiveness. The peak (resonant) response occurs

when the forcing length scale matches the wavelength associated with the wave at

the origin of the Rossby wave dispersion circle at |k| = |l| = B so the wave with the

optimal radiation properties is preferentially excited.

Stratification effects the rectification in a number of ways. As is seen in the modi-

fication to the analytical solution, stratification shifts the excited wave field to higher

wavenumbers (shorter wavelengths) compared to the barotropic case and introduces

a new cut-off such that for sufficiently large values of Bu−1, the forcing can no longer

radiate waves. Stratification also introduces a new way to change rectification effec-

tiveness by eliminating the longest, fastest waves in the available free Rossby wave

spectrum. This improves rectification effectiveness because it concentrates the forc-

ing amplitude into a narrow band of wavenumbers, exciting waves that both remain

in the forcing region to participate in rectification, and that are also well suited to

produce rectified flows on account of the orientation of their group velocity. This

enhancement to rectification effectiveness continues as increasing stratification con-

centrates the response into a narrower and narrower band of wavenumbers until the

point that the stratification becomes large enough that the radius of the dispersion

circle goes to zero and, as predicted by the analytical solution, the forcing fails to

radiate waves. Rectification ceases as a result.

The presence of a mean background flow also has an important effect on rec-

tification. It too is a means by which to select the waves that participate in the

rectification, in this case via the condition that the net speed of the waves (given by

the intrinsic zonal phase speed + the background flow) must be sufficiently slow to

remain in the forcing region in one-half a forcing period. The maximum rectification

occurs when the background flow is precisely that required to arrest the wave with the

70



critical wavenumber |k| = B, hence making the wave with the optimal characteristics

for rectification stationary.

Finally, extending these results from a weakly nonlinear regime to a fully nonlinear

one shows that the quadratic dependence of rectified flow strength on forcing ampli-

tude, valid for the weakly-nonlinear regime, breaks down as the forcing amplitude

/ degree of nonlinearity of the flow is increased. In the strongly nonlinear regime,

the increase in rectification effectiveness shows signs of saturation, increasing approx-

imately linearly with forcing amplitude. Despite this change, qualitatively both the

wave field and patterns of rectified flow are similar in both regimes, and a useful way

to understand rectification in the strongly nonlinear case is via the same picture of

the rectification mechanism developed in the weakly nonlinear case with the addition

of the (rectified) mean flow and its associated wave-mean flow interactions. This is

a consequence of the rectified mean flow becoming sufficiently strong at large forcing

amplitudes such that the interaction between the waves and the mean flow becomes

significant. The nature of this interaction has important spatial dependence given

the spatial dependence of the mean rectified flow, but its net effect is to counteract or

reduce the ability of the waves/eddies to rectify. This is achieved by the mean rela-

tive vorticity flux, acting in the opposite sense to the eddy flux divergence, becoming

important in the forced latitude band, the mean advection of enstrophy variance,

counteracting the eddy enstrophy destruction, becoming important inside the forcing

region, and the mean-jet/wave interactions providing a source of eddy zonal momen-

tum flux divergence that acts to decelerate the time-mean jet. As a result of these

wave-mean flow interactions, a saturation in the rectified mean-flow strength in the

strongly nonlinear regime results. This saturation phenomenon implies that efficient

rectification reflects a quasi-linear resonance phenomenon that weakens for strong

non-linearity, consistent with one’s expectation that in a strongly nonlinear regime β

and Rossby wave dynamics can be neglected.

To close, I try to consider the relevance of the results described here to oceanic

applications. I note that the parameter values explored in this study are realistic and
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relevant to synoptic scales of say a strong localized wind-stress or a localized concen-

tration of eddy activity. I also note the the magnitude of the mean flow generated,

on the order of the dimensional equivalent of a few centimeters per second for small

amplitude forcing and up to the dimensional equivalent of tens of centimeters per sec-

ond for large amplitude forcing, could be significant, especially below the thermocline

where the mean velocities are small. However, it is important to also note that, as it

has been shown, in order for the rectification to be effective, a very special relation-

ship between the forcing and flow parameters must exist. Significant stratification

or a background mean flow could also render the mechanism ineffective in practice.

It appears that if this mechanism is important, it will be so only in particular cases

where all the conditions are such to provide the required optimal conditions.

Nevertheless, it is my opinion that the rectification mechanism considered here

could potentially be important especially in the driving of deep flows. If this were

true, these mean flows would not be represented in a general circulation model with

eddy effects parameterized simply as down-gradient diffusion. As is discussed in the

next chapter, a study examining the downstream equilibration of an unstable jet (as

say would be relevant to a separated western boundary current) suggests that this

“plunger-like” mechanism of driving time-mean recirculations has application as a

useful model for the effect of the eddies downstream of jet stabilization. Further

exploration of the relevance of this process to the deep recirculation gyres in the

Kuroshio Extension region, through the analysis of both direct observations and an

eddy-resolving general circulation model, is on-going.
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Chapter 3

Eddy-Mean Flow Interactions in

the Downstream Evolution of an

Idealized Western Boundary

Current Jet

Abstract

I present results from a theoretical study on the role of eddy variability in the time-
mean dynamics of a zonally-evolving, unstable, strongly inertial jet in a configuration
and parameter regime that is relevant to oceanic western boundary current jets.
Progress is made by diagnosing the eddy effect on the time-mean circulation, exam-
ining the mechanism that permits the eddies to drive the time-mean recirculation
gyres, addressing the relative importance of eddy vs. steady state inertial terms, and
contrasting barotropic, baroclinic, and mixed instability models.

I find that the nature of the eddy-mean flow interactions in this idealized western
boundary current jet system is critically dependent on the downstream position rel-
ative to the evolving stability properties of the time-mean jet. Near the western
boundary eddies act to stabilize the jet through down-gradient fluxes of potential
vorticity (PV), but downstream of where the time-mean jet has (through the effect of
the eddies) been stabilized, eddies act to drive the time-mean recirculations through
the mechanism of an up-gradient PV flux. This up-gradient flux is permitted by an
eddy enstrophy convergence downstream that results from the generation of eddies
in the upstream region where the jet is unstable, the advection of that eddy activity
downstream by the jet, and eddy enstrophy dissipation downstream of jet stabiliza-
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tion. It is in this region of eddy decay that eddies drive the time-mean recirculations
through the mechanism of nonlinear eddy rectification resulting from the radiation
of waves from a localized region on a varying background PV field. I find that these
same mechanisms operate in both the barotropic, baroclinic and mixed instability
cases. In the two-layer case, the eddy-driving of the recirculations continues to be
dominated by relative vorticity fluxes, and as such remains an essentially barotropic
mechanism. Thickness fluxes act to equalize the eddy forcing in each layer, making
the recirculations more barotropic.

In the relevant parameter regime, I find that eddy forcing and steady-state inertial
terms are of equal importance in the downstream development of the time-mean jet-
gyre system. Hence, including eddies in our description of the dynamics of these
systems is essential. In the absence of eddy terms, the magnitude of the upper ocean
jet transport would be significantly less, and the abyssal ocean recirculations (and
their significant enhancement to the jet transport) would be missing altogether.

3.1 Introduction

3.1.1 Motivation

The Gulf Stream (GS) and the Kuroshio Extension (KE) current systems are among

the most energetic current systems in the world ocean and are dominant features of the

North Atlantic and North Pacific Oceans circulations respectively. After separating

from their respective coasts at Cape Hatteras and the Boso peninsula, these western

boundary currents (WBCs) turn eastward, and flow into the deep ocean. Here, they

are no longer constrained by topography, and they become free, inertial, unstable

jets, characterized by large amplitude meanders and pinched-off eddies. These WBC

jets are of fundamental importance to the dynamics of steady basin-scale circula-

tions, as regions of enhanced exchange of potential vorticity (PV) and energy, and

by acting to restore global balances between forcing and dissipation. Understanding

their dynamics is fundamental to improving our understanding of the ocean general

circulation.

Observations of various types in all oceans indicate that eddy kinetic energy (EKE)

is strongly (orders of magnitude) spatially inhomogeneous, reaching maxima in the

vicinity of strong currents such as these WBC jets (Ducet and Le-Traon, 2001).
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The GS and KE regions are prime examples of this, where the meandering of the

streams results in an increase in the eddy kinetic and potential energies by orders of

magnitude along the climatological mean path of the jet at all depths (Schmitz, 1984;

Malanottte-Rizzoli, 1994; Hogg, 1988; Bower and Hogg, 1992). Given such high levels

of eddy activity in these regions, our description of WBC jet dynamics clearly needs

to include an understanding of the effects of this eddy variability.

An investigation into eddy-mean flow interactions in WBC jets is important be-

cause eddies potentially play an important role in the dynamics of these jet systems.

Through their fluxes of momentum and vorticity, eddies can be important in deter-

mining the character of the mean jet (its mean strength, structure and stability prop-

erties), acting not only as a source of dissipation, but also as a driving force through

nonlinear eddy-eddy and eddy-mean flow interactions (Thompson, 1977, 1978; Dewar

and Bane, 1989; Hogg, 1992; Watts et al., 1995). Eddies also play a potential role

in driving recirculations, the phenomenon through which the downstream transport

of the separated jet is increased many-fold by the development of flanking, weakly

depth-dependent gyres (Richardson, 1985; Schmitz and McCartney, 1993). In addi-

tion, eddy variability appears to also be important in coupling the strong motions

in these baroclinic jets to deep abyssal circulations, driving the deep recirculation

gyres (Hogg, 1983, 1985, 1993), and potentially acting back on the upper jet, in-

fluencing its speed and direction (Cronin and Watts, 1996; Cronin, 1996). Finally,

eddies may also play a role in modulating the low-frequency variability in jet trans-

port, the degree of meandering intensity / EKE, and the recirculation structure that

these systems exhibit (Lee and Cornillon, 1995; Qui, 1995; Kelly et al., 1996). There

are many possible explanations for the source of this variability ranging from exter-

nal (e.g. atmospheric) forcing (Qui, 1995) to multiple state equilibria associated with

highly inertial dynamics (McCalpin and Haidvogel, 1996; Berloff and Meacham, 1998;

Primeau, 1998; Berloff and McWilliams, 1999; Meacham, 2000), but eddy effects may

be important as well. For example, Spall (1996) and Qui (2000) have shown that

the process of eddies fluxing PV away from the detached jet can lead to natural low-

frequency oscillations (i.e. even without atmospheric coupling) in recirculation gyre
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systems.

3.1.2 Past Work

Given the importance of WBC jets, work on the subject of their dynamics has had

a long history. Much has been learned about these systems, and their recirculation

gyres in particular, through idealized theoretical studies, i.e. via analytical analysis

or a numerical simulation of the solutions of various forms of the simplified equations

of motion in simplified configurations. Theoretical studies that lay the foundation

onto which the work described here will build can be thought of dividing into the

following three categories:

1. inertial theories in which time-mean recirculation gyres can arise from the

steady state time-mean advection of PV alone (e.g. Fofonoff, 1954; Marshall

and Nurser, 1986; Greatbatch, 1987; Cessi, 1990)

2. eddy-driven theories in which the effects of a directly prescribed vorticity forcing

generates mean rectified flows through eddy-mean flow and eddy-eddy interac-

tions (e.g. Starr, 1968; Whitehead, 1975; Haidvogel and Rhines, 1983; Cessi

et al., 1987; Malanotte-Rizzoli et al., 1995; Berloff, 2005)

3. unstable jet studies in which the generation of mean recirculations arise from

unstable jets in which eddy effects (arising from jet instabilities) and inertial

effects can both play a role (e.g. Spall, 1994; Jayne et al., 1996; Beliakova, 1998;

Jayne and Hogg, 1999)

Collectively these approaches demonstrate that recirculations can arise from the

steady-state inertial terms, or the rectification of eddy fluxes, or potentially both.

Steady-state inertial theories show that closed recirculation gyres are steady solutions

to the nonlinear equations of motion forced by a balance between the inertial term (the

mean advection of PV) and dissipation. At the same time, time-dependent numerical

simulations demonstrate that zonal flows and closed recirculations can be generated
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solely from rectification effects through nonlinear eddy-mean flow and eddy-eddy in-

teractions. Finally, rectified mean flows can also result from forcing by an unstable jet.

In this case, mean recirculations to the north and south of the jet are produced by ed-

dies, generated by the jet’s instability, acting to smooth the PV anomalies associated

with the jet, and in the process produce homogenized regions in which essentially in-

ertial recirculations can develop. It is interesting that recirculations generated in this

way in barotropic models are able to predict recirculation strength quite accurately

in spite of their reliance on the barotropic instability mechanism.

Perhaps the most relevant precursory work to the study here is that of Beliakova

(1998), who studied the problems of the generation and maintenance of recircula-

tions by Gulf Stream instabilities. The problem of recirculation development was

considered in the framework of the free spin-down of a 11
2

and 2-layer, zonally-

symmetric, quasi-geostrophic jet via linear and nonlinear stability analysis, while

questions related to the maintenance of the recirculations, with a specific focus on

the low-frequency variability and multiple dynamical regimes of these jet-recirculation

gyres systems, were examined in the context of a reduced gravity and 2-layer colliding

jet model forced by inflows and outflows through a closed western boundary and an

open eastern boundary. The work demonstrated that eddy-driven recirculations are

robust features of the 2-layer model especially, with recirculation strength being a

non-monotonic function of the baroclinic velocity parameter: strongest for strongly

baroclinic basic flows, weakest for flows with intermediate baroclinic structure, and of

medium strength for strongly barotropic flows. This non-monotonic dependence was

a result of the two different processes responsible for the recirculation development:

linear eddy-mean flow interactions for strongly baroclinic basic flows, and strongly

nonlinear eddy-eddy and eddy-mean flow interactions for strongly barotropic flows.

The work also showed that it was only when the mechanism of barotropic instability

was present did the model have two energy states, and that the low frequency vari-

ability associated with the unique dynamical regime characterized by well-developed

recirculations in both layers in physically relevant 2-layer model cases was relatively

weak.
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3.1.3 Present Work Objectives

Despite the highly variable, zonally evolving, strongly inertial and strongly baroclinic

nature of WBC jet systems, thus far, configurations in which all of these components

can interact and compete remain relatively unexplored. In previous work, theoretical

studies of inertial effects in WBC jets have tended to be in steady (time-independent)

frameworks, with eddies parameterized as a down-gradient diffusion of PV (Marshall

and Nurser, 1986; Greatbatch, 1987; Cessi, 1990). Hence they fail to address the

relative importance of inertial vs. eddy effects, both of which are likely to be important

in the oceanic system. At the same time, studies on the role of eddies in these

regimes have largely been devoid of the consideration of jet inertial effects (Haidvogel

and Rhines, 1983; Cessi et al., 1987; Malanotte-Rizzoli et al., 1995; Berloff, 2005).

Hence there is, in general, an inadequate connection between the prescribed forcing

and the system’s intrinsic dynamics. Exceptions are the work of Jayne et al. (1996),

Beliakova (1998), and Jayne and Hogg (1999), studies which have addressed several

of the issues related to the generation and maintenance of recirculations by a free

inertial jet in barotropic, equivalently barotropic and baroclinic systems, but they are

limited to zonally symmetric configurations and a focus on low-frequency variability

and multiple dynamical regimes in the case of the work of Beliakova (1998), and to

barotropic or equivalently barotropic dynamics without focus on the eddy-mean flow

interaction mechanisms in the case of the studies of Jayne et al. (1996) and Jayne

and Hogg (1999).

The work discussed here attempts to extend our theoretical understanding of the

role of eddy variability in the time-mean dynamics of a zonally-evolving, strongly in-

ertial, baroclinic, unstable jet in a configuration and parameter regime that is relevant

to the GS and KE jet systems. It can be considered an extension of the work of Jayne

et al. (1996) and Jayne and Hogg (1999) with a view to expand our understanding of

the eddy-mean flow interaction mechanisms involved, to address the relative impor-

tance of eddy vs. inertial effects, and to include baroclinic dynamics (and baroclinic

instability).
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Questions guiding of the current study can be summarized as follows:

In an idealized model of a WBC jet:

1. what is the effect of eddies on the time-mean circulation, and what mecha-

nism(s) permit that effect?

2. what is the importance of the eddy effect relative to steady state inertial terms?

3. how does this effect vary with system parameters, in particular the stability

properties of the WBC that is the source of the eddy variability?

4. how does the addition of baroclinicity and baroclinic instability change our

understanding of the eddy effects in a barotropic model?

These questions are examined through study of a numerical model of the downstream

evolution of a barotropic jet subject to barotropic instability (the “barotropic case”)

and a baroclinic jet (in a two-layer framework) subject to a mixed (barotropic and

baroclinic) instability mechanism (the “baroclinic case”).

3.1.4 Chapter Outline

This chapter is organized as follows: In Section 3.2, I outline my approach. Here a

description and justification of the model set-up are given. More technical details

about the model equations, numerical method, and model parameters are supplied

in Appendix C. In Sections 3.3 and 3.4 I present the results. Section 3.33 discusses

results from my study of the barotropic case. It diagnoses the eddy effect on the time-

mean circulation in a typical case appropriate to the GS and KE (Section 3.3.1), and

explores the mechanisms that permit the eddies to drive the time-mean recirculation

gyres (Section 3.3.2). From this emerges a two-regime conceptual picture of eddy-

mean flow interactions in the downstream development of the time-mean jet-gyre

system (Section 3.3.3). Having developed an understanding of the eddy effects and

eddy-mean flow interaction mechanisms, next the importance of this eddy forcing

(relative to steady-state inertial terms) in a WBC-like parameter regime is addressed
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(Section 3.3.4), and the dependence of this eddy effect on system parameters is ex-

plored (Section 3.3.5). Section 3.4 presents similar results from my study of the baro-

clinic, mixed instability case, more relevant to actual WBC jet systems. Attention

is focused on highlighting the significant commonalities with the barotropic case and

describing the ways in which baroclinicity adds to or alters the barotropic eddy-mean

flow interactions picture. In addition to topics outlined above, the relative impact

and importance of eddy fluxes of relative vorticity vs. thickness is explored (Section

3.4.3). Finally, in Section 3.5 I summarize and discuss the results, evaluating their

relevance to actual WBC jets by considering them in the context of past observational

results, and also making a potentially useful analogy to atmospheric storm tracks.

3.2 Methodology

I study the role of eddy-mean flow interactions in the downstream evolution of an

idealized WBC jet using a numerical model of an unstable, boundary forced jet in an

open domain.

The model is quasi-geostrophic and fully nonlinear with x (zonal), y (meridional),

and time dependence. It is run in one and two layer configurations. It is forced

at the western boundary by imposing an unstable jet inflow directed eastward at

x = 0. In the barotropic case, this inflowing jet is potentially barotropically unstable

(i.e. it satisfies the Rayleigh necessary condition for instability requiring the potential

vorticity gradient profile to change sign in the horizontal). In the two-layer case, it

has the potential for both barotropic and baroclinic instability (i.e. it satisfies the

two-layer model necessary condition for instability requiring the potential vorticity

gradient profile to change sign somewhere in the domain, either in the horizontal or

in the vertical (Pedlosky, 1963)). Heuristically, I consider this jet to be barotropically

unstable if the potential vorticity gradient changes sign in the horizontal due to the

jet’s horizontal shear, and baroclinically unstable if the potential vorticity gradient

changes sign in the vertical due to the jet’s vertical shear, but note that in currents

where both barotropic and baroclinic instability are possible, the type of instability
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mechanism favored (and the accompanying energy transfer characteristics) are not

strictly known a priori, and can be determined only by detailed calculation for the

given velocity and potential vorticity distribution of the basic state.1 Given that it

is my intent to model the downstream development of a free inertial jet applicable

to the WBC after it has separated from the coast and entered the open ocean, I

allow the jet to evolve freely in the zonal direction from the western edge of the

domain, and remove it at the eastern edge a long way downstream and in a manner

that does not affect the upstream dynamics I study. I also put sponge layers on all

the lateral boundaries to prevent wave reflection back into the interior to simulate

open ocean conditions. Note that the presence of the sponge layer on the western

boundary in particular has the effect of eliminating any feedback of the recirculation

strength on the inflowing jet, and as such eliminates the potential for more complex

behavior associated with the low-frequency variability and multiple dynamical regimes

observed in these jet-gyre systems, a complicating feature I wished to eliminate from

the system I studied. Note too that the sponge layer on the western boundary may

have a significant influence on the partition of the eddy vorticity flux between relative

vorticity and thickness components, although how the sponge layer controls the role of

these fluxes in an analogous way to how no-slip and partial-slip boundary conditions

on the western wall seem to control whether it is relative vorticity or thickness eddy

fluxes that maintain the upper-ocean recirculations in double gyre models (see Berloff

et al. (2007b) for a discussion), is at this time unknown. For full details about the

model-set-up and the numerical method, please refer to Appendix C.

I pose the eddy-mean flow interaction problem in terms of a time-mean state and

the variability about this mean state. I spin the system up to steady state (domain-

integrated enstrophy constant with time), then accumulate turbulent statistics for

a period long enough so that they are insensitive to the integration time (10, 000

non-dimensional time units). I use the model to diagnose dynamical quantities to

gain insight into the dominant eddy-mean flow interaction mechanisms, and also to

perform experiments that isolate the various instability types of the inflowing jet or

1See J. Pedlosky Geophysical Fluid Dynamics (1987) Section 7.15 for a detailed discussion.
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vary parameters around GS and KE appropriate values. For full details about the

experiments performed see Appendix C.

Finally, it is worthy of mention that although the model is highly simplified, there

are several indications in past observations of the GS and in my analysis of new

observations in the KE region that give some confidence that both the simplifications

that the idealized model employs, and the physics that it retains, are appropriate to

these WBCs. For example:

• Observations in the deep ocean in the KE indicate that the velocity structure

below the thermocline has only a very weak depth dependence. As such, a

model with simplified vertical structure should suffice.

• Point-wise energy balances in the GS system indicate that both baroclinic and

barotropic mechanisms are active (Dewar and Bane, 1989). This also appears

to be true in observations of the KE: both synoptic mean and instantaneous

snapshots of the horizontal and vertical shears in the KE jet indicate that shears

often far exceed the critical value for both barotropic and baroclinic instability

based on Rayleigh and Phillips model criteria, and spectra of velocity records

inside the time-mean jet indicate enhanced energy at a number of different

mesoscale frequencies consistent with the timescales predicted by appropriate

linear stability calculations. As such, a model with the capacity to support a

mixed (barotropic + baroclinic) instability mechanism is necessary.

• It is now widely appreciated that the GS is a highly time-dependent current,

which exhibits fluctuations in speed comparable to its mean speed (Fofonoff,

1981). There are several indications in KE observations that the KE system is

similarly very nonlinear: perturbation velocities are on the order of the mean

velocity, and observed wave phase speeds are on the order of (and often less

than) individual particle speeds. As such fully nonlinear dynamics are essential.

For a more complete discussion of the relation of observations in the KE to the

idealized dynamical model discussed here, please see Chapter 4.
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3.3 Results: The Barotropic Case

I begin my investigation of eddy-mean flow interactions in idealized WBC jet systems

by revisiting the barotropic model first discussed by Jayne et al. (1996). Given my

interest in the role that eddies play in the driving of the time-mean recirculation

gyres, and the demonstration by Jayne et al. (1996) that eddies in this configuration

are capable of driving mean recirculations with barotropic dynamics only, this is an

attractive starting point.

With the goals of understanding the eddy effect on the mean in this configuration,

and, in particular, the mechanisms permitting this effect, I examine a typical case with

barotropic dynamics only in a parameter regime that is relevant to a WBC extension

jet (see Appendix C, Figure C-1). Properties of the forcing and the instantaneous

and time-mean circulation of this test case are given in Figure 3-1. The inflowing jet

profile satisfies the necessary condition for barotropic instability (the meridional PV

gradient, Qy, changes sign) (upper left), and the instantaneous circulation is charac-

terized by large meanders, closed rings and waves that are radiated from the unstable

jet. As was found in Jayne et al. (1996), the time-mean circulation is characterized by

a pair of counter-rotating recirculation gyres that flank a time-mean zonal jet. The

strength of these recirculation gyres increases with downstream distance to a local

maximum and then decays.

3.3.1 The Effect of Eddies on the Time-Mean Circulation

There are a number of different budgets and frameworks to consider in diagnosing

the eddy effect on the time-mean circulation. Here I present results from a few of the

most illuminating:

(a) Eddy effect on the mean zonal momentum budget (the zonal “effective eddy

force”)

To view the effect of eddies on the mean zonal momentum budget, I consider the

time-mean Reynolds decomposition of the zonal momentum equation, in which eddies

appear as a time-mean eddy flux divergence of zonal momentum, ∂
∂x

(u′u′)+ ∂
∂y

(u′v′).
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Figure 3-1: A snapshot of the instantaneous (top) and time-mean (bottom) circulation
(streamfunctions) for a typical barotropic run relevant to a WBC jet extension (A =
−1.0, ℓ = 1.0, β = 0.05, see Appendix C for parameter definitions). The system is
forced at the western boundary (at x = 0) by a jet whose profile satisfies the necessary
condition for barotropic instability (the meridional gradient of its potential vorticity
profile, Qy, reverses sign, here becoming negative on the jet flanks) (upper left). The
instantaneous circulation is characterized by large meanders, closed rings and waves
that are radiated from the unstable jet. The time-mean circulation is characterized
by a pair of counter-recirculating recirculation gyres that flank a time-mean zonal jet.
The xs denote the locations of the maximum time-mean recirculation transport.
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Here u and v are the zonal and meridional components of the velocity respectively,

primes indicate an eddy quantity (a deviation from the time-mean), and the over

bar denotes a time average. If placed on the right-hand side of the equation, this

term looks equivalent to a steady zonal force on the time-mean flow, the origin of

the label “effective eddy force” for this particular time-mean eddy flux divergence

quantity. I consider this effective force in a Transformed Eulerian Mean (TEM)

framework (Andrews and McIntyre, 1976, 1978), a transformation that amounts to a

repartitioning of mean and eddy fluxes so that the transformed eddy fluxes include

only non-skew (divergent) components (those components of the eddy flux that are

skew, i.e. directed normal to the mean gradient and thus advective in nature, are

incorporated into the “mean” flux - see Plumb and Ferrari (2005) for a full discussion).

One particularly important result of this procedure is that the momentum budget

becomes more readily understood in terms of basic eddy properties in the sense that

the eddy forcing term in the transformed budget is directly dependent on the eddy

fluxes of PV. In particular, in the case of a non-divergent flow, eddies appear in the

transformed momentum budget as a force per unit mass equal in magnitude and

normal to the eddy PV flux, hence the zonal effective eddy force, Fx, is given by the

meridional eddy PV flux, v′q′. It is often convenient to consider this quantity in terms

of the gradients of the Reynolds stresses in one of the following equivalent forms:

Fx = v′q′ =
∂

∂x
(v′v′) − ∂

∂x
ǫ− ∂

∂y
(u′v′) where ǫ =

1

2
(u′u′ + v′v′) (3.1)

=
∂

∂x

(v′2 − u′2)

2
− ∂

∂y
(u′v′) (3.2)

Here q is the potential vorticity and ǫ is the eddy energy density. It is the “effective

eddy force” in this form for the typical, WBC-relevant, barotropic case that is visu-

alized in Figure 3-2. It is overlaid on contours of the time-mean streamfunction with

the location of maximum time-mean recirculation transport indicated. The shaded

region 0 < x < 10 denotes the western sponge layer where dissipation is enhanced.

Now interpretation of the “effective eddy force” in the time-mean eddy-forcing

problem is slightly less straightforward than its zonal-mean counterpart, and as such
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Figure 3-2: The “effective eddy force” in the TEM framework (Fx = (v′q′) =
(v′v′)x − ǫx − (u′v′)y where ǫ = 1

2
((u′u′) + (v′v′))) (color) overlaid on contours of the

time-mean streamfunction with the location of maximum time-mean recirculation
transport indicated (left). The xs denote the locations of the maximum time-mean
recirculation transport, and the vertical line indicates the approximate downstream
location corresponding to this maximum, xmax. The shaded region 0 < x < 10 de-
notes the western sponge layer where dissipation is enhanced. An illustration of the
downstream evolution of the meridional profile of the meridional PV gradient asso-
ciated with the time-mean jet, used to assess its potential for barotropic instability
(right).

deserves some words of explanation. The added complexity is a consequence of the

fact that, as opposed to simply accelerating a mean zonal flow as in the zonal-

mean problem, it, in combination with the zonal component of the eddy PV flux,

drives a time-mean circulation via balancing a combination of the time-mean mo-

mentum flux divergence and the Coriolis torque of the time-mean residual (in this

case ageostrophic) circulation. Intuition into the eddy forcing effect in the time-mean

eddy-forcing problem however can be gained by considering the time-mean momentum

balance in natural (i.e. aligned and normal to the mean geostrophic flow) coordinates

(see Cronin (1996)), which then allows the interpretation of the component of the

eddy PV flux normal to the mean flow as accelerating or decelerating the time-mean

flow, while the component of the eddy PV flux tangential to the mean flow should

be interpreted as turning the time-mean flow. Hence, Fx, the meridional component

of the eddy PV flux visualized in Figure 3-2, can be thought of as an effective eddy

zonal force accelerating or decelerating the time-mean flow when the mean flow is
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zonal, and an effective eddy torque turning the time-mean flow towards zonal when

the time-mean flow is oriented meridionally. With this in mind, Figure 3-2 shows

that eddies play two important roles in the downstream evolution of the time-mean

circulation: first, stabilizing the jet to its horizontal shear, and second, forcing the

time-mean recirculation gyres. They achieve the former effect by fluxing PV merid-

ionally inside the time-mean jet. Since the mean flow is zonal here, the meridional

eddy PV flux here acts to accelerate or decelerate the time-mean zonal flow, and in

this case decelerates the time-mean jet at its axis by exerting an effective westward

force (Fx < 0) and accelerates the jet at its flanks by exerting effective eastward

forces (Fx > 0), having the overall effect of reducing the jet’s large-scale horizontal

shear and stabilizing it to its barotropic instability. Eddies achieve the latter effect by

fluxing PV meridionally outside the time-mean jet, in particular at the zonal edges

of the time-mean recirculation gyres. Since the mean flow is oriented meridionally

here, the meridional eddy PV flux here acts to turn the time-mean flow zonally, in

this case turning the flow eastwards at the western edge of the recirculation gyres

and westwards at the eastern edge of the recirculation gyres. In this way, eddies are

playing an important role in the driving of the closed circulations flanking the jet.

