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Abstract: 
 

Depth-integrated primary productivity (PP) estimates obtained from satellite 

ocean color based models (SatPPMs) and those generated from biogeochemical ocean 

general circulation models (BOGCMs) represent a key resource for biogeochemical and 

ecological studies at global as well as regional scales. Calibration and validation of these 

PP models are not straightforward, however, and comparative studies show large 

differences between model estimates. The goal of this paper is to compare PP estimates 

obtained from 30 different models (21 SatPPMs and 9 BOGCMs) to a tropical Pacific PP 

database consisting of  ~1000 14C measurements spanning more than a decade (1983-

1996). Primary findings include: skill varied significantly between models, but 

performance was not a function of model complexity or type (i.e. SatPPM vs. BOGCM); 

nearly all models underestimated the observed variance of PP, specifically yielding too 

few low PP (< 0.2 gC m-2d-2) values; more than half of the total root-mean-squared 

model-data differences associated with the satellite-based PP models might be accounted 

for by uncertainties in the input variables and/or the PP data; and the tropical Pacific 

database captures a broad scale shift from low biomass-normalized productivity in the 

1980s to higher biomass-normalized productivity in the 1990s, which was not 

successfully captured by any of the models. This latter result suggests that interdecadal 

and global changes will be a significant challenge for both SatPPMs and BOGCMs. 

Finally, average root-mean-squared differences between in situ PP data on the equator at 

140°W and PP estimates from the satellite-based productivity models were 58% lower 

than analogous values computed in a previous PP model comparison six years ago.  The 



 5 

success of these types of comparison exercises is illustrated by the continual modification 

and improvement of the participating models and the resulting increase in model skill.   

 

Keywords: Primary Production; Modeling; Remote Sensing; Satellite Ocean 

Color; Statistical Analysis; Tropical Pacific Ocean (15˚N to 15˚S and 125˚E to 95˚W) 
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1. Introduction 

Marine primary productivity is a large and highly variable component of the 

global carbon cycle and drives ocean biogeochemical cycles of major chemical elements 

such as silicon, nitrogen and phosphorus. From an ecological standpoint, primary 

productivity provides the upper bound for production at higher trophic levels and defines 

ecosystem carrying capacity, a key factor for the design of marine protected areas. 

Awareness of bottom-up forcing even to understand the dynamics of the upper trophic 

levels that form the most important commercial fisheries has increased (Pauly and 

Christensen, 1995; Ware and Thomson, 2005). Calculating accurate primary productivity 

(PP) estimates over large areas is thus a primary step for ecosystem models charged with 

the task of assessing trophic dynamics. Reliable estimates of PP are also necessary for 

multiple other applications, including quantifying the flux of carbon dioxide (e.g. Bianchi 

et al., 2005), assessing export production (e.g. Boyd and Trull, 2007) and estimating 

production of climate-active gases such as dimethyl sulfide (e.g. Larsen, 2005). 

Estimating accurate PP on global scales is also essential to understanding the 

consequences of climate change on phytoplankton growth (Behrenfeld et al., 2006.) 

Although the broad spatial and temporal patterns of productivity were elucidated 

on the basis of compilations of in situ measurements (Koblentz-Mishke, 1970; Berger, 

1989), global dynamics cannot be quantified without the quasi-synoptic view afforded by 

satellites. Consequently, there have been many efforts to develop models that use 

satellite-derived information (e.g. surface chlorophyll, chl0; sea surface temperature, SST; 

and photosynthetically available radiation, PAR) to estimate PP  (SatPPMs hereafter; 

these and other acronyms are defined in Table 1) (Platt and Sathyendranath, 1993; 
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Behrenfeld and Falkowski, 1997a). Although there is considerable understanding of the 

photosynthetic process and knowledge of the ocean optics that determine ocean color 

signals, SatPPMs often have limited success reproducing the observed variability of PP 

data (Siegel et al., 2001; McClain et al., 2002).  

Another approach to quantify global patterns of photosynthesis is to use coupled 

biogeochemical-ocean general circulation models (BOGCMs), which, as a result of 

increased computational resources, can now be run globally at adequate horizontal and 

vertical resolution. While these models parameterize photosynthesis similarly to 

SatPPMs, BOGCMs additionally have explicit compartments for different nutrients, 

detritus, and one or more functional or size groups of phytoplankton and zooplankton and 

incorporate mechanistic knowledge of nutrient uptake and physical transport of biomass. 

Whereas SatPPMs require surface chlorophyll and temperature as input variables, 

BOGCMs explicitly compute these fields. Although surface chlorophyll fields can be 

assimilated into BOGCMs (Tjiputra et al., 2007; Gregg et al., this volume), the 

computational cost of doing so is high, and can entail reductions in horizontal and 

vertical grid resolution.  

While diverse approaches for estimating productivity from ocean color and with 

coupled ecosystem general circulation models are desirable as this field grows and 

develops, it is extremely important to quantify the performance of these various methods 

relative to observations and to elucidate the reasons underlying the 

similarities/differences in model output. To this end, the Primary Productivity Algorithm 

Round Robin (PPARR) series has provided a context in which the performance of 

primary productivity models can be quantified. In addition, the PPARR exercises 
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continue to help model developers and users understand the conditions under which each 

productivity model is most applicable. (A summary of past PPARRs is given in Section 

2.) For any model, a vital element of model skill is the ability to reproduce in situ 

observations; in the case of PP models, measurements of PP. If observations are 

representative and the data have undergone careful quality control, firm conclusions can 

be reached regarding the environmental conditions that challenge model skill. These 

challenging conditions, in turn, can be taken into account by model developers and end-

users to improve model formulation and/or application. 

This paper compares output of models of productivity with a large quality-

controlled database (ClimPP) spanning more than a decade in the tropical Pacific Ocean. 

Since tropical and oligotrophic regions cover a large percentage of ocean surface area, it 

is critical that our ability to model them is improved. The size, temporal and spatial 

range, and consistent quality of this database help us meet the data requirements 

mentioned above for data-model intercomparisons. Although it is not possible to make 

conclusive statements concerning global model performance based on a single regional 

comparison, improving PP estimates in the tropical Pacific will increase the skill of 

global models because (1) this region represents a large fraction of the global ocean, and 

(2) this region represents one of the greatest current challenges to PP modelers (Campbell 

et al., 2002; McClain et al., 2002).  

The goal of this effort is thus to compare the skill of various models (including 

both SatPPMs and BOGCMS) in estimating PP within the tropical Pacific Ocean. 

Assessing the overall skill of the BOGCMs is far beyond the scope of this paper; here, 

only the skill of the BOGCMs in estimating PP is assessed. Additionally, we note up 
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front that the identification of a single best satellite-based PP model, or consensus model, 

is not the goal of the PPARR exercises. Here we implement a variety of different skill 

assessment methodologies, and identify which models perform well according to each 

criterion. These comparative results are relevant for those who wish to choose a single PP 

model to implement for a given study. In addition, we highlight specific problems that 

tend to characterize the current generation of PP models. This information is of use to PP 

model developers, as they continue to adjust and improve their model formulations.  

The background of the PPARR exercises is described in the next section (Section 

2), and is followed by an introduction to the observational data set and the methodologies 

employed to assess model performance (Section 3). Skill assessment results are presented 

using Taylor and target diagrams as well as cumulative distribution functions. The impact 

of uncertainties in the input variables and in situ PP measurements are also quantified 

with error perturbation and principal component analyses (Section 4). Correlations 

between model errors and environmental variables are then discussed (Section 5), and we 

conclude with a summary in Section 6. 

 

2. PPARR Background 

2.1 PPARR/PPARR2 

For over a decade, NASA has supported research aiming to improve our ability to 

quantify marine photosynthesis from satellites in the form of a series of round-robin 

experiments for evaluation and comparison. The first two Primary Productivity 

Algorithm Round-Robin (PPARR) exercises used in situ measurements of PP to quantify 

the ability of participating models to predict PP based on information accessible via 
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remote sensing.  While PPARR1 tested the approach with data from 25 stations, PPARR2 

compared the output of twelve models using data from 89 stations with wide geographic 

coverage (Campbell et al., 2002).  The models that performed best were within a factor of 

2.4 (based on one standard deviation in log-difference errors) of the in situ 14C 

measurements.  Of the eight regions represented in the comparison, the most serious 

biases were found in the equatorial Pacific, where all algorithms underestimated in situ 

measurements by more than a factor of 2. If biases, which in all cases contributed 

significantly to absolute model-data misfit, could be corrected, then ten of the twelve 

models were within a factor of two of the in situ data.  Model-data misfit was lowest in 

regions that have historically contributed the most data for parameterization, i.e. the 

Atlantic, whereas misfit was high in both the equatorial Pacific and the Southern Ocean.  

2.2 PPARR3, phases 1 and 2 

Phases 1 and 2 of the third primary production algorithm round robin consisted of 

an intercomparison and sensitivity study of global primary productivity fields computed 

from 24 SatPPMs and 7 BOGCMs, but included no comparison with in situ PP 

measurements (Carr et al., 2006). The participating models, which are not the same suite 

as those participating in the current comparison, were provided with common input fields 

of PAR, SST, chl0, and mixed layer depth (MLD), and produced global average PP fields 

for eight months of 1998 and 1999. Maximum PP within the Atlantic and Pacific Oceans 

occurred in the equatorial band (10ºS-10ºN; > 0.5 gC m-2 d-1). The simulated global 

average PP varied by a factor of two between models, with model results diverging most 

at low surface temperatures (<10ºC), at high chlorophyll concentrations (>1 mg chl m-3), 

and within HNLC regions. The models were grouped based on pair-wise correlations and 
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the model clustering was independent of model complexity and primarily depended on 

the form in which temperature was parameterized within the model.  

 

3. Current PPARR Methodology 

In the earlier phases of PPARR3, global productivity fields computed from 

participating PP models were compared among themselves and also with a ‘mean-model’ 

productivity field (Carr et al., 2006). This third and final phase of PPARR3 differs 

significantly from the Carr et al. (2006) study in that here simulated productivity fields 

were compared with shipboard measurements of 14C uptake, as in PPARR1 and 

PPARR2. This effort expands significantly on PPARR2, in which only a small number of 

models participated (ten versus thirty in this study), only a small data set was used (< 90 

stations versus > 900 stations in this study), participation was almost exclusively from the 

USA, BOGCMs were not invited to participate, and only root mean square error was 

presented. We note that the present comparison exercise does not attempt to assess the 

overall skill of the participating biogeochemical models (Matsumoto et al., 2004; Doney 

et al., 2004; Najjar et al., 2007; Friedrichs et al., 2007). Instead, our goal is to compare 

the skill of the BOGCMs in estimating PP, allowing relative comparison with that of the 

SatPPMs. To our knowledge, a PP comparison on the scale of this current exercise (21 

SatPPMs and 9 BOGCMs) has not heretofore been conducted. 

3.1 ClimPP dataset 

The PP data set used here (ClimPP; available as an electronic supplement to this 

paper) was prepared by Barber and collaborators. The data set was not made available to 

the model participants, and only a small subset of the ClimPP data were publicly 
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available, e.g. the data from the Joint Global Ocean Flux Study equatorial Pacific Process 

study (Barber et al., 1996) which makes up only a small subset of the ClimPP database. 

