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Abstract 

We present a generalized framework for assessing the skill of global upper ocean 

ecosystem-biogeochemical models against in-situ field data and satellite observations. 

We illustrate the approach utilizing a multi-decade (1979-2004) hindcast experiment 

conducted with the Community Climate System Model (CCSM-3) ocean carbon model. 

The CCSM-3 ocean carbon model incorporates a multi-nutrient, multi-phytoplankton 

functional group ecosystem module coupled with a carbon, oxygen, nitrogen, 

phosphorus, silicon, and iron biogeochemistry module embedded in a global, three-

dimensional ocean general circulation model. The model is forced with physical climate 

forcing from atmospheric reanalysis and satellite data products and time-varying 

atmospheric dust deposition. Data-based skill metrics are used to evaluate the simulated 

time-mean spatial patterns, seasonal cycle amplitude and phase, and subannual to 

interannual variability. Evaluation data include: sea surface temperature and mixed layer 

depth; satellite derived surface ocean chlorophyll, primary productivity, phytoplankton 

growth rate and carbon biomass; large-scale climatologies of surface nutrients, pCO2, and 

air-sea CO2 and O2 flux; and time-series data from the Joint Global Ocean Flux Study 

(JGOFS). Where the data is sufficient, we construct quantitative skill metrics using: 

model-data residuals, time-space correlation, root mean square error, and Taylor 

diagrams.  
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1. Introduction 

The last two decades witnessed a dramatic increase in the volume of global ocean 

biogeochemical and ecological observations due, in part, to coordinated international 

field programs (e.g., Joint Global Ocean Flux Study JGOFS; World Ocean Circulation 

Experiment WOCE), satellite ocean color sensors, and emerging and ongoing ocean 

observing systems (e.g., Fasham et al., 2001; Doney and Hood, 2002; McClain et al., 

2004). Data availability combined with increasing computational power stimulated a 

rapid growth in basin to global upper ocean ecosystem-biogeochemistry models (e.g., 

Sarmiento et al., 1993; Six and Maier-Reimer, 1996; Oschlies and Garcon, 1998; Doney, 



1999; Gregg et al., 2003; Aumont et al., 2003; Moore et al., 2004; Le Quéré et al., 2005; 

Doney and Ducklow, 2006). Such models are now widely applied to questions from 

seasonal and interannual climate variability (e.g., Le Quéré et al., 2000; McKinley et al., 

2004; Wetzel et al., 2005; Lovenduski et al., 2007; Le Quéré et al., 2007) to 

anthropogenic climate change (e.g., Bopp et al., 2001; Boyd and Doney, 2002; Bopp et al. 

et al., 2003). Marine ecosystem models are also growing in sophistication and 

complexity, incorporating multiple limiting nutrients and multiple planktonic functional 

groups at the lower trophic levels (Denman, 2003; Hood et al., 2006; Follows et al., 

2007). 

Even with the wealth of new ocean data, the evaluation of basin and global-scale 

marine ecosystem-biogeochemistry models is challenging. Satellite data provide 

reasonably high space-time resolution but only for the surface layer and for only a 

handful of biological properties. Ship-based biological and chemical data are invaluable 

but comparatively sparse, with the construction of global annual-mean climatologies 

requiring the aggregation of data from multiple years. Routine underway sampling 

transects on research vessels and volunteer commercial ships are greatly improving data 

densities but are mostly limited, to this point, to carbon dioxide system variables (e.g., 

pCO2). Quantitative evaluation is further confounded by the fact that model variables in 

most ecosystem models are highly aggregated, for example lumping all 

microzooplankton or mesozooplankton into two model compartments. Model variables 

can also lack direct analogues with observed values, as in the case of the crucial higher 

trophic level mortality closure terms that combine effects of mortality and predation. 

Furthermore, even the best sampled locations (e.g., JGOFS sites) often do not have 

enough data to constrain model dynamics fully (e.g., Friedrichs et al., 2007). Despite 

these issues, data-based verification of model skill is fundamental to advancing the 

science of marine ecological modeling. Quantitative skill assessment is integral to both 

the model development cycle and defining confidence estimates on model forecasts. As 

such, most research groups have in place some form of data-based assessment, though as 

discussed in Stow et al. (2007) these assessments are often partial and qualitative.  

Skill assessment requires significant up-front investment to compile a wide range 

of field and remote sensing data into appropriate data products (often, but not always 



gridded) prior to the actual comparison with model results. The problem is not one of 

simply data management, but rather requires a serious level of data interpretation and 

analysis effort to combine observations from different researchers, measurement 

techniques or even satellite platforms. Once created, the utility of such data products is 

clear, as illustrated by the broad use by the modeling community of data compilations 

such as the global surface pCO2 data set and air-sea CO2 flux estimates of Takahashi et 

al. (2002) and Takahashi et al. (submitted), the GLODAP data products created from the 

WOCE/JGOFS (Key et al., 2004), and the level 3 gridded satellite ocean color data from 

SeaWiFS and MODIS. Standard data products and quantitative metrics of model skill, 

even if imperfect, stimulate critical assessment of model performance and speed model 

development.  

Lessons for developing a systematic model-data skill assessment can be drawn 

from the experience of similar efforts in related fields. For example, the ocean 

biogeochemical community has organized model-data skill assessments under the Ocean 

Carbon Model Intercomparison Project (OCMIP). Within OCMIP researchers compared 

about a dozen global ocean biogeochemical models against observations of ocean physics 

(Doney et al., 2004), transient tracers including radiocarbon (Matsumoto et al., 2004) and 

chlorofluorocarbons (Dutay et al., 2004), and inorganic carbon, nutrients and oxygen 

(Orr et al., 2005; Najjar et al., 2007). Matsumoto et al. (2004) argue that most the 

OCMIP simulations do not adequately match (within error bars) the available ocean 

transient tracer data.  Estimates of less well-constrained model variables (e.g., future 

ocean uptake of anthropogenic CO2) should therefore include only the subset of “skillful” 

simulations or should be constructed using a weighting function based on the transient 

tracer model skill.  A second lesson from OCMIP is that model skill assessment is often 

best done as a partnership between researchers with expertise in modeling and 

researchers involved in field observations and remote sensing. 

Here we argue for a similar generalized model-data framework for characterizing 

the skill of global ocean ecosystem-biogeochemical models against in-situ field data and 

satellite observations. While all of the major ocean ecosystem modeling groups currently 

assess model skill, the approaches are often specific to their particular model, and the 

community lacks a set of agreed upon, objective evaluation metrics that can be used to 



inter-compare skill across models. Our goal here is to stimulate discussion and dialogue 

by proposing a prototype scheme that will be open to the community. We realize that a 

fully comprehensive system will only emerge over time with input from different user 

groups and that even with a generalized set of skill metrics there will still remain a need 

for unique verification approaches for different model applications. 

As an illustration, we present model-data skill results from a multi-decade (1979-

2004) hindcast experiment conducted with the Community Climate System Model 

(CCSM-3) coupled ocean Biogeochemical Elemental Cycling model (BEC). The BEC 

model consists of upper ocean ecological (Moore et al., 2004) and full-depth 

biogeochemical (Doney et al., 2006) modules embedded in a global 3-D Parallel Ocean 

Program (POP) ocean general circulation model (Smith and Gent, 2004; Collins et al., 

2006). The model is forced with physical climate forcing from atmospheric reanalysis 

and satellite data products (Doney et al., 2003; 2007) and time-varying dust deposition 

(Mahowald et al., 2003). We focus the analysis on three aspects of the simulation: time-

mean spatial patterns, the seasonal cycle, and subannual to interannual variability. 

