
Draut et al. page 1 of 27 

Arc-Continent Collision and the Formation of Continental Crust: A 

New Geochemical and Isotopic Record from the Ordovician 

Tyrone Igneous Complex, Ireland 

 

 

Amy E. Draut 

U.S. Geological Survey, Santa Cruz, CA 95060, U.S.A.  adraut@usgs.gov 

 

Peter D. Clift 

School of Geosciences, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom 

 

Jeffrey M. Amato 

Department of Geological Sciences, New Mexico State University, Las Cruces, NM 

88003, U.S.A. 

 

Jerzy Blusztajn and Hans Schouten 

Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods 

Hole, MA 02543, U.S.A. 

 

Abstract 

 Collisions between oceanic island-arc terranes and passive continental margins 

are thought to have been important in the formation of continental crust throughout much 

of Earth’s history. Magmatic evolution during this stage of the plate-tectonic cycle is 

evident in several areas of the Ordovician Grampian-Taconic Orogen, as we demonstrate 

in the first detailed geochemical study of the Tyrone Igneous Complex, Ireland. New U–

Pb zircon dating yields ages of 493 ± 2 Ma from a primitive mafic intrusion, indicating 

intra-oceanic subduction in Tremadoc time, and 475 ± 10 Ma from a light-rare-earth-

element (LREE)-enriched tonalite intrusion that incorporated Laurentian continental 

material by early Arenig time (Early Ordovician, Stage 2) during arc-continent collision. 

Notably, LREE enrichment in volcanism and silicic intrusions of the Tyrone Igneous 
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Complex exceeds that of average Dalradian (Laurentian) continental material which 

would have been thrust under the colliding forearc and potentially recycled into arc 

magmatism. This implies that crystal fractionation, in addition to magmatic mixing and 

assimilation, was important to the formation of new crust in the Grampian-Taconic 

Orogeny. Because similar super-enrichment of orogenic melts occurred elsewhere in the 

Caledonides in the British Isles and Newfoundland, the addition of new, highly enriched 

melt to this accreted arc terrane was apparently widespread spatially and temporally. 

Such super-enrichment of magmatism, especially if accompanied by loss of 

corresponding lower crustal residues, supports the theory that arc-continent collision 

plays an important role in altering bulk crustal composition toward typical values for 

ancient continental crust. 
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 The processes responsible for the formation and maintenance of the continental 

crust are complex and continue to be debated by Earth scientists. Although >40% of 

extant cratonal crust formed in Archean time (e.g., Rudnick & Fountain 1995; 

Hawkesworth & Kemp 2006), additional growth has occurred through accretion of 

oceanic arcs, plateaus, and microcontinental terranes, and by continental flood volcanism. 

Mass balancing suggests that arc accretion is essential to compensate for the ongoing loss 

of continental crust in subduction zones (Clift & Vannucchi 2004). Shared trace-element 

characteristics between intra-oceanic arc volcanism and continental material—relative 

depletion in high-field-strength elements (HFSEs), such as Nb, relative to light-rare-earth 

elements (LREE), K, and Ba—imply that continental material could form at convergent 

margins (e.g., Davidson 1996). However, the concept of island arcs being the building 

blocks of continents is not easily reconciled with the mafic, LREE-depleted composition 

of known oceanic arc crust compared to the andesitic, LREE-enriched continental crust 

(Taylor 1967; Bryan et al. 1972; Taylor & McLennan 1985; Ellam & Hawkesworth 

1988; Rudnick & Fountain 1995). Seismic-velocity profiles and field studies of the active 
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Aleutian arc (Holbrook et al. 1999) and ancient, accreted arc terranes in Kohistan (Miller 

& Christensen 1994) and Alaska (DeBari & Coleman 1989; Kelemen et al. 2003) reveal 

dominantly mafic and ultramafic arc crust inconsistent with development of average 

continental-type material; one notable exception is the observation of low-velocity, 

siliceous mid-crustal material in the Izu-Bonin Arc by Suyehiro et al. (1996). Pearcy et 

al. (1990) and Holbrook et al. (1999) proposed a resolution to this paradox: the process 

of arc-continent collision might alter the composition of arc crust such that the accreted 

crust is more LREE-enriched and andesitic than the arc crust before accretion. Based on 

the Early Ordovician accretion of an oceanic island arc onto the Laurentian continent as 

preserved in the Grampian Orogen of western Ireland (Connemara and South Mayo 

terranes; Fig. 1), Draut et al. (2002) showed that crystal fractionation producing LREE-

enriched, silica-rich melts, coupled with lower crustal loss after orogeny, could drive 

magmatic compositions toward that of average continental crust. Here, we revisit and 

expand that finding further to the northeast in the Caledonide suture zone. We document 

more fully the magmatic evolution that occurred during this arc-continent collision, and 

in doing so, we present the first detailed petrologic and geochemical study of the Tyrone 

Igneous Complex, Ireland. 