One feature of the picture of the effective eddy force in Figure 3-2 that is out-

standing and worthy of note is the switch in sign of the eddy forcing on the flanks of

the jet that is observed at a given distance downstream (here at x ≈ 30), a switch

in sign that determines the downstream location of the maximum in time-mean re-

circulation transport. What determines this downstream location will be explored

in time, but for now, useful to the purpose of understanding the effect of eddies on

the time-mean circulation and the mechanism that permits that effect, it is helpful

to note that this switch in forcing sign is observed to correspond to the downstream

location where the mean meridional PV gradient, qy, on the flanks of the jet first

ceases to be negative, or more precisely where the mean jet profile first ceases to

satisfy the necessary condition for barotropic instability (Figure 3-2 right). In short,

the effect of the eddies on the mean circulation is observed to undergo a fundamental

change across the boundary between where the mean jet is unstable upstream and
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where it has been stabilized (by the effect of the eddies) downstream.

(b) Eddy effect on the mean vorticity budget

A second way to view the effect of the eddies on the mean circulation is through

their contribution to the time-mean vorticity budget. Here again eddies appear in

the mean budget as a forcing term given by the negative of the divergence of their

flux, this time as the negative of the divergence of the eddy vorticity flux, (u′q′):

−∇ · (u′q′) = − ∂2

∂x∂y
(u′u′) +

∂2

∂x∂y
(v′v′) +

∂2

∂2x
(u′v′) − ∂2

∂2y
(u′v′) (3.3)

This term acts as a driver of the mean-flow through the time-mean vorticity balance.

This “eddy vorticity forcing” is visualized in Figure 3-3 (left). It is again overlaid

on contours of the time-mean streamfunction with the location of maximum time-

mean recirculation transport / time-mean jet stabilization indicated. The time-mean

circulation driven by this forcing, computed as the solution to the linear vorticity

equation forced statically by this eddy flux divergence field, is shown in Figure 3-3

in the right panel.

Like the picture of the effective eddy force, again there is a systematic switch in

forcing sign across the time-mean jet’s unstable - stable boundary. It is also significant

to note that the dominant contribution to the eddy vorticity forcing comes from the

region downstream of jet stabilization. From the mean circulation driven by this eddy

forcing field (Figure 3-3 right panel), one sees directly the eddies’ responsibility in

driving the pair of time-mean recirculation gyres.
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Figure 3-3: The eddy vorticity forcing (the negative of the divergence of the eddy
vorticity flux (−∇ · (u′q′) = −(u′u′)xy + (v′v′)xy + (u′v′)xx − (u′v′)yy) (color) overlaid
on the properties of the time-mean streamfunction (left). The time-mean circulation
driven by the eddy vorticity forcing, computed as the solution to the linear vorticity
equation forced statically by the above eddy vorticity forcing field (right).

(c) Eddy effect on the mean kinetic energy budget

A third way to view the effect of eddies on the time-mean circulation is via en-

ergetic considerations. The effect of eddies in the budget for the kinetic energy of

the mean flow appears as a production term in the equation for conservation of mean

kinetic energy, KE:

∂

∂t
KE = −

(

u

(

∂

∂x
u′u′ +

∂

∂y
u′v′

)

+ v

(

∂

∂x
u′v′ +

∂

∂y
v′v′

))

+ ... (3.4)

When negative, this represents eddies extracting kinetic energy from the mean flow,

and when positive, it represents a production of mean flows by eddy rectification.

This quantity is visualized in Figure 3-4. Again the contours of the time-mean

streamfunction with the location of maximum time-mean recirculation transport /

time-mean jet stabilization is indicated.

Here again is seen a systematic switch in eddy forcing sign across this important

unstable - stable jet boundary, with eddies primarily extracting kinetic energy from

the mean upstream of where the time-mean jet is stabilized, and producing mean
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Figure 3-4: The production of mean kinetic energy by the eddies
(

−
(

u
(

(u′u′)x + (u′v′)y

)

+ v
(

(u′v′)x + (v′v′)y

)))

(color) again overlaid on con-
tours of the time-mean streamfunction with the location of maximum recirculation
transport / time-mean jet stabilization indicated.

kinetic energy downstream of this location. Like the dominance of the eddy vorticity

forcing downstream of jet-stabilization, this picture again suggests the importance of

the downstream region in the eddy-driving of the mean recirculation gyres.

To summarize, from the diagnosis of the eddy effect on the time-mean budgets

of zonal momentum, vorticity, and kinetic energy, a picture has emerged of eddies

playing two distinctive roles in the downstream development of the time-mean jet:

first stabilizing the jet to its horizontal shear, and second driving the time-mean re-

circulations. What has also emerged is a sense of the importance of zonal variation:

in particular the role of eddies undergoes a fundamental change upstream vs. down-

stream of the location where the time-mean jet profile is stabilized. Finally, there

are several indications that implicate the region downstream of jet-stabilization as

being important to the eddy-driving of the recirculation gyres. But what mechanism

permits the eddies to drive mean flows in this region? As it will be seen, insights

lie in consideration of eddy enstrophy and wave radiation from a localized region

downstream.
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Figure 3-5: The negative of the eddy enstrophy generation term (eddy enstrophy
destruction) in the enstrophy variance budget ((u′q′) · ∇q) which indicates the sense
of the eddy vorticity transport relative to the mean PV gradient (color) overlaid on
properties of the time-mean streamfunction (left). The zonal evolution of the mean
PV meridional profile (q) (right).

3.3.2 Insights into the Eddy-Driving Mechanism

(a) Insights from eddy enstrophy destruction

For eddies to accelerate time-mean flows, an eddy PV flux up the mean gradient

is required (Rhines and Holland, 1979). Hence to gain insight into the mechanism

that permits the eddies to drive the time-mean recirculations, I first consider the

sense of the eddy PV flux relative to the mean PV gradient. This is captured in

the eddy enstrophy generation term in the enstrophy variance budget, −(u′q′) · ∇q,
which, as the product of the eddy flux of PV and the mean PV gradient, has a

sign that indicates the sense of the eddy vorticity transport relative to the time-

mean gradient. I visualize the negative of this quantity, in essence eddy enstrophy

destruction, (u′q′) · ∇q, in Figure 3-5 so positive values (red colors) indicate regions

of up-gradient eddy PV fluxes.

This picture reveals that there are two important regions of up-gradient eddy

fluxes in the jet’s downstream evolution permitting the eddy-driving of time-mean
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flows: first on the flanks of the time-mean jet upstream of jet stabilization (where

eddies act to stabilize the jet by driving flows to broaden it) and second, just down-

stream of jet stabilization (where eddies act to drive the time-mean recirculations).

Yet again, the importance of the region downstream of jet stabilization in the eddy-

driving of the recirculation gyres is highlighted. From this picture it is confirmed that

the time-mean recirculations result from an eddy flux of PV up the mean-gradient

that occurs just downstream of the mean jet’s stabilization.

Investigation into the individual terms that contribute to the eddy enstrophy

generation term
(

u′q′ ∂q

∂x
vs. v′q′ ∂q

∂y

)

reveal that this pattern of downstream evolution

mirrors the pattern of the downstream evolution of the zonal gradient of the mean PV

field ( ∂
∂x
q). In particular, up-gradient fluxes downstream of jet stabilization results

from the change from a four-lobed pattern of ∂
∂x
q associated with the downstream

evolution of a barotropically unstable jet profile, to a two-lobed pattern of ∂
∂x
q as-

sociated with the downstream evolution of a barotropically stable jet profile (Figure

3-5 right). Here again is the suggestion that the fundamentally different effect of

eddies on the mean circulation in the upstream vs. downstream regions is a result of

differences in the mean background PV gradient.

(b) Up-gradient eddy fluxes permitted by eddy enstrophy advection

Further insight into what allows this up-gradient eddy PV flux comes from con-

sideration of the other terms in the enstrophy variance budget. In the zonal-mean

eddy-mean flow interaction problem, a much more commonly studied problem given

its relevance to the atmosphere, the enstrophy variance budget (assuming eddy en-

strophy advection, a triple correlation term, is small) reduces to a two-term balance

between eddy enstrophy destruction and dissipation, (u′q′) · ∇q = −D where D

represents the dissipation of eddy enstrophy. This two-term balance guarantees that,

given dissipation is always positive, eddy enstrophy destruction is negative, and hence

that the eddy PV flux is always down the mean gradient. This argument is the basis

of down-gradient turbulence closures. In the problem with zonal dependence however,

convergences and divergences of the advection of eddy enstrophy, ∇ · uq′2

2
, now also
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Figure 3-6: The divergence of the advection of eddy enstrophy (∇ · uq′2

2
), the addi-

tional term in the eddy-mean flow interaction problem with zonal dependence that can
potentially balance the eddy enstrophy destruction term and hence permit up-gradient
eddy PV fluxes (color) overlaid on properties of the time-mean streamfunction.

may play a role, providing an additional term to potentially balance the eddy enstro-

phy destruction term, and hence permit up-gradient eddy PV fluxes (the time-mean

enstrophy variance budget is now (u′q′) · ∇q = −D −∇ · uq′2

2
). This new additional

term, the divergence of eddy enstrophy advection, for the WBC-typical barotropic

jet is visualized in Figure 3-6.

Consideration of the divergence of eddy enstrophy advection illustrates the im-

portant role that zonal variation, and in particular the phenomenon of eddies being

created in one region and being advected by the jet to another region where they

dissipate (a phenomenon which results in regions of significant eddy enstrophy flux

convergence and divergence) plays in this problem. Now it can be seen that inside the

time-mean jet up until jet stabilization, there is an eddy enstrophy flux divergence

(acting in the same sense as dissipation and hence requiring a down-gradient eddy

PV flux to form a local balance), but on the flanks of the time-mean jet and down-

stream of jet stabilization are regions of eddy enstrophy flux convergence (acting in

the opposite sense as dissipation). This convergence is significant enough to overcome

dissipation and allow up-gradient eddy fluxes in these regions as seen in Figure 3-5.
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In short, it is the separation in space between regions of eddy enstrophy generation by

the unstable jet and eddy enstrophy dissipation downstream of jet stabilization that

is key. Advection of eddy enstrophy results in eddy enstrophy convergence that per-

mits an up-gradient eddy PV flux, and ultimately the eddy driving of the time-mean

recirculation gyres.

(c) A localized wave-radiator model downstream of jet stabilization

The eddy vorticity forcing field (Figure 3-3) shows us the importance of the region

downstream of jet stabilization to the eddy forcing of the time-mean circulation, and

the eddy enstrophy destruction field (Figure 3-5) implicates that it is here that eddies

flux PV up the mean-gradient and drive the mean recirculation gyres. A potentially

useful model for understanding how eddies drive the mean flow in this downstream

region is suggested by the similarity of the downstream region eddy vorticity forcing

pattern to that of the simple model of a localized wave-maker on a beta plane discussed

in Chapter 2. This conceptual model is potentially useful in understanding the eddy

driving mechanism because, as it was shown, the fluxes associated with the waves or

eddies generated by a localized wave-maker can drive time-mean recirculation gyres

through the process of nonlinear eddy rectification.

This comparison between the eddy vorticity forcing field (the eddy flux divergence

of relative vorticity, −∇ · (u′q′)) in the downstream region of the jet and in the

localized wave-maker model is illustrated in Figure 3-7. The black circle in the latter

denotes the region where a localized oscillatory vorticity forcing is applied. Both

are charactered by a dipole pattern consisting of a vorticity flux divergence in the

southern half of the forced region, and a vorticity flux convergence in the northern

half of the forced region. In the lower panels of Figure 3-7 is illustrated the time-

mean circulation that results from the above eddy vorticity forcing, computed as the

solution to the linear vorticity equation forced statically by the above eddy vorticity

forcing field. Consistently, both are characterized by a pair of counter-rotating time-

mean recirculation gyres west of the forcing. This result is significant for the jet, as it

confirms that eddy forcing in the region downstream of jet stabilization is responsible,
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at least in part, for driving the time-mean recirculations observed.

Similarities between the dynamics of the region downstream of jet stabilization

and the dynamics of the localized wave-maker are further seen in the energetics. If

one examines the spatial distribution of eddy energy associated with the downstream

evolution of the time-mean jet (Figure 3-8 upper left), one sees that the growing

instability of the jet in time followed by the subsequent dissipation of those eddies

after the jet has been stabilized, combined with jet’s advection, results in a localized

maximum of eddy energy located just downstream of jet stabilization. This “bullet”

of eddy energy is not unlike the localized source of eddy activity generated by the

localized wave-maker (Figure 3-8 upper right), and the similarity makes the relation

of the recirculation driving in the jet and by the wave-maker seem plausible. Exam-

ination of the mean to eddy kinetic energy conversion rate in the jet in this region
(

u′
2 ∂

∂x
u+ u′v′

(

∂
∂y
u+ ∂

∂x
v
)

+ v′
2 ∂

∂y
v
)

(Figure 3-8 lower left) also shows similarities,

in particular a region of significant eddy to mean energy conversion that is similar to

that inside the forced region of the wave-maker (Figure 3-8 lower right). This region

of negative mean to eddy energy conversion is observed in the jet to be slightly down-

stream of the “effective wave-maker” location based on the eddy energy distribution,

potentially explained by the effect of a large mean zonal advection associated with

the presence of the jet.

In summary, there exist many similarities in the pattern of the eddy energy dis-

tribution, the eddy vorticity forcing, and in energetic conversions between mean and

eddy kinetic energies in the jet model downstream of jet-stabilization and in the

recirculation-driving localized wave-maker model. This, in combination with the sug-

gestion that the source of the recirculation driving in the jet occurs downstream of jet

stabilization, leads us to the picture that the mechanism by which the eddies drive

the recirculations in the time-mean jet system is via the radiation of waves from a

localized region downstream of where the jet instability has been stabilized. In this

case, the localized wave forcing is being supplied by a localized concentration of eddy

activity that results from the process of the jet stabilizing itself as it evolves down-

stream. Lessons learned about the rectification mechanism and how its effectiveness
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Figure 3-7: The eddy vorticity forcing (the negative of the eddy flux divergence of
relative vorticity, −∇ · (u′q′)) for the region downstream of jet stabilization in the
barotropic jet model (left) vs. that for the wave-maker model (right) (top). The black
line in the former denotes the unstable jet / wave-radiator regime boundary, and only
forcing downstream of this boundary is applied. The circle in the latter denotes the
region where a localized oscillatory vorticity forcing is applied. Contours are of the
time-mean streamfunction from the fully nonlinear solution showing the recirculation
gyres in each case. The time-mean circulation that results from the above eddy
vorticity forcing, computed as the solution to the linear vorticity equation forced
statically by the above eddy vorticity forcing field (bottom).
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Figure 3-8: A comparison of the downstream region of the jet (left) and the localized
wave-maker model (right) in terms of the spatial distribution of eddy energy (as
visualized by the time-mean variance of the streamfunction, ψ′ψ′) (top), and the
mean to eddy kinetic energy conversion rate (as defined in Figure 3-4) (bottom).
The black circle indicates the forced region in the wave-maker model in the right
panels, and where one could consider an effective wave-maker was located based on
the eddy energy distribution in the jet model in the left panels.
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is influenced by the variation of forcing parameters, stratification, and the presence

of a mean background flow discussed in Chapter 2 should equally apply to this WBC

jet application.

3.3.3 A Conceptual Description of Eddy-Mean Flow Inter-

actions

To characterize the role that eddies play in the downstream evolution of the time-

mean WBC jet-gyre system, I have considered the eddy contribution to the budgets

of mean momentum, vorticity, and kinetic energy. Consideration of the time-mean

enstrophy variance budget has provided insight into the mechanism that permits

their mean-circulation driving effects. Throughout, the discussion has featured a

fundamental switch in properties of the eddy effect across the mean jet’s unstable

vs. stable boundary, a consequence of the important change in the background PV

gradient that occurs there.

As a consequence, I argue that the role of eddies in this system is usefully un-

derstood as two distinct downstream regions based on the time-mean jet’s stability

properties: an upstream one where the time-mean jet is still unstable based on the

necessary condition for barotropic instability ( ∂
∂y
q changes sign implying ∂

∂y
q min < 0)

and a downstream one where the time-mean jet is stabilized to the necessary con-

dition ( ∂
∂y
q is single-signed implying ∂

∂y
q min > 0) (Figure 3-9 upper left). In each

of these regions, eddies interact with the time-mean circulation in a fundamentally

different way, a consequence of them acting on a fundamentally different background

PV gradient with a sign reversal associated with the unstable time-mean jet in the

upstream region, and with no sign reversal in the downstream region. The switch

in sign of the eddy effect across this boundary results in the downstream location of

the maximum in eddy-driven time-mean recirculation transport being located at this

location.

Given this division of regions based on mean jet stability/the downstream location

of maximum time-mean recirculation transport, the role of eddies in the downstream
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development of the time-mean jet/gyre system can then be summarized as follows

(Figure 3-9):

In the unstable jet regime (upstream of the maximum in time-mean recirculation

transport):

• the effective eddy force inside the time-mean jet is westward, acting to decelerate

the time-mean jet (upper right)

• the production of mean kinetic energy by the eddies is negative, indicating

that mean kinetic energy is being converted to eddy kinetic energy through the

instability process (middle left)

• the eddy vorticity forcing is in the sense to drive “anti-recirculation gyres”

(recirculation gyres with the opposite sense of circulation), acting to decelerate

the time-mean jet (middle right)

• the eddy enstrophy destruction inside the time-mean jet is negative, indicating

a down-gradient eddy PV flux (lower left)

• the eddy enstrophy advection is divergent, acting in the same sense as friction

(lower right)

In contrast, in the stable jet regime (downstream of the maximum in time-mean

recirculation transport) the sign of these eddy effects reverses:

• the effective eddy force inside the time-mean jet is eastward, acting to accelerate

the time-mean jet (upper right)

• the production of mean kinetic energy by the eddies is positive, indicating that

eddies drive time-mean flows (middle left)

• the eddy vorticity forcing is in the sense to drive the time-mean recirculation

gyres (middle right)

• the eddy enstrophy destruction inside the time-mean jet is positive, indicating

an up-gradient eddy PV flux (lower left)
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Figure 3-9: The downstream evolution of (a) the time-mean jet’s stability properties
(upper left) (b) the effective eddy force (upper right) (c) the production of mean
kinetic energy by the eddies (middle left) (d) the sense of the eddy vorticity forcing
(middle right) (e) the eddy enstrophy destruction inside the time-mean jet (lower
left) and (f) the sign of the eddy enstrophy advection (lower right).
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• the eddy enstrophy advection is convergent, acting in the opposite sense as

friction and permitting an up-gradient eddy PV flux (lower right)

In summary therefore, in the upstream region close to the western boundary eddies

interact with the time-mean flow in a way consistent with what one would expect in an

unstable jet regime: they tend to decelerate and broaden the jet, extract energy from

the mean, and mix PV down the mean-gradient. Further downstream however, their

effort to stabilize the mean jet as it evolves downstream is successful, and when it is,

their role undergoes a fundamental switch in sign, a consequence of the fundamentally

changed background PV gradient they now act on. Downstream of where the jet

is stabilized, eddies now act to drive the time-mean recirculation gyres, converting

eddy kinetic energy to mean kinetic energy and fluxing PV up the mean gradient.

I label the upstream region as the “unstable jet” regime, where eddy-mean flow

interactions are dominated by stabilizing the jet, and the downstream region as the

“wave radiator” regime, where, based on its similarities to the localized wave-maker

model, the dynamics are dominated by the radiation of waves from a localized source

of eddy energy.

3.3.4 The Relative Importance of Eddy Forcing

As discussed in the introduction, past work has demonstrated that time-mean recir-

culation gyres can arise from the steady state inertial terms alone, the rectification

of eddy fluxes alone, and, in the case of an unstable jet, potentially both. Here I ask

the question what is the relative importance of eddy forcing compared to steady state

inertial terms in the forcing of the time-mean recirculations in this configuration and

parameter regime appropriate to WBC jets?

Figure 3-10 compares the eddy vs. mean zonal momentum flux divergences for

the typical WBC relevant barotropic run. At first glance, the common color scale

indicates that the size of the eddy term is comparable to the size of the mean term,

making them of roughly equal importance in the momentum budget of the jet/gyre

system.
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Figure 3-10: The divergence of the eddy flux of zonal momentum
(

∂
∂x

(

u′u′
)

+ ∂
∂y

(

u′v′
))

TEM
(the “effective eddy force”) (left) vs. the divergence

of zonal momentum advection by time-mean velocities
(

u∂u
∂x

+ v ∂u
∂y

)

(the mean

inertial term) (right).

Closer inspection reveals other features of note. Inside the time-mean jet upstream

of jet stabilization, the sense of the eddy term and mean term oppose each other:

as is expected, in the unstable jet regime the effect of the eddies is to oppose the

inertial acceleration of the jet and act to decelerate it. Outside the time-mean jet

and downstream of jet stabilization however, the sense of the eddy term tends to act

in the same sense as the mean inertial term, augmenting the effects one would see in

the absence of time-dependent terms. Here both eddy and mean terms make roughly

equal contributions to providing the torque on the time-mean flow needed to force

the closed recirculations. This implies that although time-mean recirculations will

feature in the time-mean circulation of the system if eddy terms are not included,

they will be significantly weaker than in the case with eddy effects properly resolved.

Figure 3-11 compares the eddy vs. mean vorticity flux divergences for the same

typical WBC relevant barotropic run. As in the case of the momentum budget, the

common color scale indicates that the size of the eddy term is comparable to the

size of the mean term. In the time-mean vorticity balance however, mean and eddy

terms are each important in different regions. The mean flux divergence dominates
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Figure 3-11: The divergence of the eddy flux of vorticity
(

J(ψ′,∇2ψ′)
)

(left) vs. the

divergence of vorticity advection by mean velocities
(

J(ψ,∇2ψ)
)

(right).

inside the time-mean jet in the region upstream of jet stabilization. Here the eddy

flux divergence is insignificant by comparison. Downstream of jet stabilization and

outside the time-mean jet however, the eddy flux divergence dominates with large

regions of eddy flux divergence south of the jet and eddy flux convergence north of

the jet, the characteristic dipole pattern associated with wave radiation away from a

localized source, and capable of driving the time-mean recirculation gyres. The mean

flux divergence is significant downstream of jet stabilization as well, although it tends

to be more localized to the time-mean jet. Interesting, it acts in the same sense as the

eddy flux divergence there. Hence the mean vs. eddy vorticity forcing confirms the

conclusion of the comparison between mean vs. eddy momentum forcing, that is that

recirculations will feature in the time-mean circulation of the system if eddy terms

are not included, however eddies are significant in increasing their strength and also,

as can be seen here, increasing their meridional extent by radiating energy (and eddy

flux divergences) away from the jet.

103



3.3.5 Dependence on System Parameters

A second goal of this study was to understand the time-mean state property de-

pendence on system parameters. To examine this I performed a series of parame-

ter studies that varied parameters around GS and KE-like values. In the case of

the barotropic jet, the variation of interest was the supercriticality, or the degree

of barotropic instability, of the inflowing jet, achieved via the variation of the non-

dimensional β parameter, β = βdimL2

U
where βdim is the meridional gradient of the

planetary vorticity, and L and U are typical length and velocity scales of the flow.

Decreasing this parameter can be thought of as equivalent to making the jet stronger

and/or sharper, hence having greater horizontal shear and being more barotropically

unstable.

Results of the barotropic parameter studies are summarized in Figure 3-12. Here

it is seen that the properties of the time-mean circulation, in particular of the time-

mean recirculations (their strength and their meridional and zonal extent), are sensi-

tive to the supercriticality of the inflowing jet that is the source of the eddy variability

that drives them. In particular, as the WBC jet becomes more unstable, the recir-

culations become stronger (Figure 3-12 left panel), and shrink in their zonal extent

while expanding in their meridional extent (Figure 3-12 right panels). Note that

the observed linear dependence of the eddy-forced, time-mean flow on the supercrit-

icality of the entering jet is expected in a weakly nonlinear regime, and hence this

result suggests that weakly nonlinear theory is potentially applicable for jets with

KE-like scales, as well as for those that are more unstable than the KE throughout

the full-range of physically realistic supercriticalities considered.

To make a connection with the localized wave-maker mechanism of driving the

time-mean recirculations discussed in the previous chapter, I also consider the depen-

dence of the time-mean recirculation strength on a measure of the PV forcing imposed

by the inflowing unstable jet intended to be analogous to the PV forcing amplitude

of the wave-maker. I take this measure of forcing amplitude to be the magnitude of

the net (inflow-outflow) PV anomaly associated with the inflowing jet profile inte-
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Figure 3-12: The dependence of the mean recirculation strength (as measured by the
maximum time-mean recirculation transport, ψmax − ψmin) on the supercriticality of
the inflowing jet, ∆ (as measured by the depth of the negative region in the jet’s
meridional PV gradient profile, |qy min|) in a physically relevant range of parameters
(0.04 ≤ β ≤ 0.4) (left). An estimate for the supercriticality of the KE, determined
from the synoptic mean velocity profile of the Kuroshio jet at the point of separation
from the coast derived from satellite altimetry data (see Figure C-1), is indicated
by the gray circle. The time-mean circulation (streamfunctions) for small (top),
moderate (middle), and large (bottom) inflowing jet supercriticalities showing the
changing nature of the recirculation gyres as the entering jet becomes increasingly
unstable (right).
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grated over the jet’s half width, a measure of the total PV anomaly associated with

the imposed jet that must be mixed by the eddies between inflow and outflow. This

relationship between forcing amplitude and mean circulation response in the jet con-

figuration is shown in Figure 3-13, to be compared with the analogous dependence of

recirculation strength on forcing amplitude in the wave-maker configuration in Figure

2-21. Here it is seen that for weakly unstable jets, like for the wave-maker in a weakly

nonlinear regime, recirculation strength grows quadratically with forcing amplitude,

while for strongly unstable jets, the rate of increase in the mean flow response slows

to a linear dependence, similar to the behavior of the wave-maker in a strongly non-

linear regime. It is noteworthy that when viewed in this way, results from the jet

parameter studies suggest that the parameter range considered spans a transition

between weakly nonlinear and strongly nonlinear regimes, while these same results

viewed in the context of the traditional definition of supercriticality instead suggest

that weakly nonlinear theory is valid for all values of the parameters considered.

Finally, in attempts to better understand the observed dependence of recircula-

tion extent on the supercriticality of the inflowing jet, I also consider the parameter

study results in the context of linear stability calculations. As the right panels of

Figure 3-12 demonstrate, in addition to becoming stronger as the inflowing jet’s

supercriticality increases, the time mean recirculations also are observed to shrink in

their zonal extent, with the downstream location of maximum recirculation transport

(and jet stabilization) moving upstream. The dependence of this key downstream

location on forcing amplitude is shown explicitly in the left panel of Figure 3-14.

For small forcing amplitudes, the downstream location of maximum time-mean recir-

culation transport is located far downstream. This location however moves rapidly

upstream as jet supercriticality is increased in the weakly nonlinear regime, until a

saturation is achieved in the strongly nonlinear regime. Note that partial insight into

this dependence is suggested by the results of the linear stability calculation for the

inflowing jet profiles considered, and specifically the result that the inverse growth

rate shows a very similar dependence, decreasing as the jet profile becomes more

unstable (Figure 3-14 right). The correspondence of these results is encouraging,
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Figure 3-13: As in Figure 3-12, but with the mean circulation response now plotted
as a function of a measure of the PV forcing amplitude supplied by the inflowing
unstable jet, ∆PV (as measured by the magnitude of the net (inflow-outflow) PV
anomaly associated with the imposed jet profiles) integrated over the jet’s half width,
intended to be analogous to the PV forcing amplitude of the wave-maker discussed
in Chapter 2. The dashed vertical line indicates a transition from a weakly nonlinear
to strongly nonlinear regime based on the observed change in the mean flow response
from quadratic to linear in the forcing amplitude.
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Figure 3-14: The dependence of recirculation zonal extent (as measured by the down-
stream location of maximum time-mean recirculation transport, ψmax−ψmin) (left) vs.
inverse growth rate (from the linear stability calculation for the inflowing jet profile)
(right) on forcing amplitude.

and suggests that the linear stability calculation predictions for the properties of the

fastest growing mode have some utility in predicting the properties of the fully non-

linear solution, and further supports the claim that weakly nonlinear dynamics have

validity in a WBC-appropriate parameter regime. The similarity in the behavior of

these two quantities leads to the hypothesis that the downstream location of maxi-

mum recirculation transport (and jet stabilization) is related to the distance the jet

advects the growing instability in the time it takes for the eddies to grow to sufficient

size such that their fluxes are effective at stabilizing the mean-jet profile. The growth

rate is faster for more unstable jets, but the magnitude of the PV anomaly associated

with that jet is also larger, so distance to stabilization is not a simple direct function

of inverse growth rate and jet speed alone.
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This brings me to the end of my analysis of the barotropic case. It has resulted

in an expanded picture of the nature and importance of the eddy effect on the time-

mean circulation, the mechanisms that permit that effect, and the dependence of that

effect on system parameters in an idealized WBC-like jet. These results however are

limited in their applicability to WBC jets by the fact that they are all derived from a

system with barotropic dynamics only. The GS and KE jets are, on the other hand,

of course strongly baroclinic, and one expects baroclinic instability to also play a role.

How does baroclinic dynamics change our understanding of the eddy effects in the

barotropic model? The extension of these results to a two-layer case, more applicable

to an unstable WBC jet separating form the coast and entering the open ocean, is

considered next.

3.4 Results: The Baroclinic Case

In a two-layer, baroclinic configuration, the inflowing jet can be barotropically unsta-

ble, baroclinically unstable, or both. Given my interest in the dynamics of separated

WBC jets, I restrict my attention to cases where there is an inflowing jet at the

western boundary of the upper layer, but zero inflow at the western boundary of the

lower layer. This is appropriate to the WBC at the point of separation from the coast

when it turns to enter the deep, relatively quiescent, open ocean.

In this configuration, I consider both the case where I expect the system to be

unstable to baroclinic instability only, and the case where I expect the system to

be subject to a mixed (barotropic and baroclinic) instability mechanism. In the

former case, the imposed upper layer jet is weak enough and broad enough (β is large

enough) such that it is stable to the necessary condition for barotropic instability, but

the lower layer is shallow enough (the lower layer inverse Burger number, 1
S2

, is large

enough) such that the thickness contribution to the lower layer PV gradient causes a

reversal in sign of the PV gradient in the vertical at the jet axis, thus satisfying the

necessary condition for instability (Figure 3-15 upper left). In the mixed instability

case, I impose a strong, sharp upper layer jet such that there is a sign reversal in the
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meridional PV gradient in both the horizontal in the upper layer and in the vertical

(Figure 3-16 upper left).

The instantaneous and time-mean circulations for both cases are shown in Figures

3-15 and 3-16 respectively. Note that in both cases, the time-mean circulation is

characterized by time-mean recirculation gyres in both layers that flank the time-

mean jet.

