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ABSTRACT

Ocean acoustic tomography was proposed in 1978 by Mur~
and Wunsch as a possible technique for moni toring the
evolution of temperature, densi ty, and current fields over
large regions. In 1981, the Ocean Tomography Group
deployed four 224 Hz acoustic sources and five recei vers in
an array which fi t wi thi n a box 300 km. on a side centered
on 26°N, 700W (southwest of Bermuda). The experiment was
intended both to demonstrate the practicali ty of tomography
as an observation tool and to extend the understandi ng of
mesoscale evolution in the low-energy region far from the
strong Gulf Stream recirculation.

The propagation of 224 Hz sound energy in the ocean
can be described as a set of rays travelling from source to
receiver, with each ray taking a different path through the
ocean in a vertical plane connecting the source and
recei ver. The sources transmi tted a phase-coded signal
which was processed at the recei ver to produce a pulse at
the time of arri val of the signal. Rays can be
distinguished by their different pulse travel times, and
these travel times change in response to variations in
sound speed and current in the ocean through which the rays
passed.

In order to reconstruct the ocean variations from the
observed travel time changes, it is necessary to specify
models for both the variations and their ef fect on the
travel times. The dependence of travel time on the oceanic
sound speed and current fields can be calculated using ray
pa ths traced by computer. The vertical structure of the
sound speed and current fields in the ocean were modelled
as a combination of Empirical Orthogonal Functions (EOFs)
from MODE. The horizontal structure was continuous, but
was constrained to have a gaussian covariance wi th a 100
km. e- folding scale. The resulting estimator closely
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resembles objecti ve mapping as used in meteorology and
physical oceanography. The tomographic system has at
present only been used to estimate sound speed structure
for comparison wi th the tradi tional measurements,
especially the first two NOAA CTD surveys, but the method
provides means for estimating densi ty, temperature or
velocity fields, and these will be produced in the future.

The sound speed estimates made using the tomographic
system match the tradi tional measurements to wi thin the
associ a ted error bars, and there are several possi bi li ties
for improving the signal to noise ratio of the data. Given
high-precision data, tomographic systems can resolve ocean
structures at small scales, such as in the Gul f Stream, or
at large scales, over entire ocean basins. Work is in
progress to evaluate the usefulness of tomography as an
observa tion tool in these applications.

Thesis Supervisor: Dr. Carl Wunsch
Cecil and Ida Green Professor of
Physical Oceanography, Massachusetts
Institute of Technology, Cambridge, MA.
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CHAPT ER 1

INTRODUCTION AND HISTORICAL SKETCH

1.1 INTRODUCTION

One of the principle difficulties plaguing physical

oceanographers is the shortage of ocean data. The oceans

are large, and the important processes have scales of tens

to hundreds to thousands of kilometers (Richman, Wunsch,

and Hogg (1977)). The two major means of observation are

Ship-borne measurement systems such as the

Conducti vi ty -Tempera ture-Depth probe (CTD) which records

tempera ture (T) and salini ty (S) as a function of depth

during lowerings from a stationary ship, and moored

instruments, such as current meters and

tempera ture -pressure (T-P) recorders which are deployed

along cables stretched between an anchor on the bottom and

buoyant floats at or below the sea surface. CTD lowerings

require upwards of 3 hours, but produce extremely detailed

records permi tting small-scale resolution of the vertical T

and S structures. Moored instruments can sample rapidly in

time, and their vertical resolution is only limi ted by the

spacing between sensors, al though usually no more than

about 10 instruments are placed on a 5000 meter mooring.

Each mooring or CTD cast samples at a single horizontal

(x,y) location, so that area coverage is limited by the

expense of moorings or by Ship steaming time.
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With the increasing sophistication of ocean models,

the need for data has become much greater than duri ng the

early exploration period when the large-scale structures of

the oceans were bei ng defined. The early exploration

crui ses pi c tured the ocean as ha vi ng steady, large-scale,

surface current systems wi th a rapid decrease in strength

wi th increasing depth. The deep ocean was thought to be

nearly at res t, wi th a few very large, slow currents. Once
the major current systems had been mapped, interest shi fted
from explora ti on to understandi ng the mechani sms whi ch

controlled the observed features. The more data

oceanographers took, the more complicated the pictures

became, and the simplici ty of the large-scale steady

currents was replaced by a complex of interacting and

intermittent motions, no less varied than the weather in

the atmosphere.

When moorings carrying current meters became

available, much of the ocean kinetic energy was found to

reside in "mesoscale" motions, wi th hori zontal scales of
order 100 km. (0 (100 km.)), and ti me scales of 0 (50 days)

(Ri chman, Wunsch, and Hogg, 1977). The dynami cs of these

motions are analogous to those of weather in the

atmosphere. Oceanographers now face the same problems that

meteorologists have been struggling wi th--obtaining
adequa te sampli ng in space and time to resol ve the

mesoscale motions, i.e. a "synoptic" data set.
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Meteorological data systems now include satelli tes in a

global network of pressure and radiosonde measurements, but

the oceanographic observation systems have not kept pace.

The oceans are opaque to electromagnetic radiation, so that

sa telli te measurements cannot observe beyond the sea

surface, and the open ocean is an extremely inhospi table

envi ronment for instruments, so that meChanically

complica ted systems present tremendous engi neeri ng

difficulties. Munk and Wunsch suggested a solution to the

. da ta-acqui si tion problem (Munk and Wunsch, 1979) (called MW

in the following) wi th a proposal to moni tor the oceans

usi ng remote sensi ng by sound energy. They called the

technique "Ocean Acoustic Tomography" because of its

similari ty to medical tomography (Swindell and Barrett

(1977)) which uses X-rays transmi tted along many paths

through a patient to reconstruct a 2 or 3 dimensional

picture of the region through which they passed. Low

frequency sound transmi tted from a source to a recei ver

moored at depth in the ocean propagates along distinct ray

paths as well, and Munk and Wunsch proposed to use the

travel times for pulses following different ray paths to

infer the structure of the intervening ocean.
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1.2 BRIEF HISTORY

The tomography proposal bui 1 t on an exi sti ng body of

work on ocean acoustics, bringing together a number of

ideas and techniques which had been developed for other

applications. The possibility of long-range transmission

of low- frequency sound in the ocean had been known si nce

the 1940 's, and a scheme for loca ti ng downed fl i ers by

triangulating on the sound from TNT charges had been

proposed (Ewi ng and Worzel 1948). Porter, Spi ndel, and

Jaffee (1973) developed a moori ng tracki ng system which

used the travel times of acoustic transmissions to moni tor

the motion of a mooring. By 1977, low-frequency sound

transmissions were being used to track neutrally bouyant

"SOFAR" floats over long distances (Webb (1977), Spindel,

Porter, and Webb (1977), or see Baker (1981)). Stei nberg
and Birdsall (1966) transmitted continuous wave (CW) sound

across the Florida strai ts usi ng a 406 Hz sound source, and

a later experiment transmi tted CW sound over 1250 km.

(Clark and Kronengold, 1974). The early transmission

experiments were mounted to study the intensi ty of sound

transmi tted over long di stances, whi le the phase structure

was found to be very unstable, due in part to internal wave

variations.
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Sound speed in the ocean is most sensi ti ve to
tempera ture and pressure effects, and decreasi ng

tempera ture wi th depth produces a decrease of sound speed

wi th depth in the upper ocean (i n most areas) whi le the

increasi ng pressure eventually more than balances thi s
effect, resul ting in a sound speed minimum at about 1 km.

depth in the North Atlantic. (Figure 1.1). The acoustic

waveguide is called the SOFAR channel, which tends to

refract sound energy toward the axis. This waveguide,

coupled wi th the fact that mechanical absorbtion decreases

wi th decreasi ng frequency, permi ts long-range sound

transmissions using sources wi th fini te energy. Sound

transmi tted from a source to a recei ver can be descri bed

theoretically as a set of "rays" (by analogy wi th light

rays in optics) each of which fol lows a di fferent path

(Figure 1.2). A Single pulse leaving the transmitter will

be recei ved as a set of "image" pulses, one for each

distinct ray (Figure 1.3). The travel time for a gi ven

pulse depends on the length of the path it took and the

sound speed along that path. These travel ti mes can be

computed, gi ven the path and the sound speed profile, by

solving the so-called "forward problem". The solution of

the forward problem descri bes the dependence of the pulse

travel time along a particular path, ri, on the sound speed

field of the ocean, C(x,t).
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The earliest experiments were mounted to gain

information on how sound propagated in the ocean. Once the

theory describing ocean acoustics ("the forward problem")

was understood and verified, investigators began to

consider the "i nverse problem" --observi ng propagation and

inferring ocean structure. LaCasce and Beckerle (1975)

suggested (vaguely ) that pulse transmi ssions mi ght be used

to "moni tor the periodici ties of Rossby waves", on the

basis of a simple explosion-moni toring experiment southwest

of Bermuda. Porter and Spi ndel, in 1977, proposed a
speCific way to monitor eddies using transmissions of 220

Hz pulses, based on their already considerable experience.

Munk and Worcester (1976) had also suggested that

oceanographic information might be obtained from acoustic

moorings, whi Ie an experiment by Peter Worcester (1977),

along with Munk and Birdsall, tested the practicality of

acoustic measurements of current over rela ti vely short
range. Worcester transmi tted sound between transcei vers

suspended from two shi ps 25 km. apart, and used di fferences

in pulse travel times between reciprocal ray paths to infer

current veloci ty averaged along the ray paths, but

encountered problems, such as untracked source and recei ver

motion. The currents produced arri val time shi fts on the
order of milliseconds, while the drifting and heaving ships

introduced travel ti me changes two orders of magni tude
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larger. The experiment used 2 kHz sources to achieve

enough bandwidth to transmi t pulses, so that it would have

been difficult to work at longer range, and the "inverse

problem" of unscrambli ng the a veragi ng along ray paths had

not been attacked.

Hugo Bezdek put Worcester, Munk, and Birdsall in touch

wi th Spi ndel and Porter, as a result of thei r experi ence

wi th mooring tracking, and the common interest of observing

the ocean acoustically. Spindel and Munk went to sea

together in 1978 to deploy the 2 kHz sources on a mooring

wi th tracking. Spindel also deployed the first source that

sent coded signals at 220 Hz--using signal processing

techniques to make long-range pulse arri val time
measurements possible. The success of this add-on test by

Spindel was the real beginning of the recogni tion that
long-range acoustic ocean moni toring was truly possible.

If the travel times for pulses following different

pa ths can be reli ably di sti ngui shed, then sli ce
reconstruction, as in medical tomography, should be

possi ble, although the medical algori thms are not
applicable, due to the complicated geometry and incomplete

sampling. Theoretical calculations for the North Atlantic

(MW) predicted that many di fferent rays should be

resol vable, providing a potentially large amount of

information, but it was not known whether the paths or the

pulse arri val patterns would be stable enough to reliably

observe any shifts in travel time along a particular path.
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On the basis of Fermat's principle (that sound propagates

along paths which extreffize the travel time for a given

sound speed field) and a careful analysis of internal wave

ef fects, MW predicted that the paths should be stable, so

that changes due to the evolution of the ocean mesoscale

would be resolvable.

The need to determine pulse arri val times requires a

narrow pulse, and there fore a wide bandwidth of the

transmi tted signal. This is not a problem if explosives

are used as the source, but is difficult for a

low-frequency, low-power self-contained source such as

would be needed on along-dura ti on moori ng. The ear ly

lOW-frequency acoustic transmissions were CW, as mentioned

above, ~s phases (tra ve 1 times) were regarded as too
unstable to be resolved, particularly gi ven the limi ted
bandwidths. The 270 Hz sources developed by Doug Webb for

the SOFAR float program (Webb, 1977), were modified to send

CW signals at 220 Hz (Spindel, Porter, and Webb, 1977).

Later, digi tal signal processing techniques made possible

by burgeoni ng computer technology were employed to send

wider band, coded signals at 220 Hz (Spindel 1979) and 224

Hz (Spindel 1980). The source that Spindel deployed in

1978 which showed that accurate long-range arri val times

were attainable in principle was of this type. The sources

were derived from the SOFAR float program, but were

modified to be part of a mooring and were larger and

heavier than the original sources on the floats.



18

The 224 Hz sources used in the 1981 Tomography

experiment use piezoelectric transducers to dri ve 4 large
resonant tubes, resembling organ pipes, for efficient

coupling to the water, and have bandwidths of 20 Hz. They

transmi tted a phase-coded di gi tal si gnal which was

phase-ma tched fi 1 tered (Bi rdsall, 1976 ) at the recei ver to

produce coherence peaks at lags where the recei ved si gnal

closely matched a stored replica of the transmi tted signal.
These peaks can be thought of as representing the arri vals
of short packets of energy from the source, simula ti ng ray

arri vals from a broadband explosi ve pulse. The travel

times for these "pseudo pulses" can be measured accurately

enough to di scrimi na te between di fferent mul tipa th

arri vals. I t thus became poss i ble to tes t the conjecture

tha t the arri vals would be stable enough to use as data in
an ocean observation program.

Two tests were mounted, one over a 900 km. path near

Bermuda (Spi esberger, Spi ndel, and Metzger, 1980), and

another over 300 km. paths (Spi ndel and Spei sberger, 1981).
Both experiments confirmed MW i S predictions, in fact

surpassi ng their expec ta tions, showi ng clearly resol vable

pa ths which shi fted in response to oceanic changes whi le

preservi ng a stable pattern of arri val ti mes. I t was also

learned that variations in arri val time for the final
cutoff of a set of acoustic pulses from underwater

explosions had been observed in the early 1960 i s (Hami 1 ton,

1977) .
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Gi ven the stabi li ty and resol vabi li ty of several

di fferent paths, consider the "i nverse problem" of

converting observed shifts in travel time for the different

rays into maps of sound speed changes in the intervening

ocean. In medical tomography, the X-rays pass directly

through the patient and are transmi tted from a nearly

con ti nuous set of poi nts around the peri meter of the regi on

to be imaged, so that transform techniques may be used in

the reconstruction. Ocean acoustic tomography relies on a

relatively small set of complicated ray paths (Figure 1.2)

which imperfectly and inhomogeneously sample the ocean.

Reconstructions require geophysical inverse theory, one

form of which was developed by Backus and Gi lbert (1967) to

trea t imperfect and incomplete data.
In the paper which introduced tomography, Munk and

Wunsch presented a solution of the inverse problem for the

2 dimensional problem wi th several sources and recei vers

distributed around a square region divided into boxes.

These preliminary simulations suggested that data from 4

sources and 4 recei vers could provide 16 independent pieces

of information and adequately resolve a 1000 km. by 1000

km. region divided into 16 boxes. If more boxes were used,

the ability to resolve any given box declined, but given

the si mplici ty of the ini tial case, there were many

prospec ts for improvement.
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1.3 THE 1981 EXPERIMENT BY THE OCEAN TOMOGRAPHY GROUP

On the basis of these calculations and the

transmission experiments mentioned above, the researchers

invol ved in the various aspects of the problems came

together as The Ocean Tomography Group and designed an

experiment to demonstrate tomography as a practical

observa tion technique (Ocean Tomography Group, 1982). This

experiment was carried out during the first half of 1981,

and much of the work described in this thesis was focussed

on the particular application of tomography embodied by the

1981 experiment.

The 1981 experiment was designed to emulate MODE,

(MODE Group, 1978), wi th interes t focused on the dynamical

evolution of mesocale features in a region south west of

Bermuda. This location was chosen because a main purpose

of the experiment was to demonstrate the uti li ty of
acoustic tomography as an oceanographic observation. tool.

It was thought best to avoid unexplored regions, in order

to optimize the des i gn of the array with archived data. In. .
any case, the description of apparently new phenomena by

the acoustics alone would have been regarded as

questionable. The region was chosen to be out of the

energetic Gulf Stream near field, so that the eddy energy

would be moderate to weak, in order to avoid problems wi th

important nonlineari ties in the acoustics or dangerous

mooring movement.
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The experiment has been descri bed. in the paper by the

Ocean TomographY Group (1982) but will be summarized here

to fix ideas. The experimental layout is shown in Figure

1.4. 4 224 Hz sources and 5 WHOI and S iO recei vers were

moored in an array wi thin a 300 km. by 300 km. box centered

on 26 N, 70 W. The experimental array also included 2
conventional oceanographic moorings with current meters and

temperature-pressure (T-P) recorders. During the course of

the experiment, 3 CTD and bottle hydrographic surveys were

made by NOAA ships in the region, and several AXBT flights

were made by the Navy, in order to have tradi tional

measurements in the region for comparison wi th the

tomography results.

A typical sound speed profile for this region is shown

as Figure 1.5, showing the strong waveguide wi th the axis

at about 1300 meters depth. The sources and receivers were

mounted on subsurface moorings to reduce leaning in

currents. Instrument depthS were nominally 2000 meters,

well below the sound speed minimum. When both source and

recei ver are located on the sound channel axis, pairs of
rays with equal, even numbers of turning points but

opposi te launch angle sign have identical travel times if

the profile is range indepedent. The actual ocean is

range-dependent, but the degeneracy can sti II impede peak

resolution and identi fica tion. Of f -axis geometry break s

this degeneracy. Moving source and recei ver off the sound

channel axis also decreased the number of ray s recei ved,

but did not greatly reduce the number of useful rays. Most
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of the rays el i mi na ted by thi s pos it i on shi ft stay close to

the channel axis, and have nearly identical travel times,

i ndi stingui shable by the prac tical system. Each

source-recei ver pair defines a vertical plane through the

box along whi ch the rays whi ch leave that source and reach

that recei ver propagate. Figure 1.2 shows a typical

source-recei ver path wi th a number of rays, whi le Pi gure

1.6 shows the time evolution of an arri val pattern for one

of the source-recei ver pai rs duri ng the 1981 experi ment.

Changes in the arri val pattern can be caused by several

mechanisms besides the variation of the ocean sound speed.

For the system to be useful, these other sources of

vari ance must be considered as noi se, and must be reduced

to levels far below the mesoscale travel time changes. As

a basis on which to design the 1981 experiment, MW

estimated the sound speed variations for the mesoscale at

about 200 msec, requiring a noise level somewhere below 10

msec. After the experiment was in the water, comprehensi ve

calculations of rms expected variations based on the data

from the MODE experiment revised the original estimate

downward to about 40 msec, making the error requirements

far more stri ngent.
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Because tomography is based on transmissions from

sources to recei vers, the data are very sensi ti ve to errors

in mooring posi tion. Gi ven a typical oceanic sound speed of
1500 mj sec, 15 meters of error in the length of a ray adds

10 msec. of travel time error. This is important when

compared wi th 40 msec., the expected level of travel time

changes due to the mesoscale field. Knowing the posi tions

of the moorings is thus much more cri tical than wi th a

conventional array of moorings. In addition, moorings can

move around, leani ng in response to ocean currents, so that

horizontal posi tion changes of 1000 meters are not
unexpected for the top of a standard mooring in 5000 meters

of wa t.er. The tomography moorings were subsurface, meaning

that the tops of the moorings were syntactic foam floats or

steel spheres at about 750 to 1000 meters depth, (see

Fi gure 1.4), and were moderately taut in order to reduce

the ampl i tude of the moori ng mot i on. In spi te of thi s

design, instrument position shifts of 500 meters in the

horizontal and 100 meters in the vertical were expected.

Tomography also requi res a hi gh degree of clock

precisi9n and accuracy over a long (4 months in the 1981

experiment) underwater deployment. The sources and

recei vers are autonomous, so it is possible for the clocks

in each instrument to drift independently, adding errors to

the travel time measurements. If these errors are to be
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kept to 1 msec over the course of the experiment, tha t
means 1 millisecond in 4 months, or one part in 1010. The

quartz crystal oscillators available today cannot meet that

standard, especiallY if they are subjected to the rapid

tempera ture changes associated wi th mooring deployment.

Rubidium oscillators can attain this accuracy, but consume

far too much power, given the limi tations to the battery

power available at present.

The problem of mooring motion was solved by using a

refined version of the mooring track ing system developed at

Woods Hole Oceanographic Insti tion by Spindel, Porter, and

Jaffee (1973). The system uses three transponders

installed on the ocean bottom in a triangle surrounding the

mooring, which are interrogated by another transponder on

the mooring. The travel times for the pulses sent between

these instruments can be converted to mooring posi tion,

allowing continuous tracking of the transponder on the

mooring with an accuracy of about 1.5 meter. A model of

the mooring is then used to estimate the motion of the

source or receiver gi ven the motion of the level at which

the transponder was located. For this system to operate

most accurately, the relative posi tions of the mooring and

the three transponders must be surveyed (to wi thin a few

meters) rela ti ve to the mooring to be tracked. Tomography

adds another complication, because the direction of the
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di splacement rela ti ve to the other moorings is very
important. Once the mooring shifts from some arbi trary

ini tial pos~tion were known, the time base of the recei ved

signal was shifted by ~T = ~R/C, where ~R is the shift in

mooring posi tion converted to extra horizontal range for

the source-recei ver pair in question, and C is an averaged

sound speed at the level of the recei ver.
The problem of clock drift was also solved by Spindel,

by using a rubidium clock as a frequency standard, checking

for drift of the quartz oscillators. The rubidium

standards were turned on dai ly, and after they had time to

stabi li ze, they were used to compute the rela ti ve frequency

shifts of the quartz wi th respect to the rubidium. These

shifts were recorded in the recei ver. Using this record,

the time base of each instrument could be adjusted later,

bri ngi ng practical clock accuracy up to about 2 msec.
The need to measure these quanti ties, while not

particularly onerous, does add complication and expense to

both the acoustic instrumenta ti on and moori ng deployment.

It likewise multiplies the number of systems which may

fail. During the 1981 experiment, some of the mooring

mot i on transponders returned incomplete data sets, maki ng

it impossible to apply mooring motion corrections to part

of the data. For these reasons, extensions to the inverse

techniques were developed to permi t mapping using

uncorrec ted acousti c data. These procedures may perhaps
obviate complicated correction logging in future

experi men ts.
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1.4 PREVIEW OF THESIS CONTENTS AND GOALS

Gi ven that the engi neeri ng problems of obtai ni ng the

da ta for the mesoscale have been solved, the usefulness of
the tomographic system as an observing tool depends on how

much information can be extracted from the data. In this

thesis I will describe a complete system for treating the

acoustic data to construct estimates of the ocean

structure. The formali sm I wi 1 1 present serves three

purposes. 1) To demonstrate and evaluate a specific

application of tomography: the 1981 experiment; 2) To

provide an analytical and numerical basis for understanding

and designing furture experiments, tomographic or

otherwise, and 3) To compare and contrast the common linear

inverse methods.

Chapter 2 contains a discussion of the ocean acoustics

necessary for understandi ng how the sources and recei vers

sample the ocean. Chapter 3 covers the quasi -geostrophic

equations of geophysical fluid mechanics, which form the

basis for the models used in the acoustic forward problem
. .

and the inverse solution. Chapter 4 is a general

discussion of inverse techniques, while Chapter 5 is an

i ntercompari son of many exi sti ng inverse methods. Chapter

6 is devoted to inverse techniques as applied to acoustic

tomography, and i ncorpora tes resul ts from Chapters 2 and 3.
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Chapter 7 is concerned with the specific problems which

arise when the tomographic system includes moored

instruments, as in the 1981 experiment. Chapter 8

discusses the preliminary data reduction for the 1981

experi ment, whi le Chapter 9 descri bes the detai Is of the

inverse techniques applied to the 1981 data. Chapter 10

di scusses the results of these inverse techniques and

examines the capabi Ii ties of tomography, both as applied in

1981 and in the future.

The reader who is not interested in the oceanographic

theory or inverse methods may wish to skip to chapters 9

and 10 for the results of the 1981 experiment. In any

case, the reader mus t recogni ze that the 1981 tomography

experiment produced a completely novel data set, so that

much time has been required for each stage of data

processing. For this reason, the maps and numbers

presented here are by no means final or optimal, but

represent a l1first-Iiassl1 look at the capabilities of
tomography.
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CHAPTER 2

ELEMENTARY OCEAN ACOUSTICS

2. 1 THE GEOMETRICAL OPTICS APPROXIMATION: ACOUSTIC RAYS

The attenuation of sound in the ocean is proportional

to frequency so that sound wi th a frequency of about 200 Hz

can be transmi tted usefully over several thousand

ki lometers before bei ng swamped by noi se. The SOF AR floats

(Baker, 1981 in Warren & Wunsch) use thi slow-loss

frequency range coupled wi th the acoustic waveguide

typically found in the North Atlantic (See Figure 1.1) to

allow tracking of floats over long distances using

relatively low-energYt battery powered sources. The first

ocean acoustic tomography experi men t used si mi lar sources t

operating at a center frequency of 224 Hz and transmi tting

a phase-coded signal sui table for travel time measurement

(The Ocean Tomography Group, 1982).

At 200 Hz, sound in the ocean has a wavelength of

about 7.5 meters t small when compared wi th typical scales

for the sound-speed structure of ei ther the basic
climatological state or the mesoscale fluctuations (Figure

2.1) t but large compared to vertical microstructure and
most fine structure (see Gregg (1977) for spectra). The
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FIGURE 2.1 A: SOUND SPEED ANOMALY AT 700 METERS DEPTH REIATIVE TO
THE AVERAGED SOUND SPEED PROFILE SHOWN IN FIGUR 1.1
CALCUIA TED FROM THE FIRST NOAA CTD SURVEY DURING 1981
YERDAY 66 TO 85. CONTOURS ARE SOUND SPEED IN METERS
PER SECOND, CONTOUR INTERVAL is 1. a MI SEC.
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FIGURE 2.1 B: SOUND SPEED ANOMALY AT 70D METERS DEPTH, AS IN FIGURE 2.1 A,
FROM SECOND NOAA CTD SURVEY DURING 1981 YERDAY 120 TO 139.~ ülo in a, I.. 1 -. 'i \.... .~v,,~, .,,~~'
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slow variation of the interesting structures when compared

with the sound wavelengths allows a simplification of the

acoustic wave equation called the geometrical optics

approximation, using the concept of acoustic rays. Other

and better approximations may be used to derive different

physical pictures, most notably the physical optics

extensions to the acoustic ray theory or the use of modes

as an alternate description of the propagation of sound.

The geometrical optics approximation is simple, but

adequate for many needs, including the analysiS for the

1981 tomography experiment, so it will be described in

greatest detail, although it is not always sufficiently

accurate for many applications. The development here will

follow Officer (1958).
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Let ~(x,t) be sound pressure in a resting ocean (or

sea bottom). The wave equation for sound is:

'i2 ~ = 1 a2~
C ( x ) 2-a

( 1)

C(~) is the sound speed, and is considered

constant wi th respect to the time of propagation of the

sound energy. Suppose that there is a source of angular

frequency w, then let

~ (~, t) = ~oexp (i (S (~) - wt)) (2 )

S (x) is phase as a function of distance. Constraining

S to be real, so that amplitude variations are ignored,

substitution of (2) into (1) yields

(l§) 2
(ax)

-+ (as)2
(ãY)

-+ (as)2
(ãz)

S 2 S 2 S 2 ". 2 / C ( x ) 2X -+ -+ = \.Y z 2
- n (x) (3 )

(as) , (as) , ( as) are the local wa venumbers:
( ax) (ãY) (az)

~(x,t) = ~oexp(i(Sx'x -+ Sy.y -+ Sz'z - wt)) (4)

~(~,t) = ~oexp(i('iS.x wt) ) (5 )

and vary slowly over the scale of a wavelength in the same

way that C(x) does.
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The gradient of phase, vS = (Sx,Sy,Sz), is normal to

the acoustic phase fronts, and in the resting ocean, this

is the direction of the local tangent to the ray path,

defi ni ng the ray path. For s = arc length along a ray,

dx = Sx = Sx .C (x) / w (6a)
ds n(x)

dy = Sy (6b)
ds n(x)

dz = Sz (6c)
ds n(~)

Call vS = k(~), the local wavenumber vector:

~(x,t) = ~oexp(i(~(x)'~ - wt)

Taking d/ds of (6(a,b,c)) yields (Officer, 1958):

d (n(~(s))dx) = an
ds ds ax

d (n(~(s))dy) = an
ds ds ay

d (n(x(s))dz) = an
ds ds az

(7a)

(7b)

(7c)
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These are the equations that" are integrated by most

ray-tracing programs to determine ri = xes), the ith

ray path, given an initial location, launch angle, and

direction. Normally, the sources are assumed to radiate

with spherical symmetry, so that we only consider

propagation in the vertical plane between source and

receiver, so that instead of xes), we use (r(s),z(s)),

where r is horizontal range.

If n = n(z) only, which is approximately true for the

ocean, then anjar = 0 and so (7a,b,c) become:

d (n(x(s))dr)ds ds = an
ar

= 0 ( 8a)

d (n(~(s))dz)ds ds = an
az

= dn
dz

(8b)

8(a) is a statement of Snell's law. that the

hori zon tal component of the wavenumber is conserved when

the sound speed varies only as a function of z, or

(n(x(s))dr)
ds

= constant. (9 )

If 6 is the angle that the ray makes wi th the

with the horizontal, then drjds = cos(6), and we get

cos ( 6 )
C( z)

= cons tan t along a ray path. (10 )
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cos(e)/c(z) is sometimes called P, the "ray

parameter", so that (9) becomes:

dP /ds=O along ri, ( 11)

expressi ng the conserva ti on of ray parameter along ray

pa ths. Ray -traci ng programs may be range-i ndependen t

(C = C(z)), or range-dependent in two or three dimensions

(C = C(x,z) or C = C(x,y,z)). The ray tracing code used

for the calculations in this thesis was originally wri tten

to be range-independent, but was modified to trace rays in
.

a succession of locally range independent sound speed

profi les, making it crudely range-dependent in two

dimensions (r,z). The ray is assumed to travel in a

vertical plane oriented along a line between source and

recei ver, ignori ng any bendi ng due to hori zontal sound

speed gradients.
For most mesoscale features these gradients are small

compared to the vertical gradients and so the horizontal

ray bendi ng has been ignored, although Munk (1980) has

trea ted hori zon tal ray bendi ng in detai 1 for si mula ted

mesoscale eddies and Gulf Stream rings in two dimensions

(horizontal plane). He finds that the maximum deflection

angle is proportional to v, the fractional change in sound

speed (v = C i /Co):

Maximum deflection angle = 2emax = .664.v

for a circularly symmetric eddy. If the feature is
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equidi stant from source and recei ver, then the ray geometry

can be approximated by an isosceles tri angle (Fi gure 2.2).
The extra ray arc length is thus

ßR = Rjcos(6) - R = R(ljcos(6) 1)

For a 15 mj sec eddy ampli tude,

v = 1. x 10-2

ßRjR = 5.5 x 10-6

This would cause an error of 1 msec at 300 km range, but

most eddies would not have the proper configuration, and

the expected rms error is much smaller.
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FIGURE 2.2 SCHEMATIC OF HORIZONTAL RAY PATH DEFLECTION FOR A CIRCULAR EDDY
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2.2 ACOUSTIC RAY TRACING: THE EIGENRAY PROBLEM

Al though the rays have been assumed to travel in a

vertical plane between source and recei ver, only a few of

the many possi ble launch angles from a gi ven source wi II

yield a ray which intersects the recei ver (Figure 1.2).
The rays that hi t the recei ver are called eigenrays and are
solutions of an eigenvalue problem, as demonstrated for a

simple case by Munk and Wunsch (1982). In the case of a

complicated or range dependent sound speed profile~

analyti cal sol u ti ons to thi s ei gen val ue problem become

i mpossi ble, and numeri cal techni ques for determi ni ng

ei genrays must be sought. The mos t obvi ous, and perhaps

least efficient method merely searchs through a ~ange of

launch angles, repeatedly traci ng rays out to the range of

the recei ver and converging on and saving as solutions

those rays whi ch pass close enough to be cons i dered as
ha vi ng hi t the recei ver (Fi gure 2.3). Thi s technique works

whether the code is range dependent or independent, for any

sound speed profi le or bottom topography which can be

trea ted by the program.
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FIGURE 2.3 DEPTH OF ACOUSTIC RAY AT THE RANGE OF THE RECEIVER AS A FUNCTION
OF LAUNCH ANGLE FROM THE SOURCE. THE LINE MARKS THE RECEIVER
DEPTH. EIGENRAYS ARE FOUND AT ANGLES WHERE THE RAY DEPTH CURVE
INTERSECTS THE DEPTH OF THE RECEIVER.
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Efficient techniques for determining the sound field

at the receiver exist in the seismic literature, and have

been successfully applied to the oceanic problem (Brown,

1982) . These methods invol ve keepi ng more terms in the WKB

approximation applied to the propagation equation, and

producing "synthetic seismograms" which predict both the

ampli tude and phase (arri val ti me) of the sound waves

reaching the recei ver. These techniques have the advantage

that they predict "diffracted arrivals", sound energy

leaki ng from rays whi ch do not in tersec t the recei ver, in

the geometric optics sense, but which have turning points

at the range of the recei ver. The ampli tude of

the sound pressue field is large at the turning point (~ is

predicted by the geometrical optics approximation) and if

the recei ver is wi thi n a few hundred meters, the

exponentially decaying leakage field may remain large

enough to be detected as a ray arri val. This is analogous

to tunelling in quantum mechanics.

