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Abstract 

We investigated how fecal pellet characteristics change with depth in order to quantify the extent 

of particle repackaging by mesopelagic zooplankton in two contrasting open-ocean systems. 

Material from neutrally buoyant sediment traps deployed in the summer of 2004 and 2005 at 

150, 300, and 500 m was analyzed from both a mesotrophic (Japanese time-series station K2) 

and an oligotrophic (Hawaii Ocean Time series-HOT station ALOHA) environment in the 

Pacific Ocean as part of the VERtical Transport In the Global Ocean (VERTIGO) project. We 

quantified changes in the flux, size, shape, and color of particles recognizable as zooplankton 

fecal pellets to determine how these parameters varied with depth and location. Flux of K2 fecal 

pellet particulate organic carbon (POC) at 150 and 300 m was 4-5 times higher than at ALOHA, 

and at all depths, fecal pellets were 2-5 times larger at K2, reflective of the disparate zooplankton 

community structure at the two sites. At K2, the proportion of POC flux that consisted of fecal 

pellets generally decreased with depth from 20% at 150 m to 5% at 500 m, whereas at ALOHA 

this proportion increased with depth (and was more variable) from 14% to 35%. This difference 

in the fecal fraction of POC with increasing depth is hypothesized to be due to differences in the 

extent of zooplankton-mediated fragmentation (coprohexy) and in zooplankton community 

structure between the two locations. Both regions provided indications of sinking particle 

repackaging and zooplankton carnivory in the mesopelagic. At ALOHA this was reflected in a 

significant increase in the mean flux of larvacean fecal pellets from 150 to 500 m of 3 to 46 μg C 

m-2 d-1, respectively, and at K2 a large peak in larvacean mean pellet flux at 300 m of 3.1 mg C 

m-2 d-1. Peaks in red pellets produced by carnivores occurred at 300 m at K2, and a variety of 

other fecal pellet classes showed significant changes in their distribution with depth. There was 

also evidence of substantially higher pellet fragmentation at K2 with nearly double the ratio of 
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broken:intact pellets at 150 and 300 m (mean of 67% and 64%, respectively ) than at ALOHA 

where the proportion of  broken pellets remained constant with depth (mean 35%). Variations in 

zooplankton size and community structure within the mesopelagic zone can thus differentially 

alter the transfer efficiency of sinking POC.  

 

Key Words: fecal pellets, mesopelagic, particle flux, zooplankton  
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1. Introduction 

  

Fecal pellets produced by zooplankton can significantly contribute to vertical flux of 

particulate organic carbon (POC) and are thus a key component of the biological pump (Bishop 

et al., 1977; Urrère and Knauer, 1981; Lampitt et al., 1990; Silver and Gowing, 1991; Carroll et 

al., 1998; Turner, 2002). The contribution of fecal pellets to total sinking POC flux is highly 

variable and is affected by multiple factors (Taguchi and Saino, 1998; González et al., 2000; 

Wassmann et al., 2000; Turner, 2002). Zooplankton community composition, vertical migration 

behavior, and mode of nutrition can all determine fecal pellet abundance and composition and 

thus the delivery of POC to the deep sea (Noji, 1991; Noji et al., 1991; Steinberg et al., 2000).   

Zooplankton feeding activity can affect the rate at which particles reach the deep ocean, 

with much of this modification of sinking POC flux occurring within the mesopelagic “twilight 

zone,” or depths below the euphotic zone to 1000 m (Fowler and Knauer, 1986; Sasaki et al., 

1988; Lampitt, 1992). In a resource-limited environment such as the mesopelagic, zooplankton 

must obtain their nutrition via vertical migration and surface feeding, or carnivory and particle 

feeding within the mesopelagic (Angel, 1989; Steinberg, 1995; Uttal and Buck, 1996; Schnetzer 

and Steinberg, 2002). Little is known about the extent of particle feeding by zooplankton within 

the mesopelagic, or in general about food web processes affecting carbon cycling within this 

region (Angel, 1989; Dagg, 1993; Kosobokova et al., 2002; Schnetzer and Steinberg, 2002). 

Mesopelagic zooplankton consume smaller sinking or suspended particles and ‘repackage’ them 

as dense, quickly-sinking fecal pellets. While sinking, fecal pellets can become fragmented into 

slower or non-sinking particles (coprohexy) via sloppy feeding or swimming activity, re-ingested 

(coprophagy) by other zooplankton, or stick to other particles to form aggregates of marine snow 
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(Alldredge and Silver, 1988; Lampitt et al., 1990; Noji, 1991; González et al., 1994; Dilling and 

Alldredge, 2000; Goldthwait et al., 2004). Fecal pellets can contain large amounts of undigested 

or partially-digested material that is utilized by bacteria and microzooplankton (Pomeroy et al., 

1984), and alteration of pellets by zooplankton and bacteria can slow the export of carbon 

(Longhurst and Harrison, 1989; Lampitt et al., 1990).  

Changes in fecal pellet type with depth can be used as an indication of zooplankton 

repackaging of particles in the mesopelagic zone (Carroll et al., 1998). Fecal pellets are produced 

in a variety of sizes, shapes, and, colors dependant upon the species and their diet. For example, 

euphausiids produce long (> 1 mm) cylindrical pellets (Fowler and Small, 1972; González, 

1992); salps produce large (> 1 mm), tabular-shaped, fragile pellets that sink rapidly (Bruland 

and Silver, 1981; Anderson, 1998; Yoon et al., 2001; Madin et al., 2006); and larvaceans 

produce dense, ellipsoid pellets that also sink rapidly (Gorsky and Fenaux, 1998; Taguchi and 

Saino, 1998). Carnivores such as chaetognaths (Dilling and Alldredge, 1993) and heteropods 

(personal observation) produce irregularly-shaped semi-transparent fecal pellets. Small, spherical 

“mini pellets” (< 60 μm) are produced by zooplankton nauplii and microzooplankton (Gowing 

and Silver, 1985; Gowing et al., 2001; Turner, 2002). Copepods vary in shape and size and their 

pellets are also variable and can be small, ellipsoid or ovoid in shape, or large and cylindrical 

with rounded or pointed ends (Martens, 1978; Yoon et al., 2001).  

