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The relative importance of internal-wave strain and internal-wave shear on perturbation of acoustic
ray trajectories in the ocean is analyzed. Previous estimates based on the Garrett-Munk
internal-wave spectral model are updated using data from recent field studies of internal waves.
Estimates of the ratio of the rms shear effect to the rms strain effect based on data from the upper
kilometer of ocean are as high as 0.25-0.4, exceeding the estimates of 0.08—0.17 stemming from the
model. Increased strength of three phenomena that have shear to strain ratios higher than the
internal-wave average can cause this effect. These are near-inertial waves, internal tides, and vortical
modes. © 2005 Acoustical Society of America. [DOI: 10.1121/1.2062127]

PACS number(s): 43.30.Cq, 43.30.Ft, 43.30.Re [WLS]

I. INTRODUCTION

Small-scale temporally variable perturbations to the av-
erage ocean sound channel have been known for some time
to cause acoustic field variability. Based on work motivated
by reciprocal-transmission measurement of currents
[Worcester (1977)], studies of variability generally neglect
the effect of fluctuating current shear with respect to the
effect of the fluctuating vertical derivative of sound-speed
[Colosi, Flatté, and Bracher (1994); Flatté (1983) Sec. 11 D;
Munk, Worcester, and Wunsch (1995)]. Those studies use the
Garrett-Munk (GM) spectral model of internal waves to de-
scribe perturbation strain in the ocean. [GM describes both
strain and shear in the case of Worcester (1977)]. The strain
is responsible for sound-speed perturbations. However, mea-
surements from the ocean suggest that conditions may vary
from GM. In particular, stronger shear to strain ratios have
been observed than are consistent with GM, so the relative
strength of the two terms is revisited here and in another
paper [Colosi (2005)].

The relative effects of strain and shear on ray-path per-
turbations are chosen for analysis, rather than some other
aspect of the acoustic field, because a ramification of ocean
medium fluctuations is temporally variable ray-path alter-
ation, which is one manner of describing acoustic field fluc-
tuations [Simmen, Flatté, and Wang (1997)]. Also, the path
perturbations themselves have been suggested to be an im-
portant indicator of sound field variability (Beron-Vera and
Brown (2003); Brown et al. (2003); Brown and Viechnicki
(1998); Smith, Brown, and Tappert (1992); Virovlyansky
(2003))]. Ray paths can fluctuate rapidly because of two in-
ternal wave effects: changes to the vertical gradient of
sound-speed caused by internal-wave vertical strain, and to
the vertical component of internal-wave shear.

Here, it is reported that the rms shear effect on rays may
be as large or larger than one-quarter the rms strain effect,
which is roughly double the 13% effect predicted using GM.
Both ratios refer to effects on rays in the upper ocean, where
both effects will have their maximum effect on rays. This
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means that it may be important to include shear effects in
some situations. For completeness, expressions that govern
ray trajectories in the presence of internal wave currents that
have an angle/depth form are derived. This form facilitates
comparison by having terms related to shear and strain in
only one equation. Next, the rms magnitudes of various per-
turbation terms controlling ray curvature are examined as
functions of depth in the ocean sound channel, and are com-
pared with curvature imposed by the mean profile of sound
speed.

The paper is organized in the following way. In Sec. II,
the ray equations valid in a moving medium in the form
appropriate for the deep-ocean sound channel are given. In
Sec. III, the sizes of various perturbation terms in the ray
angle equation are investigated, showing the relative impor-
tances of various small-scale effects. Results obtained using
the GM model and using oceanic data are computed and are
compared to each other. Sec. IV is a summary.

Il. RAY TRAJECTORIES IN A MOVING
INHOMOGENEOUS MEDIUM

The analysis uses an angle/depth version of the equa-
tions governing ray trajectories in an inhomogeneous me-
dium with inhomogeneous motion. These equations can be
derived using the calculus of variations and Fermat’s prin-
ciple of least time. This approach is outlined in one reference
[Munk, Worcester, and Wunsch (1995)], and appears in a
report [Bowlin et al. (1993)] (The report may be found on-
line). To apply Fermat’s principle to long-range propagation
in the ocean sound channel, we must assume that the ray
approximation, as derived from Helmholtz equation via the
eikonal equation [Ostashev (1997), for example], a high-
wavenumber model, provides a valid description of the phys-
ics at the frequency of interest. The ray approximation has
been shown to hold at frequencies as low as 75 Hz [Colosi et
al. (1999)].

