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Abstract 
 
The application of spatially explicit models of population dynamics to fisheries management and 
the design marine reserves network systems has been limited due to a lack of empirical estimates of 
larval dispersal. Here we compared assignment tests and parentage analysis for examining larval 
retention and connectivity under two different gene flow scenarios using panda clownfish 
(Amphiprion polymnus) in Papua New Guinea.  A metapopulation of panda clownfish in Bootless 
Bay with little or no genetic differentiation among 5 spatially discrete locations separated by 2-
6kmprovided the high gene flow scenario.  The low gene flow scenario compared the Bootless Bay 
metapopulation with a genetically distinct population (Fst = 0.1) located at Schumann Island, New 
Britain, 1,500km to the north-east.  We used assignment tests and parentage analysis based on 
microsatellite DNA data to identify natal origins of 177 juveniles in Bootless Bay and 73 juveniles 
at Schumann Island.  At low rates of gene flow, assignment tests correctly classified juveniles to 
their source population.  On the other hand, parentage analysis led to an overestimate of self-
recruitment within the two populations due to the significant deviation from panmixia when both 
populations were pooled.  At high gene flow (within Bootless Bay), assignment tests 
underestimated self-recruitment and connectivity among subpopulations, and grossly overestimated 
self-recruitment within the overall metapopulation.  However, the assignment tests did identify 
immigrants from distant (genetically distinct) populations. Parentage analysis clearly provided the 
most accurate estimates of connectivity in situations of high gene flow. 
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Introduction 
 
Marine coastal habitats are often discontinuous and species distributions can be fragmented into 
spatially discrete populations. The dynamics of these populations can potentially be influenced by 
self-recruitment or local retention of juveniles within populations, and by connectivity, the degree to 
which these populations are linked by dispersal (Sale et al., 2005; Warner, Cowen, 2002).  Levels 
of self-recruitment within and connectivity among populations on ecological time-scales are key 
factors affecting the persistence of marine metapopulations and their resilience to local disturbance 
(Armsworth, 2002; Hastings, Botsford, 2006; James et al., 2002).  Optimal design of spatially 
explicit management strategies for marine species, including marine protected areas (MPAs), is also 
contingent on the extent of population connectivity (Hastings, Botsford, 2003; Lockwood et al., 
2002; Sale et al., 2005).  In benthic-oriented marine species which are often relatively sedentary as 
adults, population connectivity largely occurs during a larval phase that extends from reproduction 
to the completion of the settlement process (Cowen et al., 2007).  While an increasing number of 
methods for estimating population exchange on ecological time-scales are available, the accuracy of 
the different methods and the degree of concordance among them are seldom known.    
 
Population genetics is the most widely used approach for making inferences about dispersal and 
connectivity in marine organisms (Hellberg, 2007; Planes, 2002; Van Oppen, Gates, 2006).  
Estimates of connectivity based on gene flow have also being used to inform the design of marine 
protected area networks (e.g. Palumbi, 2003).  However, while clearly a suitable tool for measuring 
gene flow on evolutionary time-scales, population genetics cannot always distinguish between 
contemporary and historical gene flow. Standard estimates of migration among populations are 
increasingly inaccurate at scales where there may be limited population differentiation (Hedgecock 
et al., 2007).  Estimates of dispersal also rely heavily on theoretical models of population structure, 
such as Wright’s island model, which are based on many assumptions that may often be violated in 
natural populations (Hedgecock et al., 2007). Given that successful management may be reliant on 
good estimates of population exchange between local populations and successive generations, the 
accuracy of different approaches needs to be evaluated. 
 
The recent proliferation of molecular and statistical tools has led to the application of genetic tools 
to provide direct estimates of connectivity in marine populations (Manel et al., 2003). These genetic 
approaches focus on the assignment of individuals to populations of origin (assignment methods) 
(Carreras-Carbonell et al., 2007; Underwood et al., 2007) or to specific parents (parentage 
analysis).(Castro et al., 2006; Gerber et al., 2000; Jones et al., 2005; Rodzen et al., 2004)  Direct 
estimates of retention and connectivity using assignment tests or parentage analysis can be applied 
using hypervariable molecular markers such as microsatellites. In assignment methods, an 
individual is assigned to the most likely source population, based on the expected frequency of its 
multilocus genotype in various putative sources. The typical assumptions of this approach are that 
all potential source populations are defined in advance, sampled randomly and do not depart from 
Hardy-Weinberg or linkage equilibrium. Newer statistical approaches that use maximum likelihood 
and Bayesian methods involve fewer assumptions and provide higher assignment accuracy (Manel 
et al., 2005). While it has also been suggested that these approaches are more effective when 
migration is low (Nm < 5) (Waples, Gaggiotti, 2006) and consequently genetic structure is high 
(Underwood et al., 2007), the accuracy of assignment techniques at identifying natal origins at 
small spatial scales has rarely been examined.   
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In parentage analysis, individuals are assigned to one single parent or parent pair usually using a 
likelihood-based approach to select the most likely parent from a pool of potential parents (Jones, 
Ardren, 2003). The main constrain of this approach is that parental allocation success declines 
dramatically as the proportion of sampled candidate parents drop (Marshall et al., 1998). However, 
methods have recently been developed that allow to deal with incomplete sampling (Duchesne et 
al., 2005; Gerber et al., 2003). In addition, parentage analysis assumes that there is random mating 
in the population. This assumption of panmixia is often violated in wild populations at larger spatial 
scales, but to our knowledge no empirical studies have tested for the consequences of this violation 
when parentage models are used to study natural populations.   
 
