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The Value of Harmful Algal Bloom Predictions to the 
 Nearshore Commercial Shellfish Fishery in the Gulf of Maine 

 
 
 

Abstract 

 

In this study, we develop a framework for measuring the value of harmful algal bloom 
(HAB) predictions.  The framework captures the effects of both private and public 
responses to HABs.  Using data from the New England nearshore commercial shellfish 
fishery and impact estimates for a large-scale HAB event in 2005, we illustrate how the 
potential value of HAB forecasts may be estimated.  The results of our study suggest that 
the long-term value of a HAB prediction and tracking system for the Gulf of Maine is 
sensitive to the frequency of HAB events, the accuracy of predictions, the choice of HAB 
impact measures, and the effectiveness of public and private responses.   

 

Keywords harmful algal bloom (HAB), red tide, fisheries, value of information, forecast, 
marine scientific research
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1. Introduction 

During the last several decades, harmful algal bloom (HAB) events have been 
observed in more locations than ever before throughout the United States.  Virtually all 
coastal regions of the United States are regarded now as potentially subject to a wide 
variety and increased frequency of HABs (Hoagland et al. 2002).  The idea that harmful 
algal blooms (HABs) can result in serious economic impacts for a range of coastal 
businesses and users of the ocean is widely accepted by policymakers, natural resource 
managers, research scientists, industry officials, the media, and the public.   

Public officials have a deep interest in developing a capacity for predicting HAB 
events.  Prediction can be based on process-based or empirical models linking the 
occurrence of HAB events to observable environmental factors.   Coupled bio-physical 
models useful for predicting blooms are under development for the Gulf of Maine, the 
Gulf of Mexico, and the Pacific Northwest.  In congressional testimony delivered in 
2003, Dr. Donald Scavia, former Senior Scientist at NOAA’s National Ocean Service, 
describes scientific research in this area: 

In our laboratories and through the [ECOHAB] program, NOAA and our 
partners have investigated factors that regulate the dynamics of HABs and 
the mechanisms by which they cause harm. We have produced coupled 
bio-physical models that form a critical base for building HAB forecasts; 
applied technology from remote sensing, and medical science, to the 
detection and tracking of algal species and their toxins to help states target 
their monitoring and management efforts; and developed a national 
database where research findings are shared and made available to 
scientists and the public (Scavia 2003). 
 
From a management perspective, it is crucial to begin developing an understanding 

of the scale of the economic costs to society of HAB events and to determine the extent to 
which predictive models might be useful in reducing these impacts.  The scale of 
economic losses and the value of HAB predictions can tell us something about the 
appropriate scale of public and private investments in preventing or mitigating the losses.1   

The objective of this study is to develop and apply a framework for assessing the 
economic value of the prediction of HAB events.  The economic value of the prediction 
                                                 
1 For example, Stel and Mannix (1996) describe two examples in which the accurate forecast of a HAB 

event may lead to significant reductions in related damages.  In the case of offshore salmon farms, farmers 

could tow their enclosures to sites predicted to be safe from the bloom.  In another case, operators of land-

based fish farms using seawater could shut down pumps and wait for as long as a week for the peak of a 

bloom (in the typical case) to pass.  
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of a HAB event arises from the use of the prediction in public and private decision-
making.  There is a well-established general formalism for assessing the value of 
information such as a prediction in economic decision-making.  We develop this 
formalism for the problem of HAB prediction and apply it to nearshore commercial 
shellfisheries in the Gulf of Maine.  We focus on blooms of algae (Alexandrium spp.) that 
produce paralytic shellfish poisoning (PSP).  These blooms frequently result in the 
closure of productive shellfish beds along the coasts of Maine and Massachusetts, 
resulting in significant economic impacts (Shumway et al.1988; Jin et al. 2008).  By 
developing a model for assessing the value of HAB predictions that can be adapted and 
applied generally, the study provides a potentially useful framework for investment 
decisions in scientific research and environmental monitoring to support HAB 
predictions. 

The numerical example we present here illustrates a procedure for calculating the 
value of HAB prediction.  Note, however, that the results presented here may not capture 
the full social value of a HAB prediction and tracking system.  As discussed below, our 
choice of a HAB impact measure is based on an subset of fisheries, nearshore shellfish 
digging and growing.  Further, our estimate reflects only the impacts arising from a large-
scale HAB event; it does not include the effects of more frequently occurring small-scale 
HAB events.  Moreover, we consider only one of the potential private response options 
identified by fishermen (i.e., increasing harvests during the spring in advance of the 
large-scale event), and we do not consider other potential response options by individuals 
or firms in other sectors of the coastal economy.2  Finally, our analysis does not consider 
the potential benefits associated with the reopening of certain offshore shellfish fisheries 
on Georges Bank and in the Gulf of Maine, which arguably might occur once a HAB 
prediction system is in operation. 

The remainder of this paper is organized as follows.  Section 2 presents 
background information on HAB impact assessment, HAB prediction, and private and 
public decisions with respect to HAB events.  Section 3 describes the methods for 
estimating the value of HAB prediction.  Model specification and data are described in 
Section 4.  The results of model estimations are summarized in Section 5.  Section 6 
presents our conclusions. 