Mathematically, Fermat’s principle is expressed by set-
ting the variation of the time to zero,
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ST = 5fdt:0, (1)

where the integral on the right hand side is over the path of
the ray with fixed limits of integration and where & is any
(differentiable) variation in the path that keeps the end points
fixed. In order to find the path we convert the integral over
dt to an integral over path length ds using the slowness in the
moving medium

Q=dtlds =1/(c + uy,) = 1/(c + u, cos 6+ u, sin 6), (2)

where ¢ is the sound speed, u, and u, are medium velocity
components along horizontal r axis and vertical z axes, and
u, is the medium velocity in the direction of the ray. 6 is the
angle between the ray and the horizontal. Out-of-plane ve-
locity is disregarded. This gives

ST = 5] Qds. (3)

The path length can be expressed in terms of Cartesian co-
ordinates x; as ds=(dx;dx;)""> where we use the summation
convention of implicitly summing over repeated indices.

Using manipulations common in the calculus of varia-
tions yields

ST = f 5x,.<a,.Q - di‘i(Qx,»)>ds, 4)

where a dot over a quantity indicates the total derivative of
the quantity with respect to s. For this expression to be zero
for any and all variations, the term within parentheses must
equal zero. This yields the ray equation, which may be also
be written

Q Y

The components X; form a unit vector pointing along the
direction of the ray. The second term on the right hand side
is the projection of VQ/Q in the X direction. Thus X is equal
to that part of VQ/Q which is perpendicular to the path of
the ray.

To put this into a more familiar form used in ocean
acoustics, and applying the typically used restriction of
propagation only within a plane, consider the ray angle 6.
The » component of the resulting ray equation is an expres-

sion for 6,

Q0= 0.0 cos §— 3,0 sin 6. (6)

The slowness S=1/c is typically used in derivations of this
type, instead of the quantity Q used here. The inclusion of
medium velocity in the slowness implies that an advective
push of the sound does not invalidate Fermat’s principle,
which may be intuitive. Intuition does not constitute a proof,
however. Fortunately, a proof that Fermat’s principle is valid
for a moving medium has recently been published [Godin
and Voronovich (2004)].
A few manipulations yield
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de .
= 0(d.c + d.u, cos O+ d.u. sin 6)

+ O tan 6(d,c + d.u, cos O+ J,u, sin 6). (7)
Now, expand Q with u;/c as a small parameter, giving

deé 4 .
il (I —u, cos O/c —u, sin O/c)(d.c + d.u, cos 0
-

+d.u, sin 6) + ¢ tan O(1 — u, cos 6/c — u, sin O/c)
X(d,c + du, cos O+ d.u, sin 6). (8)

Eighteen terms remain on the right hand side. With no mo-
tion this is the basic ray angle equation. The other terms
show the effects of advection, which are small in the ocean.
If the sound speed is written as a basic profile plus perturba-
tions c(r,z)=c,(z)+c’'(r,z), and if we delete most of the de-
rivatives with respect to range, which are smaller than de-
rivatives with respect to vertical because the ocean is known
to have anisotropic perturbations, then we can write an ex-
pression that includes the effects of velocity and sound speed
perturbations
de

i M1 =c'le,—u, cos blc, — u, sin Olc)(d,c,
R

+d.¢’ + du,cos 0+ du, sin 0— d,c,tan 6), )

where terms of higher order in ¢'/c, have been omitted.
Further analysis in the next section shows the relative influ-
ences of the anomaly c¢’, the shear d.u,, the strain du,, and
the velocities u, and u,.

An additional equation needed to trace rays is that for
ray height

dz
— =tan 0. (10)
dr
If travel time is of interest, it is given to first order in u;/c by
this expression:

dt sec @

dr ¢

(I —u,cos O/c—u,sin 0/c). (11)

The advective effect of the medium velocity enters in an
intuitive way.