Purely refracted rays are usually labelled by the

number of turni ng poi n ts and the si gn of the launch angle,

thus a ill RR ray has 11 turning points, a positive launch

angle, and is refracted both above and below. Rays which

hi t the sea surface or bottom are reflected by the
disconti nui ty in sound speed at the boundary, and may sti II
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be recei ved. These are also identified by the number of

turning points, including the surface and bottom bounces,

and the si gn of the launch angle, as in + 12 SRBR (both

surface and bottom reflected) or -9 RSR (reflected from the

surface, refracted at the lower turning point).
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2.3 THE FORWARD PROBLEM: TRAVEL TIMES IN THE OCEAN

Once the path of a ray, cal lit ray i, has been traced

from the source to the recei ver, it is possi ble to

calculate the travel time, Ti, by integrating along the ray

pa th, r i :

Ti = f ds
r C(x(s) ,t) i u(~,t).~
i

(12 )

s is arclength along the ray, ~ is a uni t vector
tangent to the ray, and the ocean is assumed to change

negligibly during the time the ray is propagating. Each

eigenray has a unique launch angle, and, therefore, a

unique path through the ocean, sampli ng the sound speed

field differently from other eigenrays. Because the sound

speed prof i Ie changes strongly wi th depth, the total travel

time for a ray which has much of its arclength in

high-speed regions will be smaller than for a ray wi th the
same path length but in low-speed regions. Di fferent rays
can usually be distinguished at the receiver by differing

travel times, (see Figure 1.3). The pattern of ray

arri vals is dependent on the sound speed profi le.
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The ve loci ty term in the denomi na tor of the

integrand,
u(x,t)..:, ( 13 )

accounts for changes in the apparent speed of sound

due to current, provided local shear can be ignored

(Hamilton, et al., 1980). Currents have been ignored

in the ray tracing because the magni tude of the current

shear in the ocean is typically

10 cmjsec
1000 meters

= 0(10-4 )

the typical sound speed gradient is stronger:

ac
az

= 4 mj sec
100 meters

= 0(10-2).

Sound speed gradients thus dominate ray bending,

except perhaps when the rays pass parallel to frontal zones

such as the Gul f Stream.

Internal waves produce both sound speed gradients and

current shear at scales on the order of meters. These

fea tures are comparable in scale to an acoustic wavelength,

and tend to scatter the sound, blurring the simple ray

paths calculated for the large-scale refraction into

ensembles of micro-mul tipa ths which change wi th the
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internal waves. These shifting paths interfere with one

another, producing variations in overall travel time for

the path and signi ficant changes in the intensi ty of the

received sound. There is a rich literature on the physics

of these interactions (see, ,
for example Fla tte, et. al.,

1979), and much information on the statistics of the

internal wave field can be gained from examining the

short-time changes in ampli tude and phase. It would be very

interesting to extend the tomographic inverse techniques to

use the many crossing paths to resolve spatial structure of

the internal wave field in the same way that they are now

used to observe the mesoscale . Unfortunately, the

approximations used above do not apply to the internal wave

scales, so a separate development is required, and is

outside the scope of this thesis. The shi fts produced by

the internal waves have been treated as noise in the

inversions for the mesoscale field, so adding the physics

of internal wave scattering to the inversion would improve

the estimates of the mesoscale, even if the information

about the internal waves was not directly useful.
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Equation (12) describes the dependence of travel time

on the sound speed and current fields in the region through

which the i th ray travels, and is referred to as the

solution to the "forward problem", a general term for

descri bi ng the dependence of the observed data on the
unknown. Sol vi ng the forward problem for ampli tude

presents more of a difficul ty, because the geometrical

optics approximation ignores amplitudes. Heuristic

ampli tude estimates may be made by considering two rays

differing by a small amount in launch angle. The area

between the two rays forms a "ray tube" (Figure 2.4). The

acoustic energy propagates along the rays and therefore

does not pass through the sides of the tube, so energy flux

is conserved along the tube. The intensi ty is then
inversely proportional to the area of the tube. For a

radially symmetric source, neglecting dissipation, let Io

be the ini tial intensi ty, do the ini tial vertical

seperation of the two rays, and ro the range at which these

two we re speci f i ed. At some grea ter range, r, the

seperation will be d, and the intensity will be I, but the

energy flux wi II be conserved

Fo = Io.do.2~ro = I'd.2~r = F (14 )
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The intensi ty at this range must then be

I = In 'do .2~ro
d . 2~r

= 10 'do 'ro
d .r

(15 )

The low-order character of the oceanic sound speed

profile is that of a waveguide (see Figure 1.1), so two

rays ini tially differing by a small angle wi II follow

simi lar paths, and the vertical separation between the

walls of the ray tube wi 11 generally increase rela ti vely
slowly. The in tensi ty loss is therefore due almos t

entirely to the range increase in equation (15), which

corresponds to cylindrical spreading. This is one of the

reasons that long range acoustic transmissions are possible

at reasonable power.

This crude ampli tude estimate has li ttle to recommend

it besides simplicity. It becomes infinite at caustics

(the points where rays cross, such as at turning points, so

tha t the ray tube hei gh t goes to 0) and ignores the often

dominant effect of multipath interference due to changes in

the sound speed induced by internal waves (Flatte, et al.,

1978). The ampli tude fluctuations produced by internal

wa ves can domi na te those produced by the mesoscale physi cs ,

but averaging over many internal wave periods can eliminate

much of the variation.
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Mike Brown has considered techniques for estimating

sound speed field structure using amplitude data, (Brown,

1982), and concluded that the ampli tude data was not

particularly useful for the 1981 experiment. Ampli tude

data require a more rigorous treatment of the acoustic

propagation than geometric optics, and this thesis will not

treat amplitude explicitly. Given an adequate solution to

the forward problem, the inverse techniques presented below

can be adapted to the use of ampli tude data, al though they

may no longer be the most convenient forms.
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2.4 LINEARIZATION OF THE FORWARD PROBLEM

The forward problem for travel time (equation (12)) is

nonlinear in the sound speed field, and although methods

exist to invert non-linear problems, solutions can be found

efficiently if the forward problem can be linearized.

Suppose we pick a reference state, Co(~,t), with

£(~, t) = 0, and express the observed ocean sound speed as a

perturbation to this basic state:

C (~, t) = C r (~, t) ~ Co (x, t) (16 )

For the ocean, Co(x,t) is large, 0(1500 m/sec), and

IC1(x,t)1 (( ICo(~,t)1 (17)

so that the integrand of (12) may be expanded:

T. = f ds1
r C(x(s) ,t) ~ ~(x,t)..!i

= f ds
r Co (~( s) , t ) ~ CI(~(S),t) ~ £(~,t) ...i

= f ds
r Co(x(s),t)
i

f(c'(x(s),t) ~ u(x,t).,)ds
r Co ( x ( s ) , t ) ¿
1

~ terms 0(CI2/Co3) (18 )
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For the oceani c mesoscale, C' ¡Co ~ 0.01 usually, so the

linearization in (18) should be good to one part in 104.

Unfortuna tely, the path of the integral is also dependent

on the sound speed profi le, and the effect of sound speed

changes on the ray path and thus on the travel time are not

easy to parameteri ze. Hami 1 ton et al. (1980) have made

calcula tions that show that these changes are exactly zero
for small perturbation, as a result of Fermat's principle,

so tha t the changes in path due to smal 1 changes in the

sound speed do not affect the calculation of travel time.

Internal waves induce small-scale fluc tua tions in the
sound speed field through their often large vertical

veloci ties, stretching and compressing the smooth profi le.

These changes, on scales comparable to the wavelength of

sound, cause the acousti c energy to scatter into

micro-mul tipa ths, bundles of paths following the "mai n II

pa th calculated for the mesoscale variå tions, but blurri ng

its outlines. The sound ray averages the positive and

negative perturbations from any given wave, but each
.

micro-multipath will have a slightly different travel time,

introducing the possibilty of phase cancellation when the

many small paths re-combi ne. For thi s reason,

internal-wave induced fluctuations affect the amplitude of

the sound arri val s more strongly than the travel ti me,
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making travel time a robust datum. Note that Hamilton, et.

al. did not prove that the path remains the same, but that

the contributions to the travel time from ray path

deformation tend to cancel out.

The integral used to calculate travel time for the

perturbed ocean can therefore be taken over the unperturbed

ray paths, loi, computed for Co(x,t), provided

ICo(~,t)1 )) IC'(x,t)1 ( 19)

In this case, the linearized forward problem is.

T i = f ds
l . Co ( x ( s ) , t )
oi

f (C i ( X ( s) , t) + U ( x , t ) · L ) dsl.Co(~(s),t)¿
oi

(20 )

or

T. = T . + T i.i oi i (21)

Mercer and Booker (1982) have done calculations which

produced examples of this relation for Gulf Stream rings of

varying energies, and point out that perturbations to the

paths affect the sampling of the sound speed field by the

ray. In examining their plots of ray travel times vs. ring

strength, one is struck by the lineari ty of the
rela tionship over a large range, al though the extremes of

the curves are clearly bent. Rings are among the mos t

intense sound speed features encountered in the N.

Atlantic, and the experimental region was chosen to reduce

the probabili ty of encountering rings, wi th their attendent

complications, in the demonstration experiment.
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2.5 THE TRAVEL TIME EFFECTS OF OCEAN CURRENTS

Equation (20) takes into account travel time

perturba tions that result from both sound speed and ocean

currents. This means that, in principle, a tomographic

sy stem can produce sound speed, densi ty, and ve loci ty maps

wi thout ambigui ties due to the IIreference levelll problem or

uncertainty in the T-S relation. In practice, high quali ty
travel time data is nece~sary in order to distinguish

current veloci ty from sound speed anomalies since the two

are averaged together along each ray. The area coverage

and error levels must be such that the inverse procedure

can identi fy and separate the two fields. The ef fects of

currents on ray travel times are weaker than those due to

sound speed, as can be seen simply by calculating the

magni tudes:

IC'I "" 0(10 mfsec), I u I "" 0 ( 1 0 cm f s e c )

The perturba tions due to ve loci ty are thus only a few

percent of the total travel time signal. Peter Worcester

has pioneered a technique called "reciprocal shootingll

(Worcester, 1977), which can greatly improve the current

resol ving power of the acoustic data by tak ing advantage of

the rela ti ve weak ness of the effect of current on the sound
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rays. I f two transcei vers transmi t to each other in an

area wi th typical currents the ray paths are approximately

independent of the direction of travel. For a given ray

pa th, r i, transmi t ted from Transcei ver A to Transci ever B,

for example, there will exist an oppositely directed path,

rj' (from TrB to TrA), that is identical in all other

respects. The linearized forward problem for travel time

perturba tions can then be wri tten as:

T'i = f(c'(x(s),t) -t u(x,t).,)ds
r . Co (~( s) , t ) "'
01

T' . =J J(C'(x(s),t) -t u(x,t).,)ds
r . Co (x ( s) , t ) "'
oJ

= J(C'(x(s),t) - u(x,t)',)ds
r . Co ( x ( s) , t ) ;¿
01

Taking the difference, T'i - T1j;

T' .1 - T' j = 2.f(u(x,t) ..)ds
r . Co (~( s) , t ) ;¿
01

(23 )

and the sum:

T'. -t T'. =1 J 2 · J (C ' (x (s) , t ) ) ds

r . Co (x ( s ) , t ) ;¿
01

(24 )
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This shows analytically how the use of transcei vers
instead of single sources or recei vers will greatly improve

the current resolving power of the acoustic data wi thout

adding extra moorings. For a more comprehensi ve

discussion, see Worcester and Cornuelle, (1982), which

evalua tes the uti li ty of tomography as a current
measurement tool. Reciprocal transmissions do not present

any special problems in the data processing or inverse

techniques outlined below.
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2.6 NON-LINEARITY

If the perturbation field calculated by the inverse,

C'(x,t), is large, then (20) may no longer hold

accura tely, and it is necessary to i tera te by choosi ng a

new ref erence state,

C1(x,t) = Co (~ ' t) ~ C' (x , t ) (25 )

presumably closer to the true field, C(~,t), than Co(~,t)

was. Such i tera tion is necessary when the assumptions

which led to (20) become invalid. The travel time

calculations are not as sensitive to the size of C'(x,t) as

the detailed ray path is, since the path deformation has

little effect on the travel time calculation (Hamilton, et.

al. (1980)). Thi s means that an important cri teri on for

deciding when iteration is required comes from the

inversion, not the forward problem. Difficulties will

occur when the ray paths are deformed by amounts

significant on the scale of the oceanic structures under

study.

One can estimate, for the mesoscale experi ment

descri bed in detai 1 below, that problems wi 11 begi n to be

fel t when the perturbed (true) ray path r i and the
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unperturbed path, rOi, differ by more than 0(100 m)

vertically or 0(5 km) horizontally for a significant

fraction (0(10%)) of the range. This estimate is not

rigorous, and is given purely to fix ideas, the

perturbations observed in the MODE experiment and the 1981

OAT experiment were not sufficient to perturb the ray paths

appreciably (see Figure 2.5), so careful numerical

calculations of sensitivity have not been made. Since ri

is unknown, linearity can be checked by tracing rays in the

sound speed field estimated by the inverse, and comparing

those paths to the ori gi nal paths, r oi . If these paths
differ significantly from the ray paths used in the

inversion, then i tera tion is probably necessary. The
con vergence of these i tera tion methods depends on the error
and resolving power of the inversion and the lineari ty of

the forward problem, but gi ven adequate resol vi ng power,

the robust li neari ty of the forward problem should lead to
rapi d convergence.
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2.7 RAY IDENTIFICATION

The identification of the rays may present the most

difficult problem when strong perturbations are introduced.

In order to use the acoustic data in an inversion, the

travel times observed in the data must be matched to ray

paths traced by the computer and used in the construction

of the inverse opera tor. For example, the latest peak in

an arri val pattern may be found to correspond to a i 12 RR

ray, the next-to-last arri val may be the -11 RR ray, and so

on. The ray identifier labels a ray path stored in the

compu ter, which determi nes how the ray samples the ocean,

and is therefore necessary for the calculation of the

inverse operator. The process of arri ving at the proper

match-ups is called "ray identification".

Both the "pulse" arri vals observed in the data and the

travel times calculated numerically form patterns (see

Fi gure 2.6), and, provi ded the di fferences between the
sound speed fields in the two cases. are small enough, the

two patterns will be comparable. One can then select out

observed arri vals which correspond to numerically traced
rays. The arri val times for indi vidual rays change nearly

linearly wi th increasing strength of the perturbation but
at different rates, so that the overall arrival pattern

de forms. The struc ture of these patterns is an important

part of the cri teri a used to match each observed ray
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arri val wi th the correct ray path, a process called "ray
identification". The m'ost stringent bound on the size of

the perturbations allowed wi thou t i tera tion could, then,
come from the abili ty to mak e correct identi fica tion.

Vertical array s of hydrophones, such as employed in the

recei vers constructed by Peter Worcester at Scripps

(Worcester 1981) add arri val angle information to the

travel time data, improving both the resolution of the

recei ver and the reliabi li ty of the identi fica tion. Once

again, for the 1981 tomography experiment , pattern shi fts

were never extreme enough to require re-identifica tion,

particularly gi ven the continui ty of the arrival pattern

over the 3-day sampling interval, which was short compared

to the 30 day mesoscale evolution timescale (Figure 1.6).

It was this continuity of ray travel time patterns

between a fixed source and recei ver over week sand months

tha t first demonstrated the practicali ty of acoustic

tomography. "Tradi tional" ocean acoustics had unti 1 the
la te 1960' s concentrated on intensi ty measurements

("propagation loss") for continuous wave sources. The

travel time measurements, corresponding to phase

information in the CW case, were thought to be too unstable

to hold useful information. Landmark experiments using
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equipment and techniques developed by Spindel and Webb

demonstra ted the stabi li ty of the pulse arri val pattern

over long periods, as predicted by MW. As a result of the

ori gi nal tomography proposal, Spi ndel, T. Bi rdsall, and K.
Metzger developed sophi stica ted si gnal processi ng to fi 1 ter

out the rapid shifts due to internal waves, leaving the

slower changes due to the mesoscale.
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2.8 EXTENSIONS OF RAY THEORY: NORMAL MODES

While the ray formulation is simple and useful, it is

by no means perfect, and an al terna te description of sound

propagation involving modes of acoustic pressure has

several advantages, and is analytically simple for regions

of weak range dependence.

Re-wri ti ng (1) for cyli ndri cal coordi na tes, assumi ng

radial symmetry, and C = C(z) only, yields a separable

equation:

v2cp = 1 a2ijC(z) 2 W

CPrr ;. l. CPr ;. CPzz = --2' CPttr C(z) (26 )

Let cp(r,z,t) = cpo'R(r),P(z)'exp(iwt) (27 )

Then (16) becomes

2RIt(r) ;. R'(r) ;. kh .R(r) = 0
r (28 )

and

P"(z) ;. ((w2/C(z)2) - kh2J.P(Z) = 0 (29 )

2here -kh = separation constant.
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Solving (28) with a radiation condition--outgoing

waves only (Tolstoy and Clay, 1960):

R r) = Ho ( 1 ) (k h · r ) (30 )

In the far field, where kh'r )) 1,

HO(l)(kh.r) ~ (~'kh'rj2)-lj2'exp(i(kh'r i ~j4)) (31)

kh may be interpreted as the horizontal wavenumber for

the pTopaga ti on of the modes.

Equation (29) determines the vertical structure of

each mode, showi ng "turni ng poi nts " at

zT; C(ZT) = wjkh (32)

by analogy wi th the quantum mechanical problem (Bender

and Orszag, 1979).

It may be solved using WKB approximations wi thin each

region, or a uniformly valid solution can be obtained using

Langer's method (Munk and Wunsch, 1983). Usi ng 2 turni ng

point WKB analysis (Bender and Orszag, 1979) the turning

points must satisfy:

zTi
J ((w2jC(z)2) - kh211j2 dz = (n i 1j2)~
zT-

(33 )
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From (32) kh = w/C(ZT+), so (33) becomes

ZTi
w.! ((1/C(z)2) - 1/C(ZT+)2J1/2 dz = (n i 1/2)~ (34)

zT-

For fixed n, this yields a dispersion relation, w(kh),

because the turning points, zT+, are functions of kh'

Equation (34) allows the calculation of horizontal group

veloci ty for mode n:

Cg = 3 w

3kh
(35 )

From the expression for group veloci ty, one can calculate

the arri val ti me of a gi ven mode n wi th frequency w as a

functional of the C(z) field, providing an alternate form

of the forward problem for the modes. Al though modes and

rays are theoretically interchangeable expressions for the

acoustic pressure fi eld, there are cases where mode

arri vals may bé resolved whi Ie ray arri vals cluster too

closely, so that a complete extraction of information could

use both ray and mode arri val data (Munk and Wunsch,

1982a). At present, only ray arri vals have been used, but

modes are to be investigated further in later experiments.



68

CHAPTER 3

THE QUASI-GEOSTROPHIC APPROXIMATION

3.1 BASIC ASSUMPTIONS

The oceans support motions wi th a rich range of space and

time scales, from acoustic waves at the small scales to the

thermohaline circulation, which extends over all the oceans,

and evol ves on time scales of years to centuries. A large

share of the observed energy belongs to a band of motion

between these extremes, the "mesoscale". Most of the kinetic

energy observed by current meters results from these motions,

and they have therefore been of great interest to

oceanographers during the past decade.

The theory describing these motions is now qui te

well-developed, and there are several da tasets which give

specific realizations of the ocean on adequate space and time

scales. Mesoscale features have length scales of order 100 km

(U (100 km) meaning between 10 km and 1000 km) current speeds

of O( 10 cml sec), and time scales of 0 (50 day s) .

Non-dimensionalizing the Navier-Stokes equation based on these

scales and dropping small terms leads to the quasigeostrophic

equa tions, which are used here in a form based on several

other assumptions
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1) The area being modelled is small enough so that the

spheri cal earth can be descri bed locally by cartesian
coordinates, leaving the meridional variation of the Coriolis

parameter as the only remaining effect of sphericity:

f = fo ~ ßoY ( 1)

where eo = lati tude at which the coordinate system is centered
n = earth i s rota ti on rate, fo = 2nsi n 60, and ßo = 2ncos 60/Re.

2) The dynamics of interest are perturbations to a

motionless rest state in which the ocean is locally in

hydrostatic equilibrium. Thus, if p(~,t) = pressure at a

point, and p(~,t) is potential density, then

p (~ ' t) = Ps ( z) ~ Pm ( x , t ) (2 )

and

p (x, t) = ps (z) ~ Pm (x, t ) (3 )

where

~s(z) = -ps(z)'g
az

(4 )
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3) Pm and Pm are pressure and potential densi ty

perturba tions due to the presence of mesoscale motion wi th

current veloci ties (u, v, w) = u, and these are nearly in
geostrophic and hydrostatic equili bri um:

!£(x,t) = -Pm(x,t)'g
az

(5 )

fo'u(x ,t) = -1 . l£m(x,t)
P s ( z) ay

(6 )

fo'v(!.,t) = 1 · l£m(x,t)
ps(z) ax

(7 )

This final assumption has been examined empirically using

some of the da tasets mentioned above, notably by the MODE

Group (1976), and seems to hold to wi thin experimental error.

Using this basis, Pedlosky (1979) develops the

quasigeostrophic approximation rigorously, and I will use the

resul t of hi s analy ses to bui ld theoretical re la tionships

between many of the variables which may be considered as part

of the forward or inverse problem.



71

3.2 DESCRIPTION OF THE (MESOSCALE) PERTURBATION FIELDS

Define a streamfunction:

~(~,t) = Pm(~,t)/ps(z) (8 )

as the basic quanti ty from which other quanti ties may be

derived on the basis of the theory. For instance,

Pm = -Ps (z) . a~
g ãZ

fo.v = a~
ax

fo'u = -a~
ay

w = -1 . a2~
N¿(z) at az

(9 )

(10 )

( 11)

(12 )

Here N(z) is buoyancy frequency.

The quasigeostrophic theory yields a dynamic equation for

predicting the evolution ~f these fields which expresses

conservation of potential vortici ty along fluid trajectories

in the absence of viscosity or heating:

2a of u.a of v.~).( V2~ of a '(f · 2.)) of ßo.a~ = 0 (13)at ax dY az N9z) dZ ax

Wi th boundary condi tions

w = i. a~ at z = 0
g TI

(free surface)

(14 )

(15 )

w = 0 at z = -D (flat bottom)
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For the scaling we have used, the equation (13) is

non-linear to lowest order, but it is useful to linearize it

to obtain a set of formal relations between variables. For

the lineariz a tion, the advecti ve terms are dropped, leaving

a
at

) . ( V2v¡ + a
az

2. f · ll) + ßo.ll
ffz) az ax

= 0 (16 )

which is separable. Let

V¡(~,t) = ~(x,y,t).G(z) ( 17)

2and spli t (16) in two parts using a as the separation
constant:

~(V2~ - a2~) + ß'~ = 0a t ax ( 18)

d (1 dG(z)) + a2'f02.G(z) = 0
dz NZ) dz

( 19)

Let G'(z) = dG/dz, and the boundary conditions are

G ' (z) = 0 at z = -D (20 )

G'(z) + N2(z).G(z) = 0 at z = 0
g

(21 )
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The system (19), (20), (21) can be transformed by letting

2 2À - a .fo (22 )

and G~(z) = G'(z)/N2(z) (23 )

The G~ (z) modes will later be seen to correspond to vertical

displacement of water. The system then becomes

G' '~(z) = -À.N2(z) .G~(z) (24 )

G~(z) = 0 z= -D (25 )

G~ (z) - ~ G' ~ (z) = 0 z = 0
gÀ

(26 )

Equation (26) makes use of the relation

G(z) = -l G'~(z)
À

(27)

The eigenvalue problem (24), (25), (26), may be solved

numerically for any N2(z) profile, yielding a complete set of

basis functions, G~i(Z), each with eigenvalue Ài' Gi(z) may

be derived from G~i(z) using (27), and we can now express many

variables using this combination of horizontal structure and

vertical modes. Equations (9)-(12) become
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Pm (x , t) =
z M

-...si.~).N (z)'i G1;i(Z)'qii(X,y,t)g i=l
M

= -ps'(z).i G1;i(z)'qii(X,y,t)i=l
(28 )

M

v(x,t) = l' I Gi(z)'qiix(X,y,t)
fo i=O

(29 )

M

u(x,t) = -l. I Gi(z)'qiiy(X,y,t)
fo i=O

(30 )

M

w(~,t) = I G1;i(z)'qiit(x,y,t)
i=l

(31)

The set iGÇi (z) 1 corresponds to vertical displacement of
water by the mesoscale motions, while the set iGi (z) 1 is a
basis for the pressure, velocity, and streamfunction. In the

transformation from equations (19,20,21) to equations

(24,25,26), one solution of the original set became trivial

and was di scarded. I f the free surface boundary condi ti on is

exchanged for that of a rigid lid (w=O at z=O), or if a mixed

layer exists at the surface (N=O at z=O), then the boundary

condition (21) becomes:

G'(z) = 0 at z = 0 (21' )
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The set (19,20,21') has a solution Go(z) constant, À=O,

which is a tri vial solution of (24,25,26) and cannot be used

in equation (27). This mode, Go(z)=B, is often referred to as

the "barotropic" veloci ty mode, because it is depth

independent. Thus, for every i ~ 1, Gi 1; (z) corresponds to

some Gi (z), but Go( z) corresponds to Go 1; (z )=0, so the

"veloci ty" or "streamfunction" modes are summed on i=O to M,

while the displacement modes need only be summed on i=l to M.

This means that the densi ty field provides no information

about the ampli tude of the "barotropic" veloci ty mode, which

has been a source of painful indeterminacy for generations of

oceanographers.

Other quanti ties of interest may be deri ved in the same

manner. For example, eastward transport through the

meridional rectangular region defined horizontally by (Xl, Y 1)

to (x1,Y2) and vertically between zl and z2 is

~Xl,Y2) z~
U(xL,Yl,Y2,Zl,z2,t) J J u(x,t)'dy'dz

(X1,Y1) zl
(32 )

M

=1. . ¿ -1. ( ~i(X1,Y2,t) - ~i(X1,Yi,t) )(G1;i(Z2) - G1;i(Zi))
fo i=l Ài

+ 1. · ( ~ 0 ( Xl, Y 2 , t) - ~ 0 ( xl, Y 1 , t ) L · B · ( z 2 -z i)
fo

(33 )
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The interrela tions greatly simpli fy the inverse

procedure. Instead of estimating p, u, V, w, transport, or
streamfunction separately, the problem can be di vided into

estimating ~, ~x, ~y, and ~t, greatly reduci ng the amount of

work . Naturally, adopting this framework is most use ful if

the analytical modes Gi (z) and GÇi (z) form an ef ficient basis,

so that only a smal 1 number of modes are needed to describe

most of the features observed in the ocean. On the other

hand, the assumptions involved are no stricter than those

normally employed by dynamic oceanography, and should not

resul t in inconsistencies wi thin the invers ions. In addi tion,

the modes do not need to be orthogonal to be used in the

inversion - the only complication introduced by

non-orthogonali ty comes in computing expected energies.
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3.3 NON-DYNAMICAL MODE BASES

It is sometimes desireable to use some other set of modes

as a vertical basis in place of the analytical modes. In thi s
case, the analysis described above would still hold, except

for the analytical trans forma tion between the veloci ty modes

and the displacement modes. Since an arbi trary set of modes

will not be a solution set for the vertical structure equation

(19) or (24), equation (27) will no longer apply.

Suppose, for example, that a set of basis functionS for

the vertical structure of the densi ty field have been

obtained: f FP i (z) i . These may be empirical orthogonal
functions (E.O.F.s) derived from data, or may be completely

arbi trary, describing layers or some other pre-defined

vertical structures.

The densi ty perturbations, Pm('x it) are still assumed to

be in quasi-geostrophic equilibrium wi th the other fields, and

the lineari ty of the equations mak es superposi tion hold,

so let ni(x,y,t) be the horizontal structure of mode i,

M

Pm(~Jt) = L FPi(z)'ni(x,y,t)
i=l (34 )

The densi ty perturbations are produced by the vertical

motions of water acting on the adiabatic densi ty gradient, so

displacement modes are gi ven by

FÇi(Z) = (ps i (z))-l.FPi(z) = FPi(z)/(dps/dz) (35)
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or

FÇi (z) = g · FPi(z)
ps(z)NL(z)

(36 )

The two forms (35) and (36) are not necessari ly

equi valent when numeri cally calculated because the deri va ti ve

in (35) must be the local adiabatic gradient of potential

densi ty, not just the simple deri vati ve, particularly if P is

potential densi ty relati ve to the surface. Calculations of N2
must also take this derivative properly, in order to avoid

false regions of apparent instabili ty, so the form (36) is

often easier to implement. In general, whenever vertical

deri va ti ves appear, it is important that they locally remove
pressure effects, to avoid bias from non-lineari ties. These

considera ti ons are necessary when con verti ng to and from

tempera ture, poten ti al temperature, and sound speed.

Sound speed modes must always be computed from an

empirical relation like (35), where Cs(z) is the basic state

sound speed:

FCi(z) = (dCs(z)) FÇi(z)
dz potential

(37 )

Si mi lar relations hold for temperature, potenti al temperature,

sali ni ty, and the tracers, whether the set of F (z) 's are
analyt i cal, empi ri cal, or arbi trary.
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Equation (27) relates displacement modes to velocity

modes wi thout resorting to a reference level assumption,

because the indeterminacy of barotropic veloci ty gi ven densi ty

measurements showed up as the lack of constraints on

~o(x,y,t), the amplitude of Go(z), the vertically uniform

analytical mode of horizontal veloci ty.

The indeterminacy thus has a clear dynamic meaning as the

ampli tude of the barotropic mode. Analytical or numerical

estimates of energy missed in this way can be made. When

non-analytic modes are used, the "reference level" problem is

more complex. In order to convert from displacement to

veloci ty, we must use equation (23) and then integrate

vertically to find F i (z), the i th empirical veloci ty mode.

