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On the stability of ocean overflows
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The stability of a hydraulically driven sill flow in a rotating channel with smoothly
varying cross-section is considered. The smooth topography forces the thickness of
the moving layer to vanish at its two edges. The basic flow is assumed to have zero
potential vorticity, as is the case in elementary models of the hydraulic behaviour of
deep ocean straits. Such flows are found to always satisfy Ripa’s necessary condition
for instability. Direct calculation of the linear growth rates and numerical simulation
of finite-amplitude behaviour suggests that the flows are, in fact, always unstable. The
growth rates and nonlinear evolution depend largely on the dimensionless channel
curvature κ = 2αg′/f 2, where 2α is the dimensional curvature, g′ is the reduced
gravity, and f is the Coriolis parameter. Very small positive (or negative) values of
κ correspond to dynamically wide channels and are associated with strong instability
and the breakup of the basic flow into a train of eddies. For moderate or large values
of κ , the instability widens the flow and increases its potential vorticity but does not
destroy its character as a coherent stream. Ripa’s condition for stability suggests a
theory for the final width and potential vorticity that works moderately well. The
observed and predicted growth in these quantities are minimal for κ � 1, suggesting
that the zero-potential-vorticity approximation holds when the channel is narrower
than a Rossby radius based on the initial maximum depth. The instability results
from a resonant interaction between two waves trapped on opposite edges of the
stream. Interactions can occur between two Kelvin-like frontal waves, between two
inertia–gravity waves, or between one wave of each type. The growing disturbance
has zero energy and extracts zero energy from the mean. At the same time, there is
an overall conversion of kinetic energy to potential energy for κ > 0, with the reverse
occurring for κ < 0. When it acts on a hydraulically controlled basic state, the
instability tends to eliminate the band of counterflow that is predicted by hydraulic
theory and that confounds hydraulic-based estimates of volume fluxes in the field.
Eddy generation downstream of the controlling sill occurs if the downstream value
of κ is sufficiently small.

1. Introduction
Idealized models of rotating channel flow (e.g. Whitehead, Leetma & Knox

1974; Gill 1977; Borenäs & Lundberg 1986, 1988; Killworth 1992) have provided
a foundation for the understanding of hydraulic control, upstream influence, and
other hydraulic processes thought to occur in deep ocean straits and overflows.
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Figure 1. (a) Cross-section of the basic flow. (b) A wide channel. (c) A narrow channel.

These models also provide formulae that relate the volume flux to the upstream
conditions (Pratt & Whitehead 2008). All such models assume steady flow and most
are subject to other idealizations deemed necessary for tractability. These include
neglect of friction, restriction to uniform potential vorticity, and/or use of channels
with rectangular cross-sections. The most widely cited models, at least where volume
flux formulae are concerned, are those based on zero-potential-vorticity flow (e.g.
Whitehead et al. 1974 and Borenäs & Lundberg 1988). These models provide the
primary motivation for our work. The assumption of zero potential vorticity has the
virtue that it can be rationalized by a simple physical argument (see § 2) in which
fluid columns from a quiescent upstream state are severely squashed as they climb
up and over a sill. The cross-sectional depth and velocity profiles are particularly
simple and the along-channel structure forms the basis for textbook examples of
rotating hydraulic behavior. In addition, it is has been shown by Paldor (1983) that
zero-potential-vorticity flows are stable when they are confined to a channel with
a rectangular cross-section, as assumed in most cases. This stability seems to be
reflected in laboratory and numerical experiments (e.g. Whitehead et al. 1974; Shen
1981; Pratt, Helfrich & Chassignet 2000; Helfrich & Pratt 2003) where conditions of
uniform potential vorticity are approximated and the cross-section is rectangular. On
the other hand, the work of Griffiths, Killworth & Stern (1983, hereafter GKS), has
shown that a dense bottom current with zero potential vorticity is generally unstable
when it flows along a flat bottom with a constant cross-stream slope. The stream
is no longer confined by vertical sidewalls but has edges (or fronts) that are free to
wander up and down the slope. The primary instability is associated with a resonant
interaction between two waves that are trapped on the opposite edges of the stream.

The real situation for deep ocean strait and sill topography lies somewhere between
the above extremes. As suggested in figure 1(a), the flows are confined to a channel,
but with a smooth, rounded shape that allows the thickness of the deep layer to
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go to zero at the edges. The edges are free to meander but still somewhat confined
by the topography. The stability of such flows is plausibly tied to the curvature
of the bottom: large curvature ostensibly restricts transverse motion and leads to
stability. Given the popularity and importance of zero-potential-vorticity models, it
is natural to ask whether the flows they predict are actually stable when the channel
bottom is curved. The purpose of this work is to investigate any possible linear and
nonlinear instability along with the consequences for the basic character of the flow.
As we will show, the flows are all formally unstable, though the instability is weak
for large bottom curvature (dynamically narrow channels). Under certain conditions,
the instability can alter the cross-sectional properties of the flow, including its width
and potential vorticity, and create significant departures from what hydraulic theory
predicts.

The present work also has possible ramifications for the variability of deep overflows
and the generation of eddies. Strong variability with a dominant period of 2–5 days is
present in the Denmark Strait overflow, as recorded in data from moored arrays (e.g.
Worthington 1969; Dickson & Brown 1994). Smith (1976) has attributed this
variability to baroclinic instability. Downstream of the sill, the descending portion of
the overflow (the outflow or outflow ‘plume’) can form eddies that are dominantly
cyclonic. These eddies exist over the entire water column and their surface signatures
can be seen in satellite imagery (Bruce 1995). Numerical simulations (e.g. Spall &
Price 1998; Etling et al. 2000) have suggested a number of generation mechanisms,
all of them based on interactions with the overlying water masses. We will show that
downstream eddy generation is possible without the need for an active upper layer,
provided that the bottom curvature in the downstream region is sufficiently weak.

2. Overflows with zero potential vorticity and a rounded channel
We will consider a shallow, homogeneous layer of fluid, flowing in a deep channel.

