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Abstract 

Glucagon-like peptide-1 (GLP-1) is an incretin hormone that has undergone a revolutionary 

turnaround from discovery to clinically approved therapeutic. Rapid progress in drug design 

and formulation has led from initial development of short- and long-acting drugs suitable for 

daily or weekly parenteral administration, respectively, through to the most recent approval of 

an orally active GLP-1 agent. The current review outlines the biological action profile of GLP-

1 including the various beneficial metabolic responses in pancreatic and extrapancreatic 

tissues, including the gastrointestinal tract, liver, bone and kidney as well as the reproductive 

cardiovascular and central nervous systems. We then briefly consider clinically approved GLP-

1 receptor ligands and recent advances in this field. Given sustained evolution in the area of 

GLP-1 drug development and excellent safety profile, as well as the plethora of metabolic 

benefits, clinical approval for use in diseases beyond diabetes and obesity is very much 

conceivable.    
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Abbreviations 

ApoE, apolipoprotein E 

ANP, atrial natriuretic hormone  

CAMKII, Ca2+/calmodulin-dependent kinase II,  

CaSR, calcium-sensing receptor (CaSR)  

CCK, cholecystokinin  

FFA, free fatty acid 

GIP, gastric inhibitory polypeptide 

GIPR, gastric inhibitory polypeptide receptor 

GIT, gastrointestinal tract  

GLP-1, glucagon-like peptide-1 

GLP-1R, glucagon-like peptide-1receptor  

GPBAR1, bile acid receptor 1  

HR, heart rate  

PEPT1, peptide transporter 1  

Pdx1, pancreatic and duodenal homeobox 1 

SNAC, sodium N-(8-[2-hydroybenzoyl] amino) caprylate (SNAC) 

SSTR, somatostatin receptor  

T2DM, type 2 diabetes mellitus 
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1 Introduction 

The physiological role of the gastrointestinal tract (GIT) was traditionally thought to involve 

nutrient digestion and absorption, but it is now known to be the source of a plethora of peptide 

hormones involved in the regulation of metabolism and other body functions [Baggio and 

Drucker, 2007]. Seminal work in the late 1960s led to the identification of peptide hormones 

with glucagon-like immunoreactivity following GIT stimulation by glucose [Samols & Marks 

1967]. Since then, two major GIT-derived hormones involved in regulation of postprandial 

glucose have been identified, namely glucagon-like peptide-1 (GLP-1) and glucose-dependent 

insulinotropic polypeptide (GIP), secreted from L-cells and K-cells of the GIT, respectively. 

Collectively, these two hormones account for 50-70% of insulin secretion in response to a meal 

[Baggio and Drucker, 2007], with this action termed “the incretin effect”. Given the glucose-

dependent nature of GLP-1 induced insulin secretion and retention of bioactivity in type 2 

diabetes [Nauck et al, 1993a], drugs based on the biological action of this hormone were rapidly 

translated to benefits in humans [Baggio and Drucker, 2007]. Thus, the amino acid peptide 

sequence of GLP-1 was first discovered by Habener and colleagues in the early 1980s through 

decoding of recombinant cDNA clones in anglerfish [Lund et al, 1982], and subsequently found 

to enhance insulin secretion in the perfused rat pancreas [Mojsov et al, 1987], with clinical 

approval of GLP-1 mimetic for the treatment of type 2 diabetes mellitus (T2DM) following in 

2005 [Kolterman et al, 2005]. Although this original approval was largely based on the potent 

glucose-dependent insulinotropic properties of GLP-1 receptor (GLP-1R) activation on 

pancreatic beta-cells, it is now clear that the GLP-1R is expressed on various other 

metabolically active tissues eliciting a range of biological effects across diverse organ systems 

[Figure 1].  

 

2 GLP-1 secretion 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5194
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3543
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5012
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=249
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In terms of endogenous secretion, GLP-1 producing L-cells are predominantly located along 

the ileum and colon of the GIT [Eissele et al, 1992]. With the apical surface of the L-cell in 

contact with the gut lumen, GLP-1 secretion is stimulated by the presence of intestinal nutrients 

[Eissele et al, 1992], albeit via distinct mechanisms. Thus, glucose absorption within the L-cell 

leads to ATP production, subsequent closure of KATP channels and opening of voltage-gated 

Ca2+ channels, a process known to be linked to sodium-coupled glucose transporters (SGLT1) 

that sense ingested glucose [Parker et al, 2012]. The resulting Ca2+ influx triggers exocytosis 

of GLP-1 containing vesicles into the circulation. Alternatively, free fatty acids bind to and 

activate their respective free fatty acid L-cell receptors, for example FFA1, FFA4, GPR120 

and GPR40, to increase intracellular Ca2+ via Gq signalling pathways that stimulate protein 

kinase C (PKC) signalling leading to GLP-1 secretion [Tolhurst et al, 2011]. In particular, 

activation of the G-protein-coupled receptor (GPCR), bile acid receptor 1 (GPBAR1), increases 

L-cell differentiation and elicits substantial GLP-1 secretion [Lund et al, 2020].  