Fi(Z)
z 2

= J N (z') Fi' i (z ' ) dz '
Zo

+ F i ( zo) (38 )

FiCZo) is unknown, and corresponds to the "reference

level" velocity (wi th the reference level at zo). Any set of
displacement modes Fi'i (z), i = 1 to M, can be used wi th

equation (38) to generate a set of velocity modes FiCz).

Fo(z) is a uniform velocity, as before, but the energy in this

mode depends largely on the reference levels Zo picked for

each mode.
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The description of velocity still has the simple form:

u(~,t) =
M

-1 · I Fi(z)'niy(x,y,t)
fo i=O

( 39)

v(x,t) =
M

l · I Fi(z)'niy(x,y,t)
fo i=O

(40 )

The empirical functions Fi(z) can generally be picked to

be a more efficient basis for the perturbation field than the

analytic function, Gi(z), but they require more prior

informa tion than the analytical modes, and suffer from the

reference level problem. Using the analytical modes as a

basis also allows the use of the equi valent barotropic

equation (Flierl, 1978) to add linear or nonlinear dynamics

into the models, and eventually, into the inversions. The

EOFs, on the other hand, do not provide an efficient "state

vec tor II for the quasi -geostrophi c dynami cal equations, so the

models based on EOFs are practically limi ted to employ

diagnostic constraints only, while models based on analytical

modes may use the prognostic equations, such as vortici ty

conservation.
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CHAPT ER 4

PROBABILISTIC ESTIMATION

4.1 GENERAL DISCUSSION

Consider a general estimation problem, where N data,

idi: i=l,Nl are taken, and an estimate of some field

~ (x ,t) is desired. The data are only useful if they depend
on (Ilsample") ~ in some way, which mayor may not be

deterministic. In vector notation, this is wri tten:

d = Ft ~(x ,t) ,x ,t)
( 1 )

The problem posed in this chapter is how best to

invert this relation (i) in order to obtain the best

possible estimate of ~(x,t), given the data d = idil. The

full inversion problem for tomography requires this

generali ty, since the data may consist of many types, and

the desired output field m~y not appear explicitly in the

forward problem. For example, in the 1981 Tomography

experiment, the full data set consists of travel times,

travel time differences between rays in an arrival pattern

(called "ray differentials"), temperature, pressure, and

current records from moored instruments, and CTD stations

taken during 3 survey s. The desired output fields also

encompass a wide range, including sound speed, veloci ty ,

tempera ture, densi ty, transport, heat content, and perhaps

vortici ty.
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In a standard moored experiment of the past, the

instruments directly measured one quanti ty, such as

horizontal veloci ty, at several points in space. The

resul ts were Fourier transformed in time to yield an
estimate of the time scales important in the motions, and

covariances between instruments were calculated to yield

estimates of spatial scales, and, wi th lagged covariances,

propagation velocities. More recently, optimal estimation

techniques were employed to yi eld conti nuous maps of the

quantities measured only at points (Bretherton, et al.

1973), and, much more recently, to yield estimates of a

quantity, vorticity, (McWilliams, 1976), (Hua and Owens,

1982) not di rec tly measured.

It is a small (and logi cal) step to generali ze

entirely, so that a wide variety of measurements made at

different space and time locations could be combined by

one, as yet unspecified, estimation procedure, to yield the

estimates of desired output quantities at any space and

time locations which can be shown to be the "best", gi ven

the cri teria necessary to define "best". The objecti ve

analysis mentioned earlier is thus a special case of one

estimation scheme where the cri teria for "best" consist of

lineari ty and minimum expected squared difference between

the true field and the mapping field, gi ven an assumption

of a statistical ensemble.
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The ingredients of any estimation method will

generally be:

1) A constraint on the estimator, such as linearity in

the data.

2) Cri teria to define a figure of meri t for the
estimator, such as the weighted sum of absolute values of

the results and / or the resi duals. These cri teri a generally

will require choosing the framework in which the

calcula t ions take place, such as a choi ce between

deterministic and statistical calculations.

3) A set of assumptions about the various quantities

involved in the estimation procedure. These assumptions

include the "forward problem," whi ch relates the data taken

to the quanti ties which may affect it; as well as error

estimates and models for the unknown fields.

In thi s chapter, I wi 11 consi der a number of methods

for arriving at estimates of the output fields, and discuss

their features in a framework that is not specific to the

tomography experiment, but appli es generally to problems of

inferences from data wi thin a physical framework. Readers
primarily interested in the resul ts of the inverses applied

to the 1981 tomography experi men t may wi sh to ski P to

chapter (8) or (9).
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4.2 ESTIMATION BASED ON PROBABILITY DISTRIBUTIONS

One very general framework of estimation theory is

well di scussed in the electri cal engi neeri ng li tera ture.
I t uses the concept of i nf orma t i on pi oneered by Shannon

(1948), and many specific estimators are special cases of

thi s approach. One standard text is Van Trees (1968), but

the subject has recently been broached in the geophysical

li tera ture (Tarantola and Valette, 1982~. The theory is

too complex to make it worthwhi le to carry it completely

through in an example, but a brief discussion is worthwhi le

as the theory provides an organi zed background out of which

various specific estimators may be derived. I will use the

notation of Tarantola and Valette (1982~.

Let d = vector of data values, and E = vector of

parameter values. These may be countably infini te in
length, which means they can represeat continuous systems,

given the discretization due to computers and minimum

scales of in teres t. These vec tors are combi ned into one

vector, x, of length m, where every element of x has a

probability distribution, fi(xi), describing the likelihood

wi th whi ch it can take on any gi ven value. I n the case of

the data, this probability describes the possible deviation

of the true value from the recorded value. Thus, when an

experimenter records only a data value, do and a standard

devi a tion due to error, cro, but no other error moments,
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this is consistent with the assumption that the probability

distribution function for the true value, d, of the

quanti ty measured is

2 1/2 2 2
fed) = (2'n'cro)- 'exp(-(d-do) 12cro ) (2 )

Before the experiment takes place, there is a joint

probabi Ii ty distri bution for the model parameters, the a
priori distribution, which contains all information about

the parameter values independent of the data taken. If

these a priori expectations are combined with the data

probability density function (p.d.f. IS), then we can write

p (~) = P (E, d)

the m-dimensional a priori p.d.f., which is input to the

inverse procedure. The other essential ingredient of this
general framework is the relation between the data and the

model. Thi s can be expressed wi thi n the theory as a joi n t

p.d.f.; 0(E,~), where d and £ are not independent. If d

and E are independent, so that

e(E,d) = epeE) .0d(~), (3 )

then it can be shown that it di d no good to col lec t the

p~rticular set of data, d. In a practicaY application, the

model and data will be related, so the distribution will

not be separable.
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For example, a deterministic relation between model

parameters and data can be wri tten in non-linear functional

form:

d = Q(£) (4 )

This can be expressed in probabili ty form:

0(E,d) = ô(d - G(p))'~(£)

where ~(~) is a p.d.f. which reflects the state of null

information about p and ô( ) is the Dirac delta function.

The state of null information, which has been called

~(x) after Tarantola, is a concept used to streamline the

construction of the condi tional probabili ty densi ty
functions necessary for the estimation procedure. ~(x) is

a p. d. f. for the data and mode 1 parameters which can be

constructed wi thout any knowledge. The simplest example of

~ (~) would be jointly independent uni form distributions

between ~ø, although other forms may be possible or

preferable (see Tarantola and Valette, 1982b).

If the theoretical information, e (x), is independent

of the a priori model and data, p (~), then they can be

combined simply to obtain the a posteriori state of

information:

a(~) = p(~)'0(x)/~(~) (6 )
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This a posteriori set of p. d. f. 's may then be operated on

in a variety of way s to obtain the results desired. For

example, the estimated parameter values, £, may be picked

such tha t

0p (.2) = maximum at p A= p,

This is the maximum likelihood estimator, and is frequently

used, primarily for its simplici ty, although the

statistically rigorous estimator for an arbi trary p. d. f.
would be the center of mass,

~ = (E) = f E . 0 p (E) dE (8 )

It is possible to show (Tarantola and Valette, 1982a,

this thesis), that when the assumed probabili ty densi ty

functions are Gaussian, then the maximum lik elihood

estima tor is linear, and corresponds to the least- square

error estimator. In fact, for Gaussian distributions, tpe

maximum lik elihood estimate is the same as the expected

value, so that it is statistically rigorous. If the

distributions are not Gaussian, then the computations may

be more difficult, but the formulation still applies,

al though the maximum likelihood estimator no longer

necessari ly even has simplici ty to recommend it.
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This theory can be generalized to allow cases where

the constraints and data are not conveniently expressible

as probability distributions. The quantity called

'Information', defined by Shannon (1948) is, for a

probability distribution function f(x),

I (x) = 10g(1/f(~)) (9 )

I(~) represents the amount of information that we

gai n from an observa ti on of the random process X = x, and

the expected value of information defined with e as a base

is equal to the entropy, as defined in statistical

physics,

(I) = E = -Jf(~)ln(f(x)) d~ (10 )

Maximum expected information thus corresponds to maximum

entropy, and is the state where the probabili ty function is

as smooth as is consistent wi th the constraints of a priori

knowledge and the data.

For example, if a random scalar vari able x has an
unknown p.d.f. f(x), but is known to be non-negative and to

have mean ~, then the maximum entropy f(x) is (Papoulis,

1981)

f(x) = (1/~) exp(-x/~) ( 11)
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2On the other hand, if only the mean ~ and vari ance cr of x

is known, then the maximum entropy distribution is

f(x) =(2TIcr2)-1/2'exp(_(x_~)2/2cr21 (12 )

(Shannon, 1948). The Gaussi an probabi Ii ty assumpti on

is thus somewhat justifiable from a maximum entropy

standpoi nt, gi ven no hi gher momen ts or extra constrai nts.

Unfortunately, there is a present pauci ty of

oceanographi c data, precl udi ng accurate sta ti s ti cs, not

to mention specification of probability distribution. In

the absence of such data, assumi ng the unknowns to be the

resul t of a Gaussi an random process would seem to have some

basis, if only as an heuristic consequence of the central

limi t theorem. Thus, the least-square estimators may be

used wi thout commi tti ng gross errors by assumption, and

they are convenient as well.
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4.3 OPTIMAL ESTIMATES FOR GAUSSIAN DISTRIBUTIONS

The probabi li sti c di scussi on gi ven above may seem

abstract, but it is instructive to apply it to an example

whi ch has of ten been treated by standard inverse methods.

Suppose that we wish to estimate an unknown field, p(~,t),NT IV N N
given a data set d = (d1, d2,'.. ,dN) containing random

observation error, ~, normally di stri buted wi th known

-
covariance, so that the true value d = d - e. Assume, in

addition, that p(~,t) is normally distributed around an

,.
independently deri ved value, p(x, t). Then we can form the

prior probabi Ii ty densi ty p (~) ,

p (~) = y . ex p ( - 1 /2 ( À - À ) T C - 1 ( À -À) J- - =a -- ( 1 )

where ÀT =tp(x,t),dTL and yis a normalization factor to

make p(~) a probability density function, and £a reflects

the uncertainty of both the model and data,

ci 0 0 0

fa = o
o
o

(eeT)
(2 )

ci-1 0 0 0

C-1 = 0 (3 )
=a 0 ( eeT)-l

0

,.ci is the expected variance of p(x,t) around p(x,t),
and £e = (eeT) is the error covariance matrix.
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Note that the error is uncorrela ted wi th the a pri ori

estimate of p(x,t). If a+~, then we have no starting

information about the value of p(~,t).

We also require the exi stence of a theoretical or

statistical relation between d and p(x,t),

0(\) =Y'exPt-1/2(À-~)TC-1(À-~) 1- -- -T -- (4 )

~T =tP(~,t) ,d1,d2,... ,dN 1 = an estimate of the

expected value (mean) of ~, and £T is the estimated or

assumed theoretical or sta ti stical covari ance for À around

À. £T can be safely assumed to be invertible in principle,

si nce the problem is underdetermi ned. A covari ance

matrix is positive definite, but some of the eigenvalues

may be very small, making the matrix numerically singular.

Thi s covari ance ma tri x exprèsses the expected vari a ti on of

the true value around the estimate of the mean.

If r is unknown, or poorly known, this ignorance can be

expressed heuristically by increasing the variance around

À. Bretherton, Da vi s, and Fandry (1973) used thi s

technique, setting the variance of p(x,t) around p(~,t),

((p(~,t)-\p(x,t)i2) to 00 to allow for an unknown mean

(Liebel t (1967) di scusses thi s too).



92

In real applications something is usually known about

the mean, so that a fi ni te vari ance may be used, but the
resulting estimator will be biased if the true mean is

different from the p(x,t) assumed (Liebelt, 1967).

Â
(p(x,t)) * (p(x,t)) if (p(~,t)) * p(~,t)

The bi ased estimator tends to remai n closer to the mean

speci fied in ad vance than an unbi ased estimator, so if thi s

technique is to be used to produce an estimate of a mean

over the entire length of a data time series, it is

preferable (for economic as well as statistical reasons) to

a verage the data before usi ng the estimator, and then
revise the estimation procedure to estimate the mean by

modifying the covariances. On the other hand, the biased

A
estimator will yield a lower variance of p(~,t), the

estimate of p(~,t), than an unbiased estimator, so a

resolution/bias trade-off needs to be ex ami ned for each

specific problem. For the present, I will retain the means

in the expressions as if they were known, al though it must

be understood that thei r si gni fi cance can be adjusted by

the variance wei ghti ng.

The cross-covariances between p(x,t) and the data, d,

provide the essential information needed to complete the

problem. If p(x, t) and d are independent, then the
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cross-correIa ti ón terms vani sh, and d does not constrai n

p(x,t). This "forward problem" may be expressed

analytically or statistically, and will be discussed later,

but for now, just assume that we have estimates of the

model -da ta covari ance,

Cpd = (( p (x, t ) - p( x, t ) ) (d -d) T) , (5 )

the model covari ance,

Cp = (( p ( x , t ) - p( x , t ) ) ( p (x , t ) -~ ex , t ) ) ) , (6 )

and the data-data covariance, which includes expected

modelling error, but not measurement error,

£d = ((d-d) (d-d)T) (7 )

Gi ven these covari ance ma tri ces, the total covari ance

matrix can be written as a partitioned combination of

(5),(6), and (7);

£T =
Cp

(
C dT-p

Cpd
) (8 )

£d

Note that there have been no explicit assumptions

about the lineari ty or non-lineari ty of the model-data

rela tion. The covariance form cannot rigorously represent

a nonlinear forward problem, but it can express the robust

quasi-linearization as used in non-linear control theory.

(See Figure 4.1)
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FIGURE 4. i SKETCH TO ILLUSTRATE THE DISTINCTION BETWEEN LINEARIZATION,

QUASI-LINEARIZATION, AND COVARIANCE (OR CORRELATION).

QUASI-LINEARIZATION= LINE THROUGH POINTS (A,f(A)), (AI ,f(A'))

Y Y = f(X)

x
A ~

TANGENT TO CURVE AT (0,0)

Y Y = f(X)

x

PICK N POINTS xi' USING

PROBABILITY DISTRIBUTION

P(X=x,')' THEN y. = f(x.), ,
~COVARIANCE : LEAST-SQUARES BEST -FIT LINE/

THROUGH THE CLOUD OF POI NTS GENERATED BY THE

FUNCTION GIVEN EXPECTED PROBABILITIES OF POINTS IN DOr~AIN.
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-
If the prior information (l and fa) is independent of

the forward problem (À and £T), then the posterior

probability distribution, o(l) may be written as the

product of the other two distributions:

o Cl) = y". p Cl) . e Cl) (9 )

where yt , is another normali za ti on factor.

Using (1) and (4), and letting y" '=y.y"y", to keep

the normali za tion consi stent, we obtai n an expressi on for

the a posteriori probabi li ty densi ty function for both the
da ta and the unknowns:

o(l) =Y""expf-1/2((l-À)T£~1(l-À) + (i-t)Tf~l(l-)))J (10)

If o(l) had the form:

o (l) a: " T~ 1 ~exp(-1/2Cl-l) Q- (l-l)) ( 1 1 )

A
then À would be the maximum likelihood, minimum variance

"'
estimate of l, and £ would be the estimate of its

covariance matrix. We can complete the square in (10) to

obtain the form (11). Begin by expanding out (10)

completely:

oCl) a: exp(-1/2CiTQ~li - iTQ~li - \Tc~li + iT£~lÀ

+ ÀTC-1À - ÀTC-1À - ~TC-1À + ÀTC-1À)) (12)
- -a - - -a - - =a - - -a -
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Because the quadratic forms are symmetric

'ÀTC-1 À
- ~a -

= ÀTC-1 À
- =a

IVand À and À are constants, this can be re-wri tten:

(J (~) a: exp(-lj2.(ÀT(C-1 ~ C-1)À- 2ÀTC-1À- -a -T - - -a - (13 )

- 2ÀTC-11i)
- =T -

or,

(J (~) a: exp(-lj2( ÀT(C-1 ~ C-1)À- =a =T- (14 )

- 2ÀT (C-1À ~ C-11) L )
- =a - =T-

/\ 1\Thi s can be sol ved for À and C usi ng ma tri x

algebra to write (14) in the perfect square form:

I\
C-1 = C-1 ~ C-1=a -T ( 15)

I\ I-
C-1À=

IV
= C-1 À ~

=a -
c-1I
=T -

(16 )

so,

i = (C-1 ~ C-1)-1 (C-1À ~ C-1I)=a =T ~a - =T - ( 17)

This form could be used for estimation, but it is

informative to break the expression down, particularly
I\

since À is primarily an estimate of the true value of the

data:
~T A ,. "= (p(x,t),d1,...,dN).
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In addition, as mentioned above, £T may have several

small eigenvalues, so the inverse may be di fficul t to
obtain numerically. Fortunately, it is pOSSible to

modify the expression in (17). Consider the form:

s = (!-1 + &-1) !-1 (18 )

2, A, and ~ are positive definite (non-singular matrices.

2-1 = !(!-1+~-1) = l + AB-1 = (~+A)~-l ( 19J

so

2 = ~(~+!)-1 (20 )

Applying this to (11), we obtain

~ = £T (fa + £T) - 1~ + fa (fa + £T) -1 À (21 )

This expression can be simplified further by using the

parti tioni ng of fa and £T as shown above:

~ 0
fa = (2 )o £€

C =
=T

Cp

CT d- P

Cpd

£d
(8 )
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In order to invert these matrices, we need to take

advantage of the parti tioning (Liebel t, 1967). If

,2 =

A B
BT C

( 22)

then

~-1 =
(! - ll-1~?)-1

_£-l~T (l _ BC-1gT )-1

-!-l~(f - ~TA-1~)-1

(Q - 1~7!-1~)-1

C 23)

Usi ng thi s formula, (fa i £T)- 1 becomes

a i Cp
(

CT d- p

Cpd

£d i Q t:

)-1 (
ß

CT d- P

Cpd
)-1 =

£0

(ß - C dC - 1CT d) - 1_p _0 _ p

-£0 - 1CTpd (ß - Cpd£o -lCTpd)-l

-ß-1CpdCfo - CTpdß-1Cpd)-1

(Co - CT ß-1C )-1_ pd _pd

(24 )

(Ci)-l
-Q -lCT dCCi)-l_0 _ P

- ß - 1C C C ) - 1_pd =n

(C )-1=n
C 25)

This formidable expression must be substi tuted into

(21) and multiplied out (see Appendix). To calculate only

the a posteriori estimates of the true values of the
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unknown fi eld, we need consi der only the top row term

mul tiplying the data:

p (x , t) = a ß - 1 · £pd£n - 1 (d d)

+ ((C1-a)p(~,t) + ap(x,t)lC1-1 (26)

ß, Co, C1, and Cn have been implicitly defined above

ß - a + Cp (27 )

£0 - £d + £8 (28 )

C1 - ß - Cpd£o -lCTpd (29 )

£n - £0 CT d ß-1C d (30 )- P ~
If a+oo (no a priori information about p(x,t)):

A
p(X,t) = 1 ~

£pd£o - (d - d) + p(~,t) (31)

Thi s form wi 11 be obtai ned later us i ng the Gauss-Markov

theorem, but the result here proves thi s form to be the
minimum variance non-linear estimator, provided the

probabili ty densi ty functions are gaussian.
The optimal estimate of the data values may not seem

directly useful, but, it is important in calculating the

validity of the assumptions built into the inverse. Using

the algebra in the Appendix, the a posteriori estimates of

the data values can be obtai ned di rec tly, or the noi se in
the data can be estimated using equation (21) of the
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Appendix. The estimates must then be compared with the

prior expectations on which the estimator was built, as a

check on consistency wi thin the inverse framework. The

estima tes of data errors are called "resi duals", and should

be examined for clues to improper energy levels or missing

physics.
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4.4 PUTTING ERROR BARS ON THE ESTIMATES

Because the probabi li stic estima ti on method calculates
A.

a distribution for the true value, ~, around ~, it provides
A

the error covariance, £, for the estimate (see Appendix).

Again, at present consider only the scalar term describing

"the variance of p(x,t) around p(x,t):

E 2P
1\ 2= ((p(x,t) -P,(x,t)) ) (32)

= ~'(Cp - Cpd£o-lCTpd) '(Cp ~ ~ - CpdCo-1CTpd)-1
(33 )

If ~ + 0, so that p(~,t) is known perfectly in

ad vance, 2then Ep + 0 as well. If ~ + 00, so that nothi ng

is known a priori about the true value of p(x,t), then (33)

becomes

E 2 =P Cp Cpd£o - 1CT pd (34 )

= Cp - Cpd(£d t £e)-lCTpd (35 )

The estimate of expected error is based on the

expected variance, so any scaling of Cp will scale Ep2 in

the same way. To better understand the meani ng of the
2Ep (!.' t), or "error map", consider an ensemble of oceans,

constructed to Obey the prior expectations. For each ocean

in the ensemble, there is a data set, d, and the estimator

/\
can produce p(x,t) using d. The squared difference between
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thi s estimate and the true fi eld for thi s location in thi sA 2(p(x,t) -,-p(.!,t)) . If this iselement of the ensemble is

calcula ted for every element of the ensemble and averaged,

then Ep2(x,t) is obtained.

The error estimates obtained this way include both

error due to the error in the data, ~, and the so-called

"resolution" error, due to inadequate sampling by the data.

For example, if ££ is large, so that data error dominates

Qd' the si gnal, then the error tends toward Cp' the

expected variance of the model. The same thing happens if

Cpd, the model-data covariance, goes to zero, for then the

data taken contain no information about the model. In
inverse theory jargon, resolution refers to the the abili ty
of the total observation system, meani ng both the data

taking and the inverse, to reproduce any gi ven true state.
The observation system acts as a fi Iter, bli nd to some

structures of the true state while amplifying or distorting

others. The ideal forward problem-inverse system would

I\
produce a p(x,t) equal to the true state, p(.!,t), for all

x,t. The inverse system could then be characterized as a

a-function operator:

Ap(x,t) = f a(.!-.,',t-t')pC.,',t') dx' dt' (36 )
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A practical inverse system will never obtain this

ideal, but, for li near forward problem and inverse, the

functional form of (36) can still be used, so that

1\
p(~,t) = J K(~,~',t,t')p(~',t') dx' dt' (37 )

Note that the kernel, K(x ,x' ,t, t') is not homogeneous,

in general. I f the kernel is homogeneous, so that

A
p(X,t) = J K(x-.!' ,t-t')p(x' ,t') dx' dt' (38 )

then the inverse system can be represented as a

transfer function in spectral space by Fourier transforming

in x and t to obtain k and s:

A
P(k,s) = K(k,s),P(k,s) (39 )

This particularly simple form allows the resolution of

the sys tem to be expressed us i ng terms from si gnal

processing, specifying the pOints in spectral space at

which the transfer function, K(k,s), reduces the energy in

the true field by half. For example, a system of moorings

might be characterized by haVing a "half power" point at 24

hours and at 50 km., meaning that motions with periodicity

of 1 cycle per day are hal ved in power by the observi ng

system, as are structures wi th a spatial scale of 50 km.

Of course, if the system was characterizable in this way,

then the fi 1 teri ng could be reversed by di vi di ng by K (k, s) ,

provided that K(k,s) is not zero at any po~nt.
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In practical problems, the simple form will not apply,

since an ef ficient inverse procedure wi II compensate for

simple attenuation, and the resolution is limi ted by
non-~mogeneous spatial averaging. In the probability

estimation framework, the inverse does not lend itself to a

form lik e (39), but it does return an es tima te of the

variance of the estimated result, p(x ,t).
In the case where no a priori information about the

exact value of the unknown field is available (a+~), the

covariance of the result, Cp, is

c~ -p - ~pd (~d + ££) -l~Tpd (40 )

If, instead of mapping to only one point in the

volume, the estimator is constructed to map to many points,

the entire discussion above carries over, but wi th p as a
vector instead of a scalar. The covariance functions are

still continuous in x and t, but equation (40) becomes

Cß = ~pd(id + ~£)-l£Tpd (40 i)

We have thus produced an estimate of the covariance of

the estimated field for the set of points that were mapped.

This will presumably be broader than the covariance, ~p'

assumed originally, and the broadening could reasonably be

used to define an approximate but simple figure of meri t

for the inverse. I f the two covariances are both averaged,
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so that they are homogeneous in space and time lags, then

they both could be transformed, and the transfer function

representation, (39) could be used to define "resolution

lengths". This is qui te an involved procedure,

particularly when the result is of questionable value, so

the expected error map and test cases will be used

instead.
One other important feature of the probabilistic

inverse framework is that it provides a means for checking

the validi ty of the a priori assumptions made in

A
constructing the inverse. Once À has been obtained (Eq.

(21), or see appendix), it may be substituted into the

prior probability density p(~), Eq. (1):

/'
P (~) =

AÑ l-IV
yexp(-1/2( À-À)TC-1( À-À))- - -a -- (41)

We thus have a quanti ta ti ve check of consistency

between the model and the data. Eq. (41) is most effective

in quantifying how well the data fit the forward prOblem

and error covariance matrices specified for the inverse,

particularly if there is no a priori value for p(x,t). In

1\a practical procedure, the estimated p(x,t) can be checked

against the expected variances specified as part of the

model-data relations. This quantifies the often informal

examination of residuals that occurs in applications, but

does not provide or justify a specific technique for

revising the ini tial model in response to a misfi t in the

initial inverse calculation. For information on adaptive

techniques, see Bretherton and McWilliams, (1980).
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CHAPT ER 5

INVERSE TECHNIQUES = PROBABILISTIC ESTIMATION

5.1 THE STOCHASTIC INVERSE (GAUSS-MARKOV THEOREM)

The fundamental assumption made in constructing the

stochastic inverse is that of a statistical space in which

both the data, d, and the unknown field p(x,t), are random

variables. Note that the data are represented as a set of N

discrete values, while the desired field is a continuous

function of 4 variables. The estimation problem is that of

estimating p(x,t) for all x,t, but the method of solution we

will use simplifies this global problem to that of

estimating p(~,t) point by point. Consider an ensemble

average, (), defined on the space of random variables

consisting of d and p(xo,to) (the value of the unknown field

at a given point.) The linear least square error estimator,

¡i
p, must- then satisfy the following condition:

(1) Linearity:

Â
P (~o , to) = ¿ai (xo' to) (d i d i) -t p (~o , to) ( 1)

where d, p(xo,to) are estimates of the means.

(2) Mi nimum squared error:

2 ,. 2E = ((p(~o,to) - p(Xo,to)) ) = minimum. (2 )

The weights, ai(xo,to) are chosen to satisfy (2).
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Thi s procedure is elementary, and appears in many texts

such as Aki and Richards, (1980), but a brief exposition

wi 11 be gi ven here for completeness. Wri te

p'(~o,to) = p(xo,to) - P(xo,to), and d' = d - d, where dl,

p'(~o,to) are perturbations around the estimated means. The

condi tion (2) can be wri tten as an extremum principle

ôE2 = 0
ôai

i=l to N (3 )

Substituting in the form of the estimator from (1):

~((p'(xo,to)-Laid'i)2) = 0 (4)
ôai

Taking the derivative,

2 ( ( P , (~o , to) - L a j d i j ) · d ' i) = 0 ( 5 )

or

L aj(d'jd'i) = (p'(xo,to)d1i) (6)

This is a set of N equations in N unknowns, so

ai(xo,to) = L(P'(Æo,to)d'j) ((d1dIT)_1)ji (7)

In vector form:

aT(~o,to) = (p'(xo,to)£,T)((d'dIT)_l) (8)

so tha t

~(Xo,to) = p(xo,to) i (p'(xo,to)d,T)(d'd,T)_l d' (9)
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If we wish to estimate p(x,t) at more than one space-time

loca tion, then we only need to add a row of aT (x' , t.) for_ _1 1

each new point (~i ,ti) at which an estimate is required.

P'(X1,t1) aT(x1,ti)
'" i = = (d'd'T)_l d' (10 )E

.

P'(xM,tM) aT (xM, tM)

= A-d ' = !(d - d)

The complete estimation opera tor can then be wri tten as

A = (E ' d ' T ) (( d ' d ' T ) ) - 1 ( 11)

Thi s result is commonly called the Gauss-Markov theorem.

Noise has not been explicitly mentioned in this

derivation, but is implicitly included as part of the data.

The expected errors for this estimator (11) are easy to

calculate by substi tuting (8) into (2):

E2 = (pIp') _ (p'd,T)'((d'd,T)-l)'(d'p') (12 )

For estimates at more than one point in space-time, the

noise estimate can be converted using the vector notation

introduced above. The single point variance generalizes to
a total estimation error covariance matrix, £E:

£E = (E IE') - (E' £ ' T) · ( (d ' d iT) -1 ) · (d ' E ' ) ( 13)
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The error estimates, E2 or fE, contain variance due

both to data error and incomplete resolution of the unknown

field by the data-inverse system. For some purposes, it is

interesting to separate out the error due only to data,

although the error estimate made this way is not really

statistically rigorous. If the data error is ~, with

covariance ££' then the covariance of the solution due only

to the noise in the data is.

£N = ! .f.e: ',ß? (14 )

For most applications, only the diagonal elements of £N

or fE are usually of interest.
The least-square estimator can also be used to do

spectral estimation. Since~' = l£', estimating the unknown

at several poi nts, the covari ance for the unknown can be

estimated as

(E'E'T) = (!£' (l£' )T) = !(d'd,T)!T (15 )

Where (d' d ,T) is the observed data-data covari ance

computed throughout the experiment. The covariance matrix

will usually consist of an irregular distribution of space

and time lags, corresponding to all the separations between

mappi ng poi nts, and is not necessari ly isotropic or
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stationary. This quick and dirty estimate of the model

covariance can be compared to the a priori assumptions, or

can be averaged by lags into a stationary (covariance is a

function only of lag) form, interpolated to a regular,

4-di mensi onal gri d, and Fouri er trans formed to obtai n a

rough approximation to the 4-dimensional spectrum of the

unknown field. Multi-dimensional, "beam- forming" algori thms

could perhaps also be applied, to avoid the interpolation

step, but it might be simpler just to map to a dense,

regular grid.
In the special case where the inverse operator is time

independent, it is easier to compute a frequency spectrum,

point-by-¡:int, for the. unknown field. The obvious approach

would be to con vert the ti me seri es of data into a ti me

series of estimates, and transform the new time series. If

frequency bin averaging is to be used, then it is more

efficient to take advantage of the linearity of the

estimation operator and the Fourier transform by commuting

the operations, and compute the spectrum of the data first.

