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T h e r e  i s  g r o w i ng   consensus that life within the world’s ocean is under con-

siderable and increasing stress from human activities (Hutchings, 2000; Jackson et al., 

2001). This unprecedented strain on both the structure and function of marine ecosystems has 

led to calls for new management approaches to counter anthropogenic impacts in the coastal ocean 

(Botsford et al., 1997; Browman and Stergiou, 2004: Pikitch et al., 2004). Spatial management, includ-

ing Marine Protected Areas (MPAs), has been touted as a method for both conserving biodiversity 

and managing fisheries (Agardy, 1997). Continuing debates on the efficacy of MPAs have identified 

the need for models that capture the spatial dynamics of marine populations, especially with respect 

to larval dispersal (Willis et al., 2003; Sale et al., 2005). Theoretical studies suggest that population con-

nectivity1 plays a fundamental role in local and metapopulation dynamics, community dynamics and 

structure, genetic diversity, and the resiliency of populations to human exploitation (Hastings and 

Harrison, 1994; Botsford et al., 2001). Modeling efforts have been hindered, however, by the paucity of 

empirical estimates of, and knowledge of the processes controlling, population connectivity in ocean 

ecosystems. While progress has been made with older life stages, the larval-dispersal component of 

connectivity remains unresolved for most marine populations. This lack of knowledge represents a 

fundamental obstacle to obtaining a comprehensive understanding of the population dynamics of 

marine organisms. Furthermore, a lack of spatial context that such information would provide has 

limited the ability of ecologists to evaluate the design and potential benefits of novel conservation and 

resource-management strategies.
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The spatial extent of larval dispersal 

in marine systems has traditionally been 

inferred from estimates of pelagic dura-

tions of larval dispersive stages, from the 

modeled movements of passive particles 

by ocean currents, or from analyses of 

variation in allele frequencies of mito-

chondrial or nuclear genes (Johnson, 

1960; Scheltema, 1988; Planes, 2002). 

Observations of pelagic larval durations 

(PLDs) of many weeks to over one year 

in numerous marine species, coupled 

with predicted advection of passive 

particles by mean, low-frequency cur-

rents, imply that long-distance dispersal 

among subpopulations may be perva-

sive. A number of studies documenting 

genetic homogeneity over regional to 

basin-wide spatial scales provides fur-

ther support for the existence of disper-

sal over long distances (e.g., Shulman 

and Birmingham, 1995). More recent 

research and careful reconsideration 

of the evidence, however, suggests this 

perception is likely inaccurate for many 

species, particularly over time scales of 

ecological relevance.

New hypervariable nuclear DNA 

assays show genetic differentiation 

among subpopulations of marine fish 

and invertebrates that were undetected 

by earlier, less-sensitive DNA analyses 

(Bentzen et al., 1996; Purcell et al., 2006; 

Gerlach et al., 2007). Novel tagging 

approaches demonstrate the potential 

for local retention of reef fish larvae 

(Jones et al., 1999, 2005; Almany et al., 

2007), while constrained nearshore lar-

val distributions of littoral invertebrate 

species (Barnett and Jahn, 1987) suggest 

localized retention in nearshore waters. 

Finally, estimates of larval dispersal using 

advection/diffusion models with realistic 

mortality terms and vertical positioning 

behavior show more restricted move-

ment than would be predicted from one-

way oceanic currents acting on passive 

particles (e.g., Cowen et al., 2006). Taken 

together, these studies provide intrigu-

ing, albeit incomplete, evidence that 

subpopulations of marine organisms 

may be more isolated over smaller spatial 

scales than was previously thought. We 

are, nonetheless, a long way from a com-

prehensive understanding of population 

connectivity that would allow for quan-

titative predictions of specific natural or 

human impacts on marine populations.

Fundamental knowledge of larval dis-

persal and connectivity can be gained 

from (1) understanding the biological 

and hydrodynamic processes involved 

in the transport of larvae and (2) deriv-

ing larval origins and dispersal pathways 

using geochemical, genetic, or artificial 

markers. Natal origins and destination 

points provide the basic data in connec-

tivity studies (Box 1). However, a pro-

cess-based understanding of dispersal is 

an essential component of population 

connectivity because it addresses how 

biological and hydrodynamic processes 

interact on different spatial and tempo-

ral scales to disperse the larvae of marine 

organisms. Furthermore, a mechanis-

tic understanding generates testable 

hypotheses of larval transport and 

dispersal in new environments or loca-

tions. The combination of marker and 

process-oriented approaches promises a 

truly predictive understanding of larval 

dispersal and connectivity.