In addition to this, proteins and amino acids are consistently shown to elicit L-cell GLP-

1 secretion in vitro [Tolhurst et al, 2011], in rodents [Clemmensen et al, 2013] and in humans 

[Lejeune et al, 2006]. This action is mediated by activation of Ca2+/calmodulin-dependent 

kinase II (CAMKII), calcium-sensing receptor (CaSR) and peptide transporter 1 (PEPT1) 

leading to a rise in intracellular Ca2+ and subsequent GLP-1 secretion [Diakogiannaki et al, 

2013]. Furthermore, intestinal L-cells are situated in close proximity to enteric neurons and 

microvasculature, suggesting GLP-1 secretion is also influenced by neuronal and endocrine 

factors [Anini et al, 2002]. As such, GIP and cholecystokinin (CCK) are the two gut-derived 

hormones implicated in GLP-1 secretion. In rodents, intravenous treatment with GIP is 

associated with an increase in glucagon-like immunoreactivity via a GIP-GLP-1 vagal axis 

[Rocca et al, 1999]. Whether such a GIP-GLP-1 axis operates in humans is questionable, given 

that pharmacological doses of GIP fail to elicit GLP-1 secretion in man [Mentis et al, 2011]. 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1713
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=74
https://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=80
https://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=80
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=915
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=225
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=127
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=127
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=225
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=286&familyType=ENZYME
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=37
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1554
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=54
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=187#984
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=864
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In addition to these pharmacological stimuli, murine L-cells display a circadian pattern of GLP-

1 secretion that peaks prior to the onset of feeding periods [Biancolin et al, 2020].  

Contrary to extensive and growing knowledge around the stimulation of GLP-1 

secretion from enteroendocrine L-cells, much less is known about potential mediators that 

provide feedback inhibition to GLP-1 secretion. In this regard, the neuropeptide galanin has 

been shown to inhibit GLP-1 secretion via action of the Gi-linked GAL1 receptor expressed on 

L-cells [Psichas et al, 2015]. Likewise, somatostatin has been shown to inhibit GLP-1 secretion, 

likely via modulation of the somatostatin receptor 5 (SSTR5) [Chisholm and Greenberg, 2002]. 

Exploiting this knowledge, selective SSTR5 antagonists have been shown to augment 

circulating GLP-1 levels in mice [Farb et al, 2017].  Indeed, more recent evidence reveals that 

selective stimulation of colonic L-cells leads to significant improvements in metabolic control, 

with obvious possible therapeutic implications [Lewis et al, 2020]. 

Once secreted, GLP-1 has a short duration of biological action due enzymatic degradation by 

the ubiquitous enzyme dipeptidyl peptidase-4 (DPP-4) and efficient renal clearance, resulting 

in an in vivo t½ of around 5-10 minutes [Deacon et al, 1996]. It is suggested that up to 75% of 

secreted GLP-1 is degraded within the gut, with an additional 50% then degraded in the liver, 

before even entering the general circulation [Deacon et al, 1996]. Within the circulation, GLP-

1 binds and activates the GLP-1R expressed on various sites throughout the body. The GLP-

1R is a membrane bound GPCR, coupled to Gαs that activates adenylyl cyclase (AC) to 

increase cyclic adenine monophosphate (cAMP) and triggers intracellular cascades leading to 

various responses within each cell type [Mayo et al, 2003]. However, there has been some 

controversy around the specificity of commercially available antibodies directed against the 

GLP-1R [Pyke and Knudsen, 2013], generating debate on the exact location of GLP-1R 

expression in the body [Pyke and Knudsen, 2013]. Fortunately, use of molecular biology 

techniques, alongside recent advances in monoclonal antibody development, has allowed for 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3593
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=243
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2020
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=359
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1612
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=257
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352
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clearer identification of the GLP-1R, distinct from that of GLP-2R, GIPR and glucagon 

receptors [Biggs et al, 2018; Pyke et al, 2014;]. Further to this, development of fluorescent 

probes, such as LUXendin645, allow for super-resolution microscopic detection of the GLP-

1R both in vitro and in vivo [Ast et al, 2020]. As such, monoclonal antibodies with improved 

selectivity for GLP-1R have now been developed confirming true GLP-1R expression in the 

pancreas, brain, kidney, lung, heart and stomach [Pyke et al. 2014]. Furthermore, transgenic 

mice expressing fluorescent markers in tissues that express the GLP-1R largely confirm these 

findings [Richards et al. 2014]. In addition, mRNA expression of the GLP-1R has been 

observed in osteoblastic cell lines [Pacheco-Pantoja et al, 2011], but there is limited evidence 

for presence of GLP-1R on human bone. Centrally, the GLP-1R is expressed within the 

following brain regions; cerebral cortex, hypothalamus, hippocampus, thalamus, caudate-

putamen and globus pallidum [Alvarez et al, 2005]. Finally, GLP-1R mimetic therapy has 

consistently shown to improve liver disease, possibly indirectly via anti-inflammatory and 

weight-reducing actions. 

 

3 GLP-1 and the endocrine pancreas  

Glucose-stimulated insulin release from pancreatic beta-cells is a tightly regulated process, that 

involves many complementary pathways. In the case of GLP-1, activation of the GLP-1R on 

beta-cells triggers an intracellular signalling cascade that potentiates glucose-stimulated insulin 

secretion, whilst also exerting more longer-term benefits on beta-cell growth and survival, 

ultimately leading to improvements in overall beta-cell sensitivity and insulin production 

[Figure 2; Campbell and Drucker, 2013]. Advances in islet cell lineage tracing technologies 

have also highlighted the importance of GLP-1R in maintaining beta-cell identity and 

preventing beta-cell de-differentiation under situations of pancreatic islet stress [Tanday et al, 

2020]. In terms of the pancreatic alpha-cell, GLP-1 consistently suppresses glucagon secretion 