                                                 
2 The benefits of a HAB forecasting system in other sectors comprise enhanced capabilities to 
plan for alternative occupations and activities.  For example, with advance notice of a bloom 
event, coastal tourists who engage in recreational shellfishing might choose to travel to a 
destination that is unaffected by a HAB closure. 
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2. Background 
 
2.1. Economic Impact of the 2005 HAB 

Alexandrium fundyense is a dinoflagellate that produces a toxin that may be 
concentrated in the tissues of shellfish as they filter seawater for food.  The toxin may 
cause paralytic shellfish poisoning (PSP) in humans that eat the shellfish.  Current 
management measures include toxicity testing of shellfish throughout the coastal region, 
and closures of shellfish beds when a toxicity threshold3 is exceeded (Vakalopoulos et al. 
2006).   

The 2005 bloom of Alexandrium fundyense was the most widespread and intense 
in New England waters since a similar event more than three decades  earlier.  In 2005, 
record levels of PSP toxicity were measured at some locations where PSP had been 
known to occur, while at other locations PSP toxicity was measured for the first time 
ever.  Record-level concentrations of algal cells were observed in the southwestern Gulf 
of Maine.  Other records set in 2005 include the earliest toxicity, the longest closures, and 
the largest area affected (i.e., a large closure of federal waters).  Disaster declarations 
were issued in Maine and Massachusetts, as shellfishermen were unable to harvest from 
the affected areas for prolonged periods.  The shellfish closures along the New England 
coast were instituted in April and August4 with the most significant closures occurring 
from May to July.  

Using historical data from the National Marine Fisheries Service, the 
Massachusetts Division of Marine Fisheries, and other sources, we developed estimates 
of the direct economic impacts of the 2005 event on the nearshore commercial shellfish 
fisheries in Maine and Massachusetts (Jin et al. 2008).  Our measure of HAB impact is 
based on a comparison of two scenarios: with and without the HAB event.  Specifically, 
we examined changes in the value of nearshore shellfish landings: 

 

BA VVV −=Δ        

                                                 
3 A toxicity threshold is the level at which  humans are deemed by experts to be adequately protected from illness 

or death. 
4 Massachusetts Division of Marine Fisheries records on shellfish area closures and openings cover a period 

from April 27 – August 19, 2005. 



 6

where A and B refer to the two scenarios with- and without-HABs; VA represents the 
actual harvest value in 2005 and VB is a baseline harvest value.5  The results indicate that 
the total direct impacts in Maine were $2.5 million, including lost revenues in the 
softshell clam and mussel fisheries. The total direct impacts on the nearshore commercial 
shellfish industry in Massachusetts were $15.7 million (see Table 1). 
 

2.2. Development of Predictive Models 

Scientists have called for methods and technologies to mitigate the adverse 
impacts of blooms (e.g., NSGCP 2001; CENR 2000; HAMM 1999; Boesch et al. 1997; 
Anderson 1995; Anderson et al. 1993).  A set of important management tools that are 
being developed involve the use of monitoring technologies and predictive models that 
would allow for the possibility of forecasting bloom events of the toxic dinoflagellate 
Alexandrium fundyense in the Gulf of Maine and initiating private or public responses to 
minimize economic impacts (e.g., Anderson et al. 2000, 2005; McGillicuddy et al. 2003). 

Alexandrium has historically bloomed in the Bay of Fundy, but blooms were not 
known to occur in the southwestern Gulf of Maine, including Massachusetts Bay, until 
1972, when a slow-moving hurricane brought cells down the coast, presumably from the 
Bay of Fundy.  Following the 1972 bloom, recurrent annual outbreaks have been 
observed in northern Massachusetts, New Hampshire, and western Maine.  Further south, 
in Massachusetts Bay, shellfish toxicity was frequently observed from 1972 to 1993 but 
was nearly absent from 1994 to 2004 (Anderson et al. 2005; Vakalopoulos et al. 2006).  
The extensive bloom in 2005 was the result of favorable offshore circulation, wind, and 
river runoff, including two or more “northeaster” storms that pushed waters onshore.  In 
addition, cysts were abundant in offshore sediments (Vakalopoulos et al. 2006). 

Researchers at WHOI have developed a hindcast model that is capable of 
simulating the large-scale structure of the 2005 bloom in its initiation and development 
phases (from March to June).  The model has been improved to simulate bloom 
termination as well.  The coupled physical/biological modeling system covers the Gulf of 
Maine, Massachusetts Bay, and waters south of Cape Cod, with a spatial resolution on the 
order of 1 km along the coast and growing to roughly 30 km in deeper waters (He et al. 
2005; Vakalopoulos et al. 2006).  

                                                 
5 We examine gross values (price times quantity of fish landed).  We do not examine net values because of 

the lack of data on fishing costs in the shellfish sector. Note that, if costs are close to revenues, there would 

be little welfare impact. 
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The model runs rely on a substantial amount of field data and constant updating 
of these data inputs.  The data include the speeds and directions of ocean currents, water 
temperature and salinity, winds, surface heat exchanges, tides, river runoff, the 
distribution and behavior of Alexandrium cells in the water and in seafloor sediments, 
waterborne nutrients, solar radiation, and large-scale motions in the North Atlantic 
Ocean.  While current weather and oceanographic data are readily available at present, it 
is time consuming and costly to collect field data on cyst abundance and nutrient levels.  
Without real-time and in-situ data on cells and nutrients, researchers must substitute the 
long-term means of relevant parameters, which in turn affect the precision of the model 
results.     

