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Abstract 

Thirty years have passed since Carl Woese proposed three primary domains of life based on 

the phylogenetic analysis of ribosomal RNA genes. Adopted by researchers worldwide, 

ribosomal RNA has become the “gold-standard” for molecular taxonomy, biodiversity 

analysis and the identification of microorganisms. The more than 700,000 rRNA sequences in 

public databases constitute an unprecedented hallmark of the richness of microbial 

biodiversity on earth. The International Workshop on Ribosomal RNA Technology convened 

on April 7-9, 2008 in Bremen, Germany (http://www.arb-silva.de/rrna-workshop) to 

summarize the current status of the field and strategize on the best ways of proceeding on 

both biological and technological fronts. In five sessions, 26 leading international speakers 

and ~120 participants representing diverse disciplines discussed new technological 

approaches to address three basic ecological questions: “Who is out there?” “How many are 

there?” and “What are they doing?” 
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Introduction 

Carl Woese’s discovery of the third domain of life inferred using ribosomal RNA (rRNA) 

molecules 30 years ago lead to the emergence of rRNA-based technologies that would prove 

to transform the field of Microbiology. With this discovery began the dawn of a new era in 

molecular taxonomy – flooding molecular databases with a deluge of rRNA gene sequences 

totalling over 700,000 today (Figure 1). Ribosomal RNA-based gene phylogenies have 

largely stood the test of time in describing the evolutionary relationships between organisms, 

phylogenetic probes based on fluorescently-labeled oligonucleotides complementary to rRNA 

inside cells have provided microbiologists with a quantitative means of assessing microbial 

diversity in nature, and rRNA gene-based tag pyrosequencing has enabled microbial 

biogeography and ecological diversity studies on a scale never before imagined.  

The International Workshop on Ribosomal RNA Technology revisited the impact that rRNA 

has had on the fields of phylogenetics, bioinformatics, biogeography, technology, microbial 

diversity and ecology (for the list of speakers and affiliations, see supplementary Table 1). 

Among the advances discussed included updated and improved databases and software 

allowing for enhanced alignment of rRNA gene sequences, newer and faster algorithms that 

permit the construction of large scale phylogenetic trees on the order of tens of thousands of 

sequences at one time, and improved microscopic methods that open the window into 

structure-function analyses of microbial consortia. It is likely that few other molecules have 

been as successful in bringing together so many different kinds of scientists in addressing 

such a large diversity of questions. With all the recent advances in the “omics” of molecular 

biotechnology, one might imagine that we have exhausted the possibilities that lie ahead with 

respect to the development and application of new rRNA technologies of the future. However, 

judging from topics emerging from this workshop, that day seems to still be in the distant 

future.  
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Databases  

Sequencing rRNA genes is currently the method of choice for phylogenetic reconstruction, 

nucleic acid-based detection and quantification of microbial diversity. The resulting 

exponential increase of publicly available rRNA sequences demands specialized databases 

and advanced data integration technologies. Three main database projects provide access to 

large datasets of rRNA sequences and alignments. All projects offer at least one small subunit 

(SSU) rRNA dataset, but vary in the volume of sequences, quality checking, alignments, and 

frequency of updates.  

The Ribosomal Database Project II (RDP II, http://rdp.cme.msu.edu/) at Michigan State 

University in East Lansing, MI [5], focuses on bacterial and archaeal SSU rRNA sequences. 

Navigation through sequence space is supported by an advanced taxonomic browser. The 

RDP II maintains web-based tools such as the RDP classifier, seqmatch, probe match, library 

compare and tree builder to allow researchers to analyze their sequences. They have recently 

added an interactive heatmap tool for visualizing the relationships between thousands of 

sequences at one time. The myRDP space allows users to maintain and analyse their own 

sequences e.g. with high-throughput sequence processing pipelines for Sanger and massively 

parallel sequencing technologies like pyrosequencing.  