I have studied both cases in detail, but will restrict discussion here to the mixed

instability case. The reason for this is that to achieve the baroclinically unstable only

case, one requires a choice of parameters (in particular the choice of a very large β and

a large lower layer Burger number) that are unphysical for the WBC jet application.

As such, discussion of the baroclinic instability only case is academic. In any case, it

so happens that, through eddy fluxes associated with the stabilization of the vertical

shear, the baroclinically unstable case evolves to a mixed instability case downstream,

and shares similar dynamics to the mixed instability case that will be discussed.

3.4.1 The Effect of Eddies on the Time-Mean Circulation

As in the barotropic case, I consider the effect of eddies on the time-mean circulation

by considering their contribution to the time-mean budgets of momentum, vorticity

and kinetic energy. Here I summarize these effects, highlighting the commonalities

with the barotropic case where they exist, and the new features that result from the

addition of baroclinic dynamics.

(a) Eddy effect on the mean zonal momentum budget (the zonal “effective eddy

force”)

In the two-layer case, the TEM framework involves the definition of a residual

circulation with the aim of removing skew buoyancy flux from the buoyancy budget,

then rewriting the momentum budget to replace ageostrophic velocities with the

residual velocity. This removes explicit eddy terms from the buoyancy budget, and

the eddies appear in the momentum budget, like in the barotropic case, as a force per

unit mass equal in magnitude and normal to the eddy PV flux, which now includes
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Figure 3-15: A snapshot of the instantaneous (top) and time-mean (bottom) circula-
tion (streamfunctions) for a typical baroclinically unstable two-layer run (A = −1.0,
ℓ = 1.0, β = 1.0, S1 = S2 = 4.0, see Appendix C for definitions). The model is
forced at the western boundary (x = 0) in the upper layer by a jet whose vorticity
gradient profile does not change sign in the horizontal (Q1y > 0 everywhere) (upper
left), and as such we expect (heuristically) it to be stable to barotropic instability.
There is no inflow in the lower layer. The vertical shear between the upper layer jet
and the quiescent lower layer at the the western boundary is such that the vorticity
gradient profile does change sign in the vertical (Q1y

Q2y
< 0 at the jet axis) (upper left),

and as such we expect (heuristically) the system to be unstable to baroclinic insta-
bility. The instantaneous picture is characterized by waves that are radiated from
the jet in both layers. The time-mean circulation is characterized by a pair of weakly
depth-dependent counter-recirculating gyres that flank a time-mean zonal jet. The
xs denote the locations of the maximum time-mean recirculation transport in each
layer.
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Figure 3-16: A snapshot of the instantaneous (top) and time-mean (bottom) circu-
lation (streamfunctions) in the upper and lower layers of a typical two-layer case
relevant to a WBC jet extension (A = −1.0, ℓ = 1.0, β = 0.03, S1 = 1.0, S2 = 0.25).
The system is forced at the western boundary (x = 0) in the upper layer by a jet whose
vorticity gradient profile, Q1y, changes sign in the horizontal (upper left). There is no
inflow in the lower layer. The vertical shear between the upper layer jet and the quies-
cent lower layer at the western boundary is such that the vorticity gradient profile also
changes sign in the vertical (Q1y

Q2y
< 0) (upper left). As such, we expect the inflowing

jet to be potentially subject to a mixed (both barotropic and baroclinic) instability
mechanism. The instantaneous circulation is characterized by waves radiated from
the upper layer jet and intense upper layer jet meandering downstream. In the lower
layer, it is characterized by deep recirculations upstream and an intense eddy field
downstream. The time-mean circulation is characterized by weakly depth-dependent
recirculations and the development of a lower-layer time-mean zonal jet.
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both relative and thickness contributions. The zonal component of this “effective

eddy force”, Fxn is thus given by:

Fx1 = v′1q
′
1 =

∂

∂x
(v′1v

′
1) −

∂

∂x
ǫ1 −

∂

∂y
(u′1v

′
1) +

1

S1

(v′1(ψ
′
1 − ψ′

2) − v′2(ψ
′
1 − ψ′

2)) (3.5)

where ǫ1 =
1

2
((u′1u

′
1) + (v′1v

′
1) + ((ψ′

1 − ψ′
2)(ψ

′
1 − ψ′

2))) (3.6)

Here numerical subscripts indicate the layer. S1 is the upper layer Burger number,

S1 = ND1

fL
, where N is the buoyancy frequency, D is the upper layer depth, f is

the Coriolis frequency and L is a typical horizontal length scale of the flow (the

Burger number can be thought of as a representation of the relative importance of

stratification in the vertical to rotation in the horizontal). The lower layer zonal

effective eddy force, Fx2, is analogous. These forces are visualized in the left panels

of Figure 3-17 in the upper layer (top) and in the lower layer (bottom). The black

contours are of the time-mean streamfunction to indicate the position of the mean

zonal jet and recirculation gyres, again with the xs denoting the location of maximum

time-mean recirculation transport in each layer. The shaded region 0 < x < 10

denotes the western sponge layer where dissipation is enhanced.

As described in Section 3.3.1a, it is helpful to interpret this quantity as acting

in the sense of accelerating or decelerating the time-mean flow when the mean flow

is zonal, and turning the time-mean flow when the mean flow is oriented meridion-

ally. Viewed in this way, Figure 3-17 shows that the zonal effective eddy force in

the two-layer configuration acts in analogous ways as in the barotropic jet, namely

(heuristically) stabilizing the (now upper layer) jet to its barotropic instability, and

providing torques on the mean flow to close the recirculation gyres (now in the lower

layer). Like the barotropic case, the former effect is achieved via a meridional eddy

PV flux in the upper layer inside the time-mean jet that is in the sense to exert an

effective westward force at the jet axis and effective eastward forces on the jet flanks

up until the approximate downstream location where the jet has been (heuristically)

stabilized to its barotropic instability in the time-mean (i.e. q1y becomes single signed
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Figure 3-17: The zonal “effective eddy force” in the two-layer case (defined in the
text) (color) for the upper layer (top) and the lower layer (bottom) (left). The black
contours are of the time-mean streamfunction to indicate the position of the mean
zonal jet and recirculation gyres, with xs denoting the location of maximum time-
mean recirculation transport. The shaded region 0 < x < 10 denotes the western
sponge layer where dissipation is enhanced. The downstream evolution of the merid-
ional profiles of the meridional PV gradient associated with the time-mean jet in the
upper (top) and lower (bottom) layers (right).
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(Figure 3-17 upper right)). Also like the barotropic case, the latter effect is achieved

via a meridional eddy PV flux inside the time-mean recirculations, here in the lower

layer, that is in the sense to introduce anti-cyclonic curvature to the time-mean flow

north of the jet axis and cyclonic curvature to the time-mean flow south of the jet axis

at the western boundary, and cyclonic curvature north of the jet axis and anti-cyclonic

curvature south of the jet axis at the eastern extent of the recirculation gyres.

There are differences between the effective eddy force picture in the barotropic

and two-layer cases as well. Most notable is the addition of a secondary local maxima

in recirculation transport upstream of stabilization, and additional lower layer eddy

forces in the sense to force the divergence and convergence of the lower layer jet

consistent with it. I hypothesize that this new feature may be related to the addition

of the baroclinic instability mechanism to the problem, and an interplay between the

counteracting efforts of eddies acting to reduce the horizontal shear in the upper layer

jet while also acting to reduce the vertical shear (and in the process flux momentum

into the upper-layer jet). As it will be seen, other diagnostics will help to build on

this idea. A second new feature is that the eddy torque responsible for closing the

recirculation gyres, dominant in the lower layer, is now absent from the upper layer

picture. This, as it will be seen, is a consequence of the fact that the eddy effect inside

the time-mean recirculations is derived primary from eddy thickness fluxes in the

two-layer case, and hence if “recirculation-driving” in the lower layer is, by necessity,

“anti-recirculation driving” (i.e. driving a circulation clockwise to the north of the jet

and anti-clockwise to the south of the jet) in the upper layer, although this effect is

dwarfed by the effect of eddy relative vorticity fluxes which dominate the upper layer

eddy PV flux. Further insights into how the eddy thickness flux acts in this way to

make the recirculation strength less depth-dependent than it would otherwise be in

the absence of these fluxes will also be elaborated on in further discussions.

Finally, it is useful to note that, again similar to the barotropic case, an interesting

relation between the stability of the time-mean jet and the sense of the eddy effect in

the two-layer case is observed. With the addition of baroclinic instability in the two-

layer problem, there are now both horizontal and vertical shears that the eddies act to
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reduce. From an examination of the downstream evolution of the meridional profiles

of the mean meridional PV gradient in both the upper and lower layers (Figure 3-17

right) it can be seen that, similar to the barotropic case, the switch in the sign of

the eddy forcing inside the time-mean recirculations (determining the downstream

location of maximum recirculation transport) is related to the stability properties of

the time-mean jet. In particular, this maximum is located (at x ∼ 42 in this case)

in between where the upper layer time-mean jet profile is first likely “stabilized” to

barotropic stability (i.e. where q1y is first single signed everywhere, at x ∼ 40 in this

case) and the system is first likely “stabilized” to baroclinic instability (i.e. where
q1y

q2y

is first single signed everywhere, at x ∼ 48 in this case). Understanding the role of the

jet’s stability properties in determining the eddy effect and its evolution downstream

will also be developed further in subsequent discussions.

(b) Eddy effect on the mean vorticity budget

In the two-layer system, the eddy QGPV flux is u′niq
′
n = u′ni

(

∂
∂x
v′n − ∂

∂y
u′n ± 1

Sn
(ψ′

n − ψ′
n±1)

)

.

The divergence of this flux is the eddy-forcing term in the time-mean vorticity bal-

ance, given by (in non-dimensional form and in the 2-layer framework in the upper

and lower layers respectively):
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Here b′1 = ψ′
1 − ψ′

2 and b′2 = ψ′
2 − ψ′

1. This quantity is visualized in the left panels

of Figure 3-18, the upper layer on top and the lower layer on bottom. Again the

time-mean streamfunction is indicated by the black contours, and the xs denote the

downstream location of maximum time-mean recirculation transport.
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Figure 3-18: The eddy vorticity forcing (defined in the text) (color) for the upper
layer (top) and the lower layer (bottom) (left). The time-mean circulation driven by
this eddy forcing, computed as the solution to the linear vorticity equation forced
statically by the eddy vorticity forcing field (right).
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Like the case of the effective eddy force, the eddy vorticity forcing in the two-layer

case shows both important similarities and new features to the barotropic picture.

Most notable is the dominant, recirculation-driving, dipole pattern of eddy vortic-

ity flux convergence and divergence north and south of the jet axis downstream of jet

stabilization, familiar from the barotropic case. This is the dominant feature of both

the upper and lower layer fields. It suggests relevance of the barotropic eddy-driving

mechanism to each layer of the baroclinic case. The upstream “anti-recirculation

gyre”-driving dipole pattern, responsible for limiting the westward extent of the

strongest recirculation velocities, is also featured, although it is seen prominently

only in the lower layer.

There are new features as well. Here most notable is the new contribution localized

to inside the time-mean jet upstream of jet stabilization / the location of maximum

recirculation transport. Its opposite sense in each layer indicates that it is likely a

consequence of thickness fluxes. As it will be seen, the effect of this eddy forcing is to

drive (in part) the lower layer zonal jet that develops downstream beneath the upper

layer forced jet, a result of the eddies acting to reduce the jet’s vertical shear.

The time-mean circulation driven by this eddy forcing, again computed as the

solution to the linear vorticity equation forced statically by the eddy vorticity forcing

field, is shown in the right-hand panels of Figure 3-18. Here again it can be seen that

the eddies in the baroclinic case are responsible for driving time-mean recirculation

gyres in both layers, although there are differences between these gyres driven directly

by linear dynamics forced by the eddy vorticity forcing alone, and those in the fully

nonlinear solution (for example the downstream location of the maximum time-mean

recirculation transport in the upper layer, and the circulation inside the time-mean

zonal jet that develops in the lower layer). The role of the new contribution upstream

of jet stabilization is explored by computing the time-mean circulation (Figure 3-19

right) driven by linear dynamics forced this time only by the eddy vorticity forcing

field upstream of jet stabilization (Figure 3-19 left). As mentioned, here it can be seen

that this new eddy forcing is responsible for driving (in part) the lower layer zonal jet

that develops downstream beneath the upper layer forced jet, while forcing a narrow
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Figure 3-19: The time-mean circulation (right) driven by linear dynamics forced by
only the eddy-vorticity forcing field upstream of the location of jet stabilization (left)
for the upper layer (top) and lower layer (bottom) respectively. Black contours indi-
cate positive values of the eddy-driven time-mean streamfunction while gray contours
indicate negative values.

pair of “anti-recirculation gyres” (clockwise circulation to the north, anti-clockwise

circulation to the south) in the upper layer which have the effect of decelerating the

upper layer jet at its axis. By accelerating a lower layer jet and decelerating the upper

layer jet, this new eddy forcing contributes to reducing the jet’s large-scale vertical

shear, and stabilizes it to its baroclinic instability.

(c) Eddy effect on the mean kinetic energy budget

As in the barotropic case, eddies produce and extract kinetic energy from the

mean according to the production term in the equation for conservation of mean
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Figure 3-20: The production term in the equation for conservation of mean kinetic
energy in each layer (defined in the text) (color) for the upper layer (top) and the
lower layer (bottom) (left). The downstream evolution of the meridional profiles of
the time-mean zonal velocity associated with the time-mean jet in the upper layer
(top) and lower layer (bottom) (right).

kinetic energy in each layer:
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This mean energy production term is visualized for this typical mixed instability case

in Figure 3-20 for the upper layer (top) and lower layer (bottom) (Figure 3-20 left)

respectively.

Here it can be seen that both layers exhibit a similar pattern in eddy and mean

kinetic energy conversions as in the barotropic case in the vicinity of jet stabilization

/ maximum recirculation transport, with eddies extracting kinetic energy from the

mean upstream of where the time-mean jet is stabilized, and producing mean kinetic
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energy downstream of this location. Again, the commonality with the barotropic case

suggests the dominance of barotropic mechanisms in the eddy and mean energy con-

versions. The significant production of mean kinetic energy by the eddies downstream

of jet stabilization again indicates the importance of this region in the eddy-driving

of the mean recirculations.

Like the cases of the effective eddy force and the eddy vorticity forcing however,

there is also additional upstream structure: here an extraction - production pattern

associated with the first local maxima in recirculation transport. The lower layer

jet is seen to strengthen, weaken, strengthen and weaken again consistent with this

picture (Figure 3-20 lower right). Again it is suggestive of an interplay between the

two instability mechanisms in the problem, and the counteracting effects of eddies in

the lower layer acting to reduce vertical and horizontal shears.

To summarize, diagnosis of the eddy effect on the time-mean budgets of zonal mo-

mentum, vorticity, and kinetic energy in the baroclinic case has produced a picture

of an eddy effect on the time-mean circulation that shares many significant similari-

ties to the barotropic case: eddies continue to act to stabilize the upper layer jet to

its barotropic instability, and drive the recirculations via an eddy flux convergence /

divergence pattern downstream of jet stabilization. The picture however is modified

by the addition of baroclinic dynamics: lower layer dynamics especially exhibit dif-

ferences stemming from the lack of influence of a strong jet in the background PV

field and from forcing by thickness fluxes. Differences also arise from the additional

instability mechanism in the problem, resulting in an additional eddy effect upstream

of jet stabilization that acts to stabilize the system to its baroclinic instability, and

new structure in both the time-mean circulation and the eddy effect there, a conse-

quence of the interplay of counteracting eddy effects to reduce the jet’s horizontal and

vertical shears. Like the barotropic case, the zonal coordinate is important in defining

the regime of eddy-mean flow interaction behavior (jet-stabilizing vs. recirculation-

driving) however now the regime boundary is defined by some average of where the

time-mean jet is stabilized to it barotropic-like and baroclinic-like instabilities, which
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occur at different distances downstream.

3.4.2 Insights into the Eddy-Driving Mechanism

(a) Eddy enstrophy considerations

As in the barotropic case, the eddy enstrophy generation and eddy enstrophy ad-

vection terms in the enstrophy variance budget, −(u′q′) ·∇q and ∇ · uq′2

2
respectively

where now qn =
(

∂
∂x
vn − ∂

∂y
un ± 1

Sn
(ψn − ψn±1)

)

, give insight into the eddy-driving

mechanism. These terms are visualized in Figure 3-21, with the negative of the eddy

enstrophy generation term (eddy enstrophy destruction) on the left, and the diver-

gence of the eddy enstrophy advection on the right. Red colors in the right panels

indicate eddy enstrophy destruction (regions of up-gradient eddy PV flux) and blue

colors in the left panels indicate advection convergence in a sense counter to dissi-

pation (potentially permitting regions of up-gradient eddy fluxes). Again there are

many similarities and also new features compared to the barotropic case.

It is interesting that the upper layer picture looks essentially identical to that

of the barotropic case, with up-gradient fluxes on the flanks of the time-mean jet

upstream of jet stabilization (associated with the action of the eddies to reduce the

jet’s horizontal shear), and also just downstream of jet stabilization (associated with

the action of the eddies to drive the time-mean recirculation gyres). In both cases,

this pattern is a result of the downstream evolution of the PV gradient associated

with a barotropically unstable jet being stabilized as it evolves downstream.

The picture of eddy enstrophy destruction / up-gradient eddy fluxes in the lower

layer however is new, a function of the fundamentally different dynamics in the lower

layer due to the absence of a strong jet signature in the background mean PV gradient.

Here is seen a pattern of up- and down- gradient fluxes localized to the flanks of the

time-mean jet that develops as part of the lower layer recirculations, that proceed the

pattern of lower layer jet strengthening and weakening as the barotropic and baroclinic

instability mechanisms inter-play. Like the upper layer, there is a second region of

important up-gradient flux just downstream of jet stabilization / the maximum in

time-mean recirculation transport associated with the driving of the lower layer time-
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Figure 3-21: The eddy enstrophy destruction (left) and eddy enstrophy advection
divergence (right) in the enstrophy variance budget of the two-layer, mixed instability
case (defined in the text) (color) for the upper layer (top) and the lower layer (bottom)
respectively. Red colors on the right indicate positive eddy enstrophy destruction
(regions of up-gradient eddy PV flux) and blue colors on the left indicate an eddy
enstrophy convergence in the sense counter to dissipation (potentially permitting
regions of up-gradient eddy fluxes).
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mean recirculation gyres.

The picture of the divergence of eddy enstrophy advection (Figure 3-21 right)

confirms that these critical regions of up-gradient fluxes are permitted by significant

eddy enstrophy advection convergence. Similar to the barotropic case, one sees a

picture of eddy enstrophy divergence co-incident with regions of down-gradient eddy

PV fluxes in regions where barotropically unstable dynamics dominate, and eddy en-

strophy convergence co-incident with regions of up-gradient eddy PV fluxes in regions

where baroclinically unstable or wave-radiator dynamics dominate. The dominance

of the enstrophy convergence downstream of jet stabilization again implicates this

downstream region as the source of the eddy-driven recirculations.

(b) A localized wave-radiator model for the eddy-driving mechanism: the two

layer analogue

The similarity in the eddy vorticity forcing field downstream of jet stabilization

in both the upper and lower layers of the two-layer system to the barotropic case,

and the importance of this region to the eddy-driving of the recirculations suggested

by the above eddy enstrophy considerations, suggest that the localized wave-radiator

mechanism for the eddy-driving of the time-mean recirculations has application to

the two-layer case as well. I test this hypothesis and investigate the role of the eddy-

forcing downstream of jet stabilization by computing the time-mean circulation in

each layer (Figure 3-22 right) driven by linear dynamics forced by the eddy vorticity

forcing field in the wave-radiator regime only (Figure 3-22 left). Here both layers

are forced by the time-mean eddy vorticity forcing in that layer. This experiment

confirms that the action of the eddy forcing downstream of jet stabilization is indeed

to drive time-mean recirculations in both layers.

3.4.3 A Conceptual Description of Eddy-Mean Flow Inter-

actions

In previous sections it has been shown that the role of eddies in the downstream

evolution of a two-layer, mixed instability jet shares many features in common with
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Figure 3-22: The time-mean circulation in each layer (right) driven by linear dynam-
ics forced by the eddy-vorticity forcing field downstream of jet stabilization (left),
computed to test the relevance of the localized wave-radiator model in the mixed in-
stability case. Black contours indicate positive values of the eddy-driven time-mean
streamfunction while gray contours indicate negative values.
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the barotropic case. So, like the barotropic case, I argue that the role of eddies in the

baroclinic case is also usefully understood (grossly) as dividing into two downstream

regions based on the time-mean jet’s stability properties: one where the time-mean

jet is unstable essentially between the inflow and the downstream location of max-

imum time-mean recirculation transport (the “unstable jet regime”), and a second

downstream of this location, when the time mean jet has been stabilized (the “wave-

radiator” regime). In general, in the unstable jet regime, eddies act to decelerate and

broaden the jet, extract energy from the mean, and mix PV down the mean-gradient,

while downstream of jet stabilization, in the wave-radiator regime, they act to drive

the time-mean recirculation gyres, convert eddy kinetic energy to mean kinetic en-

ergy, and flux PV up the mean gradient, similar to the barotropic case previously

discussed.

But the baroclinic dynamics adds additional details to the story. First, the cri-

terion for dividing these two downstream regions in the two-layer case is made more

complicated by the fact that there are now two meridional PV gradients to consider:

that of the upper layer and that of the lower layer, and two instability mechanisms

to consider: that of barotropic instability and that of baroclinic instability. Second,

there are now regions where one effect of the eddies is always in opposite senses in

each layer (for example the “effective eddy force” is always of opposite signs in the

two layers) while another eddy effect is in the same sense in each layer (for example

the eddy enstrophy divergence is always the same sign in the two layers). Reconciling

how and why eddies act in opposite senses in each layer for one dynamic quantity

while acting in the same sense for another, also needs to be part of the modified

baroclinic story.

Based on these additional details, the two regime description of eddy-mean flow

interactions in the downstream evolution of a baroclinic WBC jet is modified from

the barotropic case as follows (Figure 3-23): In a mixed instability jet in a parameter

regime appropriate to the GS and KE, the regime of eddy-mean flow interaction

behavior (jet stabilizing vs. recirculation driving) continues to be defined by the jet’s

stability properties. In the upper layer, the relevant stability criterion appears to be

126



the barotropic instability of the upper layer jet i.e. the variation of the upper layer

PV gradient in the horizontal. In the lower layer too, the eddy-mean flow interaction

behavior appears to be a function of the variation of that layer’s PV gradient in the

horizontal, here negative on the jet axis due to the jet’s vertical shear. In short, it

appears that insight into the eddy-mean flow interaction regime in each layer can

be gleamed from whether that layer’s PV gradient changes sign in the horizontal,

regardless of whether that change in sign arises from horizontal or vertical shear.

This stability criterion defines the sign of the eddy vorticity forcing (jet decelerating

vs. recirculation driving) (lower left), the nature of eddy enstrophy advection inside

the jet (divergent and friction-like vs. convergent and anti-friction-like) (upper right),

the sign of the eddy enstrophy generation and hence the sense of the eddy PV flux

relative to the mean gradient (down-gradient vs. up-gradient) (middle right), and

the direction of conversion between mean and eddy kinetic energy (mean to eddy vs.

eddy to mean) (lower right). In this typical example, the upper layer’s PV gradient

is stabilized (q1y min > 0) slightly upstream of where the lower layer’s PV gradient

is stabilized (q2y min > 0) (upper left), so the switch of sign of eddy effect in the

quantities above tends to occur slightly upstream in the upper layer compared to the

lower layer.

The exception to this rule of the sign of the eddy effect being determined by the

variation of the PV gradient in the horizontal in that layer alone, and critical to the

barotropic nature of the recirculation gyres, is the effective eddy force (middle left).

The effective eddy force behaves differently because inside the recirculations, as it will

be seen, it is dominated by thickness over relative vorticity fluxes in both layers, and

as such, its sign is determined by an integrated effect of the sense of the eddy effect in

each. It is this integrated effect that places the maximum in recirculation transport

somewhere in between where the upper layer jet and lower layer jet are stabilized,

its relative position between these two stabilization points being a function of the

relative sizes of the layer Burger numbers.

Finally, comment should be made about the additional structure in the fields

upstream of jet stabilization, in particular the region in between x ∼ 18 and x ∼ 28
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Figure 3-23: As in Figure 3-9, the downstream evolution of (a) the time-mean jet’s
stability properties (qny min) (upper left) (b) the effective eddy force (upper right) (c)
the production of mean kinetic energy by the eddies (middle left) (d) the sense of the
eddy vorticity forcing (middle right) (e) the eddy enstrophy destruction inside the
time-mean jet (lower left) and (f) the sign of the eddy enstrophy advection (lower
right). Properties of the upper layer are plotted in black and properties of the lower
layer are in gray. The background contours are that of the barotropic streamfunction
(ψBT = 1

S2
ψ1 + 1

S1
ψ2). The shaded region denotes the boundaries of a new upstream

region that is a feature of the mixed instability case. See the text for a full discussion.
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non-dimensional units in this example (shaded in Figure 3-23). In this region, many

of the generalizations about the sign and sense of the eddy effect in the “unstable jet

regime” discussed above temporarily do not apply. This additional upstream region

is a feature unique to the baroclinic case, as is the first local maximum in time-

mean recirculation transport that results from it. Examination of the jet and jet

stability properties in search of what makes this region unique relative to the rest

of the “unstable jet regime” implicates the lower layer jet: in this region the lower

layer eddy-driven jet that has been strengthening downstream starts to temporarily

weaken and broaden, as if reacting, for the first time, to its own horizontal shear.

This continues for a time until it becomes weak enough that baroclinic instability

seems to dominate again, and it begins to strengthen again as it evolves downstream,

so as to reduce the vertical shear with the upper layer jet. This phenomenon of

non-monotonic changes in structure with downstream distance is unique to the deep

eddy-driven jet as for it, the effects of eddies acting to stabilize it to its horizontal vs.

vertical shears are counteracting, whereas the action of eddies to weaken and broaden

the upper layer jet acts to stabilize it to both.

3.4.4 The Roles and Relative Importance of Relative Vortic-

ity vs. Thickness Fluxes in the Eddy Forcing

The addition of baroclinic dynamics results in an additional mechanism by which

eddy fluxes can influence the dynamics, that of thickness or stretching fluxes of PV.

Here I decompose the eddy effects discussed thus far into their relative vorticity

and thickness components, and ask what roles each play and what is their relative

importance in a GS or KE-like regime. This decomposition for each of the eddy terms

in the major dynamical budgets is shown in Figures 3-24 and 3-25 for the upper

and lower layer respectively.

Figure 3-24 shows us that in the upper layer, in general, the contribution of

the eddy relative vorticity flux dominates over the thickness flux contribution. This

is perhaps expected given the presence of the upper layer jet and the significant
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contribution it makes to the background PV gradient via its large mean gradient of

relative vorticity. In the eddy vorticity forcing (Figure 3-24 middle), the thickness

contribution is roughly an order of magnitude smaller than the relative vorticity

contribution. The same dominance of eddy relative over thickness vorticity fluxes is

also seen in the eddy enstrophy divergence (Figure 3-24 bottom). In contrast however,

in the effective eddy force (Figure 3-24 top), relative and thickness fluxes each play

order one roles. It is the eddy relative vorticity flux that acts to stabilize the upper

layer jet. It also acts to drive the recirculations. In contrast, upper layer thickness

fluxes act in a sense counter to the recirculation-driving tendency of the upper layer

relative fluxes. This same opposing sense is seen in the vorticity forcing, however here

the effect is relatively small. Hence it is as a consequence of thickness fluxes that the

upper layer recirculation strength in the two-layer configuration is weaker than the

equivalent barotropic case.

In the lower layer (Figure 3-25) this dominance of relative vorticity over thickness

fluxes is not observed. This again is expected given the lack of a significant relative

vorticity contribution to the background PV gradient in the lower layer given the

absence of a lower layer jet. In the case of the effective eddy force (Figure 3-25 top),

the thickness contribution dominates and is responsible for providing the torque on

the mean flow needed to close the lower layer recirculations. The exception however

is in the eddy vorticity forcing (Figure 3-25 middle), in which relative vorticity fluxes

continue to play the dominant role. Note that this dominant forcing role played by the

relative vorticity flux divergence in the lower layer resembles the vorticity forcing in

the barotropic case, suggesting that the mechanism responsible for the eddy-driving

of the recirculations in this two-layer case remains a barotropic one. Also note that,

in contrast to the upper layer, the role of thickness fluxes in the lower layer are in

the sense to add to the effect of the relative fluxes, thus augmenting the strength of

the eddy-driven circulation relative to the barotropic case. Given that the relative

vorticity fluxes feeding off the background PV gradient associated with the upper

layer jet are much larger in the upper layer compared to the lower layer, in this way

thickness fluxes act in the sense to equalize the eddy vorticity forcing in the two
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Figure 3-24: Contributions of the relative vorticity (left) and thickness (right) flux
components to the upper layer “effective eddy force” (top), upper layer eddy vor-
ticity forcing (middle), and the upper layer divergence of eddy enstrophy advection
(bottom), each on a common color scale to determine their relative importance.
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Figure 3-25: As in Figure 3-24 but for the lower layer.

layers, making the recirculation strength less depth-dependent than in the absence of

these fluxes (Figure 3-26).

This comparison between the relative importance of relative vorticity vs. thick-

ness fluxes in the eddy forcing highlights an important difference between the eddy

momentum vs. vorticity forcing. Regardless of layer, the thickness flux dominates the

eddy momentum forcing inside the recirculations and the relative flux dominates the

eddy vorticity forcing, despite the general dominance of relative fluxes in the upper

layer and thickness fluxes in the lower layer. This is significant as it helps one to un-

derstand first that it is a result of the general dominance of the relative vorticity flux

in the eddy vorticity forcing that makes the vorticity dynamics responsible for the
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Figure 3-26: The eddy vorticity forcing resulting from the eddy flux divergence of
thickness fluxes only (left) and the time-mean circulation it drives (right) for the upper
layer (top) and lower layer (bottom) respectively. Black contours indicate positive
values of the eddy-driven time-mean streamfunction while gray contours indicate
negative values. The effect of the thickness fluxes in the upper layer is in the sense
to counter the forcing of the recirculations driven by relative fluxes by driving a
pair of “anti-recirculation gyres” (clockwise circulation to the north, anti-clockwise
circulation to the south). In the lower layer, the effect of the thickness fluxes is in the
sense to add to the forcing of the recirculation gyres driven by the relative fluxes.
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eddy-driving of the recirculation gyres remain barotropic in this baroclinic case, and

second that it is a result of the general dominance of the thickness flux in the eddy

momentum forcing that makes the recirculation gyres only weakly depth dependent,

with a downstream location of maximum transport at an integrated position where

the jet is stabilized to its barotropic and baroclinic instability mechanisms.

