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Results are presented from an experimental study of shallow flow in a channel partially
obstructed by an array of circular cylinders. The cylinder array is a model for emer-
gent vegetation in an open channel, but also represents a simple sparse porous
medium. A shear layer with regular vortex structures forms at the edge of the array,
evolving downstream to an equilibrium width and vortex size. The vortices induce
nearly periodic oscillations with a frequency that matches the most unstable linear
mode for a parallel shear flow. The shear layer is asymmetric about the array inter-
face and has a two-layer structure. An inner region of maximum shear near the
interface contains a velocity inflection point and establishes the penetration of mom-
entum into the array. An outer region, resembling a boundary layer, forms in the
main channel, and establishes the scale of the vortices. The vortex structure, educed
by conditional sampling, shows strong crossflows with sweeps from the main channel
and ejections from the array, which create significant momentum and mass fluxes
across the interface. The sweeps maintain the coherent structures by enhancing
shear and energy production at the interface. A linear stability analysis is consistent
with the experimental results and demonstrates that the instability is excited by the
differential drag between the channel and the array.

1. Introduction
Shear flow at the interface between a porous layer and an open conduit is a problem

of fundamental importance to a range of natural and engineered flows, e.g. laminar
flows adjacent to foams, filters, or packed beds in industrial applications; turbulent
flows at the sediment–fluid interface in rivers, estuaries and oceans; and flows adjacent
to terrestrial or aquatic vegetation. The resistance within the porous layer reduces
the velocity and creates a sharp transition across the interface. Of primary interest
are the penetration of the velocity into the porous layer and the shear stress at the
interface because these influence the discharge in the channel and the mass transport
across the interface.

Whether laminar or turbulent, the flow within the porous layer is described by a
bulk resistance law and flow in the outer layer is of open-channel or boundary-layer
type. The transition between these layers must be determined. In a classic work,
Beavers & Joseph (1967) examined the laminar case, for which Darcy’s law holds in
the porous layer and Poiseuille flow governs the channel. The velocity at the porous–
fluid interface, Us , termed the slip velocity, is related to the shear and the Darcy
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permeability, k, by

∂〈u〉
∂y

∣∣∣∣
y=0

=
β√
k
Us. (1.1)

This condition gives a penetration length scale,
√

k/β , which is intrinsic to the porous
medium, while the slip velocity depends on the applied shear, a function both of
the porous medium and of the channel flow. However, experiments have shown the
coefficient β to vary substantially for porous media of different types and geometry.

Turbulent flow near a porous interface has been less frequently studied. However,
there is a significant body of literature on turbulence above terrestrial forest and
aquatic seagrass canopies (Raupach, Finnigan & Brunet 1996; Finnigan 2000; Nepf &
Vivoni 2000). These canopies are typically sparser than the laminar porous layers
discussed above, and have Reynolds numbers that are orders of magnitude larger.
Nonetheless, as in the laminar case, penetration into the obstructed layer is set by
a length scale associated with the resistance, in this case (CDa)−1, where the canopy
density, a, is the area of solid obstructions projected to the flow per volume, and CD

is the mean drag coefficient (Nepf et al. 2007; Poggi et al. 2004a, b).
Several studies in turbulent canopies have documented coherent vortices resulting

from a Kelvin–Helmholtz instability initiated by the strong shear and velocity
inflection at the top of the canopy (Raupach et al. 1996; Ghisalberti & Nepf 2002).
The coherent structures enhance scalar and momentum exchange, carrying high-
momentum fluid into the canopy from above. Analogous horizontal vortices have
been observed at the edge of a vegetated floodplain in a shallow channel (Tamai,
Asaeda & Ikeda 1986; Nezu & Onitsuka 2000).

In addition to vegetated canopies, regular oscillations have been observed adjacent
to a range of porous or roughness layers. Jimenez et al. (2001) found coherent vortices
at the interface of a porous layer in numerical simulations, and demonstrated that they
arise from a Kelvin–Helmholtz shear instability. Regular oscillations have also been
observed in boundary-layer flows adjacent to permeable beds (Shvidchenko & Pender
2001) and regular roughness arrays of, e.g. grooves (Ghaddar et al. 1986a; Djenidi,
Elavarasan & Antonia 1999) or spanwise cylinders (Schatz, Barkley & Swinney 1995).
Ghaddar et al. (1986a) found that the Kelvin–Helmholtz instability at the edge of
the roughness layer excited coherent oscillations of the Tollmien–Schlichting channel
mode, suggesting a link between shear-layer and boundary-layer instabilities. Ghaddar
et al. (1986b), Djenidi et al. (1999) and Jimenez et al. (2001) have all noted that the
coherent oscillations substantially increase the shear stress and scalar fluxes at the
surface of these rough walls.

These results suggest that shear instability leading to coherent oscillations may
be a common feature of flows adjacent to rough or porous layers at sufficiently
large Reynolds number. In these flows, the roughness layer is permeable but imposes
resistance, combining to create strong velocity shear and an inflection point, a recipe
for shear instability according to Rayleigh’s theorem for a inviscid parallel shear flow.

Here we describe experiments of moderate flows at high Reynolds number in a
shallow channel partially filled with a cylinder array. The cylinder array, a simple
porous layer, is a good model for aquatic macrophyte vegetation found in river
floodplains, tidal marshes and freshwater wetlands. We observe regular periodic
vortices at the edge of the array and advance a hypothesis to explain their dynamics.
We first discuss the mean velocity and Reynolds-stress distributions measured in
the experimental channel. We then describe a conditional sampling technique which
allows us to educe the structure of the vortices. From this structure, we isolate the
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Figure 1. Problem description. Shallow laboratory channel with array of surface-piercing
cylinders. Shown are the mean streamwise velocity, U (y), the cylinder spacing, s, the slip
velocity, Us , the mean velocities in the vegetation and in the open channel, U1 and U2, and the
inner- and outer-layer widths, δI and δO . Af is the characteristic horizontal area over which
the spatial average is taken.

process of momentum exchange and kinetic energy production, and hypothesize a
cycle that sustains the vortices. Finally, we describe a linear stability analysis that
demonstrates the effect of porous-layer resistance in promoting the shear instability.

2. Problem description
A shear flow is produced by partially filling a channel with an array of cylinders

which extend through the water depth (figure 1). The flow is approximately two-
dimensional since the mean depth, h, is much smaller than the mean channel width,
B . The cylinders are a simple morphological model for emergent marsh and riparian
vegetation such as reeds and rushes, which exhibit very limited bending when exposed
to currents (Leonard & Luther 1995). The mean cylinder diameter is d , the solid
volume fraction of the array is φ, the porosity is n= 1 − φ, and the average centre-to-
centre distance between cylinders is s. The average solid frontal area per unit volume
in the plane perpendicular to the flow is a =Nd , where N is the number density of
cylinders (cylinders area−1). The interface, y = 0, is taken as the outside tangent line
along the outermost cylinder row.

The mean velocity is U1 deep inside the array (defined as a time- and spatially
averaged pore velocity) and increases, through a region of shear across the interface,
to U2 in the main channel. The overall velocity difference is �U = U2 − U1. Both
U1 and U2 result from a balance between pressure gradient and frictional resistance,
supplied in the array by cylinder drag, and in the channel by bottom friction.
Two length scales characterize the velocity distribution: δI , the length scale over
which momentum penetrates into the array, and δO , the length scale over which the
shear extends into the main channel. These scales are termed the inner- and outer-
layer widths, respectively, in analogy to rough boundary layers, and their physical
characteristics are discussed in later sections. To describe the importance of viscous
stresses, separate Reynolds numbers are defined for the array, Red = ρU1d/µ, and
for the open channel, Reh = ρU2h/µ, where µ is the dynamic viscosity of the fluid.
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Finally, the slip velocity at the interface, Us , is defined as Us =U (y =0) − U1. For
simplicity, in § 5.2, Us will be defined at the inflection point of the velocity profile,
which is always within a few diameters of the centreline.