The layer is overlain by an inactive water mass having slightly lower density. The
channel is aligned in the y-direction and has a rounded cross section, as shown in
figure 1(a). The elevation of the bottom is given by h, the layer thickness by d , and
the along- and cross-channel velocities by v and u, all non-dimensional. In terms of
their dimensional (starred) counterparts, the variables are given by

x =
x∗f

(g′H )1/2
, y =

y∗

L
, t =

t∗(g′H )1/2

L
,

v =
v∗

(g′H )1/2
, u =

f Lu∗

g′H
, d =

d∗

H
, h =

h∗

H
,

where H and L are unspecified depth and along-channel length scales and g′ is the
reduced gravity.

The deep stream is governed by the shallow water equations, non-dimensionally

δ2

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
− v = −∂d

∂x
− ∂h

∂x
, (2.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ u = −∂d

∂y
− ∂h

∂y
, (2.2)

∂d

∂t
+

∂(ud)

∂x
+

∂(vd)

∂y
= 0. (2.3)
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Use of the full shallow-water equations, rather than ‘balance’ equations or other
approximations, is required in order that hydraulic effects are faithfully captured.
The following analysis thereby differs from that of other systems (e.g. Swaters 1991)
that have strong frontal features but nearly balanced velocity fields. The parameter
δ =(g′H )1/2/fL, the ratio of the expected cross-channel length scale (g′H )1/2/f and
the along-channel length scale, is taken to be �1 in hydraulic models and will apply
to the gradually varying hydraulic state whose stability we will wish to examine.
However, the unstable waves that may grow on this background state will generally
have δ = O(1).

Conservation of potential vorticity, dq/dt = 0, with

q =
1 + ∂v/∂x − δ2∂u/∂y

d
, (2.4)

follows from the above set. If the flow originates from a relatively deep and quiescent
upstream basin of depth d∞, where q ≈ 1/d∞, then the severe squashing of fluid
columns that accompanies motion into a much shallower channel implies that 1 +
∂v/∂x ≈ d/d∞ � 1. The ‘zero’ potential vorticity approximation

∂v

∂x
= −1 (2.5)

then applies to these shallow reaches.
In much of what is to come, the deep channel will have a parabolic shape:

h∗(x∗, y∗) = h∗(0, y∗) + α(y∗)x∗2,

non-dimensionally

h(x, y) = ho(y) + 1
2
κ(y)x2. (2.6)

Here κ(y) = 2α(y)g′/f 2 is a non-dimensional measure of the cross-channel bottom
curvature, also a measure of the channel width. This latter can be illustrated by
considering the half-width W of the interface when the channel is filled to a centreline
depth D with a resting fluid (figure 1b). The width of the surface is equal to 2(D/α)1/2

for a parabolic channel. For this D, rotational effects may be expected to act over
the Rossby radius of deformation Ld =(g′D)1/2/f . Thus κ = 2L2

d/W 2 and κ � 1
(κ � 1) corresponds to a dynamically wide (narrow) channel, as shown in figure 1(b)
(figure 1c).

Zero-potential-vorticity solutions in a parabolic channel of gradually varying
curvature and height were first written down by Borenäs & Lundberg (1988). We will
employ the same solutions, formulated in a different variable set. The cross-channel
profiles of velocity and depth can be obtained by first substituting (2.6) into (2.1) and
setting δ = 0, which leads to

v =
∂d

∂x
+ κx. (2.7)

Let xc(y) represent the centreline position of the current and w(y) the width (figure 1a)
and introduce the centred coordinate x ′ = x −xc. Then the layer thickness and velocity
are obtained by combining the above relation with (2.5), leading to

d = 1
2
(1 + κ)

[(
1
2
w

)2 − x ′2
]

(2.8)

and

v = κxc − x ′. (2.9)
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Figure 2. Possible configurations for zero-potential-vorticity flow in a parabolic channel,
according to the value of the bottom curvature κ . The width of the flow scales with the Rossby
radius of deformation times the factor [2/(1 + κ)]1/2.

The non-dimensional width of the flow is determined only by κ and by the centreline
depth. If (2.8) is evaluated at x ′ = 0 the width is found as 1

2
w = (2/(1 + κ))1/2(dx ′=0)

1/2

or, in dimensional terms,

1
2
w∗ =

(
2

1 + κ

)1/2

(g′d∗|x ′=0)
1/2/f.

Thus, the half-width of the current scales with the Rossby radius of deformation, based
on the centreline depth, within a factor 21/2/(1+κ)1/2. This factor is plotted in figure 2
over the permissible range of the curvature −1 <κ . If the channel curvature is small
(|κ | � 1) the bottom is essentially flat and the current half-width is approximately√

2 (figure 2 insets.) This is essentially the same case as that considered by GKS. If
the channel is highly curved and concave (κ � 1) then the width is much less than
the deformation radius. This case is the closest one can get to a rectangular channel.
At the other extreme (κ → −1), the bottom is convex and the curvature of the free
surface approaches that of the bottom. In this case d → 0 and the bottom is covered
with a thin sheet of fluid with infinite width.

The volume flux of the current is

Q =

∫ w/2

−w/2

(vd) dx ′ =
κ(1 + κ)

12
w3xc. (2.10)

The Bernoulli function B , approximated by v2/2+d+h for the gradually varying flow,
is uniform for zero-potential-vorticity flow. Its value can be calculated by evaluation
at either edge of the current, leading to

B = 1
2
v2 + d + h = ho + 1

2
(1 + κ)

(
1
4
w2 + κx2

c

)
(2.11)

A single equation for the variable w can be obtained through elimination of xc from
the last two relations, resulting in

B = ho + (1 + κ)

(
w2

8
+

72Q2

κ(1 + κ)2w6

)
. (2.12)

For given B and Q, (2.12) relates specified topographic parameters ho(y) and
κ(y), (2.12) to the flow variable w at any y. We are particularly interested in
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Figure 3. The dotted lines show the edges of a hydraulically controlled current with zero
potential vorticity and B =1, flowing across a sill separating two deep basins. The topography
is given by ho(y) = −y2 and κ(y) = 2/(1 + y2). The net volume flux is to the right. Darker
shades indicate deeper regions of the bottom.

hydraulically controlled flows; that is, flows that become hydraulically critical at
the most constricted section. The expression on the right-hand side of (2.12) takes
the form of the hydraulic function, as defined by Gill (1977), in the variable w2. The
critical condition for the flow is therefore obtained by setting the derivative (with
respect to w2) of the right-hand side to zero. The result

w2

12
= κx2

c (2.13)

is equivalent to that derived by Borenäs & Lundberg (1988).
We will consider two classes of stability problems for a zero-potential-vorticity basic

flow. In the first (more traditional) case, the basic flow is parallel and is confined
to a channel that is uniform in y. In the second case the basic flow is hydraulically
controlled and is confined to a gradually varying channel with a sill (maximum in
ho(y)) and width contraction (maximum in κ(y)). An example of a hydraulically
controlled solution with B = 1, flowing between two deep basins, is shown in figure 3.
The topography is determined by (2.6) with ho(y) = −y2 and κ (y) = 2/(1 + y2).