 

Geological Setting  

 Early Ordovician collision of an intra-oceanic island arc with the Laurentian 

passive continental margin was the first substantial orogenic event to occur as the Iapetus 

Ocean closed (van Staal et al. 1998, 2007). This event, which significantly pre-dates final 

closure of the Iapetus Ocean at ~400 Ma, is known as the Grampian Orogeny in the 

British Isles, where it formed part of the Caledonide suture zone, and as the Taconic 

Orogeny in its continuation in North America (northern Appalachian suture; e.g. Swinden 

et al. 1997; van Staal et al. 1998). Before collision, the intra-oceanic subduction zone 

involved a north-facing arc that formed above a south-dipping slab (Dewey & Ryan 

1990). This oceanic arc is known variously as the Lough Nafooey arc in Ireland (Clift & 

Ryan 1994; Draut & Clift 2001), the buried Midland Valley arc in Scotland (Armstrong 

& Owen 2001; Oliver et al. 2008), and the Shelburne Falls arc in New England 

(Karabinos et al. 1998), and is thought to correlate with the Baie Verte Oceanic Tract and 
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overlying Snooks Arm Group in Newfoundland (van Staal et al. 2007). In Newfoundland 

exposures, there is evidence that this arc, at least in that part of the margin, was built 

upon a microcontinent (Dashwoods block) that had rifted away from Laurentia in 

Cambrian time and was re-accreted onto the continent as the Grampian Orogeny 

progressed (Waldron & van Staal 2001).  

A reversal of subduction polarity followed arc-continent collision, with the new 

subducting plate dipping to the north beneath the active Laurentian margin (e.g. 

McKerrow et al. 1991). Although the post-collisional (continental) arc is not well 

exposed in Ireland, elsewhere in the Caledonide suture it is recognized as the Bronson 

Hill arc of New England (Karabinos et al. 1998), as the younger units of the Notre Dame 

terrane of Newfoundland (van Staal et al. 1998, 2007), and as related to the Southern 

Uplands accretionary prism in Scotland (Armstrong & Owen 2001). 

U–Pb analyses of zircon from syn-collisional gabbro intrusions in Connemara 

(Fig. 1; Cliff et al. 1996; Friedrich et al. 1999), and from tonalite and granitoid bodies in 

the Slishwood Division (Flowerdew et al. 2005), together with trace-element analyses of 

volcanic rocks from South Mayo in western Ireland (Draut & Clift 2001), indicate that 

the arc-continent collision event was brief in the British Isles, lasting approximately 10 

My (~475 to 465 Ma). Nd isotopic ratios of plagiogranite clasts from South Mayo imply 

that continental material started to enter the trench as early as ca. 490 Ma, substantially 

earlier than regional metamorphism and orogeny (Chew et al. 2007). Other age 

constraints on the Grampian Orogeny in Ireland include mineral cooling ages from 

Connemara (Friedrich et al. 1999) and the Slishwood Division (Flowerdew et al. 2000; 

Fig. 1), which indicated rapid orogenic exhumation after ca. 460 Ma, and detailed 

graptolite biostratigraphy from pre-, syn-, and post-collisional volcaniclastic rocks in 

South Mayo (Graham et al. 1989); see Dewey & Mange (1999) for a detailed discussion 

of stratigraphic age correlation in Grampian units of South Mayo and Connemara.  

The Tyrone Igneous Complex (TIC), covering ~350 km2 of Counties Tyrone and 

Londonderry, Northern Ireland, was described by Hartley (1933) as consisting of a 

dominantly mafic plutonic complex with younger silicic intrusions (Stillman 1981; 

Tyrone Plutonic Group of Cooper et al. 2008) that Hutton et al. (1985) identified as an 

ophiolite related to the Ballantrae ophiolite in SW Scotland (Bluck 1985), and a silicic 
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volcanic sequence (Tyrone Volcanic Group of Cooper et al. 2008). Structurally below 

both groups is the high-grade metasedimentary Tyrone Central Inlier. The lithology of 

the Tyrone Central Inlier suggested possible correlation with Dalradian (Laurentian 

passive margin) units from which it could have been offset by post-Grampian strike-slip 

faulting (cf. Dewey & Shackleton 1984). Structural, thermochronological, and detrital-

zircon analyses led Chew et al. (2008) to interpret the Tyrone Central Inlier as a 

microcontinental block with which the Lough Nafooey arc collided ca. 475 Ma, before 

accretion of the amalgamated arc/microcontinent onto Laurentia proper as the Grampian 

Orogeny progressed (cf. Dashwoods microcontinent of Waldron & van Staal 2001; van 

Staal et al. 2007). The entire TIC is bounded to the northwest by a 10-km-thick ductile 

shear zone along the NE-trending Omagh Thrust, which emplaced Dalradian rocks over 

the TIC during the Caledonide Orogeny and which was reactivated during Late Paleozoic 

time (Alsop & Hutton 1993; Figs. 1, 2). 

The TIC was assigned an Arenig-Llanvirn age (478–461; we use the traditional 

stage names of Tucker & McKerrow (1995) although some of those do not appear on the 

more recent geologic time scale by Gradstein et al. (2004), whose stage-boundary ages 

we use) based on a graptolite specimen from shales interbedded with the volcanic 

sequence, first analyzed by Hartley (1936) and reinterpreted by Hutton and Holland 

(1992). The mafic assemblage of the TIC is intruded by a siliceous pluton near 

Craigballyharky (Fig. 1) from which Hutton et al. (1985) obtained an Arenig U–Pb 

zircon age of 471 +2/-4 Ma. Cooper et al. (2008) acquired a U–Pb zircon age of 473 ± 

0.8 Ma from a rhyolite exposure within the Tyrone Volcanic Group, and further refined a 

biostratigraphic age by identifying Arenig (Whitlandian) graptolite specimens in the 

northeastern exposures of the volcanic assemblage.  