Coral reef environments are extremely patchy and resident populations of reef fishes can be 
spatially segregated at small spatial scales, from kilometres to 10’s of kilometres (Hellberg, 2007).  
Although fishes have pelagic larval durations that may last weeks to months, recent empirical 
evidence suggests a high degree of local retention of larvae (Almany et al., 2007; Jones et al., 1999; 
Jones et al., 2005; Paris, Cowen, 2004; Swearer et al., 1999).  Standard population genetic 
techniques vary in their ability to estimate self-recruitment and connectivity at these small spatial 
scales (Planes, 2002), and the application of assignment tests and parentage analysis has been  
limited (Baums et al., 2005; Gerlach et al., 2007; Underwood et al., 2007). Jones et al. (2005) 
directly estimated levels of self-recruitment in a clownfish by combining parentage analysis and 
chemical tagging and found similar results with the two methods. More interestingly, they 
highlighted that parentage analysis can provide high resolution connectivity information and direct 
estimates of dispersal distances at the individual level.  However, while promising, the effects of 
violations in model assumptions require further investigation. 
 
The aim of this study was to evaluate and compare estimates of self-recruitment and connectivity 
from assignment tests and parentage analysis under two different scenarios of gene flow. First, we 
considered a high gene flow scenario using genetic data from five spatially discrete subpopulations 
of the panda clownfish Amphiprion polymnus in Bootless Bay, Papua New Guinea.  Then, we 
considered a low gene flow scenario by adding a data set from a genetically distinct population 
(Schumann Island) located more than 1,500 km away in the Bismark Sea (Jones et al. 2005).  As 
dispersal between the two locations is extremely unlikely, pooling the two locations provided a 
means to evaluate the effect of violating the assumption of a panmitic population when classifying 
parent-offspring relationships.   
 
Materials and methods 
 
Study species and site 
 
The panda clownfish (Amphiprion polymnus) is a southeast Asian endemic fish that lives in close 
association with discrete aggregations of two species of anemones (Stichodactyla hadonni and 
Heteractis crispa) that occupy sandy habitats associated with coral reefs (Fautin & Allen 1992).  
Each anemone is usually occupied by one breeding pair and up to eight smaller subadults and 
juveniles. The female (the largest individual) lays demersal eggs on the upper surface of shells or 
dead coral next to the anemone. The embryos develop over a period of 6-7days before hatching 
(Fautin, Allen, 1992) and late stage larvae settle into anemones after a pelagic larval phase lasting 
9-12 days (Thresher et al., 1989).  
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We used genetic data from two separate population systems in Papua New Guinea. The first system 
was located at Bootless Bay, nearby Port Moresby (Figure 1) and consisted of a metapopulation of 
five discrete subpopulations with no individuals found in adjacent sand or coral habitats. Each 
population was confined to a discrete ~1ha patch of shallow sand and sea grass separated from the 
other subpopulations by 2 to 6 km. At each site an exhaustive search for all anemones colonised by 
A. polymnus was made. A total of 85 anemones and 281 adult and subadult A. polymnus were 
distributed among the five subpopulations (Figure 1).  
 
The second system was located at Schumann Island (Kimbe Bay, New Britain) over 1500 km to the 
north east of Bootless Bay. Genetic data from Schumann Island published by Jones et al. (2005) 
was used to compare the utility of assignment tests and parentage analysis to correctly assign 
juveniles to geographically distant populations. The Schumann Island population consisted of 40 
anemones and 85 adult A. polymnus confined to a 1km2 sand flat adjacent to the island.  
 
Sampling and genotyping 
 
A total of 458 individuals (281 adults and subadults and 177 juveniles), representing between 
approximately 85 and 95% of each of the subpopulations, were sampled after extensive searches at 
each of the five sites. All resident fish (adult and sub-adult individuals) from the five sites were 
sampled in December 2005.  Each individual was captured on SCUBA using hand nets, fin clipped 
underwater on site, and then released on the same anemone as captured. All juveniles present at 
each anemone were captured in December 2005, and at three additional times (January, April, and 
June 2006). All samples were preserved in 95% ethanol and returned to the laboratory for 
subsequent genetic analyses. The genetic data set for Schumann Island comprised 158 individuals 
(85 adults and 73 juveniles).  Adults were fin-clipped in June 2003, and all juveniles settling over a 
three-months period between August-October 2003 were sampled (see Jones et al. 2005 for details).   
 
