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Abstract: The Cross-track Infrared Sounder (CrIS) aboard the Suomi National Polar-orbiting Partner-
ship (S-NPP) satellite is a spaceborne Fourier transform infrared spectrometer. The study aims to
retrieve carbon dioxide (CO2) information (the CO2 profile and column-averaged dry-air mole frac-
tion of XCO2) from June 2018 to December 2019 based on the The National Oceanic and Atmospheric
Administration (NOAA)-Unique Combined Atmospheric Processing System (NUCAPS) Cloud-
Cleared Radiances (CCRs) via the CrIS. The CCRs products for the CrIS with 2223 channels have
been available since 22 May 2018. Characteristics of the CO2 weighting functions inform the choice
of multiple channels that are around 15 µm in size that differ by latitude and season to maximize
retrieval sensitivity to CO2 and minimize sensitivity to other interfering atmospheric parameters.
CO2 was retrieved from these channels using an adopted nonlinear optimization algorithm. The
temperature, water vapor, and ozone profiles used in the inversion process were gathered from the
European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5). Validations
of CO2 concentrations as retrieved from CrIS showed the following conclusions: (1) The relative error
of the retrieved CO2 concentrations, as compared to Civil Aircraft for the Regular Investigation of
the atmosphere Based on an Instrument Container (CARIBIC) in situ aircraft measurements, was
less than 0.5%, and the root mean square errors (RMSE) were less than 0.7 ppmv (with correlation
coefficients of 0.56–0.86); (2) the retrieved XCO2 from June 2018 to December 2019 correlated well
with the ground-based Total Carbon Column Observing Network (TCCON) observations, and the
differences were within ±0.2 ppmv. Further analysis of the temporal and spatial distribution of the
retrieved CO2 at 300 hPa demonstrated a strong seasonal variation of CO2 in 0–60◦ N in the Northern
Hemisphere with the maximum values in June–August and larger amplitudes of seasonal variation
in the northeast of Asia and northeastern part of North America. The variations likely occurred due
to larger sinks of atmospheric CO2 that are dominated by CO2 uptake in the summer. In the Southern
Hemisphere, the CO2 displayed high concentration anomalies in the latitudinal range of 30–60◦ S in
September–November and December–February, which probably occurred due to the lofted smoke
plumes from the strong fire seasons in South America and Southern Africa.

Keywords: Cross-track Infrared Sounder; Suomi National Polar-Orbiting Partnership; CCRs; opti-
mization algorithm; XCO2 and CO2 profile

1. Introduction

Climate change is a global issue for the international community, and it is also the most
serious global environmental problem that requires attention. It is time to take actions to

Remote Sens. 2021, 13, 1163. https://doi.org/10.3390/rs13061163 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs13061163
https://doi.org/10.3390/rs13061163
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13061163
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13061163?type=check_update&version=1


Remote Sens. 2021, 13, 1163 2 of 23

prevent climate change, which requires a rich understanding of the global greenhouse gas
budget [1]. As one of the most important long-lived atmospheric trace gases, carbon dioxide
(CO2) is the biggest anthropogenic factor of the greenhouse effect. The concentration of
atmospheric CO2 ranged from 278 ppmv in 1750 to 300 ppmv around 0.8 million years
before 1750 [2]. The World Data Centre for Greenhouse Gases (WDCGG) released the latest
report on CO2 in October of 2018, which showed that the global average CO2 concentration
reached 403.3 ± 0.1 ppmv in 2016 and that the annual mean increase in CO2 was 3.3 ppmv
from 2015 to 2016, which was greater than the previous increase from 2012 to 2013 [3].
Reasons for the rapid increase in CO2 mainly arise from human activities which influence
the exchange of CO2 in different reservoirs. Even worse, this may lead to a ripple effect on
other parts of our ecosystem, releasing more CO2 into the air from ice and permafrost near
the poles. Therefore, relatively accurate spatial and temporal information of atmospheric
CO2 contributes to a greater understanding of carbon sources and sinks, which supplies a
scientific basis for policymakers to formulate emission reduction regulations [4,5].