3.4.5 The Relative Importance of Eddy Forcing

I examine the relative importance of steady state inertial terms vs. eddy flux terms in

this more WBC jet representative two-layer case by comparing the nature and relative

size of the eddy vs. mean (inertial) nonlinear forcing terms in both the time-mean

zonal momentum budget and the time-mean vorticity budget.

Figure 3-27 contrasts the divergence of the eddy vs. time-mean flux of zonal

momentum,
(

∂
∂x

(

u′u′
)

+ ∂
∂y

(

u′v′
))

TEM
vs. u ∂

∂x
u + v ∂

∂y
v, in each layer. As in the

barotropic case, one sees that in both layers the eddy forcing term is of the same

order as the mean inertial term, hence it plays at least an order one role in the mean

momentum budget. Unlike the barotropic case however, the mean and eddy terms

in the upper layer now act in opposing senses downstream of jet stabilization. Con-

versely, in the lower layer, mean and eddy terms tend to act in reinforcing senses. The

absence of the strong inertial jet in the lower layer makes its dynamics fundamentally

different to the upper layer in this respect.

Figure 3-28 contrasts the divergence of the eddy vs. time-mean flux of potential

vorticity,
(

∂
∂x

(

u′q′
)

+ ∂
∂y

(

v′q′
))

vs. u ∂
∂x
q+v ∂

∂y
q where qn = ∇2ψn +βy∓ 1

Sn
(ψ1−ψ2),

n = 1, 2, in each layer. Like the barotropic case, the mean flux divergence dominates

inside the time-mean jet upstream of time-mean jet stabilization, but eddy and mean

terms are of comparable magnitude downstream of jet stabilization. In the lower

layer, where there is no forced time-mean jet imposed, eddy and mean terms are

of comparable importance everywhere. In general, eddy and mean terms act in the

same sense, hence the eddy contribution enhances the mean inertial effects, making

the recirculations significantly stronger than they would be in the absence of eddy

effects.
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Figure 3-27: The divergence of the eddy flux of zonal momentum
(

∂
∂x

(

u′u′
)

+ ∂
∂y

(

u′v′
))

TEM
(left) vs. the divergence of zonal momentum advec-

tion by mean velocities
(

u∂u
∂x

+ v ∂u
∂y

)

(right) in the upper layer (top) and lower layer

(bottom).
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Figure 3-28: The divergence of the eddy flux of PV
(

∂
∂x

(

u′q′
)

+ ∂
∂y

(

v′q′
))

(left) vs.

the divergence of PV advection by mean velocities
(

u ∂q

∂x
+ v ∂q

∂y

)

(right) in the upper

layer (top) and lower layer (bottom).
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3.4.6 Dependence on System Parameters

As in the barotropic case, I explore the dependence of properties of the time-mean,

eddy-driven circulation on forcing parameters by varying the supercriticality, or the

degree of instability, of the inflowing jet. In the two-layer case, the variation of the

non-dimensional β parameter now varies both the criticality of the upper layer jet

to barotropic instability and the criticality of the system to baroclinic instability.

Decreasing this parameter can be thought of as equivalent to making the upper layer

jet stronger, increasing both the horizontal shear in the upper layer and the vertical

shear between layers.

Results of these parameter studies as a function of the supercriticality of the upper

layer inflowing jet are summarized in Figure 3-29. As in the barotropic case, as the

supercriticality of the inflowing jet increases, the time-mean recirculation strength in-

creases approximately linearly as is predicted by weakly nonlinear theory, with upper

layer recirculation strength growing slightly more rapidly than lower layer recircula-

tion strength. An exception to this rule exists however for the lower layer recirculation

strength in the case of weak forcing, and it appears that the forcing must exceed some

critical minimum amplitude to drive the lower layer recirculations at all. Examina-

tion of the time-mean streamfunctions (Figure 3-29 right) shows that, again similar

to the barotropic case, the time-mean recirculations in both layers tend to shrink in

their zonal extent and expand in their meridional extent as the inflowing jet becomes

more unstable.

I also consider the two-layer parameter study results as a function of forcing ampli-

tude as described in section 3.3.5 (Figure 3-30). I find that the functional dependence

of mean recirculation strength on the forcing amplitude is simplified in the two-layer

case if the modal (barotropic and baroclinic) streamfunctions (ψBT = 1
S2
ψ1 + 1

S1
ψ2

and ψBC = ψ1 − ψ2 where S1 and S2 are the upper and lower layer Burger numbers

respectively) are considered in place of the layer versions, hence results are here pre-

sented in terms of the barotropic and baroclinic mean circulations. I observe that the

strength of the barotropic and baroclinic components of the eddy-driven circulation
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Figure 3-29: The dependence of the mean recirculation strength in each layer on the
supercriticality of the inflowing upper layer jet, ∆ (as defined in Figure 3-12) in a
physically relevant range of parameters (0.02 ≤ β ≤ 0.9) (left). Upper layer recir-
culation strength is shown by circles, lower layer recirculation strength by squares.
An estimate for the supercriticality of the KE, determined from the synoptic mean
velocity profile of the Kuroshio jet at the point of separation from the coast derived
from satellite altimetry data (see Figure C-1), is indicated by the gray circle. The
time-mean circulation for select runs given by contours of the time-mean streamfunc-
tion (right). Upper layer circulation is in black and lower layer circulation is in gray.
Contour intervals are the same for all cases to allow comparison.
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Figure 3-30: As in Figure 3-29 but now considering the modal (barotropic and baro-
clinic) streamfunctions (ψBT = 1

S2

ψ1 + 1
S1

ψ2 and ψBC = ψ1 − ψ2) in place of the
layer versions, and plotted as a function of a measure of the PV forcing amplitude
supplied by the inflowing upper layer unstable jet as described in Section 3.3.5. The
dashed vertical line indicates a transition from a weakly nonlinear regime to a strongly
nonlinear regime based on the observed change in the dependence of barotropic recir-
culation strength on forcing amplitude from quadratic in the weakly nonlinear regime
to linear in the strongly nonlinear regime.

each have a distinct dependence on forcing amplitude: the barotropic transport grows

quickly with forcing amplitude (quadratically for small forcing amplitude and slightly

slower in the strongly nonlinear regime), while the baroclinic transport grows linearly

with forcing amplitude for both weak and strong forcing. This observation clarifies

why the upper layer recirculations tend to grow in strength faster in the weakly non-

linear regime: ψ1 is influenced more strongly by the barotropic streamfunction due

to its shallower depth.

Comparison of the barotropic vs. baroclinic time-mean streamfunctions for various

jet forcing strengths (Figure 3-30 right) shows that the recirculations are a feature

of the barotropic streamfunction, exhibiting the same trend of decreased zonal extent
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and increased meridional extent with increasing jet supercriticality. The sharpening

of the time-mean jet upstream of jet stabilization and the widening of the time-mean

jet downstream of jet stabilization / maximum recirculation transport is contained

in the baroclinic streamfunction.

It is interesting to note that the transition from a weakly nonlinear regime (where

barotropic recirculation strength increases quadratically with forcing amplitude) to

a strongly nonlinear regime (where the rate of increase of barotropic recirculation

strength slows) corresponds approximately to where the contribution of the time-

mean barotropic streamfunction first exceeds that of the baroclinic streamfunction.

There are other qualitative changes in the nature of the baroclinic circulation around

this forcing strength as well. Further investigation into the differences between the

weakly nonlinear and strongly nonlinear regimes in the two-layer case and the cause

for this transition in behavior is on-going.

Finally, as in the barotropic case, the time-mean recirculations in the two-layer

case shrink in their zonal extent with the downstream location of maximum recircu-

lation transport (and jet stabilization) moving upstream as the inflowing jet becomes

more unstable in a way that is consistent with the linear stability calculation’s pre-

diction for the inverse growth rate associated with the fastest growing mode (Figure

3-31). Similarities suggest that, as in the barotropic case, the distance downstream

where the mean jet profile becomes stabilized and the time-mean recirculation trans-

port becomes maximized, is again related to the time it takes the eddies associated

with the fastest growing mode to grow to sufficient amplitude. Comparing these re-

sults to the barotropic case (Figure 3-14), it can be seen that in the two-layer case

the downstream location of mean jet stabilization / maximum recirculation transport

tends to be further downstream for an equivalent forcing amplitude, while the inverse

growth rate tends to be shorter. This suggests that the eddies must grow to larger

amplitude in the baroclinic case compared to the barotropic one for their fluxes to

be capable of stabilizing the mean jet profile, a consequence perhaps of the fact that

they must stabilize the jet both to its horizontal and vertical shear in this mixed

instability case.

140



Figure 3-31: The dependence of the zonal extent of the recirculations (as measured by
the downstream location of maximum time-mean barotropic recirculation transport)
(left) vs. that of the inverse growth rate from the linear stability calculation for the
inflowing jet profile (right) on forcing amplitude for the two-layer jet configuration.
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3.5 Summary and Discussion

3.5.1 The Barotropic Case: A summary

A revisit of the barotropic model of Jayne et al. (1996), with the view of understanding

the nature and importance of the eddy effect on the mean, the mechanisms that per-

mit that effect, and the dependence of that effect on system parameters, has resulted

in a picture of eddy-mean flow interactions in this idealized WBC jet system that is

critically dependent on zonal position relative to the evolving stability properties of

the time-mean jet. Upstream of jet stabilization, eddies act to stabilize the jet through

down-gradient fluxes of PV. Downstream of where the time-mean jet has (through the

effect of the eddies) been stabilized, eddies act to drive the time-mean recirculations

through the mechanism of an up-gradient PV flux. This up-gradient flux is permitted

by an eddy enstrophy convergence downstream that results from the generation of

eddy enstrophy in the unstable jet regime, the advection of that eddy activity down-

stream by the mean jet, and the dissipation of that eddy enstrophy downstream of jet

stabilization. In this picture, eddies drive the time-mean recirculations in this down-

stream region through the mechanism of nonlinear eddy rectification, made possible

by a localized source of eddy activity generated by the unstable jet stabilizing itself

as the instability is advected downstream, acting on a PV gradient that is in essence,

just a modified β-plane, given the now stabilized time-mean jet no longer causes a

reversal of sign in the mean meridional PV gradient. These eddy effects are important

to the overall dynamics of the system, and are of comparable importance to the mean

inertial terms in the dynamical budgets in a parameter space appropriate to the GS

and KE. Finally, the properties of the time-mean recirculations that the eddies drive

are strongly dependent on the stability properties of the jet that generated them:

recirculation strength increases linearly with the supercriticality associated with the

WBC at the western boundary, and zonal extent is empirically related to the inverse

growth rate of the fastest growing mode as predicted by the linear stability calculation

for the inflowing jet profile.

142



3.5.2 The Two Layer Case: A summary

In a configuration where a zonal jet is imposed at the western boundary in the upper

layer of a two-layer system, as is relevant to a WBC at the point of separation from

the coast, I find that the eddy-mean flow interactions remain essentially barotropic,

with the added baroclinicity and the baroclinic instability mechanism adding new

details to the barotropic story.

Like the barotropic case, the role of eddies in the downstream evolution of the

time-mean circulation continues to be usefully characterized as dividing into two

downstream regions: an upstream region where the time-mean jet is unstable and

eddies act to stabilize the jet profile, extract energy from the mean, and mix PV

down the mean gradient, and a downstream region where the time-mean jet is stable

and eddies act to drive time-mean recirculations. In the two-layer configuration these

eddy-driven recirculations occur in both layers, and are weakly depth-dependent rela-

tive to the baroclinic jet. The eddy-driving mechanism also continues to be essentially

the same as the barotropic case: eddies drive the time-mean recirculations via a dipole

pattern of eddy vorticity flux convergence and divergence north and south of the jet

downstream of where the time-mean jet has been stabilized. The eddy-driving is via

a mechanism that is analogous to the driving of time-mean recirculation gyres from

the rectification of eddy fluxes generated in a localized region on a background PV

gradient that is monotonically varying. The eddy-driving of the mean circulation is

permitted by an up-gradient eddy PV flux in this downstream region which results

from a significant eddy enstrophy convergence resulting from the dissipation of eddies

generated upstream and advected eastward by jet. Given that this gross picture is

valid for both the upper and lower layers, I conclude that even in this baroclinic case,

the eddy-driving of the recirculations is essentially a barotropic mechanism. This is

also supported by the observation that the effect of the eddies on the time-mean circu-

lation (jet stabilizing vs. recirculation-driving as determined by the sense of the eddy

vorticity forcing) is defined in each layer by the properties of that layer’s PV gradient

(and specifically its variation in the horizontal), and by the dominance of the rela-
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tive vorticity flux divergence over the thickness flux divergence in the eddy vorticity

forcing in both layers. The result that the barotropic transport grows quadratically

with forcing amplitude in a weakly nonlinear regime and more slowly in a strongly

nonlinear regime, as in the barotropic case, further suggests the barotropic nature of

the eddy-driving mechanism in this two-layer configuration.

New details in this description resulting from the baroclinic dynamics come from

the addition of the baroclinic instability mechanism, the addition of thickness fluxes

as an alternative means by which eddies can impact the mean circulation, and the

potential for different lower layer vorticity dynamics given the absence of a strong jet

contributing to the background PV gradient. As mentioned, the eddy effect in each

layer is determined by the horizontal variation of that layer’s PV gradient, but given

that it is the system’s vertical shear that determine the lower layer’s PV gradient,

baroclinic instability also plays a key role. First, the interplay between the two in-

stability types can result in additional structure in the downstream evolution of the

mean jet-gyre system. In the WBC-typical example discussed, two local maxima in

time-mean recirculation transport associated with multiple strengthening and weak-

ening cycles of the lower layer eddy-driven jet are observed, resulting from a cycling

of which instability mechanism is dominant at that point in the jet system’s down-

stream development. Second, given the rates at which the eddies act to stabilize the

jet to its barotropic vs. baroclinic instability differ, hence the downstream evolution

of eddy effect (and in particular the downstream location of the switch in sign of eddy

forcing from unstable jet regime to wave radiator regime) will differ in the upper vs.

lower layer. The barotropic nature of the recirculation gyres arises despite this as a

result of the dominance of the thickness fluxes in the effective eddy force inside the

time-mean recirculation gyres in both layers. In this way, eddies contribute to the

forcing of the recirculation gyres with a sign that is an integrated effect of the sense of

the eddy effect in the upper and lower layer, and the location of maximum recircula-

tion transport is somewhere in between the stabilization to the two instability types.

Recirculation strength is diminished in the upper layer and strengthened in the lower

layer relative to the barotropic case as a consequence of the action of these thickness
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fluxes, which results in the barotropic nature of the recirculations. Finally, although

a correspondence between the inverse growth rate of the fastest growing mode and

the downstream location of maximum recirculation transport and jet stabilization re-

mains, the addition of baroclinic instability results in larger downstream distances to

stabilization, despite faster eddy growth rates. This suggests that eddies must grow

to larger amplitude for their fluxes to stabilize the system in the baroclinic case.

Finally, it is important to note that as in the barotropic case, in the WBC relevant

baroclinic case, eddy forcing and time-mean inertial terms are of relatively equal

magnitude. Hence, including eddies in our description of the dynamics of WBC jet

systems is essential. This is especially true for the lower layer, where eddy and mean

terms are of opposing senses, and the recirculations are solely eddy-driven. In the

absence of eddy terms, upper layer recirculations would be significantly weaker and

the lower layer recirculations (and their significant enhancement to the jet transport)

would be missing altogether.

3.5.3 Some Caveats

One of the major results of this study is that the nature of the eddy-mean flow

interactions in the idealized WBC jet systems studied is critically dependent on zonal

position relative to the evolving stability properties of the time-mean jet. Despite

its heuristic value in this case however, it is important to recognize that the use of the

time-averaged distribution of the PV gradient to evaluate the stability of the jet and

the nature of the eddy-mean flow interactions cannot be justified on first principles

(as formally stability involes the instantaneous flow and the spatial pattern of the

perturbation field). Some other caveats that should be made include:

• While the temporal interpretation of the results seem to have heuristic value

in explaining the observed eddy-mean flow interaction behavior, the relevance

of spatial instabilities (i.e. disturbances with real frequency and complex zonal

wavenumber coresponding to a system forced in a local region at constant fre-

quency) also needs to be recognized. In papers on the temporal instabilities
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of the GS for instance, many authors (e.g. Johns, 1988; Xue, 1991) agree that

spatial instability is probably more relevant than the temporal variant in this

application.

• In addition to normal mode instabilities (both temporal and spatial), the rele-

vance of pulse instabilities (i.e. the linear solution that represents the asymp-

totic solution to the evolution of a localized disturbance, as an approximation

to the full initial value problem as time goes to infinity) should be considered.

In particular, convective instabilities, a category of pulse instabilities where the

disturbance “propagates” along the system as it grows in time, may be espe-

cially appropriate. If a system is convectively unstable and forced continuously

with constant frequency at a local region, spatial instability is likely to occur.

This scenario likely has relevance to the problem considered here.

• There is no local relation between “local” stability characteristics (based on

“local” cross-sectional profiles) and the disturbance intensity or its interaction

with the mean in currents whose cross-stream structure varies in the down-

stream direction. And in cases where the advective time-scale of the current is

much less than the dissipation time, as in WBC jets, disturbances may prop-

agate from unstable regions into stable regions and continue to extract energy

from the mean and grow in amplitude (see Pedlosky (1976) for a full discus-

sion). This scenario provides a likely explanation for why the downstream

location of maximum eddy kinetic energy in these idealized WBC jet studies

is found downstream of the location where the time-mean jet is first stabilized

(and the recirculation strength is maximized), however it calls into question the

conclusion that the downstream boundary for the change in the nature of the

eddy-mean flow interactions (and for the up-gradient eddy PV flux) is located

at the jet’s stabilization point, as oppposed to at the location of maximum EKE

further downstream. In general, the relation between the downstream locations

where the time-mean jet is first stabilized to its temporal instability, the instan-

teous jet is first stabilized to its temporal instability, the jet is first stabilized
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to its spatial instability, EKE is maximized, and the recirculation strength is

maximized, needs to be examined more carefully.

• Finally, an understanding of time-dependence in the downstream location of

instantaneous jet stabilization, and how this relates to the nature of eddy-mean

flow interactions, is still required. The utility of our understanding of the long-

period oscillation that exists in the finite-amplitude state of a baroclinic wave

or packet of waves as discused in Pedlosky (1970, 1972), and how this may

translate to downstream variation in the jet’s stabilization point, also need to

be assessed. An evalution of a time series of the model jets’ behavior, currently

underway, will hopefully provide some insight into these matters.

3.5.4 Relevance to Actual Oceanic WBC Jet Systems

It is worth reiterating that the theoretical study discussed here was designed and

carried out with priority placed on maintaining relevance to actual oceanic WBC jet

systems. As mentioned in the discussion of the model set-up, although the model

is highly simplified, there are several indications in past observations of the GS and

the analysis of new observations in the KE region that indicate that aspects of the

simplifications that the model employs and the physics it retains in its idealized set-

up are appropriate to these systems (see Chapter 4 for a full discussion). In this

way, I agrue that the theoretical results presented here have potential relevance to

the dynamics of the GS and KE jet systems.

Ideally, the relevance of these theoretical results would be tested by looking for

consistencies between model signatures and ocean observations. Unfortunately, due

to the challenge of obtaining enough observational data to accurately calculate var-

ious eddy statistics, diagnostic studies of the relation between the mean or low fre-

quency state and eddies using direct observations have been rare. Some attempts have

been made with limited data on regional scales which provide tidbits for comparison

however, and many of these provide partial pictures of WBC jet dynamics that are

consistent with the model dynamics observed. For example, current meter records
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analyzed by Dewar and Bane (1989) in the GS system at 73◦W (250 km downstream

of Cape Hatteras in what should be the “unstable jet regime” if defined relative to the

downstream evolution of along-stream EKE), provide evidence of GS eddies acting

to accelerate flows at abyssal levels while decelerating the mean jet at thermocline

depths, consistent with the picture of the eddy force seen in “unstable jet” regime

in the baroclinic model. With respect to eddy vorticity forcing, measurements in

the abyssal GS suggest that the eddy relative vorticity and thickness fluxes are of

comparable strength there, with the eddy relative flux divergence being of the right

sign and order of magnitude to drive a recirculation of the observed strength, while

the thickness flux acts to make the recirculation more barotropic (Hogg, 1993), again

consistent with the model findings. Of particular interest to this study is observa-

tional evidence of a changing role of eddy effects in the downstream evolution of the

WBC jet system. By compiling various data sources at 73◦W and 68◦W, Dewar and

Bane (1989) conclude that the eddy-field at 73◦W, upstream of the EKE maximum

(Reverdin et al., 2003), is significantly different in its effects on the GS than at 68◦W

(near the EKE maximum), transitioning from a state dominated by baroclinic insta-

bility upstream to barotropic instability near the downstream location of maximum

EKE. This evolution is also in agreement with the downstream development of the

WBC-representative mixed instability case.

Motivation for this study came from a recent observational program in the KE

called the Kuroshio Extension System Study (KESS), designed, in part, to investigate

the processes that govern the jet’s variability and the role of eddy fluxes in forcing

the jet’s recirculation gyres. As such, KESS provides a unique observational data set

to examine the jet, its eddy variability, and their interactions that is unprecedented

in both its spatial and temporal resolution, and affords us a unique opportunity to

understand how these theoretical ideas about eddy-mean flow interactions in unstable

jets apply to the actual ocean. Addressing the question of the relevance of these theo-

retical results to the KESS observations is treated in Chapter 4. In short, consistences

in the signatures of dynamically significant properties between model predictions and

observations in the KE region, give confidence in the model’s potential ability to
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capture the essential physics of the KE jet system.

3.5.5 A Barotropic Ocean Storm Track?

In this study of eddy-mean flow interactions in WBC jets, the eddy-mean flow inter-

action dynamics discussed result from the zonal evolution of the system from a region

of eddy growth (the “unstable jet regime”) to a region of eddy decay (the “wave-

radiator regime”). This importance of zonal variation is reminiscent of eddy-mean

flow interaction dynamics seen in atmospheric storm tracks, regions of enhanced eddy

activity where eddies preferentially grow through baroclinic instability through the

storm track and decay downstream (Chang et al., 2002; Hoskins and Hodges, 2002).

As a consequence of this life cycle, at the entrance and over the core of the storm

track, eddies provide a down-gradient heat flux and accelerate the mean jet eastward;

at the exit and downstream they force a westward mean flow (Hoskins et al., 1983).

In this way, storm tracks “self-maintain”, the tendency for cyclonic (anticyclonic) cir-

culation on the poleward (equatorward) flanks resulting from the Eliassen-Palm flux

divergence from the track, serves to force the mean westerly flow which counteracts

the destructive effects of the eddy heat fluxes on the baroclinicity.

Atmospheric storm track eddy-mean flow interactions described above certainly

operate in this way in the baroclinic case of the WBC model I studied. However, in

addition, in this WBC model an analogous evolution of eddy-mean flow interaction

dynamics operate resulting from the life cycle of eddy growth through barotropic

instability. As a consequence of this eddy life cycle, at the entrance and over the

core of the barotropic “storm track”, eddies still provide a down-gradient PV flux,

but now it is in the sense to decelerate the mean jet; at the exit and downstream

they now provide an eastward force. In this barotropic version, the simpler of the

covariance terms in the eddy PV flux, u′v′, has the same well-known effect as its baro-

clinic counterpart, intensifying the anticyclonic (cyclonic) tendencies on the southern

(northern) side of the jet, thereby driving recirculations and producing an increase

in the barotropic component of the zonal jet. The other term however, v′2 − u′2, the

term producing the quadrupole pattern that is responsible in baroclinic storm tracks
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for anticyclonic tendencies to the northeast and southwest and cyclonic tendencies to

the northwest and southeast (see Orlanski, 1998) is reversed in sign. In the barotropic

version, this term now acts to restrict the westward extent of the strongest recircu-

lation velocities upstream of the v′2 − u′2 maximum, and to add to the recirculation

strength downstream of the v′2 − u′2 maximum.

In the barotropic case, barotropic storm track dynamics is the only mechanism at

play. In the baroclinic, mixed instability case however, the atmospheric-like baroclinic

storm track and the barotropic storm track dynamics compete, interchanging dom-

inance as the jet evolves downstream and resulting in non-monotonically increasing

recirculation strength. Ultimately it is the barotropic dynamics that come to dom-

inate. The importance of barotropic instability in WBC jet systems is a potential

explanation for why, despite finding localized regions in the Southern Ocean where

ocean eddies provide statistically significant vorticity forcing, Williams et al. (2007)

find that the contribution of eddy vorticity forcing along the extensions of the GS and

KS is relatively small. Their diagnostic is a measure of susceptibility to baroclinic

instability only and may be much larger if barotropic instability was also taken into

account.

As Williams et al. (2007) note, thinking of ocean storm tracks (of both the baro-

clinic and barotropic type) might be useful since the existence of localized storm

tracks is directly related to a characteristic life cycle for the eddies. When eddies

are growing, they provide down-gradient tracer fluxes, and when eddies decay they

provide up-gradient tracer fluxes. This temporal (or in the case of a time-varying in-

stability mechanism being advected by an inertial jet, spatial) variation in how eddies

behave may be critical for understanding their effect on the background state and in

developing realistic parameterization schemes.
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Chapter 4

Eddy-Mean Flow Interactions in

the Kuroshio Extension and their

Relation to a Simplified Dynamical

Model

Abstract

Using new observations in the Kuroshio Extension (KE) at the downstream location
of maximum eddy kinetic energy, I address the nature of eddy-mean flow interactions
in the KE jet. I describe the state of the time-mean jet and its recirculations during
the observational period, characterize the system’s eddy variability in terms of jet me-
andering, ring interaction, wave activity, and jet instability, and examine indicators
of the nature of the eddy-mean flow interactions. The analysis provides the first clear
evidence of a northern recirculation gyre in the KE, as well as support for the hypoth-
esis that the recirculations are, at least partially, eddy-driven. The observations also
suggest that the KE jet is potentially both barotropically and baroclinically unstable
at the location observed, making jet instability a likely source of at least some of the
eddy variability of the system.

I also use the observations to evaluate the relevance of the idealized western boundary
current jet model study to the oceanic system by considering both the model set-up
and its results relative to observations of the KE jet. I show that the idealized model’s
simplified vertical structure and source of eddy variability (the mixed instability of
the inflowing jet), as well as nonlinear dynamics, are appropriate to the observed
system. Further, I demonstrate various consistencies between model predictions and
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observational results in the downstream development of both time-mean and eddy
properties. These consistencies suggest of the idealized model’s potential success in
capturing aspects of the essential physics of the KE jet system.

4.1 Introduction

4.1.1 Motivation

Beginning in 2004, a major, multi-institutional, international collaborative investiga-

tion of the Kuroshio Extension (KE) was undertaken. Known as KESS, the Kuroshio

Extension System Study was an ambitious deployment of modern instruments with

the goals of understanding the processes governing the intense meandering and eddy

variability of the KE jet, and the nature of the interaction of the jet and its recircu-

lation gyres. Making use of new advances in instrumentation, KESS provided new

observations of the KE jet, its eddy variability and their interactions that are un-

precedented in both their spatial and temporal resolution. As such, KESS affords us

a unique and exciting opportunity to improve our understanding of the nature and

importance of eddy-mean flow interactions in western boundary current (WBC) jet

systems from an observational perspective. It is this opportunity that motivates the

study presented here.

In addition to promising new insights from observations alone, the KESS data set

provides a unique and exciting opportunity to test theoretical ideas of how eddy-mean

flow interactions in unstable jets apply to the actual ocean. The theoretical study of

eddy-mean flow interactions in an idealized WBC jet, reported on in Chapter 3, was

motivated by the KESS observational program, and now in turn, motivates this study

of eddy-mean flow interactions in the KE jet using KESS observations. Analysis of

observational data is essential to understanding the relevance of the theoretical model

to the dynamics of the real oceanic system. Making this reality check is also a major

motivation of the work presented here.

Finally, this new look at the KE jet, its variability and eddy-mean flow interactions

is important because eddy variability likely plays a critical role in WBC jet dynamics.
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WBC jets like the KE are of fundamental importance to the dynamics of basin-

scale circulations as they are regions of enhanced exchange of potential vorticity

(PV) and energy, and because they act to restore global balances between forcing

and dissipation. They play important roles in subtropical-subpolar exchange, the

formation of mode water, and the steering and intensification of extra-tropical storms.

Of particular relevance to eddy-mean flow interactions given the potential role of

eddies in their forcing, is the importance of their recirculation gyres. Recirculations

which flank WBC jets can significantly alter the structure and enhance the transport

of the jet, and act as sites for deep wintertime convection, mode water formation,

and reservoirs of heat and PV. Eddy variability in these systems is significant, and

we expect eddy-eddy and eddy-mean flow interactions to play an important role in

system dynamics. In particular, we expect eddies and their nonlinear interactions

to impact mean jet-gyre strength, structure and stability (Thompson, 1977, 1978;

Dewar and Bane, 1989; Hogg, 1992; Watts et al., 1995), play a role in driving the

jet’s flanking recirculations (Richardson, 1985; Schmitz and McCartney, 1993; Hogg,

1983, 1985, 1993), couple strong upper ocean motions to deep abyssal motions (Shay

et al., 1995; Howden, 2000; Watts et al., 2001), and potentially act as a source of

the low frequency variability observed in these jet-gyre systems (Spall, 1996; Qui,

2000). Improving our understanding of the nature and importance of eddy-mean flow

interactions in WBC jet systems hence is of fundamental importance to our overall

understanding of WBC jet dynamics, and in turn our overall understanding of the

large-scale circulation.

4.1.2 Past Work

Over the past few decades, a number of substantial programs focused on different

parts of WBCs have been undertaken, with a bias towards the Atlantic Ocean. These

include studies of the Brazil-Malvinas Confluence, the Western tropical Atlantic Stud-

ies, the Subtropical Atlantic Climate Study, and the North Atlantic Current Study.

Most closely related to the goals here and, arguably the most ambitious, was the

Synoptic Ocean Predication Experiment (SYNOP) in the late 1980s (see Hogg, 1992;
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Watts et al., 1995; Johns et al., 1995; Shay et al., 1995; Bower and Hogg, 1996). This

study focused on the Gulf Stream (GS) Extension region. The existence of strong

northern and southern recirculations gyres flanking the GS was previously known

(Worthington, 1976; Richardson, 1985). SYNOP however resulted in important new

insights into the workings of the meandering jet and its relationship to the surround-

ing ocean, and this resulted in a fundamental change in the scientific community’s

understanding of the interconnected system of currents, recirculations and eddies.