Details of genotyping procedure are described in (Quenouille et al., 2004). After DNA extraction, 3 
multiplex polymerase chain reactions (PCRs) were performed per individual, using fluorescently-
labelled primers to process 11 microsatellite loci containing a mixture of dimer and tetramer 
repeats. PCR products were processed on a Beckman Coulter sequencer CEQ 8000 Genetic 
Analysis System and the resulting electropherograms were scored manually. Uncertainties were 
resolved by reamplification and comparison. Alleles were scored as PCR product size in base pairs. 
None of the 637 individuals screened shared the same diploid genotype.  Allelic frequencies, allelic 
patterns and expected heterozyosities under Hardy Weinberg equilibrium were calculated in 
GENALEX version 6 (Peakall, Smouse, 2006).  Tests for Hardy-Weinberg and linkage disequilibrium 
were conducted using GENEPOP 3.4. (Raymond, Rousset, 1995) and significance levels were 
adjusted with sequential Bonferroni corrections for multiple tests with p< 0.05.   
 
A table describing the number of samples, number of alleles, observed and expected heterozygosity 
for each adult and juvenile group of the ten other loci are shown in the supplementary data (Table 
1).  While heterozygote deficits were present in at least one site at 3 of the 10 remaining loci, 
consistent heterozygote deficits were detected across all sites only for one locus (loc 2).  This deficit 
suggested the presence of null alleles and consequently this locus was also excluded from all 
subsequent analysis.  All 9 remaining loci were considered statistically independent since no 
linkage disequilibrium between loci pairs was observed after Bonferroni correction. One locus was 
excluded because of difficulties during genotyping.   
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Population structure 
 
We used F statistics via analysis of molecular variance (AMOVA) to measure the proportion of 
total genetic variation that is geographically structured within Bootless Bay, and between Bootless 
Bay and Schumann Island,. This analysis was performed in GENALEX version 6 (Peakall, Smouse, 
2006) and partitioned the amount of genetic variation between regions (Bootless Bay and 
Schumann Island), among sites and within sites with respect to different alleles (Fst). For this 
analysis only the genotypes of adult and subadult individuals were used (juveniles were excluded). 
Tests for statistical significance for all estimates were based on 104 random permutations, and 
significance levels were adjusted with sequential Bonferroni correction for multiple tests. In order 
to facilitate comparison with other studies, standardized pairwise Fst values were estimated using 
the AMOVA framework as described in Meirmans (2006). Lastly, to visualize these genetic 
relationships among sites, a genetic distance matrix derived from the pairwise Fst estimates was 
used to construct a principal coordinates analysis (PCA) graph in GENALEX.  
 
Assignment tests 
 
Assignment of juveniles was carried out using GENECLASS2 (Piry et al., 2004) under the Bayesian 
assignment method of  Rannala & Mountain (1997).  This method performs better in 
assigning/excluding individuals to their correct population of origin than other likelihood-based and 
distance-based methods (Cornuet et al. (1999).  Adult and subadult genotypes of each of the five 
sites from Bootless Bay and Schumann Island site were used as reference populations. Juveniles 
from all sites were then either assigned or excluded from each of the populations. We used the 
Monte Carlo resampling algorithm (n = 10,000) of Paetkau et al. (2004) to generate statistical 
thresholds to decide if juveniles could be assigned or excluded. Juveniles were considered 
immigrants when the probability of been assigned to any population was lower than 0.05 (type I 
error). When a juvenile showed probabilities of assignment greater than 0.05 to only one population 
it was assigned to that population.  Finally, when a juvenile was assigned to more than one 
population (with p> 0.5) it was left unassigned. 
 
Parentage analysis 
 
Parentage analysis was performed using FAMOZ (Gerber et al., 2003). The program is based on the 
calculation of LOD (Log of the odds ratio) scores for parentage relationships and the construction 
of statistical tests for parentage assignment. These tests are based on simulations that generate 
offspring from genotyped parents (Ho: the most likely parent is the true parent) or from allele 
frequencies in the population (Hi: the most likely parent is not the true parent). FAMOZ allows for 
the introduction of an error rate in the LOD score calculation that takes genotyping errors and null 
alleles into account (Gerber et al., 2000). It has been shown that introduction of this error, even if it 
underestimated the true error rate, can reduce type I and type II errors related to the parentage tests 
(Gerber et al., 2000; Morrissey, Wilson, 2005). We evaluated four different error rates to choose the 
best compromise between introduced error and type I and type II statistical errors. An error rate of 
10-3 yielded the lowest statistical type I and type II errors using the Bootless Bay dataset (Table 1) 
and was used for all parentage analysis. Tests evaluations were done using the software option 
“parentage test simulation”. Thirty test simulations were made for each error rate in order to 
evaluate mean type I and type II statistical errors.  
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To test the effect of violating the assumption of a single panmitic population, parentage analysis 
was done as follows: First, Bootless Bay and Schumann Island were analysed separately. Second, 
both datasets (Bootless Bay and Schumann Island) were pooled together. For each analysis, allelic 
frequencies were estimated from the corresponding adult and subadult genotypes and these 
estimations were assumed to be close to the real population allele frequencies (Gerber et al., 2003). 
For each analysis, simulations of sets of 104 new recruits were made under the two possible 
hypotheses and subsequent statistical tests were constructed to decide whether a given parent would 
be selected as the true parent or true parent pair. The distribution of the simulated LOD scores under 
the two hypotheses was plotted and the intersection between them was used as the threshold 
decision value (individuals with LOD scores above the threshold value were accepted as true 
parents).  
 