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=250
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=248
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=251
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=251
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1136
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[Hare et al, 2009]. Indeed, this glucagonostatic action is suggested to account for 50% of the 

blood glucose lowering ability of GLP-1 [Hare, 2010]. The exact mechanisms underlying this 

action are uncertain, however there are two major theories [Figure 2]. The “direct” theory, 

relies on alpha-cells expressing the GLP-1R with GLP-1 exerting a direct inhibitory action on 

alpha-cells [De Marinis et al, 2010]. However, even with the use of more specific antibodies 

and probes to accurately detect the GLP-1R, there are still conflicting reports on whether alpha-

cells express GLP-1R. Studies have demonstrated that only a small proportion, at most 

approximately 10-12%, of mouse alpha-cells express the GLP-1R [Ast et al, 2020], whilst 

others have failed to detect the GLP-1R on human alpha-cells [Waser et al, 2015]. Whether 

GLP-1R present on alpha-cells make any meaningful contribution to the glucagonostatic 

effects of GLP-1R mimetics is questionable. Due to the lack of clear evidence regarding alpha-

cell GLP-1R expression, a second “indirect” theory has emerged [Figure 2]. This indirect 

theory ascribes to the idea that GLP-1 mediates its glucagonostatic effect indirectly through 

stimulation of somatostatin secretion from pancreatic delta-cells, that express functional GLP-

1R [Ørgaard and Holst, 2017]. In this regard, somatostatin consistently inhibits glucagon, 

insulin and GLP-1 across all species. Given that GLP-1 is known to stimulate delta-cell 

secretions [Ørgaard and Holst, 2017], it is feasible that somatostatin exerts a paracrine 

inhibitory effect on neighbouring alpha-cells. Indeed, in a perfused mouse pancreas model, 

administration of GLP-1 suppressed glucagon secretion, with this inhibitory effect annulled in 

the presence of a specific somatostatin receptor 2 (SSTR2) antagonist [Ørgaard and Holst, 

2017]. In similar fashion, the ability of liraglutide to reduce dapagliflozin-induced 

hyperglucagonemia is abolished in somatostatin receptor knockout mice [Saponaro et al, 2019]. 

Collectively, these findings present strong evidence for the indirect theory of GLP-1 mediated 

glucagon inhibition [Figure 2]. In reality, GLP-1 induced inhibition of glucagon secretion is a 

complicated process that requires further investigation, especially since GLP-1 is known to 

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=356
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4594
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stimulate release of amylin [Gedulin et al, 1997], GABA [Wendt et al, 2004] and zinc [Zhou 

et al, 2007], that can all independently modulate glucagon secretion. Nonetheless, promotion 

of glucose-dependent insulin secretion, coupled with reduced glucagon release, represents an 

ideal paradigm for diabetes therapy.     

In contrast to GLP-1 actions on alpha-cells, the molecular actions underpinning 

potentiation of beta-cell insulin secretion have been explored in depth [Figure 2]. Upon GLP-

1R binding and activation, the enzyme AC increases cAMP levels which in turn stimulates 

protein kinase A (PKA) and Epac activity [Holz, 2004]. PKA closes the beta-cell ATP-sensitive 

K+ (KATP) channel to depolarise the cell membrane [Light et al, 2002]. This depolarisation 

opens voltage-dependant Ca2+ channels leading to increased Ca2+ influx, essential for 

exocytosis of insulin granules [MacDonald et al, 2003]. In harmony with this, Epac proteins 

sensitise the K+ channel, lowering its ATP threshold for activation and further act on the 

endoplasmic reticulum to release Ca2+ cellular stores [Doyle and Egan, 2007]. These pathways 

are critical for GLP-1 mediated insulin secretory activity, as blocking cAMP accumulation 

[Härndahl et al, 2002] or PKA activity [Wang et al, 2001], eliminates GLP-1 induced insulin 

secretion.  

As well as stimulating glucose dependent insulin secretion, GLP-1 exerts additional 

effects of pancreatic beta-cells with obvious therapeutic benefits in diabetes. As such, GLP-1 

is able to slow the loss of beta-cell mass in diabetes through its ability to increase proliferation 

[Arakawa et al, 2009] and protect against apoptosis [Li et al, 2003]. Specifically, activation of 

PKA by GLP-1 leads to an increase in Pdx1, a transcription factor critical for maintenance of 

beta-cell function and protein kinase B (Akt) induced beta-cell proliferation [Wang et al, 2001]. 

However, it should be noted that adult human beta-cells appear to have somewhat limited 

proliferative capacity, when compared to juvenile mouse or human cells [Dai et al, 2017], with 

important therapeutic implications. Interestingly, upregulation of beta-cell Pdx1 expression is 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=688
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1067
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=566
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=284
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=259
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=285
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also attributed to GLP-1 mediated benefits on the maintenance of beta-cell identity and 

prevention of beta-cell de-differentiation in situations of islet stress [Tanday et al, 2020]. In 

addition to this, GLP-1R-mediated intracellular beta-cell signalling also leads to upregulation 

of anti-apoptotic proteins, such as B-cell lymphoma 2 (Bcl2) and B-cell lymphoma-extra large 

(Bcl-XL), as well as inhibition of caspase activation and nuclear factor-κB (NF-κB) to 

ultimately encourage beta-cell survival and resistance to endoplasmic reticulum stress 

[Tsunekawa et al, 2007]. Taken together, the compilation of these GLP-1 induced benefits on 

pancreatic islet cells highlight the clinical benefits of GLP-1 mimetics in diabetes.  