Evaluation data include satellite derived surface ocean chlorophyll and primary 

productivity (SeaWiFS and MODIS), large-scale climatologies of surface nutrients and 

pCO2, and time-series data from JGOFS and other field programs. Where the data is 

sufficient, we construct quantitative skill scores (time-space correlation and model and 

data rms variability) (Lima and Doney, 2004).  

 

2. Hindcast Global Ocean Ecosystem-Biogeochemistry Simulation 

2.1 Ecosystem-Biogeochemistry Module 

The CCSM-3 BEC model is cast as a set of three-dimensional, time-varying 

advection diffusion equations for a suite of tracers C:  

  

∂C
∂t

+ ∇ ⋅
r 
u C( )− ∇ ⋅ K∇C( )= RHSbio

C       (1) 

The physical transport is partitioned into resolved advection and parameterized eddy 

mixing terms; all of the ecological-biogeochemical source/sink terms and surface and 

sediment fluxes are grouped into the right hand side term RHSbio. The marine ecosystem 

module (Figure 1) builds on traditional phytoplankton-zooplankton-detritus-nutrient food 



web models (e.g., Fasham et al., 2000; Doney et al., 1996). The module incorporates 

multi-nutrient limitation (N, P, Si, and Fe) on phytoplankton growth and specific 

phytoplankton functional groups (Moore et al., 2002a; 2004).  

There are fourteen main model compartments: small pico/nano-plankton, diatoms, 

and diazotrophs; zooplankton; suspended and sinking particulate detritus; and dissolved 

nitrate, ammonia, phosphorus, iron, silicate, oxygen, dissolved inorganic carbon, and 

alkalinity. The pico/nanoplankton size class is designed to replicate the rapid and highly 

efficent nutrient recycling found in many subtropical, oligotrophic (low nutrient) 

environments. Diatoms model a larger, bloom-forming size class. Phytoplankton growth 

rates are determined by available light and nutrients using a modified form of the Geider 

et al. (1998) dynamic growth model. Photoadaptation is parameterized with dynamically 

adaptive chl/C ratios. The diazotrophs fix all required nitrogen from N2 gas, and 

calcification is parameterized as a fraction of the pico/nanoplankton production as a 

function of temperature and nutrients adapted for coccolithophores. Size-structure effects 

are included by varying key zooplankton (e.g., partitioning of fecal pellets between 

suspended and sinking detritus) depending on the food source (Lima and Doney, 2004). 

Many of the biotic and detrital compartments contain multiple elemental pools, in 

addition to carbon, to track flows through the ecosystem. The model has one adaptive 

zooplankton class that grazes on phytoplankton and large detritus. 

The biogeochemistry module (Doney et al., 2006) is based on an expanded version 

of the Ocean Carbon Model Intercomparison Project (OCMIP) biotic model (Najjar et 

al., 2007). The module includes full carbonate system thermodynamics and air-sea CO2 

and O2 fluxes. Gas transfer velocities are computed from the 6-hourly NCEP winds 

(http://www.cdc.noaa.gov/cdc/reanalysis/reanalysis.shtml) using the quadratic wind 

speed relationship of Wanninkhof (1992). A dynamic iron cycle is incorporated with 

atmospheric dust deposition, water-column scavenging and a continental sediment source 

(Moore et al., 2006; see also Moore and Braucher, submitted a for discussion on 

refinements of continental sediment source). Denitrification is simulated in oxygen 

minimum zones following Moore and Doney (2007), and subsurface particle 

remineralization is parameterized incorporating the mineral ballast arguments of 

Armstrong et al. (2002). The model equations are identical to those reported for the 3-D 



implementation of Moore et al. (2004) with two important modifications as documented 

in more detail in Moore et al. (2006). First, water column denitrification has been added 

to the model in order to close the global nitrogen cycle. Second, a number of the 

parameters associated with the model iron dynamics and scavenging have been adjusted 

to improve the simulated dissolved iron fields (see Table 1 of Moore et al., 2006) (Moore 

and Braucher, submitted b).  

 

2.2 Atmospheric Dust Deposition 

 Time-varying mineral aerosol deposition to the ocean is simulated using a 3-D 

atmospheric chemical transport model (Mahowald et al., 2003; Luo et al., 2003) based on 

National Centers for Environmental Prediction/National Center for Atmospheric 

Research (NCEP/NCAR) reanalysis (Kistler et al., 2001). The dust source and deposition 

scheme is based on the Dust Entrainment and Deposition (DEAD) scheme (Zender et al., 

2003), and the chemical transport model is the Model of Atmospheric Transport and 

Chemistry (MATCH) (Rasch et al., 1997), which has been developed specifically to be 

used with reanalysis winds (Mahowald et al., 1997). The dust source areas are defined as 

dry, poorly vegetated regions which have easily erodible sources, using topographic lows 

as preferential source areas (Ginoux et al., 2001). Dust is removed by wet deposition 

during precipitation events, and by dry deposition from gravitational settling and 

turbulent processes.  

The ability of the dust model to correctly simulate the annual mean, and seasonal 

cycle of dust has been compared against in situ and satellite observations elsewhere (Luo 

et al., 2003; Mahowald et al., 2003).  For the in situ concentration data at 10 stations 

where multiple years are available, the model gets statistically significant correlations for 

the seasonal cycle, and interannual variability at 8 of 10 stations, with the most difficulty 

and lowest correlations at stations in the southern hemisphere (Table 1, Mahowald et al., 

2003).  Comparisons of daily averaged concentrations obtain correlation coefficients of 

0.31 to 0.84 for the 7 stations with daily averaged data.  Correlation coefficients with 

available satellite data (TOMS AAI and AVHRR optical depth) in regions where dust is 

adequately sampled are above 0.60 (Figure 2, Mahowald et al., 2003). Much of the 

interannual variability in dust concentrations downwind of the source regions is driven by 



atmospheric transport (or transport/source correlations) and not by source interannual 

variability (Tegen and Miller, 1998; Mahowald et al., 2003). 

 

 

2.3 Atmospheric Forcing and Ocean Physical Hindcasts 

The POP is a z-level, hydrostatic, primitive equation model integrated here with a 

resolution of 3.6◦ in longitude, 0.8◦ to 1.8◦ in latitude, and 25 vertical levels (Yeager et 

al., 2006). Effects of mesoscale eddy transport are parameterized according to Gent and 

McWilliams (1990). The Large et al. (1994) K-Profile Parameterization is implemented 

in the vertical to capture surface boundary-layer dynamics and interior diapycnal mixing. 

The historical simulation (1979-2004) is integrated with air-sea heat, freshwater, and 

momentum fluxes derived from a bulk flux forcing method that combines 6-hourly 

atmospheric surface fields (temperature, humidity, winds) from the NCEP reanalysis 

(Kistler et al., 2001) with satellite and in-situ derived clouds, precipitation, runoff and 

sea-ice fraction (Large and Yeager, 2004). Doney et al. (2007) present a quantitative skill 

assessment of the ocean physical solutions in terms of interannual variability of 

temperature, sea surface height, and circulation.  

