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Articles in this volume focus on longer-term studies of the marine ecosystem of the 

continental shelf west of the Antarctic Peninsula, principally by the Palmer, Antarctica Long-

Term Ecological Research project (Ross et al., 1996; Ducklow et al., 2007). There is a rich 

history of oceanographic and ecological research in the Bellingshausen Sea region and on the 

continental shelf dating back to the 19th and early 20th centuries (El-Sayed, 1996). The modern 

era of scientific research started with the British Discovery Investigations of 1925-37 (Hardy, 

1967), and included classic studies of  phytoplankton (Hart, 1934) and krill (Marr, 1962). Hart’s 

report presciently suggested primary producers could be limited by iron availability. El-Sayed 

(1996) dissects the subsequent history of oceanographic research up to the advent of the 

Southern Ocean GLOBEC (Hofmann et al., 2001; Hofmann et al., 2004) and JGOFS (Anderson 

and Smith Jr., 2001) programs. The period from the 1970’s to the mid-90’s was dominated by 

expeditionary and process-level studies of particular regions and processes extending over a few 

seasons to a few years at most. The Research on Antarctic Coastal Ecosystem Rates (RACER) 

Program (Huntley et al., 1991; Karl, 1991) is the outstanding example of this mode of research, 

having focused on determination of key rate processes as a new approach to understanding 

ecosystem dynamics (Karl et al., 1991a; Karl et al., 1991b). RACER was a direct predecessor 

and major influence on Palmer LTER, GLOBEC and JGOFS. What was lacking in Antarctic 

waters, as in most other regions and ocean provinces were sustained, long-term observations of a 

variety of ocean properties and rates, conducted in the context of hypothesis-driven, 

experimental science (Ducklow et al., 2008a). The creation of the US LTER Network in 1980 

(Magnuson, 1990) made this possible. 

Palmer LTER was started in 1990, based on the hypothesis that biological processes in 

the Antarctic marine environment are strongly affected by physical factors, particularly the 
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annual advance and retreat of sea ice (Smith et al., 1995). A key early development was creation 

of a fixed sampling grid of ~ 50 hydrographic stations oriented along the axis of the Peninsula 

(Figure 1) and extending from the nearshore region of persistent pack ice across the continental 

shelf into the open sea influenced by the Antarctic Circumpolar Current (Waters and Smith, 

1992). To date, Palmer LTER has conducted sixteen annual oceanographic cruises in the Austral 

summer (January-February; Table 1). Most sampling within the grid is limited by shiptime 

constraints to the 200 to 600 lines shown in Figure 1. The principal objective of each midsummer 

cruise is conducting a comprehensive sequence of core measurements at each station. The 

current listing of core measurements may be accessed at http://pal.lternet.edu/publications/documents/protocols/. 

The sampling grid addresses multiple spatial scales and permits repeated sampling over seasonal 

to annual time scales, covering short and long-term ecological phenomena. The grid unifies the 

measurement components and facilitates data integration. This volume reports on the first decade 

of cruises and includes the first systematic analyses at the grid scale. The cruise-derived data 

comprise annual snapshots of midsummer conditions. Satellite observations of ocean color and 

sea ice concentration provide seasonal and year-round coverage, respectively, in which the 

summer observations are embedded. 

Palmer LTER investigators adopted multivariate statistical approaches to analyze the 

three-dimensional array of measurements (X,Y,T) obtained from satellite imagery and on the 

midsummer cruises. The paper by Martinson et al. (2008) outlines the Empirical Orthogonal 

Function (EOF) approach used herein by Smith et al. (2008), Martinson et al. (2008), 

Stammerjohn et al. (2008), Vernet et al. (2008) and Ross et al. (2008) to analyze the time-

varying spatial distributions of properties and processes within the Palmer LTER grid. Smith et 

al. (2008) report on distributions and interannual variability of phytoplankton pigments derived 
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from SeaWiFS for 1997-2004. Their analyses extend 400 km seaward beyond the nominal 

sampling grid to encompass the Permanently Open Ocean Zone beyond the ACC, and also cover 

the entire Peninsula, thus providing a large-scale context for other observations (Figure 1 in 