Finally, because the presence of full sib or half sib relationships can significantly bias parentage 
analysis (Jones, Ardren, 2003; Marshall et al., 1998), all subadults less than 50mm standard length 
were excluded from the analysis.  While size at the beginning of sexual maturity is not known for A. 
polymnus, individuals of a con-generic species (Amphiprion clarkii) under 50mm are sexually 
immature (Hattori, Yanagisawa, 1991), and therefore sub-adults of this size are more likely to be 
either full or half sibs of juveniles than to be parents.  
 
Effect of number and level of polymorphism of loci used 
 
To explore the sensitivity of each method to the number of loci used, we repeated the analyses 
excluding the two and four least polymorphic loci and the two and four most polymorphic loci from 
the data set. Then we compared the percentage of assigned, unassigned and excluded juveniles at 
each case for assignment tests. In the same way, we compared the statistical error (type I and type 
II) in parentage analysis by simulating parentage tests when two or four loci were excluded. 
 
 
Results 
 
Population structure 
 
The AMOVA partitioned 9% (Frt= 0.095) of the genetic variation between Bootless Bay and 
Schumann Island which was significantly different from zero (p< 0.001).  Genetic variation among 
sites within regions was 1% (Frs= 0.011) of the total variance and it was also significantly different 
from zero (p< 0.001). For the low gene flow scenario, pairwise Fst comparisons showed significant 
differences for Schumann Island with all the Bootless Bay sites (Fst values ranging from 0.092 to 
0.111 - Table 2A). For the high gene flow scenario within Bootless Bay, the Taurama site showed 
small but significant differentiation from the other four sites (Lions, Loloata, Bank and Motupore) 
with Fst values ranging from 0.016 to 0.026. We found no significant genetic differentiation among 
individuals at Lions, Loloata, Bank and Motupore.   
 
The Fst PCA plot (Figure 2) showed a close relationship among Bootless Bay sites, with Taurama 
been slightly separated. Schumann Island was clearly genetically distinct from all Bootless Bay 
sites, reflecting its geographic separation. 
 
Assignment tests 
 



 8

Low gene flow: 
The assignment method was able to exclude all juveniles sampled in Bootless Bay as being 
immigrants from Schumann Island with a probability ≥ 95% (Table 3). Likewise, all juveniles from 
Schumann Island except one were excluded from being immigrants from Bootless Bay (p ≥ 95%). 
However, the one juvenile from Schumann Island was incorrectly assigned to Bootless Bay 
(Loloata site) with low probability (p = 0.08).   
 
High gene flow: 
Within Bootless Bay, 13 juveniles (7%) had a probability greater than 0.05 of belonging to only one 
of the five sites and were assigned to that site.  A further 146 individuals (82%) had a probability 
greater than 0.05 of belonging to more than one of the five sites within the bay (but were excluded 
from Schumann Island) and were assigned to the Bootless Bay metapopulation as a whole. In 
addition, 15 juveniles (8.5%) had a probability lower than 0.05 of belonging to any site and were 
designated as being immigrants. Finally, 4 juveniles had a probability greater than 0.05 of 
belonging to either Schumann Island or Bootless Bay and were left unassigned. Within Schumann 
Island, 60 juveniles (70%) were assigned as having originated from the Schumann Island 
population, while 24 (28.2%) were excluded from both Bootless Bay and Schumann Island 
populations and designated as immigrants. One individual was assigned to both Schumann Island 
and Bootless Bay and was left unassigned.  
 
Parentage analysis 
 
Low gene flow: 
Parentage analysis was not robust to the deviation in panmixia introduced by pooling samples from 
Bootless Bay and Schumann Island (Figure 3).  For the pooled data set, 39 out of 44 (88.6%) 
juveniles assigned to parents in Bootless Bay (B) were reassigned there. Five individuals previously 
assigned to Bootless Bay were excluded, while 10 new juveniles from one of the five sites within 
Bootless Bay were assigned to Schumann Island.  Also, one individual from Schumann Island was 
assigned to a parent from Bootless Bay (Figure 3A). When the Schumann Island data were tested 
separately (S), 23 out of 75 juveniles (31.5%) were assigned to one of the 85 sampled parents. 
When these data were pooled with the Bootless Bay data (B+S), only 15 juveniles assigned when 
the Schumann Island data were run independently were again assigned a parent from Schumann 
Island. Additionally, 31 individuals were assigned within Schumann in this test and two juveniles 
from Schumann Island were assigned to parents in Bootless Bay (Figure 3B). 
 