Greengenes (http://greengenes.lbl.gov/), maintained by the Lawrence Berkeley National 

Laboratory in Berkeley, CA [8], has its roots in a combination of early RDP datasets and 

ARB alignments. Their intention was to build a chimera-checked and aligned database for 

taxonomic microarrays. The database hosts only nearly full length (>1250 bases) SSU rRNA 

sequences of bacterial and archaeal origin. The sequences can be accessed on the webpage by 

search and browse functions or downloaded as a database compatible with the ARB software 

suite. Multiple taxonomic classifications are available for each sequence entry. Currently, a 

PhyloChip with more than one million probes and over 30,000 OTUs is available using the 

Affymetrix technology. This, in combination with the new Phylotrac software 
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(www.phylotrac.org), will allow quantitative tracking of microbial communities in the 

environment.  

The SILVA system (from Latin silva, forest, www.arb-silva.de), hosted by the Max Planck 

Institute for Marine Microbiology in Bremen, Germany [31], is a comprehensive web 

resource for up to date, quality controlled databases of aligned SSU and large subunit (LSU) 

rRNA sequences from Bacteria, Archaea and Eukarya that are fully compatible with the ARB 

software suite. All sequences are checked for anomalies and carry a rich set of metadata. An 

intuitive ranking system allows the user to get a rapid overview of sequence quality. SILVA 

integrates multiple taxonomic classifications and the latest validly described nomenclature for 

every entry. Sequences are flagged if they belong to a cultivated organism, a type strain, or a 

genome project. The online automated aligner SINA (Silva IncremeNtal Aligner) allows rapid 

and accurate alignment of user sequences. A taxonomic browser and advanced search 

functions can be used for sequence retrieval in aligned FASTA or ARB database formats. The 

ARB software suite (www.arb-home.de) provides extended analysis functions including 

phylogenetic tree reconstructions, alignments, similarity searches, probe design/probe match 

and improved visualisation tools. 

The StrainInfo.net bioportal (www.straininfo.net) hosted by Ghent University [6] concentrates 

on establishing automated ways to collect and integrate all information that is available for 

microorganisms deposited into a global network of Biological Resource Centers (BRCs). It 

helps bridge the gap between the genotypic and phenotypic world and enables an integrative 

approach to the ecological and biogeographical distribution of species. The bioportal offers 

advanced search functions and data crawling of over more than 50 BRCs with extensive link-

outs to EMBL, GenBank and DDBJ, as well as the SILVA rRNA databases. Features 

including predefined workflows for retrieving all strains subjected to genome sequencing, as 

well as web services are offered for integrated access to biological data.  
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In summary the opening session reviewed an impressive variety of high level rRNA 

technology-based resources. New technologies and pipelines have been designed and 

implemented that help us cope with the deluge of data entering public databases every day. 

Broad integrative approaches promise a comprehensive picture about the diversity and 

function of microorganisms with respect to their environmental surroundings and 

distributions.  

 

Phylogeny 

During the last decades, comparative rRNA sequence analysis ‘evolved’ from an expensive 

specialist’s technique to a cost-effective routine procedure for elucidating phylogenetic 

relationships that has helped to transform microbial taxonomy and identification. The second 

session of the workshop critically examined and evaluated the power and limitations of the 

rRNA approach, presented possible supplementary phylogenetic markers and tools, 

introduced new powerful tree-building approaches, and reviewed new resources for diagnostic 

rRNA targeted probes and primers. 

A brief overview of the methodological history of comparative rRNA sequencing revealed the 

importance of appropriate data analysis software packages and pipelines, as well as the need 

for comprehensive, regularly-maintained integrated databases of curated and annotated 

sequence data. One such resource is the ARB software package that has been maintained and 

improved-upon for the past 15 years and comprises tools for database management, sequence 

analysis, phylogeny reconstruction, definition and evaluation of diagnostic sequence features 

[24]. The major components of the ARB software package were reviewed, recent software 

developments discussed and the power and limitations of the rRNA approach were 

summarized.  

Since the introduction of comparative rRNA sequencing, there has been a continuous debate 

concerning the justification of a single marker molecule for inferring organismal phylogeny 
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and assigning taxonomy based on this underlying phylogeny [23]. The data coming out of 

completed and ongoing full-genome sequencing projects allow for the discovery and 

evaluation of alternative marker genes and molecules. There exists only a small set of genes 

fulfilling the requirements of universal phylogenetic markers representing the conserved core 

of the genome. Examples are genes that code for translation initiation, elongation and release 

factors, RNA polymerases, heat shock proteins, proton-translocating ATPases, recA, and few 

others. Despite differences in the results obtained by comparative phylogenetic analyses of 

such alternative markers, there is still global support of the rRNA-based picture of the major 

phylogenetic groups. The sparsely populated databases of alternative genes hamper analyses 

based on alternative markers. Consequently, rRNA-based approaches will remain the gold 

standard for phylogeny, taxonomy and identification into the next generation [22]. 