Initial conditions for the nutrient and inorganic carbon variables are prescribed from 

data based climatologies (e.g., Key et al., 2004). The ecological-biogeochemical 

simulation is spun-up for several hundred years, prior to initiating the interannual varying 

forcing, using a repeat annual cycle of physical forcing, dust deposition, and fixed 

preindustrial atmospheric CO2 mole fraction (280 ppm). The full interannual variability 

in physics and dust forcing is initiated in model year 815 (equivalent to calander year 

1979). In the pre-industrial simulation atmospheric CO2 mole fraction remains fixed at 

280 ppm over the hindcast (1979-2004). In a companion anthropogenic CO2 simulation, 

atmospheric CO2 starts to evolve over time mid-way through the spin-up following ice-

core and historical CO2 observations from the 1700s forward to 1979; in that simulation, 

atmospheric CO2 tracks observed global mean temporal trends over the hindcast (1979-

2004). 

The model ecosystem components converge to a repeat annual cycle within a few 

years of spin-up. There remains a slow drift in the subsurface nutrient and inorganic 



carbonate fields in the pre-industrial simulation.  The global net air-sea CO2 uptake flux 

is 0.150 PgC y-1 (mean areal flux 0.025 mol C m-2 y-1), but the change in the drift over the 

26 year integration (1979-2004) is only -0.010 PgC y (mean -0.002 mol C m-2 y-1) and 

much smaller than the simulated interannual variability. In a companion anthropogenic 

CO2 simulation, atmospheric CO2 evolves over time during the latter part of the model 

spin-up following historical observations. 

 

3. Evaluation Data Sets 

Table 1 presents details on the specific field and remote sensing data sets used for 

model evaluation in this study. Information in the table includes each specific variable, its 

units, spatial and temporal resolution of the underlying data set, data source, and 

reference(s). Most of the data sets are global in extent, which limits us primarily to data 

climatologies (annual mean and seasonal cycle) and satellite data products (annual mean, 

seasonal cycle, and subannual to interannual variability). This is not to argue that other 

data sets are not of value, a fact that we illustrate using an example 1-D water column 

time-series. Our emphasis here is mostly on surface water properties. 

The data sets are chosen to highlight key aspects of the coupled BEC simulation 

with regards to physics, chemistry and biology. Physical fields include sea surface 

temperature (SST), which is important for biological growth and respiration rates as well 

as air-sea gas exchange, and mixed layer depth (MLD), which influences nutrient 

entrainment and the average light field observed by the phytoplankton. Biogeochemical 

fields include surface water dissolved inorganic macronutrients (nitrate (NO3), silicate 

(SiO3), and phosphate (PO4)) and reflect a balance between physical nutrient supply and 

net biological nutrient drawdown. We also examine the simulated fields of dissolved 

gases oxygen (O2) and the carbon dioxide partial pressure (pCO2), as well as air-sea O2 

and CO2 fluxes, which reflect physical transport, solubility variations, net community 

production, and ocean-atmosphere exchange. The global biological fields are derived 

from satellite ocean color data and include chlorophyll (Chl) and vertically integrated 

primary production ( PP∫  ), which are measures of phytoplankton pigment standing 

stock and the photosynthesis that fuels the upper ocean food web. We also examine a pair 



of relatively new remote sensing products, phytoplankton specific growth rate (μ) and 

phytoplankton carbon concentration (PC,), as described in more detail below. 

The list of evaluation datasets is heavy on bottom-up physical-chemical forcing 

data, biogeochemical tracers, and phytoplankton responses, but light on many of the 

higher trophic-level dynamics and loss processes that are also integral to the BEC 

solutions (Figure 1). For example, we have not yet incorporated measures of zooplankton 

biomass and grazing rates because of a lack of comprehensive global data. While some 

macrozooplankton biomass climatologies exist, there is no similar treatment for 

microzooplankton that are essential to verifying the behavior of our single aggregated 

zooplankton compartment. For somewhat different reasons, we do not include an explicit 

measure of export production. While globally gridded export flux maps are available, 

their construction from satellite data (e.g., Laws et al., 2000) involves a considerable 

level of model or empirical assumptions; they are essentially derived products from 

derived products, in this case primary production. Unlike most satellite ocean color 

algorithms there is no direct link to radiances nor extensive in situ validation, and it is 

unclear whether they serve as independent observational assessments or more of a model-

model comparison (Najjar et al., 2007). Recent compilations of deep-sea sediment trap 

data offer another approach for a point by point assessment of simulated export 

production, but because only a small fraction of surface export reaches the deep ocean 

such analysis also folds in the skill of the model subsurface remineralization 

parameterization, which can have large uncertainties.    

Some assessment variables require merging multiple observational data-sets, which 

can add potential biases to model-data assessments if particular care is not taken. For 

example, air-sea CO2 flux maps (e.g., Takahashi et al., 2002) are commonly created by 

joining air-sea ΔpCO2 data with wind-speed dependent gas transfer velocities. 

Observational flux estimates thus scale directly, if non-linearly, with wind speed, and the 

use of different wind speed products will result in different observational flux estimates 

even for the same underlying ΔpCO2 data. A good argument can be made for adjusting 

the global mean transfer velocity to correct for differences in the global mean wind speed 

from different wind products (or the global mean wind speed squared in the case of a 



quadratic wind-speed formulation), but there will still be seasonal and regional spatial 

flux differences introduced by the different wind products.  

For models the issues are somewhat more complicated because wind speed products 

are used to force both physical circulation and biogeochemistry. The model air-sea CO2 

flux and ΔpCO2 are dynamically coupled in the model solutions in that a change in flux 

will alter surface water DIC and thus ΔpCO2. The use of a different wind speed product 

between the observational estimate and as forcing for the model could therefore introduce 

model-data differences in both variables. Despite their interdependence, we include here 

model skill metrics for both air-sea CO2 flux and ΔpCO2 because they are commonly 

presented observational fields and reflect somewhat different weighting of different 

regions and seasons within the model. Note, however, that the uncertainties in more 

derived “observational” products, such as air-sea CO2 flux, are larger than directly 

measured fields; in the case of air-sea CO2 flux, this includes the incorporating error in 

wind speed based gas transfer relationships (Wanninkhof, 1992).   

Traditionally, surface chlorophyll concentration has been the primary satellite-

derived ecosystem variable related to biological ocean carbon cycling.  From chlorophyll 

concentration, a variety of models have been described for estimating water-column net 

primary production (see reviews by Campbell et al. 2002 and Carr et al., 2006). In most 

cases the estimated primary production is proportional to the satellite derived chlorophyll 

multiplied by spatially and temporally varying factors that may depend upon estimates of 

surface light, nutrients, temperature, mixed layer, etc. Similar to the arguments for 

including both air-sea CO2 flux and ΔpCO2, we also include both satellite chlorophyll and 

net primary production as evaluation data sets because of their common usage, their 

different weighting of the critical process of marine photosynthesis, and the considerable 

independent effort going into the validation of satellite productivity using 14C-based field 

primary productivity data sets (Carr et al., 2006 and Friedrichs et al., submitted).  

The satellite primary productivity algorithms depend on empirical descriptions 

(generally temperature-dependent) of phytoplankton assimilation efficiencies that may be 

somewhat unreliable for detecting regional temporal variability, particularly in response 

to factors such as aeolian iron deposition.  Recently, however, an alternative approach to 

analyzing satellite ocean color data has been developed that yields not only estimates of 



phytoplankton mixed layer pigment concentrations but also new and independent 

information on particulate scattering coefficients (Garver and Siegel, 1997; Maritorena 

et al., 2002; Siegel et al., 2002).   