3. Momentum and resistance laws near a porous layer
3.1. Reynolds- and spatially averaged equations

Here we present methods for averaging the equations of motion near a porous
interface, and we highlight similarities between traditional porous media and vegetated
flows. Consider two-dimensional flow in which half the plane is open and half is
obstructed by a porous array (figure 1). Following Pedras & de Lemos (2000), a fluid
property, ϕ, a velocity component or pressure, is first time-averaged over a period, τ ,
longer than pore scale turbulent fluctuations, then spatially averaged in the horizontal
(x, y-plane) over an area, Af , a bed-parallel rectangle centred at (x, y, z) with sides
of length s and including only interstitial fluid (see figure 1),

〈ϕ〉(x, y, z, t) =
1

Af

∫
Af

[
1

τ

∫ t+τ

t

ϕ dt

]
dx dy. (3.1)

The overbar denotes the time average and the brackets the spatial average. Temporal
and spatial fluctuations are

ϕ′ = ϕ − ϕ ϕ′′ = ϕ − 〈ϕ〉. (3.2a, b)

The average over the interstitial fluid, often called the intrinsic average, is
related to the average taken over all space including the obstructions, called the
superficial average, through the porosity, 〈ϕ〉s = n〈ϕ〉 (see, e.g. Breugem, Boersma &
Uittenbogaard 2006). Upon averaging the Navier–Stokes equations, the continuity
and momentum equations are (using index notation)

∂n〈ui〉
∂xi

= 0, (3.3a)

ρ

[
n
∂〈ui〉
∂t

+
∂n〈uj 〉〈ui〉

∂xj

]
= −∂n〈p〉

∂xi

+ µ
∂2n〈ui〉

∂x2
j

+
∂n〈τij 〉

∂xj

+ ρng − Di, (3.3b)

where

〈τij 〉 = −ρ〈u′
iu

′
j 〉 − ρ〈u′′

i u
′′
j 〉 (3.3c)

is the macroscopic shear stress tensor, consisting of, respectively, turbulent Reynolds
stresses, and dispersive stresses due to spatial fluctuations. The drag force, Di , is
the resistance due to the solid medium, the sum of form and viscous drag over the
averaging scale,

Di =

〈
∂p′′

∂xi

〉
−

〈
µ

∂2u′′
i

∂x2
j

〉
. (3.4)

Note that the spatial variation of the porosity, n, appears in (3.3). Even if the porosity
is constant within the bulk of the medium, there is variation at the interface, for
example, the averaging volume centred at y = 0 has n= nbulk/2. However, in most
vegetated flows, and in our experiments, n ≈ 1, thus the spatial variation has little
effect on the momentum balance. Presumably for this reason, it has been omitted
from most canopy flow derivations (see, e.g. Raupach & Thom 1981). The various
resistance laws for flow in porous media can be derived from (3.3). When the array
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Reynolds number is small, Red → 0, and there is no macro-scale shear, Darcy’s
law holds and the resistance is Di = µn2〈ui〉/k, where k is the permeability. Several
approaches have been proposed for finite Re, most with a quadratic resistance law:
the Forchheimer equation with Di = Cρn2〈ui〉|〈ui〉|, the mixed Darcy–Forchheimer
equation, Di = Bµn2〈ui〉/k + Cρn2〈ui〉|〈ui〉|, with B and C constants, and the Darcy–
Forchheimer–Brinkman (DFB) equation when shear is included. In open channel or
atmospheric vegetated flows the quadratic form,

Di = 1
2
ρCDa〈ui〉|〈ui〉|, (3.5)

is used, which is similar in form to the Forchheimer law. Koch & Ladd (1997)
have verified that a quadratic drag law describes the resistance at moderate-to-high
Reynolds number in random cylinder arrays, much like those used in our experiments.
We thus adopt the formulation (3.5) for the remainder of the paper.

3.2. Depth-averaged flow

We now turn to the shallow vegetated channel of our experimental conditions
and demonstrate that it is a good approximation for two-dimensional flow near
a porous layer. Because the flow is shallow, h/B � 1, where B is the characteristic
horizontal scale, the vertical motion is O(h/B) compared with the horizontal, and
the flow is predominantly two-dimensional. Nonetheless, the shear stress due to the
bed, τxz = µ∂u/∂z − ρu′w′ is the dominant momentum sink in the channel outside
the vegetation. The three-dimensional equations of motion can be depth-averaged,
yielding equations for the horizontal flow, while preserving the dynamic effect of the
vertical shear as a uniform drag force. Defining time-, spatially- and depth-averaged
quantities as

〈ϕ〉d =
1

h

∫ h

0

〈ϕ〉 dz, (3.6)

the two-dimensional shallow-water continuity and momentum equations, with (i, j ) =
(x, y), can be written

∂n〈ui〉d

∂xi

= 0, (3.7a)

ρn
∂〈ui〉d

∂t
+ ρ

∂n〈uj 〉d〈ui〉d

∂xj

= −ρg
∂n〈h〉d

∂xi

+ µ
∂2n〈ui〉d

∂x2
j

+
∂n〈τij 〉d

∂xj

− Di, (3.7b)

where

〈τij 〉d = −ρ〈u′
iu

′
j 〉d − ρ〈u′′

i u
′′
j 〉d − ρ

〈[
〈ui〉 − 〈ui〉d

] [
〈uj 〉 − 〈uj 〉d

]〉
d

(3.7c)

is the shear stress, as in (3.3), but the last term is a stress due to depth variations in
the mean flow. The drag is due to the porous layer for y � 0, and the bed alone for
y > 0,

Di =

{
1
2
ρ(CDa + cf /h)〈ui〉d |〈ui〉d |, y < 0,

1
2
ρ(cf /h)〈ui〉d |〈ui〉d |, y > 0,

(3.7d)

where cf is the bed friction coefficient, |〈ui〉d | is the vector norm. The influence of
bed drag will nearly always be negligible compared with drag from the obstructed
layer (at most (cf /h)/(CDa) ≈ 0.01 in our experiments). In writing the shallow-water
equations in the form (3.7), the rigid-lid assumption has been made (for details, see
Vreugdenhill 1994; Ghidaoui & Kolyshkin 1999), which assumes variations in the
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depth, h, are small compared with the mean, except in the term representing the
hydrostatic pressure gradient. This approximation is valid when the flow is subcritical
and the surface gradient is small. These conditions are met in our experiments, where
at most dh/dx = O(1 × 10−4) and Fr= U/

√
gh < 0.25. Ghidaoui & Kolyshkin (1999)

showed that when Fr< 1, there is less than 5 % difference between the growth rate
of open-channel shear instability in the full shallow-water equations compared with
the rigid-lid form. With the rigid-lid approximation, (3.7) are equivalent to the two-
dimensional Navier–Stokes equations in a closed conduit, with the surface slope acting
as a pressure gradient, and the additional stress terms in (3.7c). As they satisfy the
assumptions leading to the rigid-lid approximation, our experiments are comparable
to two-dimensional flows in a closed conduit adjacent to a porous layer.

Equations (3.7) describe horizontal motions on time scales much longer than depth-
scale or vegetation-scale turbulence. Coherent unsteady motions on these time scales
are well-documented in shallow free shear and wake flows (Uijttewaal & Tukker 1998;
Uijttewaal & Booij 2000; Socolofsky & Jirka 2004). Experiments have confirmed these
flows are fundamentally two-dimensional, even exhibiting two-dimensional turbulence
spectra (Uijttewaal & Jirka 2003), primarily as a result of the large separation between
the horizontal and depth scales. Similarly, the horizontal shear flow observed in our
experiments, though dynamically influenced by bed friction, is predominantly two-
dimensional.

If a long-time average is taken to remove all temporal fluctuations, (3.7) reduce to

0 = −ρg
dn〈h〉d

dx
+ µ

∂2nU

∂y2
+

∂nτxy

∂y
− Dx, (3.8a)

where hereinafter U denotes the mean depth-averaged velocity, the stress,

τxy = − ρ〈u′v′〉d − ρ〈u′′v′′〉d − ρ〈(〈u〉 − 〈u〉d)(〈v〉 − 〈v〉d)〉d, (3.8b)

is composed of viscous, Reynolds, dispersive and secondary circulation contributions,
and the drag is

Dx =

{
1
2
ρ(CDa + cf /h)U 2, y < 0,

1
2
ρ(cf /h)U 2, y > 0.