Smith et al. 2008). Smith et al. demonstrate considerable interannual and regional variability in 

the size of the annual phytoplankton bloom. The bloom is generally initiated offshore in 

association with the Antarctic Circumpolar Current Front and not necessarily with the retreating 

ice edge. Montes-Hugo et al. (2008) also used SeaWiFS data (1997-2006) in conjunction with in 

situ data to generate a time series of phytoplankton size structure. They found that transitions in 

the size composition of the phytoplankton community were associated with changes in ENSO 

state, mirroring variability in other properties (see below).  

The paper by Stammerjohn et al. (2008) utilizes satellite microwave data to derive 

measurements of sea ice concentration over a 1000 x 400 km region along the Peninsula (within 

the larger study region of Smith et al. 2008; see Figure 1 of Stammerjohn et al. 2008). 

Stammerjohn et al. (2008) define the covariability of sea ice, climate and ecosystem properties 

and identify different ice-ocean marine habitats based on the advance, retreat, duration and 

persistence of sea ice in different areas along the Peninsula. Interannual variations in the 

seasonality of sea ice-defined habitats are driven by ENSO and Southern Annular Mode (SAM)-

associated variations in local winds. Longer-term trends in declining sea ice duration are 

associated with enhanced warming in the late autumn and early winter seasons of sea ice 

formation and advance. Sea ice is an important, though still poorly-sampled and not well-

understood habitat for primary producers and consumers (the sea ice microbial community), as 

well as a key physical factor influencing biological processes in open water. In their paper 

Fritsen et al. (2008) explore 10-fold differences in biomass (chlorophyll) in sea ice in late winter 
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2001 and 2002. The timing of sea ice formation (June 2001 and April 2002) is proposed as a key 

factor regulating differences in accumulated biomass. The atmosphere-ocean-ice-biomass 

coupling is a mechanism possibly generating longer-period cycles in upper trophic levels 

characteristic of the Antarctic marine ecosystem.  

Martinson et al. (2008) provide analysis of physical oceanographic properties (heat, salt) 

and define the three distinct, bathymetrically-defined regions shown in Figure 1. They also 

quantify a heat flux of ~28 W m-2 a-1 associated with flooding onto the shelf of warm, Upper 

Circumpolar Deep Water. Variations in UCDW upwelling are driven by the state of ENSO and 

strength of the SAM, with La Niña  and +SAM enhancing the heat flux. This heat flux is the 

proximate cause of sea ice and glacier melting in the region.  

ENSO- and SAM-forced variability that is seen in the LTER study region also impacts on 

the physical and ecological characteristics of the broader Southern Ocean. Meredith et al. (2008) 

examined the roles of ENSO and the SAM in determining interannual changes in sea surface 

temperature around South Georgia, and showed that both fast atmospheric teleconnections and 

slower oceanic (advective) teleconnections are important. The phasing between these is 

important for sustaining the anomalies in surface temperature as they propagate across the South 

Pacific and into the Atlantic. As part of this, rapid atmospheric teleconnections imprint ENSO 

and SAM signals on the ocean surface immediately west of the Peninsula, offering an additional 

(more direct) mechanism for coupled climate modes to impact the regional ecosystem, and the 

ocean downstream. Accordingly, Meredith et al. hypothesize that variability in krill stocks 

around South Georgia is derived from ENSO- and SAM-forced variations in the advection of 

krill populations from the Peninsula downstream in the ACC.  
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Vernet et al. (2008) and Ross et al. (2008) each analyze twelve year time series of in situ 

biological measurements made within the central LTER grid (200-600 lines of Figure 1). Vernet 

et al. define spatial patterns and interannual variations in rates of primary production derived 

from 24-hour 14C incubations. Primary production averaged ~60 Mol C m-2 d-1 in the grid during 

