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Abstract

Observations and inverse models suggest that small-scale turbulent mixing is en-
hanced in the Southern Ocean in regions above rough topography. The enhancement
extends 1 km above the topography suggesting that mixing is supported by breaking
of gravity waves radiated from the ocean bottom. In other regions, gravity wave
radiation by bottom topography has been primarily associated with the barotropic
tide. In this study, we explore the alternative hypothesis that the enhanced mixing in
the Southern Ocean is sustained by internal waves generated by geostrophic motions
flowing over bottom topography. Weakly-nonlinear theory is used to describe the in-
ternal wave generation and the feedback of the waves on the zonally averaged flow. A
major finding is that the waves generated at the ocean bottom at finite inverse Froude
numbers drive vigorous inertial oscillations. The wave radiation and dissipation at
equilibrium is therefore the result of both geostrophic flow and inertial oscillations and
differs substantially from the classical lee wave problem. The theoretical predictions
are tested versus two-dimensional and three-dimensional high resolution numerical
simulations with parameters representative of the Drake Passage region. Theory and
fully nonlinear numerical simulations are used to estimate internal wave radiation
from LADCP, CTD and topography data from two regions in the Southern Ocean:
Drake Passage and the Southeast Pacific. The results show that radiation and dissi-
pation of internal waves generated by geostrophic motions reproduce the magnitude
and distribution of dissipation measured in the region.
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Chapter 1

Introduction

The Southern Ocean plays a significant role in the global climate system. It hosts the

Antarctic Circumpolar Current (ACC), the largest zonal current in the world, which

links the Atlantic, Indian and Pacific Oceans. The associated Meridional Overturning

Circulation (MOC) is crucial to the meridional transport and storage of heat, salt,

CO2 and other properties into the ocean. The MOC can be described by an upper

and a lower cell (Speer et al., 2000). Theories suggest that the upper cell is driven

by atmospheric forcing at the surface with an adiabatic return flow at depth (Rintoul

et al., 2001; Marshall and Radko, 2003; Olbers et al., 2004). Much less is known about

the dynamics of the lower cell, except that diabatic mixing is essential to explain the

latitudinal change in deep water mass properties (Ito and Marshall, 2008). Inverse

analyses of the Southern Ocean hydrography concur that high mixing rates in the

deep Southern Ocean are required to close the heat and salt budgets (Ganachaud

and Wunsch, 2000; Sloyan and Rintoul, 2001).

Several observational estimates from high wavenumber signatures in density and

velocity profiles show enhanced turbulent mixing in the Southern Ocean associated

with internal wave breaking (Polzin and Firing, 1997; Naveira-Garabato et al., 2004).

This mixing is typically concentrated in the bottom kilometer in regions above rough

topography. Enhanced abyssal mixing has been recently linked to internal tides in

the Brazil Basin region (Polzin et al., 1997; Ledwell et al., 2000; St.-Laurent et al.,

2001). However, in the Southern Ocean tidal currents are weak, O(1) cm s−1 (Egbert

17



et al., 1994), and abyssal flows are dominated by geostrophic eddies of O(10) cm s−1

(Naveira-Garabato et al., 2003). It has been suggested (Polzin and Firing, 1997;

Naveira-Garabato et al., 2004) that enhanced abyssal mixing in the Southern Ocean

is sustained primarily by internal waves generated by the deep ocean geostrophic flows

interacting with bottom topography.

The goal of this thesis is to understand what drives abyssal mixing in the Southern

Ocean. The main hypothesis is that geostrophic eddies interact with small-scale

topographic hills and generate internal waves which radiate into ocean interior, break

and sustain observed mixing. First, this problem is studied for an idealized mean flow

and topography using linear theory and numerical simulations. Then, linear theory

and simulation results are used to estimate the contribution of topographic internal

waves to mixing in the Southern Ocean from available data.

1.1 Observational estimates of abyssal mixing

Observations show that there are large variations in the levels of turbulent mixing

throughout the ocean. Diapycnal diffusivities change by several orders of magnitude

from low values of 10−5 m2 s−1 in the ocean thermocline (Ledwell et al., 1998), taken

now as the typical background value, to greatly enhanced values of up to 10−2 m2 s−1

in the deep ocean above regions of rough topography in the Brazil Basin (Polzin et al.,

1997; Ledwell et al., 2000), in the Southeast Indian Ocean (Polzin and Firing, 1997;

Kunze et al., 2006), and in the Drake Passage region (Naveira-Garabato et al., 2004).

Estimates of turbulent dissipation rate ǫ and diapycnal diffusivity κρ in the South-

ern Ocean are inferred indirectly from the LADCP and CTD data (Polzin and Firing,

1997; Naveira-Garabato et al., 2004; Kunze et al., 2006). These data resolve vertical

scales from full water depth down to about 50 m. Fine-scale parametrizations (Gregg,

1989; Polzin et al., 1995) are then used to relate the 50 m shear to the dissipation ǫ

at molecular scales. These parameterizations rely on the assumption that molecular

dissipation of kinetic energy can be related to larger scale, i.e. O(50) m, properties

of the fine-scale internal wavefield. The combined error from these assumptions is

18



estimated to lead to an uncertainty of a factor of 2 to 3 in the final estimates of ǫ.

Polzin and Firing (1997) used velocity (LADCP), temperature, salinity and pres-

sure (CTD) data from a South Indian section which extends from 30oS, 90oE on the

Broken Plateau to 64oS, 82oE south of the Kerguelen Plateau (Fig. 1-1) to estimate

turbulent energy dissipation and diapycnal diffusivity. They examined two groups of

12 stations centered respectively at ∼35oS and ∼55oS, the first region being in the

subtropical gyre of the Indian Ocean and the second poleward of the Antarctic Polar

Front. The average vertical diffusivity from 55oS is estimated to be 4.4×10−4 m2 s−1

which is 40 times larger than in the ocean thermocline (Gregg, 1989) and more than

four times larger than the diffusivity at 35oS. Depth integrated dissipation rates are

estimated to be 4.6 and 0.95 mW m−2 for 55oS and 35oS, respectively.

Polzin and Firing (1997) further show that the internal wave field is much more

energetic at 55oS than at 35oS. Using rotary spectra the authors determine that

there is an upward radiation of internal waves, implying their generation by bottom

currents impinging over rough topography. Bottom flows in the ocean are typically

dominated by geostrophic eddies and barotropic tides which can generate, respec-

tively, lee waves and internal tides. However, the barotropic tidal flows do not vary

significantly between 35oS and 55oS. The major difference between these two regions

is the background geostrophic currents (Fig. 1-1). The rms of the depth-averaged

velocity is ∼20 cm s−1 at 55oS and ∼4 cm s−1 at 35oS (Polzin and Firing, 1997).

Kunze et al. (2006), applying a similar fine-scale parameterization to a number of

full depth lowered ADCP profiles collected during the World Ocean Circulation Ex-

periment (WOCE), find somewhat lower values of κρ and ǫ in these regions. However,

the main conclusion stands: mixing is enhanced at 55oS compared to 35oS and it is

correlated with the magnitude of the bottom flow. Thus, it is plausible to speculate

that the enhanced mixing at 55oS is supported by internal lee waves generated by the

bottom current flowing over small-scale topographic features.

Naveira-Garabato et al. (2004) in an independent study also report dissipation

rates from LADCP and CTD data (together with a fine-scale parameterization) in

the Southeast Pacific and the Drake Passage sectors of the Southern Ocean (Fig. 1-
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2). Bottom topography is characterized by a series of abyssal plains in the Southeast

Pacific and by complex structures in Drake Passage. Fig. 1-3 shows that the dissi-

pation rates change dramatically between the two regions. In the Southeast Pacific

over the abyssal plains the diffusivity is relatively low, about 10−5-10−4 m2 s−1, with

a corresponding vertically integrated dissipation rate of the order of 1 mW m−2. In

Drake Passage, the diffusivity increases to values as large as 10−2 m2 s−1 and the

dissipation rate is an an order of magnitude larger at 10 mW m−2 [The vertically

integrated dissipation rate estimates quoted in (Naveira-Garabato et al., 2004) are

biased high by a factor of 2 to 3. In the letter attached at the end of the chapter,

A. Naveira-Garabato and K. Polzin explain that the overestimate resulted from an

oversight of not including a correction for the near-inertial frequency content of the

observed velocity finestructure. The numbers with the correction are 0.8 mW m−2 in

the Southeast Pacific and to 9 mW m−2 in Drake Passage.]

The correlation between high dissipation rates and bathymetric roughness is inter-

preted by Naveira-Garabato et al. (2004) as evidence that abyssal mixing is generated

by internal waves radiated by deep flows impinging on rough topography. Although

it is difficult to determine from data whether enhanced dissipation is sustained by

tidal or geostrophic flows, the dominance of eddy flows in the Southern Ocean point

towards a greater importance of geostrophic sources.

To summarize, turbulent energy dissipation rate and diapycnal diffusivity esti-

mates for the Southern Ocean inferred from the observations suggest that mixing is

greatly enhanced in the bottom kilometer above rough topography regions and it is

accompanied by upward internal wave energy propagation. Dissipation rates increase

in regions of geostrophic mean flows and rough topography. These characteristics are

consistent with the hypothesis that topographic waves are generated by geostrophic

flows, radiate upward and break, sustaining mixing. However, the hypothesis is not

yet supported by a sound theoretical framework.
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1.2 Major contributors to mixing

In the global ocean abyssal flows are dominated by tides, particular the lunar M2 tide,

and by geostrophic motions. Barotropic tidal currents reach up to O(5) cm s−1 in

most of the ocean (Egbert et al., 1994). Typical velocities due to geostrophic eddies

are of O(1) cm s−1, but they reach O(10) cm s−1 in western boundary currents and

abyssal canyons (Dickson, 1990). Internal tides can radiate from large topographic

features, like ridges, while geostrophic flows of O(1) cm s−1 can radiate only from

small topographic features with scales shorter than 100 m. Hence, internal wave

radiation in the global ocean is believed to be dominated by tidal flows. In the

Southern Ocean, however, tidal velocities are smaller, O(1) cm s−1 (Egbert et al.,

1994), and an inverse cascade unarrested by lateral boundaries allows geostrophic

eddies to develop a large barotropic component resulting in O(10) cm s−1 abyssal

flows (Polzin and Firing, 1997; Naveira-Garabato et al., 2003). It is therefore an open

question whether topographic internal waves are generated primarily by geostrophic

or tidal flows in the Southern Ocean.

1.2.1 Internal tides

Internal tides are generated in stratified regions where barotropic tidal currents flow

over bottom topography, provided that their frequency ω is in the range f < ω < N ,

where N is the buoyancy frequency and f is the Coriolis frequency. Thus, diurnal

internal tides can only propagate equatorward of about ±30o latitude, while semi-

diurnal tides can freely propagate up to ±74.5o. Beyond these latitudes internal tides

are trapped over topography.

The expression for the vertical energy flux Etides radiated by a barotropic tidal

current flowing over topography is reported here to illustrate some fundamental prop-

erties of internal tide generation in the ocean. The reader is referred to the vast

literature on the subject, e.g. (Bell, 1975a,b; Garrett and Kunze, 2007), for a de-

tailed discussion. The expression is based on a two-dimensional linear theory for the

interaction of a barotropic tide, U(t) = U0 cos ωt, with a monochromatic topogra-

21



phy, h(x) = h0 cos kx, in the limit of sub-critical topographic slope and small tidal

excursion,

Etides =
1

4
ρ0ω

−1[(N2 − ω2)(ω2 − f 2)]1/2U2
0 kh2

0, (1.1)

where ρ0 is a reference density. The energy flux estimate Etides is averaged over one

tidal period, 2π/ω, and one topographic wavelength, 2π/k.

The radiated energy scales quadratically with both the barotropic tide amplitude

U0 and the topographic amplitude h0. The frequency of internal tides ω is set by

the barotropic tide, independent of the topographic scale k. Hence tides can radiate

from a wide range of topographic scales provided that f < ω < N , as long as their

vertical scale is smaller that the local depth of the ocean (The constraint due to finite

ocean depth is important as pointed out by Khatiwala (2003), because it suppresses

otherwise very energetic modes). The topographic spectrum in the ocean abyss is

dominated by large features, like ridges, with a steep roll-off at high wavenumbers

(Smith and Sandwell, 1997). The dependence of the energy flux on topography implies

that the internal tide energy flux is dominated by the largest topographic scales

corresponding to isolated sea mountains and ridges on scales larger than 20-100 km.

Large topographic scales generate low-mode internal tides with large Richardson

numbers (Garrett and Kunze, 2007). Wave-wave interactions seem to be ineffective

at rapidly transferring energy from the low-mode waves, that dominate the energy

flux, to higher modes (St.-Laurent and Garrett, 2002). The present understanding

is that only a small fraction of energy flux, less than 30%, is generated at high

modes, i.e. with vertical scales short enough to interact nonlinearly and dissipate

locally (St.-Laurent and Garrett, 2002). Low-mode internal tides can either interact

with topography, as they bounce back from the surface, and scatter their energy

to higher modes dissipating locally (Polzin, 2008), or radiate away horizontally and

possibly contribute to mixing at remote locations (St.-Laurent and Garrett, 2002).

Internal wave generation by the dominant M2 tide component is estimated globally

by Nycander (2005) using the linear theory of internal wave generation developed

by Bell (1975a,b) and modified by Llewellyn-Smith and Young (2002) to account for
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the finite ocean depth. Nycander (2005) uses tidal velocities from the global tidal

model of Egbert and Erofeeva (2002) and bottom topography from satellite altimetry

(Smith and Sandwell, 1997). In the Drake Passage region, the tidal energy flux

radiated into the ocean interior from topography deeper than 2 km is estimated to

be about 1-2 mW m−2. Thus, it appears that tidal energy available to support local

mixing is an order of magnitude smaller than the dissipation rates estimated from

LADCP data by Naveira-Garabato et al. (2004). Although radiation of internal tides

and their contribution to mixing might be globally important, this process does not

seem to explain the enhanced mixing observed in the Southern Ocean.

The linear theory estimates of tidal radiation presented so far assume that topo-

graphic slopes are sub-critical, i.e. the tidal wave slope is steeper than the topographic

slope. At smaller scales topography is characterized by relatively steep slopes and

linear theory is formally invalid. Theories and numerical simulations (St.-Laurent and

Garrett, 2002; Balmforth et al., 2002; Llewellyn-Smith and Young, 2003; Legg and

Huijts, 2006) suggest that, at critical and super-critical slopes, energy radiation and,

more importantly, the fraction of local dissipation can significantly increase above

the linear theory prediction. This suggests that the estimate of tidal dissipation of

Nycander (2005) might be biased low. But the fundamental result holds. The bulk

of tidal energy is radiated in low-modes from large topographic scales which are well

described by linear theory and contribute little to dissipation.

1.2.2 Lee waves

The generation of mountain lee waves propagating upward and depositing their mo-

mentum at higher altitudes is an important process for the atmospheric circulation.

In the ocean, lee wave generation is generally considered of little importance because

bottom geostrophic flows are traditionally believed to be weak of O(1) cm s−1 (Dick-

son, 1990). However, in the Southern Ocean, where bottom geostrophic flows are as

large as O(10) cm s−1 (Polzin and Firing, 1997; Naveira-Garabato et al., 2003), lee

wave generation can be an important source of internal waves.

The theory of lee wave generation is reviewed here to better illustrate the proper-
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ties of lee waves. For simplicity the discussion focuses on a two-dimensional, horizon-

tally periodic, and vertically semi-infinite domain with idealized bottom topography

given by h(x) = h0 cos kx. Assuming small amplitude waves and considering a con-

stant, vertically uniform mean flow U0 and stratification N , the linearized equations

governing lee wave dynamics can be written as,

U0ux − fv = −px, (1.2)

U0vx + fu = 0, (1.3)

U0wx = −pz + b, (1.4)

U0bx + N2w = 0, (1.5)

ux + wz = 0. (1.6)

where u = (u, v, w), b, and p are the wave velocity, buoyancy, and pressure fields

respectively, and f is the Coriolis parameter. This set of equations can be reduced to

a single equation for the vertical velocity w,

U2
0 (wxx + wzz)xx + N2wxx + f 2wzz = 0. (1.7)

Substituting plane wave solution of the form w ∼ ei(kx+µz), one obtains the vertical

scale of the wave, µ, in terms of the other parameters of the problem,

µ2 = k2N2 − U2
0 k2

U2
0 k2 − f 2

. (1.8)

Lee waves can radiated upward when their frequency U0k is in the range f < U0k < N

so that µ is real. Outside this range µ is imaginary and the waves are bottom-trapped.

The vertical scale of radiated waves is µ ≈ N/U0, except for waves whose frequencies

are close to f or N .

The radiation problem is fully determined by imposing two boundary conditions.

First, it is required that energy is radiated upward. Second, the bottom velocity must

satisfy a no-normal flow condition at the topography. In order to make analytical
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progress this bottom boundary condition is linearized,

w|z=0 = U0hx. (1.9)

This approximation is valid if the topography is sub-critical, i.e. if the ratio of topo-

graphic slope kh0 to the lee wave slope kµ−1 is small,

Fr−1 =
kh0

kµ−1
= h0µ ≈ Nh0

U0

≪ 1. (1.10)

The inverse Froude number, Fr−1, is the fundamental nondimensional parameter

that characterizes the properties of radiated lee waves. There are three different

dynamical regimes. In the sub-critical regime, Fr−1 ≪ 1, lee wave generation is

well described by linear theory. Lee waves radiate from topography and transport

momentum and energy upward. In the critical regime, Fr−1 ∼ 1, nonlinear effects

become important and waves start breaking above topography. Low-level dynamics

are characterized by hydraulic jumps and turbulence in the lee of the mountain. At

Fr−1 ≫ 1, the super-critical regime, stratification suppresses vertical motions and

mean flow - topography interaction is characterized by upstream blocking of the flow

and downstream formation of counter-rotating vortices.

The expression for the lee wave vertical energy flux, Elw, is given by,

Elw =
1

2
ρ0[(N

2 − U2
0 k2)(U2

0 k2 − f 2)]1/2U0h
2
0, (1.11)

The major difference from the corresponding expression for internal tides in (1.1) is

that the frequency of lee waves, U0k, is set by the topographic scale, k. It is still true

that radiation is dominated by larger scales, in the admissible range, because of the

red nature of the topographic spectrum. But the admissible range (f/U0, N/U0) is

limited to short scales of less than O(1) km, even for the strongest abyssal flows of

O(10) cm s−1.

Despite the fact that radiation is limited to small abyssal hills, geostrophic flows

are more efficient at generating nonlinear waves and breaking. That is because the
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longer the lee wave, the shorter is its vertical scale (unlike for tides). This results in

small Richardson numbers and favors local wave breaking.

A lot is known about the radiation of lee waves in the atmosphere (Wurtele et al.,

1996). However the problem needs to be revisited in the oceanographic context,

because of the different mean flow and stratification in the two fluids. Typical values

of velocity and stratification in the atmosphere are U0 ≈ 10 m s−1 and N ≈ 10−2 s−1,

respectively. These values imply that lee waves can radiate from topographic scales

in the range from 6 to 600 km where radiation is dominated by isolated features at

the largest scales, i.e. by mountain ranges. The associated vertical scale of lee waves

is of the order of 6 km which is somewhat shorter than the tropopause height of 10-15

km.

Wave generation in the atmosphere is typically characterized by one of two regimes.

First, at small Fr−1 (mostly associated with small topographic features), the radi-

ated waves are linear and can propagate up to middle atmospheric levels (30-100

km). At these altitudes, changes in the background conditions, such as wind speed,

stratification and density, lead to accumulation of internal wave energy and strong

nonlinear steepening, causing wave overturning and breaking. The resulting depo-

sition of momentum is believed to drive the mean atmospheric circulation at those

levels and is parameterized in numerical models based on the saturation hypothesis of

Lindzen (1981). Second, at larger Fr−1, typically associated with high topographic

features, the generated waves are highly nonlinear and break right above topography.

Although these phenomena can be very violent and destructive, they are trapped

close to topography and are unimportant for the dynamics of the upper atmosphere.

Lee wave radiation in the ocean and is typically somewhere between the two

regimes dominating in the atmosphere. For abyssal flow speeds of U ≈ 10 cm s−1 and

stratification of N ≈ 10−3 s−1, typical of the Southern Ocean, wave generation occurs

for topographic scales in the range from 600 m to 6 km. At these scales, the ocean

bottom topography is characterized by abyssal hills, which cover approximately 80%

of the world’s seafloor, rather than by isolated mountains and ridges. As a result,

the radiated waves are multichromatic and the energy flux is dominated by vertical
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scales of a few hundred meters, significantly smaller than the dominant scale of oceanic

internal tides or atmospheric lee waves, and much smaller than the full ocean depth.

Inverse Froude numbers in the ocean are not very large and span the range between

the sub-critical and critical regimes. The combination of a multichromatic wave

field, small vertical scales and intermediate Froude numbers implies that wave-wave

interactions are important for dissipation of lee waves in the ocean. The situation

is quite different from the atmospheric one, where radiation is mostly in the form

of monochromatic waves which break individually as a result of high Fr−1 or by

encountering critical levels. There are no critical levels in the ocean for typical velocity

and stratification profiles. As waves propagate upward into the ocean interior they

usually encounter larger stratification and background flow velocity such that the

Richardson number stays above the critical value. A major question addressed in

this thesis is whether lee waves generated in the Southern Ocean can break and

sustain the observed dissipation.

1.3 Large-scale flow - topography interaction

This section briefly explains the dynamics of the large-scale flow - topography inter-

action described in the thesis. Results of this thesis show that, at the finite inverse

Froude numbers characteristic of the Southern Ocean, the interaction of a large-scale

geostrophic flow with a small-scale topography differs from the classical lee wave

problem. The internal waves feedback on the zonally averaged flow and drive spon-

taneous growth and subsequent equilibration of inertial oscillations in the bottom

several hundred meters. In the statistical steady state, the zonally averaged flow be-

comes a superposition of a mean geostrophic flow and bottom intensified, vertically

sheared inertial oscillations. This flow interacting with small-scale topography ra-

diates time-dependent and multichromatic internal waves. Vertical shear associated

with inertial oscillations triggers wave breaking and dissipation in the bottom several

hundred meters.
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1.3.1 Steady flow

In the classical lee wave problem (Long, 1953; Bretherton, 1969), a constant flow in a

stratified fluid over a variable bottom topography generates steady, upward radiating

internal waves. The problem is idealized again as a uniform mean flow U0 in a

fluid with constant stratification N flowing over a monochromatic bottom topography

h(x) = h0 cos kx. The solution for the wave vertical velocity w′ satisfying a no-

normal flow lower boundary condition and an upward energy radiation condition can

be written as,

w′ = −h0U0k sin(kx + µz), (1.12)

where the wave horizontal wavenumber k is set by the topography and the vertical

wavenumber µ is given by the internal wave dispersion relation. Radiated internal

waves are steady and monochromatic in both the horizontal and vertical directions.

The wave amplitude depends on the topographic height h0 and the intrinsic wave

frequency U0k (i.e. frequency in the moving reference frame). The wave frequency in

the fixed reference frame is zero.