High gene flow: 
We examined the possible effect of the slight genetic differentiation among sites in Bootless Bay on 
the outcome of parentage analysis by analysing the data set with and without the site (Taurama) that 
was genetically distinct from the other four sites. When parentage analysis was conducted using the 
4 sites within Bootless Bay excluding Taurama (B-T), 26 out of 149 juveniles were assigned to 
genotyped parents from these sites. When individuals (adults and juveniles) from Taurama were 
included in the analysis (B), 24 of the assigned juveniles from the previous analysis (92%) were 
reassigned to the same parents.  The LOD scores (3.22 and 3.27) of the two juveniles that were not 
assigned to parents in the pooled analysis were, however, close to the threshold decision value (3.2).  
An additional 20 juveniles were assigned to parents from Taurama when this site was included. 
 
Number of loci and degree of polymorphism 
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We tested the effect of reducing the number and quality of loci for the assignment test under the low 
gene flow scenario, and for parentage analysis under the high gene flow scenario.  The performance 
of both methods under the opposite scenario was already unsatisfactory and therefore we did not 
consider the alternative scenarios further.  From the 9 loci from our data set, we chose the four loci 
with the lowest number of alleles as low polymorphic loci (loci: 65, 120, 61 and 55.  Increasing 
number of alleles respectively). Likewise, the four loci with the highest number of alleles were 
selected as the high polymorphic loci (loci: 10TCTA, 79, 3GATA and 44. Decreasing number of 
alleles respectively) (see supplementary data Table 1 for details on number of alleles per loci) 
Removing two and four low polymorphic loci had relatively little impact on results from the 
assignment test compared to results when high polymorphic loci were excluded (Figure 4A). The 
proportion of juveniles assigned to the population where they were sampled dropped by 6.4% when 
excluding two low polymorphic loci and by 6.8% when excluding 4 low polymorphic loci.  When 
excluding 2 and 4 high polymorphic loci, juveniles assigned to the population where they were 
sampled dropped by 13.6% and by 40% respectively. The proportion of juveniles left unassigned 
(with a probability of assignment > 0.05 to both populations) changed little when 2 or 4 low 
polymorphic loci were excluded compared to when all loci were used. On the other hand, as many 
as 42.8% of the juveniles was unassigned when the 4 high polymorphic loci were excluded. The 
percentage of juveniles excluded from both populations (with a probability of assignment <0.05 to 
both populations) did not change dramatically in any of the four cases.     
 
In parentage analysis, the effect of excluding high and low polymorphic loci was similar as in 
assignment tests (Figure 4B). Excluding 2 low polymorphic loci had no significant effect on error 
rates. Excluding 4 low polymorphic loci had an increase in error rate similar to when 2 high 
polymorphic loci were excluded. Finally, excluding 4 high polymorphic loci resulted in dramatic 
increase of type I error (~ 57% of wrong assigned parents). For both cases, excluding two high 
polymorphic loci had an effect similar as when excluding 4 low polymorphic loci. 
 
Discussion 
 
We have demonstrated that the ability of different genetic techniques to identify natal origins of 
juvenile coral reef fish depends critically upon the levels of genetic structure within and among 
focal populations.  Standard measures of population differentiation revealed the two distinct gene 
flow scenarios tested in this study.  On one hand, gene flow was extremely limited (Fst ~0.1) 
between Schumann Island and Bootless Bay populations of A. polymnus.  The result was not 
surprising that the populations were located in different ocean basins separated by over 1,500km 
and that the pelagic larval duration of this species is 9-12 days (Thresher et al., 1989).  Similar Fst 
values have also been described for different populations of the same genus (Amphiprion 
melanopus) with similar geographic separation (Doherty et al., 1995). While there may be some 
gene flow on evolutionary time-scales, this is likely to be of little relevance to local population 
replenishment or management.  On the other hand, within the Bootless Bay we found little evidence 
for genetic structure among subpopulations at 5 sites 2-6 km apart. However, one of the sites 
(Taurama) was significantly different from the four other sites in the bay even though Fst values 
were small. This was an unexpected result, given its proximity to the other populations, although it 
is perhaps the most isolated of the five subpopulations (Figure 1). Another possible explanation is 
that the small genetic difference could be due to stochastic variability in reproductive success of 
past recruitment episodes (Orsini et al., 2008) rather than reproductive isolation of Taumara from 
the other Bootless Bay sites.  Further information is needed to distinguish between these 
hypotheses.  
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Low gene flow scenario 
 
We expected the assignment test to perform well when classifying individuals from well 
differentiated populations given previous results from simulated data (Cornuet et al., 1999; Waples, 
Gaggiotti, 2006) and from empirical studies on populations with strong genetic differentiation 
(Underwood et al., 2007).  Our assignment tests between Bootless Bay and Schumann island 
populations also support this conclusion.  Out of 244 juveniles classified, almost all were assigned 
to the regional population where they were collected. Only one juvenile from Schumann Island was 
assigned to the Bootless Bay population, although the assignment probability of this juvenile was 
fairly low (0.08) and close to the decision threshold (0.05).  Given the distance between the 
populations, we consider this individual to be wrongly assigned by the test.  
 