Despite several detailed structural and age-determining studies, the geochemistry 

of the TIC has remained largely unknown. Here, we present major- and trace-element 

analyses, and Nd isotopic data, from rocks of the Tyrone Plutonic Group, the Tyrone 

Volcanic Group, and from igneous intrusions within them, as well as two new U–Pb 

zircon ages. These new data constrain the tectonic setting of the magmatism and trace the 

magmatic evolution corresponding to significant tectonic events in the early history of 

Iapetus Ocean closure. We demonstrate that the TIC corresponds to the arc units exposed 
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in Connemara and South Mayo, along the strike of the Grampian suture zone. By 

comparing the geochemical progression during arc-continent collision as recorded in the 

TIC with that of other Caledonide exposures in the British Isles and North America, we 

assess on a regional basis whether magmatism accompanying this terrane accretion could 

drive the bulk composition of accreted arc crust toward that of average continental crust, 

thereby testing a subduction-zone origin for the formation of continents. 

  

Sampling and Analytical Methods  

 

 Rock samples were collected from the TIC at sites shown on Figure 1 and 

specified in Table 1. Localities sampled within the Tyrone Plutonic Group include 

outcrops near Craigballyharky, an active quarry near Carrickmore, and outcrops on a hill 

known as the Scalp. Sample localities within the Tyrone Volcanic Group include 

outcrops near Lougham Crory, Leaghan, east and southeast of Greencastle, in the Sperrin 

Mountains east of the Omagh Thrust, and three quarries sampled in and around 

Mountfield. In this initial survey we sampled a variety of lithologies at different 

stratigraphic levels in the TIC to evaluate the diversity of compositions erupted at 

different stages in the generation of the igneous complex. More detailed sampling of 

limited regions may be appropriate in future focused studies. 

 

Geochemical and Nd Isotopic Analyses 

The major-element content of 34 powdered whole-rock samples was determined 

by X-ray fluorescence (XRF) using a Philips PW2404 automatic X-ray spectrometer at 

the University of Edinburgh. XRF techniques, and analytical accuracy and precision, 

were essentially those described by Fitton et al. (1998) with modifications noted by 

Fitton & Godard (2004). Trace-element composition was determined for the same 34 

whole-rock samples by inductively coupled plasma mass spectrometry (ICP-MS) at 

Washington State University. U.S. Geological Survey standard BCR-1 was used to 

determine internal and external precision of the ICP-MS analyses. Uncertainty, 

determined from duplicate analyses of samples and standards, is <3% for REEs and <5% 

for other elements.  



Draut et al. page 7 of 27 

A subset of 11 samples were selected for Nd isotopic analysis using a Neptune 

multi-collector ICP-MS at the Woods Hole Oceanographic Institution. The precision of 

Nd data is better than 0.002%. Reproducibility is better than 0.003% based on multiple 

analyses of a La Jolla standard. An age correction (DePaolo & Wasserburg 1976) was 

performed to account for radioactive decay of 147Sm to 143Nd since eruption, taken to be 

470 Ma; values for that time are reported as Nd(t). 

 

U–Pb Geochronology 

 Two additional rock samples were collected from which zircon grains were 

separated for U–Pb dating. One was a gabbro sample from the Craigballyharky area 

(sample TY07043003, from the same outcrop as samples TY07043001 and TY07043002, 

which were analyzed for geochemistry and Nd isotopes; Table 1). The other was a 

tonalite sample collected near Leaghan (sample TY07050204, from the same outcrop as 

sample TY07050115, which was analyzed for geochemistry and Nd isotopes; Table 1). 

U–Pb dating was conducted using SHRIMP-RG (sensitive high-resolution ion 

microprobe, reverse geometry) at the U.S. Geological Survey–Stanford University Ion 

Probe Facility. Approximately 10 kg of sample were crushed using a jaw crusher and disc 

grinder and processed for mineral separations using a Gemeni water table. Zircon grains 

were concentrated using methylene iodide (MEI) and a Frantz magnetic separator. 

Zircons were hand-picked from material that sank in MEI and was non-magnetic at 1.8 

A. Errors on spot ages of individual zircons grains are reported at 1, and weighted mean 

ages were calculated and reported at the 2 level. About 30–50 zircons were put on 2.5 

cm epoxy mounts for individual analysis. A 30-m diameter, 8–12 nA O2 primary beam 

was used to sputter the zircon grains for analysis, following 90 seconds of rastering to 

remove potential surface contamination. U, Th, and Pb concentrations were standardized 

against RG-6 zircons that were analyzed after every four unknown analyses. Data were 

reduced using the SQUID program (Ludwig 2001). Decay constants of Steiger & Jäger 

(1977) were used for all U–Pb dating. Pb/U ratios were corrected for common Pb using 
204Pb and the model Pb evolution curve of Stacey & Kramers (1975). Weighted mean U–

Pb ages and Concordia plots were derived using Isoplot (Ludwig 2003). LA-MC-ICPMS 
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(laser ablation, multi-collector, inductively coupled plasma mass-spectrometry) dating of 

inherited zircons was conducted at the University of Arizona LaserChron laboratory. A 

35-m diameter beam was used. Further details of LA-MC-ICPMS dating techniques can 

be found in Gehrels et al. (2008). 