With this additional information, it is now possible to directly derive phytoplankton 

carbon biomass, chlorophyll-to-carbon ratios, and phytoplankton growth rates from space 

(Behrenfeld and Boss, 2003, Behrenfeld et al., 2005), and thus more reliably detect and 

distinguish physiological- and biomass-dependent responses to changing environmental 

conditions.  Importantly, these three phytoplankton characteristics are directly 

comparable to ocean model variables.  For the current study, we employ a spectrally-

resolved version of the Carbon-based Production Model (CbPM) (Westberry and 

Behrenfeld, 2006) that yields improved descriptions of vertical variability in 

phytoplankton carbon, Chl:C and growth rates compared to the original CbPM 

(Behrenfeld et al., 2005). Due to the tight coupling between phytoplankton growth rates 

and zooplankton grazing, physical/chemical perturbations to mixed layer growth 

conditions can regularly occur without a detectable signature in phytoplankton biomass.  

Environmental changes are, however, invariably imprinted in physiological 

characteristics of the phytoplankton assemblage.  

 

4. Model-Data Skill Metrics 

The skill metric suite includes model-data comparisons of fields of tracers (standing 

stocks) and biological flows or rates. Monthly averages χ  are computed from the model 

output to match the common temporal resolution of observational climatologies. The 

observations are interpolated to horizontal model grid for spatial fields and, where 

applicable, averaged to monthly resolution. For each observed χO  and model predicted 

χP  variable, we compute for each grid point a long-term mean χ , an annual mean χ , 

and a mean annual cycle χ a  (e.g., average January, average February, etc.) for the period 

of analysis 1979-2004. We define a series of anomalies (Doney et al., 2007): 

′ χ = χ − χ  

′ ′ χ = χ − χ  

χ* = χ − χ a          (2) 



where ′ χ  are the annual mean anomalies, ′ ′ χ  are the monthly anomalies, and χ * are the 

monthly deseasonalized anomalies. Standard deviations (σ) are computed for each 

variable and for the various anomalies, as needed.  

 We apply a standard suite of univariate model-data skill metrics (e.g., Evans, 

2003; Stow et al., submitted) including the model-data correlation coefficient r, the root 

mean square error εrms, and the average error or bias εbias. The metrics are applied to 

different temporal and spatial domains, depending upon the availability of observations 

and the question of interest. For example, metrics for a time-series at a single grid point 

for the full monthly data over the full analysis period of the hindcast simulations (1979-

2004) would be: 

r χ( )=
χO − χO( ) χP − χP( )∑

χO − χO( )∑ 2
χP − χP( )∑ 2

=
′ ′ χ O( )∑ ′ ′ χ P( )

′ ′ χ O( )2 ′ ′ χ P( )2∑∑
  (3) 

 εrms χ( )=
1
N

χP − χO( )2∑        (4)  

 εbias χ( )=
1
N

χP − χO( )∑ = χP − χO      (5) 

where the summation Σ is over N=312 months (26 years x 12 months). For variables 

where only a seasonal climatology is available, we define the corresponding metrics at 

the grid-point scale using the mean annual mean cycle r(χa), εrms(χa), and εbias(χa) and 

n=12. Where appropriate, similar statistics are computed on larger-spatial scales 

including zonal averages across ocean basins (e.g., Atlantic), global zonal averages, and 

global averages. Also, the simulated model fields are sub-sampled in time to match the 

data sampling when observations exist for only a subset of the model hindcast. 

 For some variables, that have large dynamic ranges, we may choose to analyze 

the log-transform of the data: 

Χ = log χ( )         (6)  

The log-transform tends to give more equal weight to all of the data and not skew the 

statistics towards the largest data values. The mean of the log-transformed variable Χ , 

can be related to the geometric mean of the untransformed variable χ G :  



χ G = χ i
i

N

∏N = exp Χ( )       (7)  

The geometric bias: 

 εbias
G χ( )= exp ΧP − ΧO( )       (8) 

gives a measure of the typical bias normalized by the value of the variable, 

χP − χO( ) χO ;  εbias
G χ( )<1 occurs when the model tends on average to underestimate 

the observations and εbias
G χ( )>1 when the model tends on average to overestimate. The 

corresponding geometric root mean square error given by:   

εrms
G χ( )= exp 1

N
ΧP − ΧO( )2∑⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟       (9)  

reflects the size of the typical model-data error normalized relative to the typical data 

value. A perfect model with no error would give a εrms
G  value of 1.0; a value of εrms

G  of 2.0 

would reflect a case where the typical error at any point is comparable in size to the 

observed value. Note that for geometric averaging, the errors are not symmetric about the 

mean in the geophysical space. Geometric averaging is used for several of the bio-optical 

data sets (chlorophyll, primary production, phytoplankton biomass) that have 

approximate log-normal distributions (Campbell, 1995). 

We use Taylor diagrams (Taylor, 2001) to display simultaneously information on 

model-data skill for a suite of variables from the ocean biological model (Lima and 

Doney, 2004). The Taylor diagram combines global r and εrms normalized by the standard 

deviation with the ratio of the predicted to observed standard deviation σP/σO into a 

single point in a two-dimensional plot. The ratio of the standard deviations indicates the 

relative amplitude of the simulated and observed variations, while the correlation 

coefficient indicates whether the fields have similar patterns of variation, regardless of 

amplitude. The normalized εrms reflects differences in the overall pattern of variations. In 

the diagram, the radial distances from the origin are proportional to the ratio of the 

standard deviations and the azimuthal positions give the correlation between the two 

fields. The point representing the observational reference field is plotted along the 

abscissa and has coordinate σP/σO = 1 and r = 1. The distance between the test and 

reference point is proportional to the normalized εrms between the two fields. A perfect 



match between model output and observations would plot at the x=1.0 point on the x-

axis; a point representing no relationship between model and observations whatsoever 

would plot on the y-axis.  

Joliff et al. (submitted) introduce a related diagnostic plot, termed a “target 

diagram”, which displays each variable as a point as a function of the bias εbias (y-axis) 

and the unbiased rms error εrms
unbiased χ( ) (y-axis):  

 εrms
unbiased χ( )=

1
N

χP − χO −εbias(χ)( )2∑      (10)  

Both εbias and εrms
unbiased χ( ) are normalized by dividing by the standard deviation of the 

observations σO. Additionally, for the target diagram the values of the normally positive 

definite εrms
unbiased χ( ) are treated as positive if σP > σO and negative for the opposite. The 

distance from the origin to a point on the target diagram is the total normalized εrms. 

 

5.  Model-Data Skill Assessment 

5.1 Example Diagnostic Plots to Ocean Chlorophyll 

Given that we are comparing 3-D time-varying model results against observations 

for more than a dozen variables, the number of potential diagnostic plots quickly expands 

beyond the scope of a single journal paper. The solution used here is to illustrate a 

standard set of diagnostic plots for a specific example variable, in this case surface ocean 

chlorophyll, and to make available the entire set of figures on a CCSM-BEC diagnostic 

webpage.  

Figures 2-5 display the results of a comparison of model predicted surface ocean 

chlorophyll (mg Chl m-3) against results from the SeaWiFS ocean color sensor (Sept. 