Pellet color can be a general indicator of zooplankton diet. Although pellet color can fade 

with increased bacterial decomposition (Hansen et al., 1996) and with the addition of 

formaldehyde in sample preservation, white and lighter pellets (including some cylindrical 

transparent pellets, personal observation) may indicate feeding on detritus, fecal pellets, or 

transparent flagellates (Urrère and Knauer, 1981; Noji et al., 1991). Green and darker brown 
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colors may indicate feeding on phytoplankton; lighter brown pellets may indicate feeding on a 

mixture of diatoms, protists, and marine snow (Honjo, 1978; Hansen et al., 1996; Urban-Rich et 

al., 1998). Red, orange, and most other transparent pellets reflect carnivorous feeding on mid-

water prey species (Dilling and Alldredge, 1993; Urban-Rich et al., 1998).  

We quantified the extent of particle repackaging by mesopelagic zooplankton as part of a 

study investigating particle flux and transformations in the mesopelagic zone (VERtical 

Transport In the Global Ocean -VERTIGO). We analyzed fecal pellets from sediment traps 

deployed at 150, 300, and 500 m in the subtropical and the subarctic North Pacific Ocean to 

investigate the change in fecal pellet characteristics (e.g., size, shape, color) with depth and 

determined the importance of fecal pellet flux to POC export. Due to the differences in 

zooplankton and phytoplankton community structure between the two contrasting sites, a 

comparison of particle repackaging by zooplankton communities at these sites will help elucidate 

how plankton community structure may affect the biological pump. 

 

2. Methods 

 

2. 1 Sediment trap collections 

Neutrally buoyant sediment traps (NBSTs), were deployed at two contrasting sites in the 

North Pacific Ocean twice for 3-4 days at 150, 300, and 500 m at each site. These traps are 

designed to reduce horizontal flow across the mouth of the trap and are mounted on a neutral-

density float (Buesseler et al., 2000; Stanley et al., 2004; Buesseler et al., 2007). The six baffled 

collection cylinders on each trap were partially filled with a brine and formaldehyde solution and 

once traps were recovered, contents were preserved in 4% buffered formaldehyde solution 
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(Buesseler et al., 2007). To avoid pellet breakage during processing, trap samples used for our 

analysis were not screened – settled samples were gently poured whole into sample jars for 

analysis. 

The first trap collections were made June 22-July 9, 2004 at the Hawaii Ocean Time 

series-HOT station ALOHA in the oligotrophic subtropical gyre (27.75o N, 158o W) aboard the 

R/V Kilo Moana. The second collections were made July 22-August 11, 2005 at the Japan 

Agency for Marine-Earth Science and Technology (JAMSTEC) time-series site K2, in a high 

nutrient, variable chlorophyll region of the subarctic gyre (47o N, 160o E) aboard the R/V Roger 

Revelle. At ALOHA, primary production was 180-220 mg C m-2 d-1, new production was 18-38 

mg C m-2 d-1, mixed layer nutrients were at nanomolar concentrations, and the phytoplankton 

assemblage consisted of small diatoms, coccolithophorids, picoplankton, and cyanobacteria 

(Buesseler et al., 2007; Buesseler et al., 2008; Lamborg et al., 2008). At K2, primary production 

(365-530 mg C m-2 d-1), new production (70-150 mg C m-2 d-1), and nutrients (12 μM mixed 

layer DIN) were all higher than ALOHA, and the K2 phytoplankton assemblage consisted of 

picoplankton and large diatoms (Buesseler et al., 2007, Buesseler et al. 2008; Lamborg et al., 

2008). Zooplankton biomass in the surface 150 m was an order-of-magnitude higher at K2 than 

ALOHA (Steinberg et al., 2008 b). The majority of the zooplankton biomass was < 2 mm in size 

at station ALOHA and > 2 mm at station K2, due to the high numbers of large Neocalanus spp. 

calanoid copepods at K2 (Kobari et al., 2008; Steinberg et al., 2008 b). 

 

2.2 Fecal pellet analysis 

Preserved subsamples of the NBST sediment trap material from the two sites at all three 

depths (see Fig. 1 caption for replication at each site and depth) were analyzed using an Olympus 
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SZX12 stereo dissecting microscope and digital camera under dark- and light-field illumination. 

Digital images were analyzed using ImagePro© and Adobe Photoshop© software. The type of 

particles caught in sediment traps was recorded (e.g. fecal pellets, fecal ‘fluff’, mucous feeding 

webs, and phytodetritus). Changes in fecal pellet size, shape, color, condition (intact vs. broken), 

and flux with depth, station, and deployment were used as an indication of the amount of 

zooplankton processing and repackaging at depth. Separate one-way ANOVAs were used to test 

for differences between sites and among depths in all parameters unless otherwise noted in the 

text. 

 Particles recognizable as fecal pellets were counted, measured and categorized by shape 

and color. Pellets were placed into four shape categories: ovoid, cylindrical, spherical, and 

amorphous.  Fecal pellets were categorized as intact (i.e., peritrophic membrane present, smooth 

edges) or broken/degraded yet still recognizable as a pellet (i.e., peritrophic membrane partially 

absent, frayed edges, fragmented). Particles that were unrecognizable as fecal pellets yet may 

have been fecal in origin (e.g. fecal ‘fluff,’ with peritrophic membrane completely absent) were 

not counted or measured in this study but were recorded when present. Pellet color, a factor that 

is dependent on the food available, was analyzed both by eye and using standard RGB (red, 

green, and blue) values from the software ImagePro© and Adobe Photoshop© (Table 1) to 

provide an additional, more objective, reference for color. Sections of pellets were quantitatively 

analyzed for average RGB values using the images that were photographed under constant light 

conditions and camera settings. Pellets were categorized into four color classes (with 

corresponding diet): dark brown (herbivory); light brown (omnivory, detritivory); red 

(carnivory); and white, transparent, or multi-colored (omnivory, detritivory) (Table 1). Dominant 

shape/color pairs characteristic of pellets from major zooplankton taxa were also analyzed. These 
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included larvaceans (ellipsoid/light brown), large copepods (cylindrical/beige or light brown), 

decapods and euphausiids (cylindrical/white or transparent), and small herbivorous copepods and 

nauplii (ovoid/light or dark brown, spherical/light or dark brown). 