Note that (9)—(11) have the same meaning as the sets of
equations appearing in other works [Franchi and Jacobson
(1972); Lamancusa and Daroux (1993); Ostashev (1997)],
which might have been chosen for analysis instead. How-
ever, the form used here contains medium properties in only
one of the two geometry equations, facilitating the analysis.

lll. COMPARISON OF PERTURBATION TERMS
To first order in u;/c, and c¢’/c,, rewrite (9) as

dao 1 , .

= =% [d.co(1 =c'lc,—u, cos Olc,—u. sin blc,)
+d.c'+du,cos O+ d.usin §—dc,tan 6].  (12)

Here, we have taken advantage of the fact that small-scale
ocean sound-speed and velocity perturbations have red spec-
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tra [Garrett and Munk (1975); Pinkel (1984)], so that most of
the energy is at low wavenumbers, below order 277/(500 m)
in the horizontal and order 27/(100 m) in the vertical.
This means that the differentiation operation on perturba-
tions (multiplication by wavenumber for members of a
Fourier expansion) reduces magnitude, so that many de-
rivative terms have been omitted.

There are eight terms on the right-hand side of (12).
Although many small terms have already been neglected,
many remaining terms are typically also quite small and
could sensibly be omitted for almost all ocean acoustic situ-
ations. There is no danger in retaining these terms, however,
although their presence may obscure the essential physics.
The danger lies in incorrectly omitting significant terms. The
first and last terms in (12) represent the effect of the unper-
turbed sound channel. Between them are six perturbation
terms. The first three perturbation terms are corrections to the
rate of change of @ versus r that arise because the sound is
not traveling at the background speed c,. These are very
small and are not considered any further. Term 7 is expected
to be much less than term 2 and is also not evaluated. (The
ratio of term 7 to term 2 for a wave of angular frequency w
is w/d.c,.) The relative sizes of the remaining perturbation
terms (5 and 6, d,¢’ and d.u, cos ) are examined in the next
section using two methods: Computations involving GM
model internal-wave spectra, and evaluation in terms of di-
rectly observed small-scale velocities and sound-speed per-
turbations. Because a number of papers have shown that re-
alistically scaled perturbations ¢’ can lead to large ray path
alterations about a mean state [Beron-Vera and Brown
(2003); Virovlyansky (2003)], we must only show that
d.u, cos @1is similar to d,c’ in magnitude in order to verify its
importance.

A. Analysis of terms using a spectral model

The GM model spectrum, which fits observed internal
wave spectra in most regions of the deep ocean (away from
the uppermost 500 m) within about a factor of three, pro-
vides expressions for variances of internal wave horizontal
velocity éi=7u,+yu,, shear dii/dz, displacement 7, and strain
d,m. Hat indicates vector. 7 and y are unit vectors. The square
roots of these provide useful estimates of typical perturbation
term magnitudes. Worcester (1977) has already analyzed the
relative sizes of terms 5 and 6 using the GM model spectrum
and a canonical sound-speed profile. Only a few numbers are
given, however, and subsequent work has formalized the re-
lationship between shear variance and strain variance in the
model, so a similar analysis is included here. Also, the GM
model was new at the time of that publication, and details
concerning how it compares with oceanic data have since
been uncovered. These are discussed here.

The GM model expresses wave spectral density in terms
of frequency and vertical mode number. Manipulations allow
spectra in terms of frequency, horizontal wavenumber, and
vertical wavenumber to also be written. The dispersion rela-
tion, which relates wavenumber angle from the horizontal to
frequency, constrains the model, so that only two of those
three are independent. The primary features of GM are sym-
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FIG. 1. The top left panel shows temperature 7(z) and salinity S(z) (dashed
line) profiles used in the GM model computation of fluctuation term rms
values. The top center and top right panels show buoyancy-frequency and
sound-speed profiles computed from 7(z) and S(z). The lower panel shows
rms magnitudes of terms 1 (mean profile), 5 (strain), and 6 (shear) in Eq.
(12). The lower panel also shows the dimensionless ratio of shear to strain
rms magnitudes at the right, as a function of depth. The shear to strain ratio
R, is 3 in the GM model. Higher R, have been observed in the ocean,
implying a higher ratio of shear to strain effects.

metry in vertical wavenumber, horizontal isotropy, and sepa-
rable wavenumber and frequency dependencies. The fair
agreement with observation stems in part from the fact that
the model parameters were deduced from observations [Gar-
rett and Munk (1975)]. Some of the differences between GM
and actual ocean spectra are pertinent to this work and are
discussed later.