With sufficient technical and financial support, the model system should be able 
to generate red tide forecasts, a few weeks in advance, on a regular basis.  Given that the 
red tide model uses weather predictions (e.g., wind) as inputs, one may view the precision 
of weather forecasts as an upper limit for the precision of the red tide forecast. 

 

2.3. Private Decision-making in Response to HAB Prediction 

Shellfish growers and shellfishermen alike are concerned with both the timing and 
duration of HAB closures.  Growers tend to be involved in business planning to a more 
significant extent than shellfishermen.  Therefore, growers are more likely to take 
advantage of HAB predictions than shellfishermen.  At present, however, supplies from 
aquaculture account for only a small fraction of the total nearshore shellfish production in 
Maine and Massachusetts. 

The ability to plan for a closure in advance of the event can make a difference.  
Unexpected closures are costly to both growers and shellfishermen.  At this time, most 
growers see little value in long-term annual predictions of HAB events, however,  
although they do see some value in one- to two-week forecasts of potential closures.  
Given a short-term forecast, their primary strategy would be to harvest product in 
advance of a closure.  Because the main market is for fresh product, with a pending 
closure, shellfish can be harvested in advance of a bloom and kept alive for a short period 
of time to be sold as needed.  Given a forecast of a closure, most shellfishermen also are 
likely to try to harvest as much product as they can prior to the closure.  This strategy is 
limited by the time of year (availability of markets), tides, and legal restrictions.  In the 
case of a major bloom, like the 2005 event, these response measures, which are relatively 
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small in scale, are unlikely to mitigate all of the negative impact of HABs on the 
shellfishing industry. 

 

2.4. Public Decision-making in Response to HAB Prediction 

In both Maine and Massachusetts, the existing monitoring system for HABs 
involves an ongoing program of sampling and performing tests to determine the level of 
toxicity (typically by conducting numerous mouse bioassays).  In the event that toxic 
levels of shellfish poison are discovered in sampled shellfish, by law, a portion of the 
intertidal and submerged lands must be closed to shellfishing until subsequent tests show 
that the HAB has dissipated.  The closures relate exclusively to the protection of public 
health; there is no explicit consideration of the costs of closures to either commercial or 
recreational shellfishermen or aquaculturists.  This practice could be justified on 
economic grounds, since public health costs associated with seafood poisoning resulting 
from non-closure would likely be much greater than the losses from shellfishing.   

Monitoring in Maine takes place from April to October.  Each year, between 
4,000 and 5,000 mouse bioassays are performed.  Maine spends approximately $280,000 
on its monitoring and management program for HABs each year. 

Because HAB prediction models can track a HAB event spatially and temporally, 
state shellfish managers can utilize model information to guide their management actions.  
Specifically, rather than cordoning off large areas, they may be able to close fishing areas 
more selectively and precisely.  Thus, during a HAB year, a larger number of unaffected 
shellfish beds may be kept open, thereby minimizing lost landings. 

 

3. Methods 

A well-established model exists for assessing the economic value of predictions 
of future conditions.  This model has been applied to assess the value of long-range 
climate prediction, including ENSO prediction, to US agriculture (Adams et al. 1995; 
Kite-Powell and Solow 1994; Solow et al. 1998) and to the salmon fishery in the Pacific 
Northwest (Costello et al. 2001; Costello et al. 1998).  Using this approach, the value of 
HAB predictions to a shellfishery is given by the expected difference between the 
economic value that results when the prediction is used in decision-making and the 
economic value that results when the prediction is not used in decision-making. 

The model for assessing the value of prediction is as follows (for fuller 
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treatments, see Berger [1985] or Clemen [1996]).  Let α denote a particular action 
undertaken by a decision-maker and let the random variable S denote the true state of 
nature.  Suppose that the state of nature concerns the occurrence or non-occurrence of a 
HAB event within a year.  Thus, S can take one of two values:  H (a HAB event occurs) 
or N (an event does not occur).  Finally, let )|( HV α  be the annual economic value to the 
decision-maker for action α when a HAB event occurs, and, similarly, let )|( NV α  be 
the annual value for action α when an event does not occur.  In the absence of a 
prediction of S, the expected benefit (V0) for action α is given by: 

)()|()()|()]([ 000 NprobNVHprobHVVE ααα +=    (1) 

Let π  be the probability of a HAB event, and (1) becomes:   

)1()|()|()]([ 000 παπαα −+= NVHVVE     (2) 

Suppose α ={H, N}, that is, the decision-maker can take one of two actions:  H (an 
alternative harvest schedule in response to HAB) or N (normal harvest schedule for no-
HAB years).  The optimal action α* (= H or N) is the one for which the expected benefit 
(2) is maximized. 

)]}([)],([{maxarg 00
* NVEHVEαα =     (3) 

Note that, in the absence of a prediction, the event probability π  remains constant from 
year to year.  As a result, other things being equal, the optimal action α* also remains 
constant from year to year. 