 Fecal pellets were converted to carbon to determine the contribution of fecal pellet 

carbon flux to total trap carbon flux and compared between the two sites and depths. Pellet 

volume was calculated based on length and width measurements (using an ocular micrometer or 

ImagePro© software) and applying the formula for a sphere, cylinder, or ovoid shape that most 

closely resembled the pellet shape. Fecal pellet volume was converted to carbon using a 

conversion factor of 0.08 mg C mm-3, a mid-range estimate based on a range of conversion 

factors (0.01 to 0.15 mg C mm-3) from the literature (Silver and Gowing, 1991; Lundsgaard and 

Olesen, 1997; Carroll et al., 1998; Taguchi and Saino, 1998; Urban-Rich et al., 1998; Roy et al., 

2000; Wassmann et al., 2000; Gowing et al., 2001; Wexels Riser et al., 2001; Suzuki et al., 2003; 

Huskin et al., 2004; Olesen et al., 2005; Reigstadt et al., 2005) and from our own measurements 

at station K2 (see below and results). Extremely large pellets of the heteropod Carinaria spp. 

(see results) were only found at station ALOHA at 150 m (in all replicates). We excluded 

heteropod pellet POC contribution in our analyses as we have no reliable estimate of their 

carbon-to-volume content. 

 

2.3 Live animal fecal pellet collection 

 Sediment traps contain an array of different types of zooplankton fecal pellets, many of 

which are from an unknown source (Martens, 1978; Urrère and Knauer, 1981; Carroll et al., 

1998). We performed incubations with live zooplankton to help identify the source of fecal pellet 

types found in the sediment traps. Live animals were collected at multiple depths at both stations 
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using a 1 m-diameter, 333 µm mesh, opening/closing net equipped with a non-filtering cod end. 

Species that were abundant and in good condition were placed into 1 L jars (in groups of 4 to 

100 per jar) of 0.2 µm filtered seawater fitted with either a 300 or 500 µm (depending on animal 

size) nitex mesh “trap” to separate fecal pellets from the live animals (to avoid coprophagy). 

Fecal pellets were collected after 12-24 hr and photographed. Fecal pellet shape, color, and size 

were measured under a dissecting microscope and used to help identify and categorize pellets in 

sediment traps. Pellets collected from live animals at station ALOHA included calanoid 

copepods, the heteropod Carinaria spp., euphausiids, and ostracods, and at K2 included calanoid 

copepods Paraeuchaeta spp., Neocalanus spp., and Eucalanus bungii; chaetognaths; 

euphausiids; and ostracods. Carbon content of 78 larvacean pellets selected from the sediment 

trap samples at K2 (no replicates), and two to three replicates of 7-140 fresh fecal pellets from a 

variety of the K2 zooplankton mentioned above were measured with a high temperature 

combustion technique on a Thermo Electron Flash EA 1112 C/N analyzer. This analysis was 

performed on samples filtered onto silver membrane filters (Sterlitech; nominal pore size 1.2 

µm). There was insufficient material available from the ALOHA incubations to measure fecal 

pellet carbon. 

 

3. Results 

 

3.1 Fecal Pellet Carbon Flux 

 At station ALOHA, trap total POC flux with depth was not significantly different 

between deployments (Buesseler et al., 2007; Lamborg et al., 2008), therefore fecal pellet results 

were combined for deployments 1 and 2. As the trap total POC flux at K2 decreased three-fold 
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between deployments (D1 and D2) (Fig. 1, Buesseler et al. 2007), fecal pellet results were 

separated by deployment. The total pellet carbon flux was up to 3.2 times higher at station K2 

than station ALOHA at 150 m, and up to 5.4 times higher at 300 m. Total pellet carbon flux was 

also higher at all three depths during deployment 1 vs. 2 at K2 (Fig. 1). The proportion of the 

total POC flux that was recognizable fecal pellets ranged from 14.2-35% at ALOHA and 2.8-

28.5% at K2 (Fig. 1, Fig. 2a). This proportion increased slightly but not significantly with depth 

at ALOHA (Fig. 2a, mean %  ± 1 s.d.: 150 m = 14.2 ± 9.6, 300 m = 22.1 ± 23.1, 500 m =35.0 ± 

23.4; p = 0.47), decreased significantly with depth in the second deployment at K2 (Fig. 2a, 

mean % ± s.d: 150 m = 28.5 ± 3.6, 300 m = 20.0 ± 3.0, 500 m = 5.6 ± 4.8; p = 0.01) and from 

300 to 500 m in the first deployment at K2 (Fig. 2a, mean % ± s.d: 150 m = 12.1 ± 0.6, 300 m = 

14.7 ± 0.5, 500 m = 2.8; p = 0.01). 

 Although total trap POC flux decreased with depth at station ALOHA (Fig. 1a), fecal 

pellet carbon flux (mean pellet carbon flux for all three depth intervals ± s.d.: 1.7 ± 1.2 mg C m-2 

d-1) was not significantly different between depth intervals (Fig. 2b, p = 0.49). At station K2 

however, the fecal pellet carbon flux did decrease significantly with depth in both deployments 

(Fig. 2b, mean pellet carbon flux, mg C m-2 d-1 ± 1 s.d. D1: 150 m = 7.6 ± 0.4; 300 m =6.9 ± 0.8; 

500 m = 0.8; p = 0.02. D2: 150 m = 6.7 ± 1.4; 300 m = 3.2 ± 0.01; 500 m = 0.7 ± 0.6; p=0.003). 