The dominant scales of larval disper-

sal in coastal species are not known, and 

perceptions on this issue vary broadly 

within the academic community; opin-

ions range from broad to restricted 

dispersal and from devout to agnostic. 

The few studies where natal origins have 

been empirically determined (Jones et 

al., 1999, 2005; Almany et al., 2007), and 

the case of endemic species on isolated 

islands where larvae must have origi-

nated from local sources (Robertson, 

2001), demonstrate that limited dis-

persal occurs in marine environments. 

In contrast, observations that larvae of 

shallow-water species are found in ocean 

gyre systems, and examples of significant 

range extensions during narrow event 

windows, indicate dispersal on the scale 

of hundreds to thousands of kilometers 

is also possible (Johnston, 1960; Cowen, 

1 Population connectivity refers to the exchange of individuals among geographically separated subpopulations that comprise a metapopulation. Set in the context of benthic-oriented marine 

species, population connectivity encompasses the dispersal phase from reproduction to the completion of the settlement process (including habitat choice and metamorphosis).

. . .these papers . . .set the stage for a groundswell 

of interdisciplinary scientif ic and community 

		  interest in marine population connectivity.
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A mechanistic understanding of marine population connectivity requires 

resolution of the biological and physical processes involved in larval 

dispersal and transport. Larval dispersal refers to the intergenerational 

spread of larvae away from a source to the destination or settlement site 

at the end of the larval stage. This usage is widespread in the terrestrial lit-

erature where the basic description of dispersal is a dispersal curve, a one-

dimensional representation of the number of settlers from a given source 

as a function of the distance from that source (see Figure A-1).

The dispersal curve becomes a dispersal kernel with an associated 

probability density function, in n dimensions. Formally, the dispersal ker-

nel is the probability of ending up at position x given a starting position y. 

One quantitative measure of population connectivity is the source distri-

bution matrix ρij, which gives the proportion of juveniles in population i 

that came from population j. In the absence of any data, let’s assume that 

larval production in a population is a function of habitat area and that 

recruitment decays exponentially with distance from a natal population. 

In this case,

	

where dij is the distance between population i and j, Aj is the area inhab-

ited by population j, and α scales the effect of distance on dispersal 

(Moilenan and Niemanen, 2002). Although simplistic, the model may 

provide an adequate representation of connectivity in metapopulations 

dominated by self-recruitment (Jones et al., 2005; Almany et al., 2007).
Distance from Source

Local Retention (Closed)

Population Connectivity

Broadly Dispersed (Open)

Figure A-1. One-dimensional, theoreti-
cal dispersal curves depicting dispersal 
from a source location ranging from 
strong retention to broadly dispersed.

Box 1.  QUANTITATIVE MEASURES OF POPULATION CONNECTIVITY

1985; Sheltema, 1986; Victor, 1986; 

Newman and McConnaughey, 1987).

Identification of relevant temporal 

scales is also of critical importance to any 

discussion of population connectivity. 

For population maintenance, and associ-

ated conservation and resource-manage-

ment objectives, the relevant time scale 

is ecological or demographic, rather than 

that relevant to evolutionary processes. 

Rates of exchange necessary to impact 

populations on ecological time scales 

are several orders of magnitude higher 

than those required to influence genetic 

structure. Consequently, both the time 

over which dispersal is measured and the 

amplitude of the relevant recruitment 

signal must be appropriate for ecological 

contribution to population replenish-

ment and maintenance.

Estimating population connectiv-

ity in marine ecosystems is inher-

ently a coupled bio-physical problem. 

Important physical processes include 

boundary layer structure, particularly 

over the inner shelf, tides, internal tides 

and bores, fronts and associated jets, 

island wakes, and cross-shelf forcing via 

eddies, meanders, and lateral intrusions. 

However, physical processes alone do 

not determine the scales of connectivity. 

Time scales of larval development and 

behavioral capabilities, including vertical 

migration, also play an important role 

(Cowen, 2002).