In modern metagenomics projects, rRNA genes provide valuable information for assembly of 

individual sequence contigs and assignment of contigs to taxonomic entities. However, the 

power of the rRNA approach is severely limited by the fact that only about 1% of the 

retrieved metagenomic sequences include rRNA genes. Thus, the number of contigs that can 

be assigned to a taxon is rather limited. MLTreeMap (http://mltreemap.embl.de/;[38]) uses a 

maximum likelihood procedure to derive the underlying taxonomic composition of the 

organisms represented by the sequences sampled in such experiments. Multiple protein-

coding marker genes are used to map the respective fragments representing environmental 

organisms to a tree based on concatenated marker sequences available from fully sequenced 

genomes. A selection of protein-coding genes can be used to complement the rRNA markers 

for taxon assignment of environmental contigs, particularly when focusing on taxonomically 

informative, universal and highly conserved proteins. The method can handle fragmented 

open reading frames and limited assembly, and allows tracking of microbial lineages through 

various environments targeted by metagenomics studies. Combined with PCR-based studies 

using rRNA genes, current metagenomics data seem to indicate that microbial lineages have 
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pronounced and stable habitat preferences – more so than what would be expected from the 

study of easily cultivable microbial ‘generalists’. 

The rapid increase of available sequence data in general, and rRNA primary structures in 

particular, requires efficient phylogenetic inference methods. Until recently, limitations in 

computing speed and processing power hindered the widespread application of Maximum 

Likelihood (ML)-based approaches to large datasets. These barriers have been recently 

overcome by new powerful tree-building methods such as RAxML (Randomized Axelerated 

Maximum Likelihood; http://icwww.epfl.ch/~stamatak/; [35]). One of the most time-

consuming operations in tree reconstruction is the computation of support values for tree 

topologies. To overcome this limitation, novel rapid bootstrap heuristics were developed and 

implemented in RAxML. These heuristics provide qualitatively comparable results while 

accelerating the search process 15-fold. ML inference can be further accelerated by efficient 

parallelization on platforms such as IBM BlueGene supercomputer architecture, as well as on 

Linux clusters. Integration of a rapid bootstrap procedure and application of fast 

approximations of the phylogenetic ML function further increase speed. 

The rRNA-targeted probe and PCR technology for species identification is currently routinely 

applied in a variety of formats. Along with the rapidly growing databases, continuous in silico 

evaluation of the specificity for already established or recently designed probes and primers is 

essential. The Probe Library and Evaluation System (PLEASE!, http://please.arb-

home.de/webstart), a new Client-/Server System, addresses these needs. PLEASE! is a major 

advancement of the old ARB Probe Library that implements functions for the retrieval of all 

potential taxon and group specific signature sequences for all phylogenetic levels extracted 

from the underlying database and tree. It provides a comprehensive Graphical User Interface 

(GUI) driven application for the in silico evaluation of the probe sequence specificity against 

several local or remotely curated rRNA databases such as ARB/SILVA, and Greengenes. As 

a Java Webstart application, PLEASE! does not require time consuming proprietary hardware 
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or software installation. A new web application ARB - ProbeMatchOnline (PMO; 

http://pmo.arb-home.de) allows the fast search of probe sequences in expert maintained 

secondary rRNA databases.  

 

Data Analysis and Biogeography  

The session “Data Analysis and Biogeography” provided an overview of analytical strategies 

that focus on the contextual interpretation of SSU rRNA sequence data taking into account 

environmental, spatial or temporal parameters. This session presented established methods 

and introduced new unpublished techniques that show promising applications for ecological 

data analysis and biogeographic modelling using large sequence datasets.  