Suppose now that an annual prediction of S is issued prior to the decision point.  
Let the random variable X denote this prediction, which can also take only two values:  H 
or N.  Let x be the prediction in a particular year.  In light of this prediction, the decision-
maker updates the probability of H or N according to Bayes’s Theorem: 

     
)(

)()|()|(
xprob

sprobsxprobxsprob =       (4) 

where prob(s | x) is the posterior probability. )s|x(prob  is the likelihood function of x, 
given s, that is, the likelihood that prediction x will have been made, given that the true 
state of nature is s.  prob(s) is the prior probability reflecting the decision-maker’s 
existing knowledge about S.  In our case S = {H, N}, the posterior probabilities are: 

)(
)|()|(

xprob
HxprobxHprob π

=   and  
)(

)1()|()|(
xprob

NxprobxNprob π−
=    (5) 
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and 

     )1()|()|()()|()( ππ −+== ∑ NxprobHxprobsprobsxprobxprob    (6) 

is the probability of predicting x (= H or N).  The likelihood function is a measure of 
prediction skill.  For example, for a perfect prediction, 1)|( =sxprob  if x = s and 0 
otherwise for both s = H and s = N.  In contrast, for a completely non-informative 
prediction, 2/1)|( =sxprob  irrespective of x and s.  Once the decision-maker updates 
the probabilities, he acts as before to choose the optimal action α**(x) to maximize 
expected benefits (V1): 

))|(1()|()|()|()]|([ 111 xHprobNVxHprobHVxVE −+= ααα     (7) 

 

That is, 

)]}|([)],|([{maxarg)( 11)(
** xNVExHVEx xαα =    (8) 

Note that V1 is the value function with a HAB prediction, which may differ from the 
value function without a prediction (V0).  This is because the HAB forecast system is 
capable of tracking HAB movement, which leads to a reduction in the total area closed 
for HAB and, in turn, a reduction in economic losses.  

For the decision-maker, the difference in expected benefits when the prediction is 
x is: 

     )]([)]}([{)( *
0

**
1 αα VExVExD −=                                                 (9) 

Note that this difference is conditional on the prediction being x.  For X = {H, N}, the 
unconditional difference is given by: 

))(1()()()( HXprobNDHXprobHDD =−+==    (10) 

The quantity D, which can be shown to be non-negative, is the annual value of prediction 
to the decision-maker.  For a period of T years (t = 1, …,T), the net present value (NPV) 
of forecasting is: 

∑
= +

T

t
t

D
1 )1( δ

      (11) 
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It is important to point out that the value of prediction to a region, as opposed to 
an individual decision-maker, will be the product of decisions made by many decision-
makers.  In the case of HAB predictions for a commercial shellfishery, these decision-
makers will include both private harvesters and shellfish managers.  We develop 
estimates of the aggregated value at the regional level using results from models of a 
regional shellfish fishery under different management scenarios.   

In summary, estimating the value of HAB forecasting in the New England 
nearshore shellfishery involves four steps.  The first step is to measure the economic 
impacts (e.g., harvest losses) of HAB events in the absence of prediction.  Essentially, 
this involves an economic impact analysis of the status quo.  The second step is to 
characterize the prediction itself.  We focus on the situation in which the goal of HAB 
prediction is to predict the occurrence or non-occurrence of a large-scale event within a 
year.  The value of HAB prediction depends on the accuracy or skill of the prediction.  
We assess the value for a range of potential skill levels.  The third step in the assessment 
of the value of HAB prediction is to examine how decisions would be made in light of a 
HAB prediction.  This step involves identifying a range of potential responses by public 
and private decision-makers and evaluating their economic consequences.  The last step 
involves developing an overall measure of prediction value using the model described in 
the previous section. 

 
4. Model Specification and Data 

To estimate the value of HAB forecasting, we need to define the value function 
(V) for different actions (α) under different states of nature (s) without prediction (eq. 2) 
and with prediction (eq. 7).  In our framework, α ={H, N} and S ={H, N}, so we have 
four annual values each for V0 and  V1.  The V function captures the aggregate value at 
the industry level.  In the nearshore shellfish industry, the relevant decision-maker could 
be either a shellfisherman or an aquaculturist (we refer to both types of decision-makers 
as “fishermen” here).  A fisherman would maximize the net revenue of his business by 
choosing optimal levels of factor inputs (i.e., fishing effort).  Generally, in the absence of 
a HAB prediction, the fisherman makes his decision according to experience (eq. 3).  He 
may make a different decision, however, on the basis of a HAB prediction (eq. 8).  
Assuming that fishermen act similarly with respect to HAB events,6 we consider the sum 

                                                 
6 The assumption of uniform behavior is, of course, a strong one.  Fishermen might respond to information in 

different ways, depending upon the set of available opportunities, risk profiles, endowments, among other 



 12

of revenues across individual fisherman; in other words, we assume that there is a 
decision-maker for the industry.  We do not examine changes in fishing effort or 
associated costs explicitly, because of a lack of relevant data.  

In addition, we assume that HAB prediction capability will not replace existing 
monitoring and that the predictions need in situ validation to ensure public health safety.  
Thus, we assume that HAB prediction will not significantly reduce the level of field 
testing and associated costs. 