The ClimPP database comprises ~1000 stations (Fig. 1) in the tropical Pacific 

between 15˚S and 15˚N (Chavez and Barber, 1987; Barber and Chavez, 1991; Le Borgne 

et al., 2002). Collected between 1983 and 1996, these data consist of chlorophyll and 

productivity profiles acquired from 31 U.S. and international research cruises. 

Productivity values were integrated to the 1% light depth. Integrations to the 0.1% light 

depth were on average only ~3.5% higher than those integrated to the 1% light depth, and 

the portion of the photosynthetic profile from the 1% light depth to the 0.1% light depth 

showed very little spatial or temporal variation (Barber et al., 2001).   

On-deck PP incubations were carried out in seawater-cooled Plexiglas incubator 

boxes. Light in the incubators was attenuated to varying percentages of the surface light 

field, using neutral density screening and blue Plexiglas. Trace-metal clean procedures 

(Sanderson et al., 1995) were used in all data collected. Specifically, the black rubber 

closing springs of the Niskin or Go-Flo bottles that were found to be a major source of 

trace metal inhibition were replaced with Teflon coated metal springs. These retrofitted 

bottles were mounted on a Teflon coated rosette (Chavez and Barber, 1987; Sanderson et 

al., 1995; Barber et al., 1996).  

The largest source of variation in estimating PP is the process of determining the 

attenuation of light and of assigning a depth to each percent light level (Barber and 

Chavez, 1991). Barber et al. (1997) have outlined a procedure that uses the Morel (1988) 

model to estimate the PAR attenuation coefficient and assigns light depths using 

observed chlorophyll profiles. This method removes important sources of variation due to 
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project, ship or investigator, and has proven to be an efficient and accurate way to 

reprocess historical on deck incubation data to make basinwide and/or interannual and 

decadal comparisons (Le Borgne et al., 2002).   

Both oligotrophic and mesotrophic areas are represented within this dataset. 

Productivities integrated to the 1% light level range from ~0.05 g C m-2 d-1 in the western 

Pacific warm pool, to nearly 1.80 g C m-2 d-1 in the HNLC region (Fig. 2a). Thirty-six 

percent of the data are from the 1990s, with the remainder having been collected in the 

1980s. During each of these decades, data are available from all portions of the tropical 

Pacific domain: 15˚N to 15˚S and 125˚E to 95˚W (Section 5).  These data thus provide 

more than a decade of comparable observations for a region of the ocean where 

interannual and interdecadal variability is relatively well studied (McPhaden et al., 1999). 

3.2 Participating models 

The 30 models used to generate PP estimates for comparison (Table 2; Appendix 

A) include 21 SatPPMs and 9 BOGCMs. Of the SatPPMs, the first twelve (Models 1-12) 

represent examples of depth-integrated, wavelength-integrated (DI/WI) models. Five of 

these models (#8-12) are variants of the Vertically Generalized Productivity Algorithm 

(VGPM; Behrenfeld and Falkowski, 1997b). The next three models (#13-15) are depth-

resolved but wavelength-integrated (DR/WI), and the remaining six (Models 16-21) are 

the most complex, resolving both depth and wavelength (DR/WR).   

The simplest model (#1) estimates integrated primary productivity (in units of gC 

m-2 d-1) as the square root of surface chlorophyll (in units of mg chl m-3).  This purely 

empirical relationship was suggested by Eppley et al. (1985) and serves as a reference 

model to illustrate the role of chlorophyll in PP estimation. In PPARR3 Phase 1, PP 
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estimated by this model had far lower temporal variability than the other models, but time 

averages were not that different from those of other models, except in areas of extreme 

light or temperature conditions (Carr et al., 2006).  All 21 SatPPMs require chl0 fields, 

Models 2-21 use PAR in their calculation, 15 of the 21 models use SST, and only seven 

models use MLD (Table 2.)  

The nine BOGCMs participating in this intercomparison vary widely, though each 

has between two and four phytoplankton functional groups, and each model contains 

either three or four nutrients.  All BOGCMs except Model 29 provide interannual, rather 

than climatological, PP distributions. Although one BOGCM (#27) assimilates in situ 

National Ocean Data Center chlorophyll data, none of the BOGCMs utilize any of the 

provided input fields (Table 2).   

All 30 models provided estimates of productivity integrated to the 1% light level, 

for each of the ~1000 ClimPP data points. Details regarding the structure of all 30 

participating models are beyond the scope of this paper, but key features of these models 

are provided in Table 2 and Appendix A. In addition, a forthcoming paper concentrates 

on identifying specific similarities and differences between model parameterizations, 

which may be affecting model performance (Saba et al., in prep.). 

3.3 Input data variables for SatPPMs 

Although none of the models were provided with the PP data (Fig. 2a), the 

SatPPMs were provided with four types of input variables: daily mean chl0, PAR, SST, 

and MLD (Fig. 2b-e). These data, along with the integrated productivities from the 

ClimPP data set are included in this paper as an electronic supplement. As in PPARR2, 

chl0 was obtained from in situ data, rather than remotely sensed data as in PPARR3 Phase 
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1. Although chlorophyll profiles were available for each station, only the surface values 

were provided to the modelers. The profiles were used to estimate the depth of maximum 

chlorophyll (Section 5), but not provided to the participants. NCEP/NCAR Reanalysis 1 

data for daily mean downward solar radiation flux data were downloaded from the 

National Oceanic & Atmospheric Administration website for the Physical Sciences 

Division of their Earth System Research Laboratory. These NCEP/NCAR reanalysis data 

extend from 1948 until the present and are obtained from a state-of-the-art data 

assimilative analysis/forecast system. A factor of 0.43 was used to convert these daily 

shortwave fluxes into PAR and produced values that were in relatively good agreement 

(±10 mol quanta m-2 d-1) with PAR measurements obtained on the Joint Global Ocean 

Flux Study equatorial Pacific Process Study cruises. SST was obtained from the 

Advanced Very High Resolution Radiometer. MLD was obtained from a reduced-gravity, 

primitive equation tropical Pacific Ocean model (Murtugudde et al., 1996; Murtugudde 

and Busalacchi, 1998) with a variable depth mixed layer overlying 19 sigma layers. In 

this model, mixed-layer thickness is determined using a “hybrid” mixed-layer model 

(Chen et al., 1994) that considers both wind stirring and shear instability, and produces 

interannual MLD estimates that are generally within ±20m of those derived from 

measurements collected on the Joint Global Ocean Flux Study equatorial Pacific Process 

Study cruises. 

Two models (e.g. Models 7 and 21) require information on particulate backscatter 

at 443 nm (bbp), which is estimated from ocean color remote sensing data (Maritorena et 

al., 2002). Since these data were not available for this pre-SeaWiFS era ClimPP data set, 
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monthly 9 km climatological bbp values (Sep. 1997 – Sep. 2007) were used for each 

given sample location.  

3.4 Skill assessment strategies 

The skill of the 30 participating models was assessed using several strategies 

outlined below (Also see Stow et al., this volume.)  Campbell et al. (2002) concluded in 

PPARR2 that the total root mean square difference (RMSD) summed over the N data 

points provides a valuable comparison of PP models 

€ 

RMSD =
1
N

Δ2

i=1

N

∑
 

 
 

 

 
 

1/ 2

                       (1) 

Here model data misfit in log10 space (Δ) is defined as: 

€ 

Δ(i) = log(PPm (i)) − log(PPd (i))  

where PPm(i) is modeled PP, obtained either via SatPPMs or BOGCMs, and PPd(i) 

represents the ClimPP data.  

 RMSD is composed of two components, the bias (B) representing the difference 

between the means of the two fields, and the centered pattern RMSD (RMSDCP; 

sometimes referred to as the unbiased RMSD) representing the differences in the 

variability of the two fields: 

€ 

RMSD2 = B2 + RMSDCP
2               (2) 

The bias and RMSDCP (Tables 2 and 3) provide measures of how well the mean and 

variability are modeled, respectively: 

€ 

B = log(PPm ) − log(PPd )              (3) 

€ 

RMSDCP =
1
N i=1

N

∑ logPPm (i) − logPPm( ) − logPPd (i) − logPPd( )( )
2 

 
 

 

 
 

1/ 2

       (4) 
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Because the units of the above quantities are in decades of log10 and not easily translated, 

a nondimensional inverse transformed value for bias is presented: 

     Fmed = 10B             (5) 

where Fmed (Campbell et al., 2002) is the median value of the ratio 

€ 

PPm (i)
PPd (i)

=10Δ i  (Tables 

3 and 4). Thus, if Fmed = 2.0, the median value of PPm(i) is a factor of two larger than the 

median value of PPd(i); if Fmed  = 0.5, the median value of PPm(i) is a factor of two 

smaller than PPd(i).  

The novel target diagram (Jolliff et al., this volume) is used to visualize bias, 

RMSDCP, and total RMSD for the 30 models on a single plot.  On the target diagram, 

these quantities are normalized by the standard deviation of logPPd (σd = 0.279), i.e. 

normalized bias (B*) is defined as: 

B* = B/σd,                      (6) 

Although RMSDCP is inherently a positive quantity, normalized RMSDCP (denoted as 

RMSDCP*) is defined as:  

RMSDCP* = sign(σm – σd) RMSDCP/σd,           (7) 

where σm is the standard deviation of logPPm, and thus RMSDCP* can be either positive 

(indicating that the model is overestimating the variance of the data) or negative 

(indicating that the model is underestimating the variance of the data). It is important to 

note here that when the total RMSD statistic is computed, models that underestimate the 

observed variance tend to result in lower total RMSD scores than those that overestimate 

the variance (Jolliff et al., this volume). 

For a given value of RMSDCP, a portion of the model-data misfit will result from 

phase differences between the simulated and observed fields, and a portion will result 
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from differences between the amplitudes of the variations.  Thus in addition to RMSDCP 

values, correlation coefficients and variances are also computed (Tables 3 and 4) to 

understand the similarities and differences in model-data fit for each of the models 

participating in this comparison.  In Section 4.2 Taylor diagrams (Taylor, 2001) are 

used to represent RMSDCP, correlation, and standard deviation on a single plot.  

 The cumulative distribution function represents an alternative way to visualize 

model bias.  Although B provides a succinct measure of the magnitude and sign of model 

bias, from this statistic alone it is not possible to determine whether positive biases result 

from overestimating high values, or low values, or both.  A comparison of model and 

data cumulative distribution functions clearly reveals where in the spectrum of values the 

biases occur, and is an excellent method for visualizing median, maximum and minimum 

values.  