 

 

Results 

 

Geochemical and Nd Isotopic Analyses 

 Chemical compositions in the Tyrone Plutonic Group rocks indicate a dominantly 

mafic host rock intruded by multiple siliceous plutons and associated dykes. Silicic 

intrusions were observed in outcrop at the Craigballyharky and Scalp localities; granite 

sampled at Craigballyharky was the same intrusion as the “tonalite” from which Hutton 

et al. (1985) obtained a U–Pb intrusion age of 471 +2/-4 Ma. At the active quarry in 

Carrickmore, the same locality where Hutton et al. (1985) described an ophiolite sheeted 

dyke complex, fresh gabbro and basalt, including well exposed dykes, were abundant in 

the quarry walls exposed in 2007. However, the unequivocal sheeted-dyke characteristics 

described by Hutton et al. were not observed. Mafic samples from all three localities in 

the Tyrone Plutonic Group are tholeiitic (with exception of one alkali gabbro at 

Carrickmore; Fig. 3) with trace-element compositions characteristic of island-arc tholeiite 

(Pearce & Cann 1973; Fig. 4). Mafic samples of the Tyrone Plutonic Group are generally 

LREE-depleted (Fig. 5), relatively depleted in HFSEs (e.g., Nb, Zr), and enriched in Pb 

(Fig. 6), consistent with a supra-subduction-zone origin. LREE enrichment in some mafic 

samples from Craigballyharky may have been caused by small veins from the adjacent 

granitic intrusion having been present in the sampled rocks.  

Nd(t) values for Carrickmore quarry samples are typical of oceanic petrogenesis, 

at +5.9 and +7.2 for dolerite and gabbro samples, respectively. Similarly, gabbro sampled 

at the Scalp gave an Nd(t) value of +4.5. At Craigballyharky, a more continental Nd(t) 

value of –5.9 from a gabbro may have been influenced (as mentioned above) by 

inadvertently sampled veins from the granitic intrusion that has a strong continental 
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signature (Nd(t) –12.2; sample TY07043004 in Table 1). Intermediate and felsic samples 

from the Tyrone Plutonic Group show pronounced geochemical differences from the 

mafic rocks into which they intruded—granite and tonalite samples from Craigballyharky 

and the Scalp are enriched in LREE and other incompatible trace elements, while still 

showing HFSE depletion and Pb enrichment. Plotted on the granite discrimination 

diagram of Pearce et al. (1984), granitic samples from Craigballyharky indicate a syn-

collisional affinity, while other samples generally fall within the volcanic-arc field (Fig. 

7).  

 The Tyrone Volcanic Group, exposed north of the Tyrone Plutonic Group and 

Tyrone Central Inlier, shows a broader range of major-element composition than do the 

plutonic rocks. All Tyrone Volcanic Group samples are LREE-enriched (Fig. 5), and all 

samples except those from the Mountfield quarries exhibit subduction-zone HFSE 

depletion and Pb enrichment (Fig. 6). Several samples gave relatively continental Nd 

isotopic signatures: Nd(t) of –9.2 in a diorite SE of Greencastle, and –8.9 to –11.5 in 

tonalite and rhyolite near Leaghan (Table 1). However, calc-alkaline pillow basalts near 

Lougham Crory had a more oceanic Nd(t) signature of +2.4. Mafic volcanic rocks 

sampled near Mountfield, stratigraphically close to the top of the section (Cooper et al. 

2008) and just below the Omagh Thrust, are generally alkaline (Fig. 3), show a lesser 

degree of LREE enrichment than other Tyrone Volcanic Group rocks, and show no HFSE 

depletion that would characterise supra-subduction-zone magmatism (Fig. 6). Mountfield 

rocks have trace-element signatures more similar to within-plate magmatism than to 

volcanic arcs according to the scheme of Pearce & Cann (1973; Figs. 4 and 7). The Nd(t) 

value of a basalt sample from one Mountfield quarry was +1.3. 

  

U–Pb Geochronology 

 Eight zircon grains were analyzed from a gabbro sample (Table 2) collected at 

Craigballyharky within the Tyrone Plutonic Group, the host rock into which granitic melt 

intruded at ca. 471 Ma (Hutton et al. 1985). Zircon grains had very high U concentrations 

(852–8090 ppm). The grain with 8090 ppm U and ca. 5% Th was reversely discordant 
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and was not used in the age calculation as extremely high-U zircons typically yield 

unreliable ages using SHRIMP. The weighted mean 238U/206Pb age of the oldest three 

concordant ages from the gabbro was 493 ± 2 Ma (MSWD=0.36), interpreted as the 

magmatic age of the gabbro (Figs. 8a, 9). The 2 analytical uncertainty is low because 

only three analyses with high precision were used to calculate the mean. Three younger 

zircons with ages around 470 Ma are possibly attributable to veins of granitic material of 

that age (from the adjacent intrusion, as mentioned above) having been accidentally 

included in the whole-rock sample from which these zircons were separated. The two 

youngest ages are interpreted as having experienced Pb loss.  

 The tonalite intrusion sampled near Leaghan, in the Tyrone Volcanic Group 

(sample TY07050204), yielded 10 Palaeozoic zircon grains (Fig. 10) with U 

concentrations 93–368 ppm. The ages are all concordant but vary in age from 499 to 454 

Ma. It is possible that the zircons of approximately 490 Ma were inherited from earlier 

arc magmatism (such as that of the Tyrone Plutonic Group, as in our gabbro sample 

discussed above), but the distinctive high-U composition of the zircons in the gabbro 

(sample TY07043003) was not observed in the tonalite zircon sample. It is also possible 

that the two younger zircons experienced Pb loss, but the low U concentrations in the 

tonalite zircons makes this less likely. A weighted mean of all of the Palaeozoic 
206Pb/238U ages is 475 ± 10 Ma, with a high MSWD (Fig. 8b). We also dated Archaean 

cores in three zircon grains from the Leaghan tonalite sample using SHRIMP and LA-

MC-ICPMS (laser ablation multi-collector inductively coupled plasma mass 

spectrometry); two of those dates are concordant and have 207Pb/206Pb ages of 2.25 Ga 

and 2.32 Ga. The other was discordant and has a 207Pb/206Pb age of 2.58 Ga. 