As shown in Table 2 and Figure 1, there is a seasonal trend in nearshore shellfish 
landings in Maine.  To estimate the value of HAB predictions, we use the baseline value 
(i.e., the 2000-2004 average) for non-HAB years and the 2005 value for HAB years.7  We 
do not have monthly statistics for Massachusetts and therefore assume that the time 
profile for Maine is applicable to Massachusetts.8  We divide a year into three periods: 
Period I (January through March), Period II (April through August), and Period III 
(September through December).  In a HAB year, the three periods correspond to the pre-
HAB phase, the HAB phase, and the post-HAB phase, respectively.9 

The benefits associated with HAB prediction consist of two parts.  The first part is 
related to private decisions made by fishermen in Period I.  Specifically, fishermen have 
two options in their decision set: to increase harvest level in March (α = H) or to maintain 
a baseline harvest level in March (α = N).  In a HAB year, increased harvest in the pre-
HAB phase will partially offset losses in the HAB phase.  However, in a non-HAB year, 
the increased harvest in March is suboptimal and results in a reduction in the total 
revenue in that year.  The second part of the benefit may be realized when shellfish 
managers in Period II in a HAB year decide to close fishing areas more selectively than 
they otherwise would, based on information from the HAB tracking model.  The 
improvement in public decision-making about closures effectively makes the scale of a 
HAB “smaller,” and thus the HAB-related losses are reduced.  We capture this effect by 
specifying the value functions without and with prediction (V0 and V1) differently. 

For Period III, we assume that harvests are the same for both HAB and non-HAB 
years (Figure 1).  Direct economic losses to nearshore shellfish harvesters result from the 

                                                                                                                                                 
conditions.   If only a subset of fishermen rely upon HAB predictions, our assumption would overestimate the 

value of prediction.   
7 A small adjustment was made to the time profile of 2005 landings during the HAB months to smooth the curve. 
8 For a detailed description of shellfish landings data in the two states and the 2005 HAB impacts, see Jin et al. 

(2008). 
9 In reality, the lengths of each phase may vary, i.e., the HAB period may be longer or shorter. 
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coincidence of timing between environmental conditions ripe for a HAB and market 
demand, which typically peaks during the spring and summer tourist season.  The 
primary product form is a live product sold in a market with a distinct seasonal demand. 
Thus, although PSP does not kill shellfish, sales losses due to a PSP event in the spring or 
summer cannot be offset by increasing harvest later in the year because of a much lower 
demand then for live shellfish.   

We specify six model scenarios to estimate the value of HAB prediction under 
different conditions (Table 3).  In Models A through C, we examine the effects of the 
fishermen’s response only.  The combined effects of private and public decisions are 
simulated in Models D through F.  We estimate the values for V0 and V1 in Table 4 as 
follows.  Each year fishermen decide either to take HAB response actions (to increase 
harvest levels in March) or not (to follow a regular harvest schedule), and, in Period II, a 
HAB either occurs or does not occur. 

For a non-HAB year, when fishermen do not take response actions (α = N; s = N), 
both )|(0 NNV  and )|(1 NNV equal the annual value of nearshore shellfish landings in 
the baseline years.  In the case of Maine, for example, nearshore shellfish landings total 
$20.9 million.  For a HAB year, when fishermen do not take response actions (α = N; s = 
H), )|(0 HNV  equals the annual value in 2005 ($18.5 million in Maine).  Because of 
HAB tracking and improved public decisions, )|(1 HNV  may be larger than )|(0 HNV .  
For a 25% and 10% reductions in the area closed for HAB, )|(1 HNV  equals $19.1 
million and $18.7 million, respectively, for Maine.  

For a non-HAB year, when fishermen take response actions (α = H; s = N), we 
assume that both )|(0 NHV  and )|(1 NHV is 5% lower than the baseline value ($19.9 
million in Maine).  Note that to increase harvest in March is non-optimal for a non-HAB 
year.  Finally, for a HAB year, when fishermen take response actions (α = H; s = H), 
ceteris paribus, )|( HHVi  is greater than that in a HAB year when no actions are taken 
[ )|( HNVi  with i = 0 or 1], because increased harvest in March partially offsets the 
losses in landings in Period II. 

Since )|( HHVi captures the beneficial effects of HAB response actions, it is a 
key component in assessing the value of HAB predictions.  As noted above, the strategy 
to increase harvest in March is limited by the availability of markets, tides, and legal 
restrictions.  As shown in Table 3, we assume that fishermen may increase their March 
harvest value by 25% to 100%.  As noted, the red tide forecast capability should enable 
shellfish managers to design more precise and selective closures, so that the costs 
associated with lost landings may be minimized.  We assume that the losses will be 
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lowered by 10% to 25% each month during the HAB phase (April through August) (see 
Figure 1).  Combining the effects of increased harvest in March and reduced losses in 
HAB months, we have our high-end and low-end estimates for  )|(1 HHV , which are 
$20.4 million and $19.0 million, respectively, in Maine (see Models D and F in Table 4). 

Major HAB events, such as the 2005 red tide, do not occur frequently in New 
England.  For our estimation of the value of HAB prediction, we examine five frequency 
estimates: 2-, 5-, 10-, 20-, and 30- year events and associated prior probabilities (π = 0.5, 
0.2, 0.1, 0.05, and 0.033, respectively).  The forecast system currently under development 
may provide predictions of varying degrees of accuracy.  We examine three levels of 
accuracy: 100%, 90%, and 80% (Table 5).  Combining our prior and likelihood 
probabilities and using (5) and (6), we calculate the posterior distributions as presented in 
Table 6.  Note that a useful prediction alters the prior probability for a HAB event to a 
different posterior probability.  For example, when HAB is a 10-year event, the prior 
[prob(s) = π] is 0.1.  If the prediction is 100% accurate, the posterior probability for a 
HAB event (s = H) is 1.0 given a HAB prediction (x = H).  If the prediction is 90% 
accurate and a HAB is predicted, the posterior is 0.5 for s = H. 