If the time series of data is dl(t), with the Fourier

transform operator denoted as F('), so that the Fourier

transform of the data time series is D(s) = F(d i (t)), then
the transform of the unknown field is pes) = F(E'(t)), and

the two are related by

P ( s) = F (E ' ( t )) = F (l£ , (t )) = !F (£ ' ( t )) = AD ( s ) . ( 16 )



The power spectrum for the unknown fi eld is then

A A
f ( S ) *p ( s ) T = !Q ( s ) *D ( s ) T! T

where * is the complex conjugate.
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(17)
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5.2 COMPARISON OF INVERSE METHODS

At first, it may seem odd that the Gauss-Markov

theorem, which says nothing about probability distribution

functions, gi ves the same resul t as the

informa tion-theoretical deri va tion of Chapter 4 for the case

where there is no a priori information about the specific

value of the unknown field. Liebelt (1967) and others have

called Gauss-Markov estimation "distribution-independent"

because it makes no explici t assumptions about the forms of

the probabi li ty di stri butions for the unknowns. One only
requi res the fi rst and second momen t matrices to produce a

minimum-variance estimator, although it is not explicitly

guaranteed to be the optimal non-linear estimator.

In fact, the two problems can be seen to be equi valent

if we recall (from Chapter 3) that the gaussian distribution

is the smoothest (maximum entropy) distribution that

satisfies the constraints of having a given mean and

variance. When only mean and variance are gi ven, as in the

Gauss-Markov theorem, the state of information corresponds

to that of a given Gaussian probability density. The

Gauss-Markov estimatorj"stochastic inverse" is the minimum

variance, maximum likelihood estimator out of the set of all

estimators, both linear and non-linear, which require a

pri ori estimates of only the fi rst and second moments. The

two deri va tions may thus be reconci led, although the

probabilistic derivation is somewhat more general.
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Note that the changes to the output of the estimator

affect only the rows of the model-data covariance matrix.

The data-data covariance matrix is fixed by the data

a vai lable in the experi men t, and therefore does not change

when a new output is desired. When any particular field or

di stri buti on of mappi ng poi nts is desi red, one needs only to

compute the appropriate model-data covariance matrix and

then multiply it by the inverse of the data-data covariance

matrix, which has been computed once and saved.

The estimator is continuous, capable of producing

estimates at all x,t, and it is general within the linearity

constrai nt on the form of the estimator, because it only

uses statistical data. No mention has been made of error

levels or of an explicit relationship between di and p(x,t),

li near or otherwi se. The framework wi thi n whi ch the resul t

was deri ved assumes the avai labi li ty of ensemble averages,

but in a given application, limited assumptions and model

physics may be used to construc t the necessary covariance

ma tri ces. In these cases, the stochastic inverse can be

shown to be equi valent to other tradi tional inverse forms.

To show how the various methods compare, the estimator

in the form of equation (11) will be used. This inverse can

esti ma te the unknown fi eld at arbi trari ly many poi nts in the

Aspace, preserving the continuity of p(x,t) in p(x,t).
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Regardless of the degree of nonlineari ty of the relation

between di and p, for small perturbations it may be

li neari zed around the "mean" state d' = p' = 0 (the mean has
been removed earli er, and quota ti on marks are used because

approximations may have been made.) Let Q be an N x =

matrix representing the N linear functionals relating d to

Q: then the ith "row" of G is a linear functional
opera tor,

fgi(~,t)( ')dxdt , (18 )

, .
since each datum, d i, is gi ven by.

d'i = fgi(X,t)P'(x,t)dxdt ,. 8.i (19 )"

Equation (19) can be written more compactly by using an. ,
operator form, representing p (~,t) as a vector, wi th an

infinite number of components;

d' =Gp' ,. 8 (20 )

8 is a random error vector containing errors due to both

model errors and observation errors. The second modelling

step needed is to specify a continuous function for the

covariance of the unknown field, (P'(X1,t1)P'(~2,t2)), which

can be represented as a ma tri x in the form we have adopted:

£p = (Q'E,T). The final modelling step is as important as
the previous two, and consists of specifying the error

covari ance ma tri x: C = (88T).=8
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Now, substi tute the statement of the forward problem,

(20), into the estimation framework, eq. (11):

A = ~.E'(QE' of .!)T) ~(Q£' of .£)(QE' of .£)T)_l (21)

= ((.E' .E ' T Q * ) of ~.E i .! T ) ) ( (2£ ' p , T Q * ) of (QE , .£ T ) of (g p r T Q * ) of (.! T ) ) - 1

( 22)

where Q* denotes the adjoint of the linear functional

operator (see Tarantola and Valette, 1982a). If the

struc ture of the vari able part of the fi eld, E ~ is
uncorrelated wi th the noise (an assumption violated if some

of the model error is due to linearization or missing linear

physics), then (E'.!T) = 0 = (gpT), and, since Q is an

opera tor, not a random variable, it may be taken outside the

ensemble averages, and (22) becomes

! = (£'.E' T)Q * (G (E ' .E ,T)Q * of (~ T) )_1 ( 23 )

Thi s is the .form in whi ch the inverse is appli ed to

practical problems, and is identical to the form of "total

inversion" (Tarantola and Valette 1982a). Suppose £' and Q

are made finite dimensional by a truncated decomposition in

M orthogonal functions, hj(x,t);

.E' j = f h j (~, t ) P , (x, t) dx d t j=l,..,M (24 )
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Then, the opera tor, Q becomes a si mple ma tri x as well:

(Q)ij = J hj(x,t)gi(X,t)dxdt i=l to N, j=l to M. (25)

If (E'E'T) = ! and (~T) =!, then (23) becomes

A =! QT (Q ! QT f ! )_1 (26)

which is the standard geophysical inverse wi th weighting

(Aki and Ri chards, 1980).

If these forms are all retained, but some manipulations

are performed invol vi ng a strange-looki ng form of the

identity matrix, 1 = !1/2.,§_1/2 , ( (Q)1/2 is defined so

(Q)1/2(Q)1/2 = Q ), then (26) becomes:

A =! Q T (,§ 1 / 2 .! - 1 / 2 (Q ! Q T )! - 1 / 2 . Él 1 / 2 f!) - 1 ( 27 )

or,

! =! QT(!1/2.(,§_1/2Q! QT,§_1/2 f l).,§1/2)_1 (28)

Because the matrix to be inverted is non-singular,

a true inverse exists, and the factors of E1/2 can be pulled

outside the inverse:

A =! QT~_1/2'((Æ-1/2Q! QT!_1/2 f l)-lj.Æ-1/2 (29)
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Equation (29) is identical to (26), but can be thought

of as correspondi ng to a case where the forward problem has

been weighted by the inverse square root of the error

covariance matrix:

!_l / 2d ' = E-1 / 2Q '£' i !_l /2. E (30 )

As mentioned above, if the matrix to be inverted is

nonsingular then this transformation is a vector identi ty
and cannot affect the estimator, but the form (29) is well

known in the li terature as the "tapered least-squares"

estimator. The eigenvectors of (!_1/2Q!TÆ-1/2 i 1) are the

same as the eigenvectors of (!_1/2Q!T!_1/2) , and the

eigenvalues differ only by the additive 1 due to the

presence of the identity matrix. Q!T is the estimated data

covari ance ma tri x based on the li neari zed forward problem,

G, and the estimated covariance matrix for the unknowns (W).- =
This matrix is non-negative definite, but .may have small (or

zero) ei gen val ues.

In most practical cases, the process of observation

will introduce errors into the data, and adding the

covari ance of these errors, ~, to the ideal, model-deri ved

data-data covariance stabilizes the singulari ties to the

extent required by the level of errors in the data. In some

applications where the covariance matrix justification may



118

not be convenient the addi tion of a scalar multiple of the

identi ty matrix is an ad hoc way to obtain a stable inverse
tha t retai ns the same ei gen vec tors as the ori gi nal

(singular) matrix. Because this procedure "tapers" the

si ngulari ty by addi ng "noi se" to the di agonal to reduce the

amplification of noise by the reciprocals of the small

eigenvalues, it is called "tapered least-squares". This

technique can only be justified in terms of least-squares

methods if the matrices are wei ghted so as to have the form

( 29 ) .

The Si ngular Value Decompos i ti on (SVD) is a method for

inverting non-square matrices (Lanczos, 1961). It is only

applicable to cases where both the data and the unknown are

discrete vectors. For concreteness, consider the following

wei gh ted li near forward problem,

_E-1j2d' = (E-1j2G W1j2)(W-1j2. ') + E-1j2'e:_ _=- _ .E (31)

Where the symbOls are as defined above.

E is (NxN) square, and W is (MxM) square, and are the- -
da ta measurement error and model covari ances, respect i vely.

CÆ-1j2Q!lj2) is (NxM), and does not posess an inverse in

the standard sense.
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A practical inverse can be constructed, followi ng

Lanczos, by recognizing (~_1/2Q !1/2) as a linear

transforma tion between the model space and the data space,

and sol vi ng the coupled ei gen val ue problems for the bases of

the two spaces:

(E-1/2G W1/2).V" = À" .u"_ _ _ _1 1 _1 (32)

(E-1/2G W1/2)T.u" = À" .v"_ _ _ _1 1 _1 (33 )

Let (~_l /2Q ! 1/2) be called Q', and the sets of

eigenvectors be called Q = lUi t, (NxN), and l = lVi t, (MxM),

wi th ! the associ a ted (NxM) ma tri x wi th the ei genval ues on

its diagonal:

G'V = Ui\ (34 )

G'TU = Vi\T- - (35 )

(Lanczos (1961) gives a full discussion of the analysis

here.) These eigenvalues are usually obtained as the

posi ti ve square roots (no loss of generali ty) of the
2singular values, Ài , obtained from solving the simple

eigenvalue problem for the square matrix;

(Æ-1/2Q !1/2)'(li-1/2Q !1/2)T = G'G,T (NxN) (36)
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or

(E-ll2G Wll2)T'(E-ll2G Wll2) = G'TG' (MxM)_ =-:: _ =-=- (37 )

solving whichever problem is smaller. If the problem is

underdetermined (M)N), then (36) is used, so that we solve

G'G'T.u' = À1,2.U1'_ =- _1 (38 )

or

G'G'T.u = U.ATA==== (39)

This problem has N eigenvectors, Q, (a complete set), but

some of the associated eigenvalues will be zero. The

decomposition of Q' into eigenvectors and eigenvalues is

G' = U ° A . VT- = = (40 )

Thi s suggests that a "pseudo inverse" (Lanczos, (1961))

could be defined as

(Q' )~1 :: l' (~T )-1 ',Q:T (41)

( (!T)-l is an (MxN) matrix with llÀi as the ith diagonal

element, i=l to N)

si nce

(G')-l.G' =- N = l · (1: T ) - 1 '117 · Q . ! . lT ( 42)

=
l' (!T )-1 o! .,y7 (43 )

=
N\' v'(llÀ')À' v.T¿ _1 1 i_1i=l

(44 )



121

Unfortuna tely, the factor of (1 j Ài) can be

troublesome if (Q' )N-1 is to be appl i ed to data. The

inverse can be stabilized by removing the negligible

eigenvalues, leaving R significantly non-zero eigenvalues,

iÀi: i=l,RJ. Then Q' can be written in terms of these

"activated" eigenvectors and eigenvalues only:

G' = Ur. fir · VrT
-r =- =: -

~ G' (45 )

!r is (RxR) wi th the non-zero eigenvalues on its

diagonal. Qr is (NxR) and lr is (MxR), and they contain the

associated "activated" eigenvectors and are the basis sets

for the range and domain, respecti vely, of the

transforma tion Q'. The pseudo inverse of Q' can then be
wri tten as

(Q , ); 1 _ lr 'lr - 1 · Qr T ( 46)

= G'T.(G'G,T)-l (47)- -== r

= (E-1j2G W1j2)T'(E-1j2GWGTE-1j2)-1 (48)- - == == -i ~ r

The pseudo inverse solution to the weighted forward

problem is then:

!_lj2Ê' = (~_lj2Q !lj2)T'(li-lj2Q!TÆ-lj2);le(E-lj2d') (49)
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or

I\pI = W 1 j 2. (E-1 j 2G W 1 j 2) T . (E _1 j 2GWGTE-1 j 2) - 1. (E-1 j 2d I )== ~ =- :: - =- :; r - (50)

The singular value decomposi tion enables matrix

inversion by ignoring the unstable eigenvalues. The matrix

will have the same eigenvectors as the tapered least-squares

inverse, provided the weighted forms in (29) and (31) are

used. Recall that weighting the forward problem has no

effect on the estimator when the noise covariances are

included to make the matrix non-singular. Weighting is

necessary when noi se is not added, for otherwi se, when the

pseudo inverse is computed using only the R largest

eigenvalues, the size of each row is important, and a change

of uni ts may change the estimator. The weighting using the

error covari ance ma tri x begs the ques ti on of why to wei gh t

at all--why not add the covariance in directly and save the

trouble (and computer time) of computing the eigenvalues and

eigenvectors explici tly?
The pri nci ple reason for us i ng a truncated set of

eigenvalues instead of tapering is that it yields an

unbiased estimator for components of the model along the

eigenvectors which are preserved in the inverse. This is

discussed in Zlotnicki, Parsons, and Wunsch (1982), and will

be bri efly summari zed here. Recall the SVD form of the

forward and inverse problems.

E-1j2d' = (§._lj2Q !lj2)(!_lj2..£,) -t E-1j2'e: (51 )
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or

d i = Q'E i of € (52 )-
and

"i = (Gi)-ldl C 53).E - r-

= V ./i -l.U Tdl (54 )_r =r _r_
R

= L v-(l/À-)u-Td' (55 )_1 1 _1 _i=l

If we then substi tute in the forward problem (51) to

put d i in terms of E', we obtain

Ai
.E =

R

L ~i(l/Ài)UiT.(Q'/i'VT)E'i=l (56 )

Ai
.E =

R\' v-Cl/À-)À"v-T.n'L. _1 1 1_1 .Ii=l (57 )

Ai
.E =

R

L v- .v-T.n'_1 _1 .Ii=l (58 )

Thus, if E' is a linear combination of the R basis

V /~ ' '\ / i '\ d h - - b - dvectors, =r, then '.I / = '.E / an t e estimator is un iase.
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Suppose that we exami ne the same form when errors have

been added before inversion. Under the imposed weighting,

the error covariance is the identi ty, so the tapered form of

the estimator is:

A
E.' =

N\' v-(1/()\--t1J)À-v-T.n'¿ _1 1 1_1..i=l
(59 )

ANow (E.') * (E.') for all p'. The bias of the

probabilistic estimator results (in this simple form) from

t.qe noise "tapering" of the eigenvalues in the ideal
data-data covariance matrix. The choice of which estimator

to use seems to be at least partly dependent on the

psychology of. the investi gator; for a more detai led (and

phi losophi cal) di scussi on see Z lotni cki (1983). The

inversions to be presented in this thesis use the biased but

minimum variance estimator.

If the model is instead left as a continuous field,

p'(x,t), and the covariance function is assumed to be a

Dirac delta function, Ô(~1-~2,t1-t2), then this corresponds

to imposing no a priori constraints on the variation of

p(~,t), and the Backus-Gilbert (1967) result is reproduced

(Tarantola and Valette (1982a)). The Backus-Gi lbert

formali sm requi res sophi sti ca ted ma thema ti cal analysi s

beyond the ma tri x algebra presented above, and wi 1 1 not be

descri bed here. Ei sler, New, and Calderone (1983) have

discussed this method of inversion in detail as applied

speci fically to ocean acoustic tomography.
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A main feature of this method is that it produces an

unbi ased estimator. Thi s is heuri sti cally consi stent wi th
the earlier analysis, since the ô() covariance function for

the unknown has infini te energy, the limi ting case of

uncertainty in the mean value. In practical terms, allowing

the expected energy in the unknown field to go to ~ produces

infinite signal to noise ratios, negating the biasing by the

eigenvalue tapering. The statistical implications for an

estimator generated by assuming (incorrectly) an infinite

signal to noise ratio are that the error must be controlled

in another way, like the truncation in the SVD inverse.

Gi ven certain assumptions, the stochastic inversion

framework can thus be compared to more fami li ar forms. The

simplifications in form allowed by truncation/discretization

assumptions such as (24) restrict the generali ty of the

stochastic inverse or the "total inverse" of (23), but each

simplification can speed computatiøns. Projecting p(x,t) on

a fini te set of basis functions may sometimes be necessary

from an economic standpoi nt, particularly when the kernels,

gi(~,t) are small-scale and complicated, or when

non-lineari ties force frequent recomputation of the inverse
opera tor.
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5.3 NON-LINEARITY AND ITERATION

The pure stochastic inverse as wri tten in (9), (10), or

(11) was derived on a basis of statistics, without regard to

the order of the systems generating the p(x,t) or die If,

as was done for tomography, the covari ances are calculated

from a model for (P'(X1,t1)P'(X2,t2)) and from a functional

expression for the forward problem, the functional must be

li near to obtai n the simple form in (23). For many

applications, the functionals, gi(x,t), linearized around a

reference state Po(x, t), do, may be valid only for small

perturba tions. For compactness, let us return to the

"vector" notation for p(~,t). If the estimated perturbation,

I\
£' is large, then the functionals must be recomputed around

the new state

A
£1 = Eo -t E' (60 )

The obvious solution would be to re-linearize around the

estima ted state E1:

d = G(£) - G(E1) -t 22.(E - ~'l)
â£

(61 )

= G (£1) -t !1. (£ - 21) (62)

The inversion would then have the form

P2 = P1 -t !l-l.(d - G(E.1)) (63 )

where !1-1 is the inverse of the "matrix" of partial

deri vati ves which represents the linearized operator.
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Thi s type of i tera t ion has several problems when one

considers the form of the stochastic inversion. The

fundamental assumptions are that we have some information

about the first and second moments of E and d. If the

reference state is shi fted as a result of i tera tion, then
these assumpti ons are no longer appli cable. Even if one
argues that they were poor to begi n wi th, the new estimator

will require re-computation of the covariance function, as

well as the matrices.

To avoid these problems, it is desirable to keep the

ori ginal reference state and covariance functions, whi Ie

re-li neari zing the forward problem around a new state closer
to the true state

d = G(E) = G (Eo) .¡ !o · (E -l20) (original) (64 )

= G (Ek ) .¡ Ak . (E - P k )= - (kth iter.) (65 )

= G C.E.d .¡ !k . ((E - ..) .¡ (Eo - £.) J (66)

The forward problem can be re-wri tten to reflect

variations around the original reference state, as required

by the statistics:

d G(.Ek) .¡ ..k C.Ek - .Eo) = !k (.E - .1) (67 )

and the inversion:

Ek -t 1 = .Eo -t !k - 1 ( d - G (Ek) .¡ !k (Ek - .Eo) 1 (68 )
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where !k-1 is the inverse operator for the matrix of partial

derivatives at the k-th iteration.

Tarantola and Valette (1982a) di scuss thi s i tera tion
technique, calling it "fixed-point iteration", but they do

not mention the statistical reason for retaining the

original reference state, or the importance of the fixed

point for consistency in the covariance functions and wi th

any dynamic model. These latter are the primary reasons for

using the fixed point i tera tion in the tomographic

framework. Note that the success of iteration depends on

the relati ve weakness of the non-lineari ties in the forward

problem. If the linearization produces a resul t of opposi te
si gn to the true value, then i tera ti on cannot be expected to

converge. For the acoustics, the linearization is generally

robust: even if a strong ring or the wall of the Gulf

Stream changes the sound speed by amounts far outside the

boundari es of the li neari za ti on, the observed travel times

will have the correct sign.
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5.4 ITERATION SPECIFIC TO THE APPLICATION TO TOMOGRAPHY

To fix ideas, it is useful to consider fixed~poi nt

iteration as applied to the tomographic inverse problem,

assuming only travel time data. Let Co(~,t) be the

reference state, C(x,t) be the true state, and C'(x,t) the

difference (perturbations relative to Co(x,t)). The forward

problem, li neari zed around the reference state, is:

d i = J ds
r . Co (x (s) , t )
01

J C i ( X ( s) , t) ds
r. Co(~(s),t);¿
01

(69 )

roi is the path of the ith ray in the Co(~,t) state.

The true ray path, propagati ng in the C (~, t) sound speed

field, will be called ri, and will generally differ from the

unperturbed ray path, r oi .

The linearized functionals for the acoustic ray inverse

problem can be wri tten in operator form, for ease of

comparison with the discussion above, replacing £ by C.

d.1 = Gi(Co) -t ôGi (C - Co)
ãC - -

(70 )

d = G ( Co) -t !o (C - Co) (71)

so, inverting as before,

C 1 = Co -t ~o - 1 (d - G ( fo ) J (72)

The subscri pt "0" denotes that the ray paths used in

the inverse were traced in the unperturbed Co (x, t) state.
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Once C1 has been obtained, the fixed point re-linearization

is carried out as before:

d G (Q1) + !l(C - C1)= (73 )

r (C(x(s),t) - C1(X(S),t)) ds

L C1(X(S),t)¿

di = r ds
r C1(x(S) ,t)1i -

Thi s must agai n be re-arranged to have the form of

fixed-point iteration:

di - r ds +
IiC1(x(S),t)

r lQo ( x ( s ) , t) - C 1 (x ( s) , t ) ) d s

Ii C1(X(S),t)¿

=
f( C (x (s) , t) - C() (x (s ) , t ) ) ds

L C1(X(S),t)¿

The left hand side can be simplified using the

expansion as originally used in the linearization:

d-i r d s
iiCo(x(S),t)

= r(C(x(s),t) - C()(x(s),t))ds
r C1(X(S),t)¿1i -

(74 )

(75 )

(76)

(77 )

(78 )
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Thus, for the acousti cs, the fi xed-poi nt inverse problem

is stated as:

di J ds
r Co ( x ( s ) , t )
1i

= f(C(x(s),t) - Co(x(s),t))ds
r C1(X(S),t)¿1i - (79)

Each sucessi ve i tera tion changes the data fed into the
inverse only if the ray path changes;

d1 - f ds
r Co (x (s) , t )11 -

C2 = Co ,. A -1 ( d. f ds_1 1

L Co ( x ( s ) , t )
( 80)

dN - J ds
r Co ( x ( s ) , t )1N -

Both the data fed into the inverse and the inverse

operator, !1-1, are calculated for the modified ray paths.

!1 - 1 inverts the perturbed opera tor,

- f(C(x(s) ,t) - Co(x(s) ,t) Jds

L C1(X(S),t)¿

(81)

although the statistical assumptions are referred to the

original reference state.
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CHAPTER 6

THE STOCHASTIC INVERSE APPLIED TO THE OCEANIC MESOSCALE

6. 1 ADOPTING THE VERTICAL MODE BASIS

Gi ven the resul ts of quasi -geostrophic theory (Chapter

3), one wishes to construct the inverse framework to take

advantage of any simplifications suggested analytically.

By building a body of theory into the inverse, constraints

such as non-di vergence and geostrophi c balance are appli ed

duri ng construction of the in verse opera tor, reduci ng

indeterminacy and increasing resolution. For the mesoscale

tomography experiment, the unknown fi elds were requi red to

have the forms of solutions to the linearized

quasi-geostrophic equations. This structure permi ts both

the parameteri za ti on of verti cal structure usi ng modes

instead of layers, and the calculation of veloci ties as
part of the inverse procedure without any direct velocity

measuremen t, although the indetermi nacy of reference level

veloci ty remains (and is explici t in the equations for the

veloci ty associ a ted wi th the oth mode). Because of the

flexi bi li ty and generali ty of the stochastic inverse
framework, I will first treat the application of

quasigeostrophic theory to the stochastic inverse, from

whi ch the step to other inverse methods should be clear.
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The major simplification obtained from the linear

quasigeostrophic theory is the separation between the

vertical and hori zontal varia ti on. The vertical structure
equation for streamfunction, ~(~,t), can be solved

independently of the horizontal evolution equation,

yielding solutions of the form:

n
~(x,t) = I ~i(X,y,t).Gi(Z)

i=O
( 1 )

Chapter 3 descri bes the con version from one set of
vertical basis functions to another, so that, for example,

di splacemen t can be wri t ten as

ç(x,t)
n ç

= I ~i(x,y,t)'Gi(Z)i=l
(2 )

ç
Gi(z) and Gi(z) are related analytically as shown in

Chapter 3.

This procedure may be extended to tracer-like

quantities, such as T, S, sound speed, or oxygen, which do

not play direct roles in the evolution equations. The

extension is based on di sti ngui shi ng between perturbations

induced by the verti cal motion of water due to the
mesoscale fluctuations and those which resul t from the
presence and interlea vi ng of di fferent water masses.
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Let primed variables denote perturbation quanti ties,

while barred quanti ties denote practical estimates of true

(ensemble) means. The true salinity field, S(x,t),

can then be expressed as:

S(X,t) = S(x,t).. S'(x,t)
(S'(,!,t)) = O.

(3 )

(4 )

The fundamental averaged quanti ties are T, 6r, and S.

er = e (T , S ,p, Pr) = potent i al temperature ref erenced to Pr,

from which several important quanti ties may be deri ved.

Or = o(er,S,Pr) potential densi ty anomaly
(referenced to Pr)

(5 )

C = C(T,S,p) sound speed (6 )

N = N(T,S,p) bouyancy frequency (7 )

Potential densi ~y is the significant quanti ty for the

dynamics, and its "barred " state represents the basic state

around whi ch the dynami cal equa ti on were li neari zed. The

rest density profile is determined from the averaged

temperature and salini ty fields:

Or = o(8(T,S,Ps,Pr),S,Pr) (8 )

For any other tracers, simple averages may be

compu ted.



135

Gi ven these reference states, the perturbations due to

the dynamical evolution of the fie ld may be calculated:

S'(E,t) =
n ç
(¿ ~i(X,y,t).Gi(z))'Sz + Rs(x,t)
i=l (9 )

n s
= ¿ ~i(x,y,t).Gi(z) + Rs(x,t)i=l (10 )

s ç
Gi(z) - Gi(z)'Sz are the modes of salinity

varia tion due to the mesoscale fl uctua tions, and Rs (Xi ,t)

is the residual salini ty anomaly not fundamentally

connected with the dynamics. The analysis here assumes

tha t the displacements (and perturba tion) are smal 1 enough

to justi fy the linearization used throughout. Simi larly ,
the potential temperature variation may be wri tten:

n e0'(x,t) = ( ¿ ~i (x, y , t) .Gi (z) ) + Re(x,t)
i=l

Re(x ,t) is the potential temperature perturbation
independent of the dynamics, and

( 11)

e ç
Gi(z) - Gi(z)'(0)z ( 12)

are the potential temperature modes resulting from the

displacement field. The vertical deri va ti ves of potential
tempera ture, (or in- situ temperature, densi ty, or sound

speed) must be calculated locally, assuming adiabatic

motions.
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Simi lar relations hold for sound speed and passi ve tracers,

while cr has no residuals by defini tion. The residuals may

be divided into vertical and horizontal modes of variation,

using EOF analysis, for example, so thatk s k s
Rs(x,t) = I ~i(x,y,t).Ai(Z) l I ç(X,t).~i(x,y,t)'dAi(Z)i = 1 i = 1 dz

( 13)k e k 0
Re(x,t) = I ~i(x,y,t).Ai(Z) l I ç(~,t)'~i(x,y,t).dAi(Z)i=l i=l dz

(14 )

and so forth. The "tracer modes", A(z), ~(x,y,t), evolve

with the physics of passive advection/diffusion, at least

partially independent of the mesoscale evolution.

The tGi (z)) and tAi (z)) form a basi s for the vertical

structure of each quantity, and observations indicate that

this basis is an efficient representation of the observed

structure. For potential densi ty anomaly computed from the

65 casts of the fi rst CTD survey of the tomography

experiment (D. Behringer) the first, second and third

flat-bottom modes fi t 85% of the variance below the upper

200 meters. Only a few vertical modes are usually needed

to account for most of the variation over the )5 km depth

range, a si mpl if i ca t i on over the number of layers req ui red

for a si mi larly reali stic descripti on.
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6.2 CONSTRUCTING COVARIANCES USING QUASI-GEOSTROPHY

The covariance calculations are similarly simplified

by this decomposition into vertical modes. Let the

di splacement anomaly, ç' (x, t) (ç = 0), be represented by

the basis of dynamically-deri ved vertical functions

descri bed above;

ç'(x,t)
n ç

= I ~i(X,y,t).Gi(Z)i=l (15 )

Then the covariance, (Ç'(~1,t1)Ç'(~2,t2)) is given by

(ç' (xi,t1)ç' (X2,t2))- -
ç ç

= I I (~i(X1'Y1,t1)~j(X2'Y2,t2)).Gi(Zl)'Gj(Z2) (16)

since the vertical modes are not random variables and may

be taken outside of the ensemble average. This expression

(16) may be further simplified if the horizontal structure

functions are assumed to be uncorrela ted between modes;

(~i(X1,Y1,t1)~j(X2,Y2,t2)) =

ô i j · ( ~i (x 1, Y 1 , t 1) ~ i (x 2, Y 2, t 2) ) (17)

This assumption is consistent wi th linear dynamics,

but is also useful in the general case, since robust

correla tions between modes are not yet known accurately

enough to use as data.
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Given assumption (17), (16) becomes

(ç' (xi,t1)Ç' (X2,t2))

ç ç
= ¿ (~i(X1,Y1,t1)~i(X2,Y2,t2)).Gi(Zl).Gi(Z2) (18 )

It is often useful to normali ze the vertical and

horizontal structures so that the expected variance for the

i th mode is expressed by a scalar, Y i . Under thi s si mple

transforma tion, introduced purely for flexi bi li ty later in
the inverse procedure, (18) becomes:

(ç I (~1 , t 1 ) ç , (~2 , t 2 )) =

ç ç
¿ Yi .Hi(X1,Y1,t1,X2,Y2,t2) .Gi(zl).Gi(Z2) (19 )

The fupc tions Hi are not necessari ly stationary or

i sotropi c, so that energy gradi ents wi thi n the regi on are

allowed, and Yi merely sets the overall energy level

expected for mode i.

By Mercer's theorem, (Van Trees, 1968), a symmetri c

function, such as the covariance, may be expanded as a

product, so

m

Hi(X1,Y1,t1,X2,Y2,t2) = ¿ aij.Fij(X1,yi,t1).Fij(X2,Y2,t2)
j=l

(20 )
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If the covariance is derived directly from data, then one

possible set of Fij'S is the set of empirical orthogonal

functions, where aij is the jth eigenvalue of Hi, and

Fij(X,y,t) is the corresponding eigenvector. This

expansion converts the stochastic inverse back to a

wei gh ted determi ni sti c Ii near inverse, by supplyi ng a

finite set of basis functions. The expansion (20) directly

expresses the trade-off between the determi ni stic and the

stochastic inversions. If (n'm) is allowed to go to ~,

then the continuity of the solution is recovered, but if

the expansion is well-defined and truncates for fini te

(n 'm), then a deterministic inversion using the expansionn m ç
ç , (x , t) = ¿ ( ¿ ai j . F i j ( x , y , t) ) . G i ( z )

i = 1 j= 1
(21)

is possi ble, and may be preferable for reasons of
computational efficiency. If (n .m) is too large for

economic summation of the series or if the basis fuñctions

Fij are not easily definable in advance, then the

stochastic inverse is more useful because the detai led

physical structure of the horizontal variation does not

need to be rigidly specified in the model. It is usually

possible to specifY vertical structures a priori for the

mesoscale. Thi s has been done, in order to streamli ne

processing, for all the inversions to be discussed below.
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6.3 ESTIMATION

The simplification and efficiency gained by the use of

the modal basis becomes clear if the form of the stochastic

inverse operator is calculated. Because the set of modes

descri bes the verti cal structure, only thei r ampl i tude need

be calculated by the inverse. We no longer need to

estimate ç'(x,t), cr'(x,t), C'(x,t), and other quantities
~separately. Instead , calculate ~i (x, y, t) once, and

then construct the desired fields by mul tiplying by the
appropriate vertical mode functions.