An important property of radiating internal waves is that they are able to trans-

port momentum and energy upward into the ocean interior. In the absence of wave

dissipation, lee wave radiation in the steady state is characterized by a constant,

vertically uniform wave momentum flux,

u′w′ = −1

2
U2

0 h2
0kµ < 0, (1.13)

and, therefore, a zero momentum flux divergence. A divergence appears only if the

waves break and deposit their negative momentum. The resulting momentum diver-

gence acts to slow down the zonally-averaged flow u and reduce the mean KE,

ut = −∂zu′w′ < 0 and (
1

2
u · u)t = −u · ∂zu′w′ < 0. (1.14)

In a rotating system, the response of the zonally averaged flow is somewhat more

complicated. The wave feedback is not confined to the zonal direction anymore,
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because the zonal and meridional equations are coupled by the Coriolis term,

ut − fv = −∂zu′w′, (1.15)

vt + fu = −py − ∂zv′w′, (1.16)

and the corresponding mean flow kinetic energy equation becomes,

(
1

2
u · u)t = −u · ∂zu′w′ − v py, (1.17)

where the first term on the right hand side is the work done by the waves against the

mean flow, and the second term is the work done by meridional pressure gradient on

the meridional component of the mean flow.

In the absence of wave dissipation ∂zu′w′ = 0 and the mean flow is described by a

zonal, geostrophically balanced velocity component u, satisfying fu = −py, and a zero

meridional velocity component, v = 0. Both terms on the right hand side of the kinetic

energy equation (1.17) are zero and the kinetic energy is in equilibrium. If there is

wave dissipation in the water column, then the deposition of wave momentum acts to

reduce the kinetic energy of the mean flow as in the non-rotating system. However,

in the rotating system, the mean kinetic energy extracted by the waves is resupplied

from the available potential energy associated with the tilt of the pressure surfaces.

The large-scale meridional pressure gradient, py, acting on the mean meridional flow,

v, represents the energy conversion from available potential energy into mean kinetic

energy 1. Thus, in a rotating system, internal wave damping acts to slow down the

mean flow by extracting both its kinetic and potential energy.

In addition to a subinertial response in the zonally averaged flow, deposition of

1Work done by the meridional pressure gradient on the meridional component of the mean flow,
v p

y
, can be expressed in terms of the energy conversion from potential energy into kinetic energy, wb,

v p
y

= (v p)y − p vy = (v p)y + p wz = (v p)y + (w p)z − w p
z

= (v p)y + (w p)z − w b (1.18)

,
where the hydrostatic relationship p

z
= b has been used. Hence v p

y
is the local conversion from

available potential energy w b, plus a non-local flux term (v p)y + (w p)z representing work done by
remote pressure forces.
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internal wave momentum in a rotating system also drives motions on shorter time

scales. Analogous to a wind stress at the surface of the ocean, internal wave momen-

tum stresses can force near-inertial oscillations and higher frequency internal waves.

1.3.2 Oscillatory flow

A major difference between steady and time-dependent flows over bottom topography

is that the time-dependent flow generates a wave field with time-dependent momen-

tum fluxes which results in time-dependent forcing acting on the zonally averaged

flow. The interaction of the time-dependent flow oscillating at frequency ω0 with bot-

tom topography has been shown to radiate internal waves not only at the fundamental

frequency ω0, but also at all of its harmonics (Bell, 1975). For a simple oscillatory

flow, U(t) = U0 cos ω0t, over a monochromatic topography, the linear solution for the

wave vertical velocity w′ can be written as,

w′ = −
∞
∑

n=−∞

h0ωnJn(
U0k

ω0

) sin(kx − U0k/ω0 sin ω0t + µnz + ωnt), (1.19)

where ωn = nω0 are the harmonics of the fundamental frequency ω0, µn are the har-

monic vertical wavenumbers, and Jn are Bessel functions of the first kind. In addition

to the topographic height h0 and frequency ωn, the amplitude of each harmonic is

determined by the excursion parameter, U0k/ω0, which is the ratio of the distance

that a water parcel travels during one period of oscillation to the horizontal scale of

the topography. If the excursion parameter is small, then a water parcel stays on

one topographic bump and internal waves are radiated mostly at the fundamental

frequency ω0. However, as the excursion parameter becomes finite, a water parcel

travels over several bumps and higher harmonics of the fundamental frequency are

radiated. This makes the wave field multichromatic.

The momentum flux associated with the radiation of a multichromatic field char-

acterized by frequency nω0 has steady and time-dependent components,

u′w′ = u′w′|ω=0 + u′w′|ω=±ω0
+ u′w′|ω=±2ω0

+ ..., (1.20)
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where terms on the right hand side are the flux components oscillating at harmonics

of the fundamental frequency ω0. When time-dependent waves break and deposit

their momentum, they result in a time-dependent forcing on the zonally averaged

flow through the divergence of the momentum flux according to (1.15) and (1.16).

1.3.3 Abyssal flows in the ocean

Abyssal flows in the Southern Ocean are dominated by geostrophic flows, inertial

oscillations, and tides (Nowlin et al., 1986). All these motions can radiate internal

waves through interaction with bottom topography. While geostrophic flows can be

regarded as quasi-steady on the internal wave time scale, inertial oscillations and tides

are oscillatory flows. Combining the results for wave radiation by steady and oscilla-

tory flows discussed above, the total internal wave momentum flux can be written as a

superposition of components oscillating at zero frequency (steady), inertial frequency,

f , tidal frequency, ωT , and their higher harmonics and linear combinations,

u′w′ = u′w′|ω=0 + u′w′|ω=±f + u′w′|ω=±ωT
+ ... (1.21)

The steady component of the momentum flux has contributions from all abyssal

motions and describes the time mean internal wave radiation: this flux component

drives the subinertial response of the zonally-averaged flow. The time-dependent

momentum flux components force a fast-time response in the zonally averaged flow

at their corresponding frequencies. The components at frequency other than f have

no effect on the evolution of the mean flow at subinertial time scales. However,

the momentum flux component oscillating at frequency ±f is different, because f is

the natural oscillation frequency in the rotating system, and a forcing at f drives

a resonant response. As a result of this resonance, inertial oscillation grow in the

bottom several hundred meters and reach a magnitude comparable to the mean flow

within a few days. The inertial oscillations have large shears and significantly modify

subsequent wave radiation and breaking.
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1.4 Overview of the thesis

The thesis is organized as follows. Chapter 2 presents two-dimensional (2-D) numer-

ical simulations and linear theory for the generation of internal waves by a geostrophic

flow impinging on a sinusoidal topography. Numerical simulations show that, at finite

inverse Froude numbers, inertial oscillations develop in the bottom several hundred

meters. Existing linear theory for lee wave generation is extended to the generation

of internal waves by a combination of subinertial and inertial motions. Using linear

theory, the inertial oscillations are shown to arise through a feedback between the

geostrophic flow and the radiated internal waves. Results of linear theory and nu-

merical simulations are compared and estimates of wave radiation and dissipation are

discussed. Chapter 3 presents estimates of internal wave radiation by geostrophic

flows in two regions of the Southern Ocean: Drake Passage and the Southeast Pacific.

The estimates are based on the theory described in the previous chapter and available

velocity, stratification and topography data. Numerical simulations with multichro-

matic topography characteristic of the two regions are also presented to support the

estimates. Chapters 2 and 3 are written as papers and meant to be read indepen-

dently. In Chapter 4, the 2-D theory is extended to a three-dimensional (3-D) mean

flow over 2-D topography. The results are compared to numerical simulations and to

the corresponding 2-D problem. Chapter 5 concludes and discusses the implications

of the results presented in the thesis for our understanding of the dynamics of the

Southern Ocean.
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Figure 1-1: Bathymetry and depth-averaged current vectors along the I8S section
(left panel). Vertical profile of N2 (s−2) (thick lines) and κρ (m2 s−1) (thin lines) for
two groups of twelve stations, one at 35oS and the other at 55oS. From Polzin and
Firing (1997).
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Figure 1-2: Bathymetry of the Southern Ocean region around Drake Passage. CTD
and LADCP stations are shown by colored diamonds. Open circles mark stations
where only CTD data are available. The black lines indicate the northern and south-
ern boundaries of the ACC. From Naveira-Garabato et al. (2004). Reprinted with
permission from AAAS.

Figure 1-3: Averaged profiles of N2 (s−2), ǫ (W kg−1), κρ (m2 s−1) for the Southeast
Pacific (section A in Fig. 1-2) and the Drake Passage (section B in Fig. 1-2) regions.
From Naveira-Garabato et al. (2004). Reprinted with permission from AAAS.
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Chapter 2

2-D Theory and Simulations

2.1 Introduction

Turbulent mixing plays an important role in the circulation of the Southern Ocean.

Observations of velocity and density fluctuations show that mixing is strongly en-

hanced up to a kilometer above rough bottom topography (Naveira-Garabato et al.,

2004). Inverse calculations (Ganachaud and Wunsch, 2000; Sloyan and Rintoul, 2001)

find that this vigorous turbulent mixing contributes crucially to the downward buoy-

ancy flux that maintains the abyssal ocean stratification and to the upward transport

of waters that closes the ocean’s meridional overturning circulation. It is an open

question as to what physics drives the enhanced mixing and whether these processes

can be parameterized in numerical models.

Polzin et al. (1995) show that turbulent mixing in the ocean interior, away from

the surface and bottom boundary layers, is typically associated with breaking inter-

nal waves. In particular they show that the intensity of turbulent fluctuations is well

correlated with the local internal wave activity. Gregg (1989) uses the correlation to

parameterize the levels of turbulent mixing in terms of the background oceanic inter-

nal wave spectrum described by the Garrett-Munk (GM) empirical formula (Munk,

1981). Parameterizations based on the background internal wave spectrum have re-

markable skill in predicting the background turbulent mixing found in most of the

ocean, but they fail to characterize regions of enhanced mixing. The diapycnal mix-
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ing inferred by Naveira-Garabato et al. (2004) in the bottom 1-2 km above rough

topography in the Southern Ocean exceeds background values by 1 to 3 orders of

magnitude. The vertically integrated dissipation rate averaged for a section across

Drake Passage is of the order of 10 mW m−2 corresponding to a bottom diapycnal

diffusivity of 10−2 m2 s−1, as opposed to background values of 10−2 mW m−2 and 10−5

m2 s−1 found in the ocean thermocline. Note that the relationship between internal

wave shear and mixing (Gregg, 1989) holds. The enhancement is associated with an

increased internal wave activity over GM background value.

The enhancement of turbulent mixing above rough bottom topography has been

linked to the generation of internal waves by flows impinging on topography (Polzin

et al., 1997; Kunze et al., 2006). The generation of this wave activity would add

to the background wave field and explain the enhancement of internal wave energy

and associated mixing. It is less clear what motions drive the bulk of the internal

wave radiation. Nowlin et al. (1986) show, based on moored observations in Drake

Passage, that the kinetic energy in the abyss is dominated by geostrophic flows,

inertial oscillations, and tides. Any one of these motions can generate internal waves

through interaction with bottom topography. However, most of the recent theoretical

work has focused on barotropic tides, because they are believed to dominate wave

radiation in the abyss (Garrett and St.-Laurent, 2002). Nycander (2005) computed

the wave generation by the dominant M2 tide component using the linear theory of

internal wave generation developed by Bell (1975a,b). He estimated that the energy

flux radiated by internal waves from topography deeper than 2 km in the Drake

Passage region is at most 1-2 mW m−2. Tidal flows have been shown to radiate

mostly at low vertical modes and only a small fraction, less than 30%, goes into high

modes that can dissipate locally (St.-Laurent and Garrett, 2002). Low-modes can

either be influenced by topography and scatter their energy to higher wavenumbers

that dissipate locally (Polzin, 2008) or radiate away and contribute to mixing in

remote locations (St.-Laurent and Garrett, 2002). Hence tidal flows can account

for no more than 10-20% of the observed dissipation rates. Numerical modelling of

semidiurnal internal tide generation along the South Scotia Ridge (Padman et al.,
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2006) also confirmes that baroclinic tidal energy is not an important contributor to

mixing.

Bottom geostrophic flows are much more intense in the Southern Ocean than in

most other ocean basins as a result of the nonlinear barotropization of the geostrophic

eddy field. Naveira-Garabato et al. (2004) have suggested that generation of quasi-

steady lee waves by geostrophic flows is an alternative explanation for the enhanced

wave activity in the Drake Passage region. This route is explored here with emphasis

on the amount of diabatic mixing that can be supported by internal wave radiation.

In this chapter we show, using both numerical simulations and linear theory, that

there are two different regimes of internal wave radiation by geostrophic flows over

topography. The transition from one radiation regime to another is described by the

inverse Froude number, characterizing nonlinearity of the mean flow - topography

interaction. At low inverse Froude numbers, a large-scale mean geostrophic flow

generates quasi-steady lee waves. In this regime, lee waves are well described by

linear theory. Waves transport energy and momentum upward into the ocean interior

until they break and dissipate either at a critical layer or through nonlinear wave-wave

interaction. At high inverse Froude numbers, inertial oscillations develop as a result

of transience in the geostrophic flow or by the adjustment of the mean geostrophic

flow to the underlying topography. These oscillations are amplified through resonant

feedback between the large-scale flow and internal waves. As a result, the large-scale

flow becomes a superposition of a mean geostrophic flow and an inertial oscillation

which produces time-dependent and multichromatic internal wave field. The vertical

shear associated with inertial oscillations modulates the internal waves leading to

local breaking and dissipation.

This chapter is organized as follows. In section 2, we describe the setup of the

numerical experiment used to study internal wave radiation and dissipation. Simula-

tions corresponding to the two wave radiation regimes are also discussed qualitatively.

In section 3, we introduce the nondimensional parameters that characterize the prop-

erties of internal wave generation in the ocean. In section 4, we review the existing

linear theory for the internal wave generation and extend it to the generation of in-
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ternal waves by subinertial and inertial motions. A major focus is the analysis of the

nonlinear feedback that drives inertial oscillations and substantially modifies the ra-

diation problem. In section 5, the numerical simulations are analyzed and compared

to linear theory predictions. Conclusions are offered in section 6.

2.2 Simulations

The goal of this study is to describe the generation of internal waves by geostrophic

flows over topography in the abyssal ocean. The problem configuration is very ide-

alized to focus on the essential physics. We limit the analysis to 2-D flows, but

in Chapter 4 we show that our results apply to 3-D as well. The topography is

represented as a series of periodic sinusoidal bumps which mimic the small-scale

abyssal hills characteristic of the seafloor in regions with rough topography. A mean

geostrophic flow is maintained with a depth-independent meridional pressure gradi-

ent: mesoscale eddies have weak vertical shears below the thermocline base in the

Southern Ocean (Naveira-Garabato et al., 2003).

Consider first a geostrophic flow and topography parameters characteristic of the

Drake Passage region. We chose Drake Passage because it’s characterized by high

abyssal mixing rates compared to other regions of the Southern Ocean, and because

velocity, stratification, and high-resolution topography data are available in this re-

gion. LADCP and CTD data (Naveira-Garabato et al., 2002, 2003) show that in the

core of the Antarctic Circumpolar Current, geostrophic eddy velocities at the ocean

bottom are typically UG ∼0.1 m s−1, the stratification is close to N ∼10−3 s−1 and the

Coriolis frequency is f ≈ 10−4 s−1. Linear wave theory (Bell, 1975a,b) suggests that

for these parameters, the lee wave energy flux is largest for topographic wavenumbers

close to kT ≈ 2π/2 km−1. Multibeam data for Drake Passage show that the height

of topographic hills at these scales is close to hT =60 m. The inverse Froude number,

Fr−1 = NhT /UG, characterizing nonlinearity of mean flow-topography interaction,

is 0.6, i.e. wave radiation is close to critical. These parameters are given here to

orient the reader of what is a regime characteristic of the Southern Ocean. In this
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chapter we vary Fr−1 and parameters related to rotation and the horizontal scale of

topography to explore the other limits of the parameter space.

2.2.1 Experiment setup

We use the MIT general circulation model (MITgcm) (Marshall et al., 1997). The

MITgcm solves the nonhydrostatic, nonlinear primitive equations using a finite-volume

formulation. By running the model in the nonhydrostatic limit, hydraulic jumps and

Kelvin-Helmholtz instabilities, which develop in our problem, are explicitly resolved

without need of parameterizations. Representation of bottom topography by partial

cells (Adcroft et al., 1997) is essential for accurate simulation of topographic internal

wave generation. The MITgcm has been used for studies of wave radiation and break-

ing, e.g. Khatiwala (2003); Legg and Huijts (2006). In this study, we validate the

model by testing the dependence of the results on grid resolution and by comparing

simulations against linear theory predictions. In addition, we compare the amount of

breaking and dissipation diagnosed from the model in the nonlinear regime against

observations and show that they are consistent.

The domain used in the simulations is 2-D, horizontally periodic with a uniform

resolution of ∆x = 12.5 m in the horizontal, and of variable resolution in the vertical.

The vertical grid spacing is set to ∆z = 5 m in the bottom 2 km and it is gradually

stretched to ∆z = 300 m in the region above. The domain size is Lx × Hz = 2 km

× 7 km. A sponge layer is applied between 2 km above the topography and the

the top boundary where buoyancy and momentum are damped with a timescale of

4 hours. The sponge layer absorbs upward propagating internal waves. A uniform

stratification of N = 10−3 s−1 and a Coriolis parameter of f = 10−4 s−1 are used.

Horizontal and vertical viscosity and diffusivity are set to 10−2 m2 s−1 and 10−3 m2 s−1

respectively.

Bottom topography has the form h(x) = hT cos kT x with a horizontal wavenumber

kT = 2π/2 km−1, and an amplitude hT varying from 10 m to 80 m. A depth-

independent mean geostrophic flow UG = 0.1 m s−1 is forced by adding a body force

fUG to the meridional momentum equation. This body force represents a pressure
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gradient which balances mean flow geostrophically at all depths and is analogous to

tilt of the thermocline in 2-layer model.

In order to simplify the comparison between the simulation results and the the-

oretical model derived in Sec. 2.4 we impose a free-slip bottom boundary condition.

With this boundary condition, the theoretical model is expected to fully describe the

simulations with small topographic relief when wave radiation is linear. However,

since vertical resolution is small enough to resolve some of the Ekman bottom bound-

ary layer, it would be more appropriate to use a no-slip boundary condition. To study

the effect of the bottom boundary condition on wave radiation and dissipation, we

run a Fr−1 = 0.4 simulation with both a free-slip and no-slip boundary conditions.

The results are discussed in section 2.5.3 on energetics of the problem.

All experiments are initiated from a state of rest. Then, the velocity and tem-

perature fields are slowly relaxed to the desired basic state for a 24 hour time period

with a relaxation time scale of 3 hours. A gradual increase of the flow to the ba-

sic state value is necessary to let flow adjust to the bottom topography and avoid

spurious initial transient effects. After the first day, the relaxation term is removed

and the system is integrated for 9 more days in order to study the evolution of the

wave field on geostrophic eddy time scales on the order of LG/UG ∼ 10 days, where

UG ≈ 0.1 m s−1, and LG ≈ 100 km have been used (Ferrari and Wunsch, 2008).

2.2.2 Simulation results

Numerical simulations show that there are two different regimes of wave radiation.

First, at inverse Froude number lower than roughly 0.2-0.3, waves radiate mostly in

the form of lee waves, i.e steady waves tilted against mean flow. After about one

day of simulation, when transient waves radiate away and lee wave front propagates

throughout the domain all the way to the sponge layer, wave field is characterized

by a steady monochromatic lee wave. A snapshot of the wave zonal velocity from

Fr−1 = 0.1 simulation is shown in Fig. 2-1. The horizontal wavelength of the lee wave,

2 km, is set by topography, and the vertical wavelength, about 600 m, is consistent

with internal wave dispersion relation. Both the slope and the amplitude of the lee
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wave are well described by linear theory. The lee wave generated at the bottom

propagates all the way to the sponge layer at 2 km without significant changes in its

amplitude. Zonally averaged flow (not shown) remains constant throughout the time

of the simulation.

Second regime, at higher inverse Froude numbers, is characterized by radiation

of time-dependent and multichromatic internal waves. A snapshot of the wave zonal

velocity from Fr−1 = 0.4 simulation is shown in Fig. 2-2. Although both Fr−1 = 0.1

and Fr−1 = 0.4 simulations have the same initial conditions and external forcing and

differ only by the amplitude of topography, wave radiation in Fr−1 = 0.4 simula-

tion is substantially different from the classical lee wave radiation problem. Radiated

waves are strongly multichromatic with vertical scales varying from the lee wave scale

of about 600 m down to a 100 m scale. There is wave breaking and dissipation in

the bottom several hundred meters where wave amplitudes drop down by an order

of magnitude. Wave momentum deposition associated with wave breaking and dissi-

pation feeds back on the zonally average flow. Fig. 2-3 shows the time evolution of

the zonally averaged flow from Fr−1 = 0.4 simulation. As opposed to the low inverse

Froude number regime, zonally averaged flow in highly time-dependent. Besides a

constant geostrophic flow of 0.1 m s−1 (not shown) there are oscillations at inertial

frequency in the bottom several hundred meters which develop spontaneously and

reach a magnitude comparable to the mean flow.

Presumably, the triggering and growth of inertial frequency response in the sim-

ulations are driven by feedback between zonally averaged flow and internal waves.

When inertial oscillation reaches finite amplitude it modifies wave generation and

results in radiation of time-dependent and multichromatic internal waves. Vertical

shear associated with inertial oscillations can modulate upward propagating internal

waves and promote their braking. Before we get to the detailed analysis of the prob-

lem, we develop the theoretical model to describe the dynamics of high inverse Froude

number simulations and to understand whether inertial oscillations are generated as

a result of the intrinsic dynamics of the system.
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2.3 Dynamical regimes

The numerical simulations described above show that the radiation and breaking

of internal waves triggers vigorous inertial oscillations at the ocean bottom. The

development of inertial oscillations makes the problem time dependent, unlike the

classical steady lee wave problem. To account for this effect we develop a weakly

nonlinear analysis of wave generation by the superposition of a constant geostrophic

flow and a horizontally uniform inertial oscillation.

The basic model configuration is sketched in Fig.2-4. In this idealization, the only

dimensional parameters that enter in the problem are: the horizontal wavenumber

of the topographic bumps, kT , the height of the topography, hT , the geostrophic

mean velocity UG, the amplitude of the inertial oscillation UI , the Coriolis frequency

f , and stratification frequency N . These parameters can be collapsed into three

nondimensional parameters that characterize the different dynamical regimes that can

develop in the problem, and the properties of the radiated waves and the associated

turbulent mixing.

The first parameter, the frequency ratio χ, controls whether waves are radiated

from topography. The problem to be described in the next section relies on the

radiation of stationary lee waves into the ocean interior. Nonlinear distortion of

the lee wave pattern then triggers time dependence and feedback on the mean flow.

Stationary lee waves have an intrinsic frequency given by UGkT . Hence in order for

the dynamics to be described below to hold, the nondimensional parameter,

χ =
UGkT

N
(2.1)

must be in the radiative range f/N < χ < 1.