3. Energetics for parallel basic states
For the case of a uniform channel we denote by v = V (x) and d = D(x) the parallel

basic state whose stability is to be examined. We will temporarily allow the bottom
topography and potential vorticity to be arbitrary. The following discussion is largely
restricted to flow instability with respect to discrete wave modes. It is well known that
non-modal disturbances to flow with shear can experience temporary growth if the
initial perturbation is aligned favourably. This situation will not be considered, but
the interested reader can consult Farrell & Ioannou (1996) and references contained
therein for more details.

Instability is traditionally defined and measured in terms of the growth in time of
some positive definite quantity, sometimes a wave energy norm (other norms may
be used, including enstrophy). The wave draws on kinetic energy that is available
in the mean (y-average) state due to horizontal shear, and/or on potential energy
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associated with gradients in the mean interface elevation. As the wave energy grows,
the energy contained in the mean fields diminishes. For the shallow-water models used
in hydraulics, in which Poincaré and Kelvin waves, and their relatives, are permitted,
the energy associated with the wave is no longer positive definite. As discussed by
Hayashi & Young (1987), the notion that the wave draws energy from the mean flow
must be re-examined.

Suppose that the disturbed flow is periodic or isolated in y. Let A represent a
rectangular, horizontal region that completely encloses the wetted area of the flow
and extends over a spatial period in the y-direction. Conservation of energy for the
fluid over A can be derived† from (2.1)–(2.3) in the form

dE/dt = 0

where

E =
1

2

∫∫
A

[d(u2 + v2) + d2 + 2dh] dσ (3.1)

and dσ is the elemental area. Note that δ is now regarded as unity since the flow
may contain disturbances of small scale in y. Next, separate the flow into its basic
(parallel) part (V , D) and a residual, or ‘disturbance’, that has evolved from an initial
perturbation of amplitude ε � 1. We will consider the energetics of the flow during the
early stage in which a growing disturbance has not exceeded this magnitude. The dis-
turbance is then represented as an ε-expansion and the complete flow field is given by

v = V (x) + εv0 + ε2v1 + · · · ,
u = εu0 + ε2u1 + · · · ,
d = D(x) + εd0 + ε2d1 + · · · ,
q = Q(x) + εq0 + ε2v1 + · · · .

⎫⎪⎬
⎪⎭ (3.2)

The lowest-order disturbance fields v0, d0, etc. satisfy the linearized shallow-water
equations: (

∂

∂t
+ V

∂

∂y

)
u0 − v0 = −∂d0

∂x
, (3.3a)

(
∂

∂t
+ V

∂

∂y

)
v0 + QDu0 = −∂d0

∂y
, (3.3b)

(
∂

∂t
+ V

∂

∂y

)
d0 +

∂(Du0)

∂x
+

∂(Dv0)

∂y
= 0, (3.3c)

(
∂

∂t
+ V

∂

∂y

)
q0 + u0

∂Q

∂x
= 0, (3.3d)

Here

Q =
1 + ∂V/∂x

D
(3.4)

is the basic-state potential vorticity and

q0 = D−1

(
∂v0

∂x
− ∂u0

∂y
− Qd0

)
(3.5)

is the perturbation potential vorticity.

† In performing this and other derivations, it may be helpful to think of the non-wetted portion
of A to be covered by a thin film of water.
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Under conditions of growth, the mean (y-average) components of the flow may
alter. These disturbance means first arise within the fields v1, d1, as determined at a
higher order of approximation. Following Hayashi & Young (1987), it is helpful to
separate the total energy into three parts: E = Eb + Ew + Em + O(ε3). Eb is the energy
associated with the basic flow and is a constant. Em is the energy associated with the
aforementioned mean fields. The ‘wave’ energy Ew , defined by

Ew =
ε2

2

∫∫
A

[
D

(
u2

0 + v2
0

)
+ d2

0 + 2V v0d0

]
dσ, (3.6)

is the energy associated with the wavy perturbation and is composed of the integrals of
the corresponding quadratic quantities in the perturbation fields. In quasi-geostrophic
or two-dimensional systems, the wave energy consists of just the first three terms in
the integrand, all of which are positive definite. Shallow-water dynamics require one
to include the fourth term, which is not sign definite. The presence of this term is the
key to special energetic properties of the problem at hand.

Since total energy is conserved, the sum Ew + Em must also be conserved, at least
to O(ε3), as an instability develops. If the wave grows by extracting energy from the
mean flow, Ew increases and Em decreases. The growth of Ew is associated with a
potential vorticity flux, as shown by the relation

∂

∂t

[
Ew +

∫∫
A

D2V
η2

2

∂Q

∂x
dσ

]
= 0, (3.7)

which can be derived from (3.3a–c). Here η(x, t) represents the lateral displacement
of a fluid parcel away from its equilibrium position in the basic state. For uniform
potential vorticity, ∂Q/∂x = 0, the potential vorticity flux is zero, and Ew remains
constant. Em must then also remain constant. In a quasi-geostrophic system, where
Ew is composed entirely of positive definite terms u2

0, d
2
0 , etc., conservation of Ew rules

out instability. In shallow water, the presence of the additional, potentially negative,
term 2Vu0v0 means that the u0, v0, etc. can amplify while wave energy is preserved.
Similar statements may be made with respect to momentum. Under these conditions
it is incorrect to think of the wave as drawing energy from the mean flow. The mean
may change, but these changes must occur in a way that leaves Em fixed.

For an amplifying wave, the values of Ew and Em must not only remain constant,
these constants must be zero. This follows from the fact that the disturbance can be
traced backwards in time and thereby be made arbitrarily small. For example, an
exponentially growing disturbance will have Ew = Ae2lci t for some coefficient A. But
since Ew is constant, the coefficient A must be zero. On the other hand, neutral waves
may have fixed, finite values of Ew and Em.