 In a comparison exercise such as this, it is critical to acknowledge that 

uncertainties exist in the input variables provided to the SatPPMs, which may affect the 

ability of the models to adequately reproduce the 14C PP measurements.  Furthermore, the 

ClimPP data themselves are associated with a level of uncertainty and need to be 

regarded as ranges rather than as exact values.  To examine the effect of uncertainties in 

the input variables on modeled PP, an error perturbation analysis was conducted in 

which PP from each participating SatPPM was recalculated with individual and 

simultaneous perturbations of the four input variables. Each perturbation represented 

addition or subtraction of the expected level of observational uncertainty associated with 

that variable. Comparison between SST, PAR and MLD measured on the Joint Global 

Ocean Flux Study equatorial Pacific Process Study cruises (a subset of the ClimPP 
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database) and the input fields described above (Section 3.3) revealed that the following 

uncertainties were reasonable for these quantities: SST uncertainty = ±1°C, PAR 

uncertainty = ±10 mol quanta m-2 d-1, and MLD uncertainty = ±20 m. Uncertainty for chl0 

was estimated (Barber, pers. comm.) to range between ±50% for the minimum 

chlorophyll value, to ±15% for the maximum chlorophyll value as a linear function of 

log(chl0).  This resulted in chl0 uncertainties ranging between ±0.01 to 0.11 mg chl m-3.   

Because the four input variables each have three possible values (original value, 

original value + uncertainty, original value – uncertainty) there are a total of 34=81 

perturbations. The error perturbation analysis was conducted on these 81 perturbations of 

each of the ~1000 data points. The single perturbation yielding the lowest RMSD for 

each data point was then selected for an additional ‘best case’ scenario assessment.  This 

‘best case’ scenario RMSD was computed using a range of PP values based on the 

uncertainty in the ClimPP observations, which was assumed to vary as a linear function 

of log(PP), between 30% of PP for the minimum observed productivities, and 10% of PP 

for PP greater than 0.7 gC m-2 d-1. This corresponds to uncertainties ranging from ±0.02 

to ±0.07 g C m-2 d-1, with a mean uncertainty of ±0.05 g C m-2 d-1.  (In log space the 

mean of log(PP)-log(PP-uncertainty) = 0.073). These uncertainty levels, which likely 

underestimate actual measurement errors, are only used in the perturbation analysis to 

identify the ‘best case’ scenario total RMSD (Section 4.4), but not in the statistics 

described in Tables 3 and 4. 

In order to further quantify how the observational uncertainties described above 

affect our assessment of model skill, a principal component analysis (PCA) was 

performed. The PCA was conducted on the reductions in RMSD obtained from the 21 
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SatPPMs after (1) considering the uncertainties associated with the ClimPP data, (2) 

perturbing each input variable individually according to its respective uncertainty and (3) 

considering the uncertainties in the ClimPP data as well as all the input data fields 

simultaneously. This PCA ordination reveals how each model responds to the accuracy 

criteria that reflect the uncertainty in field data due to sampling and analytical errors. 

 

4. Model Skill Comparison Results 

Bias, Fmed, RMSDCP, total RMSD, correlation and standard deviation were 

computed for each of the 30 participating models and are reported in Table 3. Mean 

values ± one standard error are included for all 30 models, as well as for each model type 

(DI/WI, DR/WI, DR/WR, SatPPM, and BOGCM). These results are discussed below and 

presented in a variety of graphical representations. 

4.1 Target diagram 

Following Jolliff et al. (this volume) the bias and RMSDCP of the 30 participating 

models were normalized by the standard deviation of the log-transformed ClimPP data 

(σd), and plotted on a target diagram (Fig. 3), where, as defined by Eqn. 2, the distance 

from the origin to each symbol represents the total normalized RMSD: 

(RMSD*)2 = (B*)2 + (RMSDCP*)2              (8) 

On this plot the inner dashed circle denotes the normalized observational PP uncertainty 

(RMSD* = 0.073/σd = 0.26).  Thus the skill of any models yielding points falling within 

this inner circle (the bulls-eye) would be indistinguishable from each other. This, 

however, is a difficult goal to achieve for patchy quantities such as ocean productivity; in 

this analysis no points are located within this circle.   
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Another useful way to characterize the results of multiple models on the target 

diagram (Jolliff et al., this volume) is to examine whether or not the standard deviation of 

the observations exceeds the total RMSD for each model. If it does not, i.e. if RMSD* > 

1, then the model is showing less skill (in terms of total RMSD) than does the mean of 

the observations. Model results falling inside the outer circle, i.e. those with total RMSD 

values that are less than the standard deviation of the observations, tend to provide a 

better instantaneous estimate of productivity than the mean of the observations.  In this 

analysis, eleven of the 30 models (37%) fell within this outer circle (Fig. 3). These 

include 42% of the DI/WI models, 67% of the DR/WI models, 33% of the DR/WR 

models and 22% of the BOGCMs.  The model with the lowest normalized total RMSD 

(RMSD*=0.82) is Model 18, a DR/WR model. Four models have nearly equally low 

RMSD: two VGPM variants (Models 8 and 11), a depth-resolved model (Model 13) and 

the simplistic sqrt(chl0) relationship (Model 1). The performance of the latter model, 

which does not use PAR, SST or MLD data, illustrates the importance of chl0 in the 

estimation of integrated productivity. 

The target diagram (Fig. 3) also illustrates that most (23 out of 30) models 

overestimated observed productivity (B* > 0), whereas only 23% (7 out of 30) models 

underestimated productivity.  Three models (one SatPPM  #19, and two BOGCMs #25, 

28) had positive median biases greater than two (Fmed > 2.0; B > 0.3; Table 3), i.e. in 

these cases the median modeled value was more than twice the median observed value. 

Nearly half of the BOGCMs (four of nine) were associated with absolute biases greater 

than a factor of 1.7 (Fmed > 1.7 or Fmed < 0.59), whereas only two of the 21 SatPPMs, both 

DR/WR models, were associated with biases of this magnitude. Interestingly, the overall 
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magnitude of the mean bias was lower for the DI/WI models (0.10 ± 0.02) than for the 

DR/WR models (0.17 ± 0.04) and the BOGCMs (0.19 ± 0.02). 

 The centered pattern RMSD (RMSDCP) provides a measure of how well the 

variability of a certain field is being modeled.  Whereas bias for these models varied 

substantially, the magnitude of RMSDCP diverged much less among models (Table 3), 

ranging only from |RMSDCP* | = 0.84 to 1.13 (Fig. 3).  The RMSDCP was slightly, but not 

significantly, higher for the BOGCMs (

€ 

RMSDCP * = 0.95 ± 0.04) than for the SatPPMs 

(

€ 

RMSDCP * = 0.90 ± 0.02).  There was also little significant difference in 

€ 

RMSDCP *  for 

the different categories of SatPPMs.  All but four models (three BOGCMS and one 

VGPM variant) underestimated the variance of observed productivity (RMSDCP* < 0). 

4.2 Taylor diagram 

Taylor diagrams (Taylor, 2001) complement the target diagrams described above 

by representing the RMSDCP, the correlation, and the standard deviation of each of the 30 

PP models with respect to the ClimPP dataset (Fig. 4.) Unlike the target diagram, the 

Taylor diagram presents no information on bias, however it has the advantage of being 

able to illustrate more detailed information pertaining to the difference in variability 

associated with the modeled and observed fields (Section 3.4).  

In the Taylor diagram (Fig. 4), the distance between the black data symbol on the 

x-axis and each colored model symbol represents RMSDCP.  This RMSDCP is composed 

of a component relating to the variance of the model estimates (the distance from the 

origin is the standard deviation) and a component relating to the correlation between the 

observations and model estimates (the azimuth angle.)  Although the RMSDCP for each 

model has already been shown on the target diagram (Fig. 3), it is not possible to 
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determine from that diagram whether a given RMSDCP results from getting the 

correlation wrong or from getting the magnitude of the variability wrong.  

For the 30 participating models, the correlation coefficients (azimuth angles) are 

very similar for many of the models: all but six models are correlated with the 

observations with a coefficient between 0.5 and 0.6 (Fig. 4; Table 3). Of the four models 

with correlation coefficients less than 0.4, two are BOGCMs, one is a DI/WI model and 

one is a DR/WR model.  Model 18, a DR/WR model, yields the highest correlation. 

The distance from the origin to each model point is the standard deviation of the 

modeled productivities; points closer to the origin than the dotted line underestimate the 

variance of the data, and those outside the dotted line overestimate this variance.  As was 

evident from the target diagram (Fig. 3) most models underestimate the observed 

variance, however the Taylor diagram (Fig. 4) illustrates that the amount by which these 

models underestimate the observed variance varies considerably from model to model, 

and independently of correlation or RMSD.  In particular, the simplistic Model 1, which 

was shown to produce a very low RMSD value on the target diagram, is shown here to 

substantially underestimate the observed variance of the data (but less so than Models 19, 

28 and 30 which are relatively complex). BOGCMs, with the exception of Models 24, 28 

and 30, typically do slightly better than SatPPMs at reproducing the magnitude of the 

observed variance (i.e. are closer to the dotted line in Fig. 4), although the difference is 

not statistically significant. 

4.3 Cumulative distribution functions 

The cumulative distribution of ~1000 test points allows a comparison between the 

range and median of the PP observations and those obtained from the 30 participating PP 
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models. Most of the DI/WI models (Fig. 5a, b) underestimate the range of the 14C PP 

data, which extends roughly from 0.1 to 1.0 gCm-2d-1.  Whereas the lower PP values are 

substantially overestimated by some of the DI/WI models  (e.g. #1, 2, 4, 6, 9), other 

models tend to underestimate the higher PP values (e.g. #1, 5, 8, 10).  Only Model 12 

overestimates the range of PP values, and it does so both by underestimating the 

minimum PP values and overestimating the maximum PP values. Not surprisingly, 

without any SST, PAR or MLD dependence, Model 1 (i.e. 

€ 

PP = chl ) produces a range 

of PP values that is much too small; however, this model reproduces the median of the PP 

data better than any other DI/WI model, with the exception of Model 12 (which 

interestingly has the largest range). For this DI/WI subset of models, #11, a VGPM 

variant with an alternate definition of the 1% light level, provides the best overall fit to 

the cumulative fractional distribution of the test points.  

In general, the depth-resolved models (DR/WI and DR/WR) do not reproduce the 

observed range and median of the 14C PP data (Fig. 5c,d) any better than the depth-

integrated models (Fig. 5a,b).  Eight of the nine DR models overestimate the median PP: 

#14 by more than 50% and #19 by nearly 100%. This mismatch occurs because these 

models generally produce very few PP values less than 0.2 gCm-2d-1, whereas nearly 20% 

of the PP observations are less than this value. The WR models (#16-21) also do not 

reproduce the observed range of PP any better than their WI counterparts (#1-15).  

The BOGCM results (Fig. 5e) are more variable than those computed from the 

SatPPMs, which is to be expected since the BOGCMs do not use the chl0 input fields 

provided to the participants and used by the SatPPMs.  Moreover, the BOGCMs have 

different vertical/horizontal resolutions and use different mixing parameterizations, 
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which may further contribute to these deviations. Even so, as was the case for the 

SatPPMS, most of the BOGCMs produce too few low PP values.  The minimum PP for 

Models 24, 25, 28 and 30 (0.22, 0.32, 0.35 and 0.32 gCm-2d-1, respectively) are only 

slightly lower than the median of the observations (0.37 gCm-2d-1). This strong positive 

bias evident for many of the BOGCMs may result from the tendency of coarse resolution 

general circulation models to upwell excessive amounts of nutrients in the eastern 

tropical Pacific (Gnanadesikan et al., 2002; Doney et al., 2004), and thus overestimate 

these lower productivity observations. The excessive nutrient flux greatly expands the 

moderately productive HNLC area. On the other hand, the BOGCMs are less biased for 

the high productivity observations than the low PP observations, because in most of these 

models excessive nutrient flux will result in a community shift towards diatoms, which 

will increase export more strongly than primary production. 