Second, and the most dynamically significant, nondimensional number is the

steepness parameter ǫ. It is defined as the ratio of topographic slope kThT to the

slope of the phase lines of the radiated internal waves kT /µ, where µ is the vertical

scale of the waves,

ǫ = µhT . (2.2)
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For steady lee waves the steepness parameter ǫ is related to the inverse Froude number,

ǫ ≈ NhT

UG
= Fr−1, (2.3)

where we used the result that for lee waves µ ≈ N/UG as long as f/N ≪ χ ≪ 1.

Time dependence in the bottom velocity allows for generation of waves with different

vertical structures and break the simple relationship between ǫ and Fr−1. However

in our problem the time dependence is slaved to the lee wave problem and hence the

inverse Froude number remains a useful parameter to characterize different dynamical

regimes.

The steepness parameter, or the inverse Froude number for lee waves, measures

the effect of stratification on the flow and is used to distinguish different topography

regimes: sub-critical ǫ ≪ 1, critical ǫ ∼ 1, and super-critical ǫ ≫ 1. In the first

regime, sub-critical topography, stratification has a weak effect on wave generation

and an internal wave field sets up above the topography, transporting momentum and

energy upward into the ocean interior. In this limit, the lower boundary condition can

be linearized and wave solutions are given by linear theory. In the critical topography

regime, nonlinear effects become important and waves start breaking above topogra-

phy. In the super-critical regime, stratification is large enough to suppress vertical

motions and radiation of waves. Basically the mean flow does not have enough kinetic

energy to overcome the stratification and go over the sill. The mean flow is therefore

deflected and goes around, rather than over, the topography. 2-D models are not

appropriate to describe super-critical flows, because the flow cannot go around the

topography and is therefore blocked by topography.

The frequency of the waves radiated by a time dependent flow is controlled by a

third parameter, the excursion parameter,

β =
UkT

ω
, (2.4)

where ω is the frequency of oscillation of the time-dependent flow and U is its am-

plitude. This number compares the amplitude of particle excursion Uω−1 to the
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horizontal scale of the topographic bumps, k−1
T . There are three dynamical regimes

which are classified by the excursion parameter. For β ≪ 1, the particle excursion

is less than the scale of topography. The waves radiate mainly at the fundamen-

tal frequency ω in both upstream and downstream directions. The interaction of a

barotropic tide with large-scale bottom topography falls into this dynamical regime.

For β ∼ 1, the particle excursion is comparable with the scale of topography. In this

regime, advection of the waves by the mean oscillating flow becomes important and

results in the generation of waves with frequency higher than ω, making the wave

field non-monochromatic. For β ≫ 1, one recovers the quasi-steady lee wave regime

with waves propagating only in the upstream direction.

Here, we consider a flow which is the superposition of a time-independent flow

of amplitude UG and an inertial oscillation of an amplitude UI and frequency f . In

this case the frequency of the inertial oscillation is the characteristic frequency of

the time-dependent flow and the particle excursion associated with this oscillation

determines the wave response of the system. Then, the relevant excursion parameter

is,

β =
UIkT

f
. (2.5)

It is useful to estimate the three nondimensional numbers for the flows observed

in the Drake Passage region used here as a prototype situation for the idealized

problem. With Drake Passage parameters we have, ǫ ∼ 0.6, χ ∼ 0.3. Both numerical

simulations and theory described below suggest that inertial oscillations reach the

same amplitude as the mean geostrophic flow, UI ≈ UG, corresponding to β ∼ 3.

Hence radiation of internal waves in Drake Passage is close to critical, waves can be

radiated, and advective effects are large enough to generate harmonics beyond the

fundamental frequency f .

2.4 Theory

A number of analytical models of topographic internal wave generation have been

developed for both internal tides and lee waves. Ocean models have been mostly used
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to predict the conversion of energy from barotropic tides into the internal waves,

while the atmospheric literature focuses on the steady lee wave problem. The linear

approach for the ocean was developed by Bell (1975a,b). Bell considered a barotropic

current flowing over topography in a vertically unbounded ocean with uniform strat-

ification. He restricted the analysis to small topographic slopes (ǫ ≪ 1) so that

topography was everywhere sub-critical and the bottom boundary condition could

be linearized. With this simplification, solutions for arbitrary topography can be ob-

tained by superposition. Bell’s theory can be applied to study both the internal tide

and quasi-steady lee wave regimes.

Bell’s model has two major limitations when applied to the tidal problem: (1)

the vertical scale of the radiated internal tides is typically of the same order of the

ocean depth and the assumption of infinite depth (and uniform stratification) is not

tenable; (2) topographic slopes can be quite steep, i.e. ǫ is not necessarily small.

Llewellyn-Smith and Young (2002) and Khatiwala (2003) showed that when a rigid

lid is imposed at the ocean top, radiation by topographic scales longer than the

horizontal wavelength of the first mode is suppressed. Balmforth et al. (2002) and

St.-Laurent and Garrett (2002) found that finite amplitude corrections to the energy

flux are small as long as topography remains sub-critical (ǫ ≤ 1).

The assumption of infinite depth is not a major issue for internal waves generated

by subinertial and inertial flows, a regime we will refer to as that of time-dependent

lee waves. Unlike internal tides, these waves are radiated with vertical scales shorter

than the scale of the first mode and their generation is not directly affected by the

surface boundary condition. The assumption of sub-critical topography is more ques-

tionable because time-dependent lee waves are generated by small-scale topographic

features which can be quite steep. We will therefore compare the results of linear

theory, valid for small ǫ, with numerical simulations in the finite steepness parame-

ter limit. Finally no assumption of small β will be made (as generally done in tidal

studies, e.g. Llewellyn-Smith and Young (2002); Balmforth et al. (2002)) because

time dependent oscillations tend to become as large as the mean geostrophic flow, i.e.

β = O(1).
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2.4.1 Problem formulation

The major contribution of this work is to study the response of the mean flow to

topographic radiation of internal waves. We start by deriving the equations that

describe the evolution of the zonally averaged flow on a slow time scale and the

internal waves on a fast time scale. The scale separation is achieved by expanding

equations and boundary conditions in the steepness parameter ǫ. We idealize the

ocean as a Boussinesq, rotating, and stably stratified fluid governed by

ut + (u · ∇H)u + wuz + f ẑ × u = −∇Hp + ν∇2u, (2.6)

wt + (u · ∇H)w + wwz = −pz + b + ν∇2w, (2.7)

bt + (u · ∇H)b + wbz + wN2 = κ∇2b, (2.8)

∇H · u + wz = 0, (2.9)

where u = (u, v) is the horizontal velocity vector, w the vertical velocity, b = −gρ/ρ0

buoyancy, p pressure, f the Coriolis parameter, N the buoyancy frequency, ν the

viscosity, and κ the diffusivity.

The flow is assumed to be periodic in the horizontal. Top and bottom boundary

conditions are of vanishing vertical velocity as z → ∞ and zero velocity normal to

topography,

w = 0, at z → ∞, (2.10)

w = u · ∇Hh(x), at z = h(x). (2.11)

First we nondimensionalize both the governing equations and the boundary con-

dition (see Appendix A). Next, we expand the solution into a series of a small steep-

ness parameter ǫ and impose that to the leading order there is a superposition of a

geostrophic flow and an inertial oscillation,

u = uG(TG,XG, ZG) + uI(t; TI ,XI , ZI) + ǫu(1) + ǫ2u(2) + ǫ3u(3) + ..., (2.12)
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where uG is the geostrophic flow evolving on a slow time scale TG and large spatial

scales XG and ZG, uI is an inertial oscillation which oscillates at frequency f on a

fast time scale t and can also evolve on a slow time scale TI and large spatial scales

XI and ZI , and u(n) are the higher order motions that depend on all scales of the

problem. Details of the expansion are given in Appendix B. At leading order, O(ǫ0),

we obtain a set of equations describing both geostrophic,

f ẑ × uG = −∇XG
pG, 0 = −pG

ZG
+ bG, wG = 0, (2.13)

and inertial oscillation components of the mean flow,

uI
t + f ẑ× uI = 0, wI = 0. (2.14)

At the following order, O(ǫ1), we get a set of equations and the bottom boundary con-

dition governing fast time scale evolution of internal waves generated by the leading

order motions interacting with topography,

u
(1)
t + (uG + uI) · ∇Hu(1) + f ẑ × u(1) = −∇Hp(1) + ν∇2u(1), (2.15)

w
(1)
t + (uG + uI) · ∇Hw(1) = −p(1)

z + b(1) + ν∇2w(1), (2.16)

b
(1)
t + (uG + uI) · ∇Hb(1) + N2w(1) = κ∇2b(1), (2.17)

∇H · u(1) + w(1)
z = 0, (2.18)

w(1)|z=0 = (uG + uI) · ∇Hh. (2.19)

Finally, the evolution of the oscillating component of the mean flow on the slow time

TI and large spatial scales (XI , ZI) is described by the O(ǫ3) equations,

u
(3)
t + f ẑ× u(3) = −uI

TI
− ∂ZI

w(1)u(1), (2.20)

0 = −∂ZI
w(1)w(1) − P I

ZI
+ bI , (2.21)

bI
t = −∂ZI

w(1)b(1), (2.22)
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where the over-bar represents an average over small spatial scales. At this order,

there is a fast time evolution of the O(ǫ3) inertial oscillation combined with a slow

time evolution of the leading order inertial oscillation uI forced by O(ǫ1) internal wave

momentum flux divergence. The evolution of the geostrophic mean flow component is

assumed to occur on a slower time scale TG ≫ TI and larger spatial scales (XG, ZG) ≫
(XI , ZI), i.e. we assume a scale separation between geostrophic motions and inertial

oscillations, a reasonable approximation as long as Ro ≪ 1 (see Appendix B). Under

this approximation the evolution of the geostrophic motions enter at orders higher

than O(ǫ3).

2.4.2 O(ǫ0) solution: mean flow

The zonally-averaged flow is given by the solution of the O(ǫ0) equations,

ū(t) = UG + UI cos f(t − t0), (2.23)

v̄(t) = −UI sin f(t − t0), (2.24)

where UG is a zonal geostrophic flow governed by equations (2.13) varying on the very

slow variables (XG, TG), UI and ft0 are the amplitude and phase of inertial oscillation

governed by equations (2.14) varying on the slow variables (XI , TI).

2.4.3 O(ǫ1) solution: wave radiation

We now solve the internal wave generation problem at O(ǫ1) for a 2-D, (x, z), idealized

mean flow (2.23) and (2.24) over one-dimensional, monochromatic bottom topogra-

phy. To make analytical progress we simplify dissipation terms and make change of

reference frame to the system moving with the mean flow.

The bottom topography is given by,

h(x) = hT cos(kT x), (2.25)

where hT is the topography amplitude, and kT is its horizontal wavenumber. Flows
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over bottom topography generate internal waves radiating upward into the ocean

interior. The dynamics of internal waves is governed by the set of equations (2.15)-

(2.18) with the lower boundary condition (2.19). To simplify the linear analysis we

set

ν∇2u = −λu(1), ν∇2w = −λw(1), κ∇2b = −λb(1), (2.26)

where λ is the Rayleigh damping rate. Using Rayleigh damping instead of the har-

monic scale-selective friction and dissipation captures the effect of wave dissipation

while keeping the algebra much simpler. In the numerical simulations described be-

low, we use harmonic dissipation, but damping is mostly due to turbulent dissipation

resulting from breaking of the waves. It is not clear whether wave breaking is best

described by linear or harmonic dissipation. What matters is that both forms capture

the damping of buoyancy and momentum fluctuations resulting from breaking.

In order to find an analytical solution to the problem, it is convenient to change

the reference frame to the coordinate system moving with the zonally averaged flow

ū(t),

ξ = x −
∫ t

t0
ū(t)dt = x − UG(t − t0) −

UI

f
sin f(t − t0). (2.27)

In the moving reference frame, the dynamics in (2.15)-(2.18) can be reduced to a

single equation for the vertical velocity w(1),

(

∂tt + 2λ∂t + λ2
)

∇2w(1) + N2w
(1)
ξξ + f 2w(1)

zz = 0. (2.28)

Periodic topography implies a periodic solution, and we can expand the solution into

Fourier modes in the ξ-coordinate frame. Using a Jacobi-Anger expansion, the lower

boundary condition can be written as a superposition of plane waves,

w̃(1)|z=0 = iĥ
∞
∑

n=−∞

σnJn(β)eiσn(t−t0), (2.29)

where σn = nf + UGk is the intrinsic frequency of the n-th harmonic of the inertial

frequency Doppler shifted by the mean geostrophic flow. The excursion parameter

β is defined in (2.5), and Jn(β) are the Bessel functions of the first kind. For β
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finite, n can be different from zero and waves are radiated at super-harmonics of

f . The horizontal structure and time dependence of the internal wave solution in

the interior are dictated by the lower boundary condition (2.29): the solution is a

superposition of waves not only at the fundamental frequency f , but also at all of its

harmonics. The energy distribution over different harmonics depends on the value of

excursion parameter β. The larger the excursion parameter, the more energy is in

higher harmonics. The fact that the internal wave field is a superposition of inertial

frequency harmonics has important implications for the wave-mean flow feedback

mechanism discussed later in the next section.

The solution to (2.28) satisfying boundary condition (2.29) and evaluated for a

particular form of topography (2.25) is a superposition of a number of harmonics each

taking the form,

w(1)
n (t, ξ, z) = −hT σnJn(β)ℑ

[

eiθn

]

, θn = kT ξ + µnz + σn(t − t0), (2.30)

where µn is a complex number with the real and imaginary parts representing, re-

spectively, the wave vertical wavenumber and an inverse decay scale due to damping,

µ2
n = k2

T

N2 − (σn − iλ)2

(σn − iλ)2 − f 2
. (2.31)

Solutions for other wave variables can be easily found from equations (2.15)-(2.18) in

the moving reference frame using (2.30),

u(1)
n (t, ξ, z) = hT σnJn(β)ℑ

[

µn

kT
eiθn

]

, (2.32)

v(1)
n (t, ξ, z) = hT σnJn(β)ℜ

[

µn

kT

f

(σn − iλ)
eiθn

]

, (2.33)

p(1)
n (t, ξ, z) = hT σ2

nk−1
T Jn(β)ℑ

[

µn

kT

(σn − iλ)2 − f 2

σn(σn − iλ)
eiθn

]

. (2.34)

where ℜ and ℑ are the real and imaginary parts.

The bottom energy conversion rate from subinertial and inertial flows into internal

waves averaged zonally and over an inertial period can be calculated using (2.30) and
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(2.34) as,

w(1)p(1)
x,t

=
1

2

∞
∑

n=−∞

h2
T σ3

nk−1
T J2

n(β) · ℜ
[

µn

kT

(σn − iλ)2 − f 2

σn(σn − iλ)

]

. (2.35)

This expression reduces to the well known expressions for lee wave radiation in the

limit of a zero inertial oscillation amplitude or to the expression for internal tide con-

version, if the tidal frequency is used instead of inertial frequency (Bell, 1975a,b). If

the excursion paramter is small then the internal wave energy flux is proportional to

the topographic slope. In the large excursion parameter limit, however, the energy

flux is no longer proportional to the slope, but rather to the amplitude of topogra-

phy (Polzin, 2004).

2.4.4 O(ǫ3) solution: feedback of waves on mean flow

Here, we consider the feedback of internal waves on the mean flow. We solve O(ǫ3)

equations (equations at O(ǫ2) are trivial as shown in Appendix B), which describe

slow-time evolution of the O(ǫ0) inertial oscillation driven by the divergence of the

O(ǫ) wave momentum fluxes. Using the complex velocity form γ = u + iv, (2.20) can

be written as,

γ
(3)
t + ifγ(3) = −γI

TI
− ∂zw(1)γ(1), (2.36)

where γI
TI

represents variation of the leading order inertial oscillation on the slow

timescale TI = ǫ3t. There is no forcing of the geostrophic mode at this order because

we assumed that the geostrophic flow varies on temporal and spatial scales longer

than TI = ǫ3t and ZI = ǫz respectively which requires that its Rossby number is

smaller than O(ǫ3).

In order to solve (2.36), we plug in both the momentum flux divergences computed

from internal wave solutions (2.30),(2.32) and (2.33) and the O(ǫ0) solution for γI ,

from equation (2.14), which is given by,

γI(t, TI) = UI(TI)e
−if(t−t0(TI )), (2.37)
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where the inertial oscillation amplitude, UI , and phase, −ft0, can evolve on the slow

time scale TI .

We are particularly interested in the growth of inertial oscillations at the bottom

because they can feedback on the wave generation. The momentum flux divergence

at z = 0 is,

∂zw(1)γ(1) =
1

4
h2

T k−1
T

∞
∑

m=−∞

∞
∑

n=−∞

σmσnJm(β)Jn(β)
(

amneiθmn + bmne−iθmn

)

, (2.38)

where coefficients amn and bmn are given by,

amn = −i

(

1 − f

σn − iλ

)

µn(µn − µ∗
m), (2.39)

bmn = i

(

1 +
f

σn − iλ

)∗

µ∗
n(µ

∗
n − µm), (2.40)

and θmn is the phase of the flux formed by two wave harmonics m and n and evaluated

at z = 0, i.e. θmn|z=0 = (θn −θm)|z=0 = (σn−σm)(t− t0) = (n−m)f(t− t0). The flux

divergence has a steady component (m = n). But it also has a component oscillating

at the inertial frequency for m = n ± 1, which can trigger a resonant response and

growth of inertial oscillation. Whether a resonance develops or not depends on the

relative orientation of the force due to the momentum fluxes −∂zw(1)u(1) and the

velocity uI (Fig. 2-5). If waves are inviscid (λ = 0), then amn and bmn are imaginary

and the flux divergence averaged over an inertial period is in quadrature with uI (i.e.

the accelerations and decelerations due to −∂zw(1)u(1) average to zero over an inertial

period). If there is wave dissipation, however, a net force develops over a period that

acts to accelerate the inertial oscillation and drive a resonance.

To understand how the resonant mechanism can drive instability of inertial oscil-

lation let us consider the case when the amplitude of the inertial oscillation is small,

i.e. β ≪ 1. This assumption allows us to expand flux divergence (2.38) for small β.

At the leading order, O(β0), there is a steady momentum flux divergence associated
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with the damped, n = 0, stationary harmonic,

∂zw(1)γ(1) =
1

4
h2

T k−1
T σ2

0(a0,0 + b0,0), (2.41)

At the following order, O(β1), the flux divergence oscillates at the resonant frequency

f and is given by,

∂zw(1)γ(1) = −fUI

(

Aeif(t−t0) + Be−if(t−t0)
)

, (2.42)

where coefficients A and B depend on properties of wave modes -1,0, and 1 and

defined as,

A =
1

8

h2
T σ0

f 2
[σ−1(a−1,0 + b0,−1) − σ1(a0,1 + b1,0)] , (2.43)

B =
1

8

h2
T σ0

f 2
[σ−1(a0,−1 + b−1,0) − σ1(a1,0 + b0,1)] . (2.44)

Combining (2.36), (2.37), and (2.42) we obtain,

γ
(3)
t + ifγ(3) =

(

−U̇I − ifUI ṫ0 + fUIB
)

e−if(t−t0) + fUIAeif(t−t0), (2.45)

The solutions for U I(TI) and t0(TI) are obtained by eliminating the secular term,

UI(TI) = UI(0)efℜ(B)TI , (2.46)

t0(TI) = ℑ(B)TI . (2.47)

We can see that, while the phase of inertial oscillation, t0(TI), forced by the breaking

waves changes linearly, the amplitude, UI(TI), can evolve exponentially in time. A

small initial perturbation UI(0) at inertial frequency can either grow or decay de-

pending on the sign of the growth rate Γ, given by,

Γ = fℜ(B). (2.48)
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where the coefficient B, given by (2.44), depends on other parameters of the problem

and can be simplified to,

Γ ≃ 1

2
λFr−2

[

1 + 4
f 2

U2
Gk2

T

− 3
λ2

U2
Gk2

T

]

(2.49)

in the limit of,
UGkT

N
≪ 1,

f

UGkT
≪ 1,

λ

UGkT
≪ 1. (2.50)

This is a limit where stationary lee waves radiating from topography with frequency

ω = UGkT have a frequency larger than the inertial frequency, ω ≫ f , are hydrostatic

ω ≪ N , and weakly damped λ ≪ ω. In this limit, the linear stability analysis of the

wave-mean flow interaction shows that the system of a geostrophic flow over bottom

topography can be unstable to a small inertial frequency perturbation in the zonally

averaged flow. The growth rate of the instability, to leading order, is proportional

to the squared inverse Froude number Fr−2 and the Rayleigh damping time scale λ

(representing the internal wave breaking process). The instability develops as soon as

there is some damping acting on the waves, allowing for wave momentum deposition

and feedback on the zonally averaged flow. However, when the damping rate λ exceeds

a certain value, greater than f , the growth rate changes sign and the waves start to

act against inertial oscillation.

The presence of the damping is essential for the resonant feedback to occur. If

there is no damping then the amplitude of the wave momentum fluxes is vertically

uniform. Momentum fluxes, and their vertical divergences, are in phase with the

inertial oscillation at every level and the net work over a period is zero. This result

is consistent with the non-acceleration theorem. When there is damping, however,

the amplitude of the wave momentum fluxes decays with height resulting in the wave

momentum deposition and the phase shift between inertial oscillation and the wave

momentum flux divergence. When slightly out-of-phase, the wave momentum fluxes

work to accelerate inertial oscillation. However, wave momentum deposition can start

to work against inertial oscillations when the phase shift becomes too large.
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2.5 Results

In this section we use the theory described above to interpret the results of the nu-

merical simulations. We decompose the model solution into a zonal mean (the mean)

and deviations from the zonal mean (the waves). First, we discuss the evolution of

the mean flow and demonstrate that the growth of inertial oscillations in the simula-

tions is consistent with the resonant feedback mechanism described in Sec. 2.4. Next,

we compare the internal wave flux from simulations with the theoretical predictions.

Finally, we discuss the energy budget of wave radiation, breaking, and dissipation and

show the relevance of our results for turbulent dissipation estimates in the Southern

Ocean.

2.5.1 Inertial oscillations

The time evolution of the mean flow from a simulation with Fr−1 = 0.4 is shown in

Fig.2-3. No inertial oscillation is imposed in the initial condition of the simulation.

However, within the first 48 hours, a strong oscillatory flow with frequency f develops

on top of the prescribed geostrophic mean flow of 0.1 m s−1 (not shown on the figure).

The amplitude of the inertial oscillation grows rapidly in time until it reaches the same

magnitude of the mean geostrophic flow and then equilibrates. The oscillations extend

throughout the whole domain, but they are particularly intense within 700 m of the

bottom.

The growth of the inertial oscillations at z = 100 m, slightly above the topogra-

phy, is shown in Fig. 2-6 for the whole set of simulations. The growth rate of the

amplitude of the oscillations increases with inverse Froude number. For Fr−1 ≤ 0.3,

the growth rate is very slow and it has not reached an equilibrium after 10 days of sim-

ulation. Simulations with Fr−1 > 0.3 have a fully developed inertial oscillations with

amplitude of about 0.12 ± 0.02 ms−1, i.e. of the same order as the mean geostrophic

flow.