1997- Dec. 2004). The spatial map of the bias in the long-term mean εbias Chl( ) (Figure 

2, bottom panel) exhibits large-scale, coherent error patterns. The model surface 

chlorophyll tends to be too high in the subtropical oligotrophic gyres (εbias > 0) and too 

low in the subpolar gyres (εbias < 0). This error pattern may reflect problems with the 

single adaptive zooplankton pool; relative to primary production, grazing is too weak in 

picoplankton dominated subtropics and too strong in bloom environments. In particular, 



multiple zooplankton pools may allow for a seasonal disconnect in grazing, and thus a 

stronger bloom, in temperate and high latitudes. 

Consistent with previous coarse-resolution global model results, the simulated 

chlorophyll levels are also underestimated in shallow coastal regimes. The reasons for 

this coastal bias are numerous but are likely dominated by physical errors: vertical 

upwelling due to off-shore coastal flow is poorly resolved at coarse scale and without 

careful treatment of the wind stress curl; the model lacks tidal mixing, an important 

mechanism for vertical mixing and nutrient supply on continental shelves; the mesoscale 

eddy parameterizations used in the global model are designed for adiabatic ocean 

interiors and are not adequate for the highly turbulent, and often topograqphically 

controlled lateral mixing on shelves. 

 The long-term subtropical/subpolar bias reflects in part the fact that the model does 

a relatively poor job capturing the magnitude of the peak surface chlorophyll 

concentrations during summer in the temperate northern hemisphere, as illustrated in a 

plot of the model and observed zonal average of the seasonal anomalies Chla − Chl( ) 
versus month (Figure 3). The phasing of the model northern hemisphere spring bloom is 

approximately correct, but high chlorophyll levels are not sustained over the summer in 

the simulation. The phasing of the annual cycle in the southern hemisphere mid-latitudes 

(40-60◦S) matches the observations well, but in this case overestimates the amplitude of 

the annual cycle, with chlorophyll values too high in the southern hemisphere summer 

and too low in the winter.  

The hindcast exhibits substantial subannual to interannual variability εrms Chl *( ) 

beyond the variance introduced from the mean annual cycle εrms Chla( ). This is 

demonstrated in the middle panel of Figure 4, a spatial map of the root-mean-squared 

variability in the deseasonalized anomalies in surface chlorophyll. The model hindcast 

simulation exhibits considerable interannual variability in the tropics, and temperate to 

subpolar oceans. The temporal correlations between the model and SeaWiFS chlorophyll 

data r Chl *( ) (top panel, Figure 4) are high in the western and central Equatorial Pacific 

and in the subtropics. However, the model-data correlations tend to drop in the mid- to 

high-latitude regions, where correlations are often not statistically different from zero.  



 

5.2  Basin and Global Aggregated Skill Metrics 

A corresponding set of model-data diagnostic plots can be constructed for all 

variables of interest, but we have also found it convenient to generate multi-variable 

synthesis plots and a table assessing skill for more aggregated basin zonal means and 

global averages/integrals. We include the zonal means because the spatial patterns of the 

model-data bias or residuals is often as or more interesting than the global 

average/integrated bias.  

Figure 5 illustrates this approach and compares the observed and simulated annual 

mean zonal averages for a range of variables.  The bias, εbias(χ), in the zonal means is 

simply the difference of the model and data curves. The CCSM BEC hindcast exhibits a 

number of large-scale biases, many of which are coherent across multiple variables. The 

simulation displays excess surface macro-nutrients in the tropical Pacific, likely the result 

of a combination of physical circulation errors and too much iron scavenging. 

Interestingly, however, the model and observed zonal average phytoplankton growth 

rates for the tropical and subtropical Pacific are similar and model productivity is actually 

higher that observed, suggesting that errors may also arise from other aspects of the 

biological cycling (e.g., export flux, subsurface remineralization).  

As discussed above the model chlorophyll underestimated the data in mid- to high 

latitudes. Note that in the zonal average plots, the overall model bias in the northern 

hemisphere subtropics is negative.  The low simulated chlorophyll in the coastal 

upwelling regions overwhelms the model positive bias in the subtropics. Another region 

of marked bias in the model simulations is the tropical Atlantic, where simulated 

phytoplankton biomass, specific growth rates and primary production are low relative to 

the observations. This region in the model is strongly P-limitation, which may reflect a 

combination of model errors in circulation, export and subtropical nitrogen fixation.  

Global model skill is summarized in the Taylor (Figure 6) and target (Figure 7) 

diagrams and Table 2. The global mean bias εbias χ( ) for most variables is relatively small 

(Figure 7, top panel). However, in agreement with Figure 5, the spatial variation in the 

long-term mean χ  is not captured well in many of the ecosystem variables (e.g., 

chlorophyll, primary production, phytoplankton growth rate), which exhibit correlation 



coefficients r χ( ) < 0.4. The strongest correlations are for SST and nutrients. The model-

data correlations for the seasonal anomalies χ a − χ( ) are for the most part between 0.3 

and 0.7, and the model tends to overestimate the seasonal amplitude of some variables 

(e.g., chlorophyll) while underestimating that of others (e.g., phosphate and silicate) 

(Figure 6 middle panel). On a global basis, the model exhibits little skill in capturing the 

interannual anomalies χ a  except for SST.  

 

5.3  Comparison against local (Eulerian) time-series data-sets 

While powerful evaluation tools, global data sets also often have associated 

limitations. The compilation of disjoint field data sets from different time period and 

from different investigators and/or methodologies introduces errors and blurs important 

natural variability and climate change signals. Uncertainties arise due to spatial/temporal 

interpolation and extrapolation involved in creating complete global climatologies from 

sparse data. Because of limitations in sampling the subsurface ocean and dynamical rates 

from remote sensing and underway sampling, global data sets illuminate only a portion of 

most ecosystem models. Data-rich, local time-series sites provide a wealth of 

complementary information on depth profiles, the annual mean cycle, and interannual 

variability of physical and biogeochemical variables. These observations, although 

limited in spatial information, may be compared with global models to evaluate the 

credibility of the simulations.  Time-series data have a rich history in marine ecosystem 

modeling as test-beds for model development and validation (e.g., Doney et al., 1996; 

Evans, 1999; Moore et al., 2002; Friedrichs et al. 2007). 

An example time-series comparison of the CCSM-BEC hindcast simulation is 

presented in Figure 8 for the Hawaii Ocean Time-series (HOT) site 

(http://hahana.soest.hawaii.edu/hot/hot_jgofs.html). Monthly average vertical 1-D 

profiles are sub-sampled from the hindcast versus time at the nearest grid-point to the 

HOT Aloha station.  

At the surface, the simulated phasing of the seasonal cycle in chlorophyll (Figure 8) 

is approximately correct with a minimum in the summer and a maximum in the winter, 

but the model tends to overestimate the mean chlorophyll levels as noted previously for 

the subtropical North Pacific. The seasonal surface chlorophyll cycle in the model 



mimics the seasonal cycle of mixed layer depth; during winter simulated mixed layer 

depth deepens to 60-70m, resulting in the entrainment of nutrients that drives enhanced 

productivity. The strength of the simulated winter bloom is somewhat stronger than that 

observed in the data, however, even though the maximum winter observed mixed layer 

depth in the observations are somewhat deeper (and shifted later in the year).  