 

5. Results 

Annual values of HAB predictions for Models A through C under different 
assumptions are calculated separately using (10), and the results are summarized in Table 
7.   These model scenarios simulate the fishermen’s responses only and do not 
incorporate a public response.  When the HAB is a 10-year event, the prediction is 100% 
accurate, and fishermen can respond to a HAB prediction by doubling their March 
harvest level (Model A), the values of the prediction are $127,000 and $131,000 per year 
for Maine and Massachusetts, respectively.  The total value from private response is 
$258,000  annually.  If the accuracy of prediction is reduced to 90%, the total value of 
prediction is reduced to $41,000 per year.  Because fishermen’s response options are very 
limited and small in scale, the value of prediction is zero for an imperfect prediction in 
Models B and C (representing 50% and 25% increase in March harvest, respectively).  
Generally, the value of HAB prediction decreases when the HABs are less frequent and 
when the fishermen’s response is more constrained.  For example, if the HAB is a 30-
year event and the response scenario is as depicted in Model C, the total value of a HAB 
forecast system making perfect predictions is only $21,000 per year.  In contrast, if the 
HAB is a 2-year event, the total value associated with Model A is over $1 million per 
year. 
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 Table 8 presents the value of the HAB forecast system resulting from public 
responses.  Recall that shellfish managers can minimize closed areas during a HAB event 
using information from the HAB tracking model.  Thus, )|(1 HNV  > )|(0 HNV , that is, 
even without ex ante response in March, fishermen can harvest more shellfish during a 
HAB season because a smaller area is closed (i.e., a larger area is kept open).  The total 
value of the tracking model is $455,000 per year if the closed area is reduced by 25% and 
the HAB is a 10-year event.  The value is smaller if HABs are less frequent and the 
tracking is less effective, and vice versa. 

 We calculate the combined value of the HAB prediction model given both private 
and public responses using Models D through F and report the results in Table 9.  The 
figures in the Table 9 are, in fact, the sums of those in Tables 7 and 8.  Assuming that 
HAB is a 10-year event and the prediction is perfect, the total annual value is $713,000 
for highly effective responses (Model D).  The total value is reduced to $61,000 if the 
responses are not very effective (Model F), the HABs are less frequent, and the prediction 
is not perfect.  In contrast, the total value increases to over $3 million if the HABs are 
frequent (every other year) and the responses are effective (Model D).  We compute the 
long-term value of HAB prediction using equation 11 and a 5% social discount rate.  As 
illustrated in Table 10, the net present value (NPV) over 30 years ranges from $51.3 
million to $0.9 million, depending on HAB frequency, accuracy of prediction, and 
responses.  

 
6. Conclusions 

HABs can lead to serious economic impacts in commercial shellfish fisheries.  
From a management perspective, it is crucial to understand the scale of the economic costs 
to society of HAB events and to determine the extent to which predictive models might be 
useful in reducing these impacts.  The value of HAB prediction can tell us something 
about the appropriate scale of public investments in developing HAB forecasting and 
tracking systems.  
 We have developed a framework for measuring the value of HAB predictions.  
Our model captures the effects of both fishermen’s and shellfish managers’ HAB 
responses.  Using data from the New England nearshore commercial shellfish fishery and 
impact estimates for the 2005 red tide event, we show how the value of HAB forecasting 
to the nearshore shellfish fisheries may be calculated.  Results of our study suggest that 
the long term value of a HAB prediction and tracking system for the Gulf of Maine is 
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quite sensitive to HAB frequency, accuracy of prediction, the initial choice of a HAB 
impact measure, and the effectiveness of public and private responses.  

Although our model includes essential interactions in HAB management in the 
nearshore shellfish industry, it does not capture the full benefits associated with reliable 
HAB prediction.  In addition to increasing harvest in March, several other private 
response options available to the fishermen may generate measurable benefits.  For 
example, fishermen may switch to another geographic location or another activity, once a 
preferred location is closed; they may harvest and relay the shellfish to protected waters 
from which the shellfish can be harvested a second time before delivery to the market; or 
they may harvest and hold product as frozen inventories.  Furthermore, our example 
ignores the potential benefits of a forecasting system to other fisheries, especially 
potential offshore shellfisheries such as Atlantic surf clam and ocean quahog, specialized 
markets, such as roe-on-scallop, and other sectors, including recreational fishing and 
coastal tourism.  As estimates of economic impacts in these other sectors become more 
clear, the value of HAB predictions is likely to grow.  An extension of the present study 
should include analyses of alternative response options, the benefits of predictions to 
other sectors of the economy,  and a more refined treatment of the spatial and temporal 
aspects of HAB management. 
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Table 1. Changes in Landings: Baseline versus 2005 
 

State Species Baseline 2005 Change
Maine Softshell clam 11,243,910 9,163,229 -2,080,681
 Mussel 1,557,289 1,165,544 -391,745
  Sum -2,472,426
   