Currently, the main methods of CO2 detection include in situ sampling and ground
and satellite-based observations. As one of the World Data Centers (WDCs), the World
Data Center for Greenhouse Gases (WDCGG) can provide atmospheric parameters (e.g.,
CO2 and CH4) that are mostly monitored using ground stations [6]. Civil Aircraft for the
Regular Investigation of the Atmosphere Based on an Instrument Container (CARIBIC) is a
long-term atmospheric measurement program that uses a fully-automatic scientific device
that is packaged in a 1.5-ton container on an airliner to measure the trace gases [7]. The Total
Carbon Column Observing Network (TCCON) consists of a series of ground-based spec-
trometers, which can monitor atmospheric parameters, such as water vapor (H2O), carbon
monoxide (CO), methane (CH4), and CO2 (with an accuracy of 0.25%), among others [8].
These in situ and ground-based measurements can precisely measure the concentrations
of trace gases, but they are spatially and temporally sparse in terms of the estimation of
CO2 concentrations. Spaceborne measurements with a high spatiotemporal resolution
are considered to be the most effective data to capture CO2 distributions [9–12]. So far,
several spaceborne observations have been developed, including the Tropospheric Emis-
sion Spectrometer (TES) [13], the Greenhouse Gases Observing Satellite (GOSAT) [14], the
Atmospheric Infrared Sounder (AIRS) [15], the Scanning Imaging Absorption Spectrometer
for Atmospheric Chartography (SCIAMACHY) [16,17], the Infrared Atmospheric Sounding
Interferometer (IASI) [18], the Orbiting Carbon Observatory-2 (OCO-2) [11], the Cross-
track Infrared Sounder (CrIS) [19] and the Hyperspectral Infrared Atmospheric Sounder
(HIRAS) [20]. The TES is a high spectral, thermal infrared sounder that was launched on
the Earth Observing System Aura satellite in 2004 [21]. Kulawik et al. (2010) showed that
the most sensitive altitude of TES was the middle troposphere, and the retrieved CO2 data
could contribute to quantifying CO2 sources and sinks [21]. As the first satellite specifically
designed for CO2 monitoring, GOSAT could provide both the column-averaged CO2 dry air
mole fraction (XCO2) and CO2 profiles using near-infrared and thermal infrared radiances,
thus promoting the research of CO2 sources and sinks [22]. The AIRS sounder aboard
the National Aeronautics and Space Administration’s (NASA’s) Aqua platform was the
first system able to retrieve daily CO2 measurements across the globe, with an accuracy of
~2 ppmv [23]. To achieve the global distribution (total column values) of the atmospheric
trace gases, many CO2 inversion algorithms have been applied on SCIAMACHY, and
the operational CO2 products have been produced by Institute of Environmental Physics
(IUP)/ Institute of Remote Sensing (IFE) of the University of Bremen [24]. IASI, operating
in the infrared band between the wavelengths of 3.6 and 15.5 µm [25], has provided infor-
mation about atmospheric transport pathways and mechanisms of CO2 transport from
the surface to the upper atmosphere [26]. As one of the NASA Earth-orbiting satellites,
OCO-2 has been used for studying atmospheric CO2 concentration, which contributes to
the exploration of a greater understanding of the carbon cycle [27]. CrIS, flying aboard the
Suomi National Polar-Orbiting Partnership (S-NPP) and Joint Polar Satellite System (JPSS)
series of satellites since 2011, can provide high-resolution temperature and moisture data
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and some trace gases profiles [28]. Launched on 15 November 2017, HIRAS is an infrared
sounder onboard the Feng-Yun 3D (FY-3D) satellite. With band settings similar to those
of CrIS [29], HIRAS also has the ability to detect temperature, moisture, and greenhouse
gases. As one of the standard sensors for calibration accuracy with other narrowband or
broadband instruments, CrIS has hyperspectral characteristics and accurate radiometric
and spectral identification capabilities. In our work, we performed CO2 inversion based on
CrIS, and then we compared the satellite inversion results with the CARIBIC and TCCON
measurements.