Not all of the BOGCMs are associated with positive biases. Two BOGCMs over-

predict the number of low PP values: Model 22 yields 50% of its results lower than 0.2, 

whereas only 20% of the observations are below this value PP.  Other BOGCMs do quite 

well: the cumulative distributions of Models 23 and 29 agree with the observations better 

than many of the SatPPMs. The skill of Model 29 in this respect is particularly 

interesting, as this model uses climatological rather than interannual forcing fields. 

Overall, the performance of the BOGCMs varies substantially, and as a group of models 

they do not match the range and median of the observed PP any better or worse than the 

SatPPMs.  
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4.4 Error perturbation analysis 

Measurements of the input variables (SST, MLD, PAR, chl0) used by the 

SatPPMs are not error-free, and the uncertainty in their values affects the ability of the 

models to optimally reproduce the 14C PP measurements, which are also associated with 

some degree of uncertainty. To examine the effect of these uncertainties, an error 

perturbation analysis (Section 3.4) was conducted for the SatPPMs (Fig. 6). The 

maximum reduction in RMSD resulting from perturbations of each of the four input 

variables individually, PP, and all five quantities simultaneously (the best-case scenario 

perturbation) is also reported in Table 5. 

When the input variables were independently perturbed, not surprisingly most 

(two-thirds) of the SatPPMs showed larger reductions in model-data misfit with 

perturbations of chl0, than with PAR, MLD or SST (Table 5). Although chl0 was 

perturbed by less than 50%, which may be less than the uncertainty in satellite 

chlorophyll algorithms, the decrease in RMSD averaged 25%. This is consistent with the 

results of Campbell et al. (2002), which demonstrated that errors in surface chlorophyll 

produced less-than proportionate errors in integrated productivity. Model 12 

demonstrated the greatest sensitivity to perturbations in chl0, probably because this 

VGPM variant computes PB
opt as a function of chl0 alone, with no input from SST. On the 

contrary, Model 10, a VGPM variant that computes PB
opt as a function of both SST and 

chl0, showed one of the smallest sensitivities to perturbations in chl0, demonstrating only 

13% improvement in RMSD.  

With this type of error analysis, it is possible to estimate the maximum fraction of 

the total RMSD that may be attributed to uncertainties in the input variables and in the PP 
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data themselves. For example, as noted earlier, the model with the lowest total RMSD is 

Model 18 (RMSD = 0.23; Fig. 6). However, when uncertainties in the input variables and 

PP data are taken into account, the best-case scenario RMSD for this model drops by 

60% to the very small RMSD = 0.09. 

Certain models are inherently more sensitive to changes in input variables than 

others (Fig. 6), and therefore their PP estimates are more affected by uncertainties in 

these variables. Since Model 1 uses only one of the provided input fields (chl0), it is 

affected only by uncertainties in that field and PP, and not surprisingly, less of its total 

RMSD can be attributed to these uncertainties than most other models, although even in 

this case the fraction is quite large (39%). The relatively low original RMSD may 

partially be explained by the fact that, by only using one of the input fields provided, it is 

unaffected by uncertainties in the other fields. These data uncertainties inherently have a 

greater effect on the skill of the more comprehensive models that incorporate information 

from all the provided fields: for example 78% of the total RMSD of Model 3 can be 

attributed to uncertainties in the data. On average, uncertainties in the input variables and 

the PP data can account for more than half (mean = 58%; range = 39 - 79%) of the total 

RMSD computed for the 21 SatPPMs. If the uncertainties associated with measurements 

of chl0, SST, PAR and MLD are reduced in the future as observations of these quantities 

become more accurate, the skill of Models 2-21 would be expected to increase relative to 

that of the simplistic Model 1. 

4.5 Principal component analysis of reductions in RMSD 

An R-mode principal component analysis (PCA) was performed to further 

examine how individual and simultaneous perturbations of the input variables and 
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ClimPP observations reduce the total RMSD between observed and predicted PP for each 

SatPPM. The PCA was computed on the reductions in RMSD that resulted from 

individual perturbations of chl0, SST, PAR, MLD, PP and simultaneous perturbations of 

all five quantities (Table 5). Eighty-one percent of the variance of reduction in RMSD is 

explained by the first two principal components arising from such an analysis, with 60% 

of the variance explained by PC1 and 21% explained by PC2. In Fig. 7 the original total 

RMSD associated with each model, assuming the provided input variables and ClimPP 

data have no associated uncertainty (Table 3), is displayed as the symbol size (better 

fitting models are represented by smaller circles); vectors represent variables and they 

point towards the largest decrease in total RMSD associated with uncertainties in that 

specific variable. Thus models whose projection onto a specific vector fall near or beyond 

the head of that vector tend to be those that are most affected by uncertainties in that 

variable. As several variables are simultaneously considered, the order of the models’ 

projections onto vectors cannot exactly match the reductions in RMSD, but it can be 

regarded as the best overall approximation. 

The simultaneous perturbation of ‘all’ variables (Fig. 7) is strongly correlated 

with the first principal component (PC1), as is illustrated by the fact that the angle 

between the ‘all’ vector and PC1 is very small. Therefore, models with the highest values 

of PC1 (e.g. #3, 4, 7, 21) are those for which the performance is most improved when 

uncertainties in all the input and output variables are considered, i.e. these models are 

generally the most sensitive to sampling and analytical errors. On the contrary, models 

that are located in the far left hand quadrants (negative values of PC1; e.g. #1, 8, 10) tend 
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to be less affected by the data perturbation and are also generally the best fitting models 

(smallest original RMSD assuming no data perturbations.) 

The vectors describing perturbations of MLD and PAR are the longest vectors, 

indicating that perturbations in these input variables produce the most diverse responses 

among the various models. Perturbations in PAR and MLD yield substantial reductions in 

RMSD for some models, and very little such reductions for other models. For example, 

the skill of Models 3 and 7 are strongly affected by inaccuracies in MLD, whereas the 

skill of Models 2, 6, 14, and 21 are more strongly affected by inaccuracies in PAR and 

chl0. It is interesting to note that the vectors that represent PAR and MLD are orthogonal, 

i.e. independent of each other in the PCA. This implies that improvements in RMSD due 

to PAR data perturbations tend to be independent of those obtained by perturbing MLD 

data. Both MLD and PAR strongly contribute (by combining their effects in a way that is 

similar to the combination of two orthogonal forces) to the reduction in RMSD obtained 

by perturbing all variables. 

Vectors describing perturbations of chl0 and SST are much shorter, reflecting that 

the effects of their perturbation on the differences between models as shown in the 

ordination are minor, or in other words these variables affect most models in a similar 

way. Similarly, PP data perturbation has a virtually negligible role in discriminating 

models according to their sensitivity. All vectors, except the one representing SST, point 

towards the positive end of PC1. This implies that their effects, although not necessarily 

correlated, contribute to the reduction of the RMSD of all the models that are located in 

the right part of the ordination. SST, on the contrary, points towards the left part of the 

ordination, nearly in opposition to PAR. This means that PAR and SST perturbations 
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tend to have opposite effects on the reduction of RMSD: models that are improved by 

perturbing SST are generally insensitive to perturbations in PAR, and models that are 

improved by perturbing PAR are relatively insensitive to perturbations in SST. However, 

the effect of SST perturbations on RMSD reduction is considerably smaller than that of 

the PAR perturbations (Table 5). 

 

5. Correlations of model-data misfit with environmental variables 

Although documentation of the relative skill of these 30 productivity models in 

the tropical Pacific is useful, model improvement requires not only an assessment of 

model skill, but also an understanding of the particular environmental conditions that 

affect performance. To address this issue, a correlation analysis was undertaken to better 

characterize model performance in the context of environmental forcing. Specifically, the 

correlation was estimated between model-data misfit (Δ) and ten variables (Fig. 8), 

including the input variables (SST, chl0, PAR and MLD) as well as longitude, degrees 

from the equator, year day, year, the depth of the chlorophyll maximum, and biomass 

normalized PP integrated over the euphotic zone (PB
i). 

As expected, correlations with surface chlorophyll are relatively high for the 21 

SatPPMs. Model-data misfits in all but one of these models are positively correlated with 

chl0, indicating that modeled PP overestimates measured PP when surface chlorophyll 

concentration is high, and modeled PP underestimates measured PP when surface 

chlorophyll is low. Because the SatPPMs by definition only utilize chlorophyll data from 

the surface layer, one might also expect an equally high negative correlation with the 

depth of the chlorophyll maximum, i.e. that the models would underestimate productivity 
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when the maximum chlorophyll concentration occurred below one optical depth. Because 

large parts of this region are characterized by deep chlorophyll maxima (Barber et al., 

1996, Le Borgne et al., 2002), the ClimPP data set provides a good test of the impact of 

chlorophyll vertical structure on model misfit. However, Fig. 8 illustrates that the 

correlation between misfit and the depth of the chlorophyll maximum is generally less 

than 0.1. Only Model 12 produced misfits that were strongly correlated to the depth of 

the chlorophyll maximum, overestimating the ClimPP data when the maximum 

chlorophyll concentration was at the surface and underestimating the ClimPP data when 

the maximum chlorophyll concentration was deep. This latter behavior is what would be 

expected from models that use only a surface value, and has been a concern for the use of 

ocean color. The low correlation between misfit and depth of the chlorophyll maximum 

for the bulk of the models suggests that model assumptions typically used to characterize 

the depth profile of chlorophyll are fairly sound, and/or that the variations of PP in the 

deep-chlorophyll maximum do not contribute strongly to vertically integrated PP.  

Somewhat surprisingly, for all of the participating models but especially the 

SatPPMs, model-data misfit shows a strong inverse correlation with year, i.e. the models 

overestimated the ClimPP data in the earlier years. A comparison of the RMSD statistics 

computed for the 1990-1996 time period (N= 340; Table 4) versus the entire time period 

(1983-1996; N=948; Table 3) reveals that although the bias is similar for these two time 

periods, the RMSDCP is substantially less for the SatPPMs in the 1990s. Specifically, the 

correlation between the SatPPM estimates of PP and the ClimPP data (Fig. 9) is higher 

for the 1990s data (mean for all SatPPMs = 0.76 ± 0.01) than it is for the entire data set 

(0.52 ± 0.01). This is true even for the simplistic Model 1, implying that the correlation 
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between surface chlorophyll and integrated productivity was stronger in the 1990s than it 

was in the 1980s.  

Not only is total RMSD reduced for the SatPPMs (0.29 ± 0.01 to 0.22 ± 0.01), but 

the average fraction of this total RMSD that may be related to uncertainties in input 

variables and PP data also increased from 58% to 68% after 1990 (Fig. 10). For seven 

SatPPMs, in the best-case scenario up to 80% of the RMSD for the 1990s may be 

attributed to uncertainties in the input variables and ClimPP data. The improved 

performance of the models since 1990 could reflect the fact that some of the participating 

SatPPMs and many of the BOGCMs were developed using data acquired after 1990. 