Massachusetts Quahog 7,818,398 1,664,095 -6,154,302
 Softshell clam 11,850,575 3,991,344 -7,859,231
 Mussel 1,888,350 177,898 -1,710,452
  Sum -15,723,986
 
Notes: 
All values are in 2005 dollars.  Values in different years are converted to 2005 using PPI 
(Producer Price Index) for unprocessed shellfish.    
For Maine, values are the sums of monthly landings from April to August; baselines are 
constructed by computing the 2000-2004 average values. 
For Massachusetts, values are the annual totals; baselines are constructed by computing 
the 1990-2004 average values. 
For details, see Tables 1, 3, and 4 and related discussions in Jin et al. (2008).    
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Table 2. Value of Monthly Landings of Softshell Clams and Mussels in Maine 
 

Month Baseline With HAB Losses 
Jan 900,757 900,757 0 
Feb 944,352 944,352 0 
Mar 1,269,741 1,269,741 0 
Apr 1,454,168 1,135,058 -319,110 
May 2,001,316 1,444,940 -556,376 
Jun 2,761,211 1,956,901 -804,310 
Jul 3,128,955 2,789,166 -126,247 
Aug 3,455,549 3,002,708 -666,383 
Sep 1,691,273 1,691,273 0 
Oct 1,330,727 1,330,727 0 
Nov 956,475 956,475 0 
Dec 1,054,161 1,054,161 0 
Sum 20,948,685 18,476,259 2,472,426 

 
Note: 
Values are in 2005 dollars. 
Baselines are constructed by computing the 2000-2004 average values. 
Values with HAB (in 2005) are adjusted to exclude changes unrelated to the red tide 
during non-HAB months (January – March and September – December). 
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Table 3. Model Scenarios 
 

Model Increased Harvest in 
March (%) 

Reduction in 
 Closed Area (%) 

A 100 0 
B 50 0 
C 25 0 
D 100 25 
E 50 25 
F 25 10 

 
Notes: 
Increased harvest in March is relative to the harvest level in the same month in regular 
(i.e., non-HAB) years. 
Reduction in closed area is from a typical HAB closure without the ability to track HAB 
movement. 



 22

Table 4. Annual Values of Shellfish Landings in Massachusetts and Maine 
 

Action (α) 
State of 
Nature (s) 

Value 
Function 

Models 
Maine MassachusettsA B C D E F

N N V0(N | N) x x x x x x 20,948,685 21,557,323
N H V0(N | H) x x x x x x 18,476,259 5,833,337
H N V0(H | N) x x x x x x 19,901,251 20,479,457
H H V0(H | H) x   x   19,746,000 7,139,969
    x   x  19,111,130 6,486,653
     x   x 18,793,694 6,159,995
N N V1(N | N) x x x x x x 20,948,685 21,557,323
N H V1(N | H)    x x  19,094,366 9,764,334
        x 18,723,502 7,405,736
   x x x    18,476,259 5,833,337
H N V1(H | N) x x x x x x 19,901,251 20,479,457
H H V1(H | H) x      19,746,000 7,139,969
    x     19,111,130 6,486,653
     x    18,793,694 6,159,995
      x   20,364,107 11,070,965
       x  19,729,236 10,417,649
        x 19,040,937 7,732,394

 
Notes: 
Values are in 2005 dollars. 
For model specifications, see Table 3. 
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 Table 5. Likelihood Distributions: Prob(x|s) 
 

Accuracy of PredictionState s Forecast  x 
 HAB No HAB 

100% HAB 1 0 
 No HAB 0 1 
   
90% HAB 0.9 0.1 
 No HAB 0.1 0.9 
   
80% HAB 0.8 0.2 
 No HAB 0.2 0.8 
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Table 6. Posterior Distributions: Prob(s|x) 
 

 HAB Frequency Accuracy of 
Prediction 

State of 
Nature s 

Forecast  x 
 

   HAB No HAB 
2-year event 100% HAB 1.000 0.000 
  No HAB 0.000 1.000 
    
 90% HAB 0.900 0.100 
  No HAB 0.100 0.900 
    
 80% HAB 0.800 0.200 
  No HAB 0.200 0.800 
    
5-year event 100% HAB 1.000 0.000 
  No HAB 0.000 1.000 
    
 90% HAB 0.692 0.027 
  No HAB 0.308 0.973 
    
 80% HAB 0.500 0.059 
  No HAB 0.500 0.941 
    
10-year event 100% HAB 1.000 0.000 
  No HAB 0.000 1.000 
    
 90% HAB 0.500 0.012 
  No HAB 0.500 0.988 
    
 80% HAB 0.308 0.027 
  No HAB 0.692 0.973 
    
20-year event 100% HAB 1.000 0.000 
  No HAB 0.000 1.000 
    
 90% HAB 0.321 0.006 
  No HAB 0.679 0.994 
    
 80% HAB 0.174 0.013 
  No HAB 0.826 0.987 
    
30-year event 100% HAB 1.000 0.000 
  No HAB 0.000 1.000 
    
 90% HAB 0.237 0.004 
  No HAB 0.763 0.996 
    
 80% HAB 0.121 0.009 
  No HAB 0.879 0.991 
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Table 7. Annual Value of HAB Prediction due to Increased Harvest in March 
HAB Frequency Accuracy of 