Differences in total pellet carbon flux between deployments at K2 were observed at 150 m where 

the proportion of pellet POC increased two-fold (p = 0.045) and pellet POC decreased two-fold 

at 300 m, (p = 0.02) from D1 to D2 (Fig. 2).  

  

3.2 Fecal Pellet Size 
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 The median size (μg C pellet-1) of individual fecal pellets were two to five times larger at 

K2 than at ALOHA at all depths (Table 2, Mann-Whitney two sample test: p < 0.001). The 

majority of the fecal pellets were small at ALOHA although there were some very large pellets 

(the largest pellets at ALOHA were from Carinaria spp. and were not included here, see 

methods). Fecal pellet carbon frequency distributions (normalized to 1000 pellets for each depth 

using: [number of pellets in a size class/total number of pellets]*1000) were also significantly 

different between ALOHA and K2 at all depths, showing clearly the higher abundance of larger 

size classes of pellets at K2 (Fig. 3, χ2 test: p < 0.001 for all depths). Pellets were similar in size 

between all three depths at ALOHA (Table 2, Mann-Whitney two sample test: 150 m, p = 0.13; 

300 m, p = 0.78; 500 m, p = 0.12) and different at K2 (Table 2, Mann-Whitney two sample test: 

p < 0.001 for all depths and deployments). The frequency distribution between the deployments 

at station K2 were different for all depths (Fig. 3, χ2 test: p < 0.001), however at 150 m, the 

median fecal pellet POC in D1 was nearly double that of D2 (Table 2, Mann-Whitney two 

sample test: p < 0.001). 

  

3.3 Fecal pellet characteristics- live animal fecal pellet collections   

 As fecal pellet color and shape can be taxon-specific, and change with food type and 

region, fecal pellets from live incubations were used to help identify fecal pellets in sediment 

traps (Table 3; some examples of which can be seen in Fig. 4). The heteropod Carinaria spp. 

produced large (mean length of 1.6 mm) distinct pellets at ALOHA (A, Fig. 4). These were 

fragile, transparent, and filled with pieces of copepods, other zooplankton species, and 

unidentified spines. Euphausiids at ALOHA produced cylindrical pellets during the incubations 

which averaged 1.6mm in length, and were red, light brown or transparent in color. These pellets 
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were also usually broken around the edges (B, Fig. 4). At K2, larger copepods such as 

Neocalanus spp. produced cylindrical light brown pellets (mean length of 465 μm; E, Fig. 4), 

however only Neocalanus spp. collected from 300 m or above produced pellets in the 

incubations (indicating they cleared their guts during capture, or were in dormancy and not 

feeding). Eucalanus bungii, a common particle feeder at K2 did not produce pellets despite 

multiple incubation attempts. Chaetognaths produced amorphous (mean length of 2.2 mm) red 

pellets containing orange lipid globules and copepod parts; many of their pellets floated to the 

surface of the incubation chamber. Paraeuchaeta spp. (a carnivorous copepod) produced 

cylindrical (mean length of 474 μm), transparent pellets with a pointed end that also contained 

lipid globules. Euphausiids at K2 produced long (mean length of 1.1 mm), thin white or light 

brown cylindrical pellets (e.g., F, Fig. 4) and ostracods produced multi-colored crescent-shaped 

pellets (mean length of 1.1mm).  

 Pellet carbon measurements (mg C mm-3) for incubated zooplankton at K2 were as 

follows (mean ± 1 s.d.): chaetognaths, 0.03 ± 0.01; euphausiids, 0.08 ± 0.01; larvaceans, 0.085 

(one replicate); Neocalanus spp. copepods, 0.13 ± 0.04, and Paraeuchaeta spp. copepods, 0.15 ± 

0.03. Mean fecal pellet carbon of all pellets and taxa analyzed was 0.11 ± 0.04 mg C mm-3 (not 

normalized to the actual contribution of these various taxa to pellets in the traps and also 

excludes chaetognaths, as their pellets were not observed in the traps). 

 

3.4 Changing fecal pellet types with depth 

 General differences in fecal pellet size as discussed above, and type (see below) between 

stations and with depth can be seen in Figure 4. The transparent pellets of the heteropod, 

Carinaria spp. were the largest of all the pellets in the traps (A, Fig. 4), and were only found at 
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station ALOHA at 150 m. The large cylindrical pellets of euphausiids, decapods, and large 

calanoid copepods were common in the traps and observed at all depths (B, Fig. 4). Smaller 

copepods (C, Fig. 4) and larvacean pellets (D, Fig. 4), were also observed in the traps at 

ALOHA. At station K2, the large cylindrical pellets from the calanoid copepod Neocalanus spp. 

were extremely common (E, Fig. 4) as were the longer, thinner euphausiid pellets (F, Fig. 4). 

Red pellets produced by carnivores (G, Fig. 4), and larvacean pellets (D, Fig. 4) emerged at 

deeper depths at K2.  Broken pellets and fecal ‘fluff’ (significantly degraded and therefore 

unrecognizable remnants of pellets) were present in traps at both locations and all depths. Fecal 

‘fluff’ (H, Fig. 4), was more apparent at K2, as were broken pellets (I, Fig. 4). Chaetognath 

pellets were not found in any of the sediment trap samples analyzed and ostracod pellets were 

rare.  

 The flux of pellets of different colors and shape changed with depth at station ALOHA, 

although the data were highly variable and not statistically significant when tested for differences 

with depth (Fig. 5a and b; p > 0.05). Cylindrical pellets contributed the most to fecal pellet 

carbon flux at all three depths (Fig. 5a). Flux of dark brown pellets (indicative of herbivory) was 

highest at 150 m, while flux of red pellets (indicative of carnivory) increased with depth (Fig. 

5b). White and specific transparent pellets (indicative of detrital particle feeding) comprised the 

largest proportion of the fecal pellet flux at 150 and 300 m (69.1% and 57.7% respectively).  