 

3.1 GLP-1 and the GIT 

Activation of the GLP-1R within the CNS reduces gut contractility, slowing gastric motility 

and emptying [Goyal et al, 2019]. By reducing gastric motility, nutrients are absorbed into the 

circulation at a slower rate, decreasing the postprandial spike in blood glucose [Smits et al, 

2016], with obvious benefit in diabetes. The mechanism behind this action is multifaceted and 

involves vagal innervation, adrenergic innervation and nitric oxide (NO) signalling [Tolessa et 

al, 1998]. This GIT effect is consistent across species, is observed in healthy and diabetic 

[Meier et al, 2003] humans, and amplifies the antidiabetic actions of GLP-1.  

 

3.2 GLP-1 and the cardiovascular system  

Type 2 diabetes is strongly associated with increased cardiovascular disease (CVD) risk [Marso 

et al, 2016a; Marso et al, 2016b], and there has been recent strong emphasis on the ability 

current and future antidiabetic drugs to reduce CVD mortality in diabetes [Marso et al, 2016a; 

Marso et al, 2016b]. Notably, expression of GLP-1R has been detected within all four chambers 

of the heart, sinoatrial node and arteriole smooth muscle cells [Baggio et al, 2018; Pyke et al, 

2014]. In this regard, GLP-1 infusion has been shown to improve endothelial function 

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2844
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2845
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2509
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[Nystrom et al, 2004], with GLP-1 mimetic therapy known to reduce blood pressure [Sun et al, 

2015] and offer overall cardiomyocyte protection [Wang et al, 2013; Sjoberg et al, 2014; Asmar 

et al, 2017]. Collectively these actions benefit cardiovascular health, as has been demonstrated 

in recent cardiovascular outcome trials using various GLP-1 mimetics [Marso et al, 2016a; 

Marso et al, 2016b]. Specifically, in the SUSTAIN-6 trial, patients with type 2 diabetes and 

CVD risk had a reduced rate of cardiovascular death, non-fatal myocardial infarction and non-

fatal stroke when treated with the recently approved GLP-1 mimetic semaglutide [Marso et al, 

2016a]. Likewise, the LEADER trial concluded that a related GLP-1 mimetic, namely 

liraglutide, was beneficial in reducing the rate of non-fatal myocardial infarction, stroke and 

first occurrence of death from cardiovascular causes [Marso et al, 2016b]. However, this CVD 

benefit may be GLP-1 mimetic specific, given that other trials using GLP-1 mimetics with 

shorter half-lives and lower homology to native GLP-1, such as lixisenatide (ELIXSA) or 

exenatide (EXSCEL), failed to show a significant CVD benefit [Holman et al 2017]. Despite 

this variation, a more recent meta-analysis of all these trials confirmed the beneficial actions 

of GLP-1 mimetics through a 13% relative risk reduction in CVD mortality, 12% risk reduction 

in all-cause mortality and 10% relative risk reduction in cardiovascular death, non-fatal 

myocardial infarction and non-fatal stroke [Bethel et al, 2018]. Ultimately, clinical trials such 

as these have confirmed that, similar to sodium glucose co-transporters 2 (SGLT2) inhibitors, 

GLP-1 mimetics have established CVD benefits in diabetes.   

 The mechanisms underpinning the cardiovascular benefit of GLP-1 mimetics are 

multifaceted. GLP-1 mimetics can reduce traditional CVD risk factors such as obesity, whilst 

also exerting anti-inflammatory and anti-atherosclerotic effects as well as having positive direct 

modulatory effects on endothelial, cardiac and renal function [Garg et al, 2019]. In T2DM, 

GLP-1R activation has been shown to reduce blood pressure, due to a direct vasodilatory action 

combined with indirect actions on lowering body weight and inducing kidney natriuresis 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=9724
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1133
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7387
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1135
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=916
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[Asmar et al, 2019]. In all four major cardiovascular outcome trials, namely SUSTAIN-6, 

LEADER, ELIXA, EXCSEL, systolic blood pressure was significantly reduced with GLP-1 

mimetic therapy, with the greatest mean reduction (5.4 mmHg) associated with 1 mg once-

weekly semaglutide treatment [Marso et al, 2016a]. Similarly, all four trials highlighted GLP-

1 mimetic induced weight loss, again with the greatest effect (4.3 kg weight loss) observed in 

the semaglutide treated group [Marso et al, 2016a]. GLP-1 mimetics, such as liraglutide and 

exenatide, have also been shown to reduce low-density lipoprotein (LDL) cholesterol, total 

cholesterol and triglyceride levels [Sun et al, 2015]. Collectively, these actions account for at 

least some of the CVD benefits observed with GLP-1 mimetic therapy.   

 Given that the GLP-1R is expressed on all four chambers of the heart as well as the 

sinoatrial node, it is likely that GLP-1 and its mimetics exert a direct action on cardiac cells 

[Baggio et al, 2018]. In agreement with this, GLP-1 therapy has a protective effect on 

cardiomyocytes during myocardial infarction in mice [Nikolaidis et al, 2004]. Interestingly, 

this beneficial action is still present in cardiac-specific GLP-1 receptor knockout mice, 

implying possible important indirect effects [Ussher et al, 2014]. GLP-1 and associated 

mimetics have also been shown to increase heart rate (HR) [Robinson et al, 2013] via direct 

receptor mediated actions [Baggio et al., 2017], but this effect was variable between mimetics. 

As such, in a head-to-head study with lixisenatide and liraglutide, the shorter-acting agent 

lixisenatide produced a modest, transient 1-3 beat per minute increase in HR, whilst the longer-

acting GLP-1 mimetic liraglutide was associated a more distinct and sustained 6-10 beat per 

minute beat per minute elevation [Meier et al, 2015]. The potential impact of elevated HR in 

patients with heart failure does need to be carefully considered [Marso et al, 2016a]. 