For given temperature and salinity profiles, the GM
model yields expressions for the four variances of interest
that are functions of depth, with depth-dependence param-
eterized in terms of the buoyancy frequency N(z), which is
proportional to the density gradient. For this computation,
profiles from the summer Levitus database for the position
27° N, 48° W in the North Atlantic are chosen [Levitus
(1982)]. From these, N(z) and c,(z) are computed (Fig. 1).
For the GM76 version of the model, the variances are given
as follows [Gregg (1989)]

() = (u) + (u3) = (3/2)L*ENG(NIN,), (13)
((0.u)*), = (3/2)WEDj:Nik,(N/No)*, (14)
(%) = (1/2)Eb*(NIN,) ™, (15)
(@), = (90D [(R,N?), (16)

where E=6.3X 107> is the dimensionless energy param-
eter, Ny=5.2X 1073 (3 cph), f is the Coriolis frequency,
b=1300 m is the stratification length scale, and j.=3 is the
internal wave bandwidth parameter. The shear to strain
ratio R, is 3 for the GM model. The notation ( ), means
integrated up to cut-off vertical wavenumber k,. The final
expression stems from a different paper than the others
[Polzin, Toole, and Schmitt (1995)]. Note that b
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=1300 m is almost universally chosen when the GM spec-
trum is evaluated, despite the fact that the N(z) profile
rarely has the form exp(z/1300), particularly in the upper
500 m.

Rms values of u,,du,,n, and strain d,7 are found by
taking the square roots. Rms magnitudes of the horizontal
velocity and shear terms (third and sixth) of (12) can then be
computed directly. The ¢’ terms (second and fifth) require
conversion of displacement to sound speed perturbation via
c"=n(d.c,— vac,) Where v, is the adiabatic sound speed gra-
dient, typically 1.1X10° m™', and via d.c'~d,7(d.c,
- ’Yaco)

The lower part of Fig. 1 shows the magnitudes of the
rms values of three of the five terms chosen for analysis, as
functions of depth. Terms 2 and 3 lie off the left edge of the
plot, varying between 1077 at great depths and 10~ at shal-
low depths. The shear term (number 6) is a little smaller than
the d.¢’ strain term (number 5). Both exceed the magnitude
of the background term (number 1) near the sound channel
axis. The strain term is seen to give an appreciable effect in
the upper water column, consistent with the results of the
papers showing ray path fluctuation cited previously. The
shear term approaches the strain term in magnitude at depth,
but each are smaller than d.c, (term 1) there.

Shear term rms values are smaller than strain term rms
values at all depths for this model, with the ratio ranging
from 0.08 to 0.15 in the upper kilometer. (These are different
values than obtained by Worcester using the canonical pro-
file). However, we have two reasons to believe that the GM
model underestimates shear with respect to strain. One rea-
son is that GM does not include near-inertial waves, which
have high shear and low strain, to the degree sometimes
observed in the field, and does not include the spectral peaks
at tidal bands (internal tides) that are apparent in some data
[Nash et al. (2004)]. An excess of these types of waves at the
low-frequency end of the internal-wave band would increase
the shear to strain spectral ratio above the GM value of R,
=3. (Some data sets do not provide enough information to
compute R,=3.) Another reason is that R,>3 have been
observed in the upper kilometer of water at many locations
[Polzin et al. (2003)], implying that excess low-frequency
waves and/or finescale velocity features such as zero-
frequency geostrophically balanced vortical modes (not in-
cluded in GM), may be prevalent. The shear variances at
those locations exceed that of GM, while the strain variances
are in line with GM. This would boost the shear term con-
tribution to trajectory perturbations a factor of about three in
the extreme cases, increasing the shear-effect to strain-effect
ratios to the range 0.24 to 0.45.