 

Discussion 

 

Tectonic Affinity of the Tyrone Igneous Complex 

 The pervasive supra-subduction-zone and island-arc-tholeiite geochemical 

signatures in rocks of the TIC, together with their Early Ordovician age, confirm that 

these units formed within an intra-oceanic subudction-zone setting in the Iapetus Ocean 

and thus are part of the accreted island-arc terrane complex within the Grampian suture. 
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We interpret the Tyrone Plutonic Group and Tyrone Volcanic Group to represent, 

respectively, the primitive intra-oceanic phase of the Lough Nafooey Arc and the syn- 

and post-collisional upper crust of the accreted arc. Although consistent with the oceanic-

crust interpretation of Hutton et al. (1985), the geochemical characteristics of the Tyrone 

Plutonic Group indicate it is not an ophiolite formed at a mid-ocean ridge, but one that 

formed by magmatism at a subduction zone, as have most large ophiolites (Bloomer et al. 

1995).  

Having correlated the TIC with other accreted-arc units in the Grampian suture 

zone, we can use geochemistry and Nd isotopic composition to compare Grampian 

tectonics recorded by rocks in the TIC with those in South Mayo and Connemara, 

situated 170 km to the southwest (Fig. 11). As the most primitive portions of the TIC, 

mafic assemblages of the Tyrone Plutonic Group have trace-element signatures and Nd 

isotope ratios similar to, or more primitive than, those of modern western Pacific intra-

oceanic arcs (Fig. 6; e.g., Ewart & Hawkesworth 1987; Pearce et al. 2005). Disregarding 

gabbro samples from Craigballyharky that were likely contaminated by granitic intrusion 

around 471 Ma (the gabbro being LREE-enriched and with Nd(t)
 of –5.9), mafic units of 

the Tyrone Plutonic Group apparently formed in a purely intra-oceanic subduction setting 

in Tremadoc time (ca. 493 Ma) with no continent-derived material involved in 

petrogenesis. As such, these mafic units are inferred to correlate with primitive basalts of 

the Bohaun Group and the lower Lough Nafooey Group of South Mayo (Fig. 11; Clift & 

Ryan 1994; Draut & Clift 2001).  

 Through late Tremadoc time (as early as 490 Ma; Chew et al. 2007), the Lough 

Nafooey arc neared the continental margin of Laurentia, and, along at least part of the 

subduction zone, amalgamated with a microcontinental terrane outboard of Laurentia 

before full arc-continent collision began (Waldron & van Staal 2001; Flowerdew et al. 

2005; Chew et al. 2008). Given the proximity of the TIC to the Slishwood Division (Fig. 

1) and the fault-bounded Tyrone Central Inlier, early Arenig magmatism recorded in the 

TIC probably reflects amalgamation of the oceanic arc with a continental fragment, most 

likely the Tyrone Central Inlier as proposed by Chew et al. (2008). Such an event could 

explain the lowering of Nd(t)
 values, but not as low as to normal continental values; Nd(t) 
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of +2.4 observed in mafic volcanism at Lougham Crory is still substantially more 

primitive than Laurentian (Dalradian) crust (Draut et al. 2004). Similar lowering of Nd 

isotopic ratios to weakly oceanic values occurs in the upper Lough Nafooey Group of 

South Mayo, a stage referred to as “soft collision” (involving continental sediment and 

outermost continental crust) by Draut et al. (2002).  

 By early to middle Arenig time (ca. 478–475 Ma), “hard” collision (orogeny and 

regional deformation) is inferred to be the reason for strongly LREE-enriched volcanism 

at Lougham Crory, southeast of Greencastle, and elsewhere in the Tyrone Volcanic 

Group. This tectonic stage would have involved collision of an amalgamated arc-

microcontinent with the Laurentian margin, which was under way at least by ca. 474 Ma, 

based on the ages of the oldest syn-collisional intrusions in Connemara (Friedrich et al. 

1999; Fig. 11), and which are consistent with our 475 ± 10 Ma U–Pb zircon age obtained 

for the Leaghan tonalite (Fig. 8b). Our new data are consistent, therefore, with the 

tectonic model illustrated by Chew et al. (2008). Subduction-related trace-element signals 

persisted in the Tyrone Volcanic Group (e.g., relative Nb depletion; Fig. 6), possibly 

reflecting development of a continental arc as subduction polarity reversed (Dewey & 

Ryan 1990). Tonalitic-granitic intrusion accompanied this stage of orogeny and 

subduction polarity flip, affecting rocks of both the Tyrone Plutonic Group and the 

Tyrone Volcanic Group. Intrusion and eruption of silicic melts concentrated around 475–

471 Ma in the TIC (our tonalite date and those of Hutton et al. 1985 and Cooper et al. 

2008), but continued until 462 Ma in Connemara as the orogen collapsed and was 

exhumed (Friedrich et al. 1999; Clift et al. 2004). As in volcanic rocks of the 

Tourmakeady Group in South Mayo, TIC petrogenesis accompanying hard collision 

involved recycling of continental material. Continental wallrock incorporated by 

intruding melt explains the strongly continental Nd(t)
 values in Tyrone Volcanic Group 

samples and the presence of Archaean zircons in the Leaghan tonalite; the most evolved 

TIC samples show that intrusion occurred in a syn- or post-collisional setting (Fig. 7). 