Prediction State 
 Model A

Value

Model CModel B
2-year event 100% ME 523,717 317,435 158,718
  MA 538,933 326,658 163,329
  Total 1,062,650 644,093 322,047
 90% ME 407,858 233,320 90,474
  MA 419,708 240,099 93,103
  Total 827,566 473,419 183,577
 80% ME 292,000 149,205 22,231
  MA 300,483 153,540 22,877
  Total 592,483 302,745 45,108
5-year event 100% ME 253,948 126,974 63,487
  MA 261,326 130,663 65,332
  Total 515,274 257,637 128,819
 90% ME 144,759 30,482 0
  MA 148,964 31,368 0
  Total 293,723 61,850 0
 80% ME 35,569 0 0
  MA 36,603 0 0
  Total 72,172 0 0
10-year event 100% ME 126,974 63,487 31,744
  MA 130,663 65,332 32,666
  Total 257,637 128,819 64,410
 90% ME 20,008 0 0
  MA 20,589 0 0
  Total 40,597 0 0
 80% ME 0 0 0
  MA 0 0 0
  Total 0 0 0
20-year event 100% ME 63,487 31,744 15,872
  MA 65,332 32,666 16,333
  Total 128,819 64,410 32,205
 90% ME 0 0 0
  MA 0 0 0
  Total 0 0 0
 80% ME 0 0 0
  MA 0 0 0
  Total 0 0 0
30-year event 100% ME 42,325 21,162 10,581
  MA 43,554 21,777 10,889
  Total 85,879 42,939 21,470
 90% ME 0 0 0
  MA 0 0 0
  Total 0 0 0
 80% ME 0 0 0
  MA 0 0 0
  Total 0 0 0

Note:  
Values are in 2005 dollars. 
For model specifications, see Table 3.
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Table 8. Annual Value of HAB Prediction due to Reduction in Closed Areas  
 
Increased Harvest 
during HAB 

State 
 

2-year 
event 

5-year 
event 

10-year 
event 

20-year 
event 

30-year 
event 

10% ME 123,621 49,449 24,724 12,362 8,241
 MA 786,199 314,480 157,240 78,620 52,413
 Total 909,820 363,929 181,964 90,982 60,655
   
25% ME 309,053 123,621 61,811 30,905 20,604
 MA 1,965,498 786,199 393,100 196,550 131,033
 Total 2,274,551 909,820 454,910 227,455 151,637
 
Note: Values are in 2005 dollars. 
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Table 9. Total Annual Value of HAB Prediction 
HAB Frequency Accuracy of 

Prediction State 
 Model D

Value

Model FModel E
2-year event 100% ME 832,770 626,489 282,339
  MA 2,504,431 2,292,156 949,528
  Total 3,337,201 2,918,645 1,231,867
 90% ME 716,912 542,373 214,095
  MA 2,385,206 2,205,597 879,302
  Total 3,102,118 2,747,970 1,093,397
 80% ME 601,053 458,258 145,852
  MA 2,265,982 2,119,038 809,076
  Total 2,867,035 2,577,296 954,928
5-year event 100% ME 377,570 250,595 112,936
  MA 1,047,526 916,862 379,811
  Total 1,425,096 1,167,457 492,747
 90% ME 268,380 154,103 49,449
  MA 935,164 817,567 314,480
  Total 1,203,544 971,670 363,929
 80% ME 159,190 123,621 49,449
  MA 822,802 786,199 314,480
  Total 981,992 909,820 363,929
10-year event 100% ME 188,785 125,298 56,468
  MA 523,763 458,432 189,906
  Total 712,547 583,729 246,374
 90% ME 81,819 61,811 24,724
  MA 413,689 393,100 157,240
  Total 495,507 454,911 181,964
 80% ME 61,811 61,811 24,724
  MA 393,100 393,100 157,240
  Total 454,911 454,911 181,964
20-year event 100% ME 94,392 62,649 28,234
  MA 261,882 229,216 94,953
  Total 356,274 291,865 123,187
 90% ME 30,905 30,905 12,362
  MA 196,550 196,550 78,620
  Total 227,455 227,455 90,982
 80% ME 30,905 30,905 12,362
  MA 196,550 196,550 78,620
  Total 227,455 227,455 90,982
30-year event 100% ME 62,929 41,766 18,822
  MA 174,587 152,810 63,302
  Total 237,516 194,576 82,125
 90% ME 20,604 20,604 8,241
  MA 131,033 131,033 52,413
  Total 151,637 151,637 60,654
 80% ME 20,604 20,604 8,241
  MA 131,033 131,033 52,413
  Total 151,637 151,637 60,654

Notes: 
Values are in 2005 dollars. 
For model specifications, see Table 3. 
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Table 10. Net Present Value over 30 Years 
 

HAB Frequency 2-year event 5-year event 10-year event 10-year event 30-year event 
Accuracy of 
Prediction 100% 80% 100% 100% 90% 
Model D E D E F 
Annual Value 
(2005$) 3,337,201 909,820 712,547 583,729 60,654 
NPV (2005$) 51,300,959 13,986,163 10,953,598 8,973,350 932,401 

 
Note: 
Interest rate = 5%. 
For model specifications, see Table 3. 
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Figure 1. Value of Monthly Shellfish Landings in Maine: with vs. without HAB Forecast 
 

 
 
Note: With HAB predicted, landings grow 50% from baseline level in March and losses 
decrease by 25% during April through August. 
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