Flux of light brown pellets was highest at 500 m (46.7% of total pellet POC flux) (Fig. 5b).  

 Sediment traps in both deployments at K2 contained similar fecal pellet shape and color 

distribution with some significant differences between depth and deployment (Fig. 5c-f). 

Cylindrical pellets contributed the most to pellet POC flux in both deployments at 150 m 

(78.8%) and significantly decreased with depth (D1, p = 0.004; D2, p = 0.05). Neocalanus spp. 
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and E. bungii are ontogentic vertical migrators and during this late summer period have begun 

their dormancy at depth during which time they do not feed (Dagg, 1993; Kobari and Ikeda, 

2001; Kobari et al., 2008). Thus these copepod species collected from > 300 m did not produce 

pellets in our incubation experiments. This cessation of feeding and defecation may also partially 

account for this significant decrease in cylindrical fecal pellet flux in the traps with depth. In 

both K2 deployments, the flux of white & transparent pellets decreased significantly below 150 

m (D1, p = 0.02; D2, p = 0.009). A red pellet flux maximum at 300 m was observed in D2 which 

was significantly higher than at other depths (p = 0.026). Cylindrical and spherical pellets 

decreased significantly from the first to the second deployment at 300 m (p = 0.035, p = 0.015 

respectively) as did light brown and white and transparent pellets (p = 0.040, p = 0.003 

respectively). 

 Depth distributions of fecal pellet color and shape combinations (characteristic of various 

taxa and feeding modes) that were common at both locations are shown in Figure 6. Larvacean 

fecal pellet POC flux increased significantly with depth at station ALOHA (Fig. 6a, p = 0.011) 

and were also significantly more abundant at 300 m vs. other depths in both deployments at 

station K2 (Fig. 6b and c; D1, p = 0.01; D2, p = 0.004). The pellet color/shape combinations 

(cylindrical beige or light brown) indicative of the dominant large copepods such as Neocalanus 

spp. were abundant at 150 m and decreased significantly in the deeper samples at K2 D2 (p = 

0.026). Cylindrical and white or transparent pellets, made by a combination of decapods, 

euphausiids, Neocalanus spp. and other large calanoid copepods, were significantly higher at 150 

m and decreased with depth (D1, p = 0.017; D2, p = 0.008). Ovoid/red pellets, produced by 

carnivores, were present in the traps at most depth levels although they were marginally highest 

at 300 m D2 (p = 0.066). 
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4. Discussion 

 

4.1 Contribution of fecal pellets to sediment trap POC flux  

 The contribution of fecal pellets to POC flux at depth can be highly variable, with factors 

such as zooplankton community structure and behavior, as well as sampling location and season, 

playing an important role (Karl and Knauer, 1984; Wexels Riser et al., 2001; Wexels Riser et al., 

2002; Huskin et al., 2004). At ALOHA and K2 mesozooplankton fecal pellets contributed from 

14- 35%, and 3-39%, respectively, of the downward flux of POC through the mesopelagic zone. 

Seasonally-productive regions such as the Southern Ocean exhibit variations in fecal pellet 

contribution to POC flux at 100 m ranging from a low value of 2-7% in the summer to 22-63% 

in the spring (Dagg et al., 2003), while fecal pellet contribution from more oligotrophic regions 

such as the North Atlantic subtropical gyre was on average 30% (ranging from 2-82%) of the 

total POC flux at 200 m (Huskin et al., 2004) and in the Mediterranean ranged seasonally from 

8%-24% at 200-2000 m (Carroll et al., 1998). Indeed some of this variability between studies 

may be due to differences in sampling depths, methodology and pellet carbon estimation. 

 The proportion of total trap POC flux that were fecal pellets at station ALOHA (although 

highly variable) increased slightly with depth, indicating fecal pellets may be a more important 

contribution to POC flux deeper. Fecal pellets as a proportion of POC flux increased 

significantly with depth to 200 m in the North Atlantic subtropical gyre (Huskin et al., 2004) and 

the importance of pellets as a component of POC flux can increase with depth via strong vertical 

migration of mesozooplankton due to feeding in surface waters and egestion at depth (Karl and 

Knauer, 1984), particle repackaging at depth, and other in situ processes such as the production 
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of new pellets at depth from carnivorous zooplankton species (Turner and Ferrante, 1979; 

Wassmann et al., 2000; Huskin et al., 2004). The flux of sinking POC able to support deeper 

biomass in oligotrophic regions such as ALOHA would be largely through the fecal pellet 

production of the predominantly small (< 2 mm) zooplankton residing there (Paffenhöfer and 

Knowles, 1979; Small et al., 1987; Steinberg et al., 2008 a). 

 In contrast to ALOHA, fecal pellet POC flux (both absolute flux and as a proportion of 

total trap POC flux) decreased with depth at station K2, as appears to be typical of regions with 

higher zooplankton biomass (Roy et al., 2000; Suzuki et al., 2003). Andreassen et al. (1990) and 

Suzuki et al (2003) both found a decrease in fecal pellet flux with depth related to the appearance 

of smaller sinking particles which they hypothesized were the remnants of fecal pellets (fecal 

‘fluff’ in the present study– see below) and attributed to alteration by zooplankton (Lampitt et 

al., 1990; Noji et al., 1991). Zooplankton at K2 were predominately large (> 2 mm), and an 

order-of-magnitude higher in biomass than ALOHA (Steinberg et al., 2008 b), and produced ~1 

mm long cylindrical fecal pellets which broke apart easily (observed in live incubations). 

Zooplankton-mediated processes such as coprohexy and coprophagy as well as the fragile nature 

of the pellets likely reduce the number of fecal pellets that make it through the mesopelagic 

intact at K2. 