In particular, the association of strong velocities under the GS with an organized

deep flow that was dynamically connected to the upper baroclinic jet (Savidge and

Bane, 1999a,b; Howden, 2000), and the importance of eddy-mean flow interactions

whereby the GS generates eddies which in turn act back on the mean flow (Cronin,

1996) was first recognized. This shallow-deep coupling is thought to happen through

baroclinic instability, a belief supported by a number of other studies (Dewar and

Bane, 1989; Rossby, 1987; Cronin and Watts, 1996), however this is not a universal

conclusion (e.g. Hall, 1986), and numerical models generally implicate the barotropic

energy conversion process (e.g. Haidvogel and Holland, 1978; Holland and Haidvogel,

1980). Outside of SYNOP, diagnostic studies of the relation between the mean or

low frequency state and eddies using direct observations have been rare, although

some attempts have been made with limited data on regional scales. For example,

Thompson (1977, 1978) attempted to infer crude properties of the eddy-mean flow

interactions in the vicinity of the GS through the analysis of current meter data by

attempting to evaluate the sign of the eddy momentum flux gradients. His observa-

tions suggested that eddies may be playing a role in the net driving of the mean jet by

transferring momentum between the jet and the nearby inshore counter-current via

cross-stream momentum flux convergences and divergences, making “eddy-driving” a

possible source for the excess momentum needed to drive the mass transport in the

GS above the expected Sverdrup value.

Relative to the GS, the KE jet and its eddy-mean flow interactions are much

less explored, at least by the western scientific community. With respect to the KE

jet-gyre structure, prior to KESS, the existence of a tight recirculation gyre to the
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south of the jet with structure and transport analogous to the GS was recognized.

By some accounts, a recirculation gyre also exists to the north of the KE jet, but its

existence had not been decisively demonstrated: it is absent from the regional mean

circulation derived from hydrography (Teague et al., 1990) and a careful compilation

of deep current meter records by Owens and Warren (2001). With respect to the

KE’s eddy variability, the region is recognized to be one of especially high eddy

kinetic energy (EKE) (e.g. Wyrtki et al., 1976; Qui, 2002), and although the KE

represents a dynamically simpler regime than the GS (e.g. with no deep WBC and

flatter topography), there were indications of the existence of an energetic abyssal

eddy field (Schmitz, 1987, 1988; Hallock and Teague, 1996). Finally, with respect to

jet stability, in contrast to the GS, Hall (1989, 1991) found that in the KE, baroclinic

processes dominate with significant mean-to-eddy potential eddy conversion, although

her analysis was restricted by the availability of just one mooring (at 35◦N, 152S◦E).

Both she and Qui (1995) and Adamec (1998), who worked with sea surface height

data, showed that the barotropic conversion process feeds energy from the mean flow

to eddies on the south side of the current, but in the opposite direction on the north

side.

4.1.3 Present Work Objectives

What is missing from these studies in the KE is more complete vertical and lateral

information to characterize the jet and its eddy-mean flow interactions. In addition,

open questions remain both specific to the KE jet itself (e.g. Is there a northern

recirculation gyre? What is the relative importance of barotropic vs. baroclinic in-

stability?), and also about the similarities and differences between the KE and GS

with respect to their jets, eddy variability and eddy-mean flow dynamics. Despite its

obvious similarities to the GS, the KE is fundamentally different in many ways: it

has a distinct orientation, topography, influence from thermohaline circulation, and

modes of variability. As a consequence, it may experience different instability mech-

anisms, and potentially dissimilar physics governing its variability and recirculation

gyres. Finally, a revisit of eddy-mean flow interactions in WBC jets is timely as to-
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day’s fundamentally improved remote-sensing, in situ observational, and computing

abilities relative to the days of SYNOP enable us to address these questions in a com-

prehensive manner. It is these needs, questions and opportunities that guide KESS

generally and the present study in particular.

The specific goals of the work presented here are to use the KESS data set to learn

more about the nature and importance of eddy-mean flow interactions in the KE. As

mentioned above, there is opportunity to do this both through an analysis of the

KESS observations alone, and in using them to test the relevance of the theoretical

model and its findings I have studied to the dynamics of the real oceanic system. As

such, my study is guided by two main objectives:

1. To characterize the state of the mean KE jet and its recirculation gyre(s), its

eddy variability, and the nature of their interactions within the KESS time

frame at the KESS location.

2. To evaluate the relevance of the idealized WBC jet model to the KE system

both in terms of the model design and its findings.

To achieve the latter, I require a broader view of the KE jet system, and this will

require me to draw on other observations in the KE region. In this way, I hope to

address not only a detailed look into KE eddy-mean flow interactions provided by

the KESS window, but also at the nature of eddy-mean flow interactions in the KE

region more generally.

4.1.4 Chapter Outline

This chapter is organized as follows: In Section 4.2, I describe the observational

data. I describe the KESS program generally, the KESS data I use in this study in

particular, the other sources of observational data in the KE region that I employ, and

the data processing methods. In Sections 4.3 and 4.4 I present the results. Section

4.3 focuses on the first goal, that of characterizing eddy-mean flow interactions in the

KE jet based on observations of the KESS mooring array. I characterize the structure
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of the mean jet-gyre system within the KESS time frame in both geographical and

stream-coordinates, discuss the source and nature of the eddy variability observed

during KESS in terms of jet meandering, ring interactions, wave radiation, and jet

instability, and finally comment on what the observations imply for eddy-mean flow

interactions at this location. Section 4.4 relates to the second goal, that of testing the

relevance of the theoretical study of an idealized WBC jet to the KE system. Here I

discuss how the observations relate to the model’s simplified configuration in terms

of vertical structure, nonlinearity, and forcing, as well as give examples of various

consistencies between model predictions and observational results in the downstream

development of mean and eddy properties. The latter is critical in giving confidence

in the idealized model’s potential ability to teach us about aspects of the essential

physics of the oceanic system. Finally, in Section 4.5, I summarize and discuss the

results, as well as providing ideas for future work.

4.2 Data and Processing

4.2.1 The Kuroshio Extension System Study

As described in the introduction, KESS was a large observational program investigat-

ing the KE with the goal of understanding the processes governing the variability of

the KE jet and the interaction between the jet and its recirculation gyres. It deployed

a four-dimensional, mesoscale-resolving in situ array located at the downstream lo-

cation of the maximum in EKE of the KE (Figure 4-1 upper left). The observational

period spanned a total of 704 days, from spring 2004 until spring 2006.

Instrumentation (Figure 4-1) was centered around a mooring array consisting of

seven full depth moorings deployed along a north-south tending line coincident with

a Jason satellite altimeter repeat track. This line extended across the axis of the KE

jet, spanning its north-south excursions (Figure 4-1 upper right) and extending into

the recirculation gyres. The moorings measured the mean surface velocity field with

upward looking acoustic Doppler current profilers (ADCPs) at 250 m depth, velocity,
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Figure 4-1: A graphical description of the Kuroshio Extension System Study (KESS).
The location of the KESS mooring array (black diamonds) relative to the time-mean
EKE distribution inm2s−2 (color) and the time-mean jet axis position (black contours
indicating the time-mean 1.9, 2.0 and 2.1 m SSH contours) computed from the 14-
year satellite altimetry record (upper left). A description of the jet meandering and
ring interaction during the KESS period (spring 2004 - spring 2006) as indicated by
a superposition of weekly snapshots of the 2.1 m SSH contour (used as a proxy for
the jet’s position) as measured by altimetry (upper right). A schematic of the KESS
instrumentation (bottom) which included a line of seven full depth moorings, an array
of inverted echo sounders, floats (not shown), shipboard surveys and satellite remote
sensing. A schematic of the mooring instrumentation (bottom left) displays how the
moorings measured fluctuations in the density and velocity fields through most of the
water column. (Illustration credit: Paul Oberlander and Luc Rainville)
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temperature and salinity between 250 m and 1500 m with McLane Moored Profilers

(MMPs) that took a profile once every fifteen hours, velocity at 1500 m depth with

vector-averaging current meters (VACMs), and finally temperature and velocity at

three additional levels beneath the thermocline (2000 m, 3500 m and 5000 m depth)

at 15 minute intervals with Aanderaa RCM-11 acoustic current meters. As such, the

moorings resolved the fluctuations in the density and velocity fields through most of

the water column for timescales from hours to seasons. They provided measurements

of the flow and temperature fields across the axis of the KE jet with sufficient duration

and resolution in the cross-jet distance to consider eddy-mean flow interactions. As

such, they will provide the primary source of data for this study.

In addition, KESS instrumentation included an array of fifty inverted echo sounders

equipped with bottom pressure gauges and current meters (CPIES) centered around

the mooring line. The CPIES array mapped the time-varying velocity and density

structure above both in the vertical and the horizontal in two dimensions. A total

of 48 profiling APEX floats were deployed on two occasions within the recirculation

gyres, providing drift velocity estimates at their parking depth of 1500 m and profiles

of temperature and salinity from 1500 m depth to the near surface every 5 days with

5 m vertical resolution. Shipboard surveys performed high resolution feature studies

on three cruises. Finally, satellite measurements of sea surface height (SSH) and sea

surface temperature provided a larger context for the array.

The KESS collaboration involves a large number of investigators using different

aspects of the data to address various questions related to mesoscale processes in

the jet-gyre system, air-sea fluxes, subtropical mode water formation, and high fre-

quency variability. The study here focuses on the state of the KE jet, the KE’s eddy

variability, and eddy-mean flow interactions using the mooring and satellite data.

Other studies using the KESS observations are reported on the KESS website at

http://www.uskess.org.
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4.2.2 Other Sources of Observational Data in the KE Region

KESS provided data with high resolution locally, but given the importance of the

downstream evolution of the jet that was found in the theoretical study discussed

in Chapter 3, it is important also to look upstream and downstream of KESS. To

do this, I exploit additional sources of observational data in the KE region. First, I

make use of in situ measurements from past programs in the region: namely from

the WESTPAC program, located downstream of KESS conducted in the early 1980s

(see Schmitz et al., 1982), and also from the KERE program, located upstream of

KESS conducted in the early 1990s (see Hallock and Teague, 1995) (Figure 4-2).

Both programs consisted of tall mooring arrays with measurements of velocity and

density both above and below the thermocline for a duration of two years. Second,

I make use of the satellite altimetry record in the region, as it provides both a more

continuous picture of downstream development, and also a much longer time series to

better characterize the time-mean and eddy statistics. The altimeter products used

were produced by Ssalto/Duacs and distributed by Aviso. The 14-year record I refer

to is from the beginning of the AVISO altimetric data set (1992) until the end of the

KESS period (spring 2006).

4.2.3 Data Processing

As described above, this study focuses on the KESS mooring array observations. To

characterize the system as a function of cross-jet distance and depth, time series of

velocity at each mooring were constructed at six depth levels. Surface geostrophic

velocity from satellite altimetry and velocity at a nominal depth of 250 m from the

ADCP record were used to characterize the upper ocean velocity structure. Velocity

at the four instrumented subthermocline depths (1500 m, 2000 m, 3500 m, and 5000

m) were used to characterize the deep ocean. Note that the MMP measurements

were not used in this study due to the low and biased data return, see Appendix D

for details.

The velocity records were corrected for mooring motion, low-pass filtered and
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Figure 4-2: The location of the KERE and WESTPAC mooring arrays relative to the
KESS array and the mean EKE distribution in the KE region. Grey contours are of
the 14-year mean EKE distribution derived from the satellite altimetry record. The
black contour is the 14-year mean position of the 2.1 SSH contour, which is used as
a proxy for the jet axis.
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subsampled at one day. Gaps were filled either by the record mean in the case of the

ADCP measurements, or by a gap filling procedure that exploited records at other

subthermocline depths and the observed structure of the flow beneath the thermocline

in the case of the deep ocean records. Again see Appendix D for further details.

In addition to a geographical picture provided by the mooring observations, it was

useful to compute a stream-coordinate frame for the jet. This frame was defined by a

time-varying origin and downstream and cross-stream axes orientation based on the

instantaneous position and orientation of the jet axis in the vicinity of the array. This

frame gave important information on the nature of the jet meandering at the array

location, and also permitted the calculation of a stream-coordinate mean picture of

jet structure that consists of time-mean downstream velocity as a function of distance

from the jet axis, essentially a picture of the time-mean jet structure with the effects

of jet meandering removed. The stream-coordinate calculation was done using three

different independent proxies for the jet axis location using altimetry, CPIES and

temperature information. See Appendix D for a full description.

Finally, as evidenced from altimetry measurements (Figure 4-1 upper right), there

were several times during the KESS observational period when warm and cold-core

rings were interacting with the mooring array. It was useful to identify these times,

and this was achieved by defining a temperature criterion at 250 m depth to identify

the presence of warm or cold core rings on the flanks of the jet. Times when rings

were interacting with the array were removed from the record for some of the analysis.

See Appendix D for more details.

4.3 Results: Eddy-Mean Flow Interactions in KESS

4.3.1 Mean Jet Structure

As a first step in characterizing eddy-mean flow interactions during KESS, I charac-

terize the mean state. Here I describe the time-mean jet structure using the mean

computed over the 704 day KESS period (15 June 2004 until 19 May 2006).
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(a) Geographical description

Computing the mean value of the velocity time series measured by the KESS

mooring array allows characterization of the time-mean KE jet structure as a function

of latitude and depth at the KESS location. The picture revealed is of a strong,

surface-intensified jet oriented to the southeast (Figure 4-3). Satellite altimetry

measurements indicate a mean (geostrophic) jet at the surface at this location with a

strength of ∼ 0.6 m/s and a width of ∼ 2.3◦ latitude (∼ 200 km)1. KESS subsurface

measurements in the upper ocean indicate a sharp decay in jet strength with depth

(the time-mean peak velocity is reduced to 0.3 m/s at 250 m depth and 0.02 m/s at

1500 m depth) (Figure 4-4), as well as a shift of the jet axis to the south, consistent

with thermal wind balance. In contrast, in the deep ocean, the jet strength and

structure show very little depth dependence (Figure 4-4 upper right, Figure 4-5).

Here is observed weakly depth-dependent westward flanking flows to both the north

and south of the time-mean jet with velocities of magnitudes comparable to that of

the deep jet itself, making these recirculations a significant feature of the time-mean

deep jet structure. In contrast, flanking flows are weak and disorganized in the upper

ocean (there exists no clear evidence of westward recirculations), with weak westward

flows observed to the north of the jet but not to the south (Figure 4-6).

(b) Stream-coordinate description

The stream-coordinate view of mean jet structure (as described in Section 4.2.3)

is summarized in Figures 4-7 – 4-10. Like in the geographical mean picture, the

stream-coordinate mean jet is a strong, sharp, surface-intensified jet that extends

throughout the water column oriented to the southeast (Figure 4-7). As one would

expect, it is stronger (the time-mean peak surface velocity is ∼ 1.2 m/s) and sharper

(the time-mean surface width is ∼ 180 km) than its geographical mean counterpart

(Figure 4-8). The mean subsurface upper ocean jet is also significantly stronger (with

a strength of 0.9 m/s at 250 m depth and ∼ 0.1 m/s at 1500 m depth), and its deep

subthermocline structure is more vertically aligned with a baroclinic structure that

1Note that altimetry gives a smoothed description of the jet because of the ∼ 300 km length scale
used in the objective mapping.
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Figure 4-3: The KESS period mean velocity vectors at five vertical levels as measured
by the KESS mooring array. Note that upper ocean (250 m depth) vectors are scaled
differently than abyssal ocean (1500 m - 5000 m depth) vectors to permit visualization
on a single plot, and hence the difference between the magnitude of upper ocean
velocities relative to abyssal ocean velocities is greater than it appears. Gray contours
are of the time-mean SSH from satellite altimetry measurements during the KESS
period showing the 1.9 - 2.3 m contours in 0.1 m contour intervals. The heavy line is
the time-mean 2.1 SSH contour used as proxy for the jet axis position.
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Figure 4-4: Cross-jet profiles of time-mean zonal velocity at five vertical levels as
measured by the KESS mooring array. The KESS period mean surface geostrophic
zonal velocity, computed from the gradients of the altimetric SSH field at the mooring
locations, is also included. Error bars indicate the standard error in the mean using
a number of degrees of freedom given by the number of decorrelation time scales
contained in the record length.

165



Figure 4-5: Vertical profiles of the KESS period time-mean zonal velocity measured
by three different moorings: near the time-mean jet axis (K4) (black) and flanking the
time-mean jet to the north (K3) (gray) and south (K6) (light gray). SSH altimetry at
the KESS mooring locations is used to define the surface velocity. Error bars indicate
the standard error in the mean as described in Figure 4-4.
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Figure 4-6: A contour plot of time-mean zonal velocity (in m/s) as a function of lat-
itude and depth summarizing the geographical description of the KESS period time-
mean jet structure. Solid contours indicate positive (eastward) values and dashed
contours indicate negative (westward) values. xs denote locations where data is avail-
able: an array of seven moorings each with measurements at six levels in the vertical
(including SSH altimetry at the surface).
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Figure 4-7: The cross-jet distribution of KESS period mean velocity vectors from the
stream-coordinate description of time-mean jet structure. As in Figure 4-3, mean
velocity vectors as measured by the KESS mooring array are shown at five levels in
the vertical, but now as a function of distance from the jet axis. An estimate of
the surface geostrophic velocity from satellite altimetry is also included. Note upper
ocean (surface and 250 m depth) vectors are scaled differently from abyssal ocean
vectors, which results in the difference in the magnitude of the vectors in the upper
ocean vs. the deep ocean appearing less pronounced.

is more pronounced (Figure 4-8). As such, in this view, the stream-coordinate mean

jet is much more strongly sheared in both the horizontal and vertical than suggested

by the geographical mean picture. This has important implications for its stability

properties, see Section 4.3.2d for a more detailed discussion.

The stream-coordinate view of mean jet structure is important to the question of

whether time-mean recirculations exist in the KE because it shows westward flanking

flows to both the north and south of the time-mean jet in the upper ocean as well

as in the deep ocean, suggesting the existence of barotropic recirculations that exist

throughout the water column (Figure 4-9, Figure 4-10). These recirculations are

observed to be much more barotropic than the strongly baroclinic jet, with velocities

of the same order in both the upper and deep ocean. Their existence in the stream-
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Figure 4-8: Cross-jet profiles of the time-mean downstream component of velocity
at six levels in the vertical (one from altimetry and five levels from KESS mooring
measurements). Error bars indicate the standard error in the mean
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Figure 4-9: Vertical profiles of KESS period time-mean downstream velocity at the
jet axis (0 km) (black), and flanking the jet to the north (125 km from the jet axis)
(light gray) and south (200 km from the jet axis) (gray). Again error bars indicate
the standard error in the mean.

coordinate frame, suggests that their absence in the upper ocean in the geographical

mean picture is a result of the meandering of the strong upper ocean jet “smearing”

out the relatively weak westward flanking flows in the time-mean calculation. Note

that prior to KESS, although the existence of a recirculation gyre to the south of

the jet had been demonstrated, the existence of a northern recirculation gyre was

in question. Hence KESS has provided the first clear observational evidence of a

northern recirculation gyre in the KE, seen here in the KESS mooring data and

observed in other KESS measurements as well. See Jayne et al. (2008) for a full

discussion.
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Figure 4-10: A contour plot of time-mean downstream velocity (in m/s) as a function
of depth and distance from the jet axis summarizing the stream-coordinate descrip-
tion of the KESS period time-mean jet structure. Solid contours indicate positive
(downstream) values while dashed contours indicate negative (upstream) values. Data
locations are indicated by xs: an array of ten 50 km wide bins of distance from the jet
axis in the horizontal, and six levels in the vertical (including velocity derived from
satellite altimetry at the surface).
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4.3.2 Eddy Variability

As the second ingredient in characterizing eddy-mean flow interactions, I consider the

nature of the eddy (i.e. temporal) variability observed during KESS. Here I charac-

terize properties of the observed eddy variability by describing it in relation to some

of its various sources: jet meandering, ring interaction, wave radiation/interaction,

and jet instability.

(a) Jet meandering

As discussed in Appendix D, the KESS data set provides various proxies for the

jet axis position, both measured in situ and sensed remotely, and these data give

information about the nature and the extent of the meandering of the jet at the

KESS location. A superposition of snapshots of the jet path during the KESS period

(Figure 4-11) illustrates that the extent of the jet’s north-south meandering at the

KESS location spans several degrees of latitude, and that during the KESS period,

the jet crossed the axis of the mooring array as far south as south of the southern-

most mooring (K7) and as far north as the K2 mooring. The time series of jet axis

position (Figure 4-12) gives quantitative information about the meandering: during

the KESS period, the jet axis location varied about is mean position with a standard

deviation on the order of 60 km and a maximum range on the order of 300 km.

Spectra (Figure 4-13) indicate enhanced energy at 50 day period and in a broader

band centered around 23 day period. This second frequency is consistent with the

timescales predicted by appropriate linear stability calculations which are on the order

of 20-30 days for the fastest growing modes. See Appendix D for details.

Comparing the geographical vs. stream-coordinate descriptions of mean velocity

and EKE distributions give indications of the effect of jet meandering on the time-

mean jet structure and its variability (Figure 4-14). The comparison of time-mean

jet structure (Figure 4-14 left) shows that jet meandering has the effect of reducing

the peak jet speed (by ∼ 50% in the upper ocean and ∼ 75% in the deep ocean)

and eliminating the westward recirculations in the upper layer in the geographical

mean. Hence (as expected) jet meandering “smears” out peak jet velocities, but it
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Figure 4-11: Weekly snapshots of the 2.1 m SSH contour measured by satellite al-
timetry (left) and daily snapshots of the thermocline depth (specifically the 350 m
depth contour of the 12◦ C isotherm) from KESS CPIES data (right), each serving as
a proxy for the jet axis position. The location of the KESS moorings are indicated.
Blue colors indicate times close to the beginning of the observational period, and red
colors indicate times near the end of the KESS period. The heavy dark line is the
KESS period mean jet axis location.
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Figure 4-12: The timeseries of jet axis location along the KESS mooring line for each
of the three proxies for jet path considered in the definition of the stream-coordinate
system. The good correspondence between the time series based on different proxies
for jet axis position gives confidence that each is a consistent measure of the jet axis
location.

also eliminates upper ocean recirculations in the time-mean picture, a consequence

presumably of occasional strong eastward velocities associated with the meandering

jet dominating over weak flanking westward flows in the computation of the time

average. Note that the differences in the geographical vs. stream-coordinate mean

structures, particularly with respect to the existence of time-mean westward recir-

culations, are much less significant in the deep ocean compared to the upper ocean,

consistent with the fact that the jet is much stronger in the upper ocean relative to

the deep. The comparison of the time-mean cross-jet EKE distributions (Figure 4-14,

right) reveal new structure in the stream-coordinate description that is hidden by the

meandering in the geographical mean picture. In particular, in the upper ocean the

stream-coordinate EKE distribution is sharply peaked at the jet axis, and has local

minimums inside the recirculations. This structure is not seen in the geographical

distribution, which is much more broadly distributed as a consequence of the jet me-

andering. It is interesting to note that in the deep ocean (Figure 4-14, lower right),

EKE levels are approximately two times larger in the geographical frame compared

to the stream-coordinate frame. This suggests that jet meandering is a much larger
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Figure 4-13: An estimate of the power spectral density computed from the time series
of jet axis position (Figure 4-12) for each of the three proxies for jet axis location.
The spectra is computed using Welch’s averaged periodogram method using a total
of three sections each with a length of 256 days. The 95% confidence interval is
indicated in the lower left. Dashed vertical lines denote a period of 50 and 23 days.
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Figure 4-14: The cross-jet distributions of time-mean zonal/downstream velocity

(left) and time-mean EKE (1
2

(

u′u′ + v′v′
)

) (right) for the geographical (black) and

stream-coordinate (gray) frames. The upper ocean structure (the average of altime-
try surface values and mooring measurements at 250 m depth) and the deep ocean
structure (the average of the four deep current meter measurements at 1500 m, 2000
m, 3500 m and 5000 m depth) are given in the upper and lower panels respectively.
Error bars on the mean velocity indicate the depth-averaged standard error in the
mean.

contributer to the eddy variability there compared to the upper ocean, where rings,

wind, and other sources of variability likely also play a significant role.

(b) Ring interactions

As described in Appendix D, the interaction of warm and cold core rings with the

KESS moorings were identified by a temperature criterion at 250 m depth. Identifi-

cation and removal of rings from the time series give us information on the nature of

ring interactions and their effects on the jet and its variability.

Using this temperature criterion, I find that rings interacted with the KESS array
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(at at least one mooring site) for a total of 187 days out of a 704 day long record

(i.e. ∼ 25% of the time). The distribution of ring interactions in time (Figure 4-15,

left) shows ring interactions are not uniformly distributed, but rather are frequent in

localized concentrations, specifically in the winter of 2005 and in the winter/spring

of 2006. To say whether elevated levels of ring activity in winter is typical, would

require examination of a longer time series, possible with the altimetry record. The

distribution of ring interactions in space (Figure 4-15, right) shows that ring interac-

tions with the array occurred at all moorings and hence to both the north and south

of the jet. The largest number of ring interactions occurred at the moorings K5 and

K6 (almost always south of the jet), where the largest and strongest rings (as seen in

the altimetry record) tend to pass.

Comparing the mean jet structure and EKE distributions computed from the full

timeseries vs. the timeseries with ring events removed (Figure 4-16) gives indication

of the effect of rings on the time-mean jet structure and its variability. The compari-

son of time-mean jet structure (Figure 4-16 left) shows the interesting result that the

effect of rings on the flanking mean jet structure is negligible. In particular, the west-

ward recirculations seen in the time-mean jet remain a feature in the mean structure

whether or not ring events are included. This is important as it implies that the ex-

istence of the time-mean recirculations is not simply a function of the time-averaging

of rings propagating westward on the flanks of the jet. In contrast, the comparison of

the EKE distributions shows a significant effect of rings on the structure of the eddy

variability on the jet flanks. Here including ring interactions increases the peak values

in EKE on the outer edges of the recirculations (± 200 km from the time-mean jet

axis) by approximately 50%. In short, ring interactions contribute significantly to the

variance structure on the flanks of the jet, but they do not have a significant effect on

the mean jet structure there, at least if it is assumed that their effect has influence

only during the times when they are present. (Rings influencing the structure of the

jet in such a way that dynamical changes result from their passage afterwards is of

course plausible and not taken into account by this test.) Most importantly, with or

without ring interactions included, the time-mean recirculations remain.
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Figure 4-15: Histograms showing the distribution of “ring events” (days when a
ring was present at a mooring location based on the temperature criterion described
in Appendix D) in time (left) and space (right). Bins are months and moorings
respectively, with “1” denoting the mooring K1 (the northern-most mooring in the
array) and “7” denoting the mooring K7 (the southern-most mooring in the array).
Note that if a ring was present at more than one mooring on a given day, it is counted
as more than one day, resulting in counts in some months that exceed the number of
days in that month.
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Figure 4-16: A comparison of the cross-jet distributions of time-mean zonal velocity
(left) and time-mean EKE (right) computed from the full timeseries (black) vs. the
timeseries with times corresponding to ring interactions with the mooring array re-
moved (gray). As in Figure 4-14, the upper ocean structure (average of surface and
250 m depth values) and the deep ocean structure (average of the four deep current
meter records ranging from 1500 m - 5000 m depth) are shown in the upper and lower
panels respectively. Error bars on the mean velocity indicate the depth-averaged stan-
dard error in the mean. Grey boxes indicate the width of the time-mean jet, inside
which rings are not identified by the criterion, and hence where no difference in the
two timeseries being compared exists.
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(c) Wave radiation and interaction

There exists the potential for waves in the system, either being radiated from

the jet, generated by jet instability, or generated remotely and interacting with the

jet-gyre system. Indeed a striking feature seen in animations of the instantaneous

velocity vectors measured by the KESS mooring array is the periodic rotation of the

velocity vectors on the flanks of the jet, suggestive of wave activity there.

Spectra of the velocity records show enhanced energy at a number of different

mesoscale frequencies that could indicate neutral wave motions or jet instability.

In general, peaks in power are seen near the 100-day period (most predominantly

in the deep ocean), the 40-day period, and in the 10-20 day period range. The

highest of these frequencies is suggestive of a jet instability timescale (see Appendix

E), but energy at lower frequencies may be associated with Rossby waves either

radiated from the jet or generated remotely. Support for the classification of the 40-

day period motions as Rossby waves is provided by Hogg (personal communication),

who demonstrates that the observed wavenumber associated with this wave activity

is consistent with the barotropic Rossby wave dispersion relation (Figure 4-18).

Finally, Hovmöller diagrams formed from the velocity timeseries show two periods

of distinct wave propagation (Figure 4-19): in the winter of 2005 and in the spring

of 2006. It is interesting to note that these times correspond to times of elevated

ring activity in the upper ocean (Figure 4-15). These propagating signals are seen

at all depths but are most distinct at the abyssal levels, likely due to the less noisy

character of the fields there which make the wave signals easier to see.

(d) Jet instability

One expects jet instability (both barotropic and baroclinic) to be a potentially

important source of eddy variability in the system. To gain some insight into the

KE jet’s stability properties at the KESS location, I look for enhanced energy at

expected jet instability timescales and consider observed velocity shears in the context

of stability criteria.

As discussed in Section 4.3.2c, spectra of the velocity records show enhanced
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Figure 4-17: Estimate of the power spectral density computed from the time series
of downstream velocity near the time-mean jet axis in the upper ocean (at 250 m
depth) (left) and in the deep ocean (average of 1500 m, 2000 m, 3500 m and 5000 m
depths) (right). As in Figure 4-13, the spectra is computed using Welch’s averaged
periodogram method using a total of 3 sections each with a length of 256 days. The
degrees of freedom in the estimate are increased by averaging the records from three
moorings near the time-mean jet axis (K3, K4 and K5), although due to the horizontal
coherence in these records, these are not strictly independent. The 95% confidence
level assuming record independence (hence it is conservative) is indicated in the upper
right. Peaks are highlighted at 42, 23 and 16 days (left) and 125, 23 and 16 days
(right) by the dashed vertical lines.
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Figure 4-18: Phase vs. latitude of the 1st EOF mode (accounting for 51% of the total
variance) at 40 day period (left). The linear variation of phase with latitude implies
a constant cross-jet wave number given by the slope. A test of the barotropic Rossby
wave dispersion relation for the observed wavenumber (right). The intersection of the
circle (representing all possible pairs of k-l wavenumbers for a barotropic Rossby wave
of 40 day period) and the line (corresponding to pairs of k-l wavenumbers consistent
with the observed cross jet wavenumber) implies the observed phase variation with
latitude is consistent with a barotropic Rossby wave. (Adapted from Hogg (personal
communication)).