The Generalized Regression Analysis and Spatial Prediction (GRASP) package, developed in 

Splus (commercial) and R (open source) statistical packages, allows for integrative analyses 

based on generalized regression and spatial predictions [17]. The method enables the 

transformation of point observations of species distribution into spatial predictions. It 

produces several outputs to visualize the selected models, variable contributions, and to 

perform cross-validation of the models. Generalized Additive Models (GAM) used in GRASP 

offer a good compromise between Generalized Linear Models (GLM) and Neural Networks 

(NN). In addition, a data-mining system that correlates genetic patterns in genomes and 

metagenomes with contextual environmental marine data (Megx.net and 

www.metafunctions.org [19]) was showcased with OceanDB, an environmental database 

describing global oceans with links to metagenomic data. 

The contextual interpretation of a large data set based on short DNA sequence tags, e.g. 

obtained via 454 massive tag pyrosequencing of the V6 hypervariable region of bacterial SSU 

rRNA genes was illustrated on a dataset consisting of sixteen coastal sediment samples of ~ 

15,000-20,000 sequence tags per sample (Gobet et al. unpublished data). Multivariate 

analyses including variation partitioning, partial canonical analyses, redundancy analyses, and 
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non-metric multidimensional scaling successfully extracted ecological patterns from this 

complex dataset and related them to a large number of contextual parameters. After the effects 

of co-varying factors were determined, the main causes of the temporal and spatial variation 

in the large dataset were identified. Overall, the study highlighted the usefulness of the 454 

massive tag sequencing approach in generating large sequence datasets in a targeted 

ecosystem and of using multivariate analyses to interpret diversity patterns in their ecological 

context. 

A new integrated tool, RAMI (Latin, branches), aims to help reveal the phylogenetic and 

spatial structure of microbial communities based on closely related sequences, i.e. 

microdiverse clusters (www.acgt.se/online.html, Pommier et al. unpublished data). RAMI 

uses phylogenetic tree-derived patristic distances (branch lengths) to identify microdiverse 

clusters, to characterize their structure and genetic variation, and to evaluate inter- and intra-

cluster relationships. To demonstrate RAMI’s ability to efficiently identify and characterize 

microdiverse clusters, several clone libraries based on 16S rRNA gene sequences from coastal 

samples distributed worldwide were analyzed to give a biogeographic perspective to the 

structure of marine microbial communities. 

Multivariate tools are available for analyzing high-throughput sequence data in an 

environmental context, but better integration of existing methods in microbial ecology are 

required to make further advances in the field of microbial ecology [32]. To this end, a new 

analytical framework that quantifies and tests the significance of the structuring factors 

affecting community diversity at multiple taxonomic levels provides promise (Ramette, 

unpublished). This flexible analytical framework was illustrated on a pre-existing SSU rRNA-

gene dataset obtained from microbial communities associated with obesity in mice [18]. This 

new approach delivers finer ecological and evolutionary insights compared with traditional 

statistical tools used by microbial ecologists to compare clone libraries. Future applications of 

this strategy are anticipated, particularly in ecology, evolution and taxonomy. 
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Overall, the increasing number of methods and strategies coming online to data mine large 

numbers of samples and DNA sequences is an indication that microbial ecologists are moving 

towards better exploitation of the data treasure they possess. Although the task at hand seems 

daunting at first given the unprecedented volume and speed with which data are accumulating 

in public databases, existing methodological knowledge and new analytical approaches offer a 

bright future to studies in microbial biogeography employing SSU rRNA sequence datasets. 

Emphasis on research and teaching are urgently needed that will further develop statistical 

tools for analyzing large sequence datasets in the context of associated contextual data.  

 

Technology 

About two decades ago, the pioneering studies of Pace, Olsen, Stahl, Giovannoni, and Ward 

[13, 26, 27, 34, 39] initiated the age of rRNA-based technologies in environmental 

microbiology. In the early years, primarily few rRNA genes from environmental samples 

were cloned and sequenced to access microbial diversity of uncultivated organisms, however, 

today we have a broad spectrum of powerful molecular tools available to not only address 

molecular diversity, but also functional aspects of microbial communities. 