Similar to the 2.58 Ga zircon core found in our Leaghan tonalite sample, detrital zircons 

from metasedimentary rocks in the Tyrone Central Inlier (Chew et al. 2008) and in the 

Argyll and Southern Highland Groups of the Dalradian metasedimentary rocks in 

Scotland (Cawood et al. 2003, 2007) contain populations dated to 2.5–2.7 Ga.  
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 The tectonic affinity of rocks sampled in three quarries near Mountfield (Tyrone 

Volcanic Group) remains unclear. Sampled rock types included fresh pyroxene-phyric 

basalt and tectonized basalt with minor quartz veins. At one quarry, metasedimentary 

rocks (not sampled) appeared to be tectonically interleaved with basalt, although the 

basalt composition sampled there (sample TY07050201) did not differ substantially from 

samples at other Mountfield quarries where metasedimentary rocks are absent. The lack 

of a strong relative Nb depletion demonstrates that the Mountfield volcanic rocks were 

not generated above a rapidly subducting oceanic slab. Mountfield basalts are also more 

evolved than other mafic rocks of the TIC (Fig. 3), and show within-plate magmatic 

affinity according to the scheme of Pearce & Cann (1973; Figs. 4, 7), though they display 

weakly oceanic Nd(t)values. Contamination by Dalradian metasedimentary material 

during shearing along the Omagh Thrust is considered unlikely because addition of any 

fluid derived from Dalradian rocks would be expected to cause further relative depletion 

of fluid-immobile Nb. Based on their stratigraphic position near the top of the TIC 

volcanic exposures (Cooper et al. 2008), we infer that the Mountfield basalts most likely 

formed late in the Grampian Orogeny when no strong plate underthrusting occurred, 

perhaps contemporaneously with subduction polarity reversal and/or gravitationally 

induced loss of the lower crust. The lower degree of LREE enrichment in Mountfield 

samples compared to others from the Tyrone Volcanic Group is consistent with high heat 

flow having increased the melting percentage late in the orogeny, as would occur after 

lower crustal loss (Kay & Kay 1993).  

 

The Grampian-Taconic Orogen and Formation of Continental Crust 

 Silicic lavas of the Tyrone Volcanic Group, as well as the tonalite and granite that 

intrude the TIC, show pronounced relative enrichment of LREEs, as reflected by the 

La/Sm ratios (Fig. 11). Some of these rocks are more LREE-enriched than bulk 

continental crust (which has chondrite-normalized La/Sm of ~3.0; Taylor & McLennan 

1981; Rudnick & Fountain 1995), and some are more LREE-enriched than typical Irish 

Dalradian composition, from which material was incorporated in syn-collisional melts 

(average chondrite-normalized La/Sm ranges from 0.5 to 3.5 for various Irish Dalradian 

units, based on calculations using data of Senior & Leake 1978). Pronounced LREE 
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enrichment in syn- and post-collisional volcanic units of the TIC, South Mayo, and some 

Connemara plutons indicates that crystal fractionation played an important role during 

and after Grampian collision, enriching magmatism more than could occur simply from 

mixing of continental and primitive-arc melts (cf. Draut et al. 2002). Using the standard 

equation for fractional crystallization, assuming a typical basaltic parent melt of 20% 

olivine, 30% clinopyroxene, and 50% plagioclase, and using bulk partition coefficients of 

La and Sm in the parent melt of 0.1131 and 0.1709, respectively (Rollinson 1993), a 

chondrite-normalized La/Sm ratio of 4 is reached when fractional crystallization has 

progressed far enough that the melt fraction is reduced to ~40%. Chondrite-normalized 

La/Sm ratios above 5, seen in one TIC sample (a dacite collected southeast of 

Greencastle), require melt fractions <2%. Derivation of all the TIC magmatic products by 

crystal fractionation in only one parent magma is neither required nor likely; such 

calculations simply demonstrate that this degree of LREE enrichment can be readily 

attained by crystal fractionation but cannot be explained only by mixing bulk continental 

melt with mafic arc melt (because the degree of LREE enrichment in some TIC samples 

is substantially higher than that of continental crust). Because new, mantle-derived 

magmatism constituted at least 20% of the crustal material accreted in the Grampian 

collision, rather than merely re-melting of pre-existing crust (calculations of Draut et al. 

2004), the highly enriched character of that much new crust could effectively drive the 

bulk composition of the accreted arc terrane toward the composition of average 

(andesitic, LREE-enriched) continental crust, especially if accompanied by loss of 

corresponding dense lower-crustal residues (discussed below). 

 Having demonstrated the highly LREE-enriched composition of volcanic and 

plutonic units emplaced during the Grampian Orogeny into the TIC (this study) as well as 

in South Mayo and Connemara (Draut et al. 2002), it is worthwhile to assess whether 

such trends represent isolated occurrences of super-enriched magmatism in Ireland or are 

also present elsewhere along the Caledonide suture. Calculations using ICP-MS trace-

element data of Steinhoefel et al. (2008) from the Grampian Highlands in Scotland, 

associated with the same arc-continent collision, show only one granitic syn-collisional 

intrusion more LREE-enriched than both average continental crust and typical Dalradian 

compositions (sample M-4 of Steinhoefel et al. 2008, with a chondrite-normalized La/Sm 
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ratio of 4.92). However, LREE enrichment was consistently greater than that of 

Dalradian and bulk continental crust in Grampian Highland intrusions that represent later 

continental arc activity and the docking of the Avalonian continental block against 

Laurentia (several intrusions with La/Sm >5; Steinhoefel et al. 2008; Oliver et al. 2008). 