January-February 1995-2006. There is a 5-6 year cycle in primary production rates, associated 

with ENSO forcing of sea ice seasonality. Late sea ice retreat enhanced summer primary 

production.  The numerically dominant macro- and mesozooplanktonic species > 2 mm captured 

in net tows over 1993-2004 included euphausiids (Euphausia superba, Thysanoëssa macrura; 

and Euphausia crystallorophias), the shelled pteropod Limacina helicina, and the salp, Salpa 

thompsoni (Ross et al. 2008). There were both common (e.g., north-south abundance gradients) 

and taxon-specific features (e.g., inshore to offshore gradients) in their distributions. Like sea ice, 

plant pigments and primary production, interannual anomalies in abundance and distributions 

responded to anomalies in the ENSO cycle, suggesting causal connections among these 

variables. Time-series sediment traps offer a year-round window into water column processes 

not directly observable from satellites. Ducklow et al. (2008b) report on the 14-year series of 

sedimentation fluxes captured in a 170-meter deep trap in the Palmer region (Figure 1). 

Sedimentation approximating export from the surface layer is strongly periodic with ~75% of the 

annual flux exported during an early-summer pulse. Neither the timing nor magnitude of the 

pulses are directly related to timing of sea ice or phytoplankton blooms, an indication of the 

complexity of processes responsible for exporting production into the deep sea. Ducklow et al. 

show that the annual flux event has advanced by about 40 days later since 1993.  

The southern area of the LTER sampling grid is in Marguerite Bay, the focus of the 

Rothera Oceanographic and Biological Time-Series (RaTS) station of the British Antarctic 
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Survey at Rothera Station on Adelaide Island (Figure 1). Clarke et al. (2008) reports on eight 

years of biological and physical observations that extend year-round with weekly resolution. 

Like other properties already mentioned, the RaTS observations exhibit interannual variability in 

the same spectral range as ENSO, enforcing the importance of this climate driver in the region. 

Clarke et al. (2008) demonstrate that UCDW is present even at this inshore location, pointing up 

the magnitude of irrigation of the shelf ecosystem with offshore waters. Wallace et al. (2008) 

investigated in detail the shorter-term processes of coastal upwelling and downwelling driven by 

local winds, and internal tides, that may contribute to the injection of UCDWat the RaTS site. 

Diurnal internal tides were detected despite the location being poleward of the critical latitude for 

their generation. The near-coastal location, rough bottom topography and local wind forcing are 

probably causes of these important physical processes influencing biological productivity in the 

region.  

A key conclusion emerging from analysis of these decade-long observations is the strong 

teleconnection in the Peninsula region with ENSO variability and its interaction with SAM. It 

has been hypothesized that anthropogenic warming may generate a more persistent El Niño state 

(Meehl et al., 2000; Wang and Schimel, 2003) and that the Southern Hemisphere ozone hole 

intensifies the positive SAM state (Thompson and Solomon, 2002). Better understanding of 

regional climate, physical oceanographic and ecosystem responses to anomalies in these climate 

modes will help us to predict responses of the Antarctic marine ecosystem to anthropogenic 

climate change. Such understanding requires, as one building block, continued time series 

observations and sustained experimental studies at the interannual and regional scale. Such 

studies can only be analyzed efficiently if the resulting data and attendant metadata are easily 

available, accessible and well-cared for. In the concluding paper in this volume, Baker and 
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Chandler (2008) discuss evolution in the oceanographic community from simple data storage and 

provision to interdisciplinary information management, emphasizing the demands of increasing 

volumes of data, more multidisciplinary and interdisciplinary data types and increased 

collaboration.  

Acknowledgements. 