(3.8c)

3.3. Inner- and outer-layer scaling

The shear flow across the porous-layer interface is characterized by two distinct length
scales: the distance over which momentum penetrates the array; and the boundary-
layer scale in the channel outside the array. Assuming the shear layer is unaffected
by the channel width or the width of the array, the length scales in the problem are
the water depth, h, the length scale associated with the array resistance, (CDa)−1 for
high Reynolds number or

√
k for Darcy resistance, and the cylinder diameter, d . The

array penetration scale can be found by scaling the momentum equation in the sharp
transition region across the interface, where the interfacial shear stress approximately
balances the array resistance,

∂τxy

∂y

∣∣∣∣
y=0

∼ Dx |y=0 . (3.9)
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In the low Re (Brinkman) limit, (3.9) reduces to a balance between viscous stress and
Darcy resistance,

µ
∂2U

∂y2
∼ µ

U

k
⇒

U |y=0

δ2
I

∼
U |y=0

k
, (3.10)

from which the inner-layer, or penetration, width is inversely related to the resistance

δI ∼
√

k. (3.11)

Note that this result is also implied by the Beavers & Joseph condition (1.1).
For vegetated flows at higher Re, the dominant shear comes from the Reynolds
stress, 〈u′v′〉, since dispersive stresses are negligible for dense arrays, ad � 0.01 (Poggi
2004a, b), and stress from secondary circulations is generally small (van Prooijen,
Battjes & Uijttewaal 2005). In this case, the depth-averaged momentum equation
within the array (3.8) reduces to

0 = −g〈h〉d

dn〈h〉d

dx
− ∂n〈u′v′〉d

∂y
− 1

2
(CDa) U 2. (3.12)

In analogy with boundary-layer flows, a friction velocity can be defined by the
maximum stress at the interface,

u2
∗ ≡ −〈u′v′〉max, (3.13)

which occurs very close to y = 0. Then the balance near the interface between the
shear stress and drag terms gives the scaling,

n
u2

∗
δI

∼ CDaU 2
∣∣
y=0

, (3.14)

which gives the scaling for the penetration width

δI ∼ nu2
∗

U 2|y=0

(CDa)−1. (3.15)

Both the laminar and high Re scaling depend on a well-defined bulk resistance for
the porous medium. Hence, δI must be larger than the scale of the representative
averaging volume, s. When the penetration scale is smaller than the averaging scale,
i.e. very dense media, local geometry prevails and δI ∼ d .

3.4. Outer-layer scaling

In the boundary layer outside the array, the shear stress approximately balances the
pressure gradient from the free-surface slope. A scaling relationship for the outer-layer
width, δO , can be obtained by setting the pressure gradient and shear stress gradient
from the momentum balance (3.8) to be of the same order (with n= 1 in the channel),

∂〈u′v′〉
∂y

∼ g
d〈h〉d

dx
. (3.16)

From the uniform flow in the main channel outside the region of shear, we have

g
d〈h〉d

dx
= − 1

2
(cf /h)U 2

2 . (3.17)
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Figure 2. The laboratory set-up depicting the flume with LDV and traverse in profile (b)
and the cylinder array test section in plan view (a).

Thus, substituting (3.17) into (3.16) gives the scaling

u2
∗

δO

∼ 1
2
(cf /h)U 2

2 , (3.18)

and the outer-layer scale is thus

δO ∼ u2
∗

U 2
2

2h

cf

. (3.19)

Thus, the water depth in conjunction with the friction coefficient sets the channel
boundary-layer scale. The scaling arguments for the outer layer (3.19) and inner layer
(3.15) are confirmed by experimental data in § 5.2.

4. Experimental set-up
To assess shear flow dynamics in the presence of a porous layer, experiments were

carried out with model vegetation in a 1.2 m wide, 13 m long laboratory flume. A
40 cm wide array was created by placing 6 mm diameter wooden cylinders in a false
bottom of perforated (1/4 in holes) PVC sheets (figure 2). The cylinders swelled
when submerged, increasing the diameter to 6.5 ± 0.2mm, and holding them rigidly
in place. Solid volume fractions of φ =0.02, φ = 0.045 and φ = 0.10 were studied.
The cylinders were arranged in a staggered, equilateral array (see James & Davis
2001). For this geometry, the solid fraction is related to the spacing and diameter by
φ = (

√
3π/6)(d2/s2).

As the flow entered the array, it was separated from the channel flow by a 1.2m
long, splitter plate, allowing the flow to develop separately within each region, and
minimizing transverse motions due to flow adjustment (see Bousmar et al. 2005).
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I II III IV V VI VII VIII IX X XI

φ 0.020 0.020 0.020 0.045 0.045 0.045 0.10 0.10 0.10 0.10 0.10
CDa cm−1 0.092 0.092 0.092 0.285 0.242 0.255 2.43 2.74 2.04 1.77 2.43
s (cm) 4.4 4.4 4.4 2.9 2.9 2.9 2.0 2.0 2.0 2.0 2.0
h (cm) 6.8 10.4 13.8 6.6 5.3 6.0 6.6 5.5 6.8 7.8 13.9
Reθ ( × 103) 8.2 12.0 14.0 7.6 1.6 6.0 6.9 2.4 3.6 12.0 11.0
Reh( × 103) 11.0 21.0 30.0 10.0 1.8 6.7 10.0 2.9 5.6 21.0 28.0
U1 (cm s−1) 2.2 1.7 1.9 1.3 0.3 0.8 0.4 0.2 0.3 0.9 0.4
U2 (cm s−1) 17.7 21.7 24.0 17.4 3.8 12.3 16.8 5.9 9.1 29.6 22.0
u∗ (cm s−1) 1.8 2.3 2.7 2.1 0.4 1.5 1.9 0.4 0.8 3.4 2.5
Us (cm s−1) 3.7 5.1 5.6 3.7 0.8 2.5 3.4 1.0 1.8 6.1 4.5
yo 1.0 1.6 1.1 −1.0 −0.6 −1.0 0.2 0.5 0.2 0.0 0.5
δI (cm) 3.7 6.0 6.2 2.6 2.2 1.9 1.2 0.9 1.1 1.3 1.4
δO (cm) 16.0 19.1 19.9 16.7 16.9 18.2 16.5 15.5 15.2 17.8 21.5
Um (cm s−1) 7.4 10.2 12.0 7.9 1.6 5.6 6.7 2.1 3.6 12.0 9.0
ym (cm) 3.8 4.8 4.3 1.2 1.4 0.8 1.9 1.8 1.7 1.9 2.5
θeq (cm) 5.1 6.3 6.2 4.8 4.5 5.4 4.5 4.4 4.4 4.4 5.5

Table 1. Experimental parameters and results for each case (from equilibrium profiles).

The flow depth, h, was varied between 5.5 cm and 15 cm, maintaining shallow flow
conditions with depth to width ratios of h/B � 1. The channel and the cylinder
array were wide enough to ensure the shear layer for all cases was unaffected by the
flume sidewalls. A recirculating pump provided flows in the range 2 − 50 l s−1 and
Reynolds numbers of O(103 − 104) based on flow depth, Reh = ρU2h/µ. Experimental
configurations are summarized in table 1.

Free-surface elevation was measured using analogue capacitance-based displace-
ment gauges connected to an A/D board and sampled at 25 Hz. Elevation at the
upstream and downstream ends of the cylinder array were used to measure surface
slope, d〈h〉/dx, from which the drag coefficient of the array was estimated. The diffe-
rence in surface elevation relative to flow depth was O(10−2) or smaller over the length
of the flume, thus the effect of depth variation on streamwise velocity was negligible.

Simultaneous two-component velocity measurements were taken in the horizontal
plane with a laser-doppler velocimetry (LDV) system in backscatter mode (Dantec
Dynamics). The LDV was mounted on a positioning system driven by a stepper
motor, with resolution better than 0.1mm. Lateral velocity transects were made at
various longitudinal positions downstream of the splitter plate. To ensure a clear
optical path for the LDV beams, 0.5 in wide, cast acrylic spacers were placed between
adjacent PVC base boards.

Most measurements were made at mid-depth, as a proxy for the depth-averaged
velocity. In the channel outside the cylinder array, vertical profiles were logarithmic. In
the array, the profiles were nearly uniform over depth. In both regions, the mid-depth
measurements were found to be within 5 % of the true depth-averaged velocity.