The simulated magnitude of the deep chlorophyll maximum is slightly smaller and 

shallower (by about 20m) than in the observations. The observations also exhibit non-

zero chlorophyll levels well below 150m in very low light conditions. The deeper deep 

chlorophyll structure in the observations results in a characteristic positive/negative 

dipole pattern in the model-data difference plot. The deep chlorophyll maximum and 

subsurface chlorophyll penetration depth are largely set by the initial slope of 

phytoplankton productivity-irradiance curve. The model chlorophyll field can be shifted 

downward by increasing the initial productivity-irradiance slope (effectively reducing 

light limitation at low light) but at the expense of replicating surface productivity. The 

solution, explored in other models, involves incorporating distinct high-light and low-

light phytoplankton populations in the subtropical gyre (Y. Spitz, per. comm.). 

The coarse-resolution global model exhibits substantial interannual variability in 

both mixed layer depth and chlorophyll. Chlorophyll and productivity gradually drift 

downward from 1988-1998 and then begin to increase following a deep mixing event in 

the winter of 1989. The observed mixed layer depth experiences more variability than in 

the model, reflecting in part the aliasing of mesoscale eddies passing by the time-series 

site (Doney, 1996). There is an indication of stronger winter mixing in the observations in 

1998-1999 followed by higher near surface chlorophyll levels (but not for as an extended 

period as in the model).  

Similar patterns of model skill (and misfit) are found for aggregated skill metrics 

for a suite of variables displayed in Taylor diagram format (Figure 9) and in tabular form 

(Tables 4 and 5). The model-data correlation values r are greater than 0.95 with a 

normalized standard deviation near 1.0 for the annual-mean vertical profiles of 

temperature, oxygen, macro-nutrients, and primary production; the corresponding 

chlorophyll correlation is smaller (0.56) in large part because of the shallower simulated 

deep-chlorophyll maximum. The model-data agreement for the seasonal cycle (monthly-



time Taylor diagram) is considerably weaker, with all of the model-data correlations less 

than 0.3 and substantial underestimates in the simulated strength of the seasonal cycle 

(σP/σO < 0.5) for primary production and macronutrients.  

The model’s interannual variability is much weaker than that in the data, and the 

hindcast shows essentially no skill on the observed interannual variability at the HOT 

site. In contrast to much of the subtropics where model skill is relatively high for 

interannual chlorophyll variability, the region around Hawaii is a region of little skill.  A 

similar analysis for the Bermuda Atlantic Time-Series (BATS) (not shown) results in 

some what higher but still low model-data correlations, r(Chl) = 0.131 and r(PP) = 0.222. 

This highlights that care is need in making local data comparisons with a global model, 

the skill of which can vary significantly from region to region and which is confounded 

by regional biases in physics and unresolved high frequency variability in the 

observations.  

One strategy around these difficulties would be to combine the 3-D model 

assessment with a complementary assessment of 1-D vertical simulations for targeted 

time-series stations, so-called “regional test-beds”. Surface forcing can be adjusted to 

give 1-D physical simulations that closely fit specific time-series records (e.g., Doney, 

1996), and 1-D ecosystem simulations are more amenable to parameter opimization, data 

assimilation, and cross-model intercomparison studies. 

 

6. Discussion and Future Directions 

 A systematic and quantitative approach for assessing model-data skill is an 

essential tool in model development, evaluation, and data assimilation (Gregg et al., 

submitted), and emerging global-scale field and satellite data sets provide invaluable 

opportunities for testing upper-ocean coupled ecosystem-biogeochemistry-physical 

models. The example suite of data sets and skill metrics presented here, while certainly 

still incomplete, illustrates several general points with regards to the CCSM-3 BEC 

model. First, overall the skill metrics highlight the fact that the model solutions have a 

number of deficiencies in replicating the observational data sets. Second, the degree of 

model skill differs sharply among variables. For example, simulated SST and some of the 

surface nutrient fields exhibit consistently higher skill across most of the metrics than the 



simulated ecological fields, chlorophyll, primary production and the new remote sensing 

products such as phytoplankton growth rate. Surface pCO2 and CO2 and O2 air-sea fluxes 

are typically intermediate in skill between the physical and ecological variables. Third, 

regional spatial biases and seasonal cycle errors are often consistent across multiple 

variables, pointing towards a common dynamical problem within the coupled model. 

Fourth, model skill is time and space scale dependent; the model solutions of the seasonal 

cycle are more skillful than interannual variability. And fifth, it is challenging for a global 

model solution to replicate observations from local time-series because there are many 

subgridscale processes and representation issues that tend to confound the comparison. 

 The emphasis here has been primarily on assessing model skill in replicating 

ecological and biogeochemical metrics. But the upper ocean system is coupled, and the 

success of the biological and chemical simulations depends critically on a high-quality 

underlying physical circulation model (Doney et al., 2004; 2007). Physical model biases 

and errors thus should be an integral component of ecological and biogeochemical 

model-data assessment. Here we focused on two physical properties, SST and mixed 

layer depth. Other important facets of the circulation from a biological perspective 

include upwelling rates and near surface water column structure (Doney, 1996). As an 

example of how physical biases may influence ecosystem behavior, Figure 10 displays 

the maximum winter mixed layer depth from the model and an observational estimate 

(Boyer-Montegut et al., 2004). The CCSM-3 BEC has consistently deeper maximum 

mixed depths in the tropics and subtropics and shallower maximum mixed depths in the 

northern hemisphere subpolar gyres and Southern Ocean. The model chlorophyll bias 

patterns (Figure 2) may in part reflect these physical errors. In the subtropics, simulated 

winter chlorophyll is too high and summer levels are closer to observations. One possible 

explanation is that the nutrient supply from excessively deep mixing in winter induces 

higher simulated chlorophyll/C ratios. The too weak simulated mixing in the subpolar 

gyres and Southern Ocean, in contrast, limits the supply of nutrients to the surface (e.g., 

note the negative nutrient bias around the Antarctic) and may allow for a large 

overwintering zooplankton population, which can then limit the magnitude of the spring 

bloom.  



As a pilot study, we have restricted our large-scale analysis here primarily to 

globally gridded synthesis data sets. But there are a number of key variables for which 

data coverage is still too poor to create global synthesis products but which one would 

want to consider in a more comprehensive assessments. Much of the same diagnostic 

machinery, however, can rather straightforwardly be used on a collection of stations. For 

example global maps and zonal mean plots can be generated to examine spatial biases 

and seasonal and interannual variability where data are plotted only for the grid points 

where there are observations. The statistics for the summary Taylor and target diagrams 

are independent of whether one is using gridded or point data.  Examples of additional, 

non-gridded data sets that we plan to include in the future are deep sediment traps (e.g., 

Gehlen et al., 2006), surface and sub-surface iron concentrations (Moore and Braucher, 

submitted b), and phytoplankton taxonomy derived from cell counts or pigments (e.g., 

Gregg and Casey, 2007; http://polar.gsfc.nasa.gov/research/oceanbiology/index.php). 

Particularly for the Southern Ocean, one can also use atmospheric O2 and CO2 data sets 

to assess ocean model behavior, with of course the caveat that the comparison will also 

incorporate errors in atmospheric transport used to translate surface fluxes to atmospheric 

fields (e.g., Naegler et al., 2007; Nevison et al. in press; submitted).  

Other directions to pursue include pattern analysis and multivariate model-data 

skill metrics that allow for an investigation of whether the model is correctly capturing 

the spatial or temporal relationships among the data (Stow et al., submitted). Small 

temporal and spatial phase shifts between the model simulations and observations can 

introduce large apparent biases and seasonal to interannual variability errors. Lagged 

correlation analysis can help identify phase errors. Empirical orthogonal functions can be 

used to assess the similarity between model and observed time-space variability patterns 

in the presence of spatial and temporal phase error. Multivariate analyses (e.g., seasonal 

property-property phase diagrams; factor analysis; binary-discriminatory receiver-

operator methods) can be used to identify regions or times when model dynamics diverge 

from that seen in the observations. The multivariate analyses of model dynamics may be 

particular useful when the model-data skill assessments are applied to fully coupled 

ocean-atmosphere climate models (Doney et al., 2006; Schneider et al., submitted). 