A
~i(x,y,t) = (~i(X,y,t)dT).((ddT)-l).d (22)

This formula (22) does not require the vertical modes to be

orthogonal. Non-orthogonal basi s sets complicate

the calculation of expected energies because the

projections on specific modes become ambiguous.
~Once the set of ~i (x, y , t) has been obtai ned, the

fundamental structures have been established, so all

rela ted quanti ti es may be calculated by summi ng the

appropriate expansion.
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i;'(!.,t)
n A I;

= ¿ h (x, y , t ) 'Gi (z) (23 )

O"(x,t)
n ,. 0'

= ¿ h (x, y , t ) oGi (z) (24 )

C'(,!,t)
n A. C

= ¿ h(x,y,t)oGi(z) of
A C¿ ~j(x,y,t)'Aj(z)

(25 )
. . . and so on.

(If no measurements which constrain ~ are available, then
.

it is set to 0). If u(!.,t) is desired, then one must

estimate

A
~i (x , y , t) =
ay

'~i (x,y, t)dT). (,ddT)-1) .d
ay

(26 )

Thi s only requi res re-computa tion of the model-data

covari ance ma tri x:

'~i (x , y , t ) d T )
ay

The data-data covariance matrix (and its inverse)

change only if a different data set is used.
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6.4 USING ANALYTICAL RELATIONS BETWEEN THE COVARIANCES

The vertical modes corresponding to the various

physically interesting quantities may be calculated from

one another, and equations (22) and (26) suggest similar
properties for the horizontal covariances. Let ~i(x,y,t),
the horizontal structure of the ith streamfunction mode, be

the fundamental quanti ty for which the covariance is

specified. This is consistent with the form of the

quasigeostrophic theory, where a streamfunction is used as

the basis from which the other fields of interest may be

deri ved. Denote the covari ance of the hori zon tal structure

of the i th di splacement mode wi th itself by

(~i(Xl,Y1,t1)~i(X2,Y2,t2)) = Yi .Hi(X1,Y1,t1,X2,Y2,t2) (27)

The normali zed covari ance Hi, has not been assumed

homogeneous or isot.ropic. The covariance of the horizontal

structure of u( x, t) wi th the hori zontal structure of
displacement is then gi ven by

(lli (x 1 , Y 1 , t 1 ) ~ i (x 2, y 2, t 2 )) = Y i . ~i ( xl, Y 1 , t 1 , x 2, Y 2, t 2 )ay 1 ay 1
(28 )

Thi s covari ance, in conjunc ti on wi th the li near

functionals supplied by the forward problem, is used to

calculate the model-data covariance matrix in (26) above.

Note that once a function, H, has been chosen for the

di splacemen t / streamfunc ti on hori zon tal structure, the

covari ances of related fi elds may be obtai ned by opera ti ng

on H.
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In general, suppose we are interested in

n 7;
F j (x, t) = L j ( ¿ iPi (x, y , t) 'Gi (z) )

i=l ( 29)

Fj(x,t) is a linear function of the basic

(displacement) field, so that it commutes with summation

and averagi ng. Then

(Fj(X1,t1)Fk(X2,t2)) =n 7; n 7;
(Lj( ¿ h(x1,Y1,t1).Gi(Zi)) .Lk( ¿ iPm(X2,Y2,t2).Gm(Z2)))i = 1 m= 1

(30 )

( ) is a linear operation, and Lj and Lk are unaffected by

the averaging. In addition, Lj operates only on the first
(x1,t1) coordinate system, while Lk operates only on the

(x2,t2) system, so the operators may be taken outside the

ensemble average.

(F j (x 1, t 1) Fk (~2, t 2)) =
7; 7;L j (Lk (¿ (h (~1 , y 1, t 1) h (x 2, Y 2. t 2)) oGi (z 1) .Gi (z2) L ) (31)

(Fj(~1,t1)Fk(X2.t2)) =

7; 7;L j ( Lk (¿ Y i · H i ( xl, Y 1 . t 1 , x 2 , Y 2 , t 2) · G i ( z i) . G i ( z 2 ) L ) ( 32)

(Fj(~1,t1)Fk(X2,t2)) ='ì . 7; 7;¿ Y i · L j ( Lk ( Hi (x 1 , Y 1 , t 1 , x 2 , Y 2 , t 2) · G i ( z 1 ) . G i ( z 2 ) L ) (33 )

Thi s is a general result, and encompasses the case

where the opera tors produce the data:

Fj(X1,ti) = dj. Fk(X2,t2) = dk (34 )
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In this case, Lj, and Lk represent linear functionals as

deri ved in the forward problem. For example, suppose that

Fj(~1,t1) = Ti l (t1) i Tm l (t1) (35 )

Ti ' (t 1) is the travel ti me anomaly for the 1 th ray

(arbitrary indexing) at time t1, and the mth ray has the

same path but travels in the opposite direction from ray t.

Suppose as well that

Fk ( x 2 , t 2 ) = T q , ( t 2 ) i T r i ( t 2 ) (36 )

which has similar structure. Then (33) is a representation

of the j, kth element of the data-data covariance matrix Q

(Q) jk =

2.I J J t (~i((x,y,t)(sl))~i((X,y,t)(S2)))'
ri rq C(~(Sl) ,t) C(~(S2) ,t)Z

c cGi(Z(Sl)).Gi(Z(S2)).ds1dS21

(37 )

=

c c
2 I Y i J J Hi ( (x, y , t ) (s i) , (x, y , t ) (s 2) ) Gi (z (s 1) ~Gi (z (s 2) ) ds i ds 2

rirq C(x(si),t)Z C(X(S2),t)Z

(38 )
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Similarly, if dj(t) = T'(xj,t), the temperature anomaly at

(Xj,t), and dk = u(xk,t), the eastward velocity anomaly at

(!k, t), then the correspondi ng element of the da ta-da ta

covariance matrix is: T u
(2)jk = ¿ Yi.!lHi(Xj,Yj,t,xk,Yk,t)).Gi(Zj).Gi(Zk) (39)1 âYk

These forms suggest that generali ty in mode wei gh ti ng

may be obtained easily by retaining the sum over vertical

modes, so that

£ = I Y i '£i
i

(40 )

2i is the da ta-da ta covari ance ma tri x calculated for

just one mode. The assumption that there is no correlation

between modes has been necessary for the simplification

used in this chapter, but that assumption represents a

state of restricted information relative to the state where

the correlation coefficients between the modes are known.

If reliable correlations between modes did exist, these

could be incorporated into this framework by adding the

cross-terms. In general, to allow maximum generali ty, it

is worthwhile to keep separate matrices for distinct modes

or di fferent physics, because the expense of evalua ti ng
multiple integrals over ray paths, such as (38), can be

major. The ma tri ces may then be li nearly combi ned wi th

coefficients proportional to expected energies, to produce

a data-data or model-data covariance matrix for a given

estimation attempt without re-computing.
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6.5 CONSTRAINTS

When one wi shes to apply constrai nts as part of the

estima ti on framework, each constrai nt should merely be

treated as another datum, with weighting appropriate to its

degree of certainty. If, for example, conservation of mass

in a box, r, with boundary dr, is to be enforced, then one

can wri te the constraint as a forward problem for the

datum, d.

o = d = r p. u · n ds
dr --

:t e: (41)

u is the velocity vector) p is density, e: is the error
limi t, n is the uni t normal to the surface of the box, and
ds is an element of area of the boundary, dr, of the box,

r.
The integral has the standard form of a datum, and

must be linearized to be used in the estimation framework

presented in this thesis. Recall from chapter 3 that the

basic state, to which the inverses are referenced, has no

velocities, and density p = p. Equation (41) can then be

Ii neari zed:

o = d = r p .u. Q ds
d r

:t e: ( 42)
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This constraint (42) asserts 0 mass creation or

destruction wi thin the box, wi thin uncertainty g, as a
linear functional of the unknown veloci ty field. As

another example, a no- flow condi ti on could be enforced on

the bottom, B, again with normal n and area ds:

o = d = I u. n ds
B

I g (43 )

Note that no linearization is needed for this type of

constraint. Given the constraint in the form (43), the

model-da ta and da ta-da ta covariance matrices can be

contructed by applying the functionals to the basic

covariance functions. Suppose, for example , that the
bot tom boundary condi t ion, (43), is to be used as a datum.

The di agonal element of the da ta-da ta covari ance ma tri xis

the autocovariance of the datum, d:

(dd) = II ((U(Xi,t1)'n(Sl))(U(X2,t2)on(S2))dsids2) I (gg)
BB

= II ((~(Xi,t1)Tn(si))(~(X2,t2)Tn(s2)))dsids2 I .(gg)
BB

= II n(sl)T(u(~1,t1)~(X2,t2)T)~(S2))ds1ds2 I (gg)
BB

(44 )

The 3x3 matrix of covariance functions can be

evaluated by calculating the covariances as outlined above,

using the quasi-geostrophic operators. The estimator would
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attempt to satisfy (43) to within E, using the

probabilistic weighting. The residuals would then provide

a quanti tati ve consistency check on the constraint, just as

they do for other data.
The integral constraints are perhaps the most obvious,

but di fferential constraints can be used as well, again
trea ti ng the constrai nt as a datum wi th some a priori error
limi t. One could apply the basic thermal wind balances

from Chapter 3, but these are trivially satisfied because

the covariance functions have been defined to be consistent

wi th quasi -geostrophi c structure, and thus sa ti sfy the

diagnostic relations identically. For example, consider

the non-di vergence condi t i on,

au ;. av
ax ay

= 0 (45 )

If this condi tion is imposed as a constraint, then one

can wri te (45) as a datum for each poi nt wi thi n the volume

of interest:

o = d = au ;. av
ax ay

:t E (46 )

The operations in (46) are linear, so the elements of

the da ta-da ta covariance can be calculated usi ng the
procedure outlined above.
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In order to fix ideas, consider one element of the

data-data covariance, (dD). Suppose, for simplicity, that

the other datum, D, is a measurement of streamfunc ti on, by

some mi racle, so that

(dD) = ~u(~1,t1)~(X2,t2))
ax 1

4 ~v (~1, t 1) ~ (~2, t 2))
ay 1

(47 )

= I Y i · ( - ~ (iii (x 1 , y 1 , t 1 ) ~ i (x 2 , y 2 , t 2 ) ) G i ( z 1 ) · G i ( Z 2 ) 4
a x 1 ay 1

~ (ili (x 1 , Y 1 , t 1 ) ~ i (x 2 , Y 2 , t 2 ) ) G i ( Z 1 ) · G i ( Z 2 ) )

aY1 aX1= 0 (48)
The other elements in this row/column of the data

covariance vanish as well, as do the corresponding elements

of the model-data covari ance.

The diagnostic relations from the quasi-geostrophic

approxima tion were imposed on the covariances because they

are generally thought to hold nearly everywhere in the

ocean, at least to lowest order. If (45) was to be

explici t, wi th fini te error, then an infini te number of

"data" could be constructed, one for each point in the

volume. The covariance functions for veloci ty, densi ty,
streamfunction, and so on would be independent, so the

cross-covari ances would be zero, but the rela ti ve energy

levels and scales would sti 11 be adjusted to fi t
expectations, and would thus resemble the auto-covari ances

calcula ted usi ng the quasi -geostrophi c framework.
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Applying the diagnostic constraints to the model means

that they are specified wi thout uncertainty, but they are

applied to all points in the volume wi thout

over-complicating the estimator. The choice of which

constraints to use in the model, and which to apply

explici tly in the construction of the estimator must be

based on a trade-off between these two consi dera ti ons. If
the uncertainty of the constraint is non-negligable for the

purposes of the mappi ng, then it should be appl i ed

explicitly. For integral constraints, such as (43) above,

this is convenient, but for a di fferential constraint, such

as conservation of potential vortici ty, one may choose

ei ther to bui ld it into the model and add an appropri ate

amount of error to the covariances, to wri te explici t
equa tions for a spaced set of poi nts in the volume, or to

use an integrated version of the constraint on blocks

wi thi n the v~lume.

Perhaps the most important advantage of specifying the

constraint as an addi tional datum is the consistency check

that the residuals provide. When the model is built to

conform to a set of a priori constraints, errors in the

constraints will be distributed over all data, and may be

difficult to dignose. When the constraint provides a

da tum, the mi sfi t of that datum wi th the other data and

constrai n ts clearly and quant ita t i vely eval ua tes the

consistency and effectiveness of the constraint.
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The inverse procedure combines consistency checks wi th

constraints in a natural way. As one adds constraints to

the model, one reduces the i ndetermi nacy of the unknown

fi eld, thus reduci ng the number of degrees of freedom
avai lable to fi t the data. The addi tion of constraints

therefore both (1) reduces the effecti ve noi se power by

restricting the "bandwidth" of the signal to which the

estimator is sensitive, and (2) reduces the ability of the

ori ginal model to fi t the data, possi bly dri vi ng up the

residuals.
The addi tion of the constraints increases the

resolution of the estimator, but if the fit to the data

declines badly, so that the estimates of the data errors

(residuals) are larger than allowed in advance, then the

validity of the constraint (or the prior estimate of the

noise level) must be re-examined. "Residual watching" has

been an art, but it can be quanti fied under the formalism

of the probabilistic inverse. In any case, the inverse

techniques enable one to simul taneously check the validi ty
of a conjecture and benefi t from the increased information

available if the conjecture was true.

The fact that the model proposed for the ocean

variations incorporates the quasi-geostrophic diagnostic

rela tions greatly increases the resol vi ng power of the

tomographic system. Consider the case where the analytical

modes are used as a basis. The densi ty data or the
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acousti c data can then resol ve all but the oth mode, so the
indeterminacy of veloci ty reduces to indeterminacy of one

mode amplitude. This should be relatively easy to

estimate, using reciprocal travel times or a few current

meters, parti cularly gi ven the large scales expected for
the barotropi c mode.

This enhanced resolving power has been questioned on

the basis that it is blind to contradictions in the basic

assumptions. This is untrue, because the residuals from

the estimators give a direct and quantitative measure of

how well the model accounts for the data. The choi ce of

whether to test or i ncorpora te theoreti cal results must be

made on a scientific basis. If, for example, the problem

of acoustic propagation was not well-understood, then the

data from the 1981 experiment could only be used to check

consistency wi th the predictions of the theory, by

compari ng the ray arri val s measured at the recei ver wi th

those predi c ted by the theory, gi ven a hydrographi c survey

of the area. By assumi ng that the acousti cs are known, we

can instead map the hydrography independently. In the same

vein, it is to our advantage to incorporate any theoretical

resul ts whi ch are not under tes t. Gi ven that dynami c

height maps have been used for many years, the inversion

procedure presented above should be no more controversial,

particularly si nce it does not assume a reference level.
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CHAPT ER 7

CLOCK ERRORS, MOORING MOTION, AND ANCHOR POSITION

7.1 INTRODUCTION

Ocean tomography as reali zed in the 1981 experi men t

depended on autonomous sources and recei vers moored at

mid-depth in a 300 x 300 km. array. Each instrument had an

independent clock, and could sway in any direction as the

mooring leaned in response to currents. Both mooring lean and

clock drift can produce measured travel time changes which

swamp the 40 msec. expected from mesoscale variation, so it is

imperative that x,y,z offsets of a mooring from its assumed

posi tion and offsets of the instrument's clock from the true
time can ei ther be removed di rec tly or compensated for. The
1981 tomography experiment was designed wi th systems to

measure these errors so that they could be removed when the

acoustic data was processed. The WHOI moori ng tracki ng system

was used wi th each acoustic mooring, recording posi tion to

wi thi n a few meters, and the frequency shi fts of the quartz
osci lla tors used as clocks were logged dai ly (see Chapter 1).

These correction systems were not invulnerable to

failure, and mooring motion corrections were not available at

least part of the time on all instruments, whi le two

instruments were completely wi thout moori ng motion

corrections. The corrections were subject to errors, as well.
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For example, the clock dri ft measurements showed large,

transient shifts (R. Spindel, personal communication) when the

moorings were deployed, and the treatment of these transients

is not necessarily obvious.

It is important to note that the mooring motion

corrections only supply shifts wi th respect to an unknown

reference posi tion. Adding the uncertainty of LORAN

naviga tion in the area in which the moorings were set to the

possible horizontal motion of the mooring whi le it sink s

during deployment means that the posi tion estimates provided

by the ship navigation at the time of setting were only good

to about z 2 km. in both the x and y directions. The depthS

of the instruments were also uncertain, due to possible errors

in the lengths of the cables used to construct the moorings

and in the bottom depthS. Pressure recorders can lessen this

uncertainty if they are available, but the instrument depths

used in the 1981 experiment were uncertain to wi thin 2 to 200

meters. Errors in posi tion, if uncorrected, would prevent the

use of numerical travel times as a re ference state, because

the di f ferences between the observed tra ve 1 times and the

numerical travel times would be dominated by the posi tion
di f ferences between those used for the ray trace and those

which actually occurred.
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Peter Worcester (1977) had to deal wi th the problems of

uncorrected mooring motion when he transmi tted between

independently drifting and heaving ships, and portions of the

discussion below follow his lead. Robert Spindel, at WHOI, is

responsi ble for most of the procedures for tracki-ng the

moorings, cali brating the clocks, and applying the recorded

corrections to the data.

Finally, even when mooring motion corrections are

a vai lable, they are lacki ng in two respects: 1) The
instrument moves vertically as well as hori zontally, and these

vertical ßhifts can distort the ray arri val pattern, even

invalidating the ray identification if the mooring shifts by

an extreme amount. 2) The simple corrections, ßT = ßR/C,

descri bed above for the horizontal posi tion shi fts are not

completely accurate descripti ons of the effec ts of changi ng

instrument posi tion on travel time, and the di fferences can

easi ly be order 4 msec.
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7.2 DAY-DIFFERENTIAL AND RAY-DIFFERENTIAL TRAVEL TIMES

A relati vely simple solution to the problem of unknown

mooring reference posi tion is to. abandon the numerical travel

times, (and thus, the a priori reference state) and look

instead at the travel time changes between day pairs during

the experi men t. I f the ocean structure was known for one or

more days of the experiment, as a resul t of a CTD survey, for

example, then all di fferences could be taken rela ti ve to thi s
day. Perturbations inferred from the travel time differences

could then be added to the known state of the ocean on the

reference day to produce an estimate of the total ocean

structure. This type of travel time information will be

called "day-di fferenti al", and was the type of data used to
construct the maps shown in the preliminary discussion

published shortly after the experiment (The Ocean Tomography

Group, 1982). In a longer experiment, the travel times could

be averaged over the length of the deployment, and the

differences wi th respect to this mean travel time would

produce perturbations rela ti ve to the mean ocean, provided the

experiment was sufficiently long to adequately estimate the

mean. Day-di fferenti als have several good features: they are

immune to all constant shifts in time base for each

source-recei ver pai r, not just those ari si ng from the unknown

reference positions, and also minimize the effects of errors

due to mis-identification of rays.
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Day di fferenti als do not sol ve the problem of uncorrected

mooring motion, and in fact exacerbate it, because the errors

on the two days add together. The need for a survey of the

ocean to use as a reference state is problematic, since on the

one hand, one of the goals of mesoscale tomography is to

provide an al terna ti ve to expensi ve and slow ship surveys,

and, on the other hand, the survey requires a fini te amount of

time, about three weeks in the case of the tomography

experiment, so that the picture of the ocean obtained by the

CTD is somewhat incompatible wi th the tomographic picture

obtained in 200 seconds. It is possible to partially correct

for thi s ti me problem by applyi ng mesoscale dynami cs to the

CTD field, using Rossby wave propagation to estimate a

snapshot of the ocean, although th is approach req ui res many

extra assumptions with unpredictable errors. In any case, day

differentials throwaway the absolute travel time information

which is available from the tomography instrumentation, and,

since the set of mooring motion corrections is incomplete, are

only useful for about 5 days of the experi men t.

The horizontal mooring motions can be partially removed

from the inverse by referenci ng the travel times for each

source receiver pair to one of the rays in the pattern. Thus,

if there were 5 resolved arri vals for a gi ven source-recei ver

pair, one of the arri vals would be chosen as a reference and

subtracted from the other 4, yi eldi ng 4 "ray-di fferenti al"
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travel times which contain only distortions of the arri val
pattern (Worcester, 1977). Horizontal mooring motions just

displace the arri val pattern, to lowest order, so

ray-differentials provide a certain amount of immunity to

uncorrected horizontal mooring motion. If only ray

di fferentials were used, the day di fferentals would not be

necessary, since the pattern distortions could be referenced

to the numerical arri valse

Unfortuna tely, the expected vari a tiQns of the ray

differentials are very small, order 10 msec RMS for the

mesocale tomography experiment, so tha t the error levels

become very critical. An error in ray identification will,

when the ray di fferentials are calculated, swamp the ocean

variation. Shifts in instrument depth strongly distort the

pa t tern of ray arri vals, and can be important sources of ray
differential variance. Horizontal mooring position shifts do

distort the pattern weakly, and this source of error can be

order 5 msec if the ray pattern contai ns rays wi th Widely

differing angles. The random measurement noise is doubled for

ray differentials, as a result of the subtraction, so that if

the random errors are 5 msec or larger the ray di fferenti als
will exert little influence on the maps.
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When inversion calculations were attempted for the 1981

tomography data using ray differentials, the various noise

sources were found to render pure ray differentials nearly

useless. The Ocean Tomography Group paper used day

differential travel time data for all paths, and used both day

and ray differentials for two instruments, S4 and R5, for

which moori ng motion corrections were una vai lable, and the

resul ts were sti II limi ted to the few days where nearly all
instruments had complete corrections.
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7.3 THE STRUCTURE OF MOORING MOTION AND TRAVEL TIME "NOISE"

Because of the limitations of "differential" travel

times, a more sophisticated approach to combatting the noise

from clock drift and mooring motion is required. The key

concept is that these sources of variance in travel time are

not whi te, but have identifiable physics and fini te cross

covariances. The ocean variations have characteristic

patterns of effects on the acoustic travel times. These are

calcula ted when construc ti ng the da ta-da ta covari ance ma tri x

for the sound speed perturbations, ~c. The eigenvectors of ~c

are the expected modes of variation of the data vector, d, due

to the evoluti on of the mesoscale features, and the associ a ted
ei gen val ues are the expected powers of these modes.

In the same way, the measurement noise has a particular

covari ance structure, the clock shi fts another, the moori ng

mot i on another, and so on. The measurement noi se intra ve 1

time determination is due to oceanic noise and the fini te
bandwi dth of the transmi ss ions. These errors are random and
uncorrela ted between paths, so the covari ance func ti on for

this physics is a a-function, and this parameterization cannot

be improved on. Source or recei ver clock shi fts, on the other

hand, have exactly the same effect on each ray in a gi ven

source recei ver arri val pattern.
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The source clock shi ft wi II be the same for all rays

which leave that source, and the receiver clock shift will

likewise be constant for all rays which hi t the same recei ver.

Clock errors can thus be parameteri zed in terms of only one

number (time dependent) for each mooring, and the effect on a

gi ven ray wi II depend only on whi ch source-recei ver pai r it

belongs to. For a ray k from source i to recei ver j, the
contri bution to the measured travel time from clock erTors €i
and € j wi 11 be

ß Tk = €. - €.J 1 ( 1 )

The clock shi fts, €i, are i ndependen t between

i nstrumen ts, so the cross covari ances of thi s state vector

representa tion should be zero, and no further parameteri za tion

is necessary. Instead of a whi te noise variance added to all

da ta, the clock noi se can be expressed by Nm = Ns + Nr

parameters, reducing the effect of unknown clock error. The

correla tions of the clock shi fts between rays al lows thi s

parameterization and the resultant gaín in resolution over the

whi te noi se assumption.

The mooring motion noise is also correlated, as can be

seen by exami ni ng its physi cal basi s. I n a perturba t i on

framework, the travel ti me anomaly due to moori ng moti on or
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anchor posi tion offset for ray k can be wri tten as a linear

function of the x,y, and z shifts of both moorings, ßXi, ßXj:

ßTk= l!'ßXi i i!'ßYi i l!.ßZi i i!'ßXj i i!'ßYj i l!'ßZjaXi aYi aZi aXj aYj aZj
(2 )

The partial derivatives in (2) can be estimated by ray

tracing for different coordinates, but a simple perturbation

approach allows analytical calculation of these quanti ties.
Fi rst, decompose the hori zontal terms into two parts: the

dependence of travel ti me on hori zon tal range, Rk; and the

dependence of horizontal range on the indi vidual x or y

coordi na te:

l!. ßXi = i!'~ .ßxi
aXi aRk aXi

l!°ßYi = i!'~ 'ßYi
aYi aRk aYi

l! 'ßXj = i!.~ .ßXj
ax. aRk aXjJ

l!'ßYj = i! o~ .ßYj
ay j aRk ay j

(3a)

(3b)

(3c)

(3d)

The aRj ax, Y terms can be calculated from the si mple

geometry, see figure (7.1), while the aTjaR and aTjaz terms

can be approximated by assumi ng that the ray has a fi ni te

wi d th, wi th the phase fronts normal to the ray path, so that

the extra travel time resulting from the perturbed instrument
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posi tion will be the time it takes for the phase front'to

reach it (C. Spof ford, personal communication). If the ray

path is assumed to be locally straight, at an angle ei to the

horizon tal, (posi ti ve for an upward- heading ray), and the
local sound speed is Cl, (see Figures 7.2 and 7.3), then, at

the recei ver :

aT =
az

- sin e 1

Cl
(4 )

aT
aR

= cos e 1

Cl
= P (see Chapter 2.) (5 )

These are calculated at both source and receiver

loca tions, and (4) has opposi te sign at the source. The

partial of travel time with respect to horizontal range is P,

the ray parameter, so it is conserved along a gi ven ray if the

range dependence can be neglected. This means that the simple

approximation that travel time is a function only of

horizontal separation is correct, but that P, and not Cl, is

the constant of proportionali ty. The travel time changes for

vertical position offsets are different for source and

recei ver because sin8i I Cl is not conserved.
Note that these expressions require the ray s to be

identified, so that the angles at both source and reciever are

known. The converse is also true, however, as the mooring

moves, the behavior of each peak in the arri val pattern will

depend on the angle wi th which it arrives. In this way,

mooring motion. allows a single receiving instrument to be used
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FIGURE 7.2 SKETCH OF HOW A CHANGE IN SOURCE OR RECEIVER DEPTH CHANGES RAY
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as a beam- former, adding angular information useful in ray

identifica tion. Vertical motion is most ef fecti ve at
distinguishing between angle, because of the sin (0i)
dependence, but horizontal motions can contri bute, provided
tha t the noise level is small enough.

Parameteriza tion reduces the mooring motion errors to 3

unk nowns per mooring. These are presumed to be independent,

al though, if the moorings were rigid, there would be only two

unknowns per mooring, lean angle and lean direction, (Figure

7.4), so the number of parameters could be reduced.

Unfortuna tely, the moorings were by no means rigid, but

significant correlation between horizontal displacement and

depth exists. For maximum generali ty and simplici ty, I wi II

leave the expression for mooring motion travel time in the

form (2). Expected correlations between the parameters could

be calculated using numerical mooring models, and then input

into the inversions.
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FIGURE 7. 4 INSTR~lENT POSITION CHANGES AS A RESULT OF MOORING LEAN.
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7.4 INCLUDING INSTRUMENT OFFSETS IN THE ESTIMATION PROCEDURE

Once the mooring motion and clock error dependences have

been calculated for each ray, a da ta-da ta covariance matrix

can be constructed. Let M be the matrix of partial
derivatives converting mooring motion and clock error to

travel time for each ray, and ßS be the vector of x,y,z and

time offsets for all the moorings, so that, if ßT is the

vector of travel time anomalies,

ßT = M. ßS.. (6 )

By assumption, each element of ßS is independent of the

others, so the covariance matrix for ßS, £s = (ßSßST), will be

~iagonal, wi th each diagonal element reflecting the expected

variance of that component on the day under consideration.

These expected errors are estimated on the basis of the

quali ty of the corrections avai lable on that day, and change

day to day. Thi s covari ance ma tri x for the moori ng shi fts can

be used as the column weighting in a singular value inversion.

If the stochastic inverse is used, then fs is needed to

cons truc t the da ta-da ta covari ance ma tri x for the moori ng

shi fts ;

~ = M.£s'MT (7 )
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The total covariance matrix for the travel time

has 3 components: variation due to the ocean sound speed

changes, ~c' the moori ng shi fts, ~m' and the remai ni ng random

error whi ch is uncorrela ted between rays, £8 (di agonal) ;

2 = 2c ~ 2m ~ £8 (8 )

Since the mooring shifts are now included in the

inversion in parameterized form, they can be estimated by

constructing the complete stochastic inverse operator;

A
~S = £s.MT'(,2-1).d (9 )

A
C'(.!,t) = (C'(x,t)'dT).(,2-1).d (10 )

Some of the data used in the inverse may not be travel

ti mes, but, in any case, each row of M wi 1 1 express the

dependence of that datum on the moori ng shi fts. For example,

a pressure measurement on one of the moori ngs would provi de

constraints on the motion of that mooring. In fact, the

records obtai ned from the moori ng tracki ng transponders could

be used directly as data in the inverse, short-circui ting any

need for seperate calculations in advance. In the limi t, the

mooring lean angle and direction would be the unknowns, and

the motion of the water as observed by the acoustics and the

current meters would have to be consi stent wi th the moori ng
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motions. These perhaps complex interconnections could be

exploi ted to increase resoluti on, si nce the indetermi nacy

would be reduced by each addi tion of physical relations, but

at some point, the resolution gain would not be worth the

extra effort required to add the extra physics to the

inverse.

This point of diminishing returns determined the decision

to leave mooring motion as ~x,~y, and ~z instead of lean,

because of the non-li neari ty of the dependence of ~x, ~y, and

~z on the angular di splacemen ts (see Fi gure 7.4). The

cartesian coordi na tes also make the system more robust, in
tha tit is not necessary to assume that the moori ng leans as a

rigid rod.

Retai ni ng three degrees of freedom is necessary to treat

non-moored appl i ca ti ons of tomography. For example, it allows

one to consider outfitting SOFAR floats with the more

sophisticated transmitters, and using tomographic techniques

instead of the simple posi tion calculations now used. At the
very least, one could expect to gain accuracy in the posi tion

fix, and perhaps some simple information about the location

of the wall of the Gulf Stream. The "ultimate" inversions for

the 1981 experiment may include the more efficient

parameterization of mooring motion.
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When the inversions produce posi tion estimates as well as

ocean maps, it becomes much easi er to address the problem of

moori ng reference posi ti on. Gi ven that the moori ng anchor

locations are uncertain to wi thin about 2 kilometers, the

travel time anomalies (wi th respect to rays traced

numerically) due to anchor posi tion domi na te the observed

anomalies, but must be constant throughout the experiment,

(see Figure 7.5),. so that the anchor positions may be

estimated to wi thin about 50 meters by averaging posi tion

estimates.
The inversions could then proceed wl th the variance due

to the remaining uncertainty in anchor posi tion added to the

mooring motion variance, so that the inversions would be

completely independent of any ocean survey. I f on the other

hand, the goal is not to compare the acoustics against the

ocean survey, but to obtain the best estimate of the ocean

gi ven all data, then the CTD data can just be included as part

of the data for the inverse, increasing the resolution of both

the ocean and the mooring anchor posi tions. Because the

anchor posi tions are constant, resolution can be ~mproved by

parameterizing the inverse both in terms of the constant

anchor pos i t ions, wi th large vari ances, and the moori ng

motions, wi th generally smaller variances, but changing day to

day. This separation will also be part of the "ultimate"
inverse, but has not been carried out here.
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FIGURE 7.5 SKETCH OF REST .DEPTH OF INSTRUMENT AND OF MOORING MOTION
COMPARED TO ANCHOR POSITION UNCERTAINTY.
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If the covariances used in the inverse include time, then

the moori ng anchor posi tions should be parameteri zed as

constants, with perfect coherence over all time separations,

while the offsets due to mooring motion would have coherences

which decay on a time scale of a few hours to days.