5. Experimental results
5.1. Development of the mean flow

Lateral profiles of streamwise velocity are shown with increasing distance from the
splitter plate in figure 3(a). A shear layer develops, with an inflection point near
the interface, as the slow and fast streams mix. Initially, like a classic mixing layer
(Brown & Roshko 1974; Browand & Weidman 1976; Ho & Huerre 1984), the shear in
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Figure 3. Experimental LDV measurements of shear-layer growth downstream of the splitter
plate (case IV). (a) Streamwise velocity, (b) Reynolds stress, (c) momentum thickness. Position
markers are x = 0 (�), x = 33 cm (�), x =66 cm (�), x = 132 cm (�), x = 195 cm (�), x = 386 cm
(�), x = 513 cm (�), x =577 cm (�). Only the region of shear is shown (−15 cm <y < 35 cm),
whereas actual flume dimensions are −40 cm <y < 80 cm.

the outer region decreases while the shear layer width grows, indicating a net flux of
momentum toward the array. However, the array drag limits momentum penetration.
As the maximum penetration is established (x ≈ 400 cm, from figure 3a) a kink
develops in the velocity profile near the interface. The shear-layer width, measured
by the momentum thickness,

θ =

∫ ∞

−∞

[
1

4
−

(
U − U

�U

)2
]
dy, (5.1)

initially grows, but asymptotes to approximately θ =5 cm by x ≈ 400 cm (figure 3c).
Here U = (U1 + U2)/2. The final three profiles in figure 3(a) line up exactly, suggesting
an equilibrium by x ≈ 400 cm, in agreement with the asymptotic behavior of θ . The
equilibrium width is denoted θeq .

The development of the Reynolds stress distribution is shown in figure 3(b). As the
flow develops, the peak shifts toward the interface and becomes more pronounced. The
peak in the equilibrium Reynolds stress profile coincides with the velocity inflection
point, which is within 1–2 cm of the array edge. The coincidence of the Reynolds stress
maximum and the inflection point was observed for all experimental cases. Thus, we
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Figure 4. (a) Equilibrium velocity profiles: case I, φ =0.02 (�); case IV, φ = 0.045 (×);
case VI, φ = 0.045 (�); case VII, φ =0.1 (�); case X, φ = 0.1 (�). (b) Representative profile
demonstrating the inner layer (δI ), outer layer (δO ), and associated variables.

define an interfacial shear stress, τi , and friction velocity, u∗, at the maximum,

τi = u2
∗ = −〈u′v′〉max. (5.2)

Because the maximum shear and maximum Reynolds stress coincide there, the
interface is a point of high energy production, P = −〈u′v′〉∂u/∂y.

5.2. Two-layer scaling of the equilibrium velocity

Equilibrium mean velocity profiles for three cylinder volume fractions, φ, are shown
in figure 4(a). The velocity was spatially averaged with a moving filter of window
length s to remove cylinder-scale spatial fluctuations in the array. In the region near
the interface, both the degree of penetration and the magnitude of the pore velocity,
U1, decrease with increasing φ. However, in the outer region, the normalized velocity,
U/U2, is nearly independent of density, suggesting the array has little influence on the
structure of the outer flow. This confirms the scaling analysis in §§ 3.3 and 3.4, which
predicted a distinct inner- and outer-layer structure for the velocity distribution, with
independent length scales δI and δO . These scales are labelled in figure 4(b).

Because of the two-layer structure, different scaling laws apply to the velocity profile
in the inner and outer layers. The velocity inflection point at the interface suggests
the inner layer can be scaled as a shear layer, while the broad outer region suggests a
boundary-layer scaling. In the inner layer, a rescaled velocity, (U − U1)/(2Us), can be
plotted against an inner-layer coordinate, (y − yo)/δI . The reference yo is the shear-
layer inflection point, Us = U (yo) − U1 is the slip velocity, and δI is the inner layer
width. We measure δI , yo and Us for each measured velocity profile by a nonlinear
regression to a hyperbolic tangent profile,

u = U1 + Us

(
1 + tanh

(
y − yo

δI

))
. (5.3)

The hyperbolic tangent profile, typical of free shear layers, has been shown to
characterize canopy flows near the velocity inflection point at the top of the canopy
(Raupach et al. 1996). Within experimental resolution, the inflection point coincides
with the array edge, yo ≈ 0, except for the sparsest array (φ = 0.02), for which yo ≈ 2d

(see table 1).
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Figure 5. Two-layer scaling of the mean velocity. (a) Normalized spatially averaged inner-
layer profiles for each experimental condition, with the hyperbolic tangent profile for reference
(solid line). (b) Rescaled outer-layer profiles, with the Blasius boundary-layer solution for
reference (solid line). The data (from table 1) are: �, (I); �, (II); +, (III); ×, (IV); ∗, (V); �,
(VI); �, (VII); �, (VIII); �, (IX); �, (X); �, (XI).

In the outer layer, the velocity data are rescaled as (U − Um)/(U2 − Um) and plotted
against an outer-layer coordinate, (y − ym)/δO , where ym, the effective boundary-layer
origin, is the matching point between the inner region and the outer region and
Um = U (ym). This point is defined for each measured profile as the position at which
the inner- and outer-layer slopes match. We determine δO for each velocity profile
from the slope at the matching point,

δO =
U2 − Um

dU/dy|ym

. (5.4)

All parameters used in the scaling are labelled in figure 4(b).
Figure 5 shows the scaled inner- and outer-layer velocity profiles from all experi-

mental cases. In the inner layer, the spatially averaged profiles collapse to an S-curve
that nearly matches the hyperbolic tangent profile (5.3), which is shown as the solid
line in figure 5(a). This profile, with its well-defined inflection point, is similar to
the mixing-layer structure observed in canopy flows (Finnigan 2000; Ghisalberti &
Nepf 2002). However, unlike a classic shear layer, characterized by a single length
scale, the full velocity profile is asymmetric. Thus, the inner-layer profiles follow
the hypberbolic tangent in the inner layer (figure 5a), but diverge from the mixing-
layer form as the outer region is approached, approximately 1.5δI outside the array
edge. In the outer layer, the profiles collapse with the outer-layer scaling (figure 5b).
Here, the profiles resemble a boundary-layer profile, and we have shown the Blasius
boundary-layer solution (Schlichting 1979) for comparison (solid line). Note however,
that the match to the Blasius profile does not imply that outer flow is identical
to a developing laminar boundary layer, but simply that the mean velocity profile
resembles a prototypical boundary-layer form. In summary, figure 5 clearly demon-
strates that two independent length scales govern the fully developed shear layer.

In figure 6, the normalized Reynolds stress is plotted in inner- and outer-layer
coordinates. Spatial fluctuations caused by cylinder wakes are apparent in the inner
region and create some spread in the data (near ηI ≈ 0.5 in figure 6a). Nonetheless,
the inner layer collapses well and the Reynolds stress decays over a length of ≈ 2δI .
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Figure 6. Two-layer scaling of the normalized Reynolds stress, 〈u′v′〉. (a) Inner-layer scaling;
(b) outer-layer scaling. Symbols are as in figure 5.

δO (CDa)−1

δI R2 = 0.15 R2 = 0.87∗

h R2 = 0.76∗ –

Table 2. Cross-correlations between relevant length scales (n=11). Asterisks denote
significance.

Reasonable collapse is seen in the outer region, and extension of 〈u′v′〉 into the main
channel scales with the outer-layer width, about 2δO for all cases, matching the extent
of the velocity gradient (figure 5b).

Based on the scaling arguments described in §§ 3.3 and 3.4, we expect the inner-
layer width to be set by the length scale associated with array permeability, and the
outer-layer width to be set by the water depth and bed friction coefficient. Those
predictions were tested by linear regression across all experimental cases (n= 11)
and the results are shown in table 2. The length scales δI and δO are independent
(R2 = 0.15, p = 0.24), consistent with the two regions of collapse in figure 5. Moreover,
each scaling prediction is confirmed. Specifically, δI ∼ (CDa)−1 (R2 = 0.87, p = 2×10−5),
as predicted by (3.15), and δO ∼ h/cf (R2 = 0.76, p = 5 × 10−4), as predicted by (3.19).
We have used a constant cf = 0.005 based on the vertical log-layer profiles measured
in the open channel.

The inner-layer thickness is shown as a function of the array resistance length
scale (CDa)−1 in figure 7. The regression line is shown, illustrating the δI ∼ (CDa)−1

scaling. However, we wish to call attention to the finite y-intercept, δI =0.92 cm, or
in terms of the cylinder diameter, δI ≈ 1.5d . This intercept has physical significance,
and represents the dense array limit discussed in § 3.3, in which the roughness element
diameter exceeds (CDa)−1 and thus sets the array penetration distance.