 Farther along the strike of the Grampian-Taconic Orogen, super-enriched syn-

collisional magmatism is also apparent in the 50-km-wide Notre Dame subzone, 

Newfoundland, identified as containing Ordovician accreted arc units approximately 

equivalent to those studied in Ireland and Scotland (e.g., Whalen et al. 1997; van Staal et 

al. 1998, 2007). Within the Notre Dame subzone, 35 of 172 samples that span the age 

range of the Grampian-Taconic Orogeny show chondrite-normalized La/Sm ratios >4, 

ranging to >10 (our calculations using data from Whalen et al. 1997 and Rogers 2004). 

These highly enriched compositions occur in the Cape Ray granodiorite complex (488 

Ma) and the Cormacks Lake tonalitic orthogneiss (483 Ma), both identified by van Staal 

et al. (2007) as associated with the first phase of Notre Dame arc activity (i.e., 

amalgamation of the Notre Dame arc and Dashwoods microcontinent; 490–480 Ma). 

Strong LREE enrichment continued during the second phase of Notre Dame arc activity, 

as the Dashwoods terrane collided with Laurentia, reflected in igneous complexes dated 

to 480-459 Ma (Southwest Brook and Hungry Mountain Complexes; van Staal et al. 

2007). We infer, therefore, that the eruption and intrusion of super-enriched magmatism 

associated with this Ordovician arc-continent collision was not a rare phenomenon 

restricted to one part of the Irish Caledonides, but was spatially and temporally pervasive 

during the Grampian-Taconic Orogeny. As such, the generation of melts more enriched 

than the local continental crust during an arc accretion event is likely a common process 

widespread enough to drive the bulk composition of accreted crust toward typical 

continental values on a regional scale. 

 In addition to the formation of highly enriched melts, loss of corresponding dense, 

depleted residues (cumulates) in the lower crust is also required for accreted arc crust to 

attain a composition close to that of continental material. Removal of the lower crust by 

delamination (Bird 1978) or convective instability (Jull & Kelemen 2001) is believed to 

have occurred in other arc settings (e.g., Kay et al. 1994; Ducea & Saleeby 1998), and 

may have contributed to rapid orogenic exhumation and collapse after the Grampian 
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Orogeny in western Ireland (Flowerdew et al. 2000; Draut et al. 2002). Seismic profiles 

across the Caledonide suture zone show that no Ordovician lower crust is present today 

beneath Connemara (Klemperer et al. 1991), although the timing of its loss cannot be 

known with certainty. We speculate that the anomalous geochemistry of the Mountfield 

samples relative to other Tyrone Volcanic Group units (within-plate affinity, less LREE 

enrichment, and weak or absent subduction-zone signature) may have been related to 

magmatism following loss of the lower crust in the late stages of the Grampian Orogeny. 

In terms of their mafic composition and trace-element characteristics (e.g., La/Yb ratios 

and lack of relative HFSE depletion) our Mountfield samples resemble lavas from the 

Puna Plateau of the Andes, which are associated with melting above a zone of lower-

crustal loss (Kay & Kay 1993). 

 

Conclusions 

 Primitive mafic intrusions of the Tyrone Igneous Complex, Ireland, indicate intra-

oceanic arc activity no later than ca. 493 Ma (Tremadoc), followed by a transition to 

more enriched magmatism as arc-continent collision began. LREE-enriched sialic 

magmatism linked to mixing of mantle melts with Laurentian continental material had 

begun by early Arenig time, as is evident from incorporation of Archaean zircon grains 

into a tonalite intrusion ca. 475 Ma. The degree of LREE enrichment in Arenig volcanism 

and silicic intrusions of the TIC exceeds that of the Dalradian continental material which 

would have been thrust under the colliding forearc and potentially recycled into arc 

magmatism. Magmatic compositions therefore cannot be explained simply by mixing 

primitive melts with assimilated continental material. Rather, substantial crystal 

fractionation (melt fractions 2–40%) must have accompanied the formation of new crust 

in the Grampian-Taconic Orogeny. As the super-enrichment of orogenic melts is 

observed elsewhere in the Caledonide suture in both the British Isles and in 

Newfoundland, the addition of new, highly enriched melt to this accreted arc terrane was 

apparently widespread, and, particularly if accompanied by loss of the dense lower crust, 

could drive the bulk composition of accreted crust toward that of enriched continental 

crust. This, therefore, supports the theory that arc-continent collision has played an 

important role in forming extant continental crust. 
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Figure Captions 

 

Table 1. Sample numbers, localities (in Irish grid coordinates), and rock types; (A) major-

element percentages, and loss-on-ignition; (B) Trace- and rare-earth-element 

concentrations (ppm) and Nd isotopic ratios of TIC whole-rock samples. Nd isotopic 

results are reported as measured 143Nd/144Nd ratios and as Nd(t), age-corrected for decay 

of 147Sm to 143Nd (using Sm and Nd concentrations obtained by ICP-MS analyses and 

assuming an age of 470 Ma). 

 

Table 2. U–Pb zircon data collected by SHRIMP and LA-ICP-MS. 

 

Figure 1. Geologic map of the Tyrone Igneous Complex (TIC), based on published maps 

(Institute of Geological Sciences 1978a, b; Geological Survey of Northern Ireland 1995). 

Sampled localities are indicated in the TIC, with the final five digits of sample numbers 
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(see Table 1 for full sample names and descriptions). The intrusion dated by Hutton et al. 