These ideas are discussed further by Hayashi & Young (1987) in connection with
an equatorial flow. Application to the present system requires only that (3.7) be shown
to remain valid in the presence of variable topography. This is easily done but is not
proved here. The importance of this discussion for hydraulics is that instabilities that
potentially occur within most fundamental hydraulic models, including Whitehead
et al. (1974), Gill (1977) and Borenäs & Lundberg (1986, 1988), do not draw energy
from the mean and have zero wave energy. It is therefore difficult to classify any such
instabilities as ‘barotropic’ or ‘baroclinic’. This finding does not rule out the possibility
that there can be an overall conversion of total potential energy to kinetic energy,
or vice-versa, as the disturbance evolves. This, in fact, is exactly what occurs in the
present problem.
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4. Ripa’s theorem and hydraulics
The familiar necessary conditions for instability of barotropic or quasi-geostrophic

flows due to Rayleigh (1880), Kuo (1949), and Charney & Stern (1962) do not apply
to the shallow-water flow under consideration. The only known condition for stability
is due to Ripa (1983). His original derivation assumes a flat bottom, but the result can
easily be shown to apply in the arbitrary-cross-sectional channel topography (Pratt &
Whitehead 2008).

Ripa’s theorem is usually presented as a sufficient condition for stability. There are
two requirements: first, a constant γ must exist such that (V − γ )2 � D, or

−D1/2 � V − γ � D1/2, (4.1a)

for all x across the section in question. If it is also the case that

(V − γ )
∂Q

∂x
� 0 (4.1b)

for each x, then the flow is stable. The first provision relates to gravity wave
propagation while the second, which is identical to Fjøtorft’s (1950) condition for
stability, relates to potential-vorticity wave propagation.

For the models of rotating channel flow with constant potential vorticity, the
second requirement (4.1b) of Ripa’s sufficient condition for stability is satisfied. The
first requirement (4.1a) is essentially that a frame of reference dy/dt = γ exists in
which the magnitude |V |/D1/2 of the local Froude number is less than unity at each
x. A graphical interpretation of this condition can be obtained by plotting the profiles
of ±D1/2 and V (figure 4a). The requirement is satisfied if one can uniformly shift
the V profile up or down so that it fits within the shaded envelope. If the depth goes
to zero at both edges of the stream, the thickness of the envelope goes to zero at the
edges (figure 4b) and the condition is nearly impossible to satisfy. The value of V at
the two edges of the stream must be identical, and γ must be chosen as that value.
With zero potential vorticity, the velocity varies linearly across the channel and the
two edge velocities can never be equal. Although some zero-potential-vorticity flows
in a rectangular channel with sidewalls are provably stable by Ripa’s theorem, no
zero-potential-vorticity flow with free edges can be so shown. Indeed, the results of
our eigenvalue calculations will suggest that all such flows are unstable, though the
instability may be weak and of small scale. For flow with arbitrary potential vorticity
and free edges, Ripa’s theorem can be satisfied only in the exceptional case that V is
identical at the two free edges.

5. The linear stability problem
Let ⎛

⎝u0

v0

d0

⎞
⎠ = Re

⎡
⎣

⎛
⎝û(x)

v̂(x)

d̂(x)

⎞
⎠ eil(y−ct)

⎤
⎦ + O(ε).

Substitution into (3.3a–c) then leads to

[il(V − c)û] − v̂ = − d

dx
d̂, (5.1a)

il(V − c)v̂ +

(
1 +

∂V

∂x

)
û = −ild̂, (5.1b)
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Figure 4. Graphical representation of one of the two requirements (see (4.1a)) of Ripa’s
Theorem. Stability requires that the velocity profile can be shifted uniformly up or down to fit
entirely in the shaded area. In (b) the depth goes to zero at the edges of the flow, eliminating
the range over which the velocity can be shifted.

il(V − c)d̂ +
∂

∂x
(Dû) + ilDv̂ = 0. (5.1c)

The boundary conditions are

Dû = 0 (at free edges). (5.2)

Since D vanishes at the edges, we merely require that û remain bounded there.
There are apparently no general theorems informing solutions to the eigenvalue

problem (5.1) and (5.2) with regard to the existence or enumeration of solutions.
For zero potential vorticity (Q =0), (5.1b) reduces to

(V − c)v̂ = −d̂. (5.3)

Also, the perturbation potential vorticity (see (3.5)) must vanish:

dv̂

dx
= ilû. (5.4)

If these last two relations are used eliminate v̂ and d̂ from (5.1c), it follows that

d

dx

(
D

dv̂

dx

)
− l2[D − (V − c)2]v̂ = 0, (5.5)

as shown by GKS. At this point, the shape of the bottom is still arbitrary.
Assuming that d̂ remains regular at the edges of the current, the boundary condition

(5.2) along with (5.1c) implies that Ddv̂/dx =0 at the edges. Integration of (5.5) across
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the flow then yields

l2
∫ w/2

−w/2

[D − (V − c)2]v̂ dx = 0. (5.6)

Hayashi & Young (1987) have shown that the complex phase speed c = cr + ici is
bounded by Howard’s (1961) semicircle theorem. (The equatorial flow treated by the
former has h = 0 but it is a simple matter to extend the proof to the case of variable
h(x).) The result is that cr and ci are constrained by[

cr + 1
2
(Vmax + Vmin)

]2
+ c2

i �
[

1
2
(Vmax − Vmin)

]2
; (5.7)

that is, the complex phase speed of an unstable wave must fall within a semi-circle,
lying in the upper half of the (cr, ci)-plane, centred on the cr -axis, and lying between
velocity extremes Vmin and Vmax. The value of cr for an unstable wave therefore lies
within the range of the basic velocity.