However, this was not true for many of the SatPPMs; the VGPM variants, for example, 

were based primarily on in situ data collected prior to the 1990s (Behrenfeld and 

Falkowski, 1997b). 

Model-data misfit was not only highly correlated with year, but was similarly 

highly correlated with observations of PB
i (Fig. 8). To further investigate these 

correlations, model-data misfit is plotted as a function of PB
i data and time (Fig. 11).  

Consistent with the correlation results, all thirty models yield a clear trend of 

overestimating PP for low PB
i values and underestimating PP when PB

i is high; absolute 

misfit (|Δ|) typically is greatest for the lowest PB
i values. Furthermore, the oldest data 

(from the early and mid-1980s) are generally characterized by relatively low PB
i values 

(PB
i < 2.5 mmolC mgchl-1 d-1), whereas PB

i measured from 1995 and 1996 exceed 2.5 

mmolC mgchl-1 d-1 (Fig. 12a). This change in PB
i holds over the entire ClimPP domain, 

not just the equatorial zone (Fig. 12b,c). Thus, the surprisingly high correlations between 

year and misfit occur because: (1) all models, both the SatPPMs and the BOGCMs, 
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perform poorly when PB
i is low (< 1 mmolC mgchl-1 d-1), and (2) 95% of these low PB

i 

values occur in the 1980s. (Although there are more data points poleward of 10° in the 

1980s than the 1990s (Fig. 12c), even when only points between 10°N and 10°S are 

included, 95% of the PB
i < 1 mmolC mgchl-1 d-1 values still occur in the 1980s portion of 

the ClimPP dataset.) It is possible that the improved performance of the models since 

1990 is a reflection of inherent problems associated with modeling low photosynthesis 

rates for a given biomass. 

The interdecadal variability in productivity per unit biomass directly results from 

an increase in measured productivity: mean productivity increased by as much as 62% 

between these two decades. Biomass-normalized productivity, on the other hand, 

increased by a smaller percentage (47%) since mean integrated chlorophyll for the 1990s 

was also slightly higher (8%) than that observed in the 1980s. Interestingly, although 

average integrated chlorophyll was lower in the 1980s, mean surface chlorophyll, which 

is what SatPPMs use to estimate PP, was slightly (10%) higher in the 1980s than it was in 

the 1990s. As a result, nearly all the SatPPMs overestimated PP in the 1980s.  As an aside 

we note that over the entire ClimPP domain there was no significant difference in SST 

between pre-1990 and post-1990; however, in the eastern equatorial Pacific, the 1990s 

time period was associated with colder temperatures.  

These trends and interdecadal differences do not reflect any change in 

observational methodology. As discussed above, the entire ClimPP database was 

collected using the same trace-metal clean procedures (Chavez and Barber, 1987; 

Sanderson et al., 1995). In no instances did the Go-Flo bottles contain black rubber 

closing springs, which were found to be the major source of trace metal contamination 
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(Fitzwater et al., 1982). In addition, the entire database was reprocessed using the same 

model for estimating PAR attenuation (Morel, 1988) and the same method for 

normalizing light extinction estimates in all of the ClimPP observations.  

The interdecadal changes documented above are consistent with findings from 

other recent studies of interdecadal change in this region. The Pacific Decadal Oscillation 

regime shift between 1988 and 1992 has been associated with major physical, chemical 

and biological changes in this ocean basin (Hare and Mantua, 2000). For example, 

Chavez et al (2003) proposed multidecadal regime shifts in the eastern tropical Pacific 

Ocean, consisting of a warm phase with high landings of sardines followed by a cool 

phase with high landings of anchovies. Chavez et al. (2003) hypothesized that the regime 

shift occurred around 1990 when the landings of sardines began to decrease and a cooling 

of SST was observed. 

In another study, Takahashi et al. (2003) present equatorial (5°N-5°S) 

observations that demonstrate a decrease in pCO2 from 1979-1990 followed by an 

increase in seawater pCO2 between 1990-2001. Similarly Feely et al. (2006) document a 

decrease in SST in the central equatorial Pacific and a simultaneous increase in the rate of 

the 28°C fCO2sw during the 1990s, again suggestive of an increasing influx of colder and 

CO2-rich waters into this region. They note that these trends could result from either 

increased lateral flow of colder subtropical waters driven by equatorward winds or 

increased upwelling of colder deep waters. The increase in PB
i documented here is more 

consistent with the latter scenario, since an increased rate of upwelling would bring high-

nutrient iron-rich water to the surface, possibly resulting in a change in community 

structure and phytoplankton species composition, and generating the higher rates of 



 35 

biomass-normalized productivity documented here. The absence of lower mean SST after 

1990 is attributable to the large areal extent over which the data extend (30˚ of latitude 

and nearly 150˚ of longitude) and thus is not inconsistent with an increased upwelling 

scenario. 

Because the interdecadal change in productivity was not associated with a 

significant and coincident change in any of the input variables (chl0, SST, PAR or MLD), 

it is not surprising that the SatPPMs failed to reflect these changes in PP. This reflects an 

important characteristic of SatPPMs in general. Regardless of complexity, i.e. 

depth/wavelength resolved or integrated, these models all incorporate empirical 

information regarding the relationship of physiological state with environmental 

conditions. If changes in the rate of upwelling at depth alter deep nutrient concentrations 

without effecting a coincident change in SST or MLD, a scenario which is likely to occur 

for regions of shallow MLD as is frequently the case in the tropical Pacific, the skill of 

SatPPMs is likely to be less.  Although BOGCMs in principle have the capacity to model 

such interdecadal changes in upwelling and the resultant effects on nutrient 

concentrations at depth, the models submitted to this study have not demonstrated the 

ability to do this in this case. It is possible that complexities in community structure 

missing in these BOGCMs may be required in order to understand the relative biomass 

invariance.  These results demonstrate that temporal variability in the form of 

interdecadal regime shifts pose a significant challenge for both SatPPMs and BOGCMs 

alike, and further suggest that other changes associated with scenarios of global warming 

are likely to be equally problematic. 
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6. Discussion and Summary 

Thirty models, including both SatPPMs and BOGCMs, participated in this 

PPARR comparison exercise. PP model skill was assessed by computing root-mean-

square differences (RMSD) and by using a variety of skill assessment tools to determine 

how well each model reproduced log10PP from an extensive in situ tropical Pacific 

database (ClimPP). This region of the ocean was chosen specifically because earlier PP 

modeling efforts demonstrated that the tropical Pacific represents a significant challenge 

for satellite-based PP models.  

A primary result of this model intercomparison effort is that although skill varied 

substantially among the participating models, model skill was not associated with model 

complexity or model type. Overall, there was little significant difference in the 

performance of the three different classes of SatPPMs represented here (based on depth 

and wavelength resolution). Also, neither SatPPMs nor BOGCMs performed 

significantly better based on the full suite of skill assessment methodologies, revealing 

that using output from SatPPMs to evaluate BOGCM simulations of PP is not an 

adequate test of BOGCM skill. 

Most models substantially underestimated PP variability, often by more than a 

factor of two. Specifically many of the models, including all 9 depth-resolved satellite-

based models (though Model 18 to a much lesser degree), produced too few low PP 

values (< 0.2 g C m-2 d-1). PP model developers need to be aware of this model 

shortcoming, and should note that an improvement in the ability of productivity models 

to estimate PP at low rates of productivity will have a significant impact on PP model 

skill in the tropical Pacific and other oligotrophic regions across the globe.  
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Whereas nearly all models underestimated PP variability, model performance 

differed substantially in terms of how well the models reproduced the mean and median 

PP. Several models overestimated the median productivity by a factor of two, others 

underestimated productivity by nearly a factor of two, and others presented almost no 

bias. Thus, the models with the greatest skill were generally those with the lowest bias. 

PPARR2 concluded that removing bias was an immediate goal to improve model 

performance. The present study confirms that several participating models have 

accomplished this goal. Although, as noted above, in general there was little difference in 

the performance of different classes of models, one exception is in terms of bias: the 

simplest models were characterized by significantly less bias than those that resolved 

wavelength and depth.  

In a best-case scenario, more than half of the total RMSD associated with the 

SatPPMs could be attributed to uncertainties in input variables and the PP data. Whereas 

the skill of certain models could increase dramatically if the input variables were known 

more accurately (e.g. many of the models that use the MLD fields), the skill of other 

models, including the simple square root of chlorophyll relationship that uses only the 

chl0 input field, would not undergo the same level of improvement.  In general, the subset 

of models based on the Vertically-Generalized Productivity Model (Behrenfeld and 

Falkowski, 1997b) show a relatively small improvement in skill when uncertainties in 

input variables and PP data are considered, primarily because of their inherent 

insensitivity to PAR. On the contrary, the skill of PP models that utilize MLD in their 

computations of productivity are severely limited by uncertainties in MLD estimates, 
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suggesting that further development of models that require MLD input fields is not 

advised, especially since high quality MLD fields are not readily available. 

The specific models that demonstrate the greatest skill vary depending on which 

skill assessment methods are used. For instance, if total root-mean-square difference is 

used as the single criteria for skill, Model 18 (Mélin, 2003), which uses biogeographical 

provinces to define the necessary model parameters, performs best. Model 1, the 

simplistic sqrt(chl0) model, performs nearly as well according to this criterion, however 

this is partially due to the fact that models that underestimate variance result in lower 

total RMSD scores (Jolliff et al., this volume). Ten of the 30 models are associated with 

biases that are smaller than the levels of PP uncertainty we assume here. One of the 

BOGCMs (Model 29: Tjiputra et al., 2007) produces the lowest bias, however one of the 

VGPMs (Model 12) and the depth resolved Model 13 (Armstrong, 2006) also have 

negligible biases. In terms of reproducing the observed PP variability, two depth and 

wavelength resolved models outperform the others (Model 16: Smyth et al., 2005 and 

Model 18: Mélin, 2003). Model 18, as well as Model 27 (Gregg, 2007) produce PP fields 

that are most highly correlated with the data, whereas Model 29 (Tjiputra et al., 2007) 

produces PP fields that have nearly the same variance as the ClimPP data. Cumulative 

fractional distributions indicate that Model 11 (Morel and Maritorena, 2001) produces PP 

distributions that most closely reproduce the observations. It is clearly not possible to 

identify one single model that is most skilled according to all the criteria listed above, 

however, the specific models highlighted here are examples of models that perform 

particularly well in these analyses. 
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In order to better understand why certain models have greater skill than others and 

what environmental conditions control performance, correlations between model-data 

misfit and a number of relevant variables were computed. Surprisingly, model-data misfit 

was highly correlated to year for almost all of the SatPPMs as well as for some of the 

BOGCMs. Both primary productivity and biomass-normalized productivity in the 

ClimPP database were substantially higher in the 1990s than in the 1980s. This 

interdecadal variability may be associated with a change in upwelling rate within the 

tropical Pacific, a hypothesis that is consistent with previous studies (Takahashi et al., 

2003; Chavez et al., 2003; Feely et al., 2006). The observed interdecadal change in 

integrated productivity per unit biomass within the ClimPP database was not associated 

with a coincident change in the surface expression of chlorophyll, temperature, or PAR, 

probably because of the typically shallow MLD in the tropical Pacific. As a result, the 

SatPPMs were unable to correctly estimate this interdecadal variability in productivity. 