Although the number of advective 
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and diffusive processes that relate to the 

dispersal and recruitment of marine 

organisms is potentially large, sev-

eral general observations may help to 

define the connectivity problem. First, 

temporal and spatial correlation scales 

over continental shelves are often quite 

short—on the order of days and kilo-

meters. Unfortunately, correlation scales 

near islands, reefs, and within estuaries 

are not well known. Careful selection 

of sampling strategies is therefore nec-

essary to resolve the physical processes 

described above. Second, the relative 

contributions of these processes will 

likely change from site to site, depend-

ing on such factors as coastal geometry, 

proximity to estuaries, water-column 
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Physical and coupled bio-physical hydrodynamic models can provide 

a more sophisticated parameterization of connectivity models. Here,

	

where pij represents the probability that a larva produced in population i 

settles in population j (Figure A-2). These probabilities are generated 

by coupling output of a hydrodynamic model with Lagrangian particle-

tracking protocols that allow for virtual larvae to be assigned variable 

pelagic larval durations, vertical migration behaviors, and horizontal 

swimming abilities (e.g., Paris et al., in press). By using an individual-based 

approach, coupled bio-physical models have flexibility to incorporate 

characteristic life-history traits and behavioral capabilities of different 

taxa. However, to compare predictions from the various connectivity 

models, we need empirical estimates of larval dispersal to evaluate model 

performance. While new larval mark-recapture approaches are providing 

information on levels of self-recruitment to local populations, tracking 

larvae that disperse away from natal locations defines the critical chal-

lenge for field ecologists studying connectivity in marine systems.

highlights recent advances, as well as 

challenges facing the oceanography com-

munity, as ocean ecologists seek a mech-

anistic understanding of marine popula-

tion connectivity. The major challenges 

in this effort are to provide a quantita-

tive understanding of the processes and 

scales controlling larval dispersal and 

how connectivity influences the dynam-

ics of affected populations. Resolving the 

mechanisms controlling larval dispersal 

will involve a coherent understanding 

of the relevant physical processes and 

how organisms mediate the physical 

outcome. Multiple scales will be impor-

tant, and therefore understanding how 

Figure A-2. Two-dimensional dispersal kernels calculated from a  
series of model runs using a coupled biological and physical  
model (Cowen et al., 2006; Paris et al., in press). Scale rep-
resents probability of successful dispersal from release 
sites indicated by red dots. Figure provided by  
C. Paris, University of Miami
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stratification, and seasonal wind forc-

ing (e.g., Werner et al., 1997; Epifanio 

and Garvine, 2001; Sponaugle et al., 

2002; Pineda and Lopez, 2002). Third, 

the individual processes contain length 

and time scales that vary, and so physi-

cal transport and dispersal is inherently 

a multiscale process. This variability 

presents problems for modeling, as it is 

difficult at the present time to resolve 

mesoscale and small-to-intermediate 

scales simultaneously. Finally, there is a 

need for a higher degree of precision in 

knowledge of the flow fields in order to 

embed behavioral models on particles 

within physical models to test hypoth-

eses involving bio-physical interactions.

This special issue of Oceanography 
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the processes are coupled across scales is 

essential. Identifying patterns will need 

to involve efforts that focus on a variety 

of species with different life histories 

across diverse environments. In con-

cert, the problem is multidisciplinary, 

but one requiring interdisciplinary 

research effort (Figure 1).

The core challenges or issues rel-

evant to population connectivity can 

be parsed into four specific categories: 

observation, explanation, consequences, 

and application. These issues can be 

captured, respectively, in the follow-

ing general questions: (1) What is the 

spatial/temporal distribution of suc-

cessful settlers originating from source 

populations? (2) What processes influ-

ence the shape of this dispersal kernel? 

(3) How do connectivity rates influence 

population and community dynam-

ics? (4) How do we translate what we 

learn into societal gains? Progress has 

been made in all four categories, but in 

most cases only at the periphery of the 

problem. This may be especially true 

of the second question, where answers 

are likely to be particularly challenging 

because a variety of physical and biologi-

cal components contribute to the shape 

of the dispersal kernel. Although these 

components can be addressed separately, 

they will ultimately need to be examined 

OCEANUS

Figure 1. Population connectivity of benthic marine organisms occurs primarily during the pelagic larval phase when individuals either return to their natal loca-
tion to settle, or disperse and settle some distance away from their natal population. While these larval movements are currently shrouded in mystery, new tech-
nologies promise to transform our understanding of population connectivity in ocean ecosystems. For instance, autonomous underwater vehicles (AUVs) could 
provide almost continuous real-time data on local hydrography that would then be streamed and assimilated into a coupled bio-physical model to predict the 
location of larvae spawned at a particular site. Model predictions could then be relayed to a research vessel conducting adaptive larval sampling using new in 
situ imaging systems that would, in turn, provide near-real-time distributions of target larvae. These distributions could then be used to optimize new mission 
targets for the AUVs during the following data-collection cycle.
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together due to the role of interactions. 