Although the scale separation between inertial oscillations and internal waves in

the vertical assumed in linear theory is not well satisfied in the simulations, the
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characteristics of the inertial oscillations are consistent with the resonant feedback

mechanism described in Sec. 2.4. The resonant mechanism predicts that the vertical

structure of the inertial oscillation is set by the divergence of internal wave momentum

flux oscillating at frequency f . For the reference simulation shown in Fig.2-3, the wave

momentum flux is dominated by harmonics −1 and 0 and it has a vertical scale of

2π(µr
−1 −µr

0)
−1 ∼ 1 km: the phase lines of the inertial oscillations in (t, z) space have

indeed a slope very close to f/(µr
−1 − µr

0).

For Fr−1 > 0.3, waves break above topography and deposit most of their momen-

tum before reaching the sponge layer. The inertial oscillations are most pronounced

in regions where wave breaking occurs. For the reference simulation, Fr−1 = 0.4, the

vertical extent of the region over which the momentum flux decays from its bottom

value to approximately zero is 700 m.

In the theoretical model of Sec. 2.4 we represented wave breaking as a Rayleigh

damping process. A Rayleigh damping of λ = 5 × 10−5 s−1 reproduces the verti-

cal decay scale of the time-averaged internal wave momentum flux for the reference

simulation. We discuss what sets this scale below. Here, we want to show that lin-

ear theory can be used to relate the scale of wave breaking, through λ, to various

properties of the inertial oscillations. The evolution of inertial oscillation from sim-

ulation and theory are compared in Fig. 2-7. The theoretical prediction is obtained

by integrating eq. (2.36) forced with the wave momentum flux divergence in (2.38)

which depends on λ. The theoretical model reproduces remarkably well both the

initial growth and the final amplitude saturation phases. It slightly overestimates the

magnitude at which the inertial oscillations saturate because linear theory does not

account for their dissipation. The small-β expression for the initial growth rate of

inertial oscillation is also very accurate at early times and further builds our confi-

dence that the resonant generation mechanism is key to the appearance of inertial

oscillations. This comparison holds for the other inverse Froude number simulations

as well.
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2.5.2 Wave radiation

We now test the prediction of linear theory for the energy flux radiated by topographic

internal waves. We estimate the energy flux p′w′ from the model solution using devi-

ations from the zonal mean and averaging the flux zonally in space and over several

inertial periods in time. Fig. 2-8 shows the vertical dependence of the energy flux for

different Froude number simulations. The value of the energy flux radiated from the

bottom increases with inverse Froude number as the wave amplitude increases and

waves can transport more energy. The bulk of the energy flux decays substantially

within less than 1 km of the bottom, as a result of wave breaking and dissipation.

Above the breaking level there is a small residual energy flux that radiates into the

ocean interior.

Fig. 2-9 shows the comparison of the bottom value of the energy flux between nu-

merical simulations and the linear theory prediction. To make theoretical prediction,

we use the inertial oscillation amplitude diagnosed from the simulations in (2.35), i.e.

we set UI = 0.12 m s−1. The results indicate that the presence of inertial oscillations

in the mean flow over bottom topography increases the amount of energy radiated

by internal waves by about 30% compared to the lee wave radiation estimate. The

effect of inertial oscillations on wave generation is well captured by the linear wave

generation theory, which includes radiation of inertial frequency harmonics.

The characteristics of the radiated waves change substantially as a function of

Fr−1 and can be described by three different regimes. The first regime, at small

inverse Froude number (smaller than 0.3 in our simulations), is characterized by

stationary lee wave generation. Inertial oscillation do grow in time as a result of the

resonant feedback, but the growth rate is small and over 10 days they do not develop

enough to significantly modify the wave generation process. In this regime, wave

generation is well described by the linear lee wave generation theory. A second regime

develops for 0.3 < Fr−1 < 0.7, where inertial frequency harmonics are generated. In

this Froude number range, inertial frequency perturbations in the mean flow grow

rapidly and reach an amplitude comparable with that of the mean flow within several
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days. These inertial oscillations significantly modify the wave generation process

by not only increasing the amount of radiated energy but also by making the wave

field substantially time dependent and non-monochromatic. Linear wave generation

theory which includes inertial oscillations in the mean flow agrees well with numerical

simulations in this Froude number range. The last regime, Fr−1 > 0.7, is the wave

saturation regime. Internal wave radiation saturates, i.e. it does not increase anymore

with the inverse Froude number. This can be explained by the blocking effect which

topography has on the mean flow. At a certain topography amplitude, flow from the

deep valley does not have enough kinetic energy to go over the bump and is blocked

by topography. Only some fraction of the flow which is close to the top of the bump

can go over it and generate internal waves. In this regime further increasing the

topographic height does not allow more flow to be deflected, and the wave radiation

does not grow.

While regime one and three have been studied extensively, regime two has not

been the focus of much investigation. Here we focus on it, because it turns out to

be quite relevant for the oceanic situation we are interested in. The intermediate

Froude number range, 0.3 < Fr−1 < 0.7, is characterized by the radiation of inertial

frequency harmonics. Although the linear theory solution is a superposition of an

infinite number of harmonics, only those that satisfy f < σn < N will radiate into

the ocean interior and contribute to the value of the energy flux. Moreover, the

distribution of energy over different harmonics depends on the value of the excursion

parameter β. For instance, during the onset of instability, when the inertial oscillation

amplitude is small, most of the energy is in the lower, n = 0,±1, harmonics. As

shown in the resonant feedback section, this set of wave modes is enough to feedback

on the mean flow at the inertial frequency, the resonant frequency of the system. As

the inertial oscillation amplitude grows, the excursion parameter β gets larger, and

higher harmonics radiate.
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2.5.3 Energy pathways

A substantial fraction of the energy radiated by gravity waves is dissipated within

1 km of the bottom topography in the simulations presented so far. This layer is

characterized by vigorous turbulence, especially for higher Fr−1 simulations, Fr−1 >

0.3, resulting from breaking of internal waves (Fig. 2-2). To understand the pathways

of energy from the prescribed mean geostrophic flow to turbulent dissipation at small

scales associated with internal wave breaking, we estimate the mean and wave kinetic

energy budgets for the layer 1 km above the bottom. We decompose the model

solution into the mean and waves as follows,

u = U0̂i + u + u′, (2.51)

where U0 is the prescribed geostrophic flow, u is the zonal mean flow, and u′ rep-

resents wave perturbations. Generally, u includes both inertial and subinertial flow

components. However, the subinertial flow does not change much over the simulated

period of time. Since the domain of simulation is two-dimensional and zonally pe-

riodic, no pressure gradient can develop to balance changes in the subinertial flow.

The zonal and time mean flow therefore remains the same throughout the simulation

and a weak, about 3-4 mm s−1, meridional mean flow is driven by the divergence of

the wave momentum fluxes (Fig. 2-10). Thus, u is dominated by inertial oscillations.

The kinetic energy equation for the zonal mean flow u averaged in time over many

inertial periods takes the form,

∂tMKE − ν∂zzMKE = − < u · ∂zw′u′ > −ǫMKE, (2.52)

where MKE = 1
2

< u · u > is the kinetic energy of the mean flow, and terms on the

right hand side are the conversion of energy between the mean flow and the waves

and the mean flow dissipation ǫMKE = ν < |uz|2 > respectively. The second term on

the left is the transport of the mean kinetic energy by viscous terms. Overline and

brackets represent spatial and time averages, respectively.
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Similarly, the kinetic energy equation for the wave component u′ can be written

as,

∂tEKE − ν∂zzEKE = (2.53)

−∂z

[

< p′w′ > +U0 < w′u′ > + < u · w′u′ > +
1

2
< w′u′ · u′ >

]

+

+U0∂z < w′u′ > + < u · ∂zw′u′ > + < b′w′ > −ǫEKE (2.54)

where the terms on the left hand side represents the evolution of the wave kinetic

energy, EKE = 1
2

< u′ · u′ >, and its transport by viscous terms, and the terms on

the right hand side are the divergence of the total wave energy flux, energy exchange

with the mean subinertial flow U0, energy exchange with the mean inertial flow u,

energy conversion to potential energy, and wave dissipation rate ǫEKE = ν < |∇u′|2 >.

The total wave energy flux includes upward energy flux associated with the pressure

work, downward transport of the mean subinertial and inertial flow kinetic energies,

and energy transport by triple correlation term.

According to the non-acceleration theorem, there is no energy exchange between

waves and the mean flow in the limit of steady and conservative waves. These assump-

tions are well justified right at the bottom, where waves are generated and energy

radiation is well described by the linear theory, and above the breaking region, where

waves become a small amplitude, and therefore, linear. Nonlinear, non-conservative

processes take place in the bottom 700 m where waves break and dissipate most of

their energy. To be consistent with the non-acceleration theory, the term representing

energy conversion between the mean and the waves must be defined in terms of the

divergence of the Eliassen-Palm flux which vanishes in the limit of stationary and

conservative waves. It also provides an exact cancellation between the upward energy

flux associated with the pressure work and the downward kinetic energy flux,

< p′w′ >= −U0

(

< w′u′ > − f

N2
< v′b′ >

)

. (2.55)

However, since in our problem the bulk of the energy is radiated by waves which have
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frequency greater than the inertial frequency, the correction due to the buoyancy flux

< v′b′ > is weak.

To illustrate energy pathways in the system of a mean subinertial flow, inertial

oscillations and internal waves, we estimate kinetic energy budgets for the bottom

1 km averaged over the last several inertial periods from the Fr−1 = 0.4 simulation

for both free-slip and no-slip bottom boundary conditions. Both mean and the wave

energy budgets are closed within 5% of the energy dissipation value for this Froude

number simulation. Magnitudes of the different terms of the kinetic energy equations,

(mW m−2), integrated in the bottom 1 km are shown in the following tables for the

mean,

∂tMKE ν∂zzMKE − < u · ∂zw′u′ > −ǫMKE

2.0 (1.5) -0.1 (-0.5) 7.3 (6.1) -5.2 (-4.1)

and for the waves,

∂tEKE ν∂zzEKE −∂zF U0∂z < w′u′ >

-0.2 (-0.2) -0.1 (-0.2) -0.1 (-1.5) 13.5 (11.8)

< u · ∂zw′u′ > < b′w′ > −ǫEKE

-7.3 (-6.1) 0 (0.1) -5.9 (-4.6)

where F is total wave kinetic energy flux, and the two values for each term are

estimates from free-slip and no-slip (in parenthesis) boundary condition simulations.

From the mean kinetic energy budget we can see that inertial oscillations, and

therefore, mean kinetic energy are nearly equilibrated during the last several inertial

periods. Roughly 25% of the energy coming from internal waves still goes to inertial

oscillation acceleration, while the rest of it is balanced by viscous dissipation. Thus,

to the leading order, in the fully equilibrated state, there is a balance between energy

input from the waves and energy output to dissipation by the mean,

− < u · ∂zw′u′ >≈ ǫMKE. (2.56)

63



Wave kinetic energy is well equilibrated during the last several periods. Energy

conversion to potential energy is small. Divergence of the total wave flux is also

small, resulting from a close cancellation between upward energy flux, associated

with the pressure work, and downward kinetic energy fluxes. Thus, the leading order

balance in the wave energy budget is,

U0∂z < w′u′ >≈ − < u · ∂zw′u′ > +ǫEKE, (2.57)

representing a balance between energy extracted by the waves from the subinertial

flow U0 and energy going to inertial oscillation and internal wave dissipation. Com-

bining equations (2.56) and (2.57), we get,

U0∂z < w′u′ >≈ ǫMKE + ǫEKE. (2.58)

This equation is a total balance between the source and the sinks of kinetic energy

in the system of a subinertial flow, inertial oscillations, and internal waves which

holds quite well throughout the water column in the bottom 1 km (Fig. 2-11). The

various energy pathways are sketched in Fig.2-12. Energy is extracted from the infinite

reservoir in the prescribed subinertial flow U0 maintained throughout the simulation.

This energy is eventually dissipated as internal waves and inertial oscillations. The

rate at which energy is extracted by internal waves from the mean subinertial flow is

determined by the vertical divergence of the zonal component of the Eliassen-Palm

flux, which is directly related to the energy radiated from topography.

Simulations with free-slip and no-slip boundary conditions are qualitatively very

similar. However, there is some quantitative difference. Energy dissipation estimate in

the simulation with a no-slip boundary condition reduces by about 20-30% compared

to the simulation with a free-slip condition. This reduction is likely due to a flow

separation effect. In the simulation with a no-slip boundary condition, mean flow

sliding down the lee side of the hill separates from topography and reduces the effective

topographic height. This in turn reduces the amplitude of radiated waves and the

amount of wave energy dissipation.
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2.5.4 Wave breaking and dissipation

The numerical simulations show that, to the leading order, the generation and dissi-

pation of kinetic energy depends on the vertical divergence of the zonal component of

the Eliassen-Palm flux. Linear theory gives a good prediction for the wave fluxes at

the bottom. The vertical scale of flux divergence is determined by the wave breaking

scale. In the simulations described so far the vertical scale of the wave breaking region

is of the order of 700 m and essentially independent on Fr−1 or more specifically on

the topography amplitude hT that we varied to change Fr−1. However, the vertical

extent of the breaking region depends on the topography wavenumber kT , and the

Coriolis frequency f , i.e. it depends on χ and β in (2.1) and (2.5). We find that the

wave breaking scale increases with decreasing f , with a weaker dependence on kT .

There are three main pathways from wave generation to wave breaking. First

the radiated waves can have a sufficient amplitude to become convectively or shear

unstable. This is not the case in our simulations, because the linear wave solutions

are stable. Second, wave-wave interactions can transfer energy to smaller scale waves

with large shears. This is the classical turbulent picture, where energy is fluxed from

larger to smaller scales where instabilities and wave breaking can occur. We can rule

out this pathway, because the interaction time scale estimated for wave amplitudes

observed in our simulations is of the order of a day, which is long enough for waves to

radiate up to 2-3 km before they can break. Third, modulation by background shear

or changes in stratification can make the waves unstable. In our simulations a large

inertial shear seems to be responsible for the observed wave breaking.

Upward propagating wave packets, which are generally stable based on the Richard-

son number criteria, break as they pass through the vertically sheared inertial oscilla-

tions. The effect of inertial oscillations on the propagation of internal wave packets is

described by Broutman and Young (1986) based on wave ray theory. Inertial oscilla-

tions, essentially, play a role of a filter separating long internal waves which manage

to pass through inertial oscillation without any substantial change, and short internal

waves which are modulated by inertial oscillations causing an increase in their vertical
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wavenumbers and eventually break. Almost all wave modes generated at the bottom

have a scale shorter than inertial oscillation scale and are significantly affected by the

inertial oscillations. In summary the scale of the wave breaking region seen in the

simulations is determined by the size of internal wave packets due to superposition

of the various modes generated by the time dependent mean flow.

From the linear theory solution we can see that generated internal wave modes

form wave packets as they radiate upward (Fig. 2-13). The size of these packets

depends on the vertical scales of internal wave modes and the number of modes

involved. Variation in the Coriolis frequency f , as opposed to horizontal wavenumber

kT , changes not only wave properties according to the wave dispersion relation but

also an effective number of the wave modes, f < σn < N .

Finally, we diagnose turbulent dissipation rate ǫ from the simulations and compare

it to the dissipation rate observed in Drake Passage. Fig. 2-14 shows vertical profiles

of time averaged dissipation rate from different Froude number simulations. Values

of the dissipation rate integrated over 1 km depth above the bottom are shown in

Fig. 2-15. The magnitude of the turbulent dissipation rate generally increases with

inverse Froude number as the internal wave amplitude grows and waves become more

nonlinear and break. The dissipation rate is significantly intensified in the bottom 1

km where most of the wave breaking takes place, and then decays in ocean interior.

The dissipation rate integrated over the bottom 1 km saturates at about 25 mW

m−2 for inverse Froude number higher that 0.7. The dissipation rate estimated for

inverse Froude number 0.6, characteristic of Drake Passage region, is about 20 mW

m−2. This number compares well with the estimate of the dissipation rate in Drake

Passage obtained from observations (Naveira-Garabato et al., 2004).

2.6 Conclusions

Estimates of turbulent mixing inferred from high wavenumber fluctuations in density

and velocity profiles suggest that turbulent kinetic energy dissipation is strongly en-

hanced in a few sectors of the ACC. Diapycnal mixing is concentrated in the bottom
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kilometer where topography is rough. In this chapter we showed through theory and

numerical simulations that the observed dissipation can be sustained by breaking in-

ternal waves generated by geostrophic eddies impinging on topographic hills a few

kilometers wide. This is in contrast to other regions of the ocean where tidal flows

seem to be the primary generator of internal waves. The difference arise because

bottom geostrophic eddies are anomalously large in the Southern Ocean, while tides

are weak.

This is an idealized study, but we have chosen parameters that mimic geostrophic

flows and topographic features found in the Drake Passage sector of the ACC, one of

the very few places where dissipation estimates from observations are available. In this

region geostrophic eddies radiate internal waves from a limited range of topographic

horizontal scales, varying from about 600 m to 6 km, with most of the radiation due to

topographic features of 1-3 km scales. The vertical scale of the radiated internal waves

is about 600 m, significantly shorter than the local ocean depth. The inverse Froude

number Fr−1 is about 0.6, i.e. topographic slopes are sub-critical. We find that

energy radiation in this regime is characterized by a time-dependent, multichromatic

waves.

A novel result of this chapter is that upward radiating time-dependent internal

waves trigger inertial oscillations at the ocean bottom. In turn the inertial oscillations

modify the wave generation process and result in radiation of time dependent, multi-

chromatic internal waves. The feedback between the waves and the inertial flow leads

to a resonance which reinforces inertial oscillations. The inertial oscillations grow to

become as large as the geostrophic flow and have a substantial amount of vertical

shear on scales of a few hundred meters. The inertial shear strongly modulates the

upward propagating packets of short internal waves and promotes enhanced wave

breaking. We explored the resonant feedback mechanism within a weakly nonlinear

framework and demonstrated that the analytically predicted growth rate and prop-

erties of inertial oscillations are consistent with the results of numerical simulations.

Numerical simulations show that a substantial fraction, 30%, of radiated energy dis-

sipates locally in the bottom kilometer, as waves are tilted by the inertial shear, and
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break.

There is another instability mechanism, the Parametric Subharmonic Instability

(PSI), which is characterized by energy transfer to near-inertial frequency. This in-

stability results from a resonant triad interaction where the primary wave, recharged,

for instance, by the barotropic tide interacting with the bottom topography, trans-

fers energy to the two other component of the triad at half the frequency. The PSI

mechanism is very efficient at transferring energy to near-inertial frequency at lati-

tudes where the tidal frequency is twice the inertial frequency. The resonant feedback

mechanism described in this study is different from the PSI. The superposition of a

geostrophic flow and an inertial oscillation over the bottom topography generates a

pair of waves: one is a lee wave, forced by the geostrophic flow, and the other is a

harmonic of the inertial frequency, forced by the inertial oscillation. These two waves

transfer energy to f through a triad interaction, different from the PSI. In particular

the triad would not be very efficient in the absence of the bottom boundary condition,

unlike the PSI (McComas and Bretherton, 1977). The boundary conditions are key

because, as these waves break and deposit their momentum, they re-energize inertial

oscillation in the zonally averaged flow. A stronger inertial component of the zonally

averaged flow energizes the initial pair of waves and the feedback continues. As a

results, inertial oscillation grows at the expense of the mean flow. In a sense this is a

problem of wave-mean flow interaction, while the PSI is a wave-wave interaction. En-

ergy is put in the two carrier waves with the boundary condition and, then, effectively

transferred to the inertial frequency, f , as the carrier waves break.

The numerical simulation setup (2-D and zonally periodic domain) is such that

the inertial oscillations cannot radiate horizontally and, therefore, always stay in the

region of strong geostrophic flow above rough topography where they get reinforced

by internal waves through the resonant feedback. In the ocean, however, these oscilla-

tions are modulated by the large-scale variations in the mean flow. This modulation

imposes a horizontal scale on oscillations making them near-inertial and allowing

them to radiate both horizontally and vertically. Using a geostrophic eddy scale of

100 km as the horizontal scale of near-inertial oscillations and 1 km as their verti-
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cal scale, we find, estimating wave group velocities, that it takes near-inertial waves

roughly 20 days to radiate an eddy scale away. This time scale is an order of magni-

tude longer than the characteristic growth rate, roughly 2 days, associated with the

resonant feedback mechanism. Over the 2-day time period near-inertial oscillations

radiate horizontally a distance of only about 5 km. Changes in the Coriolis frequency

on this distance due to the beta effect and geostrophic flow shear are insignificant,

and are of the order of 0.1% of f . Hence we expect the feedback to occur also in a

fully developed geostrophic eddy field.

In this chapter we considered one-dimensional monochromatic topography. In

Chapter 3 we show that the results are very similar for multichromatic topography,

because radiation is dominated by a few topographic scales. In Chapter 4 we further

extend the analysis to 3-D, monochromatic simulations and shows that wave radiation

is similar to the 2-D experiments.

Future work will need to address the degree to which radiation and breaking is

sensitive to the choice of bottom boundary condition. In this chapter we considered

free-slip and no-slip conditions and found that in the latter case wave dissipation was

reduced by about 20-30%; the problems were otherwise very similar. We are led to

believe that a more appropriate boundary condition capable of resolving the stress in

the logarithmic layer will bring quantitative, but no qualitative corrections. But the

question deserves more study.

The partial absence of meridional boundaries makes the Southern Ocean a special

place where the geostrophic field has to equilibrate through dissipation at the bottom

boundary. QG turbulence theory suggests that this is achieved through an inverse

cascade where the geostrophic eddies develop a large barotropic component. In this

study we show that eddies can equilibrate by generating internal waves from the

bottom topography which radiate into the ocean interior and break, mostly within

the bottom kilometer. This result might therefore be germane to the Southern Ocean.

In mid-latitudes barotropization is arrested by lateral boundaries and the bottom

velocities do not grow large enough to overcome the barotropic tidal signal.
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Figure 2-1: Snapshot of the wave zonal velocity (m s−1) from Fr−1 = 0.1 simulation.
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Figure 2-2: Snapshot of the wave zonal velocity (m s−1) from Fr−1 = 0.4 simulation.
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Figure 2-3: Time evolution of zonally averaged velocities (m s−1) from Fr−1 = 0.4
simulation: (upper panel) deviation from an externally prescribed 0.1 m s−1 zonal
mean flow,(lower panel) meridional velocity component.
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Figure 2-4: Definition sketch illustrating interaction of a geostrophic flow UG and
an inertial oscillation (UI , f) with periodic bottom topography (kT , hT ) in stably
stratified fluid. Dashed gray lines are the phase lines of the waves and the dashed
black line is the trajectory of a particle, illustrating its excursion during one period
of oscillation.
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Figure 2-5: Sketch illustrating resonant forcing mechanism driving inertial oscilla-
tions. Straight and dashed vertical lines are the topography crests and troughs,
respectively. Gray and white arrows show, respectively, the direction of inertial os-
cillation velocity vector and the direction of the wave momentum flux divergence.
Circular (black) and elliptical (gray) trajectories indicate the direction of rotation for
the inertial oscillation (f > 0) and flux divergence vectors, respectively.
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Figure 2-12: Diagram of energy pathways. Energy conversion and dissipation values
(mW m−2) are from Fr−1 = 0.4 simulation. Values inside boxes represent growth
(time derivative) of kinetic energy.
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Chapter 3

Application to the Southern Ocean

3.1 Introduction

Ocean mixing sets the stratification of much of the global ocean by upwelling of

dense, deep waters formed in polar regions (Wunsch and Ferrari, 2004). Mixing

is especially important in the Southern Ocean where the Meridional Overturning

Circulation (MOC) of the global ocean is largely powered. However little is known

about what dynamics supports that mixing.