Furthermore, heart rate is well known to increase postprandially, and GLP-1 mimetic mediated 

elevations of heart rate could also be a compensatory consequence of GLP-1-induced 
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vasodilation in specific tissues [Asmar et al. 2017], but such a GLP-1 mimetic effect still needs 

to be confirmed.  

 

3.3 GLP-1 and inflammation  

Further to this, GLP-1 therapy has also been shown to augment anti-inflammatory and anti-

atherosclerotic processes, demonstrated by their ability to reduce occurrence of myocardial 

infarctions and strokes [Tanaka et al, 2018]. In this regard, GLP-1 mimetics have been shown 

to impede inflammatory responses and reduce atherosclerosis development [Figure 3A]. 

Specifically, in animal models of atherosclerosis, namely ApoE-/- and LDL receptor-/- knockout 

mice, GLP-1 treatment reduced plaque size [Bjørnholm et al, 2020]. The GLP-1 mimetics 

exendin-4 and semaglutide have also been shown to reduce cerebrovascular infarct size in 

rodent models of cerebral ischaemia [Basalay et al, 2019]. In patients with acute myocardial 

infarction, administration of GLP-1 or its mimetics improved ventricular function and reduced 

reperfusion injury [Nikolaidis et al, 2004]. Improvement of endothelial dysfunction is another 

mechanism through which GLP-1 mimetics exert their CVD benefit [Nystrom et al, 2004]. As 

such, liraglutide is known to ameliorate vascular endothelial dysfunction via suppression of 

oxidative stress and direct promotion of endothelial-derived nitic oxide synthase (eNOS) 

mediated NO production and vasodilation [Figure 3A; Li et al, 2020]. However, it should be 

noted that others have failed to observe clear beneficial effects of GLP-1 mimetics on 

endothelial function [Faber et al, 2015].  

GLP-1 and associated mimetics also have established anti-inflammatory benefits 

beyond cardiovascular disease [Lee and Jun, 2016]. As such, intraepithelial lymphocytes 

(IELs) of the GIT express GLP-1R, with activation resulting in reduced cytokine production to 

positively control innate immunity and gut barrier function [Yusta et al, 2015]. In this regard, 

liraglutide improves aspects of inflammatory skin diseases, such as psoriasis, through 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1135
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1249
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beneficial anti-inflammatory actions on immune cells [Hogan et al, 2011]. Likewise, liraglutide 

has been shown to reduce lung fibrosis in a bleomycin-induced rodent model of lung disease, 

by directly decreasing the expression of pro-fibrotic cytokines markers [Fandiño et al, 2020]. 

Collectively these studies highlight the potential of GLP-1 mimetics for the treatment of 

diseases and disorders driven by chronic inflammation.  

 

3.4 GLP-1 and the kidney 

GLP-1 and associated mimetics elicit actions on the renal system, but effects may be dependent 

on species studied, renal health status and concentration of GLP-1 mimetic employed [Hviid and 

Sorensen, 2020]. In rodents, GLP-1 acts on kidney GLP-1Rs located on renal vascular smooth 

muscle [Pyke et al, 2014], to increase renal plasma flow (RPF) and glomerular filtration rate (GFR) 

as well as diuresis and natriuresis whilst reducing renal inflammation, fibrosis and oxidative stress, 

via cAMP and PKA signalling pathways [Lee and Jun, 2016]. The presence of SGLT1 on L-cells 

of the GIT [Parker et al, 2012] may also represent sodium sensing capability within the gut and 

suggest important gut-kidney crosstalk in relation to regulation of ingested sodium [Asmar et al. 

2020]. Tensive status also seems to be an important factor in determining the renal actions of GLP-

1. As such, when compared to normotensive rats, hypertensive rats exhibit reduced renal GLP-1R 

expression and related effects [Ronn et al, 2017]. In addition, renal output is closely associated 

with cardiac function, with GLP-1R activation at both sites determining overall responses. In 

humans, GLP-1 infusion has recently been shown to exert a natriuretic effect as well as suppress 

angiotensin II release independent of RPF and GFR [Asmar et al, 2021], but the specific site of 

GLP-1R expression required for these effects still to be determined. Alternatively, in rodents a 

GLP-1/atrial natriuretic peptide (ANP) axis exists, whereby activation of the GLP-1R in cardiac 

tissue stimulates ANP secretion to evoke renal natriuresis and reduced blood pressure [Kim et al, 

2013]. GLP-1 has also been shown to exert positive actions on the renal system in the treatment of 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2504
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4869
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both diabetic and non-diabetic kidney disease [Roscioni et al, 2014]. In addition to cytoprotective 

and anti-inflammatory actions, GLP-1 also acts to increase RPF, GFR, renal interstitial fluids and 

urinary flow rate, whilst reducing tubular necrosis [Skov et al, 2013]. The importance of GLP-1R 

action within the kidney is exemplified in GLP-1 receptor knockout mice that display increased 

renal oxidative stress [Fujita et al, 2014]. Together, these actions highlight the potential of GLP-

1R mimetics for treating kidney disease and improving kidney function in diabetes.  