6. Periodic fluctuations and instability
The shear layer at the boundary of the cylinder array is dominated by

coherent, nearly periodic fluctuations in the velocity and the free-surface elevation.
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Figure 7. Inner-layer width, δI as a function of array resistance length scale, (CDa)−1. Solid
line is the linear regression (R2 = 0.87, p = 2 × 10−5).
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Figure 8. Temporal oscillations of the streamwise and transverse velocity and free-surface
elevation for case X. φ = 0.1, y = 3 cm, x = 6 m.

Representative time series of the streamwise velocity, u(t), the transverse velocity, v(t),
and the free-surface fluctuation, h′(t), 3 cm outside the interface are shown in figure 8.
The amplitude of the oscillations is significant relative to the mean, for example, the
fluctuations in the streamwise velocity have root mean square intensity urms/U2 ≈ 0.5.
The streamwise and transverse velocity fluctuations are anticorrelated, suggesting
strong momentum transport events. Moreover, the free-surface displacement is in
phase with the transverse velocity, demonstrating a pressure signature with the
same period as the velocity fluctuations. The near periodicity and magnitude of
the fluctuations demonstrate the presence of a single dominant frequency component,
in contrast to the wide turbulence spectrum more common to open channel flows,
and we can examine this component using spectral analysis.

Power spectral density plots of the transverse velocity fluctuations are shown for
increasing position downstream of the splitter plate in figure 9. The frequency is
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Figure 9. Development of the instability downstream of the splitter plate. The power spectral
density for v′(t) is plotted for different x-positions (in cm) for (a) case IV, (b) case V and
(c) case VII. Abscissae for the PSD plots is the normalized frequency, f θ (x)/U . The natural
frequency for a free shear layer, fnθ/U = 0.032 is shown by the dotted line. The magnitudes of

the PSD curves are not shown, but each is scaled to be energy-preserving, i.e.
∫ ∞

0 Pvv df = v′2.

normalized by the local momentum thickness, θ(x), to form a dimensionless Strouhal
number, f θ(x)/U . For each flow condition, a finite number of frequencies appear
initially, typically with bimodal structure (see e.g. figure 9b, x = 33 cm; 9c, x = 64 cm),
but sometimes exhibiting three or more modes (figure 9b, x = 66 cm; 9c, x = 189 cm).
As the flow develops, energy is shifted to lower modes, consistent with the subharmonic
instability commonly observed in free-shear-layer growth (Winant & Browand 1974;
Pierrehumbert & Widnall 1982). Eventually an equilibrium is reached in which nearly
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all energy is contained in a single dominant frequency. This occurs by approximately
the same longitudinal position (x ≈ 400) as the equilibrium of the mean velocity
profiles (figure 3). The mean spectral peak for all flow conditions and array densities
is fdθ/U = 0.032 ± 0.003.

The coherent fluctuations are indicative of an instability of the Kelvin–Helmholtz
type. In free shear layers possessing an inflection point, linear stability theory
(Drazin & Reid 1981) predicts the onset and growth of a shear instability which
grows to a nonlinear state characterized by a row of coherent turbulent structures
(see e.g. Brown & Roshko 1974). The natural frequency of the passing structures is
f θ/U = 0.032 (Ho & Huerre 1984), which precisely matches the dominant frequency
for each case among the present experiments. This is particulary remarkable since the
linear result is based on inviscid theory and a symmetric shear layer, as compared
with our asymmetric partially obstructed shear layer. The key to the agreement is
probably the equilibrium, and fixed θeq , achieved in the partially obstructed layer,
which allows the oscillation to lock into a fixed frequency. Given this lock-in, it is
reasonable that the natural frequency of the shear flow is the most unstable linear
mode.

An important distinction between the partially obstructed shear flow and a free
shear layer is the downstream growth. A free shear layer grows continuously down-
stream, entraining irrotational fluid predominantly by vortex merging (Winant &
Browand 1974). However, in the partially obstructed shear layer, growth is inhibited
by the resistance from the porous layer, leading to equilibrium. Equilibrium is also
observed in submerged canopy flows, and vortices are observed at the linear frequency,
f θeq/U = 0.032 (Ghisalberti & Nepf 2002). Shallow shear layers over a uniform rough
bed can also experience arrested growth owing to bed friction. However, if the bed is
uniform, there is no drag differential between the fast and slow streams to maintain
the shear, and the shear layer is eventually erased and equilibrium is not attained
(Uijttewaal & Tukker 1998; Uijttewaal & Booij 2000).

In our experiments, the fundamental frequency is set almost entirely by the
outer-layer width associated with the main channel. To demonstrate, we rewrite the
momentum thickness, θ , as the sum of the inner-layer and outer-layer contributions,

θ = θI + θO =

∫ ym

−∞

[
1

4
−

(
U − U

�U

)2
]

dy +

∫ ∞

ym

[
1

4
−

(
U − U

�U

)2
]

dy. (6.1)

For all experimental cases, the ratio θO/θ � 0.9, which means that the frequency
fd = 0.032U/θ is set primarily by the outer layer. This will be the case for most
porous layers, provided that δI /δO � 1. Thus, although the instability originates at
the inflection point within the inner layer, the inner-layer scale has little influence
over the frequency once the instability is established. Similarly, Ghaddar et al. (1986a)
studied oscillations near a groove-roughened wall that were initiated by a Kelvin–
Helmholtz instability at the wall, but had a wavelength set by the boundary-layer
mode for the channel, and Shvidchenko & Pender (2001) observed regular vortices
that scaled with the flow depth above permeable gravel beds. These channel-scale
oscillations have been suggested as a mechanism for ‘d-type’ boundary-layer scaling
near a rough wall, in which the effective roughness scales with the boundary-layer
width rather than the roughness length (Djenidi, Anselmet & Antonia 1994).
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7. Coherent structure eduction
Insight into the spatial structure of the instability was achieved by a vortex eduction

technique based on conditional sampling of the LDV time series. For several of the
experimental cases, a velocity profile sufficiently far downstream to be at equilibrium
(typically 6 m) was chosen for conditional sampling. Typically, vorticity or lateral
velocity fluctuations are used as triggers for identifying coherent structures in shear
flows (see, e.g. Bonnet et al. 1998). Here, we use zero crossings of the transverse
velocity, v(t). A vortex event was identified as lying between two successive zero-
crossings of v′(t). In order to eliminate high-frequency fluctuations, v(t) was first low-
pass filtered below the dominant frequency, fd . In the range 10 <N < 20, structures
were identified from the time series at each position. The conditionally averaged
velocity at each position is obtained by an ensemble average over N structures,
following Hussain (1983):

〈u〉cs (̃t) =

N∑
i=1

ui

(
t =

Ti

Td

t̃ + tzi

)
, (7.1)

where ui(t) is the raw instantaneous LDA velocity vector between zero-crossings i and
i + 1, tzi is the absolute time at which the ith zero crossing occurs, Ti is the period of
the ith structure, Td = 1/fd is the mean period of all structures in the time series, and t̃

is the rescaled time, t̃ ∈ [0, Td]. That is, the structures are phase-aligned, stretched onto
the [0, Td] grid, and then averaged. This removes small-scale fluctuations and phase
jitter, but retains the large-scale structure. Note that although the filtered velocity is
used to identify zero-crossings, the unfiltered velocity is used in the ensemble average.

For all cases, the v(t) signal is in-phase to within 0.05Td across the entire shear layer,
as determined from simultaneous two-point velocity measurements made using the
LDV and an acoustic Doppler velocimeter. The negligible phase-lag of v(t) allows the
conditionally averaged velocity at each position to be aligned with the zero-crossing
of the v(t) signal, which yields the lateral structure. This is equivalent to

〈u〉cs(y, t̃) =

N∑
i=1

ui

(
y,

Ti

Td

t̃ + tzi + φ(y)

)
, (7.2)

where the phase is φ(y) = 0. Thus, 〈u〉cs(y, t̃) and 〈v〉cs(y, t̃) are the conditionally
averaged velocity components over a single structure period. The time coordinate
is then converted to the streamwise coordinate using the Taylor hypothesis. Zaman
& Hussain (1981) have noted that the Taylor hypothesis accurately reproduces
the spatial dependence of velocity and vorticity when the structure passage speed
is used for the time–space transformation everywhere across the shear layer. The
structure passage speed, Uv , is measured from the two-point streamwise correlation
of the surface displacement time series, which has the same period as the velocity
fluctuations (figure 8). The streamwise coordinate in the moving frame of reference is
then computed as, x =(Td − t̃)Uv .