The Southern Ocean part of the MOC consists of an upper and a lower cell (Speer

et al., 2000). Theories suggest that the upper cell is driven by atmospheric forcing

at the surface with an adiabatic return flow at depth (Rintoul et al., 2001; Mar-

shall and Radko, 2003; Olbers et al., 2004). Much less is known about the dynamics

of the lower cell, except that diabatic mixing is essential to explain the latitudinal

change in deep water mass properties (Ito and Marshall, 2008). Inverse analyses of

the Southern Ocean hydrography imply that high mixing rates in the deep Southern

Ocean are required to close the heat and salt budgets (Ganachaud and Wunsch, 2000;

Sloyan and Rintoul, 2001). Energy dissipation estimates from observations confirm

widespread high mixing rates above the bottom boundary layer associated with radi-

ation of internal waves from topography (Naveira-Garabato et al., 2004). Enhanced

abyssal mixing has been linked to the radiation of internal tides in other parts of

the ocean (Polzin et al., 1997; Ledwell et al., 2000; St.-Laurent and Garrett, 2002),
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however, it does not seem to be the case in the Southern Ocean where abyssal flows

are dominated by geostrophic eddies (Naveira-Garabato et al., 2003). In Chapter 2

we showed that geostrophic motions are very efficient at radiating waves from small

topographic features, resulting in local mixing. In the Southern Ocean geostrophic

eddy flows penetrate all the way to the bottom. Here we test the hypothesis that

the observed abyssal mixing can be explained by radiation and breaking of waves

resulting from geostrophic flows impinging on small-scale topography.

Wunsch (1998) demonstrated that about 80% of the wind work on the general

circulation of the global ocean is done in the Southern Ocean, and conjectured that

the Southern Ocean can host intense diapycnal mixing if some fraction of that work

were dissipated locally. Estimates of turbulent mixing inferred from high wavenum-

ber fluctuations in density and velocity profiles confirm that in the Southern Ocean

turbulent kinetic energy dissipation and diapycnal mixing are enhanced by orders of

magnitude above background values found in most of the ocean (Naveira-Garabato

et al., 2004). The observed diapycnal mixing is concentrated in the bottom 1 km and

in regions of rough topography. For example, the vertically integrated dissipation

rate averaged for a few sections across Drake Passage is reported to be of the order of

10 mW m−2, corresponding to a bottom diapycnal diffusivity of 10−2 m2 s−1. These

values are an order of magnitude larger than those from the southeast Pacific region

of the Southern Ocean where bottom topography is smooth.

Moored observations in Drake Passage show that the bulk of the kinetic energy

is partitioned between geostrophic subinertial flows, inertial oscillations, and tides,

in addition to the internal wave continuum (Nowlin et al., 1986). Any one of these

motions can generate internal waves through interaction with bottom topography.

However, theories of topographic wave generation have focused on the barotropic

tidal component, which is believed to dominate wave radiation in mid latitudes (Bell,

1975a; Khatiwala, 2003; Llewellyn-Smith and Young, 2002). Wave generation by

the dominant M2 tide component is estimated globally by Nycander (2005) using

the linear theory developed by Llewellyn-Smith and Young (2002), tidal velocities

from the global tidal model of Egbert and Erofeeva (2002), and bottom topography
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from satellite altimetry (Smith and Sandwell, 1997). The tidal energy flux into ocean

interior from topography deeper than 2 km for Drake Passage is estimated to be about

1-2 mW m−2. Thus, the amount of tidal energy available to support local dissipation

in the Drake Passage region is an order of magnitude smaller than the observed energy

dissipation rate. In Chapter 2 we showed that geostrophic flows impinging upon

bottom topography are very effective in driving turbulence and mixing locally. Using

idealized numerical simulations with parameters characteristic of Drake Passage, we

predict energy dissipation rates up to 20 mW m−2.

In this chapter we extend the theoretical framework developed in Chapter 2 to

estimate internal wave generation by geostrophic flows in two regions of the Southern

Ocean: Drake Passage and the Southeast Pacific. In section 2, we describe available

velocity, stratification and topography data. An analytical representation of the to-

pography spectrum is also presented and discussed. In section 3, we discuss linear

theory of wave radiation by geostrophic flows for arbitrary topography. In section 4,

we present the energy conversion estimates. In section 5, we test the theoretical esti-

mates versus numerical simulations and observations. Finally, results are summarized

in section 6.

3.2 Data

The characteristics of waves radiated by a geostrophic flow impinging on topogra-

phy depends on the spectrum of short topographic hills as well as bottom values

of geostrophic velocity and stratification. Mean velocities and topography data are

available for two different regions of the Southern Ocean: Drake Passage and the

Southeast Pacific. These two regions are characterized, respectively, by high and low

rates of abyssal mixing. A major goal of this chapter is to test whether wave radia-

tion theory can reproduce the observed magnitudes and spatial variations of abyssal

mixing.
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3.2.1 Mean flow characteristics

Bottom velocity and stratification are estimated with CTD and LADCP data from

sections across western Drake Passage and in the Southeast Pacific (Fig. 1-2). Veloc-

ity and hydrographic sections across Drake Passage were collected as a part of the

“Antarctic Large-Scale Box Analysis and the Role of the Scotia Sea” (ALBATROSS)

cruise in March 1999. Details of the data collection and analysis methods are given

in the cruise report (Heywood and Stevens, 2000), and a complete description of the

CTD and LADCP observations is in Naveira-Garabato et al. (2002) and Naveira-

Garabato et al. (2003). Velocity and hydrography data used for the Southeast Pacific

region were collected during the World Ocean Circulation Experiment (WOCE) along

the P18 line (Kunze et al., 2006).

Wunsch (1997) demonstrated that the bulk of geostrophic velocity is in low vertical

modes (barotropic and baroclinic mode one), while internal waves dominate at high

modes. A. Naveira Garabato (personal communication) suggests that the barotropic

tidal signal is weak in the data, and the comparison between geostrophic and averaged

LADCP shear implies that the geostrophic signal dominates at scales greater than

100-200 m while smaller scales are dominated by waves. To filter out high-mode

internal waves, bottom velocity and stratification are defined as an average over the

bottom 500 m. In addition, there is an uncertainty in the direction of the mean flow,

due to errors in both the LADCP compass heading (∼ 5 degrees) and the magnitude

of the velocity components (∼ 1 cm s−1). However, this is not an issue for the

calculation presented below because, due to lack of information of flow-topography

orientation, we consider all possible flow orientations rather than a particular flow

direction found in the data.

The Drake Passage stratification decays with depth with significant variation in

the thermocline and little in the abyssal ocean Fig. 3-1. Bottom values of buoyancy

frequency range from 10−3 s−1 north of Drake Passage to 0.5× 10−3 s−1 in the south

(Fig. 3-5), with a value of about 10−3 s−1 in the Polar ACC front, the region where

bottom velocity and wave radiation are largest.
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The velocity field (Fig. 3-2) is dominated by the ACC fronts, peaking at the

surface of the ocean, decaying in the upper 1 km (the thermocline) and remaining

essentially constant below. Surface velocities up to 50 cm s−1 are associated with the

Sub Antarctic Front, the Polar Front and the South ACC Front. The corresponding

bottom velocities reach up to 10-20 cm s−1. Outside the fronts, bottom velocities are

smaller ≃ 1-2 cm s−1 (Fig. 3-6).

Data in the Southeast Pacific (Fig. 3-3 and 3-4) have a non-uniform spatial reso-

lution with about 12 km spacing within station clusters separated by gaps up to 50

km wide. Bottom values of velocity and stratification in the 67oS-55oS latitudinal

range are close to those in Drake Passage (Fig. 3-5 and 3-6). The stratification is

slightly lower and varies from 0.5 × 10−3 s−1 in the south to about 0.7 × 10−3 s−1 in

the north. The bottom velocity decreases equatorward from about 15 cm s−1 to 5 cm

s−1 without a clear signature of the ACC fronts.

3.2.2 Topography characteristics

According to linear theory, a mean subinertial flow with bottom velocity of U0 and

bottom stratification of N can generate radiating internal waves from topographic

scales k in the range,
f

U0
< k <

N

U0
, (3.1)

which spans wavelengths from about 600 m to 6 km for U0 = 10 cm s−1 and N =

10−3 s−1, characteristic values of the Southern Ocean. Topographic features with

scales shorter than 15-20 km are not well resolved by satellite bathymetry (Smith

and Sandwell, 1997) and, are only available in regions where high resolution multi-

beam topography data were collected. However, Goff and Jordan (1988) showed that

the statistical properties of topography at smaller scales can be inferred from those

at larger scales with a simple spectral model relating 10-100 km topographic features

to smaller abyssal hills. We use this model to infer the characteristics of topography

on the range of radiative scales given by (3.1).

Multibeam topography data in the Drake Passage region has been collected by
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the British Antarctic Survey. These data superimposed on the bathymetry data from

satellite altimetry (Smith and Sandwell, 1997) are shown in Fig. 3-7. Drake Passage

is characterized by relatively rough bottom topography compared to the upstream

abyssal plains of the Southeast Pacific. Bottom topography is dominated by ridges

at scales larger than roughly 100 km. Abyssal hills at smaller scales are ubiquitous

in the multi-beam topography, but they are not visible in the satellite-based data.

We compute a characteristic two-dimensional topography spectrum as an average

over spectra from several different regions up to 100 km x 100 km wide which are well

covered by the multibeam topography data. The spectrum is normalized such that

the integrated spectrum gives the topography mean square height,

h2 =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
P(k)dk, (3.2)

where P(k) is topography spectrum, and k = (k, l) is the horizontal wave vector.

The two-dimensional spectrum of Drake Passage topography is shown in Fig. 3-

8 as a function of zonal and meridional wavenumbers. The spectrum is described

well by the model proposed by Goff and Jordan (1988), which is based on statistical

description of abyssal hills morphology. Small-scale abyssal hills are formed by ridge-

crest processes, off-ridge tectonics and vulcanism at larger scales. They are anisotropic

in general and tend to be elongated perpendicular to the direction of spreading. While

large morphological features of the seafloor such as ridges, trenches, and swells are

described deterministically, small-scale features such as abyssal hills are best described

stochastically with a model spectrum of the form,

P(k) =
2πh2(ν − 2)

k0l0

[

1 +
|k|2
k2

0

cos2(φ − φ0) +
|k|2
l20

sin2(φ − φ0)

]−ν/2

, (3.3)

where |k| is the wavenumber magnitude and φ is the wave vector angle with respect to

the eastward direction. The free parameters of the model are fitted in a least square

sense to the spectrum estimated from observations. These parameters are the rms

height of topography (h2)1/2 = 305 m, the characteristic wavenumbers k0 = 2.3×10−4
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m−1 and l0 = 1.3 × 10−4 m−1 of the principal axes of anisotropy, the azimuth angle

φ0 = 3200, and the high wavenumber roll-off slope ν = 3.5. Uncertainties in the

parameters due to errors of the fit are overwhelmed by uncertainties in correlation

between velocity and topography. The implications of those uncertainties in the

radiation estimates are discussed below. Fig. 3-8 shows that this representation

matches well the data at scales 1 km and larger which dominate wave radiation. The

aspect ratio of the best fit ellipse to the spectrum is 1.8, reflecting a slight anisotropy

in the abyssal hills. The rms topographic height in the radiative wavenumber range

given by (3.1) is 60 m.

There are no high resolution multi-beam topography data available in the South-

east Pacific region. We rely on the global topography product (http://topex.ucsd.edu)

which, in this region, is a combination of satellite bathymetry (Smith and Sandwell,

1997) and available ship soundings (Fig. 3-9). The satellite bathymetry is too coarse

to fit the model spectrum, even at the largest scales. Hence we compute a character-

istic one-dimensional spectrum as an average over ten different spectra along the ship

tracks (Fig. 3-10). The error bar is estimated as a 95% confidence interval. Spectrum

captures the transition from the plateau at topographic scales, larger than about 30-

40 km, to a -2.5 roll-off at the smaller scales. At scales smaller than about 4-5 km,

which is roughly the resolution of the shipboard data, the topography spectrum is

not resolved and drops down rapidly.

We rely on the model of Goff and Jordan (1988) to extrapolate the spectrum down

to the whole range of scales necessary for the wave radiation calculation. We fit a

one-dimensional form of the model spectrum, obtained by integrating (3.3) along one

dimension, to the spectrum estimated from the data at scales which are resolved by

the shipboard data. In case of isotropic topography, k0 = l0 = k∗, the one-dimensional

spectrum is,

P1D(k) = h2k(ν−2)
∗ (ν − 2) · B[1/2, (ν − 1)/2] ·

(

k2
∗ + k2

)−(ν−1)/2
, (3.4)

where B[1/2, (ν − 1)/2] is the beta function.
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If topography is anisotropic then the one-dimensional spectrum has the same form,

but the characteristic wavenumber k∗ is a function of k0, l0, and the azimuth angle φ0,

i.e. k∗ = k∗(k0, l0, φ0). The least-squares estimates of the free parameters of the model

are the rms height of topography (h2)1/2 = 105 m, the characteristic wavenumber

k∗ = 1.8×10−4 m−1, and the high wavenumber slope ν = 3.5. The model spectrum lies

well within the error bar at all resolved scales and provides the required extrapolation

to the smaller scales. Scales below 4-5 km where model is outside the error bar are

unresolved by shipboard data and can not be trusted. The rms topographic height

is estimated to be about three times smaller in the Southeast Pacific than in the

Drake Passage region reflecting a difference in topographic roughness between two

regions. This difference results in about an order of magnitude difference in the two

topographic spectra, which largely determine wave energy radiation.

3.3 Energy radiation theory

A mean geostrophic flow over small-scale finite amplitude topography radiates internal

gravity waves. In Chapter 2 we found that the momentum flux associated with the

internal waves drives strong inertial oscillations confined to a few hundred meters from

the ocean bottom. Numerical simulations show that the inertial oscillations have a

limited impact on the energy radiated into the internal wave field: the bottom energy

conversion is increased by about 30% over the steady lee wave generation problem for

monochromatic topography. Instead, the inertial oscillations provide a background

shear that promotes wave breaking so that large fractions of the radiated wave energy

is dissipated within a few hundred meter of the bottom topography. For practical

purposes, we will neglect the 30% correction due to inertial oscillations in the bottom

energy conversion estimate. The wave radiation then reduces to the classical lee

wave problem discussed by Bell (1975a,b). However the inertial oscillation feedback

is crucial to our assumption that substantial fraction of radiated energy is locally

disipated. In the linear lee wave problem no wave breaking occurs.
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3.3.1 Lee wave radiation

Internal lee waves are generated in a stratified fluid when a steady geostrophic flow

runs over uneven bottom topography. Bell (1975a,b) shows that the energy radiated

in steady lee waves, in the limit of small amplitude topography, is given by,

E =
ρ0

4π2

∫ +∞

−∞

∫ +∞

−∞

(Uo · k)

|k| P(k)
√

(Uo · k)2 − f 2
√

N2 − (Uo · k)2dk, (3.5)

where P(k) is the 2-D topography spectrum, k = (k, l) is the wavenumber vector,

U0 is the bottom velocity vector, N is the bottom stratification, f is the Coriolis

frequency, and ρ0 is a reference density. This result applies for wavenumbers in

the radiation range, as given in (3.1), and at small inverse Froude number, Fr−1 =

Nh/|U0|, where h is a characteristic topographic height. In Chapter 2 we showed that,

for monochromatic topography, the linear theory prediction remains accurate until

Fr−1
c = 0.7 beyond which energy conversion saturates due to topography blocking

effects.

Expression (3.5) predicts that energy radiation at each wavenumber depends on

the topographic elevation at that scale and the relative orientation of the velocity

and wavenumber vectors. Without loss of generality, we rotate the reference frame

to have the velocity vector Uo along the ’k’-axis. Then, Uo · k = |Uo|k, and the

expression (3.5) reduces to,

E =
ρ0|Uo|

2π

∫ +∞

−∞
dk
√

|Uo|2k2 − f 2
√

N2 − |Uo|2k2 · 1

2π

∫ +∞

−∞

k

|k|P(k)dl, (3.6)

where k = (k, l) is now the wavenumber in the reference frame along and across the

mean flow. The outer integral on the right hand side depends only on the wavenumber

k in the direction of the mean flow vector, and includes contributions from wavenum-

bers in the radiative range. The inner integral, on the other hand, does not depend on

the properties of the mean flow. It depends only on the properties of the topography

spectrum and can be integrated over all wavenumbers in the direction across the mean

flow velocity vector. It is convenient to define the effective topography spectrum in
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wavenumber k as,

Peff (k) =
1

2π

∫ +∞

−∞

k

|k|P(k)dl. (3.7)

Then wave radiation from two-dimensional topography reduces to an equivalent one-

dimensional wave radiation problem in the direction along the mean flow with the

topography spectrum given by Peff (k). The energy conversion can now be rewritten

in the following nondimensional form as an integral in wavenumber k,

E

ρ0|U0|3
=

1

π

∫ N/|U0|

f/|U0|
F(k)α(k)

(

1 − f 2

|U0|2k2

)

dk, (3.8)

where F(k) = Peff (k)µ2(k) is the topography inverse Froude number spectrum,

α(k) = kµ−1(k) is the internal wave slope, and µ(k) is the internal wave vertical

wavenumber,

µ2(k) = k2 N2 − |Uo|2k2

|Uo|2k2 − f 2
. (3.9)

Equation (3.8) together with the effective topography spectrum defined in (3.7) con-

stitute the building blocks for our estimates of wave radiation from data.

3.3.2 Simplified theory

The expression for the energy conversion in (3.8) is quite opaque. Making a few

additional assumptions about the shape of the topography spectrum, and the ratio

of frequencies f and N , the expression can be substantially simplified. As we show

below, the additional assumptions are well satisfied in the regions considered in this

study.

First, to simplify the shape of topography spectrum we assume that it is isotropic,

i.e. k0 = l0 = κ0, and internal waves radiate from topography scales such that

|k|2 ≫ κ2
0, then using (3.3) and (3.7) we obtain,

Peff (k) = Sk−(ν−1), (3.10)
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where

S = h2κν−2
0 (ν − 2)B(1/2, ν/2). (3.11)

This approximation of the effective spectrum captures both the magnitude and the

slope of the spectrum at high wavenumbers where wave radiation mostly occurs.

Plugging the effective topography spectrum (3.10) into energy conversion expression

(3.8) we get,

E =
1

π
ρoSN |U0|2

|U0|1/2

f 1/2

√

f

N
·
∫ 1

f/N
t2−ν(1 − t2)1/2(1 − f 2

N2
t−2)1/2dt, (3.12)

where t is the new variable of integration given by,

t =
|U0|
N

k. (3.13)

If we expand the two square roots in their Taylor series, the integral (3.12) can be

evaluated analytically. Using the slope of topography spectrum at high wavenumbers

ν = 7
2

and assuming that f/N ≪ 1 we get a simplified expression for the energy

conversion at the bottom,

E =
1

π
ρoSN |U0|2 ·

|U0|1/2

f 1/2





9

5
− 7

3

√

f

N
+ O(

f 2

N2
)



 (3.14)

The expression (3.14) can be compared with the equivalent expression for radiation

by a monochromatic topography, E = 1/2ρ0h
2kNU2. If we define the mean product

of the height squared and the wavenumber h2k|LW characteristic of the lee wave

wavenumber range as,

h2k|LW =
1

π

∫ N/|U0|

f/|U0|
kPeff(k)dk =

2S

π

|U0|1/2

f 1/2



1 −
√

f

N



 , (3.15)
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then expression (3.14) takes the form,

E =
1

2
ρoh2k|LW N |U0|2 ·

(

9
5
− 7

3

√

f
N

+ O( f2

N2 )
)

(

1 −
√

f
N

) . (3.16)

To the leading order energy radiation by a multichromatic topography can be un-

derstood as radiation from a mono-chromatic bump with topographic characteristics

given by h2k|LW . However, as opposed to the energy radiation from monochromatic

topography which depends quadratically on velocity magnitude |U0|2, multichromatic

energy radiation is proportional to |U0|5/2 where the dependence on velocity is deter-

mined by the slope of the topographic spectrum in the wave number range associated

with lee wave radiation.

3.4 Results

The wave radiation expressions in (3.8) and (3.14) are now used to estimate the

generation and dissipation of internal gravity waves from the velocity and stratifica-

tion data discussed above. Energy radiation is estimated for each station along the

sections. It is assumed that the topography characteristics are uniform along each

section for the two regions considered.

3.4.1 Effective topography spectrum

We estimate the effective spectrum defined in (3.7) using the 2-D model spectrum

in (3.3) and integrating it over all wavenumbers across the direction of the mean

flow. In the Drake Passage region the 2-D spectrum is estimated directly from data

and all parameters of the model spectrum are defined by a least square fit. In the

Southeast Pacific, only 1-D topographic sections are available, and the 2-D spectral

representation i.e. the degree of anisotropy can not be uniquely determined; we will

resort to estimate the uncertainty associated with plausible ranges in anisotropy.

In order to estimate Peff , we proceed as follows. First, we assume that the mean
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geostrophic flow can come at any angle with respect to the topography. The KE

in the geostrophic velocity field is dominated by transient eddies, whose velocity

direction is very variable and likely to span the whole 360o over a few eddy turn-over

times. Rather than estimating energy radiation for a particular velocity realization

we estimate radiation for two limiting cases, i.e. for a flow going across and along

the major axis of the topographic spectrum. The two estimates provide the lower

and the upper limits of the wave energy radiation estimate and, thus, define the

uncertainty due to the variable and unknown orientation between the mean flow and

topography. Drake Passage estimates of the effective spectrum are shown in Fig.

3-11. Both spectra have a -2.5 roll-off in the lee wave radiation wavenumber range.

Weak anisotropy in topography, 1.8, results in about a factor of 3 difference between

the lower and the upper limits of the effective spectrum estimate.

In the Southeast Pacific we must further address the issue of how sensitive results

are to the undetermined degree of anisotropy in topography. As a starting point,

we assume that its aspect ratio is similar to the one in the Drake Passage region,

a ≃ 1.8. In both the Southeast Pacific and Drake Passage regions topography at

scales larger than 50-100 km, is dominated by ridges with similar characteristics.