Now consider the specific application to a basic state flowing in a parabolic channel.
Stern & Simeonov (2008) have pointed out that ci depends only on κ and not the
centreline position xc of the basic flow. A proof that is slightly different from theirs
proceeds thus. If (2.8) and (2.9) are substituted into (5.5) and the result expressed in
terms of the flow-centred coordinate x ′ = x − xc there follows

d

dx ′

(
D

dv̂

dx ′

)
− l2

[
1
2
(1 + κ)

[(
1
2
w

)2

− x ′2
]

− (κxc − c − x ′)2
]
v̂ = 0. (5.8)

Here xc should be interpreted as the (fixed) position of the centreline of the basic
flow. According to (2.8) D(x) is independent of xc, and the latter then appears only
in the expression κxc − c. The c value for a basic state centred at xc can be obtained
by adding the factor κxc to the c value for the channel-centred (xc = 0) profile with
the same width w. Since κxc is real, ci (and thus the growth rate lci) is independent
of xc. Shifts in the centreline position of a current with a fixed D profile therefore
affect only the real part cr of the phase speed by augmenting c by the amount κxc.

6. Long-wave stability and hydraulic states
Of particular interest in hydraulics is the stability of long waves. Concepts such as

subcritical and supercritical flow are defined in terms of long-wave speeds, assumed
to be real. Long-wave instability is therefore most threatening to the preservation of
traditional hydraulic behaviour. In order to explore the long-wave limit, let l � 1 and
write

v̂ = v(0) + lv(1) + l2v(2) + · · ·
and

c = co + lc1 + l2c2 + · · · .
For simplicity, we will normalize v̂ such that its maximum value is unity.

The lowest-order approximations to (5.5) and (5.6) can then be written as

d

dx ′

(
D

dv(0)

dx ′

)
= 0

and ∫ w/2

−w/2

[D − (V − co)
2] dx ′ = 0.
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Integration of the first relation and enforcement of the boundary conditions leads to

v(0) = const. = 1,

in accordance with the normalization. The second relation then yields

c2
0 − 2c0〈V 〉 + 〈V 2〉 − 〈D〉 = 0,

where brackets denote a cross-stream average: 〈v〉 = (1/w)
∫ w/2

−w/2
v dx ′. The phase

speeds of the two waves are therefore given by

co = 〈V 〉 ± [〈V 〉2 − 〈V 2〉 + 〈D〉]1/2. (6.1)

Long-wave instability occurs for 〈V 〉2 − 〈V 2〉 + 〈D〉 < 0. For real co, (6.1) suggests the
generalized Froude number for zero-potential-vorticity flow:

Fo =
〈V 〉

[〈V 〉2 − 〈V 2〉 + 〈D〉]1/2 . (6.2)

The flow is subcritical, critical or supercritical according to Fo < 1, =1, > 1. These
results hold for general bottom topography.

For the parabolic channel profiles (2.8) and (2.9), it follows that

co = κxc ±
√

κ

12
w. (6.3)

For real co, the Froude number is

Fo =
xc

w

√
12κ. (6.4)

The waves in question are relatives of the Kelvin waves that would exist were the flow
confined to a channel with vertical sidewalls. When the topography becomes smooth
and the layer depths vanish at the edges, the two Kelvin waves are replaced by two
frontal waves. Like their Kelvin wave brethren, the waves are trapped to the edges.
Long waves are therefore unstable for κ < 0 and marginally unstable for κ =0 (the
GKS case).† This result suggests that a current that encounters a region of convex
bottom topography, such as at a shelf break, may become unstable there with respect
to long waves. It also suggests that the flow cannot be controlled, at least not in the
usual sense, where the topography is convex.

7. The effect of channel curvature
The long-wave results suggest positive curvature as a stabilizing effect on the flow.

We test this idea by examining the stability of a sequence of parallel basic states
in channels with κ = 0.2, 0, and −0.4 (figures 5–10). The channel in this case is
uniform in y. By choosing the depth scale H so that the centreline depth D(0) = 1,
(2.8) yields w = 2

√
2/(1 + κ). All coefficients in (5.8) now depend only on κ and xc.

Since the growth rate of any unstable waves depends only on the former, one may
take xc = 0. The basic flow is then centred in the channel and the flux Q =0. For
a given wavenumber l, a basic state with the same κ but non-zero xc will produce
the same linear growth rate as for xc = 0; the corresponding cr value will increase by

† Although c is real for κ > 0, Borenäs (1988) has shown that a spatial amplification of a
long-wave disturbance is possible if the basic flow varies with y.
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Figure 5. (a) The phase speed (represented by cr − κxc) and (b) the growth rate lci as a
function of wavenumber l for κ = 0.2.

amount κxc. The values of cr and the growth rate lci are found using a second-order
finite-difference approximation of (5.8). In addition, the finite-amplitude evolution of
each case is explored using a numerical simulation in which the basic state is subject
to an initial random, small-amplitude perturbation in the layer depth. The numerical
solution technique uses a second-order finite-volume method for the conservative
form of the single-layer shallow-water equations and is described in Helfrich, Kuo &
Pratt (1999). The model has been successfully used in a number of rotating flow
problems involving shocks, hydraulic jumps, the presence of zero layer depths and
gravity currents (e.g. Pratt et al. 2000). Note that unlike the linear growth stage, the
finite-amplitude evolution may depend on the initial xc.

We begin with the case κ = 0.2, the linear stability properties of which are plotted
in figure 5. At long wavelengths (l → 0), the two frontal waves are the only wave
modes of the flow. As shown earlier, the phase speeds of the two long waves are
distinct, although the corresponding cr curves merge at finite l ≈ 0.75 (figure 5a). The
resulting instability, which is the result of the interaction between the two frontal
waves, generally produces the largest growth rates (figure 5b). Other wave modes
come into play at finite wavelengths. In textbook examples of waves in a prismatic
channel with no background flow, these are the Poincaré waves. Here we will simply
refer to them as inertia–gravity waves. Interactions between edge and inertia–gravity
waves, and between different inertial–gravity waves, produce small bands of instability
with relatively weak growth rates. The linear analysis for other values of κ has shown
that the bands of instability migrate towards higher wavenumber as κ increases. The
growth rates within each band diminish and the flow therefore becomes less unstable
in the linear sense.

The finite-amplitude evolution of the perturbed flow for κ = 0.2 reveals a growing
meander with a phase shift between the left and right edges of the flow (figure 6). The
wavelength is close to that of the most rapidly growing linear disturbance. Eventually
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Figure 6. The finite-amplitude evolution of a flow with xc = 0 and κ = 0.2, subjected to a
random perturbation. The layer depth is contoured (solid lines) in intervals of 0.1. The dashed
lines in the top panel show the topography contours in intervals of 0.5. They are not shown in
the other panels for clarity.

the waves break and generate mixing around the edges of the flow. The resulting
state is a distinct band of current that occupies a width much greater than the initial
width (t = 140 panel).