 

3.5 GLP-1 and bone 

T2DM is associated with increased bone fracture risk, but the mechanisms behind this effect 

are still to be fully elucidated [Mabilleau et al, 2018a]. Diabetic animal models present with a 

loss of bone mineral density which can be restored through administration of GLP-1R mimetics 

[Mansur et al, 2015; Mansur et al 2019a]. In addition, exenatide has been shown to stimulate 

osteoblast activation and restore bone formation in an ovariectomy-induced model of bone loss 

[Mabilleau et al, 2013]. Whether these beneficial effects are linked to direct activation of GLP-

1R on bone remains to be determined, given conflicting reports GLP-1R expression on bone 

[Jeon et al, 2014]. One theory suggests that GLP-1 acts on bone marrow stromal cells, with 

transcription of genes to promote osteoblast differentiation and inhibit adipocyte differentiation 

to ultimately favour bone formation, although this concept and presence of GLP-1R on marrow 

stromal cells still requires further clarification [Figure 3B]. GLP-1R mediated improvements 

in bone strength and quality have also been demonstrated in various distinct forms of diabetes 

including insulin-deficient type 1 diabetic mice [Mansur et al, 2015], insulin-resistant high fat 

fed diabetic mice [Mansur et al, 2019a] as well as genetically-induced type 2 diabetic animal 

models [Sun et al, 2016a]. The observed positive actions of sitagliptin on bone are likely due 

to the elevations of both GLP-1 and GIP levels [Mansur et al, 2019b], given that GIP has well 

documented benefits on bone in animals and humans [Gobron et al, 2020; Mabilleau et al, 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6286
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2016; 2018b; Stensen et al, 2020; Vyavahare et al, 2020]. In the clinic, recent reports show 

exenatide to have no impact on bone fractures, whilst lixisenatide and liraglutide reduce 

fracture occurrence [Cheng et al, 2019]. 

 

3.6 GLP-1 and liver 

Despite conflicting reports on whether hepatocytes express the GLP-1R [Gupta et al, 2010; 

Pyke et al, 2014], GLP-1 has been shown to positively impact hepatic gluconeogenesis, 

glycogen synthesis and glycolysis [Gupta et al, 2010]. In this regard, the impact of GLP-1 

mimetics on liver function is likely to be linked to activation of GLP-1R on immune 

macrophages to attenuate T-cell mediated inflammation [Nagashima et al, 2011]. In disease 

states, GLP-1R mimetics reduce hyperlipidaemia, liver fibrosis and inflammation in non-

alcoholic fatty liver disease (NAFLD) [Armstrong et al, 2016; Newsome et al, 2020] as well 

as liver fat content in type 2 diabetes [Petit et al, 2017].  Similarly, in animal models GLP-1 

also imparts beneficial effects on the liver, with exendin-4 reducing oxidative stress and 

improving hepatic steatosis and inflammation in diabetic and atherosclerotic animal models, 

respectively [Sharma et al, 2011]. In animal models of both acute and chronic liver injury, 

liraglutide protected against hepatotoxicity, associated with a reduction in oxidative stress, 

improved liver mitochondrial function and insulin resistance [Guo et al, 2018; Wang et al, 

2017]. Further research is required to demonstrate whether these hepatic benefits are mediated 

through direct GLP-1R action on hepatocytes or indirectly though GLP-1R induced weight 

loss, reduction in HbA1c, and augmented lipid metabolism and insulin sensitivity.  

 

3.8 GLP-1 and fertility 

Gut hormones, including GLP-1, have been shown to impact the reproductive system and effect 

fertility [Moffett and Naughton, 2020]. Thus, GLP-1R signalling increases menstrual 
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frequency and chance of pregnancy in women with polycystic ovary syndrome (PCOS) [Liu et 

al, 2017]. Additional actions have been identified in animal studies showing that GLP-1 

mimetics can restore ovarian morphology [Sun et al, 2016b] and improve development of 

ovarian follicles [Yang and Wang 2016]. Moreover, GLP-1 mimetics can reduce testicular 

inflammation, leading to improved sperm motility and activity in diet-induced obese mice 

[Zhang et al, 2015]. Further to this, and although not directly related to GLP-1R mediated 

effects on fertility, expansion in beta-cell mass that occurs during pregnancy is linked to 

pancreatic alpha-cell production of GLP-1, which exerts a positive paracrine effect on 

neighbouring beta-cells to encourage growth and proliferation [Moffett et al, 2014]. In 

harmony with these findings, GLP-1R knockout mice exhibit delayed puberty, irregular oestrus 

cycles, impaired fertility and reduced litter sizes [MacLusky et al, 2000]. The actions of GLP-

1 on fertility have yet to be fully exploited in the clinic, and further research is required to 

develop a suitable treatment options in respect to PCOS and infertility.  

 

3.9 GLP-1 and the brain 

The GLP-1R is expressed throughout many regions of the brain including the brainstem, 

cerebellum, cerebral cortex, hippocampus, hypothalamus, substantia nigra and thalamus [Cork 

et al, 2015]. As a result, GLP-1 receptors have important, and potential pharmacologically 

exploitable, effects within the central nervous system (CNS). Discussion of GLP-1 receptor 

mediated CNS actions, including aspects of neuroprotection, hypothalamic regulation of food 

intake, stress response as well as locally produced GLP-1 is largely outside the scope of our 

current review and is covered in detail within other reviews in this themed issue.  