Since topographic features formed at the ridged crests tend to elongate perpendicular

to the direction of spreading in a self-similar fashion (Goff and Jordan, 1988), it

seems reasonable to assume that the spectral roll-offs are similar in the two regions.

Nevertheless, we also estimate the radiation for an isotropic topography to quantify

the effect of uncertainties in anisotropies in topography on the radiation calculations.

Estimates of the effective spectrum for the Southeast Pacific are shown in Fig.

3-11. The lower and the upper radiation limits correspond, respectively, to the mean

flow along the short principal axis of the ellipse (k∗, a
−1k∗) and along the long prin-

cipal axis of the ellipse (ak∗, k∗). The lower and the upper limits are different by a

factor of about 10-12 in lee wave radiation range. The greater degree of uncertainty

in the Southeast Pacific region results from the uncertainty in both the mean flow

orientation and the length of the principal axes of anisotropy. The lower limit of the

Drake Passage region spectrum in about 1.5 times greater that the upper limit of the
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Southeast Pacific region spectrum implying that the topographic roughness is sys-

tematically greater in Drake Passage at all topographic scale and in both directions

of the principal axes.

3.4.2 Inverse Froude number estimate

Idealized numerical simulations with monochromatic topography show that the char-

acter of the radiated waves and the overall magnitude of energy radiated depend

on the value of the inverse Froude number, Fr−1. The bottom energy conversion is

shown to increase quadratically with inverse Froude number consistent with linear

theory, for Fr−1 ≤ Fr−1
c = 0.7, where Fr−1

c is the critical inverse Froude number.

When Fr−1 exceeds the critical value Fr−1
c some fraction of the mean flow becomes

blocked by topography and energy conversion saturates. The interpretation is that

the stagnant fluid in the trough acts to reduce the effective topography seen by the

mean flow. This saturation is included in the energy conversion estimate for the

Southern Ocean by limiting energy conversion for inverse Froude numbers larger that

the critical value. The inverse Froude number that characterizes the whole range of

topographic wavenumbers is estimated from the inverse Froude number spectrum as,

Fr−1 =

√

2

π

∫ N/|U0|

f/|U0|
F(k)dk. (3.17)

In the limit of monochromatic topography the vertical scale of the waves is ≃ N/|U0|
and this definition of inverse Froude number reduces to the definition Nh/|U0| used

to describe 2-D idealized simulations in Chapter 2. Here, we use expression (3.17)

to estimate Fr−1 for the multichromatic topography in the Drake Passage and the

Southeast Pacific regions.

An example of inverse Froude number spectrum F(k) computed using the Drake

Passage topography spectrum and the mean flow characteristics in the Polar Front of

the ACC is shown in Fig. 3-12. The F(k) spectrum is dominated by large topographic

scales because the ratio of the topographic height to the vertical scale of the radiated

waves grows with scale: scales with the lowest frequency f have infinite vertical
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wavenumber and the inverse Froude number spectrum becomes infinite. The result

is correct in the sense that large-scale lee waves are super-critical with respect to

topography (their ray paths are nearly horizontal) and hence are likely to become

nonlinear. However these waves do not contribute much to upward energy radiation.

To estimate Fr−1 for the entire range of topographic scales we include only those

waves whose vertical group velocity is large enough to radiate 1 km above the bottom

within 10 days, which is a characteristic eddy time scale. These are the waves that

can efficiently radiate energy far above the bottom and sustain enhanced energy

dissipation observed in the bottom 1 km. The other waves can contribute to bottom

dissipation, but not to radiation.

Fig. 3-13 shows inverse Froude numbers estimated from (3.17) for the sections

across Drake Passage and in the Southeast Pacific. The Southeast Pacific section is

characterized by smaller values of inverse Froude number of about Fr−1 = 0.05− 0.3

mostly due to the lower energy levels of effective topography spectrum. In Chapter 2

we showed that for this Fr−1 range radiation is mostly in the form of quasi-stationary

lee waves. In the Drake Passage region, however, the inverse Froude number spans the

range from about Fr−1 = 0.2−0.4 south of 60.5oS to roughly Fr−1 = 0.5−1.0 north

of it. These Froude numbers correspond to the time-dependent wave radiation regime

associated with vigorous inertial oscillations and wave breaking in the bottom 1 km.

Fr−1 is lower in the South ACC Front than in the Polar Front mostly because of

the lower values of stratification frequency in the southern part of the Drake Passage

region.

To summarize, inverse Froude numbers in the two regions of the Southern Ocean

considered in this study vary from essentially zero to Fr−1 = 1.0, corresponding to

sub-critical and critical topography regimes. In idealized numerical simulations with

monochromatic topography this range of inverse Froude number spans the transition

from the radiation of stationary lee waves to the radiation of time-dependent waves.

The numerical experiments showed that the bottom value of energy flux is well pre-

dicted by the linear theory for both wave radiation regimes until Fr−1 reached Fr−1
c .

Radiation levels did not further increase for Fr−1 ≥ Fr−1
c . Inverse Froude number
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estimated from observations exceeds this critical value for the stations in the Polar

Front of the ACC.

3.4.3 Energy radiation estimate

We estimate energy radiation in both regions using effective topography spectra,

bottom velocity and stratification. In each station where the inverse Froude number

exceeds its critical value bottom energy radiation is adjusted to account for the wave

saturation effect,

E =











E(Fr−1) Fr−1 ≤ Fr−1
c

E(Fr−1)
(

Frc

Fr

)−2
Fr−1 > Fr−1

c

where E(Fr−1) is given by (3.8). This correction reduces the upper limit of the

energy conversion estimate by about 25% only in the Polar Front in Drake Passage.

Elsewhere Fr−1 does not exceed the critical value Fr−1
c .

We report four different calculations: (I) We compute E from the full expression

(3.8) and the anisotropic spectrum (3.3). The upper and lower values corresponding

to flow along the major and minor axis of the topographic spectrum are reported, (II)

We repeat the estimate assuming that the spectra are isotropic, (III) Finally we use

the simplified expression in (3.14). Energy radiation estimates for the section in the

Drake Passage region are shown in Fig. 3-14. Energy conversion in Drake Passage

is highly non-uniform along the section. Its spatial variability is dominated by the

bottom velocity distribution and has two maxima corresponding to the Polar Front

and the South ACC Front of the ACC. Values of energy radiation averaged along

the section are in the range 15 - 31 mW m−2 where the lower and the upper limits

correspond respectively to the mean flow along and across topographic anisotropy.

Energy conversion estimates computed using an isotropic spectrum and the sim-

pler expression (3.14) fall in between the lower and the upper limits of the wave

energy radiation estimate south of Drake Passage and close to the upper limit in

the north. The isotropic spectrum calculation and the simplified theory result agree

remarkably well in both regions supporting the assumptions made to simplify and
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evaluate the integral expression. Section averaged energy radiation estimated using

isotropic spectrum is 25 mW m−2 and using the simplified expression (3.14) is 27 mW

m−2.

Variations in the energy radiation estimate for an anisotropic spectrum are due

to variation in the direction of the mean flow. We expect the eddy velocity to span

all directions over time. Therefore, the best estimate of the time average radiation is

the mean between 15 and 31 mW m−2, i.e. 23 mW m−2.

We make the same three estimates along the section in the Southeast Pacific region

(Fig. 3-15). Energy radiation estimates are more than an order of magnitude smaller

mostly due to lower energy levels in topography spectrum and, partly, because of lower

values of the bottom stratification and velocity. The energy radiation estimated using

anisotropic spectrum and averaged along the section is in the range 0.4-3.3 mW m−2.

The wide range in this estimate reflects the uncertainty in anisotropy, which adds to

the mean flow orientation uncertainty discussed in the previous estimate. Estimates

based on an isotropic spectrum and the simplified theory (3.14) produce respectively

1.2 mW m−2 and 1.4 mW m−2 for the section averaged energy radiation. Radiation

is increased in the core of the ACC and drops down essentially to zero on its flanks.

Once again, the mean value, 1.8 mW m−2, is our best estimate of the time average

radiation spanning all possible velocity orientations.

Wave energy radiation estimates from the linear theory agree very well with the

magnitudes and spatial distribution of turbulent energy dissipation observed directly

in the Southern Ocean (Naveira-Garabato et al., 2004). This result suggest that

the bulk of enhanced mixing observed in the Southern Ocean can be sustained by

geostrophic flow impinging on small-scale topography.

3.5 Multichromatic topography simulations

The amount of observed energy dissipation and its spatial variation between the two

regions seems to be well captured by the linear energy radiation estimate. However,

the energy radiated by internal waves might not be all dissipated locally. Some
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fraction of that energy can radiate away in low-modes and dissipate in remote regions.

Idealized numerical simulations with monochromatic bottom topography show that

about 30% of energy radiated by waves generated by geostrophic flows dissipates

locally within 1 km above the bottom. In this section, we show that the result carries

over to multichromatic topography.

3.5.1 Experiment setup

We use the nonhydrostatic configuration of the MIT general circulation model (MIT-

gcm) (Marshall et al., 1997). The numerical setup is similar to that used in the

idealized simulations described in Chapter 2. The domain is 2-D, horizontally peri-

odic with Lx × Hz = 10 km × 7 km, somewhat larger than in Chapter 2 to allow

for different topographic wavenumbers. We use a resolution of ∆x = 16.6 m in the

horizontal and ∆z = 10 m in the vertical which gradually stretches to ∆z = 300 m in

the region from 2 km to 7 km above the bottom. Boundary conditions are a sponge

layer between 2 and 7 km above the bottom to absorb waves that do not break in

the bottom 1 km, and free-slip condition at the bottom. No-slip boundary condi-

tion is expected to reduce wave radiation by about 20-30% based on two-dimensional

idealized simulations with no-slip boundary condition discussed in Chapter 2. A

depth-independent mean flow UG = 0.1 m s−1 is forced by adding a body force fUG

to the meridional momentum equation representing a barotropic pressure gradient

which balances mean flow geostrophically at all depths.

The bottom topography used in the simulations is randomly generated to have

the same spectrum as in the observations, i.e. the 1-D model spectrum in (3.10) with

the spectrum amplitude chosen to determine Fr−1 as defined in (3.17). Topography

includes horizontal scales in the characteristic lee wave radiation range which spans

scales roughly from 600 m to 6 km and greatly exceeds spectrum roll-off wavenumber

κ0 = 1.8 × 10−4 m−1 required to use model spectrum (3.10). The model spectra of

the observed topography and randomly generated simulation spectra corresponding

to the Drake Passage and the Southeast Pacific regions are shown in Fig. 3-16. In

the simulation of the Southeast Pacific region the topography amplitude is factor of
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10 smaller compared to the Drake Passage simulation, as estimated from topographic

data.

3.5.2 Results

Snapshots of the wave zonal velocity component for the Drake Passage and the South-

east Pacific regions after 5 days of simulations are shown in Fig. 3-17 and Fig. 3-18

respectively. The Drake Passage simulation is characterized by radiation of waves

with large amplitude of about 0.1 m s−1 which is comparable to the magnitude of the

mean flow. As waves radiate away from topography, they break and their amplitude

drops by an order of magnitude within the bottom 1 km. The wave fields both close

to the topography and in the far field are highly multichromatic and time-dependent.

In the Southeast Pacific simulation, where the topography spectrum is an order of

magnitude smaller, waves have a lower amplitude and, more importantly, do not de-

cay significantly with height. Waves radiate freely away from topography until they

reach the sponge layer at the upper boundary and dissipate. The wave field is domi-

nated by waves with horizontal scale of roughly 3 km with a weaker multichromatic

background field due to different topographic scales. Waves are stationary and have

scales consistent with linear lee wave theory.

The time evolution of the zonally averaged velocity is shown in Fig. 3-19 and

Fig. 3-20 for the Drake Passage and the Southeast Pacific regions respectively. The

Drake Passage simulation is characterized by vigorous inertial oscillations which de-

velop spontaneously and reach a magnitude comparable to the mean flow within the

first 3-5 days. In the Southeast Pacific simulation, however, there are no inertial

oscillations for the whole period of simulation. This result is consistent with the res-

onant feedback mechanism described in Chapter 2. Large amplitude internal waves

in the Drake Passage simulation, drive a large momentum flux divergence and trig-

ger inertial oscillations at the bottom. Inertial oscillations in turn modify the wave

generation process and produce time dependent internal waves which can effectively

reinforce inertial oscillations. The combination of large amplitude waves and inertial

oscillations leads to a new statistically steady state characterized by time dependent
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waves and bottom intensified inertial oscillations. In the Southeast Pacific, wave ra-

diation is well described by the linear lee wave theory due to the lower inverse Froude

number in this region.

Vertical profiles of energy dissipation rate diagnosed from the simulations are

shown in Fig. 3-21. Energy dissipation is one to two orders of magnitude larger in

Drake Passage than in the Southeast Pacific. Dissipation is significantly enhanced

in the bottom several hundred meters in the Drake Passage and nearly uniform in

the southeast Pacific. Total energy dissipation integrated in the bottom 1 km is 18

mW m−2 and 1 mW m−2 in the two regions. Linear theory energy radiation values

corresponding to these two simulations are 28 mW m−2 and 6 mW m−2. A greater

fraction of radiated energy dissipates locally in the Drake Passage, close to 65%,

than in the Southeast Pacific simulation, close to 15%. Both the vertical profiles and

the total value of energy dissipation are consistent with direct observations (Naveira-

Garabato et al., 2004).

3.6 Conclusions

Recent estimates from LADCP observations show enhanced turbulent mixing in the

Southern Ocean associated with internal wave breaking which is typically concen-

trated in the bottom 1 km and has significant spatial variations. In this study we

tested the hypothesis that this mixing can be sustained by internal waves generated

by geostrophic eddies flowing over small-scale bottom topography. We applied lin-

ear wave radiation theory to the bottom topography, velocity and stratification data

from the Southeast Pacific and the Drake Passage regions characterized respectively

by low and high rates of abyssal mixing. We showed that the estimated energy radi-

ation and its spatial variation are consistent with the observations. Using numerical

simulations with topographic characteristics representative of these two regions we

confirmed that significant fraction of energy radiated by internal waves can dissipate

locally and sustain the energy dissipation observed in the bottom 1 km.

Section averaged wave energy radiation is estimated to be 0.4-3.3 mW m−2 in
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the Southeast Pacific region and 15-31 mW m−2 in the Drake Passage region. The

lower and the upper limits of these two estimates are determined by the uncertainty

in the orientation of the mean flow with respect to anisotropy in topography: mean

flows in the direction across small-scale topographic features radiate more energy

than flows along. As only 50% of energy radiation estimated from linear lee wave

theory dissipates locally, our best estimate for local energy disipation is less than

1 mW m−2 in the Southeast Pacific and 12 mW m−2 in the Drake Passage region.

These estimates are on the same order as the 1 mW m−2 and 10 mW m−2 of energy

dissipation estimated from observations in these two regions (Naveira-Garabato et al.,

2004).

The results show that energy radiation varies substantially across the ACC. In

Drake Passage it is strongly dominated by the Polar Front and the South ACC Front

of the ACC. The South ACC Front has lower energy radiation, mostly due to the

lower values of stratification. In the Southeast Pacific region stratification does not

change significantly along the section and the energy radiation tracks variations in

the velocity field. It is largest in the core of the ACC and drops down essentially to

zero on its flanks.

Our analysis suggests that the substantial difference in energy radiation between

these two regions results partly from small differences in velocity and stratification and

mostly from differences in topographic roughness. If applied to the same topographic

spectrum energy radiation in the two regions would differ by only about a factor of

3, because velocity and stratification are similar in the two regions. The topographic

spectrum, however, is estimated to be an order of magnitude larger in the Drake

Passage region, resulting in wave radiation more than 10 times larger than in the

Southeast Pacific region.

Inverse Froude numbers are estimated to be in the range 0.05-0.3 and 0.2-1.0

in the Southeast Pacific and the Drake Passage regions respectively. According to

idealized numerical simulations wave radiation at inverse Froude numbers Fr−1 < 0.7

is well described by the linear theory. We ran numerical simulations representative

of topography and flows in the two regions. In Drake Passage radiation was strongly
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nonlinear and generated strong inertial shear and wave breaking. About 65% of the

total energy radiated was dissipated within 1 km of the topography. In the Southeast

Pacific region, radiation was in the form of linear lee waves and only 15% of the

radiated energy was actually dissipated.

Linear theory and numerical simulations show that the wave energy radiation

is proportional to the bottom value of kinetic energy in geostrophic motions. Fer-

rari and Wunsch (2008) show that 80-90% of the KE of the ocean is in geostrophic

eddies generated by instabilities of the mean currents. This implies that wave radi-

ation is largely maintained by geostrophic eddies rather than by mean flows. The

results further show that wave radiation and subsequent breaking are very sensitive

to small-scale topographic roughness and orientation of bottom velocity with respect

to anisotropy in topography. Since topographic roughness is spatially variable in the

ocean and geostrophic velocities change on the eddy turnover time scale, wave ra-

diation and dissipation at the ocean bottom are predicted to be both spatially and

temporally variable.

Our results suggest that there is a direct correlation between small-scale dissipa-

tion rates and the magnitude of the geostrophic eddy velocity. Such a correlation

could be investigated with mooring data. Another avenue for future research is to

study the degree to which wave radiation extracts energy from the geostrophic eddy

field.
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Figure 3-1: Buoyancy frequency (s−1) in logarithmic scale from the ALBATROSS
section, Drake Passage.
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Figure 3-2: Flow speed (m s−1) from the ALBATROSS section, Drake Passage.
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Figure 3-3: Buoyancy frequency (s−1) in logarithmic scale from the P18 section,
Southeast Pacific.
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Figure 3-4: Flow speed (m s−1) from the P18 section, Southeast Pacific.
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Figure 3-5: Bottom stratification (s−1) for the Drake Passage and the Southeast
Pacific regions.
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Figure 3-6: Bottom speed (m s−1) for the Drake Passage and the Southeast Pacific
regions.
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Figure 3-7: Multi-beam topography data (British Antarctic Survey) for the Drake
Passage region superimposed on the bathymetry data from satellite altimetry (Smith
and Sandwell, 1997).
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Figure 3-8: Two-dimensional topography spectrum estimated using multi-beam to-
pography data from the Drake Passage (colored lines) and fitted with model spec-
trum (Goff and Jordan, 1988) (black lines); characteristic wavenumber range for lee
wave radiation (yellow).
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Figure 3-9: Satellite bathymetry of the Southeast Pacific region (m); LADCP stations
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Figure 3-10: One-dimensional topography spectrum estimated along ship tracks from
the combination of satellite bathymetry and shipboard topography.
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Figure 3-11: Effective topographic spectra for the Drake Passage region (red) and the
Southeast Pacific region (blue) corresponding to the lower (dashed) and the upper
(solid) limits of wave energy radiation.
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Figure 3-12: Inverse Froude number spectrum (black) for a station in the Polar Front
of the ACC in the Drake Passage region, lee wave radiation range (yellow).
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Figure 3-13: Inverse Froude number estimates for the Drake Passage (red) and the
Southeast Pacific (blue) regions estimated using the lower (dashed) and the upper
(solid) limits of effective topography estimate.
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Figure 3-14: Energy radiation estimate (mW m−2) along the ALBATROSS section
in the Drake Passage region.
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Figure 3-15: Energy radiation estimate (mW m−2) along the P18 section in the
Southeast Pacific region.
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Figure 3-16: Bottom topography spectra used for simulations characteristic of the
Drake Passage (red squares) and in the Southeast Pacific (blue squares) regions;
corresponding Goff’s model spectra are shown as black curves.
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Figure 3-17: Snapshot of the wave zonal velocity (m s−1) from the Drake Passage
simulation.
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Figure 3-18: Snapshot of the wave zonal velocity (m s−1) from the Southeast Pacific
simulation.
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Figure 3-19: Time evolution of the zonally averaged meridional velocity component
(m s−1) from the Drake Passage simulation.
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Figure 3-20: Time evolution of the zonally averaged meridional velocity component
(m s−1) from the Southeast Pacific simulation.
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Figure 3-21: Profiles of energy dissipation rate (W kg−1) diagnosed from the Drake
Passage (red) and the Southeast Pacific (blue) simulations.
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Chapter 4

3-D Theory and Simulations

4.1 Introduction

In the previous chapters we showed that radiation of internal waves by mean geostrophic

flows depends mostly on topographic scales from about 600 m to 6 km for parameters

characteristic of the Southern Ocean. At these scales, ocean bottom topography is

characterized by abyssal hills with characteristic scales of less than 10 km which cover

approximately 80% of the world’s seafloor. Abyssal hills are topographic features cre-

ated by vulcanism and block faulting at the ridge crests. They are weakly anisotropic

being elongated perpendicular to the direction of spreading (Goff and Jordan, 1988).

The goal of this chapter is to extend the 2-D theory of radiation of internal waves

from topography developed in Chapter 2 to the full complexity of 3-D topography.

The nature of mean flow-topography interaction is different in 2-D and 3-D. In

2-D, the mean flow is forced to go over topography and radiate internal waves until

it becomes blocked at high inverse Froude numbers and the radiation saturates. In

3-D, however, at finite inverse Froude numbers the mean flow can partially split and

go around topography rather than over it, and potentially reduce wave radiation.

Idealized 2-D numerical simulations show that wave energy dissipation within

the bottom several hundred meters depends heavily on the vertical shear associated

with inertial oscillations. Bottom intensified inertial oscillations are driven by the

divergence of internal wave momentum fluxes. We wish to investigate whether wave
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breaking and the subsequent wave-mean flow resonant feedback carry over to 3-D,

despite the expected changes in the scale and amplitude of generated waves.

In order to test whether the results described in Chapter 2 can be applied to the

3-D wave radiation problem, we extend both linear theory and numerical simulations

to a 3-D flow over a 2-D bottom topography. In section 2, we present 3-D linear

wave generation theory and discuss how it compares to 2-D theory. In section 3, we

describe the numerical simulation setup. In section 4, we compare the predictions

of 3-D linear theory, with results from numerical simulations. Finally, results are

summarized in section 5.

4.2 Theory

We extend the 2-D internal wave generation theory described in section 2.4.3 to a

3-D, (x, y, z), domain with arbitrary bottom topography h = h(x, y). The zonally

averaged flow is assumed to be the same as in the 2-D problem described before, i.e

the sum of a mean geostrophic flow and a spatially uniform inertial oscillation,

ū(t) = UG + UI cos f(t − t0), (4.1)

v̄(t) = −UI sin f(t − t0), (4.2)

The dynamics of internal waves is governed by the set of 3-D equations (2.15) through

(2.18) with the lower boundary condition (2.19). To simplify the analysis, as in 2-D

theory, we use Rayleigh damping to represent wave dissipation, as per eq. (2.26).