 Our estimate of the contribution of fecal pellet POC to total POC flux is partially 

dependent upon the fecal pellet carbon-to-volume conversion. We applied a fecal pellet carbon-

to-volume conversion of 0.08 mg C mm-3, a mid-range value from the literature and close to our 

measured fecal pellet carbon content of several key species of  0.11 mg C mm-3. A low-range 

carbon-to-volume conversion of 0.03 (Urrère and Knauer, 1981; Wassmann et al., 2000) 

decrease estimates of fecal pellet contribution threefold to 5-13% (ALOHA) and 2-8% (K2) of 
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the total POC flux. A higher range estimate of 0.11 measured here at K2 and in Carroll et al., 

(1998) would increase estimates of fecal pellet contribution by a factor of 1.4 to 19-48% 

(ALOHA) and 7-29% (K2) of the total POC flux. Further investigation of the C content of large, 

rare heteropod pellets, which may substantially increase fecal pellet contribution to POC flux at 

station ALOHA, is needed. 

 Fecal pellet size distribution also differed greatly between the two locations and likely 

influenced the contribution of fecal pellets to POC flux as well as the amount of the attenuation 

of vertical POC flux through the mesopelagic (Buesseler et al., 2007). Zooplankton fecal pellet 

size is correlated to zooplankton body size (Uye and Kaname, 1994), with larger zooplankton 

producing larger, faster-sinking pellets and smaller zooplankton producing smaller, slower-

sinking pellets that are recycled quickly (Paffenhöfer and Knowles, 1979; Poulsen and Kiørboe, 

2006), which could account for some of the difference in POC flux attenuation (higher at 

ALOHA) between the 2 sites (Buesseler et al., 2007, Lamborg et al., 2008). 

 

4.2 Particle repackaging and carnivory 

 To meet their nutritional requirements, zooplankton in the mesopelagic zone may 

intercept and consume sinking particles (e.g. fecal pellets, marine snow), filter feed on small 

suspended particles, vertically migrate to feed on surface particles, or consume other 

zooplankton. Detrital particles are colonized by bacteria and microzooplankton (Alldredge and 

Silver, 1988; Azam and Long, 2001) and once ingested, are subsequently repackaged into fast 

sinking fecal pellets, exporting POC to the deep ocean (Turner and Ferrante, 1979 and references 

therein; Turner, 2002). Particle repackaging and carnivory in the mesopelagic were evident in 

our study due to changes in the presence of distinct fecal pellet types with depth. 
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 Many ubiquitous zooplankton species in both oligotrophic and mesotrophic regimes are 

commonly recognized as sinking detrital particle repackagers. At ALOHA small 

poecilostomatoid and cyclopoid copepods were common sinking particle feeders (e.g. Oncea 

spp. and Oithona spp. (González and Smetacek, 1994). Svensen and Nejstgaard (2003) showed 

that when the abundance of Oithona spp. is high, fecal pellet flux is low, and hypothesize that the 

inverse relationship between the magnitude of POC export and the presence of Oithona may be 

common.  Indeed in our study, both Oncea spp. and Oithona spp. copepods decreased in biomass 

below 150 m while fecal pellet flux slightly increased with depth at ALOHA. This pattern may 

be more apparent in oligotrophic regions such as ALOHA where the system is dominated by 

smaller zooplankton species where smaller pellets with slower sinking speeds are available for 

capture (Paffenhöfer and Knowles, 1979; Uye and Kaname, 1994; Wassmann et al., 2000). 

There was also a low coprophagy rate of larger pellets by Oithona reported in several Sub-Arctic 

and Arctic studies (Sampei et al., 2004; Reigstad et al., 2005; Poulsen and Kiørboe, 2006).  At 

K2, poecilostomatoid and cyclopoid copepods increased in biomass below 150 m as did fecal 

pellet flux, however these species constitute a smaller proportion of the zooplankton biomass at 

K2 compared to ALOHA.  The high biomass at K2 of larger particle feeders such as Eucalanus 

bungii, Neocalanus spp., and ostracods may be more influential in particle feeding and 

fragmentation there (Uye and Kaname, 1994; Yamaguchi et al., 2002; Sampei et al., 2004). 

 The presence of larvacean fecal pellets in sediment traps at all sampled depths at ALOHA 

and K2 indicates repackaging of suspended POC in the mesopelagic. Larvaceans filter suspended 

particles from the water column using a mucous feeding web, or “house” with particles as small 

as 5-0.1 µm retained by their inner filter mesh (Alldredge and Madin, 1982; Deibel, 1998), 

therefore larvaceans can bypass the classical microbial loop by transforming small, suspended 
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particles into fast sinking fecal pellets (Michaels and Silver, 1988; Urban et al., 1992; Gorsky et 

al., 1999). At ALOHA larvacean pellet flux increased with depth and nearly all pellets were 

intact, except at 500 m where some pellets were partially decomposed or fragmented. At K2, the 

highest larvacean pellet flux occurred at 300 m. There was also an increase in the number of 

pellets in the larger size classes (1-2.5 mm) at 300 m, which may be attributed to this increase in 

larvacean fecal pellets. Nearly 90% of these larvacean pellets at 300 m were partially 

fragmented, which was higher than at the other two sampling depths at K2 (50% at 150 m, and 

29% at 500 m), and may indicate stratified populations of larvaceans through the mesopelagic. 

Stratified mesozooplankton net sampling did not reveal a mesopelagic peak in larvacean 

abundance, however, these delicate animals are damaged easily and thus not sampled well by 

these nets (Steinberg et al., 2008 a). 

 Zooplankton that feed on other animals either living within the mesopelagic region or 

migrating through it can also contribute substantially to fecal pellet flux with depth (Small and 

Ellis 1992). Carnivorous zooplankton generally increase in abundance with depth and can 

produce new fecal pellets at depth that contribute to the sinking flux and that can be consumed 

by detritivores (Vinogradov and Tseitlin, 1983; Small and Ellis, 1992; Yamaguchi et al., 2002). 