New tag sequencing technologies producing hundreds of thousands of short tag sequences of 

a selected marker gene in just a few hours offer a completely new scale of microbial diversity 

analysis and can provide much more comprehensive answers compared to former cultivation-

independent approaches. Such large amounts of data demand sophisticated bioinformatics 

tools and appropriate computer hardware for processing. Standards for data description and 

storage must also be re-evaluated. The most prominent of these new techniques is 

pyrosequencing. An initial application of this technology based on sequencing of 

hypervariable regions of the bacterial V6 SSU rRNA enabled the discovery of the “rare 

biosphere” [33]. Now we must answer the question of what role these highly-divergent, low-
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abundance organisms play in the environment. In doing so, we are knocking on the door of 

one of the central questions in environmental microbiology. 

Sequencing of genetic markers for identification purposes (also known as “DNA barcoding”) 

has been widespread in the field of environmental microbiology since the late 1980’s, largely 

driven by limitations in the cultivation of the vast majority of the microorganisms. In contrast, 

sequencing of genetic markers in fields outside of microbiology has only recently become 

more mainstream. The Consortium for the Barcode of Life (CBOL; www.barcoding.si.edu) 

has been a major driver in this effort targeting primarily the mitochondrial Cytochrome 

Oxidase One (COI) genes for animals but also other phylum-specific markers as needed. 

Eukaryotic DNA barcoding campaigns, as well as the global iBOL programme, have agreed 

on global standards in data quality, vouchering (both DNA and specimen), taxonomy, and 

databasing, developed and implemented by CBOL. This resulted in INSDC’s (International 

Nucleotide Sequence Database Collaboration) adoption of the keyword “BARCODE”, 

reserved for entries in compliance with all these criteria. 

One of the most powerful tools among the molecular techniques for the investigation of 

microbial communities is represented by rRNA-targeted Fluorescence in situ Hybridization 

(FISH). It combines molecular identification with microscopic visualization of selected 

populations and even enables a quantification of these populations on the cellular level. While 

in the early years, sensitivity was a major constraint, recent improvements achieved by 

enzyme-mediated signal amplification now allow for high detection efficiency of microbial 

cells in oligotrophic habitats or in cases of high background signals [30]. Also, detailed 

systematic evaluations of selected parameters influencing a hybridization reaction such as 

target accessibility are available [4].  

Another central aspect of rRNA-based in situ hybridization is probe quality in terms of 

specificity. The rRNA databases are dramatically growing over time and with this comes the 

question “Are commonly used probes - often designed nearly a decade ago - still valid?” The 
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answer is “more than could be expected”, but nevertheless, we should periodically evaluate 

probe efficacy including the use of 23S rRNA as a target [2, 20, 21]. High-quality, curated 

databases required for this task are now available [31].  

Besides the questions “Who is out there?” and “How many are there?”, the questions “What 

are they doing?” and “How are they interacting?” are of major interest, since only knowledge 

of the function of the organisms will ultimately allow us to understand an ecosystem. In 

recent years, various techniques have been introduced for the use of combined FISH 

identification and functional analysis of so far uncultivated microorganisms using substrate-

mediated labeling techniques. Raman microspectroscopy based on stable-isotope-labeling of 

cells combined with FISH [14] is among the most recent developments and offers some clear 

advantages such as quantitative detection of incorporation rates and information on label 

incorporation into certain compound classes. A potential further development is represented 

by the combination of DNA microarray technology (PhyloChips) and Raman 

microspectroscopy for high-throughput analysis. 

The session closed with contributions from two company representatives who act as 

technology-providers for academia and industry: biomers.net and Zeiss MicroImaging. The 

company biomers.net (Ulm, Germany; www.biomers.net) specializes in custom-made 

synthesis of modified and unmodified biopolymers. This basic biochemistry is an integral 

aspect of modern molecular microbiology since specific PCR or in situ hybridization 

experiments rely on successful synthesis of defined oligonucleotides. However, users are 

often not aware of the complexity of the synthesis process.  

Microscopy is another essential technology in microbiology which also represents a primary 

cornerstone of microbiology. Zeiss MicroImaging (Munich, Germany; www.zeiss.de/mikro) 

is offering hardware and software for microscopic analysis and is constantly working on new 

developments. Future technologies such as REversible Saturable OpticaL Fluorescence 

Transitions (RESOLFT), Photo-Activated Localization Microscopy (PALM), and Array 
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Tomography will provide resolution beyond the borders defined by Abbe’s equation, 

achieved by modern computer-based image analysis. Bringing together service providers and 

scientists to exchange perspectives and simply restore knowledge on “basic” tools, is an 

important yet often neglected activity in the daily routine of cutting-edge scientific research. 