In order to compute wave radiation, it is convenient to change reference frame

to the coordinate system (ξ, η) moving with the time dependent mean flow ū(t) =

(ū(t), v̄(t)),

ξ = x −
∫ t

t0
ū(t)dt, η = y −

∫ t

t0
v̄(t)dt. (4.3)

In the moving reference frame, the dynamics in (2.15) through (2.18) can be reduced
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to a single equation for the vertical velocity w(1),

(

∂tt + 2λ∂t + λ2
)

∇2w(1) + N2∇2
Hw(1) + f 2w(1)

zz = 0, (4.4)

where ∇2 = ∂ξξ + ∂ηη + ∂zz and ∇2
H = ∂ξξ + ∂ηη are the 3-D and the 2-D Laplace

operators respectively. Top and bottom boundary conditions are of vanishing vertical

velocity as z → ∞ and zero velocity normal to topography,

w(1)|z=0 = ū · ∇Hh. (4.5)

Periodic topography implies a periodic solution, and we can expand the solution

into Fourier modes in the (ξ, η)-coordinate frame. The bottom boundary condition

takes the form,

w̃(1)|z=0 = ĥ
∂

∂t
e

i
∫

t

t0

(k·ū)dt
(4.6)

where w̃(1) is the Fourier transform of the wave vertical velocity in the moving (ξ, η)-

coordinate frame and ĥ is the Fourier transform of the bottom topography in the

fixed (x, y)-coordinate frame. Using the mean flow in (4.1) and (4.2) and applying

the Jacobi-Anger expansion, the bottom boundary condition can be written as a

superposition of plane waves,

w̃(1)|z=0 = iĥ
∞
∑

m=−∞

∞
∑

n=−∞

σmnJm(βk)Jn(βl)e
i[σmn(t−t0)+ π

2
n], (4.7)

where σmn = (m + n)f + UGk is the intrinsic frequency of the wave harmonic (m, n),

i.e. the (m + n)-th harmonic of inertial frequency f , Doppler shifted by the constant

zonal geostrophic flow UG. The parameters βk = UIk/f and βl = UI l/f are the

zonal and meridional maximum excursions of a water parcel advected by an inertial

oscillation of amplitude UI , and Jm and Jn are Bessel functions of the first kind.

The bottom boundary condition (4.7) is analogous to the 2-D bottom boundary

condition (2.29). It shows that a superposition of a constant mean flow and an

inertial oscillation over bottom topography results in radiation of a set of waves

131



which are harmonics of the inertial frequency. The main difference is that, in 3-D,

the topography can vary in both zonal and meridional directions, and hence there

are two independent harmonic numbers m and n. The amplitude of each harmonic

is controlled by the excursion parameters βk and βl which can be different depending

on the aspect ratio of topography. The phase shift π
2
n results from the phase shift

between the zonal and meridional components of the prescribed inertial oscillation in

(2.23) and (2.24). In the absence of topography variations in meridional direction,

l → 0, the bottom boundary condition (4.7) reduces to its 2-D equivalent (2.29).

Solutions for w̃(1) are obtained by projecting the equation (4.4) onto Fourier

modes, and imposing the bottom boundary condition (4.7). The solution is a su-

perposition of modes,

w̃(1) =
∞
∑

m=−∞

∞
∑

n=−∞

w̃(1)
mn, (4.8)

each of which takes the form,

w̃(1)
mn = iĥσmnJm(βk)Jn(βl)e

iθmn , θmn = µmnz + σmn(t − t0) +
π

2
n. (4.9)

The coefficient µmn is a complex number whose real and imaginary parts represent,

respectively, the wave vertical wavenumber and an inverse decay scale due to damping,

µ2
mn = (k2 + l2)

N2 − (σmn − iλ)2

(σmn − iλ)2 − f 2
. (4.10)

The pressure modes associated with w̃(1)
mn can be obtained by transforming (2.15)

through (2.18) into the moving reference,

p̃(1)
mn =

iĥσ2
mn√

k2 + l2
µmn√
k2 + l2

(σmn − iλ)2 − f 2

σmn(σmn − iλ)
Jm(βk)Jn(βl)e

iθmn . (4.11)

The w̃(1) and p̃(1) solutions in (4.9) and (4.11) can then be used to compute the

bottom value of energy radiation averaged over the horizontal plane and over an
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inertial period,

w(1)p(1) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

P(k)√
k2 + l2

∞
∑

m=−∞

∞
∑

n=−∞

∞
∑

p=−∞

∞
∑

q=−∞

σ2
mnσpq ×

×Jm(βk)Jn(βl)Jp(βk)Jq(βl)ℜ
(

µmn√
k2 + l2

(σmn − iλ)2 − f 2

σmn(σmn − iλ)
ei π

2
(n−q)

)

dk, (4.12)

where P(k) is the spectrum of topography.

The energy radiation averaged in space and time is given by the sum over all

possible couples of harmonics (m, n) and (p, q) whose frequencies σmn = σpq, i.e.

n+m = p+q. Other combinations of two harmonics generate no energy flux averaged

over an inertial period. The expression in (4.12) reduces to the 2-D energy radiation

expression in (2.35) in the limit of l → 0 and for a monochromatic topography. Also

(4.12) reduces to the well known expression for lee wave radiation in the limit of a

zero inertial oscillation, i.e. UI = 0 (Bell, 1975a,b).

4.3 Experiment setup

We use the nonhydrostatic configuration of the MIT general circulation model (Mar-

shall et al., 1997). The numerical simulation setup is similar to that used in the

idealized two-dimensional simulations described in Chapter 2. Here, we increase the

model grid to a 3-D, doubly periodic domain with Lx × Ly × Hz = 2 km × 2 km ×
7 km. We use a resolution of ∆x = 16.6 m in the horizontal and ∆z = 10 m in the

vertical which gradually stretches to ∆z = 300 m in the region from 2 to 7 km above

the bottom. The bottom topography used in the simulations is shown in Fig. 4-1

and given by,

h(x, y) = hT cos(kTx) cos(lT y), (4.13)

where hT is the amplitude of topography, and kT , lT are its zonal and meridional

wavenumbers. The topographic wavenumbers kT and lT do not vary between the

simulations and are set to kT = lT = 2π/2 km−1.

There is a sponge layer between 2 and 7 km above the bottom to absorb waves that
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do not break in the bottom kilometer. At the bottom, we use free-slip boundary con-

ditions. A depth-independent, horizontally uniform zonal mean flow UG = 0.1 m s−1

is forced by adding a body force fUG to the meridional momentum equation, repre-

senting a barotropic pressure gradient in geostrophic balance with UG at all depths

(see Chapter 2 for a discussion of these choices). Because of the large computational

cost of 3-D simulations, we run only three different experiments with topography am-

plitudes hT = 40, 60, and 80 m which span the range of topographic amplitudes where

time-dependent waves are radiated according to the 2-D simulations. All simulations

are run for 10 days, which is sufficient to reach a statistically steady state.

4.4 Results

In this section we test the predictions of linear theory versus numerical simulations

and compare the results to the 2-D problem discussed in Chapter 2. As before, we

decompose the model solution into a spatial mean (the mean) and deviations from

the mean (the waves). We demonstrate that in 3-D, as in 2-D, at finite inverse Froude

numbers the radiation of waves results in bottom intensified inertial oscillations which

favor local wave breaking.

4.4.1 Inverse Froude number

In order to compare the results of the 2-D and 3-D wave radiation problems, we need

to use consistently defined inverse Froude numbers. In 2-D we used inverse Froude

number defined as,

Fr−1
2D =

NhT

UG
, (4.14)

where N is the bottom stratification, UG is the bottom geostrophic velocity, and hT is

the amplitude of topography in (2.25). This form of the inverse Froude number follows

from a more general definition for the multichromatic topography (3.17) applied to
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the spectrum of (2.25) given by,

P2D(k) = π2h2
T · [δ(k − kT ) + δ(k + kT )] · δ(l), (4.15)

where spectrum P2D(k) is normalized according to (3.2).

Equivalently, applying the same definition to the spectrum of topography (4.13)

used in the 3-D simulations and given by,

P3D(k) =
1

4
π2h2

T · [δ(k − kT ) + δ(k + kT )] · [δ(l − lT ) + δ(l + lT )], (4.16)

we obtain,

Fr−1
3D =





1

2

kT
√

k2
T + l2T





1/2
NhT

UG

. (4.17)

In the special case of kT = lT , considered here, we get,

Fr−1
3D =

1

23/4

NhT

UG

. (4.18)

The prefactor 2−3/4 in (4.17) accounts for the different fractions of area occupied

by topography in 3-D versus 2-D (infinite meridional ridges in 2-D and axisymetric

bumps in 3-D).

4.4.2 Inertial oscillations

The time evolution of the zonally averaged velocity for the simulation with hT =60 m,

corresponding to Fr−1=0.36, is shown in Fig. 4-2. It shows strong and coherent

inertial oscillations which are not initially prescribed or externally forced in the simu-

lations. They develop spontaneously at the bottom and reach finite amplitude within

a few days. These oscillations are depth dependent with a vertical scale of about

1 km and are significantly intensified in the bottom 500-600 m.

The magnitude of the inertial oscillations at the seafloor as a function of time is

shown in Fig. 4-3 for simulations corresponding to Fr−1=0.24, 0.36, and 0.48. The

amplitude of inertial oscillations grows from less than 0.01 m s−1 (created supposedly
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by transient wave effect on the mean flow) to about 0.07-0.08 m s−1 within 3-4 days of

simulation. The equilibrated value of inertial oscillations is independent of topography

amplitude and it is 30% smaller in 3-D than in 2-D simulations.

We have not extended the wave-mean flow feedback theory to 3-D waves due to the

algebraic complexity of the problem. However a few points are clear. The spontaneous

emergence and the growth rates of inertial oscillations are very similar in 2-D and

3-D simulations, strongly supporting the inference that the 2-D resonant feedback

mechanism described in Chapter 2, section 2.4.4, operates also in 3-D. The inertial

oscillations are driven by the wave momentum fluxes, whose amplitude depends on

the Bessel function of the excursion parameter, UIk/f , and they equilibrate when

those fluxes vanish. Although an exact value of equilibrated amplitude depends on

all components of the wave momentum flux, we can find its order of magnitude using

flux formed by the first two harmonics. This flux vanishes at the first zero of the

Bessel function J0, when its argument is equal to ∼2.4, implying that the equilibrated

amplitude is given by UI ≈ 2.4f/k ≈ 0.08 m s−1.

4.4.3 Wave radiation

Linear theory is now tested against 3-D simulations and compared to the equivalent

2-D results. We diagnose the energy flux from simulations using deviations from

the zonal mean in pressure and vertical velocity and averaging it spatially in both

zonal and meridional directions and temporally over several inertial periods. The

energy flux is then compared to the 3-D prediction in (4.12) with the monochromatic

spectrum in (4.16) and the 2-D prediction (2.35) corresponding to the monochromatic

spectrum in (4.15).

The decay of wave energy flux with height above the bottom is shown in Fig. 4-4

for all three simulations. In general, the vertical structure of wave fluxes is similar

to the corresponding 2-D simulations. The magnitude of the energy flux increases

with topography amplitude. As waves radiate away from topography, the energy flux

drops substantially within the bottom 500 m where waves break and dissipate.

Fig. 4-5 shows the bottom values of the energy flux from 2-D and 3-D numerical
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simulations compared to the corresponding linear theory predictions. Both the 2-D

and 3-D energy radiation estimates scale linearly with Fr−2 until radiation saturates.

While 2-D radiation saturates at Fr−1
c ≈ 0.7, 3-D radiation seems to saturate at lower

inverse Froude number, possibly as small as Fr−1
c ≈ 0.5, supposedly due to both

topographic blocking and mean flow splitting effects. However, the three simulations

that we run are not sufficient to unequivocally determine the saturation Fr−1
c .

The 2-D and 3-D linear lee wave radiation estimates are collapsed into a single

line when geometrical differences are included in the inverse Froude number definition

(4.17). This result is consistent with the discussion in Chapter 3 about the reduction

of wave radiation in 3-D compared to 2-D as a result of the fact that the mean flow

sees a reduced effective topography in 3-D. Furthermore the estimated radiation from

numerical simulations are very close to the predictions of linear theory, suggesting that

the theoretical framework used in Chapter 2 and in this chapter are very relevant for

the parameter range considered.

At equilibrium inertial oscillations have magnitudes of 0.12 m s−1 and 0.08 m s−1 in

the 2-D and 3-D simulations respectively and increase the energy radiation by about

30% compared to the prediction of linear lee wave theory with no inertial oscillations.

The effect of inertial oscillations on the wave generation is well captured by the linear

theory of radiation of inertial frequency harmonics imposing the amplitudes of inertial

oscillations as diagnosed from the simulations.

The possible saturation of wave radiation at Fr−1
c = 0.5 for the 3-D case, lower

than in the 2-D simulations, would have an implication for the energy radiation

estimates presented in Chapter 3. If Fr−1
c = 0.5 is used instead of 0.7 to limit wave

radiation then the radiation estimate will be reduced from 15-31 mW m−2 to 13-

22 mW m−2 for the Drake Passage region, and remains the same for the Southeast

Pacific.

4.4.4 Wave breaking and dissipation

As internal waves radiate away from topography they propagate through a strong

inertial shear and their vertical wavenumber is squeezed until breaking occurs. Sim-
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ulations show that the bottom several hundred meters are characterized by vigorous

turbulence, resulting from enhanced wave breaking and dissipation. Wave breaking

is well illustrated in Fig. 4-6 which shows a snapshot of an isopycnal surface roughly

100 m above the bottom from the hT = 60 m simulation. The surface undergoes

displacements of several tens of meters on the horizontal scales of the underlying to-

pography. At the wave crest, there is a convectively unstable region indicating that

this wave is about to overturn and break.

We diagnose the turbulent dissipation rate ǫ from the simulations. Vertical profiles

of time averaged dissipation rate are shown in Fig. 4-7. The turbulent dissipation

rates increase with inverse Froude number. They are enhanced by an order of mag-

nitude in the bottom 1 km where most of the wave breaking occurs and then decay

above. Values of dissipation rate integrated over the bottom 1 km layer are 5, 9 and

11 mW m−2, corresponding to simulations with topographic amplitude 40, 60, and

80 m respectively. As in the 2-D simulations, energy dissipation in the bottom kilo-

meter is roughly 30% of the bottom value of energy radiation. Energy dissipation of

11 mW m−2 diagnosed from the simulation compares well with 10 mW m−2 obtained

from observations in the Drake Passage region (Naveira-Garabato et al., 2004).

4.5 Conclusions

Ocean bottom topography at scales of less than 10 km is characterized by abyssal

hills which are essentially three-dimensional. Wave radiation from 3-D topographic

features may differ from 2-D, depending on the value of inverse Froude number char-

acterizing the mean flow - topography interaction. Using linear theory and numerical

simulations we showed that, when the difference in geometry between the two prob-

lems is included in the definition of inverse Froude number, wave radiation estimates

in the 2-D and 3-D problems are similar and well described by linear theory up to

Fr−1
c = 0.5. We have not studied Fr−1

c > 0.5, but we suspect saturation might occur

before the value of Fr−1
c > 0.7 found in 2-D.

Idealized simulations show that similarities overcome a few quantitative differences
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between the 3-D and 2-D problems. In both cases there are vigorous, vertically

sheared inertial oscillations in the bottom several hundred meters. These oscillations

emerge spontaneously as a result of a wave-mean flow resonant feedback, grow and

reach magnitudes comparable to the mean flow. Vertical shear associated with inertial

oscillations promotes wave breaking and results in local dissipation of 30% of the

radiated energy.

Although it is not completely certain, we speculate that energy radiation might

already saturate at Fr−1
c = 0.5, lower than value of 0.7 in the 2-D simulations, which

might be due partly to topographic blocking as in the 2-D problem and partly to a

mean flow splitting effect. As the inverse Froude number exceeds its critical value

mean flow splits and goes around topography rather that over it, limiting further in-

crease in the wave energy radiation. The saturation at lower inverse Froude number

in 3-D than in 2-D has an effect on energy radiation estimates presented in Chap-

ter 3. Applying a lower critical inverse Froude number limit we estimate that energy

radiation would reduce to 13-22 mW m−2 for the Drake Passage region and would

remain the same for the Southeast Pacific.

One of the limitations of the 3-D simulations is the use of a free-slip boundary

condition. Although 2-D simulations showed that a no-slip boundary condition re-

sults in about 20-30% decrease in wave energy dissipation it is not clear whether

the same applies to the 3-D problem. The effect of the boundary condition on the

wave radiation and dissipation strongly depends on the low-level dynamics of mean

flow-topography interaction which is different in the 2-D and 3-D problems. More

study is needed to quantify the effect of the bottom boundary condition on the wave

radiation in the 3-D simulations.
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Figure 4-1: Bottom topography used in the 3-D simulations. Horizontal and vertical
axes show distance in (m).
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Figure 4-2: Time evolution of zonal and meridional velocity components (m s−1)
averaged in both zonal and meridional directions from hT = 60 m simulation: (upper
panel) zonal velocity component, a deviation from an externally prescribed 0.1 m s−1

zonal mean flow, (lower panel) meridional velocity component.
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from different simulations.
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harmonics (solid lines).
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Figure 4-6: Snapshot of an isopycnal surface (red) roughly 100 m above topography
from the hT = 60 m simulation and underlying bottom topography (blue).
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Chapter 5

Summary and Conclusions

The central question of this thesis is whether internal waves generated by geostrophic

flows interacting with small-scale bottom topography contribute significantly to tur-

bulent mixing in the ocean interior. This work was motivated by recent observational

estimates of enhanced mixing within 1 km of bottom topography in the Southern

Ocean (Polzin and Firing, 1997; Naveira-Garabato et al., 2004; Kunze et al., 2006), a

region where bottom geostrophic flows are very large. The analysis described in the

thesis supports the inference that internal waves generated by geostrophic flows can

drive enhanced abyssal mixing at rates inferred from observations. A summary of the

novel results obtained in this thesis is presented first. Then the discussion shifts to

the implications of this work for our understanding of the circulation of the Southern

Ocean.

5.1 Summary of the thesis

In Chapter 2, the problem of wave radiation by geostrophic flows is addressed using

2-D linear theory and idealized numerical simulations. The analysis focuses on mono-

chromatic topography and mean flow parameters characteristic of the Drake Passage

region in the Southern Ocean. A major finding is that geostrophic flow - topography

interaction results in a significant radiation of internal waves. Furthermore, and most

importantly, a substantial fraction of the energy radiated into waves dissipates locally
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within a few hundred meters of topography as a result of wave breaking.

The analysis proceeds beyond the estimate of radiation and dissipation (a limit

of previous oceanographic studies) and addresses the feedback of the waves on the

large-scale flow. At finite inverse Froude numbers, internal waves drive inertial oscilla-

tions in the bottom several hundred meters through a resonant feedback mechanism.

The inertial oscillations grow to become as large as the geostrophic flow and have

a substantial amount of vertical shear on scales of a few hundred meters. This in-

ertial shear modulates the upward propagating packets of short internal waves and

promotes wave breaking. The resonant feedback mechanism is explored within a 2-D

weakly nonlinear framework and confirmed with numerical simulations.

There are three different wave radiation regimes. At low inverse Froude num-

bers, lower than roughly 0.3, wave radiation is characterized by quasi-stationary lee

waves. Inertial oscillations grow slowly in time and do not develop enough over 10

days to significantly modify wave generation and radiation. At larger inverse Froude

numbers, from 0.3 to 0.7, inertial oscillations grow rapidly and reach amplitudes com-

parable to the mean flow within a few days, resulting in the radiation and breaking of

time-dependent, multichromatic waves. At inverse Froude numbers greater than 0.7

some fraction of the mean flow becomes blocked by topography and energy radiation

saturates, i.e. it does not increase with Fr−1.

The simulation results show that 30% of the radiated energy dissipates in the

bottom kilometer. This result is consistent with observations that suggest a tight

spatial correlation between mixing rates and toporgaphic roughness.

In Chapter 3, the results of linear theory and numerical simulations are used

to estimate wave radiation from two regions of the Southern Ocean, the Southeast

Pacific and Drake Passage, where bottom topography, velocity and stratification data

are available. The regions represent a good testbed for the theory, because they are

characterized respectively by low and high rates of abyssal mixing. Energy radia-

tion by the geostrophic flows is estimated to be in the range 0.4-3.3 mW m−2 in the

Southeast Pacific region and in the range 15-31 mW m−2 in the Drake Passage region.

The uncertainty in these estimates is associated with changes in the orientation of
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the geostrophic flow with respect to topography: abyssal flows radiate more energy

if they flow over topographic hills than along them. The difference in energy radi-

ation between these two regions comes primarily from the difference in topographic

roughness. The topographic spectral levels differ by an order of magnitude between

the two regions, while the bottom velocity and stratification are comparable.

Two multichromatic topography simulations with topographic characteristics cor-

responding, respectively, to the Southeast Pacific and the Drake Passage regions are

used to estimate the fraction of radiated wave energy that dissipates locally. The

simulation representative of the Drake Passage region is characterized by strong, bot-

tom intensified inertial oscillations, radiation of time-dependent waves, and enhanced

wave breaking in the bottom several hundred meters. In the simulation representative

of the Southeast Pacific region, on the other hand, waves are radiated in the form

of linear lee waves without significant wave breaking and inertial oscillations above

the bottom. Simulations confirm that a greater fraction of energy is dissipated in the

time-dependent wave radiation regime. About 65% of the radiated energy is dissi-

pated in the bottom kilometer in the Drake Passage and only 15% in the Southeast

Pacific simulation.

To compare the energy radiation estimates with dissipation rates inferred from

observations, first it is assumed that the geostrophic velocity spans all directions over

an eddy turn-over time and, second, the results of numerical simulations are used to

relate radiation to dissipation. The best estimate for local energy dissipation from

linear theory and simulations is less than 1 mW m−2 in the Southeast Pacific and

O(10) mW m−2 in the Drake Passage. These estimates agree with observations and

exceed background values of energy dissipation by 1 to 3 orders of magnitude.

In Chapter 4, 2-D wave radiation theory and numerical simulations are extended

to 3-D topography. The analysis focuses on a periodic field of monochromatic 3-D

bumps. With an appropriate definition of the inverse Froude number that accounts

for geometrical differences in topography between the 2-D and 3-D problems (infinite

meridional ridges in 2-D and axisymetric bumps in 3-D), wave radiation estimates

are similar and well described by linear theory for up to Fr−1 = 0.5. Although the
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Fr−1 > 0.5 limit has not been fully studied, it appears as if saturation might occur

before Fr−1 ≈ 0.7 (the value found in 2-D). The saturation of energy radiation at

a lower inverse Froude number would imply a 30% reduction of the Drake Passage

estimate presented in Chapter 3, well within the uncertainty of the observations.

5.2 Implications

5.2.1 Energetics and overturning circulation of the SO

Enhanced dissipation rates maintained by geostrophic eddies might be a significant

sink of the energy input by the wind into the general circulation of the ocean and an

important driver of the lower cell of the Meridional Overturning Circulation. Wunsch

(1998) estimated that the wind power input into large-scale geostrophic flows in the

ocean is ≃1 TW. The estimate has been confirmed by various authors in the following

10 years and the estimate hardly changes if one includes the work on the geostrophic

eddy field (von Storch et al., 2007). The energy input is dominated by the work done

in the Southern Ocean: 0.6 TW of the work is done south of 40oS. This work powers

the mean ACC system and is eventually converted into a vigorous geostrophic eddy

field through baroclinic instability of the mean current.