Although BOGCMs should theoretically have the ability to replicate the increased 

upwelling of nutrients and the effect of this on productivity, this study has shown that this 

remains a challenge for the current generation of BOGCMs.  These results suggest that 

interdecadal and global changes will be a significant challenge for both SatPPMs and 

BOGCMs alike.  

The success of these types of comparison exercises is illustrated by the continual 

modification and improvement of the participating models and the resulting improvement 

in model skill. The previous PPARR2 exercise (Campbell et al., 2002) specifically 

highlighted bias as a major contributor to total RMSD. As demonstrated here, bias has 

been effectively reduced in several participating models. PPARR2 used the Joint Global 
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Ocean Flux Study equatorial Pacific process study data collected on and off the equator at 

140°W in 1992 to compute the average total RMSD of log10PP for their twelve 

participating models. Using the identical data set in an analogous computation, the 

average total RMSD is computed from 20 of the SatPPMs participating in this exercise 

(Models 2-21.) The resulting RMSDs (on equator: 0.21; off equator: 0.23) are 58% and 

35% lower, respectively, then those computed six years ago in PPARR2 (on equator: 

0.50; off equator: 0.31). If this rate of model improvement continues, within a little more 

than a decade total RMSD can be expected to fall to within the level of observational 

uncertainty (0.07).  

 

Appendix 

1. DI/WI SatPPMs 

Model 1: This model estimates PP as: 

PP [gC m-2 d-1] = (chl0 [mg chl m-3])1/2 

(Eppley, 1985).  It ignores any external forcing or changes in physiological state. While 

other models incorporate information regarding geography or forcing fields, this model 

assumes that the standing stock is sole determinant of photosynthetic rate. All biomass 

performs identically. This simplicity is inherently elegant because biomass is, for most of 

the ocean, an excellent indicator of nutrient supply and presence of light. 

Model 2: This is a variant of the original Howard, Yoder, Ryan model (HYR, 

Howard and Yoder, 1997; Model 3) which integrates photosynthesis to the euphotic 

depth as defined in Behrenfeld and Falkowski (1997b) rather than to the MLD (Carr, 

2002). 
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Model 3: This is the original HYR model, which for many years was a standard 

MODIS algorithm. Maximum growth rate is parameterized as a function of SST 

according to Eppley (1972). Primary productivity is integrated to the MLD rather than to 

the euphotic depth. 

Model 4: This HYR variant uses MLD information to quantify the photoadaptive 

variables within the euphotic zone, as well as to address water column partitioning of 

primary productivity relative to euphotic depth. 

 Model 5: This model uses an artificial neural network to perform a generalized 

nonlinear regression of PP on several predictive variables, including latitude, longitude, 

day length, MLD, SST, PB
opt (computed according to Behrenfeld and Falkowski 

(1997b)), PAR, and chl0 (Scardi, 2000; Scardi, 2001). Since there are insufficient data to 

calibrate the neural network throughout the tropical Pacific, PP values from other models 

(VGPM, HYR, and the MOD-27 formulation (Esaias, 1996)) were considered 

measurements where there were none. 

 Model 6: This model is based on the formulation obtained through dimensional 

analysis by Platt and Sathyendranath (1993).  The photosynthetic parameter (PBmax) is 

assigned by combining a temperature-dependent relationship for the maximum growth 

rate (Eppley, 1972) with a variable carbon to chlorophyll ratio following the statistical 

relationship of Cloern et al. (1995). Primary production is integrated to the 1% light level. 

 Model 7: The Carbon-based Production Model (CbPM) represents a new 

approach to NPP assessment that utilizes satellite information on both surface chlorophyll 

and particulate backscatter (bbp) at 443 nm, which is converted into phytoplankton 

carbon biomass (C) (Behrenfeld et al., 2005).  This expanded information set allows the 
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ratio of chl:C to be calculated and related to phytoplankton growth rates (m), such that 

NPP is then calculated as the product of C and mu.  In the current application of the 

CbPM, no field data were provided on bbp, so phytoplankton C was estimated using 

'typical values' derived from SeaWiFS data for a given sample location.  This lack of 

coincident field bbp data compromises the performance of the CbPM in the current 

model-field data comparison. Vertical structure in this version of the CbPM is as assumed 

in Model 8. 

Model 8: The Vertically Generalized Production Model (VGPM) developed by 

Behrenfeld and Falkowski (1997b) is one of the most widely known and used WIDI PP 

models and is one of two standard MODIS algorithms. The maximum observed 

photosynthetic rate within the water column, PB
opt, is obtained as a 7th-order polynomial 

of SST. 

Model 9: This model only differs from Model 8 in that PB
opt is estimated as an 

exponential function of temperature following Eppley (1972). 

Model 10: This VGPM variant formulates PB
opt as a function of SST and chl0 

(Yamada et al., 2005; Kameda and Ishizaka, 2005). The model is based on the 

assumptions that changes in chlorophyll concentration depend on the abundance of large 

phytoplankton and that chlorophyll-specific productivity is inversely proportional to 

phytoplankton size. 

Model 11: This VGPM variant uses the continuous function of Morel and Berthon 

(1989) to estimate total integrated chlorophyll, which in turn is used to estimate the 

euphotic depth with the equations proposed by Morel and Maritorena (2001). 
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Model 12: This VGPM variant differs from Model 8 in that PB
opt  (mg C mg chl-1 

hr-1) is estimated as a function of chl0 (mg Chl m-3) only.  This empirical relationship was 

derived from EqPac data (PB
opt = 24 x chl0 + 1). 

 

2. DR/WI SatPPMs 

Model 13: Photosynthesis per unit chlorophyll was determined using an 

optimality-based model of nitrogen allocation and photoacclimation (Armstrong, 2006), 

which is in turn based on the model of Geider et al. (1998). Photoacclimation and 

nitrogen allocation are determined as a function of light and temperature; therefore both 

PAR and SST are used in the productivity algorithm. Maximum photosynthetic rates 

were taken to be an average of maximum NPP and GPP estimated for T. weissflogii in 

Armstrong (2006), and were assumed to have Eppley temperature dependence. Through 

the photoadaptation algorithm, chlorophyll reflects nitrogen status, so that no additional 

assumptions about nutrient limitation are needed. Chlorophyll concentration was assumed 

constant over the photic zone and equal to surface chlorophyll, so that light decreases 

exponentially with depth. Photic zone depth (1% light) was determined from chlorophyll 

concentration and assumed extinction coefficients. The photic zone was assumed to be 

well mixed and cells were assumed to be photoacclimated to average (10%) light. 

Column productivity is the integral over the photic zone of (photosynthesis/chlorophyll) 

* chlorophyll. 

Model 14: In this model the depth-distribution of PAR is determined by chl0 

while the depth-distribution of chlorophyll is given by the PAR profile and chl0.  Total 
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productivity is empirically estimated as a function of surface temperature and depth-

dependent PAR and chlorophyll (Asanuma, 2006). 

Model 15: This model is based on chlorophyll-specific phytoplankton absorption, 

which is parameterized empirically as a function of SST (Marra et al., 2003). Absorption 

by photosynthetic pigments is distinguished from total absorption; the former is used to 

calculate productivity and the latter is used to estimate light attenuation in the water 

column.  The rate of photosynthesis is quantum yield times absorbed irradiance, obtained 

from a hyperbolic tangent and a constant maximum quantum yield, φmax.  The depth 

profile of chlorophyll is estimated assuming a Gaussian shape with parameters 

determined by the surface value. The attenuation coefficient of chlorophyll is also SST-

dependent. 

 

3. DR/WR SatPPMs 

 Model 16: This model is an implementation of the Morel (1991) model in which 

the depth distribution of chlorophyll is assumed constant throughout the water column.  

The broadband incident PAR is spectrally resolved using a look-up-table generated from 

a single run of the Gregg and Carder (1990) marine irradiance model where the effects of 

clouds and aerosols are essentially linearly scaled.  The model uses 60-minute time and 

10-m depth steps at 5-nm wavelength resolution when run using the global datasets 

(Smyth et al., 2005). 

 Model 17: This model is the look-up-table described in Smyth et al. (2005) which 

uses a radiative transfer model with parameterizations for Colored Dissolved Organic 
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Matter (CDOM).  The model is based on Morel (1991) with incident irradiance 

parameterized in the same manner as Model 16. 

 Model 18: This model follows that of Platt and Sathyendranath (1988) as 

implemented at global scale by Longhurst et al. (1995).  It uses biogeographical 

provinces to define the values of the parameters to describe the light-photosynthesis 

curve and the chlorophyll depth profile. Photosynthetic parameters were updated using an 

extended data set provided by the Bedford Institute of Oceanography and an extensive 

literature review. Spectral surface irradiance is first estimated independently with the 

model of Gregg and Carder (1990) combined with a correction for cloud cover and then 

scaled to match the PAR values provided for the exercise. Spectral light is subsequently 

propagated in the water column with a bio-optical model with updated parameterizations 

of the inherent optical properties. All changes to the original implementation of 

Longhurst et al. (1995) are detailed by Mélin (2003). 

Model 19: This model derives spectral irradiance from PAR using Tanre et al. 

(1990), and assumes a vertically uniform chlorophyll profile. Quantum yield is 

parameterized as a maximum value times both a light dependent term (Waters et al., 

1994; Bidigare et al., 1992) and a temperature dependent term. Temperature dependence 

was assumed to be sigmoidal, and was based on a vertical profile of temperature derived 

from SST and MLD. 

Model 20: This is a spectral light-photosynthesis model published by Morel 

(1991). It is formulated using chlorophyll-specific wavelength-resolved absorption and 

quantum yield. Temperature dependence is given by the parameterization of PB
max, which 

follows Eppley (1972).  The chlorophyll profile is determined to be well-mixed or 
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stratified according to the ratio of MLD and the euphotic depth, and if stratified, assigned 

a gaussian profile as in Morel and Berthon (1989).  Mean photo-physiological parameters 

are from Morel et al. (1996).  The model is run in its `satellite' version Antoine et al. 

(1996), where PP is the product of integral biomass, the daily irradiance, and ψ*(the 

cross-section of algae for photosynthesis per unit of areal chlorophyll biomass). Lookup 

tables for ψ* were previously generated using the full DR/WR model, and are used to 

increase computational efficiency. 

 Model 21: This model represents an expansion in both the physiological attributes 

of the original CbPM (Model 7) and the space- and time-resolution of the model, and is 

described in detail in Westberry et al. (2007). The model requires surface chlorophyll 

concentration data and particulate backscatter coefficients (bbp) at 443 nm. As with 

Model #7, execution of model #21 for the current study required the estimation of bbp 

from the SeaWiFS record, as no coincident field data for bbp were available. Vertical 

structure in chlorophyll concentration in this model is driven primarily by 

photoacclimation of cellular chlorophyll, with additional adjustments made for changes 

in nutrient stress through the water column. 