(1985) was sampled in the Craigballyharky area near our samples TY07043001–3. The 

region shown as “other volcanic rocks” contains poorly exposed rocks mapped by the 

Geological Survey of Northern Ireland as basalts and basaltic andesites.  Inset map shows 

the TIC in the context of the Caledonide suture zone in the British Isles: major faults 

(GGF, Great Glen Fault; HBF, Highland Boundary Fault; FCBL, Fairhead–Clew Bay 

Line; SUP, Southern Uplands Fault) and the Midland Valley Terrane (MVT) of Scotland, 

as well as Grampian exposures in Ireland (Connemara, South Mayo, Slishwood Division, 

and TIC). Line A–A’ shows the orientation of the schematic cross-section in Figure 2. 

 

Figure 2. Schematic cross-section across the Tyrone Igneous Complex from northwest to 

southeast, oriented along the line A–A’ on Figure 1 (after Chew et al. 2008 and 

Geological Survey of Northern Ireland maps).   

 

Figure 3. Plot of silica vs. alkali components in all TIC samples, with the division 

between tholeiitic and alkaline compositions indicated for the mafic end of the spectrum 

(after Rollinson 1993).  

 

Figure 4. Ternary Ti/100-Zr-Yx3 discrimination diagram for TIC (mafic samples only), 

after Pearce & Cann (1973). Polygonal fields represent (A) island-arc tholeiites; (B) mid-

ocean-ridge basalt (MORB); (C) calc-alkali basalts; (D) within-plate basalts.  

 

Figure 5. Chondrite-normalized rare-earth-element (REE) plots for all TIC samples; C1 

chondrite values from Anders & Grevesse (1989). For comparison, the shaded regions 

show the range of average REE compositions of lavas from various parts of the intra-

oceanic Mariana Arc (from Pearce et al. 2005). 

 

Figure 6. Multi-element discrimination diagrams (after Pearce 1982) for all TIC samples, 

with element concentrations normalized against normal mid-ocean-ridge basalt (N-

MORB) values of Sun & McDonough (1989). For comparison, the shaded regions show 
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the range of average compositions of lavas from various parts of the intra-oceanic 

Mariana Arc (from Pearce et al. 2005). 

 

Figure 7. All TIC samples plotted on a Rb-(Nb + Y) discrimination diagram (after Pearce 

et al. 1984). Fields indicate syn-collisional granites (syn-COLG), within-plate granites 

(WPG), volcanic-arc granites (VAG), and ocean-ridge granites (ORG). The field for post-

collisional granites (post-COLG) overlaps those of syn-COLG, VAG, and WPG. 

 

Figure 8. U–Pb concordia diagrams for (A) zircon grains from a gabbro sampled at 

Craigballyharky (Tyrone Plutonic Group, sample TY07043003), and (B) zircon grains in 

a tonalite sampled near Leaghan (Tyrone Volcanic Group, sample TY07050204). In (A), 

the weighted mean of three concordant ages from the gabbro was 493 ± 2 Ma. Younger 

ages are likely attributable to the presence of younger, intruded granitic material in the 

sample, or to Pb loss in high-U grains (see text). In (B), the Paleozoic-aged zircon grains 

gave concordant ages with a weighted mean of 475 ± 10 Ma. Cores in three other zircons 

from the Leaghan tonalite yielded Archaean ages (2.25, 2.32, and 2.58 Ga).  

 

Figure 9. Cathodoluminescence (CL) images of zircon grains analysed from sample 

TY07043003, a gabbro within the Tyrone Plutonic Group near Craigballyharky. Scale 

bar is 100 m. Point numbers refer to analyses shown in Table 2. White spots indicate 

analysis location. The dark CL images for this sample resulted from extremely high 

(>2000 ppm) U concentrations. 

 

Figure 10. Cathodoluminescence (CL) images of zircon grains analysed from sample 

TY07050204, a tonalite within the Tyrone Volcanic Group near Leaghan. Scale bar is 

100 m. Point numbers refer to analyses shown in Table 2. White spots indicate analysis 

location. 

 

Figure 11. Proposed correlation of Grampian rock units and tectonic history across three 

areas of the Irish Caledonides: South Mayo, Connemara, and the Tyrone Igneous 

Complex (TIC). Stratigraphy of volcanic and volcaniclastic sedimentary formations in 
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South Mayo was defined by Graham et al. (1989). Ages of igneous intrusions in 

Connemara are taken from Friedrich et al. (1999); DCD is the Dawros-Currywongaun-

Doughruagh intrusion, CLW is the Cashel-Lough Wheelaun gabbro. Tectonic affinity of 

South Mayo and Connemara units was interpreted by Dewey & Ryan (1990), Clift & 

Ryan (1994), Dewey & Mange (1999), Friedrich et al. (1999), Clift et al. 2004, Draut et 

al. (2004), and others. Nd(t), SiO2, and La/Sm ratios (a measure of LREE enrichment, 

here normalized against chondrite values of Anders & Grevesse 1989) are plotted for TIC 

samples using U–Pb ages from this study, Hutton et al. (1985), and Cooper et al. (2008) 

to constrain intrusion and volcanism where possible, and estimating likely ages of other 

samples based on geochemical characteristics. Nd(t)
 is age-corrected to 470 Ma. On the 

La/Sm plot, the shaded area represents chondrite-normalized La/Sm ratio for Irish 

Dalradian rocks (hundreds of samples analyzed by Senior & Leake 1978) and the dashed 

line shows the chondrite-normalized La/Sm ratio of average continental crust (Taylor & 

McLennan 1981; Rudnick & Fountain 1995). Notably, LREE enrichment (La/Sm) is 

greater in some TIC samples than in the Dalradian units with which primitive Ordovician 

arc magma would have mixed. This implies that crystal fractionation, not mixing alone, is 

important in generating magmatism associated with the arc-continent collision. 
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