If all the wind power input were to be converted into internal waves as geostrophic

eddies rub over bottom topography and were subsequently dissipated through wave

breaking, one should measure a uniform energy dissipation rate of O(10) mW m−2

throughout the Southern Ocean (whose area has been taken to be 0.6×1014 m2). Using

Osborn’s (1980) relationship between energy dissipation ǫ and turbulent diffusivity

κ,

κ = Γǫ/N2, (5.1)

one obtains a diapycnal diffusivity of O(2 × 10−3) m2 s−1, using a typical bottom

stratification of N = 10−3 s−1 and a mixing efficiency of Γ = 0.2. Note that ǫ and κ

are expected to be enhanced only within O(1) km above bottom topography, where

wave breaking occurs. Dissipation of O(10) mW m−2 is only found in a few regions
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like Drake Passage characterized by rough topography (Naveira-Garabato et al., 2004;

Kunze et al., 2006). In the Southeast Pacific, for example, characterized by smooth

abyssal plains, energy dissipation estimate is an order of magnitude smaller.

Satellite bathymetry data (Smith and Sandwell, 1997) can be used to attempt an

approximate estimate of the fraction of the Southern Ocean with topography that is

as rough as in Drake Passage. The satellite data have a resolution of 15-20 km while

wave radiation is linked to roughness at scales below 10 km. Goff and Jordan (1988)

show that small-scale roughness is proportional to roughness at scales of 10-100 km,

which are well resolved by the altimetry. Topographic roughness at scales between

10-100 km is estimated as the rms height fluctuation in 1o × 1o boxes (the height

fluctuations are defined as departures from the best fit plane, in a least-square sense,

in the 1o × 1o box). The resulting map of roughness in the 45oS-65oS latitude band

is shown in Fig. 5-2.

The above calculation shows that 15% of the Southern Ocean has topographic

roughness in excess of 300 m, the value representative for the Drake Passage region.

While topographic roughness varies by an order of magnitude from place to place

in the Southern Ocean, the wind power input (Wunsch, 1998) and EKE (Stammer,

1997) are quite uniform in the Southern Ocean (only a factor of 2 to 3 variability along

the ACC). Hence, only in 15% of the area of the Southern Ocean energy dissipation

rates due to wave radiation are expected to match the local wind energy input. In the

other 85%, dissipation in the bottom boundary layer is a likely candidate to balance

wind energy input, because there is not much evidence of energy radiation away from

the Southern Ocean to other latitudes (Mazloff, 2008). Indeed, Sen et al. (2008) use a

combination of near-bottom velocities from current meters and surface velocities from

satellite altimetry and estimate that the global energy dissipation rate of geostrophic

flows by quadratic bottom boundary layer drag is in the range of 0.2 to 0.8 TW, i.e

it can easily account for 85% of 0.6 TW.

The 15% fraction of the wind energy input converted into internal wave radi-

ation and dissipation has a significant impact on the MOC. If 15% of the South-

ern Ocean has rough topography to support wave radiation and breaking, the area-
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averaged energy dissipation rate and diapycnal diffusivity reduce to O(1) mW m−2

and O(2 × 10−4) m2 s−1 respectively. These values are still an order of magnitude

larger than the background values and can support a large cross-isopycnal circulation.

If we assume that the depth integrated energy dissipation rate of E = O(1) mW m−2

maintains a cross isopycnal flow by raising its potential energy in the bottom H=1 km

uniformly throughout the area of the Southern Ocean, A=0.6×1014 m2, then,

∫ ∫

∆ρgwdzdA ≈
∫

ΓEdA, (5.2)

where integral on the left-hand side is the potential energy required to lift the abyssal,

dense waters between isopycnals separated by ∆ρ, w is the vertical velocity, and g is

gravity. The integral on the right-hand side is the potential energy generated through

wave breaking. Using this expression and parameters typical for the Southern Ocean,

we find a cross-isopycnal transport of,

Ψ = wA =
ΓEA

ρ0N2H2
≈ O(10) Sv. (5.3)

Thus, the wind energy input converted into internal wave radiation and dissipation is

sufficient to power up to O(10) Sv of overturning circulation in the bottom kilometer

uniformly throughout the Southern Ocean. This estimate agrees with the transport of

Antarctic Bottom Water (Ganachaud and Wunsch, 2000; Sloyan and Rintoul, 2001)

and the rate of overturning circulation of the lower cell of the MOC (Ito and Marshall,

2008) which span the bottom kilometer of the Southern Ocean. That said, it should

be clear that these estimates are very uncertain and more work and measurements

are needed to better constrain the global budgets.

5.2.2 Geostrophic flows and abyssal mixing in the global

ocean

The physics of wave radiation by geostrophic flows described in the thesis applies

to the global ocean. The Southern Ocean is special because bottom geostrophic
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velocities are very large and tides are weak. Hence, geostrophic flows are likely to

dominate over tides in the radiation of internal waves. The importance of wave

radiation by geostrophic flows outside the Southern Ocean depends on whether it is of

magnitude comparable to tidal radiation. Tidal radiation is dominated by the largest

topographic scales such as mid-ocean ridges, isolated sea mountains, and continental

slopes. In particular, tidal radiation has been shown to dominate in regions like the

Mid-Atlantic Ridge and Hawaii (Hawaii Ocean Mixing Experiment). Less is known

about wave generation by geostrophic flows in the global ocean because wave radiation

is dominated by small-scale topography which is not resolved by satellite bathymetry.

In addition to topographic roughness, wave radiation by geostrophic flows depends on

the bottom velocity magnitude. Because of the smaller bottom velocities in regions

outside the Southern Ocean, the radiation due to geostrophic flows is unlikely to be as

large as in the Southern Ocean, but it might well match generation by tides. Clearly,

the role of geostrophic flows in driving abyssal mixing in the global ocean is an open

question and deserves more attention that previously thought.

5.2.3 Geostrophic eddy energy budget

The results of this thesis have implications for the overall equilibration of geostrophic

eddies in the Southern Ocean. Energy dissipation in the form of internal wave radia-

tion and breaking in regions with rough topography is a significant component of the

geostrophic eddy energy budget. As shown in section 1.3.1, breaking internal waves

act to spin-down the eddy by extracting both its kinetic, EKE = 1
2
u ·u, and available

potential energy, APE = 1
2
b
2
/N2, according to,

∂t(EKE + APE) + ∇ · u(EKE + APE) + (v p)y + (w p)z ≈ −u · ∂zu′w′; (5.4)

the effect of the wave buoyancy flux b′w′ on the eddy APE is small and has been

neglected. Integrating (5.4) over the volume and assuming that the energy extracted
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by the waves from the eddy balances wave energy dissipation ǫ (Chapter 2), we obtain,

∂t

∫

(EKE + APE)dV ≈
∫

ǫdV. (5.5)

The characteristic time scale of geostrophic eddy spin-down by radiation and dissi-

pation of internal waves can be roughly estimated as,

T =

∫

(EKE + APE)dV
∫

ǫdV
. (5.6)

At large-scales, the partitioning between EKE and APE is given by,

APE = EKE · (1 + L2/L2
D), (5.7)

where L is the eddy length scale, LD is the Rossby radius of deformation (Pedlosky,

1986). The scale of geostrophic eddies is observed to be larger than LD, i.e. (Ferrari

and Wunsch, 2008), suggesting that the spin-down time scale must be at least as large

as,

T ≥ 2

∫

(EKE)dV
∫

ǫdV
=

ρ0

∫H
0 U2(z)dz
∫H
0 ǫdz

, (5.8)

where ρ0 is a reference density and U(z) is the vertical profile of geostrophic velocity.

A typical velocity profile in the Polar Front of the ACC (Fig. 3-2) varies from

about 0.5 m s−1 in the ocean thermocline to 0.1 m s−1 in the deep ocean. Similar

profiles are found in other ADCP sections of the Southern Ocean. With these values

the eddy spin-down time T ≥ 75 days using E =
∫H
0 ǫdz ≈ O(10) mW m−2. This

time scale is comparable to the time scale of eddy spin-down by bottom friction

(Charney and Flierl, 1981). If the two time scales are similar it means that in regions

of rough topography like Drake Passage, wave radiation is as powerful as bottom drag

in extracting energy from geostrophic eddies.

The equilibration of EKE is set by a balance between the energy input by the

winds and the energy dissipated through bottom friction or wave radiation and break-

ing (energy transfer to other latitudes is believed to be weak, e.g. Mazloff (2008)).
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Hence, the equilibration of EKE is very sensitive to the relationship between energy

dissipation and total EKE. In this thesis it was shown that, for parameters character-

istic of the Southern Ocean, the radiated and dissipated energy scales with (EKE)5/4.

This power law is intermediate between ∼ (EKE) and ∼ (EKE)3/2 characteristic

of monochromatic lee wave radiation and bottom drag dissipation respectively. The

power law for multichromatic topography depends on the slope of topographic spec-

trum at small-scales. The equilibration of the eddy field is therefore likely to depend

on the characteristics of local topography, with wave radiation playing a role only in

regions with rough topography.

5.3 Future work

5.3.1 Theory

There are a few limitations in this study that can be addressed in future work. First,

the sensitivity of the results to the choice of bottom boundary condition in numerical

simulations has not been explored extensively. 2-D simulations with free-slip and

no-slip boundary condition show that wave dissipation in the latter case was reduced

by about 20-30%, while results are very similar qualitatively. It is not, however, clear

whether the same applies to the 3-D problem. The effect of the boundary condition

on the wave radiation and dissipation strongly depends on the low-level dynamics of

mean flow-topography interaction, which is different in 2-D and 3-D.

Second, LADCP velocity data show that in the ACC fronts, which dominate wave

radiation, the geostrophic flow is weakly varying in the vertical below the thermo-

cline. Thus, as a starting point, this work considered barotropic flows and constant

stratification. A natural extension would be to include vertical variations in stratifi-

cation and geostrophic flow and study their effect on wave radiation and dissipation.

Polzin (1999) show some evidence that even weak shears in the bottom kilometer can

enhance wave breaking and energy dissipation.

Beside shear in the geostrophic flow, strong wave-wave interactions can also en-
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hance wave breaking and dissipation. In the limit of monochromatic topography,

uniform mean flow and constant stratification, the vertical extent of wave dissipa-

tion region is determined by the size of upward radiating and breaking internal wave

packets. The fraction of energy dissipating in the bottom kilometer is about 50% of

the bottom energy radiation estimated from lee wave theory (but only 30% of the

bottom energy radiation estimated from the full time-dependent wave theory). In

multichromatic topography simulations, presented in Chapter 3, radiated waves are

multichromatic in both vertical and horizontal wavenumbers. The vertical extent of

the region where waves dissipate is the same as in monochromatic topography sim-

ulations, but the fraction of dissipated energy increases to 65% due to, probably,

stronger wave-wave interaction and faster transfer of energy to smaller scales. More

work needs to be done to fully understand this problem.

In this study, the mean geostrophic flow generating waves was prescribed, and

represented an infinite reservoir of energy. Idealized simulations show that breaking

internal waves trigger strong inertial oscillations, while the subinertial flow component

does not change significantly over the 10 day period of simulations. However, on

longer time scales, waves acting against the geostrophic flow and extracting energy

to sustain dissipation can significantly affect its dynamics. It would be interesting to

study the degree to which wave radiation extracts energy from the geostrophic eddy

field and the implications of this feedback.

5.3.2 Observations

Besides the two LADCP/CTD sections used in Chapter 3, there are other data sets in

the Southern Ocean that could be used to estimate wave radiation and dissipation or

to validate results described in the thesis. The Southeast Pacific and Drake Passage

sections were chosen because they are in the regions where bottom velocity, stratifica-

tion, high-resolution topography data, and energy dissipation estimates were readily

available, and spun the whole range from high to low mixing rates. Several other

WOCE sections in the Southern Ocean (e.g. I8, I9), which include both CTD and

LADCP data (Kunze et al., 2006), could be used to characterize bottom geostrophic
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flows and estimate wave radiation. In addition, there are a number of current meter

moorings in Drake Passage (Nowlin et al., 1986). However, just a few of them are

in the bottom kilometer. Current meter data could be used to characterize both the

bottom geostrophic flow to make wave radiation estimate, and the intensity of iner-

tial and super-inertial motions to validate theoretical prediction that inertial waves

are generated by geostrophic flows with Fr−1 ≥ 0.3 at the bottom. In particular, it

would be interesting to see whether there is an enhanced inertial frequency response

in the bottom several hundred meters in regions of wave breaking and dissipation as

predicted by theory, and, whether it is correlated with variations in geostrophic flow.

Finally, this work suggest that wave radiation and dissipation at the bottom of the

ocean depend on topographic roughness and the magnitude of geostrophic velocity.

Hence, mixing is predicted to be both spatially and temporally variable. Prompted

by the results of this thesis, the recently funded Diapycnal and Isopycnal Mixing

Experiment (DIMES) will attempt to estimate correlation between small-scale dissi-

pation rates and the magnitude of the geostrophic eddy velocity and the topographic

roughness.

157



Longitude

La
tit

ud
e

 

 

−150 −100 −50 0 50 100 150

50

55

60

65

70 −6000

−4000

−2000

0

2000

Figure 5-1: Bathymetry of the Southern Ocean (Smith and Sandwell, 1997).
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Figure 5-2: Map of the rms topographic height of the Southern Ocean computed over
non-overlapping 1o × 1o bins.
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Appendix A

The equations of motion: scaling

The expansion of the equations governing the wave-mean flow interaction is best

carried out in nondimensional form. We nondimensionalize the governing equations

(2.6)-(2.9) and the boundary condition (2.11) using the following scales,

t → f−1t, x → LWx, z → HWz, hT → HT h,

u → UGu, w → UG
HW

LW

w, p → fLGUGp, b → fLGUG

HG

b,

where LW , HW , LG, and HG are the horizontal and vertical scales of the waves

and subinertial flow respectively, HT is the topography amplitude, and UG is the

velocity scale of the subinertial flow. Using these scale the nondimensional form of

the equations is,

ut + Ro
LG

LW
[(u · ∇H)u + wuz] + ẑ × u =

− LG

LW
∇Hp + Ekν

H2
G

H2
W

[

δ2
W∇2

Hu + uzz

]

,

δ2
Wwt + δ2

W Ro
LG

LW

[(u · ∇H)w + wwz] =

− LG

LW
pz +

LG

LW

HW

HG
b + Ekνδ

2
W

H2
G

H2
W

[

δ2
W∇2

Hw + wzz

]

,

bt + Ro
LG

LW

[(u · ∇H)b + wbz] + Bu
LG

LW

HW

HG

w = Ekκ
H2

G

H2
W

[

δ2
W∇2

Hb + bzz

]

,

∇H · u + wz = 0,
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and the lower boundary condition becomes w|z=ǫh(x) = ǫu · ∇Hh(x). The nondimen-

sional numbers that appear in the problem are,

Ro = UG

fLG

Rossby number of subinertial flow

ǫ = HT

HW
∼ NHT

UG
topography steepness parameter

δW = HW

LW

wave aspect ratio

Bu =
N2H2

G

f2L2

G

Burger number of subinertial flow

Ekν = ν
fH2

G

, Ekκ = κ
fH2

G

viscous and diffusive Ekman numbers of subinertial flow

Subinertial flows in the ocean have small Ro and evolve on scales much larger than

internal waves. This scale separation is captured by imposing that the ratio between

the characteristic scales of subinertial and wave flows is of order Ro,

LW

LG

= Ro,
HW

HG

= Ro. (A.1)

Assuming that waves have an aspect ratio δW of O(1), the Burger number of the

subinertial flow is O(1), and both viscous and diffusive Ekman number are such that,

EkνRo−2 ∼ O(1), EkκRo−2 ∼ O(1). (A.2)

With this choice the nondimensional equations can be rewritten as,

ut + (u · ∇H)u + wuz + ẑ × u = −Ro−1∇Hp +
[

δ2
W∇2

Hu + uzz

]

, (A.3)

δ2
W [wt + (u · ∇H)w + wwz] = −Ro−1pz + b + δ2

W

[

δ2
W∇2

Hw + wzz

]

, (A.4)

bt + (u · ∇H)b + wbz + w =
[

δ2
W∇2

Hb + bzz

]

, (A.5)

∇H · u + wz = 0, (A.6)

with boundary condition,

w|z=ǫh(x) = ǫu · ∇Hh(x). (A.7)
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Appendix B

The equations of motion: multiple

scale expansion

We expand solution into a series of a small steepness parameter ǫ imposing that to the

leading order there is a superposition of a geostrophic flow and an inertial oscillation,

u = uG(TG,XG, ZG) + uI(t; TI ,XI , ZI) + ǫu(1) + ǫ2u(2) + ǫ3u(3) + ..., (B.1)

w = wG(TG,XG, ZG) + wI(t; TI ,XI , ZI) + ǫw(1) + ǫ2w(2) + ǫ3w(3) + ..., (B.2)

p = pG(TG,XG, ZG) + ǫ2pI(t; TI ,XI , ZI) + Ro[ǫp(1) + ǫ2p(2) + ǫ3p(3) + ...], (B.3)

b = bG(TG,XG, ZG) + ǫ3bI(t; TI ,XI , ZI) + ǫb(1) + ǫ2b(2) + ǫ3b(3) + ..., (B.4)

where uG is the geostrophic flow evolving on a slow time scale TG and large spatial

scales XG and ZG, uI is an inertial oscillation which oscillates at frequency f on a

fast time scale t and can also evolve on a slow time scale TI and large spatial scales

XI and ZI , and u(n) are the higher order motions that depend on all scales of the

problem.

We make the following choice of scales for geostrophic flow component which is

consistent with the scaling arguments used to nondimensionalize the equations,

TG = Rot, XG = Rox, ZG = Roz. (B.5)
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Inertial oscillations, in this problem, result from geostrophic adjustment of subinertial

flow and are forced by vertical divergence of internal wave momentum flux. Therefore,

we assume that the horizontal scale of inertial oscillations is of the same order as

the scale of subinertial flow and vertical scale is set by the scale of internal wave

momentum flux, which is assumed to be O(ǫ−1) larger than the wave scale,

TI = ǫ3t, XI = Rox, ZI = ǫz. (B.6)

This choice of scales allows both time and space scale separation between subinertial

flow, inertial oscillations and higher order motions. Rossby number, Ro, is assumed to

be smaller than ǫ3 to separate internal wave dynamics from quasigeostrophic motion

dynamics.

Applying flow decomposition to the equations (A.3)-(A.6) with the lower boundary

condition (A.7) and collecting O(ǫ0) terms, we get a set of equations describing the

evolution of the leading order flow,

uI
t + ẑ × (uG + uI) = −∇XG

pG, (B.7)

δ2
W wI

t = −pG
ZG

+ bG, (B.8)

wG + wI = 0, (B.9)

(wG + wI)|z=0 = 0. (B.10)

Taking an average of this set of equations over the fast time scale t, we can separate

geostrophic flow evolving on subinertial times TG = Rot only,

ẑ × uG = −∇XG
pG, 0 = −pG

ZG
+ bG, wG = 0, (B.11)

from an inertial oscillation evolving on the fast time scale t,

uI
t + ẑ × uI = 0, wI = 0. (B.12)
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Next, collecting O(ǫ1) terms, we obtain,

u
(1)
t + (uG + uI) · ∇xu

(1) + ẑ × u(1) = −∇xp
(1) +

[

δ2
W∇2

Hu(1) + u(1)
zz

]

, (B.13)

δ2
W

[

w
(1)
t + (uG + uI) · ∇xw

(1)
]

=

−p(1)
z + b(1) + δ2

W

[

δ2
W∇2

Hw(1) + w(1)
zz

]

, (B.14)

b
(1)
t + (uG + uI) · ∇xb

(1) + w(1) =
[

δ2
W∇2

Hb(1) + b(1)
zz

]

, (B.15)

∇x · u(1) + w(1)
z = 0, (B.16)

w(1)|z=0 = (uG + uI) · ∇xh. (B.17)

This set of equations describes the evolution of O(ǫ1) motions generated by geostrophic

flow uG with an inertial oscillation uI interacting with bottom topography. To cap-

ture evolution of inertial oscillation on subinertial time scale TI = ǫ3t we need to

expand equations to higher order. Averaging O(ǫ1) equations over the small spatial

scales filters out internal wave motions and leaves an O(ǫ1) inertial ocsillations,

u
(1)
t + f ẑ× u(1) = 0, w(1) = 0. (B.18)

Now, collecting O(ǫ2) terms, we obtain,

u
(2)
t + (uG + uI) · ∇xu

(2) + f ẑ × u(2) = −∇xp
(2)

−w(1)uI
ZI

− u(1)∇xu
(1) − w(1)u(1)

z , (B.19)

w
(2)
t + (uG + uI) · ∇xw

(2) = −p(2)
z + b(2) − p

(1)
ZI

− u(1)∇xw
(1) − w(1)w(1)

z , (B.20)

b
(2)
t + (uG + uI) · ∇xb

(2) + w(2)N2 = −u(1)∇xb
(1) − w(1)b(1)

z , (B.21)

∇x · u(2) + w(2)
z = −w

(1)
ZI

. (B.22)

w(2)|z=0 = u(1) · ∇xh − hw(1)
z , (B.23)

Equivalently, averaging over small spatial scales we obtain equations for the O(ǫ2)
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inertial oscillations,

u
(2)
t + f ẑ× u(2) = 0, w(2) = 0. (B.24)

Finally, collecting O(ǫ3) terms, we get,

u
(3)
t + (uG + uI) · ∇xu

(3) + f ẑ × u(3) = −∇xp
(3) − uI

TI
− w(2)uI

ZI
−

−u(1)∇xu
(2) − w(1)u(2)

z − u(2)∇xu
(1) − w(2)u(1)

z − w(1)u
(1)
ZI

, (B.25)

w
(3)
t + (uG + uI) · ∇xw

(3) = −p(3)
z + b(3) − pI

ZI
+ bI − p

(2)
ZI

−

−u(1)∇xw
(2) − w(1)w(2)

z − u(2)∇xw
(1) − w(2)w(1)

z − w(1)w
(1)
ZI

, (B.26)

b
(3)
t + (uG + uI) · ∇xb

(3) + w(3)N2 = −bI
t − u(1)∇xb

(2) −

−w(1)b(2)
z − u(2)∇xb

(1) − w(2)b(1)
z − w(1)b

(1)
ZI

, (B.27)

∇x · u(3) + w(3)
z = −w

(2)
ZI

. (B.28)

w(3)|z=0 = u(2) · ∇xh + hu(1)
z · ∇xh +

huI
ZI

· ∇xh − hw
(1)
ZI

− hw(2)
z − 1

2
h2w(1)

zz . (B.29)

Averaging over the small spatial scales, we obtain,

u
(3)
t + f ẑ× u(3) = −uI

TI
− ∂ZI

w(1)u(1), (B.30)

0 = −∂ZI
w(1)w(1) − P I

ZI
+ bI , (B.31)

bI
t = −∂ZI

w(1)b(1). (B.32)

where over-bar is an average over x, and z scales.
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