 

4. BOGCMs 

Model 22: This BOGCM (Christian et al., 2002) uses a 20-layer reduced-gravity 

σ-coordinate model, with the first layer corresponding to the ocean’s mixed layer. The 

grid employed here stretches from 124°E to 76°W with uniform 1° resolution in 

longitude, and from 30°S to 30°N with maximal latitudinal resolution in the equatorial 

band (1/3° at latitudes <10°). The model was run using NCEP weekly (6 day) mean wind 
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stress and monthly interannual precipitation. The nitrogen and iron based ecosystem 

model has two size classes each of phytoplankton, zooplankton, and detritus, and the 

nutrients nitrate, ammonium, and iron. Phytoplankton growth is simultaneously limited 

by irradiance as well as nitrogen and iron availability, with fixed Fe/N ratios so that iron 

in all compartments except the dissolved pool is not modelled explicitly.  

Model 23: This BOGCM is a modification of Model 22 (Wang et al., 2005; 2006) 

and differs primarily by having a saturating (Ivlev) rather than a nonsaturating 

(multiplicative) grazer functional response. In addition it utilizes an additional quadratic 

mortality term that confers stability and suppresses oscillatory solutions in the case of 

saturable grazing (Wang et al., 2005). Additional minor modifications from the published 

versions are discussed in Christian et al. (2008, submitted). 

Model 24: The Biogeochemical Elemental Cycling (BEC) ocean model simulates 

the biogeochemical cycling of carbon, oxygen, nitrate, phosphate, iron, silicate, and 

alkalinity. The ecosystem has multiple, potentially growth limiting nutrients (nitrogen, 

phosphorus, silicon, and iron) and four phytoplankton groups (diatoms, diazotrophs, 

coccolithophores, and picophytoplankton) (Moore et al., 2002, 2004; Doney et al., this 

volume). Growth rates can be limited by available nutrients and/or light levels.  Full 

carbonate chemistry, as well as sinking particulate and semi-labile dissolved organic 

pools are included in a global, 3D context without nutrient restoring (Moore et al., 2004).  

The BEC runs within the coarse-resolution ocean component of the Community Climate 

System Model (Yeager et al., 2006), driven with time-varying atmospheric forcing from 

NCEP reanalysis and satellite data products (Doney et al., 2007). 
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 Model 25: This prognostic ocean biogeochemistry/ecology model considers 25 

tracers including three phytoplankton groups, two forms of dissolved organic matter, 

heterotrophic biomass, and dissolved inorganic species for coupled C, N, P, Si, Fe, 

CaCO3, O2 and lithogenic cycling with flexible N:P:Fe stoichiometry.  The model 

includes such processes as gas exchange, atmospheric deposition, scavenging, N2 fixation 

and denitrification. Loss of phytoplankton is parameterized through the size-based 

relationship of Dunne et al. (2005), river inputs, and sediment processes.  This 

biogeochemistry was run in the Modular Ocean Model version 4 (Griffies et al., 2005) 

with 50 vertical z-coordinate layers and a nominally 1° global resolution horizontal B-

grid with tri-polar coordinates to resolve the arctic and finer detail of 1/3° near the 

equator. The model was forced with 6-hourly and interannually varying forcing from the 

atmospheric reanalysis of Large and Yeager (2004). 

Model 26: The NASA Ocean Biogeochemical Model (NOBM) simulates four 

phytoplankton groups (diatoms, chlorophytes, cyanobacteria, and coccolithophores) and 

four nutrients (nitrate, ammonium, silica, and iron) (Gregg and Casey, 2007).  The model 

is approximately 0.8° resolution with 14 vertical layers in quasi-isopycnal configuration.  

The model was forced by monthly mean winds and shortwave radiation from NCEP for 

1979-2004. 

Model 27: In this NOBM variant (Gregg, 2007), NODC data for 1979-2004 were 

assimilated using the Conditional Relaxation Analysis Method.  The assimilation affected 

the model representations of total chlorophyll (sum of the 4 phytoplankton groups), but 

not the individual community distributions directly.  Primary production was affected by 
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the change in total chlorophyll, as well as by indirect effects such as subsurface 

irradiance resulting from absorption and scattering by the changed chlorophyll field. 

Model 28: The PISCES-T model is a two phytoplankton, two zooplankton, three 

detritus, three nutrient Dynamic Green Ocean Model. It has variable Fe:C, Chl:C and 

Si:C ratios and fixed N:C:O. It is embedded in the OPA8 OGCM, initialized with 

observations, and forced by daily NCEP reanalysis (Buitenhuis et al., 2006). No nutrient 

restoring was used. The model was run from 1948-2006 (Le Quere et al., 2007). 

Model 29:  The Hamburg Ocean Carbon Cycle (HAMOCC5) model uses monthly 

climatology forcing with approximately 3.5° x 3.5° horizontal degree resolution and 22 

vertical layers with thickness varying from 50 m at the surface to 700 m in the deepest 

layer (Maier-Reimer, 1993).  The model employs an NPZD-type ecosystem model with 

two phytoplankton functional groups (diatoms and calcifiers) with multi-nutrient (nitrate, 

phosphate, silicate and iron) limitation.  Productivity is simulated with a 3-day time step 

(Six and Maier-Reimer, 1996; Howard et al., 2006).  

Model 30: The physical model is based on the Regional Ocean Modeling System 

(ROMS), which has been configured for the Pacific Ocean at 50-km horizontal resolution 

and 20 vertical layers (Wang and Chao, 2004). The biogeochemical model is based on the 

Carbon, Silicate, Nitrogen Ecosystem (CoSINE) model developed by Chai et al. (2002; 

2003). The CoSINE model includes silicate, nitrate and ammonium, two phytoplankton 

groups, two zooplankton grazers, and two detrital pools. The model is initialized with 

climatological, temperature, salinity, nutrients and TCO2. When forced with daily air-sea 

fluxes (wind stress, heat flux, and freshwater exchange) derived from NCEP/NCAR 

reanalysis (Kalnay et al., 1996) for the period of 1984 to 2005, the Pacific ROMS-
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CoSINE model is able to realistically reproduce the evolution of ENSO events (1992-93; 

1997-98) as well as a sharp change of the circulation and thermal structure for the Pacific 

Ocean in 1998-99. 
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Figure Captions: 

 

Figure 1. Map of stations in the ClimPP database. 

Figure 2. Cumulative distribution function of the ClimPP data and the input variables 

provided to the SatPPMs: (a) PP integrated to the 1% light level, (b) PAR, (c) SST, (d) 

MLD and (e) surface chlorophyll. Median value is illustrated by the intersection of the 

solid lines with the dashed 0.5 line. 

Figure 3. Target diagram displaying B* (Eqn. 6) and RMSDCP* (Eqn. 7) for the 30 

participating models relative to the ClimPP database. Concentric circles represent 

RMSD* isolines: the inner dashed circle represents the normalized observational PP 

uncertainty, and the outer solid circle represents the normalized deviation of the 

productivity data. Blue symbols = DI/WI models (darker blue are subset of VGPM 

variants), red = DR/WI, green = DR/WR, and pink = BOGCMs. 

Figure 4. Taylor diagram of log(PP). The distance from the origin is the standard 

deviation of the modeled productivities. The azimuth angle represents the correlation 

between the observations and the modeled productivities, and the distance between each 

model symbol and the data (black diamond) is the RMSDCP. Dashed lines are isolines of 

RMSDCP = 0.25 and RMSDCP = 0.15. Dotted line represents the standard deviation of the 

data. Colors as in Figure 3. 

Figure 5. Cumulative fraction of test points as a function of productivity for the ClimPP 

observations (black lines) and the 30 PP models (colored lines) for (a) the DI/WI non-

VGPMs, (b) the DI/WI VGPMs, (c) the DR/WI models, (d) the DR/WR models, and (e) 
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the BOGCMs. Results of Model #26 are nearly indistinguishable from those of Model 

#27. Medians are represented by the intersections of the black dashed line and the curves. 

Figure 6. Total RMSD between each of the satellite-based PP models and the ClimPP 

database. The portion of the total RMSD that may be attributable to uncertainty in the 

input variables is black; colors defined in Figure 3. 

Figure 7. Principal component analysis of reduction in total RMSD obtained from 

optimal perturbation of observed input and output variables, where perturbations 

represent hypothetical levels of uncertainty in each variable. Bubble size is proportional 

to the original total RMSD (i.e. assuming perfectly known input variables). Vectors point 

towards the largest reductions in total RMSD obtained assuming different uncertainty 

criteria (all=uncertainty in all variables; PP=uncertainty in PP only’ SST = uncertainty in 

SST only; etc…) 

Figure 8. For each of the 30 participating models, correlation between model-data misfit 

and various environmental variables: depth of the chlorophyll maximum (ZChlm), MLD, 

degrees from equator (Lat), SST, chl0, year day (YD), PAR, longitude (Lon), year (Yr), 

and biomass normalized PP integrated over the euphotic zone (Pb). 

Figure 9. As in Figure 4, except statistics are computed for the 1990s subset of the 

ClimPP data. 

Figure 10. As in Figure 6, except RMSD is computed for the 1990s subset of the ClimPP 

data. 

Figure 11. Model-data misfit as a function of observations of PB
i, color-coded to 

demonstrate that low PB
i values occurred in the 1980s. Model numbers in the upper right 

corner of each plot correspond to definitions in Table 2. 
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Figure 12. PB
i plotted as a function of (a) time, color-coded to demonstrate that low PB

i 

values are not correlated with chlorophyll, (b) longitude, color-coded according to 

decade, and (c) latitude, again color-coded to decade. 
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Table 1.  
Acronym definition 
PP primary productivity 
SatPPM satellite-based productivity model 
BOGCM biogeochemical ocean general circulation model 
chl0 surface chlorophyll 
SST sea-surface temperature 
PAR photosynthetically available radiation 
MLD mixed layer depth 
PPARR primary productivity algorithm round-robin 
HNLC high-nutrient low chlorophyll 
DI (DR) depth-integrated (depth-resolved) 
WI (WR) wavelength-integrated (wavelength-resolved) 
RMSD root mean square difference 
RMSDCP centered-pattern root mean square difference 
B bias 
PCA principal component analysis 
VGPM vertically generalized productivity model 
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Table 2. Model descriptions. 