Various methods have been used to retrieve concentrations of CO2 measured by
spaceborne systems. The optimal estimation approach developed by the Atmospheric
CO2 Observations from Space (ACOS) team was adopted to retrieve XCO2 from GOSAT,
and the retrieval accuracy of XCO2 was lower than 3.5 ppmv [30,31]. The AIRS CO2
retrieval employs an analytical method based on the partial derivative property of AIRS’s
712–750 cm−1 region, and the retrieval results can achieve a precision of 0.43 ± 1.20 ppmv.
The differential optical absorption spectroscopy (DOAS) algorithm for the retrieval of
XCO2 has been applied to SCIAMACHY sounders [32]. Kulawik et al. [21] applied the
Levenberg-Marquardt (LM) algorithm to retrieve CO2 from Tropospheric Emission Spec-
trometer (TES) from 40◦ S to 45◦ N with a peak sensitivity at 511 hPa. Crevoisier et al. [26]
successfully inverted IASI upper tropospheric CO2 using a neural network whose precision
attained 2 ppmv with a monthly time scale. Furthermore, Crevoisier et al. [26] also pointed
out the character of CO2 emissions transported to the upper troposphere of IASI, which
furnished a new vision to understand CO2 vertical transportation in the atmosphere. The
above CO2 retrieval methods based on different satellites can reveal CO2 distributions in
the global atmosphere and capture CO2 changes. Inspired by the updated National Aero-
nautics and Space Administration (NOAA)-Unique Combined Atmospheric Processing
System (NUCAPS) Cloud-Cleared Radiances (CCRs) product for CrIS with a full spectral
resolution, we applied a nonlinear optimization algorithm to retrieve CO2 to evaluate
the potential of CrIS in the application of CO2 monitoring. The difference between our
proposed method and other retrieval methods of CO2 from other satellites [21,30] was the
selection of channels. In this work, the selected channels were based on the characteristics
of CO2 weighting functions in different latitudes and seasons. The paper is organized as
follows: Section 2 briefly introduces the sounder and its official products (CCRs and Envi-
ronmental Data Records (EDR)). Section 3 provides an explanation for the retrieval method.
Section 4 presents some preliminary results and comparisons. Finally, the discussions and
conclusions are made in Sections 5 and 6, respectively.

2. Data
2.1. CrIS Instrument and Its Products

CrIS is mounted on the S-NPP satellite that was launched on 28 October 2011, with an
inclination angle of 98.7◦, a swath width of 2200 km, and a 13:30 local time for ascending
node crossing [19]. CrIS provides data on 1305 channels from covers from 3.92 to 15.38 µm
with unapodized spectral resolutions of 0.625, 1.25, and 2.5 cm−1, respectively [33]. Con-
sidering that the central region of CO2 infrared absorption spectra is around 4.3 µm and
15 µm, we focused on the 650–1095 cm−1 and 2155–2550 cm−1 spectral bands for CO2
retrieval here. The Advanced Technology Microwave Sounder (ATMS) is a cross-track
scanner mounted on the S-NPP [34]. CrIS, together with ATMS, have formed the Joint Polar
Satellite System (JPSS) Cross-track Infrared Microwave Sounder Suite. The CrIS/ATMS
system is designed to measure well-calibrated infrared and microwave radiances (called
sensor data records, SDRs) for collectively retrieving atmospheric variables (Environmental
Data Records (EDR)) in nonprecipitating conditions (clear, partly cloudy, and cloudy) [35].