Finally, it is now easy to see how to treat the case

where absolute travel times are not avai lable. In this case,

there is an additional (constant) unknown for each

source-receiver pair, which would be estimated using data

throughout the experiment. The case where the sources and

recei vers are suspended from ships is also tractable now, even

wi thout high-accuracy navigation, since the tomographic system

can have useful resolution in the absence of accurate posi tion
information. The engineering trade-offs for large-scale
tomography can also be. more flexi ble, si nce the need for

periodiC clock checks, mooring tracking, or ocean surveys may

be eliminated by sufficient travel time precision and enough

source-recei ver pai rs.
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7.5 DISCUSSION

If the mooring motion and anchor posi tion offsets are

lumped together, then there are 4 undetermined parameters

per mooring. For NS sources and NR receivers (= Nm

instruments), instrument offsets would then consti tute Nm.4

unknown parameters. Of these, it is easy to see that a

uni form clock shift among all instruments does not af fect the

data. Likewise, a uniform translation (in x or y), or a solid

body rotation of the array cannot affect travel time. There

are thus (Nm-1).4 parameters which affect the data, but in a

gi ven case, degeneracy may reduce the number further. If the

ray s of a single source-receiver pair do not give range
information (a worst-case assumption), and k vertical modes

can describe the ocean, then there are k .NS .NR independent

pieces of information which may be gathered for the inverse

problem for the ocean. This means tha t we should expect that

about (Nm-1)o4 + k.NsoNR independent rays could be used. For

a 4 source, 5 recei ver array in a region where the ocean

appears to have energy in only 3 modes, we expect that about

92 mys would be independent in a noise~ ree experiment.

When whi te measurement noise is present, all rays add at

least a small amount of independent information (about the

noise), but the resolution of the ocean will degrade, even

when more rays are added. If, for example, the noise variance
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is greater than the travel time variance due to the 3rd mode,

then there are really only 2 resol ved modes, so about 72 rays

would be expected to be independent. In a practical case,

more than this minimum number of rays would be required,

because some rays would be only weakly independent, but thi s
calculation gi ves a good rule of thumb. If one calculates the

expected variance due to horizontal feature posi tion for a

single source-recei ver pair (range information), then one can

estimate the error level at which the range information

becomes accessible. Thi s would allow, for example, a

back-of-the-envelope evaluation of the possibility of

2-dimensional vertical (x-z) slice reconstruction from a

si ng~e source-recei ver pai r.

For the mesoscale geometry and present equipment, about 8

to 10 arri vals are distinguishable at the recei verso If we

conserva ti vely estimate 5 independent rays per source-recei ver
pair, then an array of NS sources and NR recei vers would

produce 5 .NS .NR data, as opposed to (NR t NS - 1).4 moori ng

offset parameters, in the worst case. It is clear that, as

the number of instruments grows, lack of posi tion information
becomes very easy to compensate for, even wi th an i neff i ci en t

parameterization. On the other hand, as the range of the
transmi ssi ons grows, the number of rays per source-recei ver
pair grows as well. Once again, undetermined offsets become

less of a problem, provided the precision of the system is

sufficient to distinguish the available arrivals.
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CHAPT ER 8

DATA TREATMENT IN THE 1981 EXPERIMENT

8. 1 DATA RETURN

In thi s chapter, I wi II descri be the complete data

processing procedures for the 1981 ocean acoustic

tomography experiment, from the instrument processing to

inversion procedures. For additional details about the

experimen t, see Chapters 1, 7, or the descri pti on in the

paper by the Ocean Tomography Group (1982).

The 1981 ocean acoustic tomography experiment used 4

acoustic sources and 5 recei vers, arranged in an array as

shown in Fi gure (1.4). The array was centered on about

26 N, 70 W, nearly coi nci di ng wi th the regi on where the

MODE experi men twas carri ed out (MODE Group, 1976). Duri ng

the course of the experiment, 3 CTD and bottle hydrographic

surveys were made by NOAA ships in the region, and several

AXBT flights were made by the Navy, in order to have

tradi tional measurements in the region for comparison wi th

the tomography results.

The moori ngs were deployed in February 1981, wi th

an expected dura ti on of 4 mon ths, and the three

hydrographic surveys were spaced through this interval.

Unfortuna tely, battery problems shut down most of the Woods

Hole recei vers by about day 120, so the full array was

operating for only about 70 days, although the SIO

receivers recorded data out to day 172 (see table (8.1)).
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TABLE 8. 1 MOORING DATA RETURN

FROM A MEMO FROM R.SPINDEL 9/28/81

A: CLOCKS

MOORING START DAY TOTAL DAYS
.... .... ......... ...... ..........

Sl 21 219

S2 61 178

S3 36 203

S4 30 208

R1 47 66

R2 46 150

R3 43 134

R4 43 155

R5 48 135

B: MULTIPATH DATA

MOORING START DAY TOTAL DAYS
... ...... ............ ............

R1

R2

R3

R4

R5

49

46

49

46

49

120

69

87

63

120

NOTE: R2, 3,4 FAILED EARLY DUE TO BATTERY PROBLEMS
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TABLE 8. 1 CONTINUED

C: MOORING MOTION

MOORING START DAY TOT AL DAYS

S 1 32 160

S2 34 185

S3 35 185

S4 36 NONE

R1 47 175

R2 46 185

R3 45 185

R4 38 185

R5 48 FRAGMENTARY

(NOTE: SOME OF THE RECORDS ABOVE CONTAIN GAPS)
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The sources and recei vers were equipped wi th the Woods

Hole mooring tracking systems, as mentioned above,

supplyi ng data on moori ng moti on for many of the

instruments during much of the experiment. This great time

variability in the quality of the data requires that the

inverse framework and the data reduction programs must be

flexi ble enough to handle data wi th gaps and

inhomogenei ties.

The acoustics operated one day in three, transmi tting
each hour for 24 hours and then shutting down for 48. The

WHOI recei vers recorded each transmi ssion, but the SIO

recei vers li stened only every other hour. To a voi d

interference and reverberation, the sources transmi tted at
15-minute intervals, wi th source 1 transmi tting on the

hour, source 2 on the quarter hour, and so on. The sources

transmi tted on a carrier of 224 Hz wi th a bandwidth of 20

Hz, sending 24 repetitions of a 127-digit phase-coded shift

register sequence. The complete sequence lasts for 7.9375

seconds. The recei vers were set to turn on at a specific

amount of time after each source began to transmi t, and

recorded for long enough to recei ve 22 repeti tions of the
code. The recei ver turn-on delay was calculated on the

basi s of the planned moori ng locations so that the

recei vers would ideally record the middle 22 transmissions
of the code. As a result, 8 seconds of vari a ti on in ei ther
direction, due to uncertai n moori ng posi tions, was allowed.
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The recei vers recorded 2 samples per di gi t (= 254), and the

22 repeti tions of the code "wrapped around", so that sample

255 was added to the sample 1 already in bi n 1, and the 22

transmissions of the code were summed. This worked to

increase signal to noise ratio wi~hin the stringent power

li mi tat ions. The wrap around means that the fi rst hi n of
the recei ver corresponds to a travel time equal to the

recei ver delay, plus or mi nus 7.9375 seconds. Thi s

indeterminacy does not cause any ambigui ty in absolute

travel time because 8 seconds of travel time means about 12

km. of range, and the moori ng loca ti ons were known to

wi thin :!2 km.

The averaged recei ved code was correlated wi th a

stored record of the code as transmi tted, a process called

phase-matched filtering (Birdsall, 1976), which produced a

set of correlation peaks (Figure 8.1). The largest peaks

each correspond to the arri val of a di s ti nc t acoust i c ray,

or, in some cases, a set of rays whose travel times are

seperated by less than the resolution width of the system.

Some of the recei vers stored these 254 complex numbers

di rec tly, whi le the others stored only the 11 hi ghes t

peaks. The length of each digit is 62.5 msec, so the

system can resol ve peaks separated by more than 62.5 msec.
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Neglecting the effects of micro-mul tipaths, the rms

uncertainty for resolved peaks is less than 2 msec. To

maintain this precision, the 254 points must be

interpola ted by at least 16 times, using band limi ted

interpolation. During the preliminary data processing for

the experiment, cubic spli nes were used to interpolate by

16 times. This reduced the sample spacing to 1.95 msec,

limiting quantization errors to the level of the

precision.
Each hour, each recei ver stores 4 sets of correIa ti on

peaks, one for each source. Each set of peaks wi 1 1 be

called an "arri val pattern". Figures (8.1 A-D) show the

changes in these arri val patterns over 4 sucessi ve hours.

The hourly returns show significant variations in

ampli tude, at least partly as a resul t of the

mi cro-mul tipa th interference descri bed above. The arri val

times in the pattern alSQ change in response to the

internal waves and tidal currents as well as the mesoscale

field. Al though the inverse problem could in principle

include both internal waves and tides, it is easier, at

least for the purposes of this thesis, to average the

arri val patterns over a day to el i mi na te much of the rapi d

variation. The simplest way to perform the average is to

add up all returns for a gi ven day, producing a smoother

pattern (Figure 8.1 (E)) which makes it somewhat easier to

pi ck out arri val peaks.
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8.2 PEAK FINDING AND TRACKING

The next step in processing is "peak finding", in

which the peaks of the interpolated arri val pattern are

located and stored. Peak location (arrival time) and

signal to noise ratio are saved for all peaks above a

cut-off signal to noise ratio which is set in order to

screen out most of the peaks due to acoustic noise. The

signal to noise ratio is saved because the uncertainty of

the peak ti me depends on the SIN rat i o. The sets of stored

peaks form a time series, one for each source-recei ver

pair, which can be displayed to show the evolution of the

acoustic ray arri val times over the course of the
experiment (Figures (1.6) or (8.2)). The continui ty of the

pattern of distinct ray arrivals is clear over the entire

experiment in this figure.

The arri val patterns in fi gure (8.2 A) have been

corrected for mooring motion and clock drift by using the

measurements made by the acoustic mooring tracking and the

rubi di um-referenced measurements of the frequency shi fts of

the quartz oscillators in each instrument. In the case of

clock dri ft, the arri val pattern for each source-recei ver

pai r was shi f ted in the wrap-around 7.9375 second wi ndow to

compensa te for the clock errors of the two instruments

involved. The mooring motion corrections were made by

computing the changes to the horizontal range between the
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two instruments due to their motion and di viding by an

a veraged sound speed to obtai n a travel ti me correc ti on

which was also used to shi ft the return pattern in the

window. The effect of the corrections is clear if an

uncorrected time series (Figure (8.2 B)) is examined. Note

that the continuity of the arrival pattern is conserved, in

spi te of the large travel ti me changes due pri mari ly to the

motion of the mooring.

The next step in the data reduction attempts to

quantify the continuity of the arrival pattern. Each

important peak in the pattern is selected and tracked over

the entire time series, producing a time series of arri val
times associated with that particular peak. The process of

peak tracking is nearly completely dependént on the

robustness of the arri val pattern as the cri terion for
following a particular peak as the pattern moves around in

response to the ocean. Fi gure (8.3) shows the resul ts of

the tracki ng step for two ti me seri es, the corrected seri es
from fi gure (8.2 A) and the uncorrected peaks from fi gure

(8.2 B). With many of the intermittent and noisy peaks

removed, the pattern becomes easier to follow, even wi thout

mooring motion corrections.
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If the arri val of one of the peaks in a pattern is
subtrac ted from the others in the pattern for each day of

the record, the resultant "ray differential" times show

only the distortions of the arival pattern (Figure (8.4)).

Ray differentials are thus immune to instrument clock

shi fts, which just di splace the arri val pattern. Because

much of the moori ng di splacemen t causes the arri val pattern

to translate with minor distortions, the ray differentials

also screen out much of the noi se due to moori ng moti on.

Al though both the ocean and the movement of the moori ng

both translate and deform the pattern of ray arri vals for a
gi ven source-recei ver pai r, the modes of change can be at

least partially distinguished, and this is the key factor

in alloWing useful inversions in the presence of large,

uncorrected mooring motions.

Each tracked peak presumably corresponds to a distinct

ray path through the ocean, and the next step in the data

reduction is to determine the ray paths for the arri vals
observed in the data. Thi s procedure, called "ray

identification", also depends on the pattern of the ray

arrivals. Rays are traced numerically using a typical

sound speed state for the area, range dependent or

independent. and the pattern of numerical ray arri vals is
compared wi th the tracked peak pattern on a gi ven day or

series of days (Figure (2.6)). The identification can be

done manually or automatically, provided that the pattern

contains enough .information to make an unambiguous mat_ch.
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If the pattern is not detai led enough to make ray

identification certain, then several alternatives are

avai lable. The Scripps recei vers used a vertical array of
i hydrophones, allowing beam forming to estimate arrival

angles of the rays correspondi ng to the peaks in the

pattern. If this information is not available, an

approximation to beam forming can still be done using the

motion of the mooring. The travel time shifts for a given

ray due to moori ng moti on are sensi t i ve to the angle that
.

the ray makes wi th the horizontal at the instrument which

is movi ng. I f the moori ng moves on a short ti me scale, as

a resul t of inert i al waves or ti des, for example, then the
shi fts of the tracked paths provide a consi stency check on

a tentative ray identification, provided mooring motion

tracking is available. I n the future, a generali zed

beam-forming routine could be used to resolve the angles in

an optimal way, capi talizing on the motion of the mooring.

If mooring tracking is not avai lable, then the
inversion will provide the check on ray identification

through an examination of residuals. Different modes of

variation of the travel times in a pattern correspond to

di fferent physics, and the resi dual noi se level can be
robustly identified. Systematic errors above this level

will show up in the "residuals" calculated by removing the

effects of mooring motion and clock offsets from the travel
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time data. If the rays have been incorrectly identified

for a particular source-recei ver pair, the residuals for

that pair will reveal the mismatch. This technique was

used to correct some of the preliminary identifications in

the fi rst stage of processi ng the tomography data.
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8. 3 PLANNED IMPROVEMENTS

Some of the techniques descri bed above are by no means

final, and will be improved for the "ultimate" inverse or

for future experiments. The interpolation and peak finding

steps could be replaced by a maximum entropy algori thm,

treating the 254-point arrival pattern as a spectrum.

Fourier transformi ng the pattern yi elds 254 "lagged

covariances", which are then fed into a maximum entropy

algori thm to produce the poles of the "spectrum", whi ch

correspond to the peaks of the arri val pattern, wi th

resolution equivalent to an infinite number of interpolated

points (J. Catipovic, personal communication, 1982).

At the same time, the simple averaging scheme employed

in the first pass processing will be discontinued, so that

peak finding is done for the hourly returns. This is

necessary to allow the mooring moti on beamformi ng mentioned

above, and avoids possi ble problems wi th a rapidly shi fting

peak, which may appear as two peaks if the simple summation

is used. An hourly ti me seri es of peaks could be tracked

in the same way that the dai ly peaks were, and then the

averaging to remove tides and internal waves would take

place path by path, wei ghted by the uncertai n ty of each

peak. The un-averaged ti me seri es would be useful if the
inversion was to be extended to the shorter time scales.
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CHAPTER 9

ESTIMATORS USED FOR THE 1981 TOMOGRAPHY EXPERIMENT

9. 1 THE MODEL

Most of the discussion of inverse methods presented so

far has been general, in an attempt to show the

interconnections and justifications of methods which often

seem quite distinct. I will now discuss in detail the

inversion techniques used wi th the data from the 1981

tomography experiment, after data processing as descri bed

in Chapter 8. The formalism of the stochastic inverse will

be used throughout the following si nce it allows
considerable flexi bi Ii ty, including a continuous
representation of the unknown field. In any case, it was

shown (in Chapter 5) that the stochastic inverse is

equi valent to several other forms of li near least-squares

inversion, so there is no reason to use a different form.

At this stage, only travel time data have been used in

nhe inverse, to allow independent compari son wi th the

conventional measurements taken during the experiment, but

any and all of the other data types can be included, and

will be used in the future. The transmissions in the 1981

experiment were one way only, so that the travel ti me

changes due to ocean currents were not specially resol ved,
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and have so far been neglected in comparison wi th the

tra vel ti mes due to sound speed changes. The travel ti me

errors incurred by this assumption should be order 2 msec,

comparable to the other error sources. As the processi ng

of the data improves, currents wi 11 be incorporated as

part of the inverse, although the resolution wi II not be
grea t .

In order to use the stochastic formalism, it is

necessary to def i ne a mean state for the sound speed and
the expected covariance around this basic state. Because

we are interested in deri ving reliable snapshots of the

evolution of the sound speed anomalies due to mesoscale

dynamics, we are more interested in the minimum variance

properties of the estimator than in its possible bias. For

this reason, the basic state need only be specified near

enough to the true state to avoid problems wi th

linearization. This means that most any archived estimate

of the local mean sound speed is adequate for use as a mean

sta te, al though the closer the assumed mean state is to the

true mean the smaller the variance around the mean wi 11 be,

increasing the effectiveness of the estimator.

For the initial estimates from the 1981 experiment, a

simple average of the CTD casts duri ng the first NOAA

survey of the area was chosen to be the basic state,
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(Figure 1.1), more for convenience in coordinating between

insti tutions than any other reason. The basic state was

taken to be stationary and horizontally homogeneous,

Co(x,t) = Co(z), both for simplicity and because the data

avai lable to date are inadequate to support any assumptions

to the contrary.

The estimate of covariance for the sound speed anomaly

is also derived from archived data, and is then used with

the forward problem to calculate the expected da ta-da ta
covariance matrix. The decomposi tion into vertical modes

wi th horizontally varying ampli tudes has been discussed

. above, and thi s model wi 1 i be used throughout the

inversions to follow:

C'(~,t) = C(~,t) - Co(z)
M c

= IF i(z)'ni(x,y,t)i=l
( 1)

The modes chosen as a bas i s are the empi ri cal

orthogonal functions of sound speed variation for the MODE

experiment (Figure 9.1). This basis was chosen before the

data from the experiment were available, so that the model

for verti cal structure would be i ndependen t of the

tradi tional measurements made duri ng the experi ment.

Because the MODE EOFs were calculated rela ti ve to the

average sound speed profile from the MODE experiment, it

would have been more logical to use the MODE averaged sound

speed prof i Ie as a ref erence, rather than the average of
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the first NOAA CTD survey. In future inverse calculations,

the MODE Co(z) profile will be used with the MODE EOFs, or

else analytical modes wi II be used, rela ti ve to an

appropria te basic state.

The "analytical" modes (solutions of the vertical

structure equation discussed in Chapter 3) should be

calcula ted using an estimated climatological mean buoyancy

frequency profile. Given a basis set of displacement

modes, conversion to densi ty modes or sound speed modes is

possi ble, given mean temperature and salini ty profi les

(Qiapter 6 i. bove). The EOFs allow variance in the upper
layers of the ocean, presumably due to seasonal effects,

(see Figure 9.1), while the analytic modes have nodes at

the surface by construction GFigures 9.2 A-D). If an

analytical mode basis is used, then surface-intensified

modes must be added to those calculated using

quasi -geostrophy. These may ei ther be speci fied in some ad

hoc way, such as layers, or modes deri ved from mixed layer

or climate models might be incorporated.

The expected variances of the modes as derived from

MODE CTD data are listed in Table (9.1), and were used to

construct the total data-data covariance matrix. The

overall energy level is arbi trary, so the weighting by

expected variances need only yield a correct signal to



208

FIGUR 9.2 A FIRST BAROCLINIC MODE (IN TERMS OF DENS ITY VARIATIONS)
CALCUIATED BASED ON THE AVERAGED BUOYANCY FREQUENCY
PROFILE FROM MODE.
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FIGUR 9.2 B 2ND BAROCLINIC MODE (IN TERMS OF DENSITY VARIATIONS)
CALCUIATED BASED ON THE AVERAGED BUOYANCY FREQUENCY
PROFILE FROM MODE.
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FIGUR 9.2 C FIRST BAROCLINIC MODE (IN TERMS OF SOUND SPEED
VARIATIONS) CALCULTED BASED ON THE AVERAGED BUOYANCY
FREQUENCY PROF ILE FROM MODE.

o
o

MDDE RMPL I TUDE
O. 20 a . ~o o. 60! , I 0.80

l
1. 00

lcP · 00

0
. to

ru

(J
Q

0 C
ni z
-u.. 0.
-;m

(Jii:
-0
fT,.

A rr
3: 0
. J\
~ 3:..

QOl

0
n1

La

m
m

i:
0)
o



21l

FIGURE 9.2 D 2ND BAROCLINIC MODE (IN TERMS OF SOUN SPEED
VARIATIONS) CALCUlATED BASED ON THE AVERAGED BUOYANCY
FREQUENCY PROFILE FROM MODE.
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TABLE 9.1: EOF VARIANCES

Mode 1 2 3 Total

Variance-, of
Particular mode (m/sec)2

MODE CTD data .421 .057 .025

Inverse .4 . 1 . 1

TRA VEL TIME

The numbers in the table are the expected standard
deviations of the travel time anomalies (in msec) given for
5 different rays and di vided into indi vidual mode
contri butions.

Mode

1 2 3 Total
ray (arb. index)

1 32. 1. 3 3.9 32.4

21 40.1 2. 1 12.2 42.3

41 46.5 3. 1 16.7 49.5

51 25.0 1. 4 8.2 26.4

55 17.0 3.4 4. 1 18.



213

noise ratios. The inverse operators (estimators) derived

in the course of playi ng wi th the data were not sensi ti ve

to these weightings, but order of magni tude increases in

the estimated error vari ances can si gni fi cantly decrease

the resolution of the corresponding estimator.

Al though the verti cal structure has been parameteri zed

by a fi ni te number of modes, the hori zon tal struc ture has

been left continuous, so that only the hori zontal
covariance function for the ampli tude of each mode has been

specified in advanèe (Figure (9.3 A)). The covariance was

specified analytically, as a time-independent gaussian wi th

an e-foldi ng range of 100 km., and is homogeneous and

i sotropi c, so the covari ance between two poi n ts depends

only on the magni tude of their horizontal separation.

(C'(X1,ti)C'(X2,t2)) =

M c M c
( IF i(zi)'Yi 'T1i(X1,Y1,t1) · IF j(z2)'Yj'T1j(X2,Y2,t2) )i=l j=l

(2 )M 2 C C
= I Yi '(T1i(Xi,Y1,ti)ni(x2,Y2,t2))'Fi(Zl).Fi(Z2) (3)i=l

M 2 C C
= I Yi .Hi(X1,Y1,t1,X2,Y2,t2)'Fi(Zl).Fi(Z2) (4)i=i
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M 2 C C
= ¿ Yi .Hi (R12) .Fi (Zl) .Fi (Z2) 'Ó(t1-t2)

i=l
(5 )

where R 12
2 2

= ( (xi - x2) -t (Y1 - Y2) )1/2 (6 )

and Hi(R12) = H(R12)
2 2= ex p ( - R 12 / ( 100 km.) ) (7 )

In thi s case, the same covari ance function was used

for all of the vertical modes, al though the inverse

framework allows independent functions for each mode. At

present the sound speed structure is the desired output of

the estimator, so the "barotropic" mode, which does not

di splace the i sopycnals, and thus cannot produce sound
speed changes, has been removed from the inverse. If

current meter data were used, then it would be necessary to

include the barotropic mode in the model, and the

covariance function for the horizontal structure of this

mode would be significantly different from that used for

the barocli ni c modes, due to the much larger radi us of
deformation "for the lowest mode (Hua and Owens, 1982).

Covariance shape becomes most important when

estimating quanti ties like veloci ty or vortici ty, which

require differentiation of the fields (and, therefore, the

covariance function). It is perhaps easier to understand

this by considering spectral space--looking at the

transform of the covariance. Taking the derivative
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mul tiplies the energy in each wavenumber by the. wavenumber

itself, ampli fyi ng the energy at the small scales. Two

covari ances which look roughly si mi lar may have di fferi ng

amounts of small-scale energy, and each di fferenti a tion
will enhance the difference. The most obvious effect of

this "cascade" is in the error estimator returned by the

estimation procedure.

The acoustic observations are averages, so that the

data-inverse system tends to lack resolution at small

scales. Thus, if two covari ances have the same total

energy but one has half its energy in scales too small to

resolve, then at best that estimator will resolve 1/2 the

expected energy as defined by the covariance function.

When compari ng in verse methods, the mutabi Ii ty of the error

maps must be considered, since the sizes of the calculated

error bars depends directly on the models used and the

expec ted noi se power. The error bars calculated usi ng only
da ta error are not as sensi ti ve to the covari ance shape,

but do of course depend on the assumed error levels.

The covariance function does not need to be analytic,

isotropic or homogeneous, but there is no reason to add

complications not required by the archived data, in this

case the MODE experiment. The energy field is certainly

non-homogeneous, but it was modelled as uniform, again

because of the lack of a reliable al terna ti ve model. The
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tempera ture covariance deri ved from the data from MODE

shows a zero crossing, indicating a wavelike character

(McWilliams and Owens, 1976), Figure 9.3 B, but it is not

clear that this is a robust fea ture. Care must be taken to

choose a covariance function which corresponds to a real

spectrum wi th posi ti ve energy, because the matrix algebra

requires the covariance matrices to be posi ti ve defini tee

The gaussian corresponds to a gaussian spectrum, and is

clearly positive definite besides being satisfyingly red.
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9.2 BUILDING THE ESTIMATORS

Once the model covariance (desri bing the unknown

field, in this case the sound speed anomaly) has been

obtained, the model-data covariance and da ta-da ta
covariance matrices can be constructed as descri bed in

chapter 6. The model -da ta covari ances were constructed for

mapping to 65 points in the horizontal, at the station

locations of the 65 casts in the first CTD survey. This

was done to ease compari sons between the estimates of the

sound speed from acoustic data and those calculated from

the CTD stations. The travel times used in the inverse are

selected from the set of all resolved, identified rays

which are avai lable on the day for which the inverse is to

be calculated. The inverse is at present time-independent,

so that the maps are assumed to have no coherence between

them, and each uses only data on a si ngle day. The number

of rays avai lable changes day by day, so each map is made

from a different set of rays, wetghted using the error

estimates for that day.

The model-data covariance matrix is càlculated for all

data and then saved, so that columns are selected to match

the data avai lable on any gi ven day. I n the same way,

data-data covariance matrices for each of the vertical

modes and the moori ng moti on are saved, and a properly
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weighted combination is constructed for each day to match

the expected noi se, moori ng mot i on vari ances, and to

conform to the available data. The inverse operator is

thus speci fic to a si ngle day, even though the basic
covariances were specified without time dependence. Time

dependent covariance functions were not used in the

demonstration inverses on the 1981 data because they

require assumptions which can be controversial, and might

render the resul ti ng maps suspect, in spi te of (or because
of) the increased resolution and data error immuni ty that

such assumptions foster. The assumption that sucessi ve

maps are independent snapshots is certainly robust, but it

is clear that the mesoscale ocean changes Ii ttle on that

time scale, and future work wi 11 explore the use of

time-dependent covariances for improving the inversions.

The travel-time data has so far been used in two

forms; as di fferences between "corrected" travel times
observed for the same path on different days (called "day

differentials"), (corrected for all avai lable recorded

moori ng motion and clock dri ft), and as uncorrected (for

mooring motion) travel times referenced to numerically

calculated travel times for the basic state. The day

differentials were used in the ini tial inversions presented

by the Ocean Tomography Group (1982) since they are simple

and robust, and could be quickly fed to inverse operators

calculated before the 1981 moori ngs were recovered.
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Because day differential travel times are referenced

to the observed travel times on a gi ven day of the

experiment, they are not affected by the uncertainties of

the mooring anchor positions. In fact, the true positions

of the moori ngs do not need to be known, provi ded that the

relati ve motions have been tracked and removed from the

travel time data set. The model used to produce the

expected data-data covariances for day differential travel

times can thus be made very simple since the times depend

only on mesoscale sound speed changes plus measurement

errors. The origi nal plan for the tomographic inversions

was to use only these data, counting on the availability of

mooring motion data to correct the travel times before

invoking the inverse operator.
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9.3 THE DAY DIFFERENTIAL ESTIMATOR

Day di fferentials are insensi ti ve to errors in the ray

identi fica tion, and to uni form clock off sets or other

systematic errors in the data, so there is less worry in

using a preliminary data set. On the minus side, because

day differentials require mooring motion data, maps can

only be made for the days when enough of the transponders

were in operation to give a reliable set of corrections.

There are random errors present on all days, but day

differentials have twice the expected error variance of the

original times. The day differentials produce maps of the

sound speed anomalies relati ve to the reference day of the

tra vel ti me di fferences. I n the OTG paper, thi s was
overcome by picking a reference day during the first NOAA

CTD survey, so that the computed sound speed anomalies were

added to the field calculated from the CTD survey to

produce total maps. (Figure 9.4). The day differential

tra vel times were used to calculate estimated sound speed

mode amplitudes at the 65 CTD station locations. The mode

ampli tudes were used to linearly combine the vertical modes

to produce an updated survey, which could be objecti vely
mapped for plotting in the same way that the original

stations had been.
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FIGUR 9.4 A,B,C,D: MA.PS OF SOUN SPEED ANOMALY GENERATED USING
DAY-DIFFERENTIAL TRVEL TIMS REFERENCED TO DAY
73, DURING THE FIRST NOA CTD SURVEY. CONTOURS
ARE OF SOUND SPEED ANOMALY RELATIVE TO TH
REFERENCE C(Z). CONTOUR INTERVAL IS i M/SEC.

FIGUR 9. 4 A MAP FOR DAY 64
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The same techniques can be used wi th any inhomogeneous

basic state, and so iteration is simple. The initial

estima te of the true sound speed field is mapped to produce

a "continuous" ocean in which numerical rays are traced.

The inverse is re-computed following the scheme in Chapter

6 and the data are adjusted to conform to the i tera ti on

scheme outlined there. Each inverse result is mapped to

upda te the previous ocean estimate, so the cycle can be

repeated endlessly, if desired. Duri ng the 1981 experi ment

the ocean perturba ti ons were far too weak to deform the

paths enough to require iteration (See Figure 2.5).

Thi s was fortunate, because whi le the i tera ti ve

procedure is simple, calculation of the travel time data

covariance matrices can require significant computer time,

since the double integration over two ray paths can require

the computation of the covariance estimate upwards of 104

times per matrix element. This is not a problem on a large

computer, but for a megameter array, wi th 500 to 1000

computed points per ray, 106 covariance computations per

matrix element may raise issues of computational

efficiency, forcing compromises in the generali ty of the

inverse form.
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9. 4 DATA ERROR AND INFORMA T ION

The maps shown are made for those days on whi ch enough

corrected data were available to gi ve adequate resolution.

If too few rays are used, then the inverse maps do not have

much detail. On the other hand, adding rays to the inverse

beyond a certain point will not greatly increase the

resol vi ng power of the esti ma tor, because no addi ti onal

independent information is being added. This break-even

point is dependent on the amount of random error in the

measured travel times. I f the random error is large, then

simi lar rays may be indisti ngui shable wi thin the li mi ts

imposed by the error, so that a supplemental ray is less

IIvaluablell than if the error level was smaller (Figure

(9.5)).
Figure 9.5 A is a plot of information content vs. the

number of rays used in the inverse. The slope of each

curve is the marginal gain in information per additional

ray datum, gi ven a particular level of random error and no

expected moori ng offsets. The dotted curve represents an

ideal case where there are absolutely no errors in the

data, so that each additional ray datum adds independent

information. In a real case, with finite errors, the
curves deviate from this ideal line when the newest ray

added to the inverse samples the ocean very much li ke some
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combination of rays already included, with the differences

swamped by the random errors. The curves in Figure 9.5 A

are not smooth because the rays are added haphazardly, so

tha t several rays from a gi ven source-recei ver pai r may be

added at once. In all cases, the Slopes decrease for large

numbers of rays, showing the lessening benefi t from added

data at a constant error level. This type of curve can be

used to analyse the amount of range information available

in the rays of a single source-recei ver pair.