Direct comparisons to observations are more difficult in this case because persistent 



physical biases in coupled models propagate into the ecological/biogeochemical mean 

state and seasonal cycle and because the coupled ocean-atmosphere models generate their 

own internal climate variability and thus assessment of simulated interannual to decadal 

variability can only be done statistically, not directly. 
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Figure Captions 

 

Figure 1: Schematic of the CCSM Biogeochemical-Ecosystem-Circulation (BEC) model 

showing the major dissolved inorganic, biological, and detrital tracers and the flows 

among the tracers. Many of the biological and detrital tracers include multi-element sub-

elements to separately track carbon, macro-nutrients, and iron.   

 

Figure 2: Comparison of spatial distribution of observed and simulated annual mean, 

surface chlorophyll (mg Chl m-3) with CCSM-3 BEC model results (top panel), SeaWiFS 

satellite ocean color data (middle panel), and model minus data residual (bottom panel).  

 

Figure 3: Comparison of seasonal cycle of observed and simulated surface chlorophyll 

(mg Chl m-3). Zonal averages of the seasonal anomalies to the zonal mean are displayed 

(latitude versus month) for CCSM-3 BEC model results (top panel), SeaWiFS satellite 

ocean color data (middle panel), and model minus data residual (bottom panel).  

 

Figure 4: Comparison of the spatial distribution of interannual variability of observed and 

simulated surface chlorophyll anomalies from the mean seasonal cycle (mg Chl m-3). Top 

panel displays the temporal correlation coefficient of CCSM-3 BEC model results against 

the SeaWiFS satellite ocean color data. The middle and bottom panels display the spatial 

map of the root mean square of the model and observed anomalies, respectively.  

 

Figure 5: Comparison of observed and CCSM-3 BEC model values for suite of surfaces 

variables. Zonal averages are displayed (latitude versus month) for data (dashed lines) 

and model (solid line) for three basins Atlantic (blue), Indian (red), and Pacific (green).  

 

Figure 6: Comparison of observed and CCSM-3 BEC model values for suite of global 

surfaces variables using Taylor diagrams. Taylor diagrams display in polar coordinates 

the model-data correlation coefficient (angle from x-axis) and model standard deviation 



normalized to observational standard deviation (radius). Diagrams are shown for annual 

mean spatial distributions (top panel), seasonal anomalies (middle panel), and interannual 

variability of anomalies from the mean seasonal cycle (bottom panel). 

 

Figure 7: Comparison of observed and CCSM-3 BEC model values for suite of global 

surfaces variables using Target diagrams. Target diagrams simultaneously display 

information on normalized model-data biases and unbiased rms differences (see text for 

more details). Diagrams are shown for the seasonal climatology (top panel) and hindcast 

including seasonal dynamics and interannual variability (bottom panel). 

 

Figure 8: Comparison of observed and simulated vertical profiles of chlorophyll (mg Chl 

m-3) for a specific time-series station. Left column displays seasonal average climatology 

(depth versus month) and right column interannual variability for 1988-2004 (depth 

versus time) for CCSM-3 BEC model results (top panels), Hawaii Ocean Time-Series 

data (middle panels), and model-data differences (bottom panels). A dashed line gives 

model and observed mixed layer depth. 

 

Figure 9: Comparison of observed and CCSM-3 BEC model values for suite of upper 

ocean variables (0-160 m) for the Hawaii Ocean Time-Series (HOT) site using Taylor 

diagrams. Taylor diagrams display in polar coordinates the model-data correlation 

coefficient (angle from x-axis) and model standard deviation normalized to observational 

standard deviation (radius). Diagrams are shown for annual mean climatological spatial 

distributions (i.e., vertical profile) (top panel), climatological seasonal anomalies (middle 

panel), and interannual variability of anomalies from the mean seasonal cycle (bottom 

panel). 

 
 



 
Tables 
 
Table 1: Description of the evaluation data sets used in this study. 
Data Set Variable 

Name 
Temporal Coverage Reference 

Sea Surface 
Temperature  

SST Monthly  
(1979-2004) 

NOAA OI.v2 Reynolds et al. 
(2002) 

Mixed Layer Depth MLD Monthly 
Climatology 

Boyer-Montégut et al. (2004) 

Air-Sea ΔpCO2  
(surface water pCO2) 

ΔpCO2 Monthly Climatology 
normalized to 2000 

Takahashi et al. (submitted) 

Air-Sea CO2 Flux 
(ΔpCO2 and winds) 

FCO2     “             “ Takahashi et al. (submitted) 

Air-Sea O2 Flux 
(ocean inverse model) 

FO2 Annual & Monthly 
Clim. 

Garcia & Keeling (2001) & Gruber 
et al. (2001) 

Surface Oxygen 
 

O2 Monthly 
Climatology 

Conkright et al. (2001) 

Surface nitrate 
 

NO3     “             “        “                   “ 

Surface Phosphate 
 

PO4     “             “        “                   “ 

Surface Silicic Acid  
 

Si(OH)4     “             “        “                   “ 

Surface Chlorophyll  
SeaWiFS 

Chl Monthly 
(1998-present) 

McClain et al. 2004 

Vertically Integrated 
Primary Production 

PP∫      “             “ SeaWiFS & Behrenfeld Falkowski 
(1997) 

Phytoplankton Growth 
Rate (MODIS) 

μ Monthly 
(1998-present) 

Behrenfeld et al. (2005) & 
Westberry et al. (2007) 

Phytoplankton Carbon 
Biomass (MODIS) 

PC     “             “        “                   “ 

 



 
Table 2: Globally aggregated model-data skill metrics for the mean annual cycle in 
the CCSM BEC hindcast. 

Variable Obs. 
mean 

Obs. 
σO 

Model 
mean 

Model 
σP 

Bias 
εbias 

Bias 
(%) 

rms 
error 
εrms  

corr. 
coeff. 
r  

SST (◦C) 18.22 10.29 18.48 9.94 +0.25 +1.4 1.54 0.989 
MLD (m) 58.0 37.8 62.3 48.7 +4.3 +7.5 39.2 0.616 
pCO2 (μatm) 357.6 24.4 355.1 29.6 -2.48 -0.7 18.6 0.780 
FCO2 (mol m-2 y-1) 0.424 1.65 0.396 1.80 -0.03 -6.6 1.53 0.611 
FO2 (mol m-2 y-1) --- 8.34 --- 8.33 --- --- 5.86 0.753 
surf. O2 (mmol m-3) 243.9 60.9 247.2 52.2 +3.3 +1.4 36.9 0.797 
surf. NO3        “ 5.12 8.16 6.57 8.95 +1.45 +28.4 3.44 0.923 
surf. PO4         “  0.527 0.553 0.618 0.618 +0.09 +17.2 0.29 0.881 
surf. Si(OH)4  “ 7.19 13.47 11.09 19.43 +3.91 +54.3 12.38 0.775 
Chl (mg m-3) 0.285 0.656 0.190 0.173 -0.095 -33.3 0.646 0.185 

PP∫ (gC m-2 mon-1) 12.69 13.16 12.50 7.39 -0.19 -1.5 12.80 0.328 

PC (mgC m-3) 16.00 15.63 16.27 16.28 +0.27 +1.7 20.27 0.194 
μ (d-1) 0.55 0.33 0.53 0.48 -0.02 -4.2 0.55 0.116 
Geometric statistics using log-transformed data; means converted to geophysical units 
Chl (mg m-3) 0.160 --- 0.149 --- 0.933 --- 1.54 0.338 

PP∫ (gC m-2 mon-1) 9.71 --- 10.01 --- 1.032 --- 1.32 0.510 

PC (mgC m-3) 13.28 --- 12.83 --- 0.966 --- 1.27 0.335 
 
 

Table 3: Globally aggregated model-data skill metrics for the interannual variability 
of the monthly deseasonalized anomalies in the CCSM BEC hindcast. 