Generally, the observations of Infrared (IR) detectors are greatly influenced by clouds.
To obtain cloud-cleared radiances, the NUCAPS CCRs products for CrIS employ a cloud-
clearing method to minimize cloud effects [36]. NUCAPS uses the clear sky state retrieved
by ATMS to simulate a clear sky top of CrIS radiation with the field of view as a reference
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and obtains the measured cloud-clear sky radiation. The method NUCAPS uses is the
same as the one developed by the AIRS science team and employed in AIRS V6/V7 and
the Community Long-Term Infrared Microwave Combined Atmospheric Product System
(CLIMCAPS) [37–40]. The CCRs dataset was updated to version 2.0 on 22 May 2018. The
difference between version 2.0 and version 1.0 is that the radiance is processed in a full
spectral resolution of 0.625 cm−1, and the number of channels was changed from 1305
to 2223 in version 2.0. The EDR product is from the S-NPP NOAA Unique Combined
Atmospheric Processing System. It covers the inversion of multiple variables, including
temperature, water vapor, ozone (O3), CH4, CO, CO2, etc. Each retrieved atmospheric
profile for each variable consists of 100 points from 1100 hPa to 0.016 hPa. The CO2
products were obtained by the physical inversion method, and the details of the algorithm
can be found in the theoretical basis documentation [41]. In this work, we retrieved CO2
concentrations with CCRs from a subset of 2223 channels, and EDR CO2 products were
used to compare with our retrieved results.

2.2. Validation Data

CARIBIC is an ongoing project to detect atmospheric chemistry and composition
via installing an automated laboratory on an airplane. The aircraft features a modified
airfreight container with automated scientific equipment connected to air and particle
inlets underneath the aircraft, which travels from Europe to many different regions across
the world [7]. According to the flight height of the aircraft, the sampling times for gases
range between 30 and 90 seconds with a spatial resolution of 7–21 km [42]. CARIBIC is
distinguished by its ability to routinely measure a wide range of important atmospheric
species [43]. The measurement precision and uncertainty for CO2 of CARIBIC are about
0.15 and 0.20 ppmv, respectively [44]. The project has lasted for nearly 16 years, from 2004
to now, and it provides many gas components measurements, such as NO, NO2, CH4, and
CO2. More information about the project and system information can be found in the work
of Brenninkmeijer et al. [7]. For this study, only four flights after June 2018 were available
for comparison and validation. The detailed information about the four flight tracks, dates,
and sampling locations can be seen in Figure 1.

Figure 1. Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument
Container (CARIBIC) data for four flights. Orange line is flight 550 (29 July 2018), blue line is flight
553 (31 July 2018), purple line is flight 556 (10 October 2018), pink line is flight 557 (11 October 2018).

The Total Carbon Column Observing Network (TCCON), established in 2004, is a
network that can derive column abundances of many trace gases. Up to now, there are
more than twenty operational TCCON sites, usually located at low altitudes, where the
biosphere/ocean exchange has the most significant impact on the atmospheric concentra-
tions [45]. More detailed information for TCCON can be found at https://tccondata.org/,
accessed on 26 January 2021. The TCCON project has not only provided long time series

https://tccondata.org/
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observation of atmospheric components but also comparative standards between ground-
based observations and spaceborne measurements [8]. Considering the equator-crossing
time (ascending node, 13:30) of CrIS, TCCON CO2 measurements within two hours of
the CrIS passing time were chosen to compute the daily mean values and CO2 retrieved
from CrIS within 200 km of TCCON sites. TCCON measurements from eight stations were
available from 22 May 2018, when the CCRs version 2.0 started. Most of these stations are
situated in mid-latitudes except Izana in the tropics. The specific information of the eight
sites used for validation is listed in Table 1.

Table 1. Information for the Total Carbon Column Observing Network (TCCON) stations used for the validation.