Evidence of carnivorous feeding at both ALOHA and K2 include changes in the depth 

distribution of both red fecal pellets (the color deriving from crustacean prey with red or orange 

chitinous exoskeltons) and white/transparent pellets (deriving from prey with white or clear 

chitinous exoskeletons, transparent gelatinous zooplankton, or microzooplankton) at depth. At 

K2, flux of red, oval pellets was highest at 300 m (G, Fig. 4) as a result of carnivorous feeding 

between 150 and 300 m depth. The carnivorous zooplankter that produced these fecal pellets is 

unknown. Carnivorous chaetognaths were numerous in the zooplankton tows at both locations, 
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with abundance peaks in the mesopelagic (Steinberg et al., 2008 a), yet their distinctive pellets 

were rare in the traps. Chaetognath pellets collected from the incubation experiments at K2 were 

rich in lipid globules from their copepod prey which would make them a nutritious and labile 

food source. Dilling and Alldredge (1993) measured mesopelagic chaetognath pellet sinking 

rates off California and indicated that the pellets sank slower than other herbivorous zooplankton 

pellets of comparative size with some also remaining positively or neutrally buoyant. A small 

number of floating chaetognath pellets were also observed in the K2 incubation experiments. 

These slow sinking or floating chaetognath fecal pellets may be easily accessible as food to other 

zooplankton taxa. Thus we propose chaetognath fecal pellets may be consumed quickly while 

sinking and could supply the mesopelagic with an abundant and highly labile food source. 

 

 

4.3 – Pellet fragmentation via swimming action and coprohexy 

 Zooplankton can efficiently fragment fecal pellets while swimming and feeding in a 

process known as coprohexy (Lampitt et al., 1990). Coprohexy has the potential to significantly 

increase the retention time of fecal pellet carbon in the water column by producing smaller, 

slower sinking particles vulnerable to zooplankton repackaging and microbial remineralization, 

and (as observed at station K2) decrease the number of intact pellets making it to deeper waters 

(Noji et al., 1991; Andreassen et al., 1996; Suzuki et al., 2003). Fecal pellets and other particles 

can fragment through abiotic processes such as turbulence in the mixed layer (Karl et al., 1988), 

zooplankton swimming action (Dilling and Alldredge, 2000; Goldthwait et al., 2004), and sloppy 

feeding (Lampitt et al., 1990). The degree of fragmentation can also vary with season (Wassman 

et al. 1999). Many copepod species create a feeding current to obtain phytoplankton for ingestion 
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and any fecal material captured may be broken apart but not necessarily consumed (Poulsen and 

Kiørboe, 2005). Some copepod species will preferentially consume the peritrophic membrane of 

a fecal pellet and discard the rest (Lampitt et al., 1990; Noji et al., 1991; Small and Ellis, 1992; 

Alldredge et al., 1993), leaving the pellet more vulnerable to fragmentation. 

 The presence of fecal-fragment-derived marine snow (fecal ‘fluff’) in the trap samples 

could not be quantified as it was difficult to discern from other non-fecal-derived marine snow 

particles (Shanks and Trent, 1980; Sasaki et al., 1988). Sediment traps deployed in the Kerguelen 

Ocean and plateau (Southern Ocean) containing polyacrylamide gels, which capture particles 

relatively intact and in the form they sink (Lundsgaard, 1995; Waite et al., 2000), revealed that 

the majority of the sinking aggregates were fecal in origin and thus flux in the study area was 

hypothesized to be controlled by zooplankton grazers (Ebersbach et al., 2006). Fecal ’fluff‘ was 

considerably more apparent at all depths and in all traps at K2 than at ALOHA, and a 

significantly higher number of recognizable fecal pellets that were broken or partially 

fragmented were present at K2 at 150 and 300 m than at ALOHA, whereas at 500 m they were 

similar (Fig. 7). Thus, microbial processes and coprohexy, that transform pellets into fecal ’fluff‘ 

and render some pellets unrecognizable in our trap samples, may have resulted in an increase in 

fecal ‘fluff’ at K2, and an underestimation of the contribution of fecal pellets to total flux.   

 The most common pellets in the traps at K2 were produced by Neocalanus cristatus, 

Neocalanus flemingeri, and Neocalanus plumchrus. These copepods, along with Eucalanus 

bungii comprise the majority of the zooplankton biomass at K2 and are recognized as 

opportunistic herbivorous/omnivorous and particle feeders (Dagg, 1993; Shoden et al., 2005). 

Neocalanus spp. produced large, cylindrical pellets which were generally in large fragments in 

the sediment trap samples and accounted for 10 to 22% of the total POC flux across 150 m. This 
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range is considerably lower than an estimated 141-223 % for Neocalanus spp. pellets as a 

proportion of the total POC flux at 150 m at K2, based on copepod metabolic requirements 

(Kobari et al., 2008); this difference is likely due to coprophagy, coprohexy and microbial 

processes. 

 The dominance of the larger size and biomass of the mesozooplankton at K2 also likely 

enhanced fragmentation in the water column due to their faster swimming speeds and higher 

magnitude of vertical migration (Goldthwait et al., 2004) compared to ALOHA. Finally, 

sampling artifacts of breakage of pellets during handling of the material likely leads to additional 

error and further underestimation of fecal pellet flux in our study. Comparative studies with 

polyacrylimide-based gel traps will be useful to quantitatively determine both the prevalence of 

fecal-derived marine snow and the extent of pellet breakage from sinking and handling of 

samples (Lundsgaard, 1995; Waite et al., 2000).  