The pioneering work of Carl Woese on microbial evolution [41] has enabled sequence-based 

“molecular environmental microbiology”. Many new rRNA-based technologies have been 

introduced since then, and the field has advanced significantly. However, we have only 

scratched the surface of microbial diversity, and our view of the true composition of microbial 

communities is utterly incomplete. What steps are required next? Of course, new techniques 

will evolve but we should also pay attention to standardization, data integration, and 

combinations of techniques, including the “traditional” methods such as cultivation. Every 

single technique has its limitations, but taken together cultivation-based and cultivation-

independent methods do now allow us to proceed to new levels of knowledge! Appropriate 

applications of our technological resources will yield optimal progress in the understanding of 

microbial populations and ecosystems. 

 

Diversity and Ecology (I) 

A central focus of the “Diversity and Ecology” session was to discuss how the sheer amount 

of data accumulated in different databases is transformed into knowledge about microbial life.  

In 2000 the Sloan Foundation established a decadal program called the “Census of Marine 

Life”-network (CoML) to catalogue the diversity, distribution and abundance of marine life. 

Since then, this scientific initiative has grown to a global network of researchers engaging 

more than 80 nations. The European Census of Marine Life (EuroCoML) is one of twelve 

national and regional committees formed within the network and has been operational for 

almost three years now. EuroCoML promotes public awareness of marine biodiversity by 

establishing partnerships, coordinating with relevant European programmes and organisations 
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and engaging in education and outreach activities. The workshop on Ribosomal RNA 

technology in Bremen is just one of several workshops that EuroCoML has funded in recent 

years.  

With decreasing DNA sequencing costs, SSU rRNA gene sequencing is becoming 

increasingly cost-effective. Partial sequencing of rRNA genes and comparing the resulting 

fragments with publicly available databases is rapidly displacing fingerprinting techniques 

like T-RFLP or DGGE commonly used in microbial diversity research. A seminal tool for the 

first-pass identification of rRNA gene sequences is BLAST [1]. However, phylogenetic 

analyses with online tools like those provided via the RDP II [5], Greengenes [8] or the ARB 

database [31] provide more detailed analyses and minimize false classifications sometimes 

encountered with BLAST hits.  

An environmental study comprising more than 5,000 partial 16S rRNA gene sequences of 

cultured strains and clones presented some of the pitfalls with currently available tools. Initial 

BLAST analysis of about 1,800 cultures indicated moderate to high similarities with 

described species. The results of the phylogenetic positioning of sequences ~ 450 bp in length 

using automated Greengenes/SINA/ARB systems allowed the comparison of the phylogenetic 

position with BLAST similarities. In most of the cases a high degree of correlation could be 

found, but in some cases expert knowledge was needed to correct for false phylogenetic 

placement. This example suggests that new online tools with better alignment capabilities 

should be developed to confidently align and ultimately identify those problematic sequences. 

The SINA webaligner provided through the SILVA webpage is a major step forward in this 

direction.  

Many early molecular studies of microbial distribution were based on the use of DNA probes 

targeting specific phylogenetic groups. The rational behind this approach was justified due to 

expense – methods were not available to resolve individual species - and the assumption that 

a natural phylogeny of the organism reflects physiology and ecology. Early studies also 
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focused on functional assemblages showing reasonable association between phylotype and 

function (ecotype). This was demonstrated with the description and quantification of the 

cellulolytic genus Fibrobacter in the bovine rumen in the early 1990’s [3], related to a 

phylogenetic assemblage more recently found in the hindgut of a wood eating termite [40]. 

Nitrosopumilus maritimus was recently isolated from a marine aquarium as the first 

representative of a ubiquitous marine clade of Crenarchaeota [16]. In contrast to what is 

known so far from cultured Crenarchaeota, mostly sulphur-metabolizing thermophiles, 

Nitrosopumilus oxidizes ammonium and fixes carbon dioxide. It is tempting to believe that a 

major part of the Crenarchaeota living in the deep ocean is relying primarily on ammonium 

oxidation [15]. However this needs to be proven by future studies. Culture independent 

approaches will continue to play a major role in studies of the biogeochemical significance of 

this discovery. 