Alternatively, parentage analysis was not robust to the deviation in panmixia that results from 
assigning parentage across two differentiated populations. When pooling both populations together, 
the proportion of parents assigned by both tests (each population separately and both populations 
pooled) was relatively low (89.6% for Bootless Bay and only 65.2% for Schumann Island). Also, a 
considerable number of juveniles that were not assigned when the test was done within each 
population were assigned when the two populations were pooled (20% at Bootless Bay and 67% at 
Schumann Island). These new assignments were mostly to parents in the same population as the 
juveniles were collected in, although 3 juveniles were also assigned to parents in the other 
population.  Given that levels of self-recruitment at Schumann have independently been confirmed 
in larval tagging studies (Jones et al. 2005), these additional parent-offspring relationships are most 
likely errors. 
 
Parentage analysis assumes that all offspring and parents in the data set belong to the same 
population and LOD scores are estimated using this population’s allele frequencies (Gerber et al., 
2000). Our results show clearly that significant changes in allele frequencies have major effects on 
parentage assignments. It is noteworthy that in our study, changes in allele frequencies on parentage 
assignments increased the number of wrong assignments in higher proportions than they excluded 
correct assignments (considering that almost all assignments obtained under each separate test were 
correct). These results suggest that parentage analysis is not appropriate for low gene flow 
scenarios, where analytical methods such as assignment tests appear to have greater utility.  
 
High gene flow scenario 
 
The degree of population differentiation in Bootless Bay was clearly insufficient for assignment 
tests to discriminate among subpopulations.  The tests failed to assign most of the juveniles to any 
one of the five subpopulations. Only a small number of individuals were assigned to only one of the 
sites (13 juveniles) compared to the number of juveniles assigned to at least two sites within the bay 
(146).  Overall, the numbers of recruits assigned to the Bootless Bay metapopulation and to 
Schumann Island were gross overestimates relative to the parentage analysis.  In Bootless Bay, 
given that Taurama had a small but significant genetic signal, we expected that assignments 
probabilities from or to this site would be greater than to the other sites. However, we found no 
difference between the assignment probabilities from juveniles assigned to Taurama and juveniles 
assigned to the other four sites.  Also, from the 13 juveniles assigned to only one site, only three 
were assigned to the same site as the juveniles assigned by parentage analysis at this level.  
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The level of accuracy of assignment tests in our study may be lower than those recorded in the 
literature.  For example, using simulated data Cornuet et al. (1999) showed that Fst values as low as 
0.01 could yield to ~ 40% accurate assignment with this method. Carreras-Carbonell et al. (2007) 
using  microsatellite data on Tripterygion delaisi in the NW Mediterranean Sea had a similar 
problem when attempting to assign individuals to populations that were not genetically different, 
leaving ~30% of fish with unknown origins unassigned.  
 
Parentage analysis can be considered as the method of choice for estimating retention and 
connectivity in small, spatially discrete, but genetically similar populations.  Unlike assignment 
tests, they produce high-resolution patterns of self-recruitment and dispersal, and estimates of self-
recruitment that have been independently tested in A. polymnus using larval marking (Jones et al. 
2005).  Although local genetic heterogeneity was a potential problem, the slight modification of 
allele frequencies caused by including and excluding the most genetically distinct site at Bootless 
Bay (Taurama) had little effect on our estimates of parentage within the four other subpopulations. 
Results for two juveniles apparently produced by parents from Bootless Bay when the analysis was 
done without Taurama were reversed when Taurama was included. These individuals had LOD 
scores close to the threshold value and therefore the probability that the identified parent is the right 
parent is just slightly superior to that of identifying a wrong parent from the population by chance. 
There were also missing alleles in the genotypes of these juveniles and we therefore suspect that 
changes in allele frequencies when including Taurama in the analysis had no significant 
consequences. This is encouraging because evidence of genetic structure at fine-spatial scale is 
more common than previously thought in natural populations (Fredsted et al., 2005; Neville et al., 
2006; Zamudio, Wieczorek, 2007).   
 
The overall levels of self-recruitment and immigration for the two populations as estimated by 
assignment tests and parentage analysis were very different (Table 4).  Assignment tests found 159 
juveniles (90.3%) were returning to Bootless Bay populations, and in Schumann Island the self-
recruitment estimate was 70%.  Parentage analysis, on the other hand, generated self-recruitment 
estimates of 25% and 31.5% in Bootless Bay and Schuman Island populations, respectively. We 
believe that estimations of recruitment at this scale based on assignment tests should be treated with 
caution. When estimating recruitment in marine environments at an ecological level with genetic 
tools, we assume that the genetic population is larger and extends further than the demographic 
population under study.  Hispersal can maintain genetic homogeneity over relatively large distances 
(Fauvelot & Planes, 2002) and assignment tests may classify juveniles from the larger genetic 
population to the local population of interest. The discrepancy between self-recruitment estimates 
from assignment tests and parentage analysis for Bootless Bay and Schumann Island suggests that 
close to 65% and 40% respectively of juveniles assigned by GENECLASS2 originated from nearby, 
genetically similar populations. It is also possible that our parentage analysis has underestimated 
self-recruitment, because other members of the local populations have yet to be discovered.  Other 
studies of clownfish have shown estimates of self-recruitment as high as 60% (Almany et al., 2007).  
 