182



Figure 4-19: A Hovmöller plot (contours of velocity as a function of latitude and time)
for zonal velocity at 5000 m depth as measured by the KESS mooring array. Tilted
alternating bands of positive and negative values indicate wave propagation with a
meridional phase speed given by the slope of the band (here 0.1-0.2 m/s). Periods
of distinctive wave propagation, in the winter of 2005 and in the spring of 2006, are
highlighted (boxes).

energy at a number of different mesoscale frequencies (Figure 4-17). One such fre-

quency band (that corresponding to periods on the order of 20 days) is suggestive

of the timescale of a barotropic instability of the KE jet, as predicted by an appro-

priate linear stability calculation (see Appendix E for details). Enhanced energy at

timescales consistent with those of the linear stability calculations provide support for

the hypothesis that some of the variability in the KE originates from the instability

of the KE jet.

Insight into the potential stability properties of the jet is further gained by consid-

ering the observed velocity shears in the context of necessary conditions for instability.

Here the relevant shears to consider are not those associated with the time-mean jet,

but rather the instantaneous jet structure. Hence to more accurately evaluate the

stability properties of the jet, I examine both the shears associated with the stream-

coordinate mean jet structure (to be thought of as a “mean” or typical snapshot

of instantaneous jet structure hereafter termed the synoptic mean) and extreme in-

stantaneous values in the time series. These horizontal and vertical shears and their
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associated implications for the stability properties of the jet are given in Figures 4-20

and 4-21.

One way to get an indication of the jet’s potential for barotropic and baroclinic

instability is to apply the idealized Rayleigh and Phillips model necessary conditions

for instability to the observed horizontal and vertical shears respectively. Note that

strictly one cannot isolate these instability criteria, the necessary condition for in-

stability of a flow with both horizontal and vertical shear is defined by a change of

sign of its total potential vorticity gradient. Nevertheless, there is potential heuristic

value in considering the potential for barotropic instability in the jet and for baro-

clinic instability of the vertical shear independently, as is considered in Figure 4-20.

To evaluate the magnitude of the horizontal shear in the context of its potential for

barotropic instability, I compute the cross-jet distribution of the meridional gradient

of the barotropic PV, Qy = β − Uyy. Here β is the meridional gradient of the plan-

etary vorticity and Uyy is the meridional gradient of the jet’s meridional shear Uy,

which approximates the jet’s relative vorticity. The Rayleigh necessary condition for

barotropic instability requires this quantity to change sign in the horizontal, which,

as is shown, is satisfied in both the synoptic mean and extreme snapshot, it having

negative values on the jet flanks. To evaluate the magnitude of the vertical shear

in the context of its potential for baroclinic instability, I approximate the vertical

structure of the system as consisting of two layers, and consider the vertical shear be-

tween them, ∆U = U1 −U2, relative to the critical value given by the Phillips model,

∆Ucritical = β

F2

2. For layer velocities I take the upper ocean mean (the average of

surface and 250 m depth values) and the deep ocean mean (the average of 1500 m,

2000 m, 3500 m and 5000 m depth values) of the peak jet velocity at the jet axis, but

note that this is an approximation, the stability criterion is derived for layer veloci-

ties that are independent of latitude. Here again the observed vertical shears (∆U =

2Here U is the zonal velocity, β is the non-dimensional β parameter, β = βdimL2

U
, with L and U

being typical length and velocity scales, and F2 is the lower layer Froude number, F2 =
f2

o

g′H2

, where

f0 is the Coriolis parameter, g′ is reduced gravity, g′ = g ρ1−ρ2

ρ0

(g is the gravitational acceleration

and ρ1, ρ2, ρ0 are the density in the upper and lower layers and the reference density respectively),
and H2 is the lower layer depth.
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0.82 m/s (synoptic mean) and ∆U = 1.02 m/s (extreme snapshot)) both exceed the

critical value (∆Ucritical ∼ 0.2 m/s taking β = 0.05 and F2 = 0.25) 3. Taken together

with the Rayleigh condition test, it suggests that the KE is potentially subject to a

mixed instability at this location.

A similar conclusion about the jet’s stability properties is reached taking a different

tactic, that of considering the stability properties of the KE jet by making a two-layer

approximation and applying the two-layer model necessary condition for instability

(Pedlosky, 1963). The barotropic structure of the KE system below the thermocline

suggests that making a two-layer approximation to evaluate its dynamics may be

appropriate. Making this approximation, one can then evaluate the system’s stability

properties by examining the layered version of the meridional PV gradients (and

whether a change of sign is observed in either the horizontal or the vertical). This is

explored in Figure 4-21. Here again both the synoptic mean and extreme snapshot

show that the layered versions of the vorticity gradient change sign in the vertical

at the jet axis, again confirming that the observed shears are large enough to satisfy

the necessary condition for instability. Note that this is consistent with the results

of Howe (2008), who determined the PV gradient associated with the mean stream-

coordinate structure of the KE from the CPIES data for a subsection of the KESS

period, and found it to change sign in both the horizontal and the vertical.

In short, both the synoptic mean and instantaneous snapshots of the horizontal

and vertical shears observed during KESS indicate that shears can far exceed the crit-

ical values for both barotropic and baroclinic instability based on idealized Rayleigh

and Phillips model criteria, and for instability based on the meridional gradients of

approximations to the layered PV gradients. This combined with the observation of

enhanced energy at timescales consistent with those predicted by appropriate linear

stability calculations, suggest that, even as far downstream as the KESS array lo-

cation, the KE jet is potentially subject to a mixed instability mechanism that is a

likely source of some of its eddy variability.

3To compute appropriate non-dimensional numbers, I take U to be 1 m/s and L to be 50 km as
typical scales of the horizontal jet structure. F2 assumes a thermocline depth of 750 m in a 5000 m
depth ocean.
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Figure 4-20: Synoptic mean (gray) and an extreme snapshot (black) of the horizontal
jet structure at 250 m depth (upper left) and the vertical jet structure at the jet axis
(upper right) to illustrate typical and extreme velocity shears observed during KESS.
The gray shading in the synoptic mean is the mean ± one standard deviation. Map
inserts are snapshots of the jet structure (contours of SSH from altimetry in the range
of 1.9 to 2.3 m with a 0.1 m contour interval) corresponding to the time of the extreme
snapshot. The implications of these shear magnitudes on the barotropic (lower left)
and baroclinic (lower right) stability properties of the jet based on Rayleigh and
Phillips model criteria. See the text for a discussion.
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Figure 4-21: An approximate “upper layer” (black) and “lower layer” (gray) jet profile
(left) formed by the velocity at 250 m depth and an average of the velocities at the
abyssal depths respectively as measured by the KESS mooring array for the synoptic
mean (top) and an extreme snapshot (bottom). Again shading in the synoptic mean
indicates the mean ± one standard deviation. The corresponding layered versions of
the meridional PV gradient (q1y = −U1yy + β + f2

N2D2

1

(U1 − U2) and q2y = −U2yy +

β + f2

N2D2

2

(U2− U1)) using the above jet profiles and layer depths of 800 and 4000 m

for D1 and D2 respectively (right). Here N is the buoyancy frequency, taken to be
0.005 1

s
. All other symbols have been defined previously in the text.
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4.3.3 Eddy-Mean Flow Interactions

As the final ingredient, I attempt to gain some insight into how the mean flow and

eddy variability interact, with particular interest in evaluating the eddy effect on the

mean. Even with the relatively high spatial and temporal resolution of the KESS

array, evaluating eddy forcing terms, which require computing a large number of spa-

tial derivatives of the variability fields, is difficult. Although not the complete story,

I make do with evaluating the cross-jet distributions of Reynolds stresses observed

by the mooring array, and consider their implications for eddy forcing and various

eddy-mean flow interaction scenarios.

(a) Eddy effect on the time-mean jet as diagnosed by ∂
∂y

u′v′:

To consider the eddy effect on the time-mean jet, I evaluate the cross-jet distribu-

tion of the time-mean Reynolds stress u′v′ (Figure 4-22). The meridional gradient of

this quantity has implications for the effective “eddy force” on the time-mean flow,

which follows from the Reynolds decomposition of the time-mean zonal momentum

equation in which the effect of the eddies appears as a flux divergence of zonal mo-

mentum, ∂
∂x
u′u′+ ∂

∂y
u′v′. Here I can evaluate only the second term in this eddy forcing

quantity. The argument is often made that along-jet variations are small relative to

cross-jet variations making terms involving zonal gradients negligible relative to those

involving meridional gradients, however the validity of this assumption in a WBC jet

that is evolving in strength and structure downstream should be questioned4. In the

KESS mooring array measurements, a similar pattern of u′v′ across the jet in both

the upper and deep ocean is seen, with ∂
∂y
u′v′ > 0 (implying a westward effective eddy

force if one neglects the zonal gradient contribution) on the jet flanks and ∂
∂y
u′v′ < 0

(implying an eastward effective eddy force) at the jet axis (Figure 4-22). This is

in the sense to accelerate the jet at its axis and accelerate the time-mean westward

recirculations on the jet flanks, consistent with the hypothesis that the recirculations

are, at least partially, eddy-driven.

Note that this pattern of u′v′ is not consistent with the scenario of a barotropically

4The idealized WBC model results discussed in Chapter 3 suggest that ∂
∂x

u′u′ and ∂
∂y

u′v′ make
roughly equal contributions to the eddy momentum flux divergence.
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Figure 4-22: The cross-jet distribution of the time-mean covariance u′v′ as measured
by the KESS mooring array (left) for the upper ocean (average of the surface and
250 m depth values) (top) and the deep ocean (average of values at 1500 m, 2000
m, 3500 m and 5000 m depths) (bottom). Dotted lines denote boundaries between
regions where the meridional gradient, ∂

∂y
u′v′, and the associated effective eddy force

derived from it, changes sign. A schematic illustrating the sense of the effective eddy
force (denoted by the black arrows) derived from this u′v′ pattern (right).
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Figure 4-23: The cross-jet distribution of u′v′ observed in the deep ocean by the
KESS mooring array (left) compared to that of two idealized models: a localized
wave radiator as discussed in Chapter 2 (here the analytical solution for Rossby wave
radiation from a point source) (middle), and the downstream development of an
idealized WBC jet as discussed in Chapter 3 (right). Grey shading denotes the width
of the time-mean jet where applicable.

unstable jet, in which eddies flux momentum away from the jet and act to reduce

its large-scale horizontal shear. Instead, this pattern mirrors that of a localized wave

radiator, which as discussed in Chapter 2, results from energy radiation from a local-

ized forcing. It is also consistent, as discussed in Chapter 3, with the “wave radiator”

regime in the downstream development of an idealized WBC jet, which in the model

is found downstream of mean jet stabilization (Figure 4-23). Important to an eddy-

mean flow interaction perspective, as mentioned above, this is a pattern associated

with eddy-driving of the time-mean recirculations.

In short, the cross-jet u′v′ pattern observed supports the hypothesis that at the

KESS location, eddies act in the sense to drive the time-mean recirculations. This

pattern is consistent with a localized wave radiator model, which has been found to

exist in the downstream development of an idealized WBC jet downstream of mean

jet stabilization. The location of the KESS array near the downstream location of
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maximum EKE (which in the idealized WBC model occurs close to the downstream

location of mean jet stabilization) makes the idea that the KESS array belongs to the

“wave radiator” regime of the KE jet plausible.

(b) Plausible eddy-mean flow interaction scenarios

I next consider the cross-jet distributions of all of the time-mean Reynolds stresses

u′u′, u′v′ and v′v′ as well as the time-mean EKE structure observed at the KESS moor-

ing array, and compare them to those of various idealized models potentially relevant

to the KE jet system. In this way, by looking for consistencies and discrepancies in

the patterns, I hope to determine plausible eddy-mean flow interaction scenarios for

the KE jet at this location that are at least consistent with the observed Reynolds

stress distributions. A comparison of the observed distributions and those of select

idealized models is summarized in Figure 4-24. Idealized models include (from sim-

plest to most complex) (1) a simple meandering jet (a basic flow cosine jet with north

and south walls in phase (the “sinuous mode”) meandering past a line of fixed moor-

ings) (2) waves radiated from the “rigid corrugation model” (Hogg, 1994) (the neutral

Rossby wave field forced by a zonally oriented propagating boundary with sinusoidal

corrugations) and (3) a barotropically unstable jet (Kamenkovich and Pedlosky, 1996)

(a basic state jet plus the perturbation field that arises from the linear stability of a

steady, barotropically unstable jet profile, see Appendix E for details).

The comparison shows that it is challenging to differentiate between different eddy-

mean flow interaction scenarios because features of the Reynolds stress distributions

of the various idealized models are either not unique or require fine cross jet resolution

to discern structure inside the width of the time-mean jet. Nevertheless, some general

comments can be made:

• the single peaked structure of u′u′ and double peaked structure of v′v′ observed

in the upper ocean is consistent with the barotropically unstable jet model

• the double peaked structure of u′u′ and v′v′ observed in the deep ocean is

consistent with the rigid corrugation model (waves radiated from a meandering

jet)
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• the observed non-zero u′v′ distribution indicates a scenario more complex than

simply a meandering jet or the waves radiated from it. Jet instability or Rossby

wave radiation from a localized source are consistent with the observation of a

non-zero u′v′ correlation

In short, although the comparison of the observed cross-jet Reynolds stress distri-

butions with those of idealized models of eddy-mean flow interaction scenarios does

not offer conclusive results, it is suggestive of a scenario of a barotropically unstable

jet in the upper ocean and wave radiation from the deep meandering jet. This seems

plausible given the much weaker shears at deep levels relative to the upper ocean.

4.4 Results: Relation to a Simplified Dynamical

Model

A second goal of the observational analysis was to test the relevance of the idealized

studies, particularly of the WBC jet in Chapter 3, to the oceanic system. GS and KE

observations were considered in the parameter choice of that theoretical study. Here

I connect the theoretical study to observational results more directly, evaluating the

relevance of its idealized set-up and its theoretical results to the observed system.

4.4.1 Relevance of Model Design

The theoretical model of Chapter 3 is, by design, idealized in many respects. For

example, it has highly simplified vertical structure and the source of its eddy variabil-

ity is restricted to the intrinsic variability of the unstable jet. Despite its simplicity

however, there are several indications in the analysis of the KESS observations, as

well as other observations in the KE region, that suggest both that some of the sim-

plifications that the model employs and some aspects of the physics that it retains in

this idealized configuration are appropriate to the KE jet. Three such examples are

discussed here.
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Figure 4-24: The cross-jet distributions of u′u′ (2nd row), u′v′ (3rd row), v′v′ (4th

row) and EKE = 1
2

(

u′u′ + v′v′
)

(5th row) observed at the KESS mooring array (1st

column) compared to those of various idealized models: 1. a meandering jet (2nd

column) 2. the Rossby wave field generated by a meandering jet (3rd column) and
3. a barotropically unstable jet (4th column). The KESS observations are shown for
the upper ocean (at 250 m depth) in black scaled by the left-hand axes, and the deep
ocean (averaged over 1500 m, 2000 m, 3500 m and 5000 m depth) in gray scaled by
the right-hand axes. Velocity fields were band-passed filtered in the mesoscale range
(periods of 10 - 100 days) before the variances and covariances were computed to
clarify the cross-jet variations. The gray shading indicates the width of the time-
mean jet in all columns.
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(a) Vertical structure

First, KESS observations suggest that a dynamical model of the KE system with

simplified vertical structure may suffice. KESS mooring observations indicate that,

in general, the velocity structure at the KESS location has only a very weak depth

dependence. This is especially true flanking the jet and below the thermocline, where

motions tend to be in phase with very little amplitude variation with depth. An

example is illustrated in Figure 4-25, which displays the full water column time

series of zonal velocity as measured by the K2 mooring, situated north of the time-

mean jet. Here it is seen that the variations in velocity extend throughout the water

column. Motions in the deep ocean (below ∼ 1500 m) especially appear essentially

depth-independent, showing amplitude variation with depth only for the very largest

events in the record.

If one evaluates the vertical coherence between velocity at various depths, one finds

that the velocities at all depths are significantly coherent for a range of mesoscale fre-

quencies (Figure 4-26). Quantifying the vertical coherence between velocity in the

upper ocean (above the thermocline) and deep ocean (below the thermocline), for

example between 250 m and 5000 m depth (Figure 4-26 top), shows that at this

particular mooring, the records are significantly coherent in the frequency range cor-

responding to periods between approximately 20 and 60 days. In contrast, quantifying

the vertical coherence between velocity at different depths below the thermocline, for

example between 1500 m and 5000 m depth (Figure 4-26 bottom), shows that the

records are significantly coherent for a much larger frequency range, here for all pe-

riods greater than about 5 days. The zero phase relationship between velocity at

1500 m and 5000 m depth indicates motions are in phase below the thermocline. The

results presented use the velocity records from the mooring K4, but they are typical

of all moorings. They are also consistent with the observations by Schmitz (1984) in

the KE at 152◦E, which showed that the normalized kinetic energy frequency distri-

butions were independent of depth as a good first approximation, and that the lowest

frequencies were strongly vertically coherent from 350 to 6000 m depths. All of these

observations suggest it may be appropriate to at least treat the system below the
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Figure 4-25: A sample full water column time series of zonal velocity measured by
the mooring K2, situated north of the time-mean jet. It illustrates the vertical co-
herence of the velocity field that is typical at the KESS location, especially below
the thermocline (lower panel), where the variations in velocity are in phase and only
weakly depth-dependent in their amplitude.
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Figure 4-26: Vertical coherence amplitude (left) and phase (right) as a function of
frequency in the zonal velocity between the upper ocean and deep ocean (250 m depth
and 5000 depth) (top) and below the thermocline (1500 m depth and 5000 m depth)
(bottom). Here velocity records are from the mooring K4, but results are typical of all
moorings. In each, the level of 95% significance is indicated by the dashed horizontal
line, and the range of frequencies for which the records are significantly coherent are
shaded gray.

thermocline as a single dynamical layer.

(b) Degree of nonlinearity

Second, there are several indications that the system is very nonlinear, and hence

a dynamical model with full nonlinearity is essential. Time series of velocity measured

by the KESS moorings show a high degree of variability, with perturbation velocities,

u′ where u′ = u−u (u is the instantaneous velocity and u is the time-mean velocity),

typically on the order of 1 m/s in the upper ocean and 0.1 m/s in the deep ocean, often

exceeding the mean value, u, typically on the order of 0.1 m/s in the upper ocean

and 0.01 m/s in the deep ocean, by an order of magnitude. Standard deviations of
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Figure 4-27: A sample time series of velocity measured by the KESS mooring array
(here zonal velocity at 1500 m depth at the mooring K3, i.e. north of the time-
mean jet) to illustrate the high degree of nonlinearity observed in the velocity fields
during KESS. The mean (0.18 m/s) is indicated by the thick black line and the gray
shading indicates the mean ± one standard deviation (0.35 m/s). The maximum
velocity is 1.40 m/s which corresponding to a maximum perturbation velocity of 1.22
m/s. The instantaneous velocity exceeds the mean value ± the standard deviation
approximately 30% of the time.

these time series, a measure of the average or characteristic perturbation velocity,

are also large, and typically comparable to the magnitude of the mean. An example

is given in Figure 4-27, which illustrates a degree of variability that is typical. In

this particular time series (zonal velocity at 1500 m depth at the K3 mooring just

north of the time-mean jet), the mean value is 0.18 m/s, the standard deviation is

0.35 m/s, the maximum excursion from the mean is 1.22 m/s, and the instantaneous

velocity exceeds the mean value ± the standard deviation approximately 30% of the

time. These frequent large perturbation velocities suggest strongly nonlinear system

dynamics at play.

Meandering of the jet past the fixed moorings is a very strong contributer to

variability observed at nearly all the moorings, so to isolate meandering effects from

other sources of nonlinearity intrinsic to the jet, I consider also measures of variability

and nonlinearity in the stream-coordinate frame, which effectively removes the effects

of jet meandering. A summary of the mean, standard deviation and maximum values

at each instrumented depth both inside the jet (within ± 25 km of jet axis) and inside
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the recirculation gyres (at 125 km and 200 km from the jet axis for the northern and

southern recirculation gyres respectively) is given in Table 4.1. The statistics indicate

that except inside the time-mean jet in the upper ocean (where the strong mean jet is

located), standard deviations are either comparable to or exceed the mean value, by

up to an order of magnitude in some cases. Maximum values also tend to be an order

of magnitude larger than the mean value, making the magnitude of the perturbation

velocities large relative to the magnitude of the mean flow. This is especially true

below the thermocline and inside the recirculation gyres. A high degree of variability

in the stream coordinate frame indicates that there is also significant variability and

nonlinearity intrinsic to the jet itself.

depth
0 m 250 m 1500 m 2000 m 3500 m 5000 m

mean 0.95 0.76 0.07 0.06 0.03 0.02
jet max 1.53 1.90 0.24 0.24 0.22 0.19

std 0.32 0.37 0.05 0.05 0.05 0.05
mean -0.18 -0.16 -0.06 -0.05 -0.05 -0.05

northern RG max -0.90 -0.87 -0.15 -0.15 -0.18 -0.21
std 0.31 0.18 0.05 0.05 0.05 0.06

mean -0.07 -0.03 -0.01 -0.01 -0.00 -0.00
southern RG max -0.52 -0.46 -0.17 -0.21 -0.15 -0.17

std 0.29 0.26 0.05 0.04 0.04 0.04

Table 4.1: Various statistics of the timeseries of downstream velocity for each of
the instrumented depths inside the jet (within ± 25 km of jet axis) and inside the
recirculation gyres (RGs) (at 125 km and 200 km from the jet axis for the northern
and southern recirculation gyres respectively). All values are in units of m/s.

A high degree of nonlinearity in the KE system is also suggested by the relative

magnitudes of wave phase speeds vs. individual particle speeds observed. Wave phase

speeds determined from Hovmöller plots of the mooring measurements of velocity are

typically on the order of 0.1 m/s (Figure 4-19)), and are frequently also on the order of

(and often less than) individual particle speeds, which are typically on the order of 0.1

- 1.0 m/s. We expect nonlinearity to be important when individual particle speeds

approach and exceed wave speeds in the system. Hence this observation provides

another indication that nonlinearities in the dynamics are important, and that a fully
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nonlinear model of the dynamics is essential.

Finally, the degree of nonlinearity can be estimated by the non-dimensional β

parameter, βdimL2

U
, for the observed length, L, and velocity scales, U , a measure of

the relative importance of the relative vorticity of the flow to the planetary vortic-

ity. Taking observed scales from the stream-coordinate picture of the time-mean jet

(representative of synoptic scales) of L = 85 km (the half-width of the jet) and U =

1 m/s (the surface peak velocity), and βdim as simply the gradient of the planetary

vorticity, implies a non-dimensional β parameter of 0.1. This is comparable to the

GS, which has a value for non-dimensional β in the range of 0.02-0.13 (Flierl et al.,

1987).

(c) Stability properties of the inflowing jet

As discussed in Section 4.3.2d, there is the suggestion in the KESS observations

that the KE jet is potentially subject to both barotropic and baroclinic instability

at the KESS location. Relevant to evaluating the design of the theoretical model

however is the stability properties of the upstream jet, that at the point of WBC

separation from the coast, as this serves as the forcing profile for the jet’s down-

stream development in the open ocean. I attempt to gain some insight into the

properties of the “boundary-forced” jet in the KE system by using a combination

of altimetry at 141.3◦E and information from the KERE mooring array, located at

approximately 142.6◦E. I use the former to evaluate the typical (synoptic mean) and

extreme horizontal shears of the KE jet near the point of its separation from the coast

(the longitude was selected to correspond to approximately where the KE jet enters

the deep ocean, as is illustrated in the upper snapshots in Figure 4-28 which show

141.3◦E (labeled x = 0) relative to the bathymetry which is indicated by the gray

contours). I use the latter to evaluate its typical and extreme vertical shears at this

approximate location (Figure 4-28, top). As in Figure 4-20, consideration of the

implications of these shears for the barotropic and baroclinic stability properties of

the jet at this location are also computed (Figure 4-28, bottom). They show that, like

at the KESS location, both the horizontal and vertical shears in both the synoptic
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mean and in the extreme snapshots are sufficient to satisfy the necessary conditions

for both barotropic and baroclinic instability based on idealized Rayleigh and Phillips

model criteria. The meridional barotropic PV gradient associated with the surface

jet profile, Qy = β−Uyy, changes sign in the horizontal by becoming negative on the

jet flanks, and the crude approximations to the vertical shear, ∆U = U1 − U2 (0.48

m/s in the synoptic mean and 0.95 m/s in the extreme snapshot), exceed the Phillips

model critical value for the jet scales at this location (∼ 0.2 m/s). As was noted in

Section 4.3.2d, isolating the horizontal and vertical shears and applying these two

conditions separately is not strictly valid, however it does provide the heuristic con-

clusion that like at the KESS location, the KE jet is potentially both barotropically

and baroclinically unstable. This suggests that a jet subject to mixed instability is

a plausible source for at least some of the variability of the KE jet system and is a

realistic model forcing.

4.4.2 Model - Observations Consistencies

In addition to using observations to test the relevance of the model design and set-up,

I can evaluate the relevance of the theoretical results of Chapter 3 to the dynamics

of the KE system by looking for consistencies and discrepancies between model pre-

dictions and observational results. Given the importance of zonal variation found

in the theoretical study, the most useful tests are those that check the consistency

in downstream development of properties in the model vs. the observed KE jet-gyre

system. Here I make such comparisons for both mean jet-gyre properties, as well as

properties of the eddy variability and their associated signatures of eddy-mean flow

interactions.

(a) Downstream evolution of the mean jet-gyre system

Both the altimetry record and the KESS observations in combination with past

mooring deployments up and downstream give us views of the downstream devel-

opment of the time-mean KE jet-gyre system which can then be compared to the

downstream development of the time-mean jet in the idealized model. These com-
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Figure 4-28: Synoptic (stream-coordinate) mean (gray) and an extreme snap-
shot (black) of the horizontal jet structure at 141.3◦E (evaluated from the surface
geostrophic velocity derived from the 14-year altimetry record) (upper left) and the
vertical jet structure at the same approximate location (evaluated from the KERE
mooring array) (upper right). Grey shading denotes the synoptic mean ± one stan-
dard deviation. Snapshots of the KE jet state visualized via SSH (as in Figure 4-20)
at the times corresponding to the extreme snapshots are above. Region bathymetry
is shown in these snapshots by the gray contours (contours are at 2000, 4000, 6000
and 8000 m respectively), and the location of the KERE moorings is shown in the
upper right by the xs. The implication of these shear magnitudes on the barotropic
(lower left) and baroclinic (lower right) stability properties of the jet as in Figure
4-20 are shown in the lower panels. 201



parisons are presented in Figures 4-29 through 4-31.

Using the mooring observations, I compare the downstream evolution of the time-

mean KE jet profile in both the upper and deep ocean to that of the time-mean jet in

the upper and lower layers of the two-layer model run in a KE-like parameter regime

and dimensionalized using the scales of the inflowing KE jet derived from satellite

altimetry data as described in Section 4.4.1c (Figure 4-29). Downstream locations in

the model for the comparison are selected to be similar to the mooring array locations

relative to the time-mean EKE distribution (Figure 4-29 upper inserts). Note that the

mean jet structure in the observational data is viewed in the stream-coordinate frame,

which was found to be critical in revealing the details in the downstream development

of the jet/gyre structure given the intense meandering of the KE jet and the course

cross-jet resolution of the moorings. Conversely, model results are presented in the

geographical frame, as the calculation of the stream-coordinate description of the

model jet structure is still underway. Despite this frame difference however, there

are several important similarities between the model and the observations in the

downstream development of mean jet and gyre properties that are encouraging and

worthy of mention. These include a strengthening and sharpening of the jet and the

development of westward recirculations up until the downstream location of maximum

EKE, followed by a weakening and broadening of the jet and a weakening of the

recirculation strength past the downstream location of maximum EKE. This same

downstream development pattern is seen in the stream-coordinate mean profiles of

the jet derived from the 14-year altimetry record (Figure 4-30). Here again evidence of

the jet sharpening and the westward recirculations developing upstream of the EKE

maximum is seen, both of which then weaken downstream of the EKE maximum

consistent with the model’s behavior. Note that the KE jet appears to evolve in the

downstream coordinate more slowly than the idealized model (a point to be revisited),

so the furthest-most downstream location for the altimetry comparison was selected to

be a disproportionate distance downstream from the EKE maximum to more clearly

demonstrate the trend of decreasing jet and recirculation strength.

One is able to look at the downstream development of mean jet-gyre properties in
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Figure 4-29: A comparison of the downstream evolution of the time-mean jet profile
from the idealized model in a KE-like regime (left) vs. that of the KE jet derived from
mooring observations (right) at three locations downstream. Downstream locations
for the comparison in the model are selected to be similar to the mooring array
locations relative to the time-mean EKE distribution (upper inserts). The upper
layer and upper ocean (at 500 m depth with a linear interpolation used to estimate
the velocity at this depth if measurements were not available) are shown in the upper
panels, the lower layer and deep ocean (at 4000 m depth again linearly interpolated
if necessary) are shown in the lower panels.
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Figure 4-30: As in Figure 4-29 but with the stream-coordinate mean profiles of the
KE jet derived from the 14-year altimetry record replacing the mooring observations
(right). Corresponding model profiles are from the upper layer of a two-layer model
run in a KE-like regime (left). Again the downstream locations for the comparison
are chosen relative to the time-mean EKE distributions (upper inserts).
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more detail by making use of the altimetry record. A comparison of the continuous

downstream evolution of mean properties, in particular of the maximum mean jet

velocity, the maximum mean recirculation velocity, and the maximum in EKE from

the model run in a KE-like regime to that derived from the altimetry record is shown in

Figure 4-31. Here again there are several consistencies in structure, including a peak

in the time-mean jet velocity located downstream of the inflow/western boundary,

a peak in the time-mean recirculation velocity located downstream of the peak in

jet velocity, and a peak in the time-mean EKE located downstream of the peak

in recirculation velocity. There are differences as well, a particularly outstanding

example being the additional structure seen in the downstream evolution of EKE

in the KE jet compared to the single peaked structure of the idealized model. It

is potentially useful to note that the location of the multiple local maxima in the

observed EKE profile are coincident with the downstream locations of the crest and

trough of the first quasi-stationary meander that is present in the time-mean KE jet

path (Figure 4-31 upper right), a feature that is not present in the idealized model.