7.1. Conditionally averaged velocity field

The conditionally averaged structure for a representative case (I) is shown in figure 10.
The structure is shown in the moving frame and the spatial coordinates are normalized
by δO . The structure is repeated to show more clearly the head of the trailing vortex
and the tail of the preceding vortex. Figure 10(b) shows the sectional streamlines, which
are tangent to the velocity vectors. A vortex centre (x/δO ≈ 5) and two saddle points
(x ≈ 0 and x ≈ 10) are clearly visible, characteristic of the Kelvin cat’s eye vortices
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Figure 10. Structure of the conditionally averaged flow for case I, in a frame moving with
the vortex. (a) Velocity vectors and (b) sectional streamlines are shown for slightly more than
one period of the vortex structure. Coordinates are normalized by δO .

observed in free shear flows (Drazin & Reid 1981). The primary vortex is defined as
the region between the separatrices emanating from the saddle points (Perry & Chong
1987). The vortex resides primarily in the open-flow region (y > 0) with a width of
approximately 2δO , and is elongated in the streamwise direction with a wavelength of
Lv ≈ 10δO . The length-to-width aspect ratio is 5, slightly longer than vortices in free
shear layers, which have aspect ratios of approximately 3 (based on the Stuart vortex
model which fits experimental observations – see Browand & Weidman 1976).

The topology around the vortex is an unstable focus, with trajectories spiralling
outwards from the vortex centre. This pattern has been observed in other shallow-
water vortices (Fu & Rockwell 2005) and indicates the presence of a secondary
circulation. To confirm this circulation, vortices were educed near the surface and
near the bed (figure 11). Near the surface, the vortex rotation is outward spiralling,
but near the bed the vortex spirals inward. This pattern indicates a three-dimensional
circulation in which near-bed fluid is drawn toward the vortex centre and ejected at the
surface. An upward axial flow would be required to conserve mass. This circulation is
probably due to an imbalance between the radial pressure gradient and the tangential
acceleration in the bottom boundary layer, resulting in a radial velocity component.
We can estimate the contribution of the secondary stress as 〈(〈u〉 − 〈u〉d)(〈v〉 − 〈v〉d)〉d

(see (3.8)). For this case, it is one order of magnitude smaller than the Reynolds stress
across the region of shear. Thus, the secondary circulation appears to contribute little
to the balance of angular momentum that governs the vortex dynamics. However,
it may be significant for vertical transport of chemical species or biota in natural
vegetated channels.
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Figure 11. Sectional streamline plots in the horizontal plane at two depths (case X):
(a) z = 0.50 cm; (b) z = 4.0 cm. In (a), the circulation spirals toward the centre (stable focus);
in (b) it spirals away from the centre (unstable focus).
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Figure 12. Time series of streamwise velocity, u, transverse velocity, v, (shifted for clarity)
and instantaneous Reynolds stress, u′v′, at two locations: (a) outside the interface, y = 3 cm
and (b) deep within the array, y = −20 cm. In (a), sweeps (Sw) and ejections (Ej) are labelled.

7.2. Conditionally averaged Reynolds stress

The vortices create strong velocity fluctuations, both within and away from the central
core. Here we examine the effect of these fluctuations on lateral momentum flux.
Outside the central core, the streamlines undulate, but are not rotational (figure 10),
indicating a wavelike oscillatory flow both within the array and in the open channel
outside the shear layer. Figure 12 compares velocity time series at y = 3 cm, within the
vortex core (figure 12a) and at y = −20 cm, outside the vortex core but deep within
the array (figure 12b). At both locations the regular velocity fluctuations, u′ and v′,
correspond to the dominant frequency, fn. Within the vortex (figure 12a), there are
strong velocity correlations, u′v′, corresponding to momentum inflows, termed sweeps
(u′ > 0, v′ < 0), and momentum outflows, termed ejections (u′ < 0, v′ > 0). These events,
which transport momentum across the interface, contribute to the large time-averaged
Reynolds stress, u′v′, observed outside the array (see figure 3b). In contrast, outside
the vortex core and deep within the array (figure 12b) the regular oscillations in u′

and v′, are approximately out of phase, so that the positive and negative momentum
fluxes cancel, resulting in a very small net Reynolds stress, u′v′ ≈ 0. The vortices,
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Figure 13. (a) Strength of the velocity fluctuations relative to the local flow, urms/U and (b)
Reynolds stress correlation coefficient, −〈u′v′〉/urmsvrms for a range of cylinder density: case I,
φ = 0.02 (�); cases IV and VI, φ = 0.045 (×, �); cases VII and X, φ = 0.1 (�, �).

2δO

Dv

Figure 14. Visualization of an ejection event (mean flow is left to right).

induce this far-field wave response through the passage of alternating low-pressure
cores and high-pressure regions (see, e.g. figure 8). The pressure field sets up a passive
wave response within the array, but does not create substantial momentum flux. The
wave response is also present in the velocity time series in the channel outside the
region of shear (y � 2δO). We do not interpret these coherent motions as turbulence,
but rather as coherent vortices coupled with a wave response.

Within the array, the velocity fluctuations are large compared with the mean
velocity (figure 13a), which shows urms/U for different cylinder fractions. For the
most dense array (φ =0.1), urms/U is well above unity for y < 0. This suggests that
the fluctuations induced by the passing vortices are sufficiently strong to reverse the
flow; this was confirmed by flow visualization. However, the correlation coefficient,
u′v′/urmsvrms, which measures the momentum transport efficiency of the fluctuations,
is very small within the array, consistent with the wave response (figure 13b). Outside
the array interface, where the vortex resides, the correlation is maximized, indicative
of the strong momentum transport by the vortices.

To illustrate the momentum transport induced by the vortices, an ejection event,
visualized by 10 µm reflective particles, is shown in figure 14. The image illustrates
that the vortex motions are responsible for significant fluxes, and can transport mass
and momentum over length scales of approximately 2δO .
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o /2) for a turbulent solid wall (Pope 2000,
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The interfacial friction coefficient, fi = u2
∗/(�U 2/2), is a measure of the momentum

exchange across the interface. From figure 15, the friction coefficient values observed
in these experimental cases are nearly an order of magnitude larger than the values
observed near a solid wall (Pope 2000, p. 278). The enhanced momentum exchange
at the porous wall is attributed to the coherent structures, which are absent at a solid
wall. Mass transport across the interface will be similarly enhanced.

The conditionally averaged Reynolds stress, −〈u′v′〉cs(x, y) (calculated using (7.1)),
gives an insight into the spatial structure of the momentum transport. Figure 16 shows
−〈u′v′〉cs , normalized with u2

∗, for each cylinder density. In each case, the maxima of
−〈u′v′〉cs are located in regions of strong crossflow, the outflow region (1 < x/δO < 4)
and the inflow region (6 < x/δO < 9), just outside the array interface. These regions
correspond to the ejections and sweeps, respectively, and are responsible for the
instantaneous momentum fluxes observed in figure 12(a). The ejections account for
greater net momentum transport (higher u′v′ maximum) than sweeps. The sweeps
and ejections are confined to a region approximately between the array interface
and about y = 2δO , corresponding to the width of the central vortex (figure 10). In
addition, the net Reynolds stress is appreciable only within this same region (see
adjacent plots of 〈u′v′〉). Outside the central vortex, both within the array and in the
free stream, −〈u′v′〉cs has a banded appearance, consisting of alternating positive and
negative Reynolds stress. These alternating bands correspond to the far-field wave
response, and the positive and negative fluxes cancel when averaged over the cycle.
It can be verified from the adjacent plots that 〈u′v′〉 ≈ 0 in these regions. Overall, the
structure of the Reynolds stress is nearly identical across array density, φ, consistent
with the idea that the vortex characteristics, and momentum transport, are established
by the outer layer.
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Figure 16. Contours of the conditionally averaged Reynolds stress, −〈u′v′〉cs/u
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∗, with velocity

vectors over one cycle for each cylinder density: (a) case I, φ = 0.02, (b) case IV, φ =0.045, and
(c) case VII, φ =0.1. Areas of white represent −〈u′v′〉cs < 0. Corresponding mean Reynolds

stress, −〈u′v′〉/u2
∗, is shown adjacent. The grey scale is the same for all plots.