The case κ = 0 (figure 7) is the essentially the same as that considered by GKS.
The long frontal waves now have identical phase speeds and the band of instability,
sometimes known as the GKS instability, extends to l =0. The maximum growth
rate within this band has increased from 0.125 to a value ≈0.15. In addition, the
wavenumber range plotted has more bands of instability, each with higher maximum
growth rate, than for κ = 0.2. These bands were also identified by Hayashi & Young
(1987) and first recognized in a non-rotating analogue of the present problem by
Satomura (1981a, b). The finite-amplitude evolution for this case (figure 8) again
produces phase-shifted meanders, but here the result is the formation of a train of
distinct stationary eddies.

The case κ = −0.4 also has a frontal wave instability band that extends to l = 0 and
there are more bands of higher wavenumber instability (figure 9). The growth rates
are larger than for the previous case and the most rapidly growing wave is longer.
The finite-amplitude evolution (figure 10) again shows the formation of stationary
eddies, this time with a greater along-channel scale.

It has already been shown that an unstable disturbance must have zero wave
energy, at least in the early stages of growth. This does not preclude an exchange
between the total kinetic and potential energies (as defined by the first two and second
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Figure 7. Similar to figure 5 but with κ =0.
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Figure 8. Similar to figure 6 but with κ =0.

two terms in (3.1)). A history of the total kinetic and potential energy shows a net
conversion from kinetic to potential for positive κ (figure 11a) and the opposite for
κ < 0 (figure 11b). These conversions are most apparent after instability has grown
to finite amplitude. There is also marked energy dissipation in the system and this
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Figure 9. Similar to figure 5 but with κ = −0.4.

coincides with the onset of wave breaking. The energy conversions are consistent
with the increase in the overall width of the flow, which for κ > 0 means that dense
fluid is flung up to higher elevation along the channel walls. This process may be
regarded as a signature of barotropic instability, though this categorization must be
reconciled with the property that there is no energy exchange between the mean
flow and the growing wave, at least during the small-amplitude stage. Similarly, the
increase in mean width for κ < 0 is reminiscent of baroclinic instability: fluid at the
edges descends to lower elevation and thereby loses potential energy.

Since the system suffers an energy loss and, as we will show, changes in potential
vorticity, it is natural to ask how this occurs. The numerical algorithm has no
explicit viscosity: it is a shock capturing code that has a level of intrinsic numerical
dissipation that remains low except where regions of strong gradients are sensed (as
near a hydraulic jump or bore). There the order of the scheme is reduced, resulting
in an increase in the level of numerical dissipation. This increase is needed to control
the numerical oscillations that typically arise near shocks. At the same time, the code
ensures that the shocks contain no sources of mass or momentum. In an idealized
shock (a discontinuity in depth and velocity) the solution can be calculated (and the
rate of energy dissipation computed) from conservation of mass and momentum and
is therefore independent of any explicit viscosity. In our simulations there are no
obvious jumps or bores, but there are fine regions of strong gradients that form due
to the breaking waves that occur around the edges of the flow. These features account
for most of the energy dissipation.

An examination of the eigenfunction structure shows that the most unstable modes
are trapped to the edges of the flow. In the case of the frontal wave instability, the
modes decay monotonically inward from the edges. For instabilities involving inertia–
gravity waves, the modes oscillate but still decay inwards. The growth rate depends on
the separation between the two edge regions. Readers familiar with the classical Eady
(1949) model of baroclinic instability will see similarities with the present problem.
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Figure 10. Similar to figure 6 but with κ = −0.4.
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Figure 11. Total energy and its constituents vs. time for (a) κ = 0.2 and (b) κ = −0.4.

Both models involve edge waves that are separated by an interior region. (In the Eady
problem, the ‘edges’ are rigid, horizontal, upper and lower boundaries.) The tendency
of the waves is to propagate in opposite directions, but the sheared background
flow can, over a certain range, bring the two speeds into equality. The waves then
couple and experience resonant growth. The effect weakens as the upper and lower
boundaries are separated.

8. The equilibrated width and potential vorticity
One measure of the finite-amplitude consequences of the instability is the ratio of

the equilibrated width wf to the initial width wo, plotted in figure 12 as a function
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Figure 12. Contours of the ratio wf /wo of final to initial current width as a function of κ
and of the initial value of xc . The plot applies only to cases in which the flow equilibrates to
a coherent, nearly parallel stream. (For κ less than about 0.08, the instability leads to a train
of eddies.)

of κ and of the initial value of xc. The plot is based on 40 numerical experiments
distributed over the parameter space shown. As suggested by the linear stability
analysis, the results depend primarily on κ . More importantly, the results suggest
that growth in the width of the current is significant only when κ < 1; that is, when
the channel is dynamically wide. When the channel width is moderate or narrow
(κ � O(1)), the width of the flow remains close to the initial width and the zero-
potential-vorticity approximation remains reasonable. Note that eddies are produced
when κ falls beneath a threshold value ≈0.08.

What determines the final width wf ? A possibility is that the flow becomes
sufficiently wide that the two edge waves lose contact with each other, as described
above. A simple model of this effect can be formulated by assuming that the potential
vorticity increases from zero in the initial state to a finite, uniform dimensional value
f/D∞ in the equilibrated state. We will concentrate on cases for which xc is zero.
Assuming that the edge waves decay over the deformation radius (g′D∞)1/2/f , the
final width should be at least twice this value before contact between the two edge
waves is lost. In particular let the final dimensional width equal n(g′D∞)1/2/f where
n could reasonably be expected to lie the range 2–4. A further constraint is provided
by conservation of mass, which requires the cross-sectional area of the final state to
equal that of the initial state. These areas can be calculated from the depth profile
(2.8) for zero-potential-vorticity flow, and the non-dimensional depth profile

D =
1 + κ

q sinh[q1/2w]

{
sinh[q1/2(x − 1

2
w)] − sinh[q1/2(x + 1

2
w)]

}
+

1 + κ

q
w (8.1)