B. Observational evidence

The GM model is a useful benchmark for intercompari-
son of observed internal wave spectra. However, even with
adjustments such as made at the end of the previous section,
it does not fully describe many observed spectra, particularly
those in the upper ocean [Duda and Cox (1989); Pinkel
(1984); Pinkel (1985)]. The separability criterion is notably
troublesome. Thus, it is prudent to estimate perturbation term
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sizes by looking directly at shear and strain data. Multiplica-
tion of the GM spectrum by a scaling factor so that it
matches observed rms shear, for example, might not produce
rms strain that also matches the observations.

Data sets providing concurrent estimates of rms shear
du, and rms d,c’ are available. One such data set was col-
lected in the North Atlantic Tracer Release Experiment
(NATRE) in the North Atlantic Ocean at 25-27°N, 28-35°W
[Duda and Jacobs (1995); Ledwell, Watson, and Law
(1998)]. Using data from a profiling float, rms shear values
from a depth range of approximately 250—425 m were mea-
sured to be 0.005 s~! in the fall of 1992 and 0.007 s~! in the
spring of 1993 [Duda and Jacobs (1995)]. These must be
multiplied by 0.707 to get standard deviation for a single
component. The resulting rms d,u, values of 0.0035 and
0.005 s~! are a bit higher than the term 6 predictions of order
0.002 s™! shown in the lower part of Fig. 1. Rms high-
frequency strain values obtained from the same float were
always near (d,7),;,,=0.3 s~!. These strain values differ from
the values of Polzin et al. (2003) mentioned at the end of the
previous section because these do not include static fine-
structure signatures (possibly vortical modes), which those
do (i.e., these data contain only strain and shear effects in the
internal-wave frequency band). Because measured |d.c,| is
~0.04 s7! and |d.c,—yc,| is ~0.06 s7!, resulting rms d.c’
values are about 0.018 s~!, close to the term 5 prediction
shown in Fig. 1, but only about four times larger than the
higher of the two rms d,u, values. Thus, the ratio of shear
and strain term rms values is 0.25 rather than the GM value
near 0.1.

Consistent with this, shear to strain ratios R, measured
in NATRE ranged from 7 to 19, always exceeding the GM
value of R,=3. Additional finescale shear estimates were
collected with a mooring during the experiment, and tempo-
rally variable shear intensity was observed, sometimes at-
taining values far exceeding GM [Ledwell, Watson, and Law
(1998)].

The nature of the measurements may make the separa-
tion of sub-inertial band and internal-wave band signals dif-
ficult [Polzin et al. (2003)]. Note that although NATRE
internal-wave strain measurements were consistent with rms
d,c’' ~0.02 s7!, observed d.c’ values exceeded this by up to a
factor of two in individual profiles, stemming from “static
finestructure” that was removed before estimation of high-
frequency strain (i.e., internal-wave strain). This means that
although the ratio of rms d,u, to rms wave-induced d,c’ ex-
ceeded the GM prediction, the overall ratio of du, to d.c’
effects may, by chance, be closer to that given by GM.

IV. CONCLUSION

It has been shown that the ray-refracting effects of ver-
tical shear of horizontal currents in the ocean can have mag-
nitudes exceeding one-quarter those of strain-induced sound
speed perturbations. Ratios of rms shear to strain effects are
up to 0.25 in the spring 1993 NATRE observations [Duda
and Jacobs (1995)], and of that same magnitude for other
data sets [Polzin et al. (2003)]. Because ocean sound-speed
perturbations are widely believed to be large enough to in-
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fluence ray geometry in long-range propagation, the shear is
thus large enough to do the same. This value of 0.25 in the
upper few hundreds of meters in the ocean exceeds values of
0.13-0.17 for those depths computed earlier from an
internal-wave model [Worcester (1977)], and exceeds values
of 0.08-0.15 similarly computed here. Thus, precise study of
long-range acoustics may require that shear effects be in-
cluded rather than neglected. Finally, the analysis shown here
uses angle-depth ray geometry equations, rather than other
canonical variable or vector forms, which place all of the
effects into a single equation, simplifying the comparison of
shear, strain, and mean-profile effects.
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