7.3. Conditionally averaged vorticity

Figure 17(c) shows the vorticity distribution of the conditionally averaged vortex,

ω =
∂〈v〉cs

∂x
− ∂〈u〉cs

∂y
, (7.3)

which has been normalized by the scale for interfacial shear, Us/δI . This particular
normalization was chosen because the interface is the region of maximum shear and
the dominant source of vorticity. There is a thin line of high-vorticity fluid near the
interface, y = 0, at the vortex front between x/δO ≈ 7 and x/δO ≈ 11. This coincides
with the region of maximum shear and occurs in the region dominated by sweeps
from the outer region. A second region of high-vorticity fluid takes the form of a
tongue between x/δO ≈ 1 and x/δO ≈ 6. This tongue appears to be ejected from the
array interface into the outer layer. A second tongue of nearly irrotational fluid,
from x/δO ≈ 4 and x/δO ≈ 9, is sandwiched between the two high-vorticity regions.
The alternating high- and low-vorticity regions can be explained by the inherent
asymmetry of the partially obstructed shear layer. The low-vorticity fluid has its origin
in the free stream where the mean shear (∂U/∂y) is weak, whereas the high-vorticity
fluid originates in the high-shear interfacial region. This shear asymmetry is not
present, for example, in free shear layers for which the velocity profile is antisymmetric
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Figure 17. Vorticity contours of the conditionally averaged vortex for (a) cases I,
(b) VII, and (c) V. Velocity vectors are shown for reference.

with only one length scale, and the vorticity is approximately symmetric about the
centreline.

7.4. Conditionally averaged kinetic energy production and dissipation

The kinetic energy production associated with the coherent structures is given by

〈P 〉cs = −〈u′v′〉cs

∂〈u〉cs

∂y
. (7.4)

The spatial distribution of 〈P 〉cs for case I is shown in figure 18. Also shown for
reference is the wavelength-average (or time-averaged) production, P . Nearly all
production occurs near the inflection point at the interface, where both the shear and
Reynolds stress are large. The production maximum lies in the sweep region along a
very thin line between x/δO ≈ 4 and x/δO ≈ 6 and corresponds to the sharp peak in P

at the interface. The production is less pronounced in the ejection region, where the
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by u3
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that the discontinuity in D is due to the drag discontinuity across the array interface.

Reynolds stress is maximum but the velocity gradient is smaller. This indicates that
sweeps play the dominant role in maintaining the coherent structures, by carrying
high-momentum fluid toward the interface and creating very high shear, ∂U/∂y.

The dissipation of kinetic energy by the cylinder array is given by

〈D〉cs = 1
2
CDa

(
〈u〉2

cs + 〈v〉2
cs

)3/2
, (7.5)

where 〈u〉cs and 〈v〉cs are the conditionally averaged velocities in the laboratory frame
of reference. The spatial distribution of 〈D〉cs and the lateral dependence of the time-
averaged value, D, are shown in figure 19. The greatest dissipation is concentrated
near the interface, where the in-array velocities are highest. Both the spatial pattern
and the magnitude of the dissipation is comparable with the production (figure 18),
and the time-averaged values are approximately equal near the interface, P ≈ 2.5 and
D ≈ 2. This suggests the kinetic energy production at the interface is approximately
balanced by the dissipation due to array drag. This balance is a key to the vortex
equilibrium observed in experiments, suggesting that the vortex growth is quenched
when production balances dissipation. However, another important term in the total
energy budget is the pressure–strain term, −∂y[〈v〉cs〈p〉cs], the work done by the
vortex pressure field in driving lateral flow through the obstructed array. Although
this term is difficult to measure, and not shown here, it is an energy sink and can
be expected to contribute, along with the drag dissipation, to balancing the energy
production. The importance of this term near a permeable wall is demonstrated in
the DNS results of Breugem et al. (2006).
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8. Discussion
Taken together, the structure of the Reynolds stress, vorticity and energy production

give an insight into the cycle that produces and maintains the coherent structures.
The high-vorticity fluid along the interface is created by sweeps that transport high-
momentum channel fluid toward the array, enhancing the velocity gradient (figure 17).
The resulting peak in Reynolds stress and velocity gradient leads to very high local
energy production which feeds the shear instability and maintains the vortices. The
ejections then carry the high-vorticity fluid from near the interface back into the main
channel, leading to substantial momentum transport. However, it is the sweeps that
appear to be the key to the vortex production, since they create the high shear at the
interface that leads to high energy production (figure 18).

It is natural to focus on the sweeps and their enhancement of interfacial shear,
because this process reinforces the velocity inflection point, which leads to the
shear instability. Moreover, while the instability originates in the inner layer, the
characteristics of the vortices – their dimensions and the structure of the sweeps –
scale with the outer layer O(δO). In the cases we studied, the mean array drag, CDa,
changed by an order of magnitude, but the vortex characteristics in the outer region
were nearly identical. Nonetheless, the role of the array is essential, and has two
direct effects: (i) the drag discontinuity at the interface creates large-scale shear which
leads to instability and coherent vortices and (ii) the array resistance reinforces the
interfacial shear by limiting vortex penetration, and causing high-momentum fluid to
build up at the interface. Moreover, drag acts on the portion of the vortex that lies
within the array, leading to dissipation of kinetic energy (see figure 19) (and also of
vorticity), and limiting the vortex penetration to the inner-layer width, δI . However,
the total drag acting on the portion of the vortex within the array is proportional
to CDaδI , which was approximately constant across all cases (see §5.2). It appears
that the flow adjusts until the vortex reaches its maximum penetration (determined
by the array resistance, CDa), after which, further growth is quenched by drag (see
figure 3). A balance is thus maintained between the kinetic energy production, driven
by the outer-layer sweeps, and the dissipation by the array drag, which occurs in the
inner layer.

As discussed previously, the contribution of three-dimensional effects to the dynam-
ics of the instability appears to be small, as the secondary circulation contributes little
to the overall stress balance. Moreover, the energetic cycle hypothesized to maintain
the vortices is essentially two-dimensional. Although three-dimensional turbulence and
secondary circulations may modify the details of the coherent structures, they do not
appear to be intrinsic to the instability. This is further supported by two-dimensional
LES simulations of partially vegetated channels which successfully captured vortex
oscillations (Nadaoka & Yagi 1998; Xiaohui & Li 2002) similar to those we observed.
Moreover, these authors used a simple quadratic drag model for the vegetation layer,
suggesting that the details of the porous layer, such as cylinder arrangement, are
relatively unimportant beyond setting the bulk drag. These results are consistent with
the energetic cycle we have proposed, which requires only a penetrable roughness
layer in order to create velocity inflection at the interface and promote ejections. They
are also consistent with the scaling of the observed vortex frequency and size with the
outer layer, which suggests array details are relatively unimportant. A linear stability
analysis in the next section will further support our conclusion that the instability
is both two-dimensional and sensitive only to the bulk resistance of the porous
layer.
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9. Linear stability analysis
The experimental results demonstrate that the drag differential between the array

and the channel leads to shear instability. However, the presence of drag can also have
a stabilizing effect, as observed in shallow shear layers with strong bed friction (Chu,
Wu & Khayat 1991; Uijttewaal & Booij 2000). To assess these competing influences,
a linear stability analysis was carried out for the growth of perturbations to the mean
velocity profile in the presence of drag. The mean velocity is approximated by a
hyperbolic tangent profile with the inflection point at the interface,

U (y) = Uo(1 + R tanh(y/b)), (9.1)

where Uo is the centreline velocity, b is the shear-layer width, and R is the velocity
difference between the streams far outside the shear layer,

R =
U2 − U1

U2 + U1

. (9.2)

This antisymmetric profile is a good approximation for the sheared region near the
inflection point at the onset of instability, when the perturbation amplitude is small.
Further downstream, the disturbance grows in a nonlinear way and reaches the finite-
amplitude equilibrium observed in experiments, but this nonlinear regime is beyond
the scope of the present theory.

We assume that the drag is quadratic in velocity and consists of a uniform bed
friction to which array drag is added on one side of the channel as in (3.8c). The drag
differential between the porous layer and the main channel, can be parameterized by
the non-dimensional number

γ =
CDa

CDa + 2cf /h
. (9.3)

The mean resistance, composed of both array and bed drag, is measured by the non-
dimensional parameter

S = (CDa/2 + cf /h)b, (9.4)

termed the stability number in the shallow-flow literature (see, e.g. Chu et al. 1991;
Socolofsky & Jirka 2004).