 

4 Clinically approved GLP-1R ligands 
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The extensive biological action profile of GLP-1 detailed above, with notable benefits in 

various disease states, promotes the wide therapeutic use of enzymatically stable, longer-acting 

GLP-1 analogues. However, to date use of GLP-1R based therapies has only been approved in 

the treatment of obesity and diabetes. In this regard, GLP-1R drugs can be subdivided 

pharmacologically by their duration of action into short-acting and long-acting classes [Aroda, 

2018]. Short-acting GLP-1R ligands, namely exenatide and lixisenatide, provide shorter 

elevations in circulating GLP-1 levels (2-3 hours) that act quickly to delay gastric emptying 

and reduce postprandial blood glucose levels [Nauck et al, 2011]. Whereas, long-acting GLP-

1R ligands, namely liraglutide, albiglutide, dulaglutide and exenatide-LAR, lead to more 

prolonged periods of GLP-1R activation (>24 hours) to reduce fasting blood glucose [Buse et 

al, 2009]. This more consistent elevation in plasma GLP-1 levels, and therefore potential for 

an uninterrupted receptor activation profile, appears to result in greater improvements in 

HbA1c levels when compared to short-acting GLP-1 compounds [Buse et al, 2009]. However, 

longer-acting GLP-1R ligands have been shown to induce some tachyphylaxis, and as such 

have a more limited impact on gastric motility and are therefore unable to reduce postprandial 

hyperglycaemia as effectively as their short-acting counterparts [Nauck et al, 2011]. Both short 

and long-acting GLP-1R ligands induce weight loss, confirming that this action is not 

secondary to delaying gastric motility, but rather due to direct actions within the CNS and 

hypothalamus. In addition, although highly likely, it is still unknown whether a more consistent 

GLP-1R activation profile is observed with longer-acting GLP-1R mimetics. 

 

4.1 Early progress with clinically approved GLP-1R mimetics 

Progress with developing new and enhanced clinically approved GLP-1R mimetics has been 

frequent over the years [Figure 4]. As such, exenatide was the first GLP-1R ligand drug 

approved for type 2 diabetes in 2005 as a twice-daily preparation [Nielsen et al, 2004], and was 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7386
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7638
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1135
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swiftly followed by approval of once-daily liraglutide [Drucker et al, 2010]. Exenatide 

extended-release (exenatide-LAR) was the first approved once-weekly GLP-1R mimetic in 

2012, followed by albiglutide, dulaglutide and semaglutide [Dhillon, 2018], with lixisenatide 

also gaining approval in 2016 as another once-daily administered drug option [Heimburger et 

al, 2019]. It should however be noted that albiglutide was globally withdrawn from the market 

in July 2018 for economic reasons. Nonetheless, all these GLP-1 have proven clinical 

effectiveness, but each requires parenteral administration due to peptidic nature of GLP-1, with 

obvious patient compliance issues. To date, liraglutide is the only GLP-1 mimetic approved for 

the treatment of obesity, albeit at a slightly increased dose than that used for diabetes therapy 

[Figure 4].   

 

4.2 Recent advance with GLP-1R mimetics 

Semaglutide represents the most recently approved once-weekly formulation, first gaining 

clinical approval in 2017. Semaglutide is comprised of human GLP-1 molecule with C-18 

acylation at Lys26 and, amino acid substitution of Ala2 with Abu2 to impart full DPP-4 

resistance and an additional Lys34 for Arg34 amino acid replacement [Buckley et al, 2018]. 

Collectively these alterations result in a biological half-life of approximately 7 days allowing 

for once-weekly administration [Dhillon, 2018]. More strikingly, recent advances in peptide 

formulation and delivery led to the generation of a semaglutide drug that that can be delivered 

orally. As such, oral semaglutide (Rybelsus) was FDA approved in 2019 (with EMA approval 

in early 2020) as the first non-injectable GLP-1 mimetic suitable for once-daily oral 

administration in humans [Hedrington, 2019]. Orally active semaglutide is formulated with an 

absorption enhancer, namely sodium N-(8-[2-hydroybenzoyl] amino) caprylate (SNAC), to 

encourage transcellular absorption of intact semaglutide through the gastric membrane by 

causing causes a localised increase in pH [Buckley et al, 2018]. This represents a major 
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milestone for GLP-1 therapeutics and will likely herald further unprecedented progress in this 

field. As a monotherapy, oral semaglutide promotes dose-dependent reductions in HbA1c and 

weight loss [Aroda et al, 2019]. Compared to injectable liraglutide, oral semaglutide was 

equally effective at reducing HbA1c during a 26 week treatment regimen, and actually 

exhibited superior efficacy over liraglutide following 52 weeks treatment [Pratley et al, 2019]. 

Moreover, in a similar head-to-head comparison (SUSTAIN-10), oral semaglutide was 

superior to liraglutide in reducing weight and HbA1c, but was associated with gastrointestinal 

adverse events [Capehorn et al, 2020]. In that regard, GIT related side effects associated with 

oral semaglutide resulted in 6-7% of patients discontinuing during these trials [Aroda et al, 

2019; Pratley et al, 2019], but this is similar to other previously approved GLP-1 mimetics. 

Further to its clinical use in diabetes, once-weekly injection of 2.4 mg semaglutide has shown 

significant promise as an anti-obesity agent by reducing body weight by up to 15% in 

overweight adults [Wilding et al, 2021].  Additional clinical trials, namely PIONEER 11 and 

PIONEER 12, are currently ongoing to assess the safety and efficacy of oral semaglutide 

monotherapy or when combined with sitagliptin respectively, with data expected in 2021.  