The assignment method performed by GENECLASS2 has the advantage that it takes in to account the 
possibility of not having sampled all potential populations (Piry et al., 2004).  Using this procedure, 
we found that 8.5% of the new recruits sampled in Bootless Bay and 28.2% of new recruits from 
Schumann Island came from distinct genetic populations that we failed to characterize. Even if the 
origin of these juveniles cannot be established, the fact that they were excluded from all sampled 
populations means that their population of origin is likely to be distant and genetically distinct from 
the other incorrectly classified individuals, which are likely to have dispersed from nearby 
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populations.  The genetically distinct individuals could have travelled long distances before settling 
on the anemones and therefore correspond to the tail of the distribution of recruitment versus 
geographic distance. As this information cannot be obtained using parentage analysis, assignment 
tests may represent a useful technique for defining the tail end of the dispersal kernel.  The 
complementary use of the two techniques may be the best way to define the dispersal kernel as a 
whole. 
 
Number and polymorphism of loci used 
 
Simulation studies have shown that for a given level of differentiation adding loci usually improves 
the ability to assign individuals correctly among populations (Cornuet et al., 1999; Waples, 
Gaggiotti, 2006).  We found that the quality of loci had a more significant effect than simply the 
number of loci used.  Simulation results have shown that low polymorphic loci produced less 
accurate assignments than high polymorphic ones (Waples, Gaggiotti, 2006), and our results 
confirmed this situation. This is not surprising since high levels of polymorphism are related to high 
mutation rates. As gene flow increases, highly polymorphic loci are more informative because new 
alleles are constantly being generated within subpopulations and shorter times of isolation are 
needed to detect small population differentiation. At the same time, in parentage analysis, exclusion 
probabilities are strongly conditioned by the genotypes of the reported relatives, by the frequency of 
alleles and by the number of loci (Jamieson, Taylor, 1997). These exclusion probabilities increase 
with the number of loci used and their level of polymorphism. In our study, parentage error rates 
increased more when high polymorphic loci were excluded than they did when low polymorphic 
ones were excluded, demonstrating again that quality of the loci used is more important than 
quantity. 
 
Conclusions 
 
While assignment tests perform well at spatial scales over which populations show large genetic 
differentiation, parentage analysis appears to be a better choice for estimating dispersal at smaller 
scales among genetically similar populations.  Using genetic methods such as assignment tests 
when trying to measure connectivity at ecologically relevant scales where migration is high enough 
to maintain genetic homogeneity remains challenging because these methods still have relatively 
little power under this circumstances. Parentage analysis on the other hand performs well in 
conditions of high gene flow. However, incomplete sampling of potential parents can be a major 
drawback. New likelihood approaches such as the one used in this study need further evaluation to 
assess this problem.  Both techniques appear to lead to overestimates of self-recruitment when 
applied at scales over which assumptions of the approaches are violated.  As parentage analysis 
appears to be robust to small deviations from panmixia, there may be some intermediate level of 
differentiation at which both techniques provide useful results. Parentage becomes increasingly 
difficult to apply as the scale of the study and size of the population increases because the accuracy 
of assignments relies heavily on the fraction of potential parents sampled. However, more research 
is needed to explore these new likelihood based parentage methods to quantify their performance 
under different parental sampling scenarios. Ultimately, a combination of both parentage and 
assignment tests may be the best way to fully describe dispersal kernels and estimate the scale of 
demographically important connectivity in marine populations.  
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Figure legends: 
 
Figure 1. Satellite image showing the sites of five subpopulations of Amphiprion polymnus within 
Bootless Bay. The number of anemones and A.polymnus (adult and subadult) at each site are 
indicated in brackets.  Inset: Location of Bootless Bay and Schumann Island study locations in 
Papua New Guinea, 
 
Figure 2. Plots of principal coordinate analysis calculated in GENALEX from standardized 
distance matrix of pairwise Fst estimates between sites: the first two axes explain 99% of variation.  
 
Figure 3. Parentage analysis results using FAMOZ software. A) Number of juveniles assigned in 
Bootless Bay when the test was done using genotypes from Bootless Bay excluding Taurama (B-T), 
Bootless Bay all sites (B) and Bootless Bay and Schumann Island (B+S). Columns show 
assignments divided in to five categories: (i) Juveniles assigned when test was done excluding 
Taurama B-T (white fill). (ii) Juveniles reassigned within the four previous sites when Taurama was 
included (B) (squared fill). (iii) New juveniles assigned to/from Taurama (gray fill). (iv) New 
assignments within the four sites dataset that were not reassigned when Taurama was included in 
the test (dashed fill). (v) Juveniles from Schumann Island assigned to Bootless Bay (black fill). B) 
Juveniles assigned when the test was done using genotypes from Schumann Island alone (S), and 
Schumann Island and Bootless Bay (S+B). (i) Juveniles assigned when test was done only with S 
(white fill). (ii) Juveniles reassigned within S when Bootless Bay was included (gray fill). (iv) New 
assignments within Schumann that were not assigned in test S (dashed fill). (v) Juveniles from 
Bootless Bay assigned to Schumann Island (black fill). 
 