Observations reported in this volume were supported by NSF Grants OPP-90-11927 and OPP-

96-32763 to the University of California-Santa Barbara and OPP-02-17282 to the Virginia 

Institute of Marine Science.  We are grateful to the many referees who contributed time and 

expertise to review and greatly improve these papers.  

References. 

Anderson, R.F., Smith Jr., W.O., 2001. The US Southern Ocean Joint Global Ocean Flux Study: 

Volume Two. Deep Sea Research II 48, 3883-3889. 

Baker, K.S., Chandler, C.L., 2008. Ocean Informatics: Information Management in Practice. 

Deep Sea Research II 55, 000-000. 

Clarke, A., Meredith, M.P., Wallace, M.I., Brandon, M.A., Thomas, D.N., 2008. Seasonal and 

interannual variability in temperature, chlorophyll and macronutrients in northern 

Marguerite Bay, Antarctica. Deep Sea Research II 55, 000-000. 

Ducklow, H.W., Baker, K., Martinson, D.G., Quetin, L.B., Ross, R.M., Smith, R.C., 

Stammerjohn, S.E., Vernet, M., Fraser, W., 2007. Marine ecosystems: The West 

Antarctic Peninsula. Philosophical Transactions of the Royal Society of London B 362, 

67-94. 



 9

Ducklow, H.W., Doney, S.C., Steinberg, D.K., 2008a. Long-term and Time Series Observations. 

Annual Review of Marine Science 1, 000-000. 

Ducklow, H.W., Erickson, M., Kelly, J., Smith, R.C., Stammerjohn, S.E., Vernet, M., Karl, 

D.M., 2008b. Particle export from the upper ocean over the continental shelf of the west 

Antarctic Peninsula: A long-term record, 1992-2006. . Deep Sea Research II 55, 000-000. 

El-Sayed, S.Z., 1996. Historical perspective of research in the Antarctic Peninsula region. In: 

Ross, R.M., Hofmann, E.E., Quetin, L.B. (Eds.), Foundations for Ecological Research 

West of the Antarctic Peninsula.   American Geophysical Union, Washington, DC, pp. 1-

13. 

Fritsen, C.H., Memmott, J., Stewart, F.J., 2008. Inter-annual sea ice dynamics and micro-algal 

biomass in winter pack ice of Marguerite Bay, Antarctica. Deep Sea Research II 55, 000-

000. 

Hardy, A., 1967. Great Waters. Collins, London. 

Hart, T.J., 1934. On the phytoplankton of the south-west Atlantic and the Bellingshausen Sea, 

1929-31. Discovery Reports 8, 1-268. 

Hofmann, E.E., Klinck, J.M., Costa, D.P., Daly, K.L., Torres, J.J., Fraser, W.R., 2001. U. S. 

Southern Ocean Global Ocean Ecosystems Dynamics Program. Oceanography 15, 64-74. 

Hofmann, E.E., Wiebe, P.H., Costa, D.P., Torres, J.J., 2004. An overview of the Southern Ocean 

Global Ocean Ecosystems Dynamics program. Deep Sea Research II 51, 1921-1924. 

Huntley, M.E., Karl, D.M., Niiler, P.P., Holm-Hansen, O., 1991. Research on Antarctic coastal 

ecosystem rates (RACER): an interdisciplinary field experiment. Deep-Sea Research 38, 

911-941. 



 10

Karl, D.M., 1991. RACER - Research on Antarctic coastal ecosystem rates - preface, Part A-- 

Oceanographic Research Papers. Deep-Sea Research 38, R5-R7. 

Karl, D.M., Holm-Hansen, O., Taylor, G.T., Tien, G., Bird, D.F., 1991a. Microbial biomass and 

productivity in the western Bransfield Strait, Antarctica during the 1986-87 austral 

summer. Deep-Sea Research 38, 1029-1055. 

Karl, D.M., Tilbrook, B.D., Tien, G., 1991b. Seasonal coupling of organic matter production and 

particle flux in the western Bransfield Strait, Antarctica. Deep-Sea Research 38, 1097-

1126. 