Variable Obs. 
σO 

Model 
σP 

rms error 
εrms  

corr. coeff. 
r  

SST (◦C) 0.563 0.547 0.510 0.578 
Chl (mg m-3) 0.266 0.099 0.281 0.032 

PP∫  (gC m-2 mon-1) 4.03 2.95 4.75 0.102 

PC (mgC m-3)  7.31 8.69 11.25 0.018 
μ (d-1) 0.20 0.37 0.42 0.010 
Geometric statistics using log-transformed data 
Chl (mg m-3)    0.126 

PP∫  (gC m-2 mon-1)    0.161 

PC (mgC m-3)     0.033 
 
 
 
 
 
 
 



Table 4: Aggregated model-data skill metrics for upper-ocean variables (0-160 m) at 
the Hawaii Ocean Time-Series (HOT) site in the CCSM BEC hindcast. 

Variable Obs. 
mean 

Obs. 
σO 

Bias 
εbias 

Bias 
(%) 

rms error 
εrms  

 
σP/ σO 

corr. coeff. 
r  

SST (◦C) 22.84 1.60 +0.02 +0.1% 0.66 1.25 0.958 
Chl (mg m-3) 0.126 0.046 -0.035 -27.8% 0.071 1.48 0.266 
PP (mgC m-3 d-1) 2.50 2.22 -0.83 -33.0% 0.93 0.76 0.923 
O2 (mmol m-3) 213.1 4.6 -0.70 -0.3% 3.87 0.70 0.558 
NO3        “ 0.73 0.72 +0.35 +48.4% 0.46 1.44 0.921 
PO4         “  0.130 0.053 +0.221 +170% 0.021 0.94 0.921 
Si(OH)4  “ 2.21 0.88 -1.78 -81.5% 0.66 0.46 0.821 
 
 

Table 5: Aggregated model-data skill metrics for the interannual variability of the 
monthly deseasonalized anomalies at the Hawaii Ocean Time-Sereis (HOT) site in 
the CCSM BEC hindcast. 

Variable Obs. 
σO 

Model 
σP 

 
σP/ σO 

rms error 
εrms  

corr. coeff. 
r  

SST (◦C) 0.83 0.36 0.43 0.83 0.209 
Chl (mg m-3) 0.038 0.013 0.34 0.039 0.073 
PP (mgC m-3 d-1) 1.16 0.47 0.41 1.25 0.004 
O2 (mmol m-3) 5.20 3.31 0.64 6.03 0.049 
NO3        “ 0.68 0.47 0.69 0.90 -0.207 
PO4         “  0.057 0.033 0.58 0.069 -0.097 
Si(OH)4  “ 1.22 0.12 0.10 1.22 -0.042 
 
 
 



Figures 
 
 

 
 
Figure 1: Schematic of the CCSM Biogeochemical-Ecosystem-Circulation (BEC) model 
showing the major dissolved inorganic, biological, and detrital tracers and the flows 
among the tracers. Many of the biological and detrital tracers include multi-element sub-
elements to separately track carbon, macro-nutrients, and iron.   
 



 
Figure 2: Comparison of spatial distribution of observed and simulated annual mean, 
surface chlorophyll (mg Chl m-3) with CCSM-3 BEC model results (top panel), SeaWiFS 
satellite ocean color data (middle panel), and model minus data residual (bottom panel).  

 



 
Figure 3: Comparison of seasonal cycle of observed and simulated surface chlorophyll 
(mg Chl m-3). Zonal averages of the seasonal anomalies to the zonal mean are displayed 
(latitude versus month) for CCSM-3 BEC model results (top panel), SeaWiFS satellite 
ocean color data (middle panel), and model minus data residual (bottom panel).  

 
 
 



 
 

Figure 4: Comparison of the spatial distribution of interannual variability of observed and 
simulated surface chlorophyll anomalies from the mean seasonal cycle (mg Chl m-3). Top 
panel displays the temporal correlation coefficient of CCSM-3 BEC model results against 
the SeaWiFS satellite ocean color data. The middle and bottom panels display the spatial 
map of the root mean square of the model and observed anomalies, respectively.  



 

 
Figure 5: Comparison of observed and CCSM-3 BEC model values for suite of surfaces 
variables. Zonal averages are displayed (latitude versus month) for data (dashed lines) 
and model (solid line) for three basins Atlantic (blue), Indian (red), and Pacific (green).  



 

 

 



 
Figure 6: Comparison of observed and CCSM-3 BEC model values for suite of global 
surfaces variables using Taylor diagrams. Taylor diagrams display in polar coordinates 
the model-data correlation coefficient (angle from x-axis) and model standard deviation 
normalized to observational standard deviation (radius). Diagrams are shown for annual 
mean spatial distributions (top panel), seasonal anomalies (middle panel), and interannual 
variability of anomalies from the mean seasonal cycle (bottom panel). 

  



 
 

 



Figure 7: Comparison of observed and CCSM-3 BEC model values for suite of global 
surfaces variables using Target diagrams. Target diagrams simultaneously display 
information on normalized model-data biases and unbiased rms differences (see text for 
more details). Diagrams are shown for the seasonal climatology (top panel) and hindcast 
including seasonal dynamics and interannual variability (bottom panel). 

 



 

 
 
Figure 8: Comparison of observed and simulated vertical profiles of chlorophyll (mg Chl 
m-3) for a specific time-series station. Left column displays seasonal average climatology 
(depth versus month) and right column interannual variability for 1988-2004 (depth 
versus time) for CCSM-3 BEC model results (top panels), Hawaii Ocean Time-Series 
data (middle panels), and model-data differences (bottom panels). A dashed line gives 
model and observed mixed layer depth. 
 
 



 



 
 
Figure 9: Comparison of observed and CCSM-3 BEC model values for suite of upper 
ocean variables (0-160 m) for the Hawaii Ocean Time-Series (HOT) site using Taylor 
diagrams. Taylor diagrams display in polar coordinates the model-data correlation 
coefficient (angle from x-axis) and model standard deviation normalized to observational 
standard deviation (radius). Diagrams are shown for annual mean climatological spatial 
distributions (i.e., vertical profile) (top panel), climatological seasonal anomalies (middle 
panel), and interannual variability of anomalies from the mean seasonal cycle (bottom 
panel). 

 
 



 
 
Figure 10: Comparison of spatial distribution of observed and simulated maximum winter 
mixed layer depth (m) with CCSM-3 BEC model results (top panel), Boyer-Montegut et 
al. (2004) field data (middle panel), and model minus data residual (bottom panel). 