 
Model # Contributor Type Input variables used: 

chl0  SST  PAR MLD 
Reference 

1 Friedrichs DI,WIa    x Eppley et al., 1985 
2 Carr DI,WI    x       x       x          Carr, 2002 
3 Carr DI,WI    x       x       x       x Howard and Yoder, 1997 
4 Carr DI,WI    x                x       x  
5 Scardi DI,WI    x       x       x       x Scardi, 2001 
6 Dowell DI,WI    x       x       x         
7 Westberry/Behrenfeld DI,WI     x                x       x Behrenfeld et al., 2005 
8 Behrenfeld/Westberry DI,WI    x       x       x Behrenfeld & Falkowski, 1997 
9 Behrenfeld/Westberry DI,WI    x       x       x Behrenfeld & Falkowski, 1997 

10 Kameda/Ishizaka DI,WI    x       x       x Kameda and Ishizaka, 2005 
11 Ciotti DI,WI    x       x       x Morel and Maritorena, 2001 
12 Behrenfeld/Westberry DI,WI    x                x  
13 Armstrong DR,WI    x       x       x Armstrong, 2006 
14 Asanuma DR,WI    x       x       x Asanuma et al., 2006 
15 Marra/O’Reilly DR,WI    x       x       x Marra et al., 2003 
16 Smyth DR,WR    x       x       x Smyth et al., 2005 
17 Smyth DR,WR    x       x       x Smyth et al., 2005 
18 Mélin/Hoepffner DR,WR    x                x Mélin, 2003 
19 Waters DR,WR    x       x       x       x Ondrusek et al., 2001 
20 Antoine/Morel/Gentili DR,WR    x       x       x       x Antoine and Morel, 1996 
21 Westberry DR,WR    x                x       x Westberry et al., 2007 
22 Christian BOGCM  Christian et al., 2002  
23 Christian BOGCM  Wang et al., 2005 
24 Lima/Moore/Doney BOGCM  Moore et al., 2004 
25 Dunne BOGCM  Dunne et al., 2006 
26 Gregg BOGCM  Gregg and Casey, 2007 
27 Gregg BOGCM  Gregg, 2007 
28 Buitenhuis BOGCM  LeQuere et al., 2007 
29 Tjiputra/Winguth BOGCM  Tjiputra et al., 2007 
30 Chai BOGCM  Chai et al., 2003 

a DI = Depth integrated, DR = Depth resolved, WI = Wavelength integrated, WR = Wavelength Resolved 
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Table 3. Bias, Fmed (see text), RMSDCP, total RMSD, correlation and standard deviation 
computed for each participating model relative to the ClimPP data set. Fmed and 
correlation are non-dimensional; remaining statistics are in units of decades of log10. 
Standard deviation of ClimPP data set is 0.28. In addition, the absolute means (± one 
standard error) of these statistics are reported for various model subsets. 
 

Model # 
or type 

bias Fmed RMSDCP total RMSD correlation standard 
deviation 

1 0.04 1.10 0.24 0.24 0.53 0.13 
2 0.17 1.48 0.24 0.30 0.55 0.22 
3 0.04 1.10 0.29 0.30 0.36 0.24 
4 0.20 1.57 0.24 0.31 0.53 0.18 
5 -0.09 0.80 0.25 0.27 0.51 0.21 
6 0.16 1.43 0.25 0.29 0.57 0.26 
7 0.05 1.13 0.27 0.27 0.49 0.25 
8 -0.04 0.92 0.24 0.24 0.57 0.21 
9 0.19 1.56 0.25 0.32 0.46 0.16 

10 -0.21 0.62 0.24 0.31 0.54 0.18 
11 0.02 1.06 0.24 0.24 0.56 0.23 
12 -0.01 0.97 0.33 0.33 0.53 0.38 
13 0.01 1.03 0.24 0.24 0.55 0.22 
14 0.18 1.53 0.24 0.30 0.57 0.21 
15 0.07 1.18 0.24 0.25 0.51 0.18 
16 0.11 1.28 0.23 0.26 0.55 0.18 
17 0.14 1.39 0.24 0.28 0.53 0.20 
18 -0.04 0.91 0.23 0.23 0.60 0.20 
19 0.30 2.01 0.24 0.39 0.55 0.10 
20 0.17 1.48 0.24 0.29 0.54 0.15 
21 0.25 1.79 0.30 0.39 0.36 0.26 
22 -0.24 0.58 0.29 0.37 0.56 0.33 
23 -0.05 0.89 0.29 0.29 0.50 0.30 
24 0.20 1.58 0.24 0.31 0.54 0.19 
25 0.35 2.22 0.24 0.42 0.55 0.22 
26 0.12 1.33 0.24 0.27 0.59 0.26 
27 0.12 1.31 0.24 0.27 0.60 0.26 
28 0.32 2.08 0.27 0.42 0.23 0.08 
29 0.00 1.01 0.32 0.32 0.37 0.29 
30 0.27 1.87 0.24 0.36 0.50 0.12 

       
DI/WI 0.10±0.02 1.26 0.26±0.01 0.28±0.01 0.52±0.02 0.22±0.02 
DR/WI 0.09±0.05 1.23 0.24±0.002 0.26±0.02 0.54±0.02 0.20±0.01 
DR/WR 0.17±0.04 1.48 0.25±0.01 0.31±0.03 0.52±0.03 0.18±0.02 
SatPPM 0.12±0.02 1.32 0.25±0.01 0.29±0.01 0.52±0.01 0.21±0.01 
BOGCM 0.19±0.04 1.53 0.26±0.01 0.34±0.02 0.49±0.04 0.23±0.03 

all 0.14±0.02 1.38 0.25±0.01 0.30±0.01 0.51±0.01 0.21±0.01 
 



 72 

Table 4. As in Table 2, except statistics are computed from the 1990s subset of the 
ClimPP data. Standard deviation of this subset of the ClimPP dataset is 0.25. 
 

Model # 
or type 

bias Fmed RMSDCP total RMSD correlation standard 
deviation 

1 -0.11 0.77 0.17 0.20 0.79 0.13 
2 0.01 1.02 0.16 0.16 0.78 0.24 
3 -0.12 0.74 0.20 0.24 0.67 0.25 
4 0.04 1.11 0.17 0.18 0.72 0.18 
5 -0.26 0.54 0.17 0.31 0.76 0.23 
6 -0.01 0.99 0.18 0.18 0.78 0.27 
7 -0.09 0.82 0.21 0.22 0.63 0.23 
8 -0.20 0.64 0.16 0.25 0.77 0.22 
9 0.04 1.09 0.16 0.17 0.78 0.16 

10 -0.36 0.43 0.17 0.40 0.72 0.18 
11 -0.14 0.73 0.16 0.21 0.77 0.23 
12 -0.19 0.65 0.23 0.30 0.79 0.37 
13 -0.15 0.72 0.16 0.22 0.78 0.23 
14 0.03 1.06 0.17 0.17 0.76 0.24 
15 -0.08 0.82 0.16 0.18 0.78 0.18 
16 -0.05 0.89 0.15 0.16 0.79 0.19 
17 -0.02 0.97 0.15 0.15 0.79 0.21 
18 -0.19 0.65 0.16 0.24 0.77 0.21 
19 0.15 1.43 0.18 0.24 0.75 0.11 
20 0.02 1.04 0.16 0.16 0.78 0.16 
21 0.04 1.10 0.17 0.18 0.75 0.24 
22 -0.33 0.47 0.28 0.43 0.59 0.34 
23 -0.15 0.71 0.28 0.32 0.52 0.31 
24 0.09 1.23 0.20 0.22 0.61 0.17 
25 0.24 1.75 0.22 0.33 0.58 0.22 
26 0.03 1.07 0.21 0.21 0.63 0.23 
27 0.02 1.05 0.20 0.20 0.64 0.22 
28 0.17 1.48 0.24 0.29 0.26 0.06 
29 -0.06 0.87 0.27 0.27 0.44 0.26 
30 0.17 1.48 0.22 0.28 0.46 0.12 

       
DI/WI 0.13±0.03 1.35 0.18±0.01 0.24±0.02 0.75±0.01 0.23±0.02 
DR/WI 0.08±0.03 1.22 0.16±0.01 0.19±0.01 0.77±0.01 0.21±0.02 
DR/WR 0.08±0.03 1.20 0.16±0.01 0.19±0.02 0.77±0.01 0.19±0.02 
SatPPM 0.11±0.02 1.29 0.17±0.01 0.22±0.01 0.76±0.01 0.21±0.01 
BOGCM 0.14±0.03 1.38 0.23±0.01 0.28±0.02 0.53±0.04 0.22±0.03 

all 0.12±0.02 1.31 0.19±0.01 0.24±0.01 0.69±0.02 0.21±0.01 
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Table 5. Maximum possible reductions in total RMSD (and maximum percentage 
reduction in total RMSD) resulting from perturbing chl0, SST, PAR, MLD, PP and all 
five variables simultaneously. This data matrix is the basis for the principal component 
analysis (Figure 7.)  
          
Model # chl0 (%) SST (%) PAR (%) MLD (%) PP (%) all (%) 

1 0.051 (21) 0.000 (0) 0.000 (0) 0.000 (0) 0.050 (21) 0.094 (39) 
2 0.078 (26) 0.006 (2) 0.086 (29) 0.000 (0) 0.053 (18) 0.183 (61) 
3 0.086 (29) 0.008 (3) 0.075 (25) 0.092 (31) 0.052 (17) 0.227 (76) 
4 0.062 (20) 0.000 (0) 0.067 (22) 0.037 (12) 0.054 (17) 0.188 (61) 
5 0.070 (26) 0.008  (3) 0.043 (16) 0.036 (13) 0.049 (18) 0.167 (62) 
6 0.082 (28) 0.014 (5) 0.082 (28) 0.000 (0) 0.053 (18) 0.187 (64) 
7 0.045 (17) 0.000 (0) 0.065 (24) 0.108 (40) 0.051 (19) 0.212 (79) 
8 0.066 (28) 0.017 (7) 0.012 (5) 0.000 (0) 0.049 (20) 0.126 (53) 
9 0.073 (23) 0.021 (7) 0.015 (5) 0.000 (0) 0.054 (17) 0.146 (46) 
10 0.040 (13) 0.049 (16) 0.010 (3) 0.000 (0) 0.048 (15) 0.128 (41) 
11 0.065 (27) 0.038 (16) 0.013 (5) 0.000 (0) 0.051 (21) 0.140 (58) 
12 0.122 (37) 0.000 (0) 0.012 (4) 0.000 (0) 0.052 (16) 0.171 (52) 
13 0.072 (30) 0.006 (3) 0.069 (29) 0.000 (0) 0.051 (21) 0.161 (67) 
14 0.068 (23) 0.019 (6) 0.088 (29) 0.000 (0) 0.054 (18) 0.188 (63) 
15 0.068 (27) 0.018 (7) 0.059 (24) 0.000 (0) 0.051 (20) 0.161 (64) 
16 0.065 (25) 0.001 (0) 0.052 (20) 0.000 (0) 0.052 (20) 0.144 (55) 
17 0.076 (27) 0.010 (4) 0.058 (21) 0.000 (0) 0.053 (19) 0.163 (58) 
18 0.059 (26) 0.000 (0) 0.058 (25) 0.000 (0) 0.049 (21) 0.138 (60) 
19 0.044 (11) 6E-06 (0) 0.065 (17) 1E-6 (0) 0.059 (15) 0.158 (41) 
20 0.061 (21) 0.009 (3) 0.066 (23) 0.004 (1) 0.054 (19) 0.165 (57) 
21 0.111 (28) 0.000 (0) 0.066 (17) 0.014 (4) 0.053 (14) 0.211 (54) 
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Figure 1.  
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Figure 2.  
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Figure 3.  
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Figure 4. 
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Figure 5.  
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Figure 6.  
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Figure 7.  
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Figure 8.  
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Figure 9.  
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Figure 10.  
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Figure 11. 
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Figure 12.  