We are currently facing an enormous amount of new bacterial and archaeal species 

descriptions per year. In 2007, 614 species were newly classified representing about 8.16% of 

a total of 7,521 validly published names at that time. In parallel, the information content of 

gene sequence databases is exponentially growing, with a current doubling rate of ~18 

months. In January 2008 out of the 109,626,755 gene entries in EMBL release 93, 1,200,423 

were attributed to ribosomal RNAs gene sequences. However, just 20,754 were obtained from 

pure cultures grown in the laboratory, and 9,889 of them corresponded to sequences assigned 

to type strains (according to SILVA release 93). Publicly available entries frequently contain 

errors in strain assignment and nomenclature, as well as low sequence quality. In addition for 

many species, redundant 16S rRNA gene sequence information often of different lengths and 

quality exist. Supported by the journal “Systematic and Applied Microbiology”, “The Living 

Tree” project [42]) will provide a reliable phylogenetic 16S rRNA tree comprising all 

classified type strains listed in the List of Prokaryotic names with Standing in Nomenclature 

(www.bacterio.cict.fr). So far 6,800 type strain sequences have been selected from the SILVA 
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SSURef database. The final tree will serve as a guide tree for confident classification for 

newly retrieved strains and will be updated twice a year together with the complete 16S rRNA 

alignment (www.arb-silva.de/living-tree).  

 

Diversity and Ecology (II): 

The final session of the workshop and the second half of the Diversity and Ecology session 

highlighted discoveries in microbial ecology enabled by rRNA technologies.  

Members of the heterotrophic alphaproteobacterial lineage SAR11 were first reported from 

the Sargasso Sea in 1990 [12]. In addition to being among the most abundant bacteria in the 

sea accounting for approximately 25% of the biomass and 50% of the cell abundance, they are 

noteworthy due to the size of their genome – a mere 1,308,759 base pairs. The ubiquity of 

Candidatus Pelagibacter ubique, yet to be formally described, was first quantified using 

combined FISH and rRNA-gene based phylogenetic methods. Six years and three genomes 

later, Candidatus Pelagibacter ubique continues to provide a wealth of information about 

microbial ecological processes and genomics in the ocean. What can we learn about studying 

SAR11? Giovannoni and colleagues have recently added to our understanding about the 

contribution of this abundant microbe by documenting SAR11’s requirement for reduced 

sulfur [37]. With a highly reduced set of genes, SAR11 also lacks the ability to reduce sulfur 

independently – instead taking advantage of reduced sulfur excreted by other cells. More 

surprises lie in SAR11’s extraordinarily high allelic variation and genome rearrangement. 

Evidence for SAR11 ecotypes from the Bermuda Atlantic Time Series (BATS) study explain 

the repeatable patterns in microbial distributions. At the center of these patterns lies genomic 

recombination which likely allows the different ecotypes of SAR11 to adapt to a given 

environment.  

Discovery in the open ocean is not limited to the pelagic zone. Since the detection of the first 

hydrothermal vents of the Rose Gardens off of the Galapagos in 1977 – exploration of the 
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deep sea has forever been transformed. A major question that still confronts us in these 

systems is the temporal and spatial patterns of microbial diversity at deep-sea vents. 

Reysenbach and colleagues have been exploring these patterns in their research [28]. They 

find that development from immature to mature chimneys is accompanied by chemical shifts 

over time, as well as differences in the fragility of the chimney structures. Mature chimneys 

tend to harbour a higher microbial diversity. These are often environments dominated by 

epsilon proteobacteria, but different archaeal chemolithotrophs often prevail as well. Research 

in this area has seen advances thanks to the ease of SSU rRNA gene sequencing and high 

throughput methods such as DGGE that allow for statistically relevant sample sizes to be 

collected and community structures compared. Future challenges include untangling the 

separate and combined effects of mineralogical changes, geochemical differences and 

microbial activity on microbial diversity in these geochemically diverse environments.   