Figure 4. A) Assignment test results under the low gene flow scenario (Bootless Bay vs. Schumann 
Island) using different sets. B) Parentage analysis error rate estimates under the high gene flow 
scenario using different sets of loci (estimated by test simulations in Famoz for each case). The 
lines on each bar represent the standard deviation after 30 test simulation replicates. The different 
sets of loci used were:  2 low = two lowest polymorphic loci (loci 120 and 65). 4 low = four lowest 
polymorphic loci (loci 120, 65, 55 and 61). 2 high = two highest polymorphic loci (loci 10TCTA 
and 79). 4 high = four highest polymorphic loci (10TCTA, 79, 3GATA and 44).  
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Tables  
 
 
 
Table 1. Effects of variation of LOD score introduced error on parentage assignments for the 
Bootless Bay population. Four different error frequencies were evaluated. For each frequency, the 
number of assignments in relation with the number of mismatches per assignment is presented as 
well as the estimation of type I and II statistical errors based on 30 simulations of the parentage. 
 

 Simulations 

Introduced 

error  

Error estimation (%) 

Type I Type II 

0.01 38±4.8 0.1±0.3 

0.001 5.8±1.2 8.1±1.3 

0.0001 1.9±0.5 8.8±1.3 

0 1.4±0.3 9.3±1.8 
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Table 2. A) Pairwise Fst estimates between sites for A. polymnus at Bootless Bay and Schumann 
Island. Estimates in bold indicate significance based on 104 permutations after sequential 
Bonferroni corrections (p < 0.05 for all significant comparisons). B) Standardized pairwise Fst 
values estimated using the AMOVA framework (Meirmans, 2006). 
 

A Bootless Bay 

 Bank Lions Loloata Motupore Taurama 

Bank -     

Lions 0.007 -    

Loloata 0.006 0.005 -   

Motupore 0.007 0.000 0.003 -  

Taurama 0.026 0.017 0.021 0.016 - 

Schumann 0.111 0.099 0.104 0.101 0.092 

 

B Bootless Bay 

 Bank Lions Loloata Motupore Taurama 

Bank -     

Lions 
0,029 -    

Loloata 
0,022 0,020 -   

Motupore 
0,029 0,000 0,013 -  

Taurama 
0,109 0,078 0,091 0,067 - 

Schumann 
0,498 0,483 0,495 0,462 0,459 
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 Table 3. Results of assignment analysis with GENECLASS2. Juveniles were assigned to one of the 
six possible sites (sample size in brackets) if the likelihood of their genotype occurring in that site 
was greater than 0.05, when compared to a distribution of 104 simulated genotypes from that site. 
Juveniles that had a likelihood superior than 0.05 were considered to have being originated from 
one of the sampled sites. Probability of belonging to the assigned population is given in brackets. If 
an individual’s likelihood was greater than 0.05 for more than one of Bootless Bay sites it was 
assigned to Bootless Bay as a single unit (all five sites). If the likelihood was greater than 0.05 for 
both Bootless Bay and Schumann Island it was left unassigned. Juveniles with a likelihood less than 
0.05 in all sampled sites were assumed to be immigrants.  
 

Sampling 

site 

Assigned population Immigrant

s 

Unassigne

d Ba        Li         Lo       Mo      Ta         Bootless     Sch 

Ba(28) 0 1 
(0,16) 

1 (0,06) 1 (0,16) 1 
(0,08) 

24 0 1 1 

Li(16) 0 1 (0,06) 0 0 0 13 0 2  

Lo(45) 0 0 0 2  

(0.10) 

 

(0.12)
 0 

40 0 3  

Mo(59) 0 1 (0,15) 0 2  

(0.14) 

 

(0.31) 
2

 

(0.24) 

 

(0.42) 

47 0 4 3 

Ta(28) 0 0 0 0 1 (0,08) 22 0 5  

Sch(73) 0 0 1 (0,08) 0 0 0 51 21 1 
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Table 4. Comparison of the different estimates obtained with each of the two methods under the 
high gene flow scenario.  
 

Method 
Within sites  

Self-recruitment 

Local 

connectivity 

Overall self 

recruitment 
Immigrants/ unassigned

Bootless Bay     

Assignment 2.2% 5.1% 90.3% 8.5%  /  2.2% 

Parentage 10.0% 15.0% 25.0% 75.0% 

Schumann     

Assignment   69.9% 28.8% / 1.4% 

Parentage   31.5% 68.5% 
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Figures 
 
Figure 1 
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Figure 2 
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Figure 3.  
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Figure 4.  
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