  

5. Conclusions 

 

 This study provides evidence of both detrital particle repackaging and carnivory within 

the mesopelagic zone of the subtropical and subarctic North Pacific Ocean that can influence 

both the magnitude and character of sinking POC. Mesozooplankton community structure is 

important in determining the flux of fecal pellet carbon through the mesopelagic zone at both 

sites, with changes in fecal pellet types with depth indicating considerable repackaging of 

particles by a variety of different taxa. Recycling of fecal pellets by small zooplankton may play 

a large role in affecting POC export to depth in oligotrophic regions such as ALOHA (Small et 

al., 1987; Paffenhöfer and Knowles, 1979). In more mesotrophic regions such as K2, the larger 
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size and biomass of zooplankton and their fecal material promote high POC flux and increased 

transport efficiency of POC to depth (Buesseler et al., 2007, Steinberg et al. 2008). As the ocean 

surface continues to warm, the plankton biomass and community structure will be affected (Karl 

et al., 1996; Karl et al., 2001). By comparing mesopelagic food webs in contrasting 

environments, and how particles are made and modified by animals in the ocean’s interior, we 

can gain some insight onto how predicted changes in the plankton community will affect the flux 

of carbon to the deep ocean. 
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Figure 1. Recognizable fecal pellet POC fluxes at stations a) ALOHA and b) K2 compared to the 

remainder of POC flux (non-pellets). The value of stacked bars indicates total POC flux. Data for 

the two trap deployments were combined for ALOHA, as there was no significant difference in 

total POC flux between deployments (see results), and was kept separate for K2. Values are 

mean ± 1 s.d. Error bar is standard deviation of fecal pellet carbon flux. For ALOHA, n = 3 for 

all samples. For K2, n = 2 for 150, and 300 m for both deployments; n = 1 (D1) and n = 3 (D2) at 

500 m. D1, deployment 1; D2, deployment 2. 

 

Figure 2. Recognizable fecal pellet flux at ALOHA and K2 shown as a) fecal pellets as a 

proportion of total POC flux , and b) fecal pellet POC flux. Values are mean ± 1 s.d. For 

ALOHA, n = 3 for all samples. For K2, n = 2 for 150 m, and 300 m for both deployments; n = 1 

(D1) and n = 3 (D2) at 500 m. D1, deployment 1; D2, deployment 2. 

 

Figure 3. Fecal pellet carbon distribution at ALOHA and K2 from NBSTs deployed at a) 150 m, 

b) 300 m and c) 500 m. For ALOHA: 150 m, n = 421; 300 m n = 473; 500 m n = 580. For K2 

(D1): n = 1201; 300 m n = 1175; 500 m n = 174: For K2 (D2): 150 m, n = 1867; 300 m n = 519; 

500 m n = 463. Sample size normalized to 1000 pellets for each location, deployment, and, depth 

(see results). See also Table 2 for median values for each location, deployment, and depth. D1, 

deployment 1; D2, deployment 2. 

 

Figure 4. Example zooplankton fecal pellets from sediment trap samples indicating major types 

of pellets identified at each location. Scale bar is 500 µm. A) heteropod Carinaria spp. B) large 
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copepod or euphausiid, C) small copepod, D) larvacean, E) Neocalanus spp., F) Euphausiid, G) 

unknown carnivorous zooplankton, H) fecal ‘fluff,’ I) broken pellet. 

 

Figure 5. Flux of fecal pellets at ALOHA and K2 categorized by shape and color. Values are 

mean ± 1 s.d. A * indicates significant differences (ANOVA, p < 0.05). D1, deployment 1; D2, 

deployment 2. 

 

Figure 6. Fecal pellet color/shape combinations and taxa for ALOHA (a) and K2 (b,c). Ovoid or 

spherical brown pellets (ovo/sph brown) may be attributed to small copepods and herbivores. 

Ovoid red pellets are attributed to carnivores. Cylindrical pellets that are beige or light brown 

(cyl beige & light) are attributed to omnivorous large copepods. Cylindrical pellets that are white 

or transparent (cyl white & trans) are attributed to particle feeders (i.e. large copepods and 

euphausiids). Values are mean ± 1 s.d. A * indicates significant differences (ANOVA, p < 0.05). 

D1, deployment 1; D2, deployment 2. 

 

Figure 7. Broken recognizable fecal pellets at ALOHA and K2 shown as percent (%) of total 

number of pellets counted. These do not include any particles unrecognizable as fecal pellets or 

fecal ‘fluff.’ Values are mean ± 1 s.d. For ALOHA, n = 3. For K2, n = 4. Deployments at K2 

were combined. ANOVA: 150 m, p = 0.015, 300 m, p = 0.007, 500 m, not significant. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Table 1. RGB values (mean ± 1 s.d.) of selected fecal pellets for classification purposes (RGB 

max = 255, n = 1758 pellets). RGB values are taken from sections of pellets and analyzed in 

ImagePro© and/or Adobe Photoshop©  

 

Color Classification Red Green Blue
light brown 201 ± 23 195 ± 72 160 ± 39
dark brown 140 ± 36 123 ± 40 82 ± 38
transparent & white 219 ± 31 219 ± 29 213 ± 40
red 182 ± 48 141 ± 65 117 ± 64  
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Table 2. Median carbon values (µg C) per fecal pellet. D1 = deployment 1; D2 = deployment 2; 

n = sample size. 

 

ALOHA n K2 (D1) n K2 (D2) n K2 Total n
150 m 0.036 421 0.236 1201 0.136 1867 0.170 3068
300 m 0.048 473 0.156 1175 0.202 519 0.179 1694
500 m 0.043 580 0.079 174 0.084 463 0.081 637  
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Table 3: Fecal pellet characteristics of common taxa determined from live incubations. Volume and C values are mean ± 1 s.d. n = 

sample size; Misc., miscellaneous; n/d = not determined. 

 

Site Pellet Source n Shape Color Volume (mm3) C content (mg C mm-3)
K2

Neocalanus  spp. 34 cylindrical light brown 4.7 ± 2.7 0.13 ± 0.04
Paraeuchaeta  spp. 32 cylindrical transparent 6.4 ± 3.3 0.15 ± 0.03
misc. Euphausiids 39 cylindrical light brown, transparent 9.2 ± 9.2 0.08 ± 0.01
misc. Chaetognaths 14 amorphous red 600.5 ± 151.0 0.03 ± 0.01
misc. ostracods 2 crescent multi 192.3 ± 5.9 n/d

ALOHA
Carinaria  spp. 7 amorphous transparent 110.1 ± 121.3 n/d
misc. Euphausiids 5 cylindrical light brown, white 10.8 ± 5.2 n/d  

 