A combined approach of rRNA-based and genomic technologies was used to elucidate the 

microbial community structure and activity in the meso- and bathypelagic zones of the ocean 

where microbes drive ocean biogeochemistry [36]. In the North Atlantic Deep Water mass, 

bacterial and archaeal populations are highly stratified both vertically and latitudinally. 

Marine Group I Crenarchaeota decrease in relative abundance closer to the equator to be 

outcompeted by members of the SAR202 bacterial clade. Likewise, Marine Group I 

crenarchaeotal concentrations are higher in mesoplagic than bathypelagic zones. Alternative 

substrate utilization in the form of D-amino acids is responsible for these differences in the 

bathypelagic waters as revealed by single-cell analysis of microautoradiography combined 

with CARD-FISH. A combination of microbial ecology and genomics approaches will likely 

continue to shed light on the “dark ocean’s” microbial consortia and determine the role 

particulate matter might be playing in the microbial food loop of the deep.   

“Everything is everywhere, but not equally happy” summarizes Jakob Pernthaler’s take home 

message of the Diversity and Ecology session at the rRNA technology workshop. rRNA-
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based microscopic methods coupled with assessment of cell growth or substrate uptake via 

pulse-labeling experiments enable us to go beyond questions of “Who’s there?” to “What are 

they doing?”. Microautoradiography combined with FISH can be automated to overcome the 

lab-intensive task of obtaining cell concentrations while simultaneously measuring substrate 

incorporation. In many lacustrine settings, horizontal and vertical gradients are generated by 

varying oxygen concentrations with depth and concentrations of humic substances along the 

surface. Differential utilization of glucose and acetate for biomass production can explain 

differences in species compositions at oxic and anoxic zones in humic lakes.  The 

physiological performance of bacteria in different habitats likely helps shape their genomic 

constitution and their biogeographic distributions in nature.  

A list of tools and databases that have been presented on the workshop is available at: 

http://www.arb-silva.de/rrna-workshop/tools/. 

 

Conclusions: 

The workshop emphasized the rapid progress that has been gained in rRNA technology over 

several decades. Twenty years ago, the sequencing of 150 bases was a challenge that kept 

researchers busy for weeks, but now several thousands of full-length 16S rRNA sequences or 

greater than 400,000 pyrosequencing tags can be readily generated within a week (Figure 2). 

Data production has become a routine procedure and powerful tools and software packages 

are available to process, store and visualize data and interpret them for transfer into biological 

knowledge. A remaining critical step in achieving a holistic picture of microbial diversity and 

function is to analyze genes and genomes in the context of their surrounding environment [7, 

19, 25]. To reach this goal it is now necessary to emend our sequence collection with more 

contextual (meta)data. The Genomic Standards Consortium (GSC) has recently been 

established to promote the inclusion of metadata alongside submission of genomes and 

metagenomes [10, 11]. The Minimum Information about a Metagenome Sequence (MIMS) 
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intends to standardize contextual data acquisition by requiring at least GPS coordinates plus 

depth/altitude and sampling time (see http://gensc.org) [9]. The Minimum Information about 

an ENvironmental Sequence (MIENS) has been proposed as a natural extension to MIGS and 

MIMS (http://gensc.org/gc_wiki/index.php/MIGS/MIMS_for_16S) targeted at rRNA gene 

sequences [29].  

Ribosomal RNA technology has become a mature science, but is still far from being 

exhausted of innovative applications. Over the years we have witnessed important steps in 

delineating the diversity on our planet using molecular markers with rRNA in the forefront. 

What can we expect from rRNA technologies thirty years from now? Hand-held devices that 

allow anyone to investigate and report biodiversity in real-time from the environment? 

Geotagging and geoblogging (http://en.wikipedia.org/wiki/Geotagging) of information is 

currently emerging and cell phones with GPS devices are already available. Therefore, it 

seems just a matter of time before pocket sequencing machines leave the realm of fiction and 

join our future collection of portable communication equipment. 
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Figure Legends 

 

Figure 1: 

Growth of the ribosomal RNA databases since 1992 measured by RDP II and SILVA. The 

databases show an exponential grows phase with a doubling time of around 15 to 18 months. 

Light grey: statistics by RDP, dark grey: statistics taken from the latest SILVA releases. 
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Figure 2: 

Timeline of the landmarks in ribosomal RNA technology over the last decade 
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