I hypothesize that the non-zonal nature of the mean jet in the region of the quasi-

stationary meanders has a significant effect on the stability properties of the basic

state jet and the related eddy-mean flow interactions, however this deserves further

exploration.

A second important model-observations discrepancy, common to all of the com-

parisons, exists in the rate at which the time-mean properties evolve downstream,

with the KE jet evolving much more slowly with downstream distance than its model

counterpart. The fact that the model fields are viewed in the geographical frame while

the observations are viewed in a stream-coordinate frame may be partially responsible

for this, and this will be qualified in future work, however I suspect that the mean-

ders in the time-mean KE jet path also contribute to the discrepancy. Time-mean

sea surface height fields from the 14-year altimetry record suggest that the extent of

the recirculations in the KE are modulated by the meanders of the jet path, and, as

mentioned above, there are dynamical arguments that suggest that the non-zonality
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Figure 4-31: The peak time-mean jet velocity (top), the peak time-mean recirculation
velocity (middle), and the peak time-mean EKE (bottom) as a function of downstream
distance for the idealized WBC jet model (left) vs. the KE jet (right). Again, model
values come from the upper layer of a typical two-layer run with KE-like parameters,
while observed values are taken from the stream-coordinate mean velocity field derived
from the 14-year altimetry record. The origin for the altimetry evolution is taken to
be the approximate longitude where the KE jet enters the deep ocean as described in
Figure 4-28 (upper insert).
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of the jet that results from the presence of these meanders would have an important

influence on the downstream development of the eddy-mean flow interactions. Un-

derstanding this discrepancy in the scale of downstream development, and the role

that the presence of the quasi-stationary meanders in the KE path may play, is a

subject left for future work.

(b) Properties of the eddy variability and signatures of eddy-mean flow inter-

actions

Perhaps the most dynamically significant test of model-observation consistency,

especially from the perspective of eddy-mean flow interactions, is that of consistency

in the downstream evolution of the properties of the eddy variability, and in particular

how they relate to signatures of the eddy effect on the time-mean circulation. As

mentioned, diagnosing the eddy effect on the mean is much more difficult using direct

observations compared to using the model output, but two insightful examples are

given in Figures 4-32 and 4-33.

A comparison of the time-mean covariance ellipses (a visualization of the time-

mean Reynolds stresses u′u′, v′v′ and u′v′) between those from the KE-like two-layer

model and those computed from the mooring observations is given in Figure 4-32.

Here again important similarities in downstream development are seen. In particular,

the dynamically significant transition from a pattern of positive ellipse tilt north of

the jet axis and negative ellipse tilt south of the jet axis in the near-field of the

jet (consistent with a barotropically unstable jet regime) upstream of the location

of maximum EKE, to the reverse pattern (consistent with a wave-radiator regime)

downstream of this location is observed. This suggests that there is potential relevance

of the two-regime description of eddy effect on the mean found in the idealized WBC

jet model to the downstream development of the KE jet.

Finally, using both the zonal and meridional gradient information available with

the maps of altimetry measurements, it is possible to compute the eddy-mean flow

interaction terms directly using observational data. Here the limitation is spatial

resolution: computing the eddy forcing terms requires taking a number of derivatives
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Figure 4-32: A comparison of the time-mean covariance ellipses (a visualization of the
time-mean Reynolds stresses u′u′, v′v′ and u′v′) for the layer-averaged fields in the
two-layer model run in a KE-like regime (top) vs. those for the KE jet as derived from
the depth-averaged mooring observations (bottom). Their location is referenced to the
downstream development of the jet by the time-mean EKE distribution (derived from
the upper layer in the case of the model and the 14-year altimetry record in the case of
the KE jet), which is shown by the black contours. The location of the EKE maximum
is indicated by the x, and the vertical dashed line indicates the downstream location
corresponding to this maximum. Ellipses are colored red if their tilt is greater than
zero (an indication of u′v′ > 0), blue if their tilt is less than zero (an indication of
u′v′ < 0), and black if the tilt is not significantly different from zero (an indication of
u′v′ ∼ 0). The observed velocities were band-passed filtered in the mesoscale range
(periods of 10 - 100 days) before the variances and covariances were computed to
clarify the cross-jet variations.
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of the SSH information, and the spatial resolution of the objectively mapped SSH

fields with an approximate cutoff of length scales less than 300 km means that higher-

order derivatives will be very reduced in magnitude. Despite this, investigations into

the extent to which horizontal momentum fluxes can be reproduced by altimetry

measurements do suggest that although the stresses are underestimated, they do

show the correct general tendencies (Leeuwenburgh and Stammer, 2002), and hence

such an investigation can be instructive. By computing the eddy forcing terms using

the altimetry fields and comparing them to model results, I find several similarities in

these quantities. An example is given in Figure 4-33, in which I compare the “effective

eddy force” (the negative of the divergence of the eddy flux of zonal momentum) for

a barotropic model run to that derived from the altimetry fields. There is a clear

suggestion in the latter of a switch in sign of the eddy forcing across the maximum

in recirculation strength, consistent with the idealized model.

4.5 Summary and Discussion

Motivated by the KESS observational program I have sought to improve our un-

derstanding of the nature and the importance of eddy-mean flow interactions in the

Kuroshio Extension. I first characterized the state of the mean KE jet and its re-

circulation gyres, its eddy variability, and the nature of their interactions within the

KESS time frame at the KESS location. I next evaluated the relevance of the ide-

alized WBC jet model to the KE system both in terms of the model design and its

findings.

My study has revealed a picture of the time-mean jet-gyre system over the KESS

period. In the geographical frame, this is of a strong, surface-intensified jet oriented

to the southeast with little variation with depth below the thermocline. Westward

recirculations flanking the time-mean jet to both the north and the south are found

to be a significant feature of the time-mean deep jet structure, but there exists no

clear evidence of westward recirculations in the upper ocean. In the stream-coordinate

view, as expected, the mean jet appears stronger and sharper. Its baroclinic structure
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Figure 4-33: A comparison of the “effective eddy-force” (the negative of the diver-
gence of the eddy flux of zonal momentum) for a barotropic model run in a KE-like
parameter regime (top) vs. that derived from the 14-year altimetry record (bottom).
Color indicates the effective eddy force and black contours indicate properties of the
time-mean jet-gyre system for reference, with xs denoting the location of maximum
recirculation transport/velocity and the vertical dashed line indicating the down-
stream location corresponding to this maximum. In the case of the altimetry field
calculation, the eddy flux divergence was computed in geographical coordinates then
projected into the distance coordinates shown, while the contours of the time-mean
jet/gyre system are from the stream-coordinate calculation of the time-mean down-
stream velocity.
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at depth is also more pronounced. This makes it much more strongly sheared in both

the horizontal and the vertical than is suggested by the geographical mean picture.

It also makes the existence of weakly depth-dependent recirculations that extend

throughout the water column apparent to both the north and south of the time-mean

jet. This observation in combination with evidence of these recirculations seen in

other forms of the KESS measurements, are the first clear observational evidence of

a northern recirculation gyre in the KE.

I have characterized properties of the temporal eddy variability by describing

it and its effect on jet structure grouped according to some of its various sources:

meandering, rings, waves and instability. In summary, first I find that, at the KESS

location, the jet exhibits vigorous meandering with a range of ± 300 km from its

time-mean position. One of the dominant meandering timescales is consistent with a

linear stability calculation prediction, while the source of lower frequency variability

is open to speculation. Meandering has a significant effect on the time-mean jet

structure and its variability, resulting in a weakening and broadening of the upper

layer jet, and eliminating the upper ocean recirculations from the time-mean jet

structure. It accounts for a significant fraction of the EKE (approximately 50% in

the deep ocean), and smears out fine structure in its cross-jet profile, eliminating a

sharp maximum in EKE at the jet axis and minima inside the recirculations that

are seen when the effects of meandering are removed. Second, the interaction of

both warm and cold core rings also are a significant feature of the eddy variability at

this location, with rings interacting with the KESS array approximately 25% of the

time. Rings tend to be more frequent in winter, and although they pass to both the

north and south of the jet, are more frequent to the south. Interestingly, although

rings contribute significantly to the variance structure on the flanks of the jet, they

do not have a significant direct effect on the mean jet structure there. Importantly,

time-mean recirculations remain a feature of the time-mean jet structure whether

or not ring interactions are included. Third, there are indications of waves in the

KESS velocity records in the form of low frequency peaks in the velocity spectra and

indications of propagating signals in Hovmöller diagrams. The observed wavenumber
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associated with the 40-day period signal is consistent with the barotropic Rossby

wave dispersion relation. The source of this wave activity (i.e. whether radiated from

the jet or generated remotely) remains an open question. Finally, there are also

indications of jet instability. Both spectra of velocity records and the jet meandering

show enhanced energy at timescales consistent with linear stability calculations, and

both synoptic mean and instantaneous snapshots of horizontal and vertical shears

observed indicate that shears can far exceed the critical values for both barotropic

and baroclinic instability based on idealized Rayleigh and Phillips model criteria, and

the critical value for instability based on the meridional gradients of approximations

to the layered PV gradients.

My study of eddy-mean flow interactions was limited, but there are some indi-

cations of the nature of these interactions that are worthy of mention. First, the

time-mean cross jet distribution of the covariance u′v′ observed is in the sense for

eddies to drive the time-mean recirculations. This is consistent with the scenario

of energy radiation from a localized source (a “wave-radiator”) and the regime seen

in the idealized WBC jet model downstream of mean jet stabilization (the “wave-

radiator regime”). Hence the observations provide support for the hypothesis that

the recirculations are, at least partially, eddy-driven. Second, although the compar-

ison of the observed Reynolds stresses with those of idealized models of potential

eddy-mean flow interaction scenarios relevant to the KE jet do not offer conclusive

results, they are suggestive of an unstable jet in the upper ocean and wave radiation

in the deep ocean.

The second goal of the study was to evaluate the relevance of the idealized WBC

jet model of Chapter 3 to the oceanic system by considering both its set-up and

its predictions relative to observations of the KE. I argued that the KE observations

suggest that aspects of the idealized model design are appropriate to the KE system: a

simple vertical velocity structure observed in KESS suggests a dynamical model with

simplified vertical structure may suffice, indications in the KESS records of a high

degree of nonlinearity suggest that a fully nonlinear dynamical model is essential, and
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the horizontal and vertical shears upstream where the KE jet approximately separates

from the coast suggest that a jet subject to mixed instability is a realistic forcing for

the idealized study.

Further, consistencies between model predictions and observational results, in

particular in the downstream development of mean and eddy properties, provide

additional support for the claim of the model’s potential relevance to the KE jet.

Both in situ mooring observations and the satellite altimetry record in the KE region

show important similarities in the downstream development of the mean jet-gyre

system to that in the idealized model, such as a strengthening and sharpening of the

jet and the development of westward recirculations up to the downstream location of

maximum EKE, followed by a weakening of the jet and the recirculation strength past

this downstream location. There are similarities in the downstream development of

eddy properties as well, in particular in the signatures of the eddy effect on the mean.

Mooring observations of Reynolds stresses suggest of a transition from an unstable

jet regime upstream of the EKE maximum to a wave-radiator regime downstream

of the EKE maximum, as found in the idealized WBC model. In addition, there is

a suggestion of a similar transition from a westward to eastward eddy force across

the maximum in recirculation strength both in the model and in the mean altimetry

fields.

Taken all together, these indications and consistencies give some confidence in

the idealized model’s potential ability to capture the essential physics of the KE jet

system. As a consequence, I hope that the understanding gained from the theoretical

study is useful in teaching us about the importance of eddy-mean flow interactions

in the KE and potentially other WBC jet systems as well.

The work presented here is just the beginning of an observational look at eddy-

mean flow interactions with the KESS data, in the KE jet and in WBC jets in general,

and there is lots more to be done. There are also several new and interesting open

questions that are suggested by this initial look at the KESS data which could lead

to interesting avenues to pursue in the future.

213



First, the various topics addressed in this study would benefit from further, more

detailed analysis. The study here offers evidence of a northern recirculation gyre and

the suggestion that eddies may play a role in driving it, but the dynamics are still

uncertain. Hence eddy-mean flow interactions in the KESS data should be quantified.

Progress can be made by incorporating other forms of the KESS data (for example

the MMP and CPIES measurements) and applying the methods of Bryden (1979) and

Phillips and Rintoul (2000) to the point-wise MMP measurements and the methods

of Cronin (1996) and Bower and Hogg (1996) to the two-dimensional data. This will

allow the diagnosis of the eddy-mean energy and PV budgets, and the characterization

of the cases of up-gradient and down-gradient fluxes. The use of high resolution global

circulation model output here would be useful as well, providing a larger temporal

and spatial window into the KE and permitting statistical studies of the energy and

PV fluxes. This at the same time would have the additional benefit of providing an

excellent opportunity for the development of process-based metrics for ocean model

fidelity. Interesting questions that could be addressed include the relative importance

of relative vorticity vs. thickness fluxes in the eddy forcing, and the role of episodic

events in the context of the time-averaged observed fluxes.

In addition to furthering work on the questions addressed in this study, there are

also new interesting questions that have arisen from this look into the KESS data. I

elaborate on two of particular interest.

The first concerns the role of external features and influences in the jet-gyre sys-

tem. Some of the largest waves, meanders and ring formations in the KESS record

appear to have been triggered by external features: deep synoptic eddies, warm and

cold core rings, and other possibly wind-driven eddies arriving from the east. Anal-

ogous to the jet stream, this observation contributes to the debate about whether a

given synoptic disturbance grows locally from infinitesimal perturbations, or rather

grows from the interaction with a pre-existing smaller amplitude feature. The relative

fraction of mesoscale features that develop locally vs. those that grow from external

pre-existing disturbances could be quantified in the KESS record. The source of many
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of these external features is also an open question that could be investigated.

The second topic that has arisen to be of particular interest during this study

relates to the bimodal variability of the KE jet, and the causes and mechanisms of

its regime shifts. The KE jet is observed to exhibit a bimodality in its low frequency

behavior, oscillating between a quasi-steady state consisting of quasi-stationary me-

anders, and a highly variable state consisting of energetic meanders (the “stable” and

“unstable” states respectively) (Qui and Chen, 2005). Fortuitously, the KESS field

program captured a regime transition in late 2004, with the most recent weakly mean-

dering pattern, which had begun in 2001, switching to the strongly meandering state5.

Accompanying the shift in the state of the surface jet, was also a dramatic change

in the state of the subsurface time-mean jet and its eddy variability observed by the

KESS array. For example, relative to the weakly meandering state, the strongly me-

andering state’s time-mean jet became much weaker, especially in the upper ocean,

and the recirculations became less prominent (Figure 4-34 left). Note that these

changes in the mean jet structure are observed in the stream-coordinate frame, that

is with the smearing out effects of jet meandering removed, so this represents a real

change in jet strength. As a consequence, both the horizontal and vertical shear in

the strongly meandering period was much reduced relative to the weakly meandering

state i.e. paradoxically the weakly meandering state jet looks much more unstable

than the strongly meandering state based on the magnitudes of the velocity shears.

Associated with the transition from the weakly meandering to strongly meandering

state is also a dramatic increase in eddy energy, both in the upper ocean and also

in the deep subthermocline ocean (Figure 4-34 right). One hypothesis for the cause

of the change in the dynamic state of the KE jet is that it arises from a change in

the PV structure of the jet-gyre system (Spall, 1996). This can be tested with the

KESS data by examining the time-evolution of the PV structure and its favorability

for different instability modes in the different dynamical states during the KESS pe-

5I prefer the labels “weakly meandering” and “strongly meandering” as opposed to “stable” and
“unstable” as they do not make statements about the jet’s hydrodynamic stability properties. As
will be discussed, the two states of the KE jet are distinguished by changes in the meandering
intensity of the jet, not necessarily the magnitudes of the jet shear and hence its hydrodynamic
stability properties.
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Figure 4-34: A comparison of the time-mean jet structure (left) and EKE distribution
(right) computed over the time period in the KESS record during which the KE jet
was in its weakly meandering state (15 June 2004 through 1 December 2004) (black)
vs. that when the KE jet was in its strongly meandering state (1 December 2004 - 19
May 2006) (gray). The upper ocean (average of surface and 250 m depths) is shown
in the upper panels and the abyssal ocean (average of 1500 m, 2000 m, 3500 m and
5000 m depths) is shown in the lower panels. Error bars on the mean velocity indicate
the standard error in the mean.

riod. Insight into the question about whether changes leading to the rapid transition

arise from processes generated locally or enter either from upstream or downstream

can also potentially be gained from the KESS record. Comparing and contrasting

the jet’s structure, its eddy properties, and their interactions in the two states may

provide new insight into how the transition occurs, and what its implications are for

the stability of the jet and the strength and extent of the recirculations. This may

potentially resolve the paradox of the highly sheared jet showing low eddy variability

and vice versa.

Finally, it seems incomplete to fail to include a discussion about the GS, the KE’s
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much more extensively studied cousin. Eddy-mean flow interactions that drive the

recirculation gyres in the GS are likely the same in the KE, however there are inter-

esting differences that, by understanding their influences, could lead to an improved

understanding of eddy-mean flow interactions in WBC jet systems generally. For

instance, the presence of semi-permanent meanders in the KE jet in the upstream

region (which make the “basic-state jet” distinctly non-zonal) complicates the dy-

namical picture in the KE relative to the GS. Distinct stratification, bathymetry,

modes of variability, thermohaline circulation, and region geometry also make the

KE different. Understanding similarities and differences in eddy-mean flow interac-

tions in the GS vs. the KE, and even better linking differences to known differences

in these influences, promises an improved understanding of the physical mechanisms

involved. Past studies of the GS with a particular emphasis on eddy-mean flow in-

teractions that would serve well as a basis for comparison with the results presented

here include Dewar and Bane (1989), Hogg (1993, 1994), Shay et al. (1995), Bower

and Hogg (1996), Cronin (1996), and Cronin and Watts (1996). It is a fortuitous

time to pursue such a study, as KESS data plus that of SYNOP and now the CLIvar

MOde Water Dynamic Experiment (CLIMODE) offer more complete views of these

systems than ever before.
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Chapter 5

Conclusions

Motivated by a new observational data set in the Kuroshio Extension (KE) uniquely

suited to study the jet, its eddy variability and their interactions, this thesis has

examined the nature and the importance of eddy mean-flow interactions in western

boundary current (WBC) jets and recirculation gyre dynamics from both theoretical

and observational perspectives. This has included a study of eddy mean-flow in-

teractions in idealized configurations relevant to WBC jet systems, an observational

analysis to characterize eddy-mean flow interactions in the KE jet, and an evaluation

of the relevance of the theoretical understanding derived from the idealized studies

to the dynamics of the actual oceanic system.

5.1 Contributions

The work has resulted in several new contributions to our understanding of the role

of eddies in the dynamics of WBC jet and recirculation gyre systems, both idealized

and actual.

The theoretical study of eddy-forced recirculation gyres from the rectification

of a localized, transient forcing (Chapter 2) has extended our understanding of a

mechanism by which eddies may drive the recirculation gyres observed in WBC jet

systems. The major contributions include:
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1. new insights into the rectification mechanism, in particular an understanding

that the recirculation gyres are driven by an up-gradient eddy flux of potential

vorticity inside the forcing region, and that the effectiveness of the process

depends on the properties of the energy radiation from the forcing, which in

turn depends on the population of waves excited.

2. a new understanding of the effects of stratification, a background flow, and

strong nonlinearity on the mechanism, all critical features in the WBC jet-gyre

application.

3. a demonstration of the mechanism in the laboratory in a rotating tank experi-

ment (see Appendix B).

Overall, the study suggests that in a relevant parameter regime, this mechanism is

capable of driving mean recirculation velocities on the order of a few to tens of cen-

timeters per second. This is consistent with the magnitude of the deep recirculation

velocities observed during KESS and in the past both in the KE and Gulf Stream

(GS), making it plausible that this mechanism has relevance to the forcing of the

deep recirculation gyres observed in WBC jet systems.

The theoretical study of eddy-mean flow interactions in the downstream evolution

of an idealized model of a WBC jet (Chapter 3) has extended our understanding of the

role of eddies in an idealized WBC jet configuration in which eddy effects and inertial

effects can both play a role. Although eddy-mean flow interactions in unstable jets

has been an extensively studied topic, a configuration which combines highly-variable

time-dependent and highly inertial dynamics, baroclinicity, and zonal evolution, as

is relevant to WBC jet systems, has thus far remained relatively unexplored. The

major contributions include, all applicable to the idealized model of a WBC jet in a

parameter regime appropriate to the GS and KE:

1. the identification that nonlinear eddy fluxes play two distinct and critical roles

in the downstream development of the time-mean jet: first stabilizing the jet to

its large-scale horizontal and/or vertical shear through a diffusive-like, down-
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gradient potential vorticity flux, and second driving the time-mean recircula-

tions through an anti-diffusive, up-gradient potential vorticity flux dynamically

similar to the mechanism by which eddies drive the recirculation gyres studied

in Chapter 2.

2. the understanding that zonal variation is important. In particular, the role of

eddies depends critically on the downstream location relative to the position

where the unstable time-mean jet first becomes stable, and the zonal advection

of eddy activity is fundamental to the mechanism permitting eddies to drive

the mean flows.

3. the new result that the addition of baroclinicity does not significantly alter the

barotropic mechanism responsible for driving the recirculations.

4. an empirical prediction for the properties of the eddy-driven time-mean circula-

tion (the strength and extent of the time-mean recirculations) given the stability

properties of the upstream jet that was the source of the eddy variability.

Overall, these results support the hypothesis that the observed recirculations in the

KE and GS are, at least partially, eddy-driven, and provide insight into what may

determine the properties of the observed mean jet and its recirculations as they evolve

downstream.

Finally, the observational analysis of the new KESS observations as well as past

observations and satellite data in the KE region, has furthered our understanding of

the nature and importance of eddy-mean flow interactions in the KE. This has been

achieved both by characterizing the state of the mean jet, its eddy variability, and the

nature of their interactions at the KESS location during the KESS time frame, and

also by evaluating the relevance of the idealized WBC jet model to the KE system

both in terms of the model design and its findings. This has resulted in:

1. the first clear evidence of a northern recirculation gyre in the KE, as well as

support for the hypothesis that the recirculations are, at least partially, eddy-

driven.
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2. observational indications that the KE jet is potentially barotropically and baro-

clinically unstable at the location observed, making jet instability a likely source

of at least some of the eddy variability of the system.

3. support for the idealized model’s potential success in capturing aspects of the

essential physics of the KE jet system. This comes both from observational in-

dications that the idealized model’s simplified vertical structure, source of eddy

variability (the mixed instability of the inflowing jet), and nonlinear dynamics

are appropriate to the observed system, as well as from demonstrated consis-

tencies between model predictions and observational results in the downstream

development of both time-mean and eddy properties.

Overall, the work provides us with a new characterization of the KE jet, its variability,

and their interactions at the downstream location of maximum eddy kinetic energy,

as well as some confidence in the theoretical model’s usefulness in teaching us the

importance of eddy-mean flow interactions in the KE and potentially WBC jets in

general.

5.2 Implications

The results of this work have important implications both for our understanding of

large-scale ocean dynamics and for ocean modeling.

First, the results presented here contribute to an improved understanding of WBC

jet dynamics. The theoretical study of the idealized WBC jet that has demonstrated

relevance to the observed system has shown that eddy forcing and steady-state in-

ertial terms are of roughly equal importance in the downstream development of the

time-mean jet-gyre system. Hence including eddies in our working understanding of

WBC jet dynamics, our realistic modeling of these systems, and in the design of our

observational monitoring strategies of WBC jet systems is of first-order importance.

This study has also suggested that properties of WBC jet recirculations, which can

fundamentally alter the dynamical structure of the jet and add significantly to its net
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transport, are, at least partially, linked the stability properties of the upstream jet

that was the source of the eddy variability. This is useful if, for example, we wanted

to understand changes we would expect to see in WBC jet transport or structure if

oceanic conditions changed in such a way as to alter the stability properties of the

upstream jet. Given that WBCs are one of the foremost components in global heat

transport and thus in regulating the global climate, predicting changes in WBC jet

transport has potentially very important climatic implications.

This work also has potentially important implications for ocean modeling. Un-

derstanding the role of eddies in WBC jets allows us to understand the importance

of having various eddy processes resolved in our numerical simulations of these sys-

tems. The results presented here suggest that failure to resolve the eddies responsible

for the effects discussed here will result in reduced mean WBC jet transports, with

the abyssal ocean recirculations (and their significant enhancement to jet transport)

missing altogether. Indeed, all eddy-driven mean flows produced by the nonlinear

rectification mechanism explored here would not be represented in general circulation

models with eddy effects parameterized simply as down-gradient diffusion. In addi-

tion however to indicating the importance of resolving eddies in our ocean models,

this work may also suggest suitable, process-based parameterizations for these eddy

effects in cases when resolving the eddies responsible for them explicitly is impossible.

As discussed in Chapter 3, progress can potentially be made by exploiting the new

understanding that eddy-mean flow interactions in these systems depends critically

on the zonal variation that results from the advection of eddy activity from a region

of eddy growth (where eddies provide down-gradient tracer fluxes) to a region of eddy

decay (where they provide up-gradient tracer fluxes). Hence an appreciation of the

eddy life-cycle can potentially help organize our understanding of the effect of eddies

on the background state in WBC jets, and potentially assist in our development of

realistic parameterization schemes.
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5.3 Future Work

There are many more things to be done on this subject and I have several proposals

for future research, some of which I hope to have the future opportunity to pursue.

Immediately, there is an opportunity to further the analysis of the KESS obser-

vations on this subject. The study here offers evidence of a northern recirculation

gyre and the suggestion that eddies may play a role in driving it, but the dynamics

are still uncertain. Hence the eddy-mean flow interactions in the KESS data need

to be quantified. As discussed in Chapter 4, progress can be made by incorporating

other forms of the KESS data (for example the MMP and CPIES measurements)

and applying the methods of Bryden (1979) and Phillips and Rintoul (2000) to the

point-wise MMP measurements and the methods of Cronin (1996) and Bower and

Hogg (1996) to the two-dimensional data. This will allow the diagnosis of the eddy-

mean energy and PV budgets, and the characterization of the cases of up-gradient

and down-gradient fluxes. Interesting questions that could be addressed include the

relative importance of relative vorticity vs. thickness fluxes in the eddy forcing, and

the role of episodic events in the context of the time-averaged observed fluxes. As also

discussed in Chapter 4, investigation into the role of external features and influences

in the jet-gyre system, as well as the causes and mechanisms of the KE regime shift

and its implications for the stability of the jet and the strength and extent of the re-

circulations, have both emerged from this initial look at the KESS data as additional

interesting avenues to pursue.

Second, there are several opportunities to extend the theoretical studies, in par-

ticular that on the idealized WBC jet. For example, there are several interesting

open questions with implications for PV dynamics and cross-frontal exchange that

could potentially benefit from a Lagrangian analysis of the dynamics at play in the

model. In addition, the construction of a stream-coordinate description of the ide-

alized model jet is needed to compare with the stream-coordinate description of the

KE jet that has proved so insightful in the analysis of the observations. The effect of

varying friction on the time-mean recirculation properties also should be explored. In
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addition however to further analysis of the theoretical model in its current configura-

tion, progress can also be made by adding additional physics. The model is idealized

in many respects. It is quasi-geostrophic, has highly simplified vertical structure, and

the source of its eddy variability is restricted to the intrinsic variability of the unstable

jet. This is of course by design, the aim was to isolate aspects of the physics that

were of interest, and make the system otherwise as simple as possible to elucidate

understanding of the essential dynamics and mechanisms. The next step is to add

back various aspects of the physics, and understand their effects on the dynamics. Of

particular interest is the effect of jet tilt on the mechanisms I have explored. This

is relevant given the non-zonal nature of the KE jet as a consequence of the quasi-

stationary meander and the non-zonal orientation of the GS path, and it is of interest

given the significant effect a non-zonal tilt of the basic state jet can have on the jet’s

stability and radiating properties (Kamenkovich and Pedlosky, 1996). Of interest

also is the effect of a time-dependent inflow, given the newly emerging paradigm of

a fundamentally non-steady overturning circulation (S. Lozier, personal communica-

tion)1. Of course, the standard additions of primitive equation dynamics, continuous

stratification, topography (in particular the influence of the Shatsky Rise in the KE),

wind forcing, and atmospheric coupling all will provide valuable insight into how the

eddy-mean flow interactions discussed in this work are affected by these additional

influences.

Third, I believe much progress can be made on this topic via a similarly aimed

study using not idealized theoretical models or observations, but instead the relatively

new tool of “realistic” eddy-resolving general circulation model (EGCM) output. The

relative maturation in recent years of now global, high-resolution, primitive equation

numerical models which attempt to simulate the ocean circulation with a high degree

of realism (with respect to geometry, topography, physics and forcing) have resulted

in EGCMs with greatly improved realism in eddy processes, eddy kinetic energy

level etc. This has created a new tool for the examination and interpretation of

ocean dynamics (Stammer et al., 1996; Smith et al., 2000; McClean et al., 2002;

1See the US CLIVAR Atlantic Meridional Overturning Circulation Implementation Plan 2007.
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Maltrud and McClean, 2005). EGCM studies have the potential of being especially

fruitful in the investigation of eddy-mean flow interactions as they relate to realistic

oceanic flows because model output can achieve sufficiently high resolution in space

and time over a sufficiently long period and large area to address questions that have

been difficult to examine with sparse observational data in the past. Work could

build upon the EGCM analysis by Nakamura and Chao (2001, 2002) with a focus

on evaluating the relevance of the mechanisms elucidated by the idealized theoretical

studies presented here, conducting the EGCM analysis in concert with the analysis

of direct observations, and comparing and contrasting the GS and KE systems. The

EGCM study would also be a useful opportunity to evaluate the effectiveness of the

idealized two-layer jet model in capturing the essential physics of the system, as well

as to develop process-based metrics for ocean model fidelity. Initial work in this

direction using the output of a 1/10◦, 40-level global simulation of the Parallel Ocean

Program (POP) model (McClean et al., 2002; Maltrud and McClean, 2005) in the

KE region suggest that this high resolution POP model can give insight into the

mechanisms driving the recirculations. Figure 5-1 shows the presence of time-mean

westward zonal recirculations to both the north and south of the time-mean jet at

all depths in the model fields. It is expected that the processes responsible for the

generation and maintenance of these features can be diagnosed by a detailed analysis

of the other model variables.