(e.g. Borenäs & Lundberg 1986) for uniform, finite potential vorticity, non-
dimensionally q = D/D∞. Equating the initial and final areas leads to

wf /wo = n

[
12

(
2(1 − cosh n)

sinh n
+ n

)]−1/3

,

and the corresponding wf /wo are plotted for n= 2, 3 and 4 in figure 13a along
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Figure 13. (a) Comparison between the numerical model values of wf /wo (dashed curve)
and a theory (equation (8.3), thick solid curve). The dot-dash curve gives the observed values
if wf is based on depth greater than 5% of the maximum depth. The lower horizontal lines
summarize a separate theory that requires the flow to equilibrate when its width grows to n
times the deformation radius. (b) Comparison between the predicted equilibrated q1/2w based
on (8.4) and the average value from the equilibrated numerical model solutions, obtained by
neglecting values of q less than 20. The dot-dashed line is based on the actual observed width
while the dashed line uses the width based on layer depth values greater than 0.05.

with the observed values for experiments with xc = 0. Aside from the fact that the
prediction is independent of κ , the theory suffers from its severe underestimation of
the observed wf /wo over small values of κ . Clearly there is something more to the
equilibration than just separation between the edge waves.

Alternatively, one might anticipate that the equilibration mechanism acts to satisfy
Ripa’s condition for stability. The theorem does not include decay scales for edge
waves, but it does lay down the conditions under which wave pairs are unable to
resonate. As we have already shown, a minimal requirement is that the fluid velocities
at the two edges be equal. Since V will be antisymmetrical about x =0 for xc = 0, this
means that V must vanish at both edges. Suppose then that we require the final state
to have uniform potential vorticity, to have the same cross-sectional area as the initial
state, and to have V =0 at the edges. Using the geostrophic velocity profile based on
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(8.1), namely

V =
1 + κ

q1/2 sinh[q1/2w]

{
cosh[q1/2(x − 1

2
w)] − cosh[q1/2(x + 1

2
w)]

}
+ κx, (8.2)

one obtains

tanh

[√
3

1 + κ

(
wf

wo

)3/2]
=

κ

1 + κ

√
3

1 + κ

(
wf

wo

)3/2

. (8.3)

As shown in figure 13a the prediction of wf /wo based on (8.3) is an improvement
in both trend and magnitude. For small values of κ the theory underestimates the
observed values and this may be due to the fact that the equilibrated numerical
solutions typically have very thin and broad edge regions with anomalously high
values of potential vorticity. (The values of V at the edge tend to be greatly reduced
from their initial values, though they are not zero.) If the thin edge regions are excised,
which can be approximated by neglecting depth values less than 0.05, the resulting
data (dot-dashed curve) lie much closer to the theory. In any case, the results of this
analysis suggest that the physical separation of waves in resonance is less important
to the equilibration mechanism than is the avoidance of wave resonance altogether.

The theory leading to (8.3) also gives a prediction for the equilibrated potential
vorticity. A convenient measure of this quantity is q1/2wf , which equals the ratio of
the dimensional final width to the Rossby radius of deformation based on D∞. It
follows from the above considerations that

q1/2w = 2

√
3

1 + κ

(
wf

wo

)3/2

, (8.4)

where wf /wo can be related to κ using (8.3). As suggested in figure 13b, the resulting
prediction does reasonably well when comparing the average potential vorticity of
the numerical model. (The extremely high values of potential vorticity near the edges
are ignored in the computation of this average, as explained in the figure caption.)

9. The stability of a hydraulically controlled solution
We now investigate the instability of a hydraulically controlled flow that originates

in a deep upstream basin, passes over a shallow sill, and continues into a deep
downstream basin, flowing along the right flank of the topography. The topography
has κ fixed at a value of 0.4, with variable bottom height

ho(y) = (exp{−(λy)2} − 1)

and λ= 0.125. The steady solution, shown in the t = 0 frame of figure 14, is
qualitatively similar to that shown in figure 3. This state is what the steady hydraulic
theory would predict, with a subcritical-to-supercritical transition taking place across
the sill (y = 0). However, as shown at t = 100, 120 and 160, the flow undergoes the same
instability and widening that has already been described, particularly in the subcritical
region upstream of the sill (y < 0). Zero-potential-vorticity hydraulic theory clearly
fails to provide a realistic view of the flow in this region. Open boundary conditions,
with zero gradients in the along-channel direction, are used at the upstream and
downstream edges of the numerical domain. In the case of the subcritical flow, the
upstream boundary gives rise to a slight stabilization of the flow, as seen in figure 14.
The supercritical flow downstream of the sill is relatively free of disturbances, despite
the fact that the linear growth rates are the same as for the upstream region (κ being
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Figure 14. The instability of a hydraulically controlled flow in a channel with κ = 0.4 and a
sill (located at y = 0.). The layer depth is contoured (solid lines) in intervals of 0.2. The dashed
lines show the topography contours in intervals of 0.5.
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Figure 15. The volume flux vs time for the flow shown in figure 14.

the same). However, the phase speeds of the unstable modes are much greater in
the supercritical portion and the waves apparently propagate downstream and out
through the open boundary before they can grow to significant size.

The alteration of the initial flow is accompanied by a number of changes in bulk
properties. For example, the volume flux at the sill diminishes during the early stages
of evolution. A time history of the flux for the figure 14 example (figure 15) shows
an initial decrease followed by large oscillations as the upstream waves reach the sill.
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Figure 16. The sill flow at t = 0 (dashed line) and the average conditions for t = 180–300
(solid line) for the flow shown in figure 14.

The transport then increases, with a mean for t = 180–300 of about 1.45 times the
initial value. (These transport data are from a run identical to that shown in figure 14,
but with a substantially longer upstream section so that the open upstream boundary
does not affect the sill transport at the times shown.) Another striking change is
that the region of counterflow at the sill is eliminated. The latter is demonstrated
in figure 16, which shows cross-sectional interface height profiles at the sill at t = 0
(dashed curve) and the average interface profile over the period t = 180–300 (solid
curve). The average is shown since the fluctuations during this period are very large;
however, the average is characteristic of the instantaneous interface profiles during
this period. Initially the interface near the right edge has a negative slope, indicating
negative geostrophic velocities. At later stages, the slope and velocity are everywhere
positive. In an apparent demonstration of the general conversion from potential to
kinetic energy, fluid now lies further up on the right-hand slope of the topography.
It is unclear whether the increase in the sill transport and the elimination of the
counterflow will persist beyond the times shown owing to the uncertainties associated
with the open upstream boundary. Resolution will require inclusion of a deep finite
upstream basin.