 Other recent notable advances in the area of GLP-1 therapy relate to simultaneously 

supplementing GLP-1R signalling with activation of receptors for related hormones, that 

exhibit complementary mechanisms of action [Irwin and Flatt, 2009a]. The most obvious 

companion for GLP-1 in this regard is its sister incretin hormone GIP [Stumvoll and Tschöp, 

2018]. Thus, like GLP-1, GIP exhibits prominent glucose-dependent insulinotropic actions in 

addition to numerous other beneficial extrapancreatic glucose-lowering actions [Irwin and 

Flatt, 2015]. Initially the hypoglycaemic effectiveness of GIP was believed to be severely 

impaired in patients with T2DM [Nauck et al, 1993b], with preclinical studies in animal models 

of diabetes revealing limited additive positive effects of combination therapy using long-acting, 

enzymatically stable GIP and GLP-1 compounds [Irwin et al, 2007a; 2007b]. However, clinical 



 

This article is protected by copyright. All rights reserved. 

studies clearly demonstrated that GIP insensitivity in T2DM is surmountable [Højberg et al. 

2009], suggesting potential for additive antidiabetic benefits of GIP alongside GLP-1 in 

humans. This area of research was ultimately brought to the fore by the generation of single 

peptide molecules capable of co-activating GIP and GLP-1 receptors, dubbed the dual-acting 

‘twincretin’ unimolecular drugs [Finan et al. 2013; Gault et al, 2013]. One such dual-acting 

drug developed by Lilly, namely tirzepatide, with bias towards the GIP receptor (GIPR) over 

GLP-1R [Coskun et al. 2018], is currently in Phase 3 clinical trials. In this regard, tirzepatide 

appears to exert remarkable positive effects on glycaemic control and body weight loss in 

T2DM, with benefits well beyond that observed in patients treated with GLP-1R mimetic 

therapy alone [Frías, 2020].  

Interestingly, there is also a suggestion that inhibition of GIPR signalling can induce 

benefits in obesity and related diabetes [Irwin and Flatt, 2009b]. As such, activation of GIPR 

leads to accumulation of lipids in peripheral tissues [Irwin et al, 2020]. It follows that blockade 

of GIPR action could counter insulin resistance and improve metabolic status through 

prevention of fat deposition. Indeed, a recent observation reveals that sustained GIPR agonism 

actually leads to desensitisation of the GIPR to impart metabolic benefits [Killion et al, 2020]. 

The therapeutic benefits of combined GLP-1R agonism and GIPR antagonism have also been 

investigated, with largely positive outcomes observed in preclinical studies [Irwin et al, 2009; 

Killion et al, 2018]. Encouragingly, several other dual-, or even triple-acting, compounds with 

a GLP-1 backbone have been produced, and many of these reveal clear metabolic benefits over 

GLP-1R agonism alone [Bhat et al, 2013; Hasib et al, 2018; Irwin et al, 2015; Jall et al, 2017; 

Khajavi et al, 2018; Pathak et al, 2018]. In brief, it appears that combinatorial unimolecular 

therapies, that incorporate GLP-1R benefits together with the metabolic advantages of other 

related GIT-derived hormones, have unmistakeable therapeutic potential for obesity, diabetes 

and beyond.   

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=11429
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5 Closing remarks  

It is somewhat hard to fathom that a single gut-derived hormone like GLP-1 can exert such 

significant beneficial actions across multiple organ systems, with clear therapeutic potential. 

Correctly utilising this hormone to take full advantage of all such biological actions has the 

potential to treat multiple pathologies and provide benefit to many patients. To date, approval 

for use of GLP-1 mimetics has only be gained in diabetes and obesity. However, additional 

positive effects of GLP-1R activation in the GIT, liver, bone and kidney as well as the 

reproductive cardiovascular and central nervous systems, whether direct or indirect, suggests 

further readily exploitable clinical potential. Finally, significant advancements in the 

pharmaceutical development of GLP-1 based drugs, leading from initial generation of 

injectable short- and long-acting mimetics to now orally active GLP-1 receptor ligands, opens 

up the therapeutic benefits of this class of drugs to a much wider cohort of patients. It is clear 

that GLP-1R mimetics have had a dramatic and positive impact on diabetes and obesity 

treatment regimens within a relatively short time period, and we await further progress on the 

therapeutic utility of GLP-1 based drugs with real optimism. This may ultimately involve 

exploitation with other metabolically active gut hormones in the form of unimolecular dual or 

triple acting receptor agonists. 
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Figure 1. The metabolic actions of GLP-1 across diverse organs including the pancreas, brain, 

gastrointestinal (GI) tract, liver, muscle, bone, kidney as well as the cardiovascular and 

reproductive systems. 
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Figure 2. Actions of GLP-1 within pancreatic alpha-, beta- and delta-cells. In beta-cells, GLP-

1 binding to its receptor triggers intracellular signalling cascades that positively influence 

insulin synthesis and secretion as well as beta-cell proliferation and survival. The direct and 

indirect effects, mediated through the delta-cell, of GLP-1R activation on inhibition of alpha-

cell derived glucagon is also considered. 
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Figure 3. Actions of GLP-1 on (A) endothelial cells and (B) bone. (A) GLP-1 triggers a 

signalling cascade inside endothelial cells to mediate vasodilation and reduce atherosclerosis, 

to collectively improve cardiovascular health. (B) GLP-1 binds to its receptor on bone marrow 

stromal cells to activate intracellular signalling cascades that prevent the breakdown of B-

catenin. This augments gene expression to favour differentiation of the bone marrow stromal 

cell into pre-osteoblasts, rather than pre-adipocytes, and increase bone formation.  
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Figure 4. Clinically approved GLP-1 mimetics prescribed for the treatment of diabetes. 

Structural modifications of GLP-1 mimetics, compared to native GLP-1, are highlighted in 

gold. Information on drug half-lives, dosage and date of initial approval is also included. 

*withdrawn from the market in 2018.  

 