Sites Latitude Longitude Altitude (km) Days Start Date End Date

Izana (Tenerife, Canary Islands,
Spain) [46] 28.3 −16.48 2.37 88 5 June 2018 19 December 2019

Caltech (USA) [47] 34.14 −118.13 0.230 231 5 June 2018 31 December 2019
Edwards (USA) [48] 34.96 −117.88 0.699 218 5 June 2018 31 December 2019
Lamont (USA) [49] 36.6 −97.49 0.32 189 5 June 2018 31 December 2019

Park Falls (USA) [50] 45.94 −90.27 0.44 194 5 June 2018 7 December 2019
Garmisch (Germany) [51] 47.48 11.06 0.74 116 5 June 2018 18 October 2019
Karlsrube (Germany) [52] 49.1 8.44 0.116 87 9 July 2018 30 October 2019

East Trout Lake (Canada) [53] 54.36 −104.9900 0.5018 172 5 June 2018 30 August 2019

3. Method
3.1. The Sensitivity of CrIS Channels to CO2

The absorption bands for CO2 are around 4.3 µm (2325cm−1) and 15 µm (666.7cm−1).
These two spectral bands show different sensitivities to CO2 and other atmospheric param-
eters, including H2O, temperature (T), O3, nitrous oxide (N2O), CO, and methane. In the
longwave absorption band, channels are sensitive to H2O and O3, while in the shortwave
band, channels are sensitive to T and CO. As stated by Crevoisier et al. [26], some rules
need to be met to choose retrieval channels of CO2, which include the sensitivity of the
channels to CO2 changes and the sensitivity of the channels to other gases and the part of
the atmosphere in which the channel is sensitive to CO2 variations. Considering the above
criteria to choose the retrieval channels of CO2, the spectral band located at 15 µm was
used in this work. Nevertheless, channels near 15 µm are not only sensitive to CO2 but also
other variables, such as water vapor and ozone. The sensitivity of channels was computed
through 80 globally representative Thermodynamic Initial Guess Retrieval (TIGR) [54]
atmospheric profiles.

Figure 2 illustrates the brightness temperature (BT) variations corresponding to the
changes of 10% CH4, 10% CO, 10% N2O, 10% O3, 10% H2O, 1 K T, and 1% CO2. It shows
that channels with a center wavenumber shorter than 700 cm−1 are much more sensitive
to temperature, while greater than 700 cm−1 are more sensitive to water vapor. Generally,
channels are mainly affected by temperature and water vapor in the CO2 absorption band.
Because of the huge variability of water vapor (especially in the tropical areas) and limited
understanding of its tropospheric distribution, it is a challenging task to separate CO2
signals from water vapor.

The CO2 Jacobians were computed through 80 globally representative TIGR atmo-
spheric profiles. These atmospheric profiles were selected from the whole profile sample
set, covering the geographical range from 70◦ N to 70◦ S. These profiles samples were
divided into four situations, namely, high latitude in autumn and winter (HW, 90–60◦

S and 60–90◦ N), high latitude in spring and summer (HS, 90–60◦ S and 60–90◦ N), low
latitude in autumn and winter (LW, 60◦ S to 60◦ N) and low latitude in spring and summer
(LS, 60◦ S to 60◦ N). Figure 3 exhibits the averaged CO2 Jacobians of the CO2 absorption
spectral bands from 700 to 755 cm−1 as computed by Radiative Transfer for the Television
Operational Vertical Sounder (TOVS, RTTOV) in the above four situations. We can see that
the sensitivity of CO2 peaked in the mid-upper troposphere, and the distributions of the
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CO2 Jacobians in four situations were different. The altitude of the sensitivity peak was
higher for LS and lower for HW, and the amplitudes of the CO2 Jacobians for HS and LS
were larger than LW and HW, respectively. Since the temporal and spatial distribution of
temperature and water vapor varied dramatically, especially in summer, and the higher
the temperature, the greater the water vapor and the greater the amplitude of channel
sensitivity.

Figure 2. Sensitivities of Cross-track Infrared Sounder (CrIS) channels located in the long wave bands
(650-900cm−1) to variations of 10% CH4 (green), 10% CO (pink), 10% N2O (navy blue), 10% O3 (olive
green), 10% H2O (deep yellow), 1 K temperature (violet), and 1% CO2 (red).