Magnuson, J.J., 1990. Long-term ecological research and the invisible present. BioScience 40 

(7), 495-501. 

Marr, J.W.S., 1962. The natural history and geography of the Antarctic krill (Euphausia superba 

Dana). Discovery Reports 32, 33-464. 

Martinson, D.G., Stammerjohn, S.E., Smith, R.C., Iannuzzi, R.A., 2008. Palmer, Antarctica, 

Long-Term Ecological Research program first 12 years: physical oceanography, spatio-

temporal variability. Deep Sea Research II 55, 000-000. 

Meehl, G.A., Washington, W.M., Arblaster, J.M., Bettge, T.W., Strand, W.G., 2000. 

Anthropogenic Forcing and Decadal Climate Variability in Sensitivity Experiments of 

Twentieth- and Twenty-First-Century Climate. Journal of Climate 13, 3728-3744. 

Meredith, M.P., Murphy, E.J., Hawker, E.J., King, J.C., Wallace, M.I., 2008. On the interannual 

variability of ocean temperatures around South Georgia, Southern Ocean: forcing by El 

Niño/Southern Oscillation and the Southern Annular Mode. Deep Sea Research II 55, 

000-000. 



 11

Montes-Hugo, M.A., Vernet, M., D. Martinson, Smith, R.C., Iannuzzi, R., 2008. Variability on 

Phytoplankton Size Structure in the Western Antarctic Peninsula (1997-2006). Deep-Sea 

Research II 55, 000-000. 

Ross, R.M., Hofmann, E.E., Quetin, L.B. (Eds.), 1996. Foundations for Ecological Research 

West of the Antarctic Peninsula. AGU Antarctic Research Series American Geophysical 

Union, Washington, DC. 

Ross, R.M., Quetin, L.B., Martinson, D.G., Iannuzzi, R.J., Stammerjohn, S., Smith, R.C., 2008. 

Palmer LTER: Patterns of Distribution of Five Dominant Zooplankton Species in the 

Epipelagic Zone West of the Antarctic Peninsula, 1993 - 2004. Deep Sea Research II 55, 

000-000. 

Smith, R.C., Baker, K.S., Fraser, W.R., Hofmann, E.E., Karl, D.M., Klinck, J.M., Quetin, L.B., 

Prezelin, B.B., Ross, R.M., Trivelpiece, W.Z., Vernet, M., 1995. The Palmer LTER: A 

long-term ecological research program at Palmer Station, Antarctica. Oceanography 8, 

77-86. 

Smith, R.C., Martinson, D.G., Stammerjohn, S.E., Iannuzzi, R.A., Ireson, K., 2008. 

Bellingshausen and Western Antarctic Peninsula Region: Pigment biomass and sea ice 

spatial/temporal distributions and interannual variability. Deep Sea Research II 55, 000-

000. 

Stammerjohn, S.E., Martinson, D.G., Smith, R.C., Iannuzzi, R.A., 2008. Sea Ice in the Western 

Antarctic Peninsula Region: Spatio-Temporal Variability from Ecological and Climate 

Change Perspectives. Deep Sea Research II 55, 000-000. 



 12

Thompson, D.W.J., Solomon, S., 2002. Interpretation of Recent Southern Hemisphere Climate 

Change. Science 296, 895-899. 

Vernet, M., Martinson, D.G., Iannuzzi, R.A., Stammerjohn, S.E., Kozlowski, W., Sines, K., 

Smith, R.C., Garibotti, I., 2008. Primary Production within the Sea Ice Zone west of the 

Antarctic Peninsula. Deep Sea Research II 55, 000-000. 

Wallace, M.I., Meredith, M.P., Brandon, M.A., Sherwin, T.J., Dale, A., Clarke, A., 2008. On the 

characteristics of internal tides and coastal upwelling behaviour in Marguerite Bay, west 

Antarctic Peninsula. Deep Sea Research II 55, 000-000. 