It is reasonable to assume that outside the region of shear, the mean pressure
gradient is in balance with the local drag, which implies

1
2
ρ(CDa + cf /h)U 2

1 = 1
2
ρ(cf /h)U 2

2 , (9.5)

from which it can be shown that γ and R are related by

R =
1

γ
(1 −

√
1 − γ 2). (9.6)

Thus, for sparse arrays for which CDa → 0, the shear vanishes and R → 0. However,
as the array resistance increases, the velocity difference across the shear layer also
increases. This shear enhancement can be expected to favour instability. On the other
hand, an increase in total drag, through increasing S, will tend to damp instability.
Our objective is to determine the stability characteristics for different array densities
by varying the drag differential, γ , and the overall friction, S.

We begin with the equations of motion for a two-dimensional shallow flow and
assume that the Reynolds number based on the momentum thickness is large, Reθ �
1, such that the flow is assumed inviscid beyond the effect of drag. Following classic
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theory (see e.g. Drazin & Reid 1981), a two-dimensional disturbance is introduced to
the mean velocity and pressure distributions,

u = U (y) + u′(x, y, t), v = v′(x, y, t), p = P (y) + p′(x, y, t). (9.7)

and written in normal mode form,

u′ = φu(y) exp(i(kx − ωt)), v′ = φv(y) exp(i(kx − ωt)), p′ = φp(y) exp(i(kx − ωt)).

(9.8)

The substitution of the disturbance into the shallow-water momentum equation (3.7)
yields a modified Rayleigh equation (MRE) (Chu et al. 1991; Chen & Jirka 1997;
Socolofsky & Jirka 2004),

(c − U )φyy +
(
Uyy + k2 (U − c)

)
φ =

SH (y)U

ik

(
φyy +

Uyφy

U
− k2φ

2

)
, (9.9)

where the eigenfunction, φ ≡ φv , satisfies the boundary conditions,

φ → 0 as y → ±∞, (9.10)

c = ω/k is the wave speed, and H (y) is a Heaviside step function, given by

H =

⎧⎨⎩1 + γ, y < 0,

1, y = 0,

1 − γ, y > 0.

(9.11)

The friction term, multiplied by the factor SH (y), tends to damp the instability.
Equations (9.9)–(9.11) form an eigenvalue problem yielding a dispersion

relationship, F (ω, k, S, γ ) = 0. Since we are interested in the downstream disturbance
growth, often termed the spatial instability problem, the eigenvalue problem is solved
for the complex wavenumber, k = kr + iki; a disturbance of frequency ω is amplified
if ki < 0. The eigenvalue problem was solved using a pseudospectral collocation
method with Chebyshev polynomials. Calculations were made using the program
suite SWESC-M (Shallow Water Eigenvalue Stability Calculator – Matlab) developed
by S. A. Socolofsky. Details are given in Socolofsky & Jirka (2004).

As a check of the numerical method, we first present results for uniform bottom
friction, (γ = 0) (figure 20), but for which a velocity difference (R = 1) is imposed,
as in Chu et al. (1991). The frictionless, S = 0, case is identical to the results of
Monkewitz & Huerre (1982) for a free shear layer. The most unstable frequency
occurs at f θ/U ≈ 0.032. As the drag is increased, by increasing S, the growth rate
decreases uniformly across the frequency spectrum. When S ≈ 0.25, all modes becomes
stabilized (ki ≈ 0). The frequency of the most unstable mode changes very little even
as all modes are progressively damped. These results match those of Chu et al. (1991)
for a shallow shear layer with uniform friction.

Calculations were made with discontinuous drag to assess the competing tendencies
of increasing drag to damp shear instability and increasing drag differential to promote
it through enhanced shear. Figure 21 shows the neutral stability curve, i.e. the critical
friction number, Sc, at which the growth rate of the most unstable mode is reduced
to zero, as a function of the drag differential, γ . When the drag differential, γ , is
small, the critical value, Sc, is small and increasing the drag only tends to damp the
instability. However, as γ → 1, Sc → ∞; thus, increasing drag leads to instability by
increasing the drag differential which enhances the shear. In this limit, the stabilizing
effect of friction is overcome by the drag differential. Note that the γ = 1 case is
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drag differential, γ . Note that the curve asymptotes to S = 0 at γ = 0. Also shown are data
from the present experiments (�) (vortex instability observed), and data from the two-array
experiments of Lightbody & Nepf (2006) (�) (no vortex instability observed).

the two-dimensional instability problem for a porous layer adjacent to a frictionless
channel. These results suggest that when friction in the channel is negligibly small
compared with the resistance in the porous layer, the shear layer will at least be
neutrally stable even for very dense arrays. This assumes the layer porosity is always
sufficient to achieve the velocity inflection point necessary for instability.
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Figure 22. Growth rate of the most unstable mode with increasing array density for varying
degrees of background bed friction.

All conditions examined in the present experiments lie within the unstable range
(figure 21), consistent with our observations of coherent vortices for all cases. In
addition, the theory correctly predicts the most unstable frequency, f θ/U = 0.032.
The experimental conditions of Lightbody & Nepf (2006), in a channel with two
adjacent cylinder arrays with different density, are in a stable (γ, S) region. Consistent
with the theory, they did not observe coherent oscillations at the interface between the
arrays. Thus the linear theory correctly predicts the conditions leading to instability.
The agreement suggests that the source of the coherent vortices observed in the
present experiments is an instability which is both fundamentally two-dimensional
and, since a quadratic friction model is sufficient to capture it, is not overly sensitive
to the small-scale details of the roughness layer.

From the neutral curve, we can see whether a particular combination of array
drag, CDab, and background bed friction, cf b/h, will lead to shear instability. If
cf b/h is large enough, increasing the array density can have a stabilizing effect, by
increasing S. On the other hand, if cf b/h is small, increasing the density favours
instability by increasing the drag differential, γ . These competing tendencies are
illustrated in figure 22, which shows the change in growth rate as the array drag is
increased for fixed values of the background bed friction. Starting with small uniform
bed friction, cf b/h = 0.01, an increase in array density, CDab, makes the shear layer
transition from stable to unstable at an intermediate density, and then back to stable
at higher density. However, for high bed friction, cf b/h= 0.1, the flow is always
stable regardless of array density. It can be concluded that dense arrays adjacent to a
relatively frictionless open region will favour instability owing to the drag differential,
a result that is consistent with observations of instability in our experiments. However,
for adjacent layers, which each have significant drag, such as two layers of different
porosity, instabilities will tend to be damped.

10. Conclusions
Experimental results are presented for shear instability in a shallow channel partially

filled with a model porous layer of circular cylinders. The drag differential between
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the porous layer and the open region creates an inflection point in the mean velocity,
leading to an instability characterized by regular coherent vortices. The vortices
reach an equilibrium with regular oscillations at a frequency predicted by linear
stability theory. The equilibrium appears to be maintained by a cycle consisting of
sweeps which carry high-momentum fluid toward the interface, enhancing shear, and
leading to energetic ejections that transfer momentum and reinforce the sweeps. The
momentum transfers lead to a friction coefficient that is an order of magnitude larger
than for a solid wall. The coherent structures are also expected to increase mass
transport substantially near a roughness layer, and thus have potential relevance to
exchange across, for example, fringing aquatic vegetation, marine benthic boundary
layers, and river hyporheic zones.

The shear layer is found to possess two distinct length scales. The inner-layer
thickness is set by the array resistance. The wider outer region, which resembles
a boundary layer, has a width set by the water depth and bottom friction. The
instability is established by the inner layer, near the velocity inflection point, but the
size of the resulting coherent vortices and their passage frequency are set by the outer-
layer characteristics. The outer-layer scaling implies that, for these experiments, the
details of the porous layer are not important in establishing the vortex structure. This
conclusion can only be made for the cylinder array studied here; results are required
from a wider range of porous-layer geometries and densities before a generalization
can be confirmed.

A linear stability analysis demonstrates that while the drag differential maintained
by the porous layer reinforces the shear instability, the overall drag may damp
it if the background friction in the channel is too great, thus allowing a range of
stability characteristics. The analysis also suggests that the instability is fundamentally
two-dimensional, and requires only a penetrable roughness layer to be initiated.
This conclusion is consistent with the vortex cycle hypothesized to describe the
present observations, and also with previous observations of coherent oscillations in
a wide range of canopy flows, rough boundary layers, and two-dimensional numerical
calculations near roughness layers. It appears that oscillations driven by a shear
instability are characteristic to many flows near porous layers.

This material is based upon work supported by the National Science Foundation
under Grant 0125056. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.
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