The flow downstream of the sill does not produce the eddies that are observed in
certain overflows . The lack of eddy generation seems consistent with previous models
(e.g. Spall & Price 1998 and Etling et al. 2000) that require a dynamically active
overlying layer. However, it is possible to produce eddies in our model (figure 17) by
lowering the curvature in the downstream region to the values (roughly κ < .08) that
led to eddy formation in the uniform channel. This case shown is similar to that of
figure 14 except the channel curvature is allowed to decrease from 0.4 at the sill to
0.004 in the downstream region. The topography and initial flow upstream of the sill
are the same.

10. Discussion
The linear stability properties of zero-potential-vorticity flow in a parabolic channel

depend only on the bottom curvature parameter κ =2αg′/f 2, which can also be
regarded as a dynamical measure of the channel width in a rotating system. Ripa’s
(1983) sufficient condition for stability can never be satisfied for such flows and our
own eigenvalue calculations suggest that the flows are indeed unstable for finite κ .
Maximum growth rates increase, as does the density of unstable wavenumbers,
as the channel is made dynamically wider (κ is decreased). This trend continues
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Figure 17. The instability of a hydraulically controlled flow in a channel with a sill (located
at y = 0), a channel curvature that is constant at κ = 0.4 upstream of the sill and decreases
to 0.04 downstream. Not all of the upstream numerical domain is shown. The layer depth is
contoured (solid lines) in intervals of 0.2. The dashed lines show the topography contours in
intervals of 0.5.

when the topography becomes convex (κ becomes negative). The largest growth
rates are produced by a low-wavenumber, GKS-type instability, associated with the
resonant interaction between two waves trapped to opposite edges of the stream.
Other bands of instability associated with inertia–gravity wave resonances also exist
at high wavenumber, but the growth rates are smaller. As the channel narrows (κ
increases), all the resonant bands migrate to higher wavenumber and the maximum
growth rates diminish. (Stern & Simeonov (2008) have shown that the growth rate
goes to zero as κ → ∞ for all finite wavenumbers.)

At finite amplitude, the instability leads to wave breaking at the stream edges. For
κ < 0.08 the flow eventually breaks into a train of eddies. There is some evidence
for this type of behaviour in the southern reaches of the deep western boundary
layer in the North Atlantic ocean (Dengler et al. 2004). With κ > 0.08, wave breaking
still occurs, but the overall effect is to widen the flow into a coherent stream. The
linearly unstable disturbances extract no energy from the mean flow and this makes
it difficult to classify the instability as barotropic or baroclinic. However, there is a
general conversion from kinetic to potential energy for κ > 0, a trend that is most
evident as the wave grows to large amplitude. The increase in potential energy is
caused by an increase in the average width of the flow, causing fluid to be flung up
to higher topographic elevations. The energy conversion is reversed for κ < 0; there
the same widening causes fluid at the edges to be moved to lower elevation.
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One measure of the finite-amplitude consequences of the instability is the ratio
wf /wo of equilibrated width to initial width. The numerical results suggest that wf /wo

depends primarily on κ and only weakly on the initial value of xc. For small κ , wf /wo

can be as large as 4 or 5, but the ratio decreases and rapidly approaches unity
as κ grows beyond unity. Thus, the zero-potential-vorticity approximation remains
reasonable for channels with κ � O(1). We have explored the equilibration mechanism
by means of two simple models that attempt to predict wf /wo. Both assume that the
potential vorticity of the equilibrated state can be approximated by a finite constant,
dimensionally f/D∞ and non-dimensionally q . In the first model, resonant edge waves
are assumed to decay over a scale (g′D∞)1/2/f and therefore lose contact with each
other when wf = n(g′D∞)1/2/f , where n plausibly lies in the range 2–4. Attractive
as this idea is, the resulting prediction fails to depend on κ and underestimates the
wf /wo values observed for small κ by an order of magnitude. In the second model,
the prediction is based on the idea that Ripa’s theorem is satisfied by the equilibrated
flow. This requires, at the very least, that the fluid velocities at the two edges be equal.
For a flow that is symmetric (in depth) about x =0, the edge velocities must be zero.
The resulting model is much more reasonable in that the wf /wo prediction decreases
with increasing κ and matches the numerical model values within a factor of about 2.
Among the possible reasons the agreement is not closer is that the potential vorticity
of the equilibrated state is not constant, but shows anomalously high values near the
edges. In some cases the edges themselves are very thin and broad.

In studies using zero potential vorticity, realistic bottom topography and uniform
potential vorticity (e.g. Nikolopoulos et al. 2003; Borenäs & Nikolopoulos 2000) the
hydraulic model sill flow often has a band of counterflow at the right-hand edge. This
feature is judged as being unrealistic and the counterflow is sometimes disregarded
in the calculation of the volume flux. The resulting flux estimate, which is based only
those portions of the flow having positive velocity, can be considerably greater than
the total flux of the model stream. We have found that the instability eliminates the
reverse flow, which is in general agreement with observations from places like the
Faroe-Bank Channel (e.g. Mauritzen et al. 2005 and Girton et al. 2006). The volume
flux initially decreases, but then recovers and becomes highly variable. In order to
calculate a time-average flux and compare it with what is predicted by hydraulic
theory, it is probably necessary to extend the numerical channel into a finite upstream
basin and consider the dynamics of this basin it its entirety.

The value κ ≈ 2 can be estimated for the sill section in the Faroe-Bank Channel
based on a parabolic fit the topography (Girton et al. 2006). Although the sill section
in the Denmark Strait is less like a parabola, it is considerably wider than the
deformation radius. The nominal value of κ is probably an order of magnitude
smaller. It is not surprising then, that the flow there has been observed to be more
highly variable than at the Faroe-Bank Channel sill (e.g. Hansen, Turnbull & Qsterhus
2001).

This work was supported by the National Science Foundation (Grant OCE-
0525729). The authors wish to thank J. Simeonov and M. Stern for a number of
helpful discussions.
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