Wang, G., Schimel, D., 2003. Climate change, climate modes, and climate impacts. Annual 

Review of Environment and Resources 28, 1-28. 

Waters, K.J., Smith, R.C., 1992. Palmer LTER: A sampling grid for the Palmer LTER program. 

Antarctic Journal of the United States 27, 236-239. 

 

 



 13

 

Table 1.  Palmer LTER Cruise Summary Information 1990-2014. 

Cruise Vessel* Begin End # days Year Lines Chief Sci
 PD 7-Nov 21-Nov 15 1991 600-700 Quetin

PAL-1 PD 5-Jan 8-Feb 35 1993 200-600 Quetin
 NBP 25-Mar 15-May 52 1993 200-600 Ross

ICE-1 PD 29-Aug 25-Sep 28 1993 200-600 Quetin
 PD 8-Oct 5-Nov 29 1993 200-600 Prezelin

PAL-2 PD 11-Jan 7-Feb 28 1994 300-600 Ross
PAL-3 PD 7-Jan 8-Feb 33 1995 200-600 Smith
PAL-4 PD 8-Jan 10-Feb 34 1996 200-600 Vernet
PAL-5 PD 11-Jan 13-Feb 34 1997 200-600 Ross

PAL-6a AJ 13-Jan 24-Jan 11 1998 600 Quetin
PAL-6b LMG 28-Jan 13-Feb 16 1998 200-600 Karl
PAL-7 LMG 8-Jan 12-Feb 36 1999 200-600 Ross
ICE-2 NBP 15-Jun 11-Jul 27 1999 200&600 Smith
PAL-8 LMG 8-Jan 1-Feb 25 2000 200-600 Vernet
PAL-9 LMG 5-Jan 31-Jan 27 2001 200-600 Ross
ICE-3 NBP 11-Sep 22-Oct 42 2001 ***.100 Smith

PAL-10 LMG 6-Jan 28-Jan 23 2002 200-600 Ross
PAL-11 LMG 5-Jan 2-Feb 28 2003 200-600 Ross
PAL-12 LMG 7-Jan 2-Feb 26 2004 200-600 Ducklow
PAL-13 LMG 4-Jan 2-Feb 29 2005 200-600 Ducklow
PAL-14 LMG 7-Jan 5-Feb 29 2006 200-600 Quetin
PAL-15 LMG 7-Jan 7-Feb 31 2007 100-600 Ducklow
PAL-16 LMG 5-Jan 4-Feb 28 2008 100-600 Quetin
PAL-17 LMG TBA TBA 28 2009 -100-600 Martinson
PAL-18 LMG TBA TBA 28 2010 -100-600 TBA
PAL-19 LMG TBA TBA 28 2011 -100-600 TBA
PAL-20 LMG TBA TBA 28 2012 -100-600 TBA
PAL-21 LMG TBA TBA 28 2013 -100-600 TBA
PAL-22 LMG TBA TBA 28 2014 -100-600 TBA

* Vessel: PD, Polar Duke; AJ, Abel J; LMG, Laurence M Gould; NBP, Nathaniel B Palmer.  
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Figure 1. Palmer LTER study area along the west Antarctic Peninsula. The black dots are 
hydrographic lines 20 km apart in the cross-shelf direction and 100 km apart alongshore. The 
core study region encompassing the 200-600 grid lines has been occupied each January 1993-
2008. The solid black and heavy grey lines identify the three bathymetrically-defined watermass 
regions (left to right, Slope-Shelf-Coastal). P: Palmer Station on Anvers Island; R: Rothera 
Station on Adelaide Island; MB, Marguerite Bay; ST, sediment trap mooring. The shaded 
bathymetry (white>750 m, light-grey, 450-750 m, dark-grey<450 m. Contours at the shelf break 
are greater than or equal to 1500 m at 750 m intervals.  

 