Ultimately, a process-oriented under-

standing is a prerequisite to achieving 

prognostic capability of marine-organ-

ism larval dispersal.

The series of papers in this volume 

demonstrates broad recognition of the 

relevance of and an active interest in the 

study of population connectivity across 

ocean science disciplines. These articles 

highlight the importance of spatio-

temporal scales at a generally finer scale 

than previously considered in current 

hydrodynamic models and cross-shelf 

processes. The role of biological fac-

tors, such as larval behaviors that medi-

ate the outcome of physical mixing and 

dispersal, is also evident. Similarly, the 

application of new methodologies (and 

the need for development of others) sug-

gests exciting results and the potential 

for a transformative understanding of 

the importance of spatial processes in 

marine systems. As the processes and 

scale of connectivity are better under-

stood, the applications of these findings 

are also being dissected to enhance man-

agement and conservation measures.

Each paper in this issue addresses 

the current state of knowledge, new 

and novel methods for studying 

connectivity-related processes, and a 

call for future work to bring the whole 

problem into focus. The first paper, by 

Pineda, Hare, and Sponaugle, discusses 

larval transport and larval dispersal and 

how they relate to population connectiv-

ity. The authors consider the concept of 

population connectivity, with an empha-

sis on understanding the role of plank-

tonic processes on the success of the 

settlers. Gawarkiewicz, Monismith, and 

Largier explore the physical oceanogra-

phy of the coastal ocean, with an explicit 

perspective to physical processes poten-

tially important to connectivity. Werner, 

Cowen, and Paris examine the state of 

biophysical modeling as it pertains to 

connectivity, emphasizing both the capa-

bilities of the models and the assump-

tions (i.e., limitations) and pointing to 

areas of process-oriented research that 

are required to improve coupled models.

Hedgecock, Barber, and Edmands dis-

cuss the potential role and limitations of 

genetic methodologies in assessing popu-

lation connectivity. These authors pro-

vide a dose of realism regarding the capa-

bilities of genetic methods for inferring 

connectivity, but also a sense of optimism 

with the incorporation of newer inte-

grative approaches. Similarly, Thorrold, 

Zacherl, and Levin examine new methods 

for direct measurements of connectiv-

ity in the field using natural and artificial 

tags. Their work focuses on geochemi-

cal signatures that exist within calcified 

structures of many marine organisms. 

The last three papers explore the 

various implications and applications of 

connectivity in marine systems. Gaines, 

Gaylord, Gerber, Hastings, and Kinlan 

discuss the observational and theoreti-

cal advances and challenges in under-

standing the population consequences 

of larval dispersal and connectivity, 

and offer broad theoretical contexts for 

addressing population ecology issues. 

Jones, Srinivasan, and Almany evalu-

ate the significance of connectivity to 

the conservation of marine biodiversity. 

They provide recent evidence that the 

resiliency of marine populations to 

human exploitation may be linked to 

species richness, thereby highlighting the 

importance of maintaining biodiversity 

in marine communities. This theme is 

further discussed in the final paper by 

Fogarty and Botsford, who look into the 

central role of dispersal and connectiv-

ity in the dynamics of exploited marine 

systems. They discuss the critical impor-

tance of understanding dispersal pro-

cesses controlling both larval export and 

movement of later life-history stages in 

the specification of effective spatial man-

agement strategies with an emphasis on 

marine reserves.

In summary, while these papers only 

touch on the scope of current work 

addressing various aspects of popula-

tion connectivity in marine populations, 

they set the stage for a groundswell of 

interdisciplinary scientific and commu-

nity interest in marine population con-

nectivity. Our hope is that through this 

combined effort, oceanographers may be 

able to establish a simplified yet useful 

set of guidelines (e.g., certain biologi-

Our hope is that through this combined effort , 

				    oceanographers may be able to establish 

		  a simplif ied yet useful set of guidelines . . .
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cal processes, such as vertical behavior 

by larvae, may mediate or simplify the 

dispersive complexity of the physical 

environment). Until we do so, we may 

be relegated to resolving connectiv-

ity individually for every species and 

system of interest.
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