Figure 9.5 B shows the decrease in independent

information available to the estimator as the random error

in the data is increased. At the low error extremes, the

curves end at the number of rays used, whi le for large

errors they tend toward zero. Figures 9.5 A and B can be

used to bound the performance of the inverse as the number

of rays used is increased beyond the 73 used for the maps

in this thesis. If the random errors in the data cannot be

reduced below 5 msec, no drama tic improvements in the

results can be expected, while if an error level of 1 msec

can be attained, the maps shown herein should improve

significantly.
The use of figures of this type during array design

simplifies the tasks of ChOOSing engineering parameters and

estimating the eventual performance bounds on the system.
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Note that logari thmic decreases in the error level are

required to maintain constant increases in the amount of

independent information. Adding dependent rays increases

the error immuni ty of the inverses somewhat, but does not

produce the same improvements in resolution that

independent rays yield. For the preliminary maps, about 73

rays were used, less than hal f of the number seen as stable

arri val s at the recei vers.
For the OTG paper, some uncorrected data were included

as ray differentials (see chapter 7), referencing all the

rays in the arri val pattern for a source-recei ver pai r to

one of the rays in the pattern. The subtraction doubles

the noise variance, so a travel time constructed as both

day and ray differential has about 4 times the expected

error variance as a single travel time. The process of

forming ray differentials reduces the expected level of

mesoscale-induced travel time changes, from order. 40 msec

to order 5 msec, so that the si gnal to noi se rat i 0 for ray
differentials is less favorable. About 30% of the data

used in the OTG maps were these "day, ray differentials",

and these had very li ttle effect on the maps.
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9.5 THE ESTIMATOR FOR UNCORRECTED DATA

In order to more fully use the data set, it was

necessary to abandon the si mple day di fferential framework,

and deal wi th the uncertainties in anchor posi tion and

mooring motion directly, as described in chapter 7.

Parameterization of the mooring offsets is useful even if

full mooring posi tions are available. The ini tial data

corrections were done before the ray pattern was separated

into arrivals and identified, so the entire pattern was

shi fted uni formly. The hori zontal moori ng motions were

converted to line-of-sight range changes and di vided by an

estimated local sound speed to obtai n an approximate travel

time, whi ch was then used to shi ft the ti me base of the

arri vals. The true travel time effects of mooring posi tion

change depend on ray angle and, more cri tically, on depth

changes, so that quasi -random errors are generated in thi s
correction process. The errors introduced in this way can

easily be order 5 msecs. The initial corrections must

therefore be removed once ray geometry is known.

The maps shown as Figures 9.6 (A-DD) were made using

data with the initial mooring motion corrections removed,

and the inverse estimated mooring position in addition to

constructing sound speed maps. Clock errors were also
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FIGUR 9.6 A-Z,AA-DP: MAPS OF SOUN SPEED ANOMALY AT 700 METERS DEPTH
REFERENCED TO TH AVERAGE C(Z) PROFILE. CALCULTED FROM
UNCORRCTE DA~, WITHOUT USE OF THE NOAA CTD SURVEYS. MAPS
ARE PLOTTED FOR EVERY THIRD DAY. C. I. - 1 M/ SEC.
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parameterized in the inversions, but clock corrections

Obviously do not depend on ray geometry, and faul ty

corrections do not add random errors, so the clock

corrections were not uniformly removed from the data.

The moori ng offset da ta-da ta covariance was then

constructed as in Chapter 7, using the forward problem for

moori ng parameters wi th a di agonal "model" covari ance

ma tri x made up of the expected vari ances of the moori ng

offset parameters. Typical values of expected mooring

offset parameters variances as used in the inverses are

shown in Table 9.2. These rough estimates were based on

previ ous experi ence and on records from

Tempera ture-Pressure (T-P) sensors moun ted at vari ous

depths on the moori ngs, and were intended to be generous

for maximum immuni ty to errors and freak events. Because

the inverses were time independent, the uncertainties in

mooring anchor location were lumped wi th the expected

motions even though the anchor posi tions are constant

throughou t the experi men t.

A significant reduction in the horizontal motion

variances can be achieved by separating mooring motion from

anchor offset and assigning them appropriate temporal

covariance matrices, but that will be covered in later

work. An approximation to this procedure was used for
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TABLE 9.2: EXPECTED MOORING OFFSETS

(meters) (seconds)
Source # x y z t

1 800 800 10 0.01

2 800 800 80 0.01

3 800 800 30 0.01

4 1100 1100 140 0.40

Recei ver #

x y z t

1 500 500 10 0.10

2 500 500 50 0.01

3 500 500 30 0.01

4 500 500 30 0.01

5 500 500 40 O. 10

These numbers were input to the estimation framework in
order to bound the uncertainties of these parameters
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these maps, in which the travel times for each path were

averaged throughout the experiment and then fed to the

inverse operator to give rough estimates of the mooring

anchor positions (Table 9.3). Numerical rays corresponding

to those found in the data were then traced

for these positions, so that some of the initial

uncertainty was removed from the data.

T-P recorders on some of the moori ngs gave useful

estima tes of instrument depth offsets, but the inverses

were calculated without uSing this information, except in

adjusting the offset parameter variances, as mentioned

above. The vertical posi tion uncertainties, like the
horizontal offsets, have 2 components. The "rest" depth of

an instrument is its depth when the mooring is vertical and

strai ght, and should ideally be the depth that was

speci f i ed when the moori ng was des i gned. The actual depth

is estimated from the local bottom depths, the cable

lengths as speci fi ed in the moori ng plan, and any T-P

information available from the mooring. If the T-P

recorder was attached at the hydrophone then the

uncertainty in "rest" depth would be only about 1 meter,
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TABLE 9.3 ORIG INAL AND ESTIMATED MOORING POSITION

TOP = ORIGINAL POSITION BOTTOM = ESTIMATED POS ITION

(KM) (KM) (M) (MS EC )
Source # x y z t

1 17.336 284.287 2150. 0.00
19 . 047 283.623 2150. 0.00

2 16.216 207.377 1995. 0.00
16 . 843 207. 139 1980. 0.00

3 17 . 964 91.735 2120. 0.00
17.649 91. 618 2117. 0.00

4 18.014 16. 122 2143. 0.00
17.657 16.084 2123. 0.00

(KM)
x

(KM)
Y

Rec ei ver #

1 281.490 286.696
281.068 286.537

2 283.357 189.957
282.494 189.887

3 284.155 114.344
283.271 115.425

4 281.607 19.273
281.285 20.509

5 146. 190 281.693
147.013 280.661

(M)
z

1694.
1698.

1325.
1370.

1708.
1675.

1744.
1700.

1695.
1616.

(MSEC)
t

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
O. 00 ~

The estimated positions were calculated using an average of
travel time throughout the experiment and so may not truly
represent the anchor pos i ti ons.
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fixed by the level of calibration and the least significant

bi t. The rest depth is the minimum depth observed by the

T-P sensor, since as the mooring leans, the instrument

depth can only increase. I f the rest depth were known,

then the posi ti vi ty of the depth perturbations would allow

the use of maximum-entropy inversion algori thms, but in the

1981 experiment, the errors were generally greater than the

T-P error alone. Most moorings had an uncertain length of

cable between the T-P recorder and the hydrophones, and

the mooring R2 had no T-P data at all. These uncertainties

provide much of the variances listed for the receivers in

Table 3 because the receivers tended not to have large

vertical excursions.

The other source of variance is, naturally, mooring

motion, whi ch acoun ts for much of the variance li s ted for

the sources. On moori ngs wi th work ing T-P recorders near

the ins trument, most of the .depth changes could be

corrected for, down to the level of T-P and cable length

errors, but this was not done for the maps in Figure 9.6.

The inverse thus produced time series of sound speed in the

300 km X 300 km box, instrument x, y and z coordinate, and

clock offset.
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The final instrument-related source of travel time

vari ance is the dri ft of the quartz osci lla tor. The
low~ power clocks were compared dai ly agai nst a rubi di urn

frequency standard, and the measured frequency shi fts were

recorded on tape and integrated to estimate clock offsets,

which are then removed by shifting the time base. Clock

corrections were retained for rays to recei vers 2,3, and 4
in the data set used for the maps in Figure 9.4, and if the

correc ti ons were perfec t then no clock error would be
expected, and no variance would be needed in the inverse.

The variances entered in Table 9.2 are insurance against

unexpected problems and/or dropped cycles in the clocks.

The clock offsets calcula ted by the inverse on a gi ven day

can be checked against these a priori expectations, and a

large mis-match is an indication that re-computation using

different limi ts may be necessary (See Chapter 4).
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CHAPTER 10

DISCUSSION AND CONCLUSIONS

10.1 COMPARISONS OF ACOUSTIC AND TRADITIONAL MAPS

In this chapter, I will present a comparison of

ini tial results from the acoustic data taken during the

1981 ocean acoustic tomography experiment wi th more

tradi tional measurements made more or less concurrently.

The inverse produced an independent estimate of the sound

speed field for the entire ocean volume wi thin the 300 by

300 km box every 3 days between yearday 52 to 139 of 1981.

Da ta for two of the recei vers, numbers 1 and 5, continue

until day 172, (Table 8.1), but the time series of maps has

not yet been extended completely. NOAA ships made 3 CTD

surveys in the area duri ng the ti me that the moori ngs were

in the water, but only the fi rs t two overlap wi th the
acoustic data. There were two environmental moorings

deployed as part of the array (Fi gure 1.4), wi th current
meters and T-P recorders, and the acoustic moorings carried

T-P recorders as well. Each observa ti on method, acoustic,

CTD, or moored instrument, has particular strengths and

weaknesses, which must be taken into account when making

the compari son. For example, the CTD surveys observed

vertical profiles at about 65 points during a period of

nearly 3 weeks, while the acoustics partially sample and

a verage the volume duri ng a si ngle day.
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At present, the inverse procedure has been kept simple,

estima ting sound speed instead of temperature or densi ty ;

these will be covered in a later paper. The CTD survey has

thus been used to calculate sound speed, whi le the

temperature time series from the moorings have been left as

temperature. Comparison wi th sound speed time series can

be made on the basis of the curve shapes, using the

approximately linear dependence of sound speed on

tempera ture at any given depth.

Figures 2. 1 and 10. 1 are maps of sound speed anomaly

(wi th respect to the reference Co (z) ) calculated from the
first 2 NOAA CTD survey s of the region and from one Navy

AXBT flight. Unless specified otherwise, all maps of sound

speed have been referenced to the basic state. The

"tradi tional" data has been mapped at 700, 350, 1500, and

2000 meters depth, in order to provide a wide range of

depths at which to compare the various observation

techniques. 700 meters has the maximum energy, and

provides the best test of resolution, while the deeper

levels are quieter, and the shallow level was picked

because it was the deepest the AXBT i s could penetrate.

Figure (9.4) shows maps made from corrected, day

dif ferential times, while figure (9.6) shows maps made from

uncorrected data, wi th mooring motion, anchor posi tion, and

clock offset as part of the unknowns. The day differential
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FIGUR 10.1 A SOUN SPEED ANOMALY FIELD AT 350 METERS DEPTH.
CALCULATED FROM FIRST NOAA CTD SURVEY, 1981 DßYS 66-85.
COUNTOURS ARE M/ SEC DIFFERENCE FROM THE AVERAGE SOUND
SPEED PROFILE. CONTOUR INTERVAL IS 1 M/ SEC.
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FIGUR 10.1 B SOUN SPEED ANOMALY FIELD AT 350 METERS DEPTH.
CALCUlTED FROM NAVY AXBT SURVEY, 1981 DAYS 106-7.
COUNTOURS ARE M/ SEC DIFFERENCE FROM THE AVERAGE SOUN
SPEED PROFILE. CONTOUR INTERVAL IS 1 M/ SEC.
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FIGUR 10.1 C SOUN SPEED ANOMALY FIELD AT 350 METERS DEPTH.
CALCULTED FROM 2ND NOAA CTD SURVEY, 1981 DAYS 120-139.
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FIGUR 10.1 D SOUN SPEED ANOMALY FIELD AT 700 METERS DEPTH.
CALCULATED FROM FIRST NOAA CTD SURVEY, 1981 DAYS 66-85.
COUNTOURS ARE M/ SEC DIFFERENCE FROM THE AVERAGE SOUN
SPEED PROFILE. CONTOUR INTERVAL IS 1 M/ SEC.
(DUPLICATE OF FIGURE 2.1)
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FIGURE 10.1 E SOUN SPEED ANOMALY AT 700 M. 2ND NOAA eTD SURVEY.
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FIGUR 10.1 F SOUN SPEED ANOMALY AT 1500 M. 1ST NOA eTD SURVEY.
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FIGURE 10.1 G SOUND SPEED ANOMALY AT 1500 M. 2ND NOAA eTD SURVEY.
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FIGUR 10.1 H SOUND SPEED ANOMALY AT 2000 M. 1ST NOA CTD SURVEY.
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FIGURE 10.1 I SOUND SPEED ANOMALY AT 2000 M. 2ND NOAA CTD SURVEY.
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inversions require the first CTD survey as an

ini tialization, and have not been used beyond day 106, so

they cannot be di rec tly compared wi th ei ther CTD survey.

The corrections are only complete on a few days, and so the

maps cannot be di splayed as a time seri es. Because of the

hei ghtened error level in the day di fferenti al data

resul ting from the subtractions, the resolution of these
maps is low, and the initialization using the CTD survey

tends to dominate the map. Finally, the simple corrections

for line-of-sight range changes introduce errors of order 5

msec. For these reasons, it is better to compare the

traditional data with the estimates of sound speed made

using uncorrected data.
Figure 9.6 shows time series of sound speed anomaly

field estimates at 700 meters depth, Figures 10.2, 10.3,

and 10.4 show maps for 350, 1500, and 2000 meters,

respec ti vely. The cont i nuous nature of the inverse means

tha t maps could be produced for any level, but that mi ght

become somewhat tedious. Only a few of the rays used at

present penetrate to wi thi n 300 meters of the surface, so

the resol vi ng power of the estimator decreases wi th
decreasing depth (see Figure 10.5). The perturbations due

to mesoscale dynamics presumably ha ve structures simi lar to

the calculated first and second baroclinic modes, (see
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FIGUR 10.2 A-& MAPS OF SOUND SPEED ANOMALY AX 350 METERS ESTIMTED
BY THE ACOUSTIC INVERSE. C. I. = 0.5 M/ SEC.
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FIGUR 10.3 A-I: MAPS' OF SOUND SPEED ANOMALY AT 1500 METERS ESTIMTED
BY TH ACOUSTIC INVERSE. C. I. a 0.5 M/ SEC.
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FIGUR 10.4 A-G MAPS OF SOUND SPEED ANOMALY AT 2000 METERS ESTIMTED
BY THE AèoUSTIC INVERSE. C. I. = 0.2 M/ SEC.

SND SPD RN~MRL Y REL. Tô 1498. 3906 M/SECoo INVERSE DRY 67 1981. DEPTH =2000.0
.o

:~.2D 1:
.o

In
N

oo

.oo-

.oo
N

oo
.o

In

~oo i

200. 00
i

250. 00
i

300. 0050. 00 100. 00 15. 00
KM. ERST



297

SNO SPO ~ Y REL. TfJ 1498.3906 M/SECo
~ INVERSE DA! 70 i 98 i, DEPTH =2000. 0o.~ 0 /
00

.0
ui
N 0.20

00
.00

N

:i 01-0
cr Ó
Ouiz-
~Ol~ol

.00-

O. 00/

O. 00 -

oo
.o

ui

do
.

93. 00 50. 00 100. 00 1 s. 00 200. 00
KM. EAST

300. 00

~

0.20

250. 00



o SND SPD AN(jMRL ì' REL. T(j 1498.39-6 M/SEC
~ I NVERSE OAr 76 1981, DEPTH =2000. 0oo
(T

:Col-0
CCo
DU1z-

.~o::o

oo
.o

U1
N

oo

298

0.20 /
0.00

.oo
N

.oo-l

~

b

o. 00

~ QJ ~ 0-.. 00 ..0 00 ?rio 0-0
it I M. r

25 0 0- ~-



299

o SNO-PO RN(jMRL Y REL. T(j 1498.3906 M/SEC
~ I NVERSE DAY 85 198 i, DEPTH =2000. 0oo
en

:i 01-0
a: Ó
o r.z-

.~o:: 0

,~-,
50. 00 100. 00 150. 00

KM. EAST

oo
.-or.

N

oo
.oo

N

¿-o. '0

.oo-

oo
.or.

oo
.

9i. 00

.20

O. 00

O. 00 __

I I
200. 00 250. 00

i

300. 00



300

SNO SPD ANClMRL Y REL. TCl 1498. 3906--Coo. I NVERSE DR! 106 1981. DEPTH =2000. 0oa
en

:i 0
1-0
i: Ó
ID Lf
:z -

.
LO~o

oo

0.00

.o
Lf
N

oo
. Ioo

N

.oo- -0. 0

oo
.o

Lf

oo
.

91. 00 50. 00 100.0. 150.00 200.00
KM. ERST

300_00.

0.20

~
o. 0

250. 00



30l

SND SPD RN~MRL y REL. T~ i 498.3906 M/SECo
c: I NVERSE DRY i i 2 i 98 i, DEPTH =2000. 0oo
en

:: 01-0
ci Ó
D Ifz-

.
LO::o

"'
oo

.o
If
N

oo
.oo

N

.oo-

oo
.o

If

oo
.

91. 00 50. 00

O. 00

- O. 20

~

100. 00 15.. 00 200. 00
KM. ERST

250..0 300. 00



302

SNO SPO RN~MRLY REL. T~ 1498.3906 M/SECa
~ I NVERSE OR! 118 1981, DEPTH =2000.0aa
en

aa
.a

In
N

aa
.aa

N

:i a~a
a: Ó
lD Inz-

.La~a
.aa-

. 00. 5 0 .. 0

~ 0.20

~
o. 00

/
O. 0

10U. n. 150. 00 200. no 250. 00
KM. ERST

300. 00



r CJi-U
tr U
c. d1
Z. .~

La
y CJ

a
CJ

ao
EXPECTED VRR. ~
fRROR: DRY 88 fRRV

2.485; STD
l/) 2 MODES.

DEV = 1.576
DEPTH == 50.0a0_

(Y)

au
a
Lf
:'

CJ
CJ

ao
0J

a
CJ

a
Lf

CJ
CJ

Go 00
50, 00

60. CO~

303

\
,

'10.00 _ .-
00. co

100.00
KM.

(/100' 00

~o.cc
T
L :";0,00

(~RST

7~ìi I
250 00 300.00

i

200.00

FIGUR 10.5 A: MAP OF EXPECTED EROR VARIANCE EXPRESSED AS PERCENTAGE
OF TOTAL VARIANCE. AT THIS LEVEL (50 METERS DEEP)
THE MODEL PREDICTS 1. 68 M/ SEC STANDARD DEVIATION FOR
THE SOUND SPEED FIELD.



:. u
ì- CJ
CL 0
U l1
Z .-

La
:: CJ

EXPECI ED VRR, -=
DRY 88 ERRV

a
'tRROR:u
CJ
n¡

uu
a
l1
0J

u
c:..

oa
C\l

oo

au 1.40

CJ
i. t. 60,/

aa
w.
lJ. C U ~u. 00 100,. 00

i. r,i\ . I .

¿ 827, STO DEV
lM/SEC) 3 MODES,

//-

304

= 1.681
DEPTH -= 50.0

\
1.60

1.60

i

250.00
i

300. 00

FIGUR 10.5 B: MAP OF EXPECTED ERROR VARIANCE EXPRESSED AS SQUARE
ROOT OF TOTAL VARIANCE. AT THIS LEVEL (50 METERS
DEEP) THE MODEL PREDICTS 1.68 MI SEC STANDARD DEVIATION
FOR TH SOUND SPEED FIELD.

i

1~0. 00

F n --. T-. )!

i

200.00



.I w
1- c.
a: a
r: illz...

¿: CJ~ c.
CJ
0-

0-
0-

0-
W
0l

EXPECTEO VRR. = 0
ERROR. DRY 88 ERRV

433; STO
l%) 3 MODES.

OEV = 0.658
DEPTH = 350.0

U
;::

iO "\

c.
i.l~

c.
c.
0-
0-~

l

0-
c.
c.i.

30. CO

/'6 /'
~cl(c¿

0-
CJ

~,~ ìn
... L...

i

100.00
KM

~o iC

305

~co

LJ 0

FIGURE 10.5 C: MAP OF EXPECTED EROR VARIANCE EXPRESSED AS PERCENTAGE

OF TOTAL VARIANCE. AT THIS LEVEL (350 METERS DEEP)
THE MODEL PREDICTS 0.66 MI SEC STANDARD DEVIATION FOR
THE SOUND SPEED FIELD.



C) F-XPf C TED V R R , =
~AROR: ORr 88 ERRVC) ;C) ,(i-) I

!

oo
o
Ln
1\

oo
oa
0J

To
,- CJ

0. .oo úl
z. ~

LoYo
oo

C)o
o
Ln

CJ~CJ'';,
CJ "
o IJO

0, 4j3 ~ STO Of V

(M/ ~:JEC) 3 MODES,

///

0.4.0

50. DC.
i

i 00.00
f\M

0, €O~~
;:,0.00 20eJ.00
r'R S 'I

306

= 0.658
DEPTH :: '350,0

0.60/i ' I2~;! 00 300.00
FIGUR 10.5' D: MAP OF EXPECTED ERROR VARIANCE EXPRESSED AS SQR. ROOT

OF TOTAL VARIANCE. AT THIS LEVEL (350 METERS DEEP)
THE MODEL PREDICTS 0.66 M/ SEC STANDARD DEVIATION FOR
THE SOUND SPEED FIELD.



307

oa
ao
"-J

EXPECTED VRR. = ~b
ERROR: DRY 88 ERR V

OEV- 2. 1 GO
DEPTH = 700.0

oa
u
,n
i""

CJ
CJ

au
C\J

r a /,-a
ca, cucr u /

~ ~ ../

~ c. I
~ CJ

aa

ou
,._J,. .., r_

',;, i. ,
I

so 00

G64; 510
(% J 3 MODES

c

rsc. CO~

/
60, c;(j

/ "cc10'/' ~.
/ / ." OQ ~
/ ---/ ~,

100.00 lsrJ 00 200 CO 250.00 300.00
K~'1 CRST

FIGUR 10.5 E: MAP OF EXPECTED ERROR VARIANCE EXPRESSED AS PERCENTAGE

OF TOTAL VARIANCE. AT THIS LEVEL (700 METERS DEEP)
THE MODEL PREDICTS 2.16 M/ SEC STANDARD DEVIATION FOR
TH SOUND SPEED FIELD.



308

EX PEe TED V R R .--_4~ t 64~---$-1.1JU&Va
crBaag-;-- flA-Y 88 ERR V (M I j E-r 1 S M ~ DES,oo
(()

Iul-U
0: c.o i.
z. .-

:¿ CJ
:: CJ

/'."~

i. 4C

CJ
U

CJ
i. I
'-"

oo
CJa
N

/

;"
oa

a
CJ

oi.

o
C)

CJ
o c; 0

i

tOO.oo
KM,

50 00

= 2.160
DEPTH = 700.0. --

~L"

,// ~/
1. &0'-

l ~) o. 0 0

fRST

I

¿sO.oo
i

300.00200 00

FIGUR 10.5 F: MAP .OF EXPECTED ERROR VARIANCE EXPRESSED AS SQR. ROOT
OF TOTAL VARIANCE. AT THIS LEVEL (700 METERS DEEP)
THE MODEL PREDICTS 2.16 M/ SEC STANDARD DEVIATION FOR
THE SOUN SPEED FIELD.



I c..¡- c
Q.- .Cl
o ú)
z. ,-

L: ü
y c.

309

au
Cl
Cl
0;

EXPEC1EO VRR. = U
ERROR: DRY 88 ERRV

o E V- 0 G 4 1

oEPlH = 1400.0
411; 3TO
(ï. J 3 MODES,

~\u
Cl

Cl
If
('

o
Cl

~ \
6 . CO

/
- 90. dù

oa

aa ,/
40. ;IJ

a
ú)

aa
°0 00 ~tJ. 00 100.00 1 ~;O. CO

K 1"1 E R S T

200 00 250.00 300.00

r l.~UlU W.': ü: MAP OF EXPECTED ERROR VARIANCE EXPRESSED AS PERCENTAGE

OF TOTAL VARIANCE. AT THIS LEVEL (1400 METERS DEEP)
TH MODEL PREDICTS 0.64 M/ SEC STANDARD DEVIATION FOR
THE SOUN SPEED FIELD.



r i~.)
j_ CJ

Ú- 0
o JJz.-
~2... U~O

oo
EXPEC1EO VRR. - 0

ERROR: DRY 88 ERR V

007; 510
l% J 3 MODfS.

OEV = 0,086
DEPiH := 3000.0oo

(11

oo
o
lJl
('

oo

¿j \('\e. GO

oo

oo
o
ú)

o
,~.J

't.LIJO
.,

~C;. Uü

~\,
\\

///
30, GO

~c. co/"/'

'. ~
1 ~O 00
ERS T

i

100.00
K ~'i

310

JCO

/
/

80. COr.u, cê

200. GO 2~0. 00 30U.00

FIGURE 10.5 H: MAP OF EXPECTED ERROR VARIANCE EXPRESSED AS PERCENTAGE
OF TOTAL VARIANCE. AT THIS LEVEL (3000 METERS DEEP)
THE MODEL PREDICTS 0.09 M/ SEC STANDARD DEVIATION FOR
THE SOUND SPEED FIELD.



311

Figure 9.2), so that data at one depth can be used to

estima te the ampli tude of the mode at another depth where

the rays do not sample. An important component of the

perturbations is surface intensified, (Figure 9. 1B), and is

di f ficul t to resolve wi thout using many ray s which pass

close to the surface.
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The abi li ty of the inveTse to resolve a given mode is
rela ted to the strength of the travel time anomalies that

the mode is expected to produce. For example, Table 9. 1

lists the expected travel time anomaly variances for

several typical ray s, brok en down by modes. These

calcula tions are produced as part of the da ta-da ta
covariance matrix construction. The first EOF closely

resembles the first baroclinic mode, and is expected to

genera te strong tra ve 1 time si gnals, above the 5 msec noi se
level. The third EOF somewhat resembles the second

baroclinic mode, and is more marginal compared to the noise

level, while the second EOF, which accounts for much of the

expected variation near the surface, produces a travel time

signal which may be lost in the observation noise, so that

more near- sur face ray s are needed be fore the upper layers

can be mapped preci se ly .
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The error maps displayed for the layers (Figure 10.5)

summarize the abili ty of the inverse to resolve the

expected variance at each leve l. Chapters 5 and 6

discussed how the the inverse procedure calculates the

expected variance of i ts estimates of sound speed anomalies

everywhere throughout the volume of interest. The error

variance is due both to noi se in the data and to poor

sampling (as when no rays penetrate to the surface). The

expected error variance can be expressed as a percentage of

the total expected variance, which masks the dependence on

the absolute energy level chosen by the parameters listed

in Table 9.1. These maps are meant to resemble the error

maps which have been included wi th objective analyses used

in oceanography (Bretherton, Davis, and Fandry, 1976).
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At locations outside the array of instruments, where

no data are available, the stochastic inverse tends to

leave the a priori mean undisturbed, producing zero as an

anomaly estimate, while the error map shows 100 % of the

variance to be unresolved. Because the field is spatially

correla ted, the resolution does not immediately drop to

zero, but the maps are not very re liable around the edges.

This impairs comparisons wi th the southernmost

environmental mooring (Figure 1.4), and so time series

comparisons have only been made for the central

environmental mooring and three of the acoustic moorings.

The error maps can also be displayed as error bars, if

desired (Figure 10.5), where the numbers are now the

expected standard deviations of the estimates in m/sec.

Some of the maps have also been made showing the standard

deviation of the error, to facilitate quantitative

comparisons wi th the tradi tional data. These error bars

can also be used to quantify the point-by-point time series

comparisons presented in Figure 10.6.
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The agreement between the acoustics and the CTD survey

is generally good, to wi thin the error levels as specified

by the maps, except for a few days late in the record,

where a strong nega ti ve anomaly appears to emanate from

source 4, and for a few day s near day 100, where a posi ti ve

anomaly appears near the center of the array. One possi ble

explanation for these "anomalous anomalies" is extreme

mooring motion.

The inverse has mooring motion and clock of fsets

parameterized as part of the forward problem, but the

dependences are linearized, just as the dependence of

travel time on the sound speed anomalies is linearized

around a basic state. For clock error, the li neari ty is
exact, but both horizontal and vertical mooring posi tion

changes have been treated by assuming a straight ray

(locally) and a constant sound speed. The horizontal
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FIGURES 10.6 A,B,C

THESE FIGURES SHOW THREE COMPARISONS BETWEEN TIME SERIES OF

SOUND SPEED CALCULATED FROM THE TOMOGRAPHY SYSTEM (PLOTTED

AS SQUARES) AND TIME SERIES OF SOUND SPEED FROM

TEMPERATURE-PRESSURE RECORDERS LOCATED ON MOORINGS IN THE

ARRAY (PLOTTED AS TRIANGLES). THE TWO CURVES HAVE BEEN

OFFSET SLIGHTLY TO AVOID CONFUS ING ERRORS ASSOCIATED WITH

TEMP-SOUND SPEED CONVERSION, AND SO ONLY THE SHAPES (SLOPES

AND EXCURS IONS) OF THE CURVES SHOULD BE COMPARED.
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linearization holds for displacements of up to 2 km., but

the vertical displacements are considerably less robust. I

estima te that depth changes of more than about 50 meters

will produce significant (Order 5 msec) errors in the

li neari za tion, both through local inaccuracies and through

changes in the overall ray path.

The inverse procedure returns estimated locations of

the instruments as well as the sound speed maps, so large

estimated displacements signal that the linearization may

be questionable. At this point, it is also possi ble to

take advantage of the physical structure of the mooring,

since the x, y,and z displacements were originally assumed

to be independent. A large horizontal displacement of the

moori ng should be accompani ed by a deepeni ng of the

instrument, while the instrument should never go shallower

than the "rest" depth defined above for the undisturbed

mooring. These two constraints may perhaps be included in

later inversions, but at the present they permi t

consistency checks on the estimates. A simpler check of

consistency is to compare the acoustic estimates of

instrument di splacements wi th T-P records.

Figure 10.8 is the depth variation of source 2

calculated from the acoustics and Figure 10.7 is pressure

from a T-P recorder on the moori ng near the source. The
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two time series compare qui te well, and both show the

extreme depth excursion of source 2 begi nni ng on about day

122. The recei vers move only weakly (0 (10 m.), but sources

2 and 4 are particularly acti ve. Source 2 (S2) is about 40

m. below its "rest" posi tion during the days 67-77, and is

about 140 m. deeper beginning on about day 122. Source 4

is 120 to i 70 meters deeper between day 60 and day 77, and

goes completely off scale (deeper than i 70 meters) after

day 136. The inverse resul ts during these periods is thus
suspect. Once again, in later inversions these T-P data

should be included as part of the total data set, but in

the present "proof" stage they provide another point of

comparison for evaluating the inverse system.