Finally, I believe our understanding of eddy-mean flow interactions in WBC jets

in general can be furthered by a comparison of the GS and KE systems. Relative

to the KE, the GS has been extensively studied. The KESS data provides a new

opportunity to compare and contrast these systems in a way that has not been possible

in the past. Past studies of the GS with a particular emphasis on eddy-mean flow

interactions that would serve well as a basis for comparison with the results presented

here include Dewar and Bane (1989), Hogg (1993, 1994), Shay et al. (1995), Bower

and Hogg (1996), Cronin and Watts (1996) and Cronin (1996). SYNOP and now the

CLIvar MOde Water Dynamic Experiment (CLIMODE) data in the GS would also

be a useful resource for a comparative study with KESS results. Eddy-mean flow
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Figure 5-1: The three-year time-mean circulation (1998-2001) in the Kuroshio region
from the Parallel Ocean Program (POP) EGCM model. Contours of time-mean
sea surface height (surface) and zonal velocity (subsurface levels) are shown with
varying color scales. For zonal velocity, red colors are positive (eastward) values and
blue colors are negative (westward) values. Time-mean westward recirculations are
observed flanking the jet to the north and south at all levels.
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interactions that drive the recirculation gyres in the GS are likely the same in the

KE, however there are interesting differences that, by understanding their influences,

could lead to an improved understanding of eddy-mean flow interactions in WBC

jet systems generally. For instance, the presence of semi-permanent meanders in

the KE jet in the upstream region (which make the “basic-state jet” distinctly non-

zonal) complicates the dynamical picture in the KE relative to the GS. Distinct

stratification, bathymetry, modes of variability, thermohaline circulation, and region

geometry also make the KE different. Understanding similarities and differences in

eddy-mean flow interactions in the GS vs. the KE, and even better linking differences

to known differences in these influences, promises an improved understanding of the

physical mechanisms involved.
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Appendix A

Analytical Analysis for the

Rectification Problem

As discussed in Section 2.2.1, to gain insight into the rectification mechanism and

the relation between forcing parameters and rectified flow I appeal to an analytical

solution. For this purpose, like HR83, I simplify the forcing function by reducing

its spatial dependence to a delta function in space (i.e. I seek the Green’s function

solution). With this simplification, the full equation I want to solve is:

∂∇2ψ

∂t
+ J(ψ,∇2ψ) + β

∂ψ

∂x
= δ(x)eiωt (A.1)

Equation A.1 cannot however be solved in closed form because of the nonlinear self

advection J(ψ,∇2ψ).

Assuming the forcing amplitude is small, one can make progress by expanding the

solution in powers of forcing amplitude. Hence I consider:

∂∇2ψ

∂t
+ J(ψ,∇2ψ) + β

∂ψ

∂x
= ǫδ(x)eiωt (A.2)

and take ψ to have the form:

ψ = ǫψ1 + ǫ2ψ2 + ... (A.3)
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Substituting A.3 into A.2 and equating terms of the same order of ǫ then yields:

Order ǫ :
∂∇2ψ1

∂t
+ β

∂ψ1

∂x
= δ(x)eiωt (A.4)

Order ǫ2 :
∂∇2ψ2

∂t
+ J(ψ1,∇2ψ1) + β

∂ψ2

∂x
= 0 (A.5)

The order ǫ equation is a linear equation whose solution is (HR83):

ψ1(x, y, t) = H(2)
o (Br)e−i(Bx+ωt)− 1

4
π (A.6)

where H(2)
o is the Hankel Function of the second kind and B is the radius of the

Rossby wave dispersion relation circle B = β

2ω
. The time-mean flow associated with

the order ǫ linear forced wave field is zero.

The first contribution to the time-mean flow enters at order ǫ2. Taking the time-

mean of Equation A.5 yields:

J(ψ1,∇2ψ1) + β
∂ψ2

∂x
= 0 (A.7)

Re-arranging to solve for ψ2, the time-mean streamfunction associated with the rec-

tified flow, then gives:

ψ2 =
1

β

∫ xE

x
J(ψ1,∇2ψ1) dx (A.8)

Hence one arrives at the result that the second-order time-mean flow is given by

the zonal integral (to the eastern boundary, xE) of the time-mean Jacobian (relative

vorticity flux divergence) of the first order, linear forced wave field. For a delta

function forcing however, ψ2 outside the immediate vicinity of the forcing is found to

be zero due to the anti-symmetric pattern of the relative vorticity flux divergence.

To introduce spatial dependence to the forcing function I use the Green’s function

solution for ψ1 given by Equation A.6 and compute the particular solution for a given

spatial forcing dependence F (x) by evaluating the convolution integral:

ψ1P =
∫ xE

x
ψ1(x,x

′)F(x′) dx′ (A.9)
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For the forcing function F (x) I consider a normalized Gaussian forcing function of

the form

F (x, y) = A







2 − 4
(

x
L

)2

L2
+

2 − 4
(

x
L

)2

L2





 e
−( x

L)
2−( y

L)
2

(A.10)

and compute the particular solution via numerical integration. As before, to compute

the time-mean rectified flow associated with this wave field, I compute the zonal

integral of the time-mean Jacobian using the particular solution ψ1P in place of ψ1.

I test the validity of the analytical approximations by comparing them to the

output of the fully nonlinear numerical calculations in the limit of small forcing am-

plitude (Figure A-1). Here it can be seen that the Green’s function solution for the

order ǫ linear forced wave field (Equation A.6) captures the form of the wave field in

the weakly nonlinear solution (Figure A-1 (top)). I also verify that the order ǫ2 time-

mean flow obtained from the integration of the time-mean Jacobian of the particular

solution for a normalized Gaussian forcing function
(

ψ2P = 1
β

∫ xE

x J(ψ1P ,∇2ψ1P ) dx
)

also describes the gross characteristics of the mean rectified flow of the nonlinear cal-

culation (Figure A-1 (bottom)). These correspondences give confidence in the utility

of these analytical forms in understanding the nonlinear rectification in the weakly

nonlinear limit.
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Figure A-1: A comparison of the analytical expressions derived in Appendix A (right)
with the corresponding output from the fully nonlinear model forced by a small-
amplitude forcing (left). The instantaneous wave fields (with the analytical solution
given by the Green’s function solution (Equation A.6)) is shown in the upper row.
The time-mean rectified flow (with the analytical prediction given by the zonal in-
tegral of the time-mean advection of relative vorticity (time-mean Jacobian) of the
linear forced wave field given by the particular solution for a Gaussian forcing function
(Equation A.9)) is shown in the lower row.
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Appendix B

Rectification Laboratory Study

As a supplement to the study, I test whether the localized oscillatory Ekman pumping

in a closed basin that I consider numerically produces the same steady-state circula-

tion pattern and dependence on forcing amplitude in a real fluid in the laboratory.

The experimental set-up, diagrammed in Figure B-1, consists of a rapidly rotating,

homogeneous fluid in a square basin with a variable topographic beta effect. The fluid

was forced by a small source of vertical velocity mid-basin at the lower boundary

with variable amplitude and which alternated sign at variable frequency. Forcing

amplitudes equivalent to an Ekman pumping velocity in the range of 1x10−5 m/s <

wEk < 5x10−5 m/s (or equivalently a wind stress of 0.05 < τ < 0.2 N/ms2) and forcing

periods in the range of 25 days < Tforcing < 250 days (assuming a forcing length scale

of 50 km) were considered.

The first important result is the demonstration that the steady-state response of

the fluid to this forcing is indeed a circulation consisting of a zonal jet at the latitude

of the forcing flanked by a pair of counter-rotating recirculation gyres (Figure B-

2). Hence the qualitative nature of the rectified flow in the numerical simulations is

consistent with that observed in the laboratory.

The second result of note is the observation of a similar qualitative change in

behavior in the mean-flow response beyond a critical forcing amplitude. In a series

of laboratory experiments that varied the magnitude of the forcing, the jet velocity

was observed to increase sharply with forcing amplitude for weak Ekman velocities
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Figure B-1: The laboratory set-up.

Figure B-2: A photograph of the steady state circulation pattern (visualized by col-
ored dye) that shows a zonal jet at the latitude of the forcing flanked by a pair of
counter-rotating recirculation gyres consistent with the numerical simulations.
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Figure B-3: The dependence of “rectification effectiveness” on the forcing amplitude
in the laboratory experiments (left) and the numerical simulations (right). To allow
a direct comparison, here “rectification effectiveness” is measured by the maximum
eastward jet velocity (in the case of the laboratory experiments normalized by the
Coriolis parameter and forcing length scale).

(virtually no turbulence in the fluid) but became insensitive to forcing strength at

large Ekman velocities (excessive turbulence in the fluid) (Figure B-2 left). This

is similar to the quadratic and saturated dependence of rectification effectiveness on

forcing amplitude observed in the numerical simulations. Numerical results are re-

presented in terms of the mean jet velocity (to make them directly comparable to the

laboratory results) also in Figure B-2 (right). This is also consistent with the results

of Whitehead (1975), who similarly saw two regimes of behavior in his experiments

forced by the vertical oscillation of a circular disk.
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Appendix C

The Numerical WBC Jet Model

C.1 Model Equations

The numerical model used is the one described in Jayne and Hogg (1999) modified to

include two-layer dynamics. It is quasi-geostrophic, on a mid-latitude β plane, with

linear bottom friction.

For barotropic runs, the model solves the fully nonlinear, barotropic quasi-geostrophic

potential vorticity equation (QGPVE) in non-dimensional form:

∂q

∂t
+ J(ψ, q) = −R∇2ψ (C.1)

where q, the barotropic potential vorticity, is given by:

q = ∇2ψ + βy (C.2)

Here ψ is the non-dimensional streamfunction, R is a non-dimensional bottom friction

coefficient, and β is the non-dimensional β parameter, β = βdimL2

U
, representing the

ratio of the scales of the horizontal gradient in relative vorticity associated with the

inflowing jet to that of the horizontal gradient in planetary vorticity.

In the two-layer configuration, the model solves the Burger-number weighted
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barotropic and baroclinic equations formed from the layered version of the QGPVE

( 1
S2

x layer 1 + 1
S1

x layer 2 and layer 1 - layer 2 respectively), with bottom friction

acting on the lower layer vorticity, giving the barotropic vorticity prognostic equation:

∂
(

1
S2
q1 + 1

S1
q2
)

∂t
+

1

S2
J(ψ1, q1) +

1

S1
J(ψ2, q2) = − 1

S1
R∇2ψ2 (C.3)

and the baroclinic vorticity prognostic equation:

∂ (q1 − q2)

∂t
+ J(ψ1, q1) − J(ψ2, q2) + (

1

S1
+

1

S2
)J(ψ1, ψ2) = R∇2ψ2 (C.4)

with

qn = ∇2ψn + βy ∓ 1

Sn

(ψ1 − ψ2) n = 1, 2 (C.5)

ψn is the non-dimensional streamfunction in the nth layer, and Sn is the nth layer

Burger number, Sn = NDn

fL
, representing the ratio of the Rossby radius of deformation

to the jet width in each layer, and hence the relative importance of stratification in

the vertical to rotation in the horizontal.

The model is forced by the prescription of an unstable zonal jet on the western

boundary. For the cases discussed here, the streamfunction at x = 0 in the upper

layer is prescribed in the form of an error function:

ψ1(x = 0, y) = A erf(
ℓ

y
) (C.6)

producing a Gaussian jet in zonal velocity with amplitude 2√
π
A and half width ℓ. An

inflow can also be prescribed in the lower layer, but given my intentions to model

the WBC jet entering the open ocean from the coast, no flow was prescribed at the

western boundary in the lower layer for all cases discussed.

The jet must be removed from the domain at the eastern boundary. This is done

a sufficient distance downstream and in a manner that does not affect the upstream

dynamics studied. In practice the jet is removed in a state of marginal barotropic

stability (i.e. with a width given by ℓ =
(

−8Ae−1.5

β
√

π

)
−1

3 ), but upstream results are
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insensitive to outflow conditions as long as they are reasonable.

C.2 Numerical Method

Details on the numerical method can be found in Jayne and Hogg (1999). Briefly,

the time-rate of change of the barotropic and baroclinic vorticity is computed from

the layer streamfunction and vorticity fields and then, after solving for the barotropic

and baroclinic streamfunctions from the vorticity fields, the layer streamfunctions are

computed and stepped in time using a third-order Adams-Bashforth scheme (Durran,

1991). Integration in time and space is done using a scheme that is center differenced

in the two spatial dimensions (an “Arakawa A-grid”) and advective terms are handled

using the vorticity conserving scheme of Arakawa (1966). At each time step the

relative vorticity is inverted to find the streamfunction using the generalized Buneman

algorithm (Adams et al., 1988).

In the domain of interest, explicit friction is chosen to be as low as possible

consistent with numerical stability (a non-dimensional bottom friction coefficient of

R = 5 × 10−5 (barotropic case) and R = 5 × 10−9 (baroclinic case) is used). This

corresponds to a range of dimensional values for the dissipation time scale from ∼ 10

years for β = 0.04 to ∼ 102 years for β = 0.4 (barotropic case) and from ∼ 105 years

for β = 0.02 to ∼ 107 years for β = 0.9 (baroclinic case).

Dissipative sponge layers, 50 grid points wide, are placed next to all lateral bound-

aries to absorb all waves leaving the domain. The interior dynamics are insensitive

to the sponge layer width or decay constant.

The non-dimensional grid spacing is 0.2 (corresponding to a dimensional value of

∼ 10 km) and the number of grid points in the domain is 751 (E-W) by 401 (N-S).

With the origin at the N-S midpoint of the western boundary, this puts the eastern

boundary at x = 150 and the northern boundary at y = 40 non-dimensional units.

Dimensionally this corresponds to a domain of size ∼ 6000 km in zonal extent and

∼ 3200 km in meridional extent, of which I examine an interior domain of size ∼
3000-4000 km in zonal extent and ∼ 1600 km in meridional extent.
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C.3 Model Parameters

I fix the non-dimensional forcing parameters A (the jet strength) and ℓ (the jet width)

(|A| = ℓ = 1.0). Inflowing jet properties are then set by the value of non-dimensional

β, which can be thought of as setting the relative size of the horizontal shear of the

WBC and hence its supercriticality to barotropic instability. The WBC-typical runs

discussed have a value of β of 0.05, which results in a dimensional scaling that make

the inflowing jet profile consistent with the velocity and length scales of the Kuroshio

jet where it separates from the coast (Figure C-1). Parameter studies discussed vary

β in the range from 0.4 to 0.04 (barotropic case) and 0.9 to 0.02 (two-layer case), which

correspond to (taking the scale of the jet width to be fixed) a dimensional inflowing

jet strength, U , in the range of ∼ 0.1 to ∼ 1 m/s (barotropic case) and in the range

of ∼ 0.05 to ∼ 1.5 m/s (two-layer case). The GS has a value for non-dimensional β

in the range of 0.02-0.13 (Flierl et al., 1987).

In the case of the two-layer runs, upper and lower layer Burger numbers need also

to be specified. In all cases, a value of S1 of 1.0 and S2 of 4.0 are used, corresponding

to a thermocline depth of approximately ∼ 800 m in a ∼ 4000 m depth ocean, again

typical of KE and GS scales. The nature of the stability explored is almost certainly

dependent on the values of these parameters, although this is something not explored

in this work.
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Figure C-1: Inflowing jet profile for the WBC-typical model runs dimensionalized
according to the appropriate value of non-dimensional β (β=0.05 in this case) (left)
vs. the synoptic mean jet profile of the Kuroshio at the point of separation from the
coast (right). The Kuroshio profile is derived from satellite altimetry data (source:
AVISO) for the period 1992-2006. The time-mean (solid black line) and the mean
± its standard deviation (gray shading) profiles are shown. The profile is taken
at a longitude of 141oE (dashed line x = 0), corresponding to where the time-mean
Kuroshio path defined by the 2.1 SSH contour (solid black line) leaves the continental
slope (gray contours denote bathymetry (source: ETOPO5) with contour intervals
of 2000, 4000, 6000 and 8000 m depth) (upper right). See Chapter 4 for a complete
description of the synoptic mean calculation.
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Appendix D

Observational Data Processing

Procedures

D.1 Data Return

A summary of the data return for the KESS mooring array instrumentation is shown

in Figure D-1. The ADCP and current meters yielded almost complete time series

at all sites (>80% data return). The MMP deployment however was less successful:

MMPs stopped profiling in strong currents and in the winter months when some

experienced mechanical failures. This resulted in MMP data return at any given

depth at any given day only 55% of the time (note that the times when the MMPs

returned complete profiles was significantly less than this). It was as a consequence of

the incomplete and biased records of the MMPs, that this study restricted its upper

ocean analysis to satellite altimetry and ADCP data. The MMP measurements should

be revisited and will be useful for case studies of individual events when there is data

available.

D.2 Data Processing

Mooring measurements of velocity were corrected for mooring motion, low-passed

filtered and subsampled at one day. ADCP records were processed by Luc Rainville,
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Figure D-1: A line indicates times when measurements of the various instruments on
each of the moorings are good: ADCP (blue), MMP (red), VACM (black), and RCM-
11 at 2000, 3500 and 5000 m depth (gray). The ADCP and current meters yielded
almost complete time series at all sites (>80% data return) but MMPs returned only
partial records.
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VACM records by Maggie Cook, and the RCM-11 records by Nelson Hogg. RCM-11

velocities were adjusted by 10% to agree with the VACMs and Aquadopp current

meters. Small gaps in the record were filled with the value of the record mean in the

case of the ADCP measurements, and by a gap-filling procedure developed by Hogg

that used the records at other subthermocline depths plus the vertical structure of

the first EOF to reconstruct missing record values at deep levels.

D.3 Definition of a Stream-Coordinate System

To compute the stream-coordinate mean picture of the KESS mooring measurements,

I take the following steps: At each time step I 1. define the location and orientation

of the jet axis in the vicinity of the array; 2. calculate the distance of each mooring to

the closest point on the jet axis and the orientation of the jet axis there; and 3. rotate

the observed velocities based on that orientation into downstream and cross-stream

components (Figure D-2). Daily values of distance and velocity are then binned

according to distance from the jet axis and averaged in each bin. A bin size of 50 km

width was chosen to ensure a reasonable number of observations (> 200) in each bin

within ± 200 km from the jet axis (Figure D-3). The result of the procedure is a

profile of mean downstream and cross-stream velocity as a function of distance from

the jet axis.

To define the jet axis position and orientation in the vicinity of the mooring array,

I considered three independent proxies for the jet axis location: 1. the 2.1 m SSH

contour measured by satellite altimetry; 2. a proxy for thermocline depth (the 350

m depth contour of the 12◦ C isotherm) measured by the CPIES; and 3. the latitude

where the 11◦ C isotherm is at 250 m depth measured by the mooring array ADCP

measurements (Figure D-4). In the case of the later, because no information about

the orientation of the jet axis is given by this proxy, the angle of the jet’s orientation

was taken to be the orientation of the velocity vector with the largest eastward zonal

component measured by the array on that day. It was encouraging that all three

proxies gave very consistent results for both the jet axis position (Figure 4-12), and
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Figure D-2: An illustration of how the stream-coordinate frame is defined at each time
step. The location and orientation of the jet axis in the vicinity of the mooring array
is defined by a proxy (here the 350 m depth contour of the 12◦ C isotherm indicated by
the thick black line) (left). Distance from each mooring to the closest point on the jet
axis is calculated (green line), and velocities are rotated into downstream (blue) and
cross-stream (red) components based on the jet’s orientation at that point (right).
The example shown here is the calculation for 23 December 2004.

Figure D-3: An illustration of the calculation of the stream-coordinate mean jet struc-
ture at 250 m depth: a superposition of all the downstream velocity measurements
made by all moorings as a function of distance from the jet axis (left), a histogram
showing the number of observations in each distance bin (middle), and the bin aver-
aged downstream velocity as a function of distance from the jet axis (right).
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Figure D-4: An illustration of the three independent proxies for jet axis position.
The 2.1 SSH contour (thick black line) in the weekly SSH field measured by satellite
altimetry (left). The 350 m depth contour (thick black line) in the daily snapshot
of the depth of the 12◦ C isotherm measured by the CPIES array (middle). The
position of the 11◦ C isotherm (thick black line) in the daily snapshot of the cross-jet
distribution of temperature at 250 m depth measured by the mooring ADCPs (right).

the stream-coordinate structure derived form it, including the existence of westward

recirculations to both the north and south of the time-mean jet (Figure D-5). This

gives confidence that each is a useful way to determine the jet axis position. Note that

there are some differences between the definitions in the time-mean jet structure in

terms of the jet strength/transport, in particular the jet defined using the CPIES data

has significantly weaker velocity magnitudes and net transport than the jets defined

using the other two proxies. Reasons for the discrepancy are not yet understood.

A stream-coordinate mean system was also defined for the WESTPAC array moor-

ing measurements. Here neither altimetry data nor CPIES data was available, so the

position of the jet axis was taken to be that given by the latitude of the 6◦ C isotherm

at 500 m depth using the same method applied to the KESS ADCP data.

Finally, a stream-coordinate mean picture of the KE jet structure was computed

using the altimetry fields from the 14-year record (Figure D-6). Like in the calculation

for the mooring array observations, the stream-coordinate mean was computed by

defining the jet axis by the 2.1 m SSH contour, and then computing the distance
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Figure D-5: A comparison of the stream-coordinate description of the time-mean
jet structure computed using each of the three proxies for jet axis position: using
altimetry (left), using the CPIES data (middle), and using the ADCP data (right). As
in Figure 4-10, solid contours indicate positive (downstream) values of the time-mean
downstream velocity (in m/s) while dashed contours indicate negative (upstream)
values.
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Figure D-6: The stream-coordinate description of mean KE jet structure derived from
the 14-year satellite altimetry record. Contours are of the time-mean geostrophic
downstream velocity (in m/s) with solid contours indicating positive (downstream)
values while dashed contours indicate negative (upstream) values. For display pur-
poses, the calculation (done in distance coordinates) has been projected back onto a
latitude-longitude grid.

to the nearest point on the jet axis and rotating the velocities at each grid point.

Velocities were then binned and averaged based on distance from the jet axis at

each longitudinal grid point. This produced a series of meridional profiles of the

time-mean stream-coordinate jet structure at each 1
3
◦ longitude. As seen in Figure

D-6, the calculation revealed a series of closed recirculation gyres flanking the jet,

seemingly modulated by the quasi-stationary meanders in the time-mean jet’s path.

D.4 Ring Identification and Removal

The interaction of warm core and cold core rings with the moorings were identified

using a temperature criterion at 250 m depth. This was achieved by examining

the cross-jet profiles of temperature as a function of distance from the jet axis as

measured by the ADCPs. Large deviations from the mean temperature on the flanks
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Figure D-7: Cross-jet distributions of temperature at 250 m depth as a function of
distance from the jet axis for the full record (left) and the record with ring interactions
removed (right). Rings were identified by times when the temperature on the flanks
of the jet (outside ±85 km from the jet axis (thick dashed vertical lines)) was outside
one standard deviation (thick dashed horizontal lines) from the time-mean flanking
value (thick solid horizontal lines).

of the jet (specifically outside one standard deviation from the mean flanking value)

were flagged as being times when rings were interacting with the array. These times

were then cross-checked with altimetry snapshots. To remove times when rings were

interacting with the array, measurements at all depths were removed from the record

if this temperature criterion at 250 m depth was satisfied.
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Appendix E

Kuroshio Extension Relevant

Linear Stability Calculations

I consider KE-jet relevant linear stability calculations to compute the dynamical sig-

natures (timescales, length scales, cross-jet distributions of Reynolds stresses) that

could potentially be associated with the instability of the KE jet. By comparing ob-

served signatures to those predicted by these calculations, is then a way to evaluate

whether one sees evidence of potential jet instability. An outline of the calculations,

the results, and their relation to the KESS observations are briefly presented here.

E.1 Calculations

I consider the perturbation field that arises from the linear instability of a steady,

barotropically unstable jet profile in one-layer and two-layer configurations following

Kamenkovich and Pedlosky (1996). I solve the linearized quasi-geostrophic potential

vorticity equations for a specified basic state jet profile uniform in the along-jet di-

rection given by U(y) = U0 = (1 − y2)
3
, where U0 is the peak jet velocity at y = 0

and y is the meridional direction. The solution is obtained via a numerical “shooting

technique” that varies the complex phase speed until the numerical solutions in the

interior match the exterior analytic solutions at the edge of the jet. In the barotropic

case, this requires that the solution be continuous across the interface. In the two-
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layer case, continuity of the solution and its derivative is applied. The method gives

the values of the phase speed c (both real and imaginary), the meridional wavenum-

ber l (both real and imaginary), and the eigenfunction φ (the y-dependent part of

the perturbation stream function) inside the jet. From this, the oscillation frequency,

kcR where k is the zonal wavenumber and cR is the real part of the complex phase

speed, and the time-dependent velocity fields both inside and exterior to the jet can

be computed.

I perform the calculation for a range of values of the zonal wavenumber k and

examine:

• the different signatures of the sinuous vs. varicose mode

• the properties of the fastest growing and the most radiating mode

• the effect of tilt of the basic jet profile (of interest given the non-zonal nature

of the time-mean KE jet at the KESS location as a consequence of the quasi-

stationary meander)

• the effect of baroclinicity

E.2 Results and their Relation to the KESS Ob-

servations

The results of the calculations give information on the expected timescales, length

scales and the variance structure of the various modes considered, and permit com-

parison with the KESS observations.

(a) Time and length scales

The expected period of oscillation ( 2π
kcR

) and zonal wavelength (2π
k

) for a selection

of calculations are given in Tables E.1 and E.2 for the barotropic and two-layer

cases respectively. I consider both the sinuous and varicose modes for a zonal jet

and one tilted 30◦ to the southeast (to model the orientation of the time-mean jet at
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the KESS location). I also consider both the properties of the fastest growing mode

(i.e. the mode with the largest growth rate kci where ci is the imaginary part of the

complex wave speed) and the most radiating mode (the mode with the smallest ratio

of meridional wavelength to meridional decay scale given by the ratio of the imaginary

and real parts of the complex meridional wavenumber, li
lR

).

Mode oscillation period wavelength
(days) (km)

zonal sinuous fastest growing 25 300
varicose 20 500

tilted sinuous 20 300
varicose 20 500

zonal sinuous most radiating 500 800
varicose 400 1300

tilted sinuous 400 800
varicose 200 1300

Table E.1: Time and length scales for various linear instability modes: barotropic jet

Mode oscillation period wavelength
(days) (km)

zonal sinuous fastest growing 5 100
varicose 6 200

tilted sinuous 5 100
varicose 6 200

zonal sinuous most radiating 30 200
varicose 6 2000

tilted sinuous 50 200
varicose 20 2000

Table E.2: Time and length scales for various linear instability modes: baroclinic jet

In general, the calculations show that the varicose modes have universally larger

zonal wavelengths (smaller k) than the corresponding sinuous modes, and that the

fastest-growing modes have universally shorter periods of oscillation than the corre-

sponding most radiating modes. Adding tilt does not change the zonal wavelength,

but can significantly alter the growth rate, radiating properties, period of oscilla-

tion, and the meridional wavelength and decay scales. Adding tilt tends to decrease

the oscillation period, increase the meridional wavenumber (decrease the meridional
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wavelength), and increase the meridional decay scale at least in one direction. Adding

tilt also makes modes that were otherwise not strongly radiating ( lI
lR
> 1) radiating

( lI
lR
< 1) for the cases of both the sinuous and varicose modes. Finally, adding baro-

clinicity (here in the form of a quiescent lower layer) also can significantly alter the

time and length scales, and radiation properties. Baroclinicity uniformly reduces the

period and wavelength of all modes considered.

Interpreting the results in terms of their relevance to the scales of the KE allows

me to highlight certain modes as consistent with the observed scales, and hence

select potential candidates for the instability experienced by the KE jet. Many of the

modes considered do have oscillation periods on the order of the highest frequency

timescales observed as spectral peaks in the KESS velocity records. In particular, all

of the fastest growing barotropic modes (sinuous and varicose, zonal and tilted) have

oscillation periods that meet this criterion (i.e. periods on the order of 20-30 days).

In general, the barotropic most radiating modes have periods much longer than those

seen in observed spectra (400-500 days). Similarly, the barotropic fastest growing

modes tend to have zonal wavelengths consistent with KE scales (300-500 km), while

the most radiating modes tend to have unphysically long zonal wavelengths. Hence,

these observations suggest a potential relevance of the barotropic fastest growing

modes to the KE jet’s instability, while providing an argument against the relevance

of the barotropic most radiating modes.

If one considers the baroclinic results however, a different conclusion is reached.

As a consequence of the uniform decrease in both oscillation period and zonal wave-

length for all modes considered, with the addition of a second layer fastest growing

modes now have a period that is significantly less than the 20-50 day mesoscale

range, while the most radiating modes now have periods more consistent with the

observed timescales. The wavelengths associated with the varicose most radiating

modes remain unphysically large for KE scales, but the sinuous modes have physi-

cally reasonable length scales as well as timescales.
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(b) Variance structure

I also consider the meridional structure of the solutions as potential insight about

relevant instability modes can also come from the comparison of the observed cross-

jet distributions of Reynolds stresses and EKE with those predicted by the linear

stability calculations. Here I find that the structure of the perturbation field is not

altered by whether the fastest growing or most radiating mode is considered, but

rather distinguishes between the sinuous vs. varicose modes. Tilt plays an important

role by introducing asymmetry between north and south of the jet, making both

the meridional wavelength and decay scale different to the north vs. to the south.

Changing the meridional decay scale in particular introduces asymmetry into the

magnitudes of the perturbation field north vs. south of the jet, enhancing one flank’s

variance levels relative to the other.

Interpreting the results of solution structure in terms of their relevance to the

KESS observations (Figure E-1) shows that the single-peaked structure of the vari-

ances observed in the upper ocean by the KESS moorings is suggestive of the sinuous

mode, which is distinguishable from the varicose mode by its peak in u′u′ and EKE

at the jet axis as opposed to on the jet edges. This is consistent with the conclusion

of the baroclinic time and length scale calculations, and offers further support for the

hypothesis that the KE jet experiences a sinuous mode instability.
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Figure E-1: The cross-jet distributions of u′u′ (1st row), u′v′ (2nd row), v′v′ (3rd

row) and EKE = 1
2

(

u′u′ + v′v′
)

(4th row) observed at the KESS mooring array

(1st column) compared to those for the sinuous mode (2nd column) and the varicose
mode (3rd column) from the linear stability calculation for a zonal, barotropic jet.
As in Figure 4-24, the KESS observations are shown for the upper ocean (at 250
m depth) in black scaled by the left-hand axes, and the deep ocean (averaged over
1500 m, 2000 m, 3500 m and 5000 m depth) in gray scaled by the right-hand axes,
and velocity fields were band-passed filtered in the mesoscale range (periods of 10 -
100 days) before the variances and covariances were computed to clarify the cross-jet
variations. The gray shading indicates the width of the time-mean jet.
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