The system could be re-li ne~ri zed around the new

pos i ti ons, but that was not done for these si mple

demonstrations, nor were the data weighted variably for

error and expected mooring offsets. The inversions

presented here represent very li ttle "tweaking" or tuning

of parameters, in the hope that the rela ti vely simple

procedure would increase credi bi 1 i ty. No moori ng motion

corrections were used in the data set, and the positions

and depths of the instruments were determined by the

inversions themsel ves. The wei ghti ng parameters were based

at least partly on the residual uncertainties from anchor
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position and "rest" depth determinations, although sources

2 and 4 were gi ven large variances on the basis of the T-P

records. In the next versi on of the data processi ng, the

data from the mooring tracking will be used, where it

exists, providing both an a priori estimate of instrument

location and an estimate of the remai ning uncertainty day

by day. At the very least, the large variances for the

instrument depths can be reduced, and the linearization can

be re-done on each day, using the a priori posi tion
estimates.
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10.2 IMPROVEMENTS TO THE 1981 MAPS

One of the most striki ng features of the maps from the

inverse system (Figures 9.6, 10.2, 10.3, 10.4) is the

continui ty from day to day. This is expected on the basis

of the time scales (0(50 days)) of the mesoscale motions,

and it is very tempti ng to incorporate these expecta ti ons

into the inverse methods. At present, the maps on a gi ven

day are independent of all the other days, even though the

mesoscale features change very li ttle over three days, so

the simi lari ty between successi ve maps provides a

consi stency check on the inversions. These consi stency

checks can of course be converted to constraints on the

inversions to improve the performance of the system. The

simplest modification would be to average the travel time

da ta over a period of 6 to 12 days, reduci ng the random

errors but complicating the mooring position problem

somewha t .

Simple averagi ng is only a stopgap measure, and it is

preferable to impose short-term continui ty as a constraint,

either explicitly, producing additional "data", or

implici tly, by requiring the model to satisfy the

constraint directly. The implici t approach is more

elegant, and is frequently far simpler. Throughout the

discussion in Chapters 4-7, the covariances were allowed to
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be time-dependent, but the covariances used in the

processing to date have been time-independent. A

persistence constraint could be enforced by specifying a

covariance which decayed only slowly over time, while

schema tic mesoscale dynamics could be introduced by

incorpora ti ng a "group veloci ty" into the covariance, so

that features would be expected to drift westward at a few

km. /day. The latter approach has been used for the

POLYMODE XBT maps (Carter and Robi nson, 1983), to

compensate for gaps in a spotty data set. The application

to the 1981 tomography maps would be far less cri tical, due

to the rela ti vely short (3 day) time between measurements,

so that even the short-term persi stence hypothesi s would be

expected to yield increased resolution without introducing

much error due to the assumpti ons.

The mesoscale dynamics could be enforced more

ri gorous ly by requi ri ng the unknown sound speed fi eld t~ be

made up of a superposi tion of solutions to the linearized

potential vorticity equation (Chapter 3). A planetary wave

expansion limi ts the resul ts of the inverse to have

speci fic forms, and so abandons much of the generali ty

originally introduced by adopting the stochastic inverse

form. If data exist which allow these forms to be
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specified in advance, great improvements in the resolution

of the inverse can be expected. For example, in the 1981

experiment, the 3 CTD surveys could be used to build a

basi s set of waves for the observed anomali es, so that the

acoustic data would only be required to establish

magni tudes and phases. As always, the increased resolution

comes at the cost of becoming blind to phenomena which

violate the a priori constraints, al though residual levels

could be moni tored as a check on the consi stency of the

model.

Including the hydrographic, current meter, and T-P

data directly into the inverse is also straightforward, and

continues the theme of converting consistency checks into

increased resol vi ng power. Once the concept of tomography

is legitimized, the data from the experiment should be used

to produce the best possi ble description of the physical

oceanography of the regi on. I t would certai nly be
illogical, gi ven thi s goal, to exclude any part of the data
from the estimation process. The only complication

incurred in combining disparate data is that absolute error

levels must be establi shed for each of the data sources to
control relative weigpting.

Many more sophisticated improvements for the inverse

are also possi ble, and several have been mentioned earlier

in this thesis. The ocean currents produce travel time
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anomalies, but these have been neglected in the maps

produced to date. This simpli fied the calculations of the

estima tors but also introduced 0 (2 msec) of quasi-random

error, which distorts the results and lowers the resolution

limi ts. The unknown "barotropic" veloci ty mode should be

about as well resolved as the second EOF in the examples

presented in Table 9.1, based on comparing the expected

travel time anomalies due to veloci ties to the truly random

error level. The inverses may not produce detailed current

maps, but it is important to parameterize all sources of

variance, to avoid having to add to the basic random error

incurred by the limi ts of the pulse arri val time

precision.
As suggested by Figure 9.5, ït is this level of

irreduci ble random error which provides the ul tima te limi ts

on resolution, since the inverse cannot be allowed to be

sensitive to anomalies at or below the level of the error.

For example, if the random error standard deviation is 10

msec, then it does little good to add in rays which have

expected travel time anomalies less than this amount, or

which seem identical to similar rays when looked at subject

to this blurring. The addi tion of constraints to the

inverse can improve the resolution by ef fecti vely narrowing

the "bandwidth" of interest, i.e. restricting the possible
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forms of the solution. The total noise power in the

restric ted range of forms wi II be less than for the

unrestri c ted range, so that the inverse gai ns some

noise-immuni ty, and so can be allowed to be sensi ti ve to

smaller travel time anomalies, and thus gain resolution.

All of the improvements discussed above work in this way,

and are designed to combat the relatively large (5 msec)

basic random error inherent in the data from processing and

transmission channel noise. When the travel time anomalies

were expected to be 0 (200 msec), 5 or 10 msec of error was

not a problem, but when the expected "signal" is 40 msec,

then a 5 msec noise level greatly restricts the

possibilities of even the "ultimate" inversions. For this

reason, the modi fica ti ons to the ori gi nal data processi ng

outlined in Chapter 8 are of cri tical importance. Every

millisecond reduction in the random error will pay large

returns in increased resol vi ng power.

This can be seen graphically in Figures 10. 10 and

10. 12, whi ch show results produced by the p'resent inverse

when fed simulated travel time data for an ocean filled up

wi th planetary waves (Fi gures 10.9 and 10. 11) . Wi th no

modi fica tions to the inverse except for reduced random

error, the resolution of the 1981 tomographic array can be

increased radically, and the maps become rela ti vely immune
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FIGUR 10.9: TEST "OCEAN" CONSTRUCTED FROM 300-KM WAVELENGTH ROSSBY
WAVES. CONTOURS ARE OF SOUND SPEED ANOMALY RElATIVE TO AVERAGE.
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FIGURE 10.10 A: ESTIMTE OF FIELD SHOWN AS FIGUR 10.9 USING DATA
CONSTRUCTED BY TRCING RAYS IN TH 3-DIMNSIONAL "OCEAN" REFERRD TO
BY FIGUR 10.9. ERROR = 5 MSEC., CORRECTED DATA.
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FIGUR 10.10 B: ESTIMTE OF FIELD SHOWN AS FIGUR 10.9 USING DATA
CONSTRUCTED BY TRCING RAYS IN THE 3-DIMENSIONAL "OCEAN" REFERRD TO
BY FIGURE 10.9. ERROR = 2 MSEC., CORRECTED DATA.
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FIGUR 10.10 C: ESTIMTE OF FIELD SHOWN AS FIGUR 10.9 USING DATA
CONSTRUCTED BY TRCING RAYS IN THE 3-DIMENSIONAL "OCEAN" REFERRD TO
BY FIGURE 10.9. ERROR = 2 MSEC., NO MOORING MOTION CORRECTIONS
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FIGURE 10.11: TEST "OCEAN" CONSTRUCTED FROM 1S0-KM WAVELENGTH ROSSBY
WAVES. CONTOURS ARE OF SOUND SPEED ANOMALY RElATIVE TO AVERAGE.
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FIGUR 10.12: ESTIMTE OF FIELD SHOWN AS FIGURE 10.11 USING fiTA
CONSTRUCTED BY TRCING RAYS IN THE 3-DIMENSIONAL "OCEAN" REFERRED TO
BY FIGURE 10.11. ERROR = 0.5 MSEC.. CORRCTED DATA.
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to unknown moori ng posi tion. Mesoscale tomography is

limited only by the precision of the travel time

determination, and not by complicated mooring hardware.

The sources and recei vers have no exposed movi ng parts, and

the precision is limi ted by the available level of digi tal
electronic technology, which is increasing at a rapid rate.

The present inverse framework is designed to include

rigorous self-evaluation, in the forms of both error maps

and results from simulated data, so that it is possi ble to

juggle the engineering trade-offs in a very rational

manner, much as objective mapping provided a means for

evalua ti ng array layouts for current meters.
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10.3 FUTURE APPLICATIONS OF TOMOGRAPHY

The methods discussed in this thesis suggest a basis

for designing all oceanography experiments, and they are

being used at present to explore possibilities for future

applications of the tomographic techniques. Because

tomography is a form of remote sensing, the most obvious

uses are in cases where it is inconvenient to directly

sample the region of study. In the 1981 application, the

acoustics represented a way to gather a synoptic data set

over an extensi ve region, wi thout instrumenti ng the volume

at the required spacing. This same argument applies, with

grea ter force, to the problem of observing an enti re ocean

basin (Munk and Wunsch, 1982). In some high-current areas,

such as the Gulf Stream, it is difficult to moor

instruments directly in the current, so that the capability

to study the current usi ng instruments moored out of harm i s

way is important.

Munk and Wunsch (1982) proposed a scheme for

monitoring a basin-sized region using equipment similar to

the 1981 experiment, but transmi tting reciprocally to

heighten the resolution of current veloci ty. They point

out that, because acoustic tomography uses ray travel time

da ta which average the ocean over long di stances,

tomography should be most effective in estimating averaged
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quanti ties, and may in fact be the most practical way to

obtai n such averages for a large bas in. They propose a

simple "array" of 5 instruments to measure large-scale heat

content and other climatological quantities. This array

of transcei vers can in fact estimate large-scale averaged

vorticity by measuring circulation around regions enclosed

by sets of three instrumen ts. The engi neeri ng requirements

for the large scale experi ment are not unreasonable, gi ven

the knowledge acquired during the 1981 experiment. Peter

Worcester (1977) has already demonstrated reciprocal

transmission in one instance, and the Tomography Group is

currently engaged in developing the capabi li ty to transmi t
reciprocally over long ranges using moored instruments.

The basin scale experiment is planned for several

years in the future, and simulations have not yet been

done, but Gulf Stream monitoring is also an engineering

possi bi li ty, and has been exami ned in some detai 1. The

strong currents of the Gul f Stream make it more di f f i cul t

to instrument than the relati vely quiet mid-gyre areas, and

it is attracti ve to consider placing acoustic moorings near

the bot tom under the Stream and / or outs i de the

high-veloci ty regions.
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One possi ble arrangement is shown in Fi gure 10. 13.

Each instrument is a transcei ver, so that all paths are

reciprocal, and the surface bounces ensure that the rays

gather data at all depths. Figure 10.14 shows an averaged

sound speed profi le from archi ved sta ti ons, Fi gure 10. 15

shows an actual Gulf Stream section expressed as sound

speed anomalies relative to this averaged profile, while

Figure 10.16 is the estimate of the section using travel

times from the rays shown in Figure 10.13.

The steep angles of the rays from bottom-mounted

instruments minimize path changes, so that re-linearization

is not necessary, even in the presence of strong, 0(40

m/sec) perturbations. These estimates are based on a model

of the Gulf Stream bui 1 t up of verti cal modes (Fi gure

10.17), and a hori zontal covari ance (Fi gure 10. 18), just as

in the mesoscale case. The mode ampli tude estimates can be

used to estimate densi ty, veloci ty, or transport as well,

while the reciprocal paths should provide good resolution

of cross-stream veloci ti es. Although no vertical rays are
shown in Figure 10.13, they can be timed extremely

accurately, and, since the sound speed structure is

determi ned by the si de-looki ng rays, the inverted echo

soundings can be converted accurately to surface height,

providing another version of al timeter for moni toring

variabili ty in the total flow field.
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FIGURE 10. 13 PARTIAL PLOT OF RAYS FOR A SET OF 7 BOTTOM-MOUNTED

TRNSC IEVERS MOUNTED ON A SECTION UNER THE GULF STREA.
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FIGUR 10.14 AVERAGED SOUND SPEED PROFILE FOR THE SECTION SHOWN IN
FIGUR 10.13. BASED ON ARCHIVED HYDROGRAPHIC SECTIONS.
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FIGUR 10. 15 PLOT OF SECTION ACROSS GULF STREM SHOWN IN FIGUR
10.13. CONTOURS ARE SOUND SPEED ANOMALY RELATIVE TO THE AVERAGE
PROFILE SHOWN IN FIGUR 10.14. CONTOUR INTERVAL is 8 M/ SEC.
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FIGURE 10.16 ACOUSTIC INVERSE ESTIMTE FOR SECTION SHOWN IN FIGUR
10.15. CONTOURS ARE THE SAME AS IN FIGURE 10.15.
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FIGURE 10.17 A,B,C: FIRST 3 MODES FOR THE GU STRE SECTION.
CALCUlATED FROM THE ARCHIVED HYDROGRAPHIC DATA.
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These simulations were constructed using archi ved

data, but test cases have also been run using a channel

model to simulate the Gulf Stream (Rizzoli, Cornuelle, and

Haidvogel, 1982). At present, the model has only been used

to construct synthetic oceans for ray tracing and evalution

of the estimators. For the future, however, combining

oceanographic measurements wi th analytical or numerical

models is potentially powerful. One example has already

been discussed--using a planetary wave basis for the

inversions, so that the acoustic data are used only to

upda te the ampli tudes and pha$es of the waves. The more

general case, combining a dynamic model (which evolves in

time) with data taken periodically, has been considered, in

a si mple form, by Ghi l, et. al. (1982) for the

meteorologi cal case.

Ghi 1 used the Kalman fi 1 ter, whi ch is a technique from

control theory in which an estimate of the unknown fi eld,

made by a li neari zed model, for a gi ven time is optimally

combi ned wi th the data taken at tha t ti me, and the

resul ting field is then used as the basis of the next
.

estimate. The Kalman filter is designed to minimize the

squared error between the esti ma te and the true fi eld, just

as in the stochastic inverse, and the time-dependent
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stochastic inverse wi th the proper constraints should

reproduce the Kalman fi 1 ter. The Kalman fi 1 ter is si mple

to implement, and is well-understood, but the length of the

state vector for a primi ti ve equation or quasi-geostrophic

ocean model is perhaps too large to reasonably apply the

Kalman fi 1 ter blindly.

The field of stochastic and determi ni stic control

theory is growing rapidly, and there are many

error-minimization algori thms available, depending on the

assumptions that are reasonable to make. Future

observa ti ons of the oceans or atmosphere should be made

wi th these techniques in mind, deciding on the goal of the

measurements and choosing a mix of instruments to maximize

the resolution of the field or balance under study, subject

to economic constraints. If a body of theory is well

understood and accepted, it can be used as a substi tute for

much data if it is incorporated in the es tima tion

procedure.
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APPENDIX

DETAILS OF THE PROBABILISTIC ESTIMATION

From completing the square in equation (10), chapter 4

obtained expressions for the covariance matrix of the

resul t of the estimation:

A
c-1 C-1£-1 = -t-a -T

" " ~
C-1À£-lÀ = C-1 À -t-a - -T

A
(c-1 C-1)-1 N

C-1À)À = -t (C- 1 À -t-a -T =a - -T -

we also have

( 1 )

(2)

(3 )

(!-1 -t ~-1) A-1 = ~(B-t!)-l (4 )

Applying this to (3), we obtain

A IVÀ = £T(£a -t £T)-l~ -t £a(£a -t £T)-lÀ (5 )

Using the parti tioned inverse, (fa -t £T)-l becomes

(ß - C dC -lCT d)-l_p _0 _ p

-C -lCT d(ß - C dC -lCT d)-l_0 _ p _p _0 _ p

-ß-1C d(C - CT dß-1C d)-l_p =0 _ p _p
(6 )

(C - CT d ß - 1C d) - 1_0 _ P -p

(£1)-1

-£0 -lCTpd (Q1 )-1

-ß-1C (C )-1
_pd =n

(C )-1=n
(7 )
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Equation (7) defines 13, £0' C1, and fn ,

13 - a + Cp

£0 - £d + C~~?:

C1 - ß - Cpdfo - 1CT pd

fn - £0 - CTpd S-lCpd

(8 )

(9 )

( 10)

( 11)

Recall that (5) has two parts:

1\ IVA = fT(Ca + £T)-li + £a(~a + fT)-l! (5 )

Ñ
The first part multiplies l;

£T (fa + £T) - 1 =

T
CpC 1 -1 - Cpdfo -lCpdC 1-1T T
~pdC1 -1 - fd£0-1~pdC1-1

-Cpß-1Cpd~n-1 + Cpdfn-1
(12 )

T
-CpdS-1Cpd£n -1 + Çdfn-1

(C1 - a)C1-1 ( aß-1)C C-1_pd=n
(13 )=

T
f,sCo -lCpdC 1-1 (£n - C s ) £n - 1

The second part, mul tiplying ~, is:

£aCfa i .QT)-l =
aC 1 - 1 ß-1C C-1- a _pd=n

T
-~S£o -l~pdC 1-1 C C -1= s=an

(14 )
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Thus,

~ = (C1 - a)C 1 -lp t (aß-1 )Cpdfn -lct t aC 1-1P aß-1C C -ld_pd=n _

= ((C1 - a)p t ap)C1-1 t aß-1~Pd£n-1(d - d) (15)

A
d =

1 T 1.. 1 '" 1 T 1- 1£8£0- CpdC1- p t (fn - £8)£n- d - £8£0- CpdC1- p t f~n- d

=
nl 1- "J
d t f 8fn - ( d - d) T

t f¿o -lCpdC1 -1 (p p) (16 )

In the case where no a priori information about a

particular value of p is available, (a+~) then

C1 + ß + a + ~ and £n + £0' so that

p = P t Cpdfn -1 (d - £) (17)

A IV
C C -l(d - 1)d = d t _ 8=0 _

,. C )-l(d /'= d t £8 (£d t - d)=8 _
N 1\= d - 8

(18 )

(19 )

(20 )
AWhere 8 is the optimal estimate of the error in the

data:A ,.8 = £8 (fd t £8) - 1 (d - d) (21 )

,.
8 is often referred to as the vector of "residuals"-

in discussions of inverse methods, and is usually

calculated by substituting the estimated field into the
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the forward problem, and subtrac t i ng the data calculated in

thi s way from the measured data. When the model is

con ti nuous, thi s simple-mi nded calcula ti on can become qui te

expensive, and the direct estimate is certainly more

ri gorous.

The a posteriori probabi li ty densi ty function for both
the data and the unknowns def i nes the expected vari ance of

A
the true value, ~, around the estimate, Àr

(1(~) a: eXPt-1/2((~_~)TQT1(~-À) -t (~-!)TC~l(~-r))l (22)

Thi s can be put in the form:

A A ~(1(~) a: exp(-1/2(~-~)TC-1(~_~)) (23 )

"-
where À is the maximum likelihood, minimum variance

"
estimate of ~, and ~ is the estimated covariance around the

true value. We are most interested in the expected

""
variance of p(x,t) around p(~,t),

Ep 2 = q P (x, t) A 2p(x,t)) ), (24 )

/l
but it is informative to sketch out the complete C.

..The expression for C-1 has already been deri ved,
~-1 = C-1 -t C-1=a =T' (25)

1\but we need C directly:

"
(C-1 C-1)-1

(26 )
C = -t

=a =T
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It is possible to take advantage of the partitioning to

calculate (26) out as written, but it is more efficient to

re-use the identi ty (4).

l\
C.C-1 = (C-1 t C-1)C-1~ ~a ~a -T-a (27 )

= £T (fa t £T) - 1 (28 )

so that

1\
C- = £T(£a t fT)-l£a (29 )

Cp Cpd (f i) - 1 -e-1c (C )-1 a_pd _n= ( ) . ( ) . (
CT d £d -£0 -lCTpd ($21 )-1 (C )-1 0- p =n

Cp Cpd a(Ci)-l -e-1Cpd (,Qn)-l,Çs
= ( ) . ( )

CT d £d -a£o -lCTpd (£1)-1 (C ) - lC- P =n =s

o
)

,Qs

(30 )

The product requires much space to wri te out, but we

are most interested in the top left element of ,Q, which

is the vari ance of the esti ma ted value of p around the true
value:

Ep 2 = aCp(Q1)-1 - aCpd£o-lCTpd(£i)-l (31)

= a. (Cp - Cpd£o - 1CT pd ) . (Cp t a - Cpd£o - 1CT pd ~ - 1

(32 )
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For completeness, I wi 11 wri te out the bottom
Aright-hand element of C, which descri bes the variance of

the estimated data values around the true values.

Ed 2 = -Cd (C )-lC=n _£ CT pd ß- 1Cpd (£n) - 1££ (33 )

= (£d CT d ß-1Cpd) · (fn) - 1££
- P

= (.Qn f£) '(£n)-l££

= ££ £ £ . (£n ) - 1f £

(34 )

(35 )

(36 )

Note the exact symmetry wi th the es t i mate of the

model fi eld uncertai nty.



357

REFERENCES

The Ocean Tomography Group: Scripps Insti tution of
Oceanography: M. Brown, R. Knox, W. Munk, J.
Spiesberger, P. Worcester; Woods Hole Oceanographic
Institution: R. Spindel, D. Webb, M.I.T.: B.
Cornuelle, R. Heinmiller, C. Wunsch; Uni versi ty of
Michigan. T. Birdsall, K. Metzger; NOAA-AOML: D.
Behringer; Draper Laboratory. J. Dahlen.

Ak i, K., and P. G. Richards: Quanti ta ti ve Seismology,
Theory and M;thodsi. W. H. Freeman, San Francisco,
1980.

Backus, G.E. and J.F. Gilbert: Numerical applications of a
formalism for geophysical inverse problems. Geophys.
J. Roy. astr. Soc., 13, 247-276, 1967.

Backus, G. E., and F. Gilbert: The resolving power of
gross Earth data. Geophys. J. R. astr. Soc., 16,
169-205, 1968.

Backus, G. E., and F. Gilbert: Uniqueness in the inversion
of inaccurate gross Earth data. Phi l. Trans. R. Soc.
London Ser. A, 266, 123- 192, 1970.

Birdsall, T.G.: On understanding the matched fil ter in the
frequency domain. IEEE Transactions on Education, 19,
168- 169, 1976.

Bretherton, F., R.E. Davis, and C.B. Fandry: A technique
for objecti ve analysis and design of experiments
applied to MODE-73. Deep Sea Res., 23, 559-582, 1976.

Bretherton, F., and J.C. McWilliams: Estimations from
irregular arrays. Rev. Geophys. Space Phys. 18,
789-812, 1980.

Brown, M.; Linearized travel time, intensi ty, and waveform
inversions-A comparison. J.A.S.A., submitted, 1983.

Brown, M. application of the WKBJ Green's function to
acoustic propagation in horizontally strati fied
oceans. J. Acoust. Soc. Am., 71, 1427-1432, 1982.

Carter, E.F. and A.R. Robinson: Synoptic maps of the main
thermocline from POLYMODE XBTs: A time series via
space- time objective analy sis, unpublished manuscript,
March, 1983.



358

Cornuelle, B. D.: Acoustic Tomography. IEEE Trans. Geosci.
Rem. Sens., GE-20, 326-332.

Clark, J. G. and M. Kronengold: Long~ eriod fluctuations of
CW signals in deep and shallow water. J. Acoust. Soc.
Amer., 56, 1071-1083, 1974.

Eisler, T. J., R. New, and D. Calderone: Resolution and
variance in acoustic tomography. J. Acoust. Soc. Am.
72, 1965-1977, 1982.

Ewing, M. and J.L. Worzel: Long-range sound transmission.
Geol. Soc. Am. Mem., 27, 1948.

Flatte, S.M., R. Dashen, W.H. Munk, K.M. Watson, and F.
Zachariasen: Sound transmission through a ~luctuating
ocean. Cambridge Uni versi ty Press, Cambridge, 1978.

Flierl, G.R.: Models of vertical structure and the
calibration of two-layer models. Dyn. Atm. Oc" 2,
341-381, 1978.

Ghil, M., et.al.: Applications of estimation theory to
numerical weather prediction. In: Dynamic Meteorology
data assimilation methods, Bengtsson, Ghil, and
Kallen, eds., Springer-Verlag, New York, 1981.

Hamilton, G.R.: Time variations of sound speed over long
pa ths in the ocean. In: International work shop on
low -frequency propagation and noi se, Woods Hole,
Massachusetts, Oct. 14-19, 1974, pp. 7-30, 1977.

Hamilton, K.G., W.L. Siegmann, and M.J. Jacobson:
Simpli fied calculation of ray -phase perturbations due
to ocean-environmental variations. J. Acoust. Soc.
Am., 67, 1193-1206, Apr. 1980.

Hua, B. -L., and W. B. Owens, Unpubli shed manuscript, 1983.

Lanczos, C.: Linear Di f ferential Opera tors. Van Nostrand,
New York, 1961.

Marquard t, D. W.: Generalized inverses, ridge regression,
biased linear estimation, and nonlinear estimation.
Technometrics" 12, 591-612, 1970.

McWilliams, J.C.: Maps from the Mid-Ocean Dynamics
Experiment: Part II. Potential vortici ty and its
conservation. J. Phys. Ocean., 6, 828-846, 1976.



359

McWi lliams, J. C. and W. Owens: Estimation of spatial
covariances from the MODE esperiment. NCAR Tech. Rep.
No. 115+STR, 25 pp., 1976.

Mercer, J.A., and J.R. Booker Long-range propagation of
sound through oceanic mesoscale structures, J.
Geophys. Res. 88, 689-700, 1983.

MODE Group: Mid-ocean dynamics experiment. Deep-Sea
Research, 25, 859-910, 1978.

Munk, W. H. and P. F. Worcester: Moni tori ng the ocean
acoustically. In: Science, technology, and the modern
navy -thirtieth anni versary 1946-1976, (ONR-37), Of fice
of Naval Research, Arlington, VA, pp. 497-508; also
appears as: Weather and climate under the sea- the
Navy i s habi ta t. In: Science and the future navy-a
symposium, 30th Anniversary Volume, Office of Naval
Research , National Academy of Sciences, Washington,
D.C., pp. 42-52, 1976.

Munk, W. and C. Wunsch: Ocean acoustic tomography: a
scheme for large-scale moni toring. Deep-Sea Res., 26A,
123-161, 1979.

Munk, W.. Horizontal deflection of acoustic 'paths by
mesoscale eddies. J. Phy s. Ocean., 10, 596-604, 1980.

Munk, W. and C. Wunsch Observing the ocean in the 1990s.
Phil. Trans. R. Soc. Lond. A 307, 439-464, 1982.

Munk, W. and C. Wunsch Acoustic tomography: rays and
modes. Rev. Geophys. Space Phys., 1983, in press.

Officer, C.B.: Introduction to the Theory of Sound
Transmission wi th Applicationto the Ocean. New
York :McGraw-Hill , 1958. - -

Papoulis, A.: Maximum entropy and spectral estimation: A
review. IEEE Trans. Acoust. Speech and Sig. Proc.,
ASSP-29, 1176-1186, 1981.

Parker, R.L.: Understanding Inverse Theory. Ann. Rev.
Earth Planet. Sci., 5, 32-64, 1977.

Pedlosky, J.: Geophysical Fluid Dynamics', New York:
Springer-Verlag, 1980.

Porter, R.P., R.C. Spindel, and R.J. Jaffee: CW beacon
system for hydrophone motion determination. J. Acoust.
Soc. Amer., 53, 1691-1699, 1973.



360

Richman, J. G., C. Wunsch, and N. G. Hogg: Space and time
scales of mesoscale motion in the western North
Atlantic. Rev. Geophys. and Space Phys., 15, 385-420,
1977.

Malanotte-Rizzoli, P., B.D. Cornuelle, and D.B. Haidvogel
Gulf Stream Acoustic Tomography: Modeling
Simulations. unpublished manuscript, Oct. 1982.

Shannon, C. E.: A ma thema tical theory of communication.
Bell System Technical Journal, 27, 623-656, 1948.

Spiesberger, J. L., R. C. Spinde l, and K. Metzger J.
Acoust. Soc. Am., 67, 2011, 1980.

Spindel, R.C., R.P. Porter, and D.C. Webb: IEEE J. Oceanic
Engng., OE-2, 331, 1977.

Spindel, R. C. : IEEE Trans. Acoust. Speech Signal
Processing, ASSP-27, 723, 1979.

Spindel, R. C.: Proc. IEEE Electron. Aerospace Convent., 80
CH, 1587-4AES, 165, 1980.

Spindel, R. C., and J. L. Spiesberger: Mul tipa th variabi li ty
due to the Gulf Stream. J. Acoust. Soc. Am., 69,
982-988, 1981.

Stommel, H. and F. Schott
determina tion of the
hydrographic sta tion
1977.

The beta spiral and the
absolute veloci ty field from
data. Deep Sea Res., 24, 325-329,

Steinberg, J. C. and T. G. Birdsall: Underwater sound
propaga tion in the Strai ts of Florida. J. ACOliSt. Soc.
Amer., 39, 301-315, 1966.

Swindell, W. and H.H. Barrett: Computerized tomography:
taking sectional X-rays. Physics Today, 32-41, 1977.

Tarantola, A. and B. Valette: Generalized nonlinear inverse
problems solved using the least squares cri terion.
Rev. Geophys. Space Phys., 19, 219-232, 1982a.

Tarantola, A. and B. Valette: Inverse problems = Quest for
information. J. Geophys., 50, 159-170, 1982b.

Van Trees, H.. Detection , Estimation and If.dula tion
Theory, Part 1. 697 pp., J. Wiie~1968.



361

Warren, B.A., and C. Wunsch (ed. ),; Evolution of Physical
Oceanography. Scienti fic Survey s in Honor -af Henry
Stommel. 623 pp. The MIT Press, -eambridg~ 1981.

Webb, D. C. : Proc. Oceans, '77 Conf. Rec. MTS-IEEE, 2, 44B,
1977.

Worcester, P. F.: Reciprocal acoustic transmission in a
mid-ocean environment. J. Acoust. Soc. Amer., 62,
895-905, 1977.

Worcester, P. F.: An example of ocean acoustic mul tipa th
identification at long range using both travel time
and vertical arri val angle. J. Acoust. Soc. Amer., 70,
1743-1747, 1981.

Worcester, P.F., and Cornuelle, B.D.: Ocean acoustic
tomography: currents. Proceedings of the IEEE Second
Work ing Conference on Current Measurement, IEEE,
1982.

Wunsch, C.:
oceans:
871-875,

Determining the general circulation of the
a preliminary discussion. Science 96,
1977.

Wunsch, C.: The North Atlantic general circulation west of
SO 0 W determined by inverse methods. Rev. Geophys. and
Space Phys., 16, 583-620, 1978.

Wunsch, C.: Low -frequency variabi li ty of the sea. l£
Evolution of Physical Oceanography, B.A. Warren and C.
Wunsch (ed.). The MIT Press, Cambridge, Mass., 623
pp., 1981.

Zlotnicki, V., B. Parsons, and C. Wunsch: The inverse
problem of constructing a gravimetric geoid. J.
Geophys. Res., 87, 1835-1848, 1982.

Zlotnick i, V.: The oceanographic and geiodal components of
sea surface topography. Ph.D. Thesis, M.I.T.,
Cambridge, Mass, 1983.