Based on the above analysis and the redundant information of these channels near
15 µm, we selected channels that were sensitive to CO2 but less sensitive to other pertur-
bations. In the LS and LW situations, 28 channels were chosen for CO2 retrieval, and the
pressures of the maximum of the CO2 Jacobians ranged from 100 to 400 hPa, while in HS
and HW situation, 15 channels were selected for CO2 retrieval, and the pressures of the
maximum of CO2 Jacobians ranged from 200 to 500 hPa. Moreover, the 28 channels in LS
were completely different from those in LW, and the 15 channels in HS were completely dif-
ferent from those in HW. Figure 4 illustrates the selected channels near the CO2 absorption
band in different situations used to retrieve CO2.
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Figure 3. CO2 Jacobians (K/ppmv) of the spectral bands from 700 to 755cm−1 with a spectral
resolution of 0.625 cm−1. (a) CO2 Jacobians for high latitude in spring and summer (HS) (90–60◦

S and 60–90◦ N), (b) CO2 Jacobians in low latitude in spring and summer (LS) (60◦ S to 60◦ N),
(c) CO2 Jacobians in high latitude in autumn and winter (HW) (90–60◦ S and 60–90◦ N), and (d) CO2

Jacobians in low latitude in autumn and winter (LW) (60◦ S to 60◦ N).

Figure 4. Selected channels used to retrieve CO2.
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3.2. Physical Retrieval Method

A physical CO2 retrieval method aims to minimize the weighted difference between
the cloud cleared radiance and the simulated radiance computed using a radiation transfer
model [55]. The cost function J(X) can be expressed as:

J(X) = min
{
(Ym − F(X, b))R−1(Ym − F(X, b) + (X− Xa)

T B−1(X− Xa))
}

(1)

where Ym is the cloud cleared radiances (observed) of selected channels m, F(X) is the
computed radiance of the forward model, X is the full state vector which includes many
elements (temperature, H2O, O3, and CO2), b is the additional variables and observation
metadata (scan angle, solar zenith angle, and so on) for calculating radiances, Xa is the a
priori CO2 profile, R−1 is the error covariance matrix of satellite observation, and B−1 is
the inverse covariance of the a priori Xa. In this work, we chose the CCRs of CrIS as the
cloud cleared radiance Ym, and the simulated radiance F(X) was computed by RTTOV. The
a priori state vector Xa was computed using the Empirical Orthogonal Functions (EOF)
model. The radiance and atmospheric vertical profiles were expanded simultaneously by
empirical orthogonal expansion, and then the statistical regression relationship between the
expansion coefficients was established [56]. The atmospheric vertical profile samples were
European Centre for Medium-Range Weather Forecasts (ECMWF) observation samples
based on radiosonde data. The initial estimates of CO2 used to produce a priori data
were also taken from the ECMWF. About 80 samples were selected from the whole profile
sample set, covering the geographical location from 70◦ N to 70◦ S. The CO2 profiles
were extracted from the experiments performed at ECMWF within the context of the
Global and regional Earth-system Monitoring using Satellite and in situ data (GEMS)
project [57]. All the atmospheric composition profile samples were processed into 101 layers.
The atmospheric composition profiles were represented by C. The simulated radiance R
based on the profiles was calculated by RTTOV, which was based on the band response
function of CrIS. Thus, a statistical regression training sample set containing spatiotemporal
representative atmospheric composition profiles and corresponding simulated observations
was obtained. To reduce the inversion error caused by solar observation geometry, the
simulated CrIS radiances were calculated at different viewing and incident zenith angles
from 0◦ to 70◦ in an interval of 5◦ [56]. The regression coefficient matrix S under different
viewing angles was generated in the calculation process [58]. The a priori CO2 profile can
be expressed as follows.

Xa = C + S× ∆Robs (2)

where C is the mean value of the atmospheric vertical profile sample, and ∆Robs is the
deviation matrix between the observed radiance and the mean of the simulated radiance
sample set.

The Singular Value Decomposition (SVD) algorithm proposed by Susskind [37] was
applied to obtain the CO2 profile. The simplified formula is given as follows:

X = Xa + UD−1UTKT R−1(Ym −Y(Xa)) (3)

where U is the conversion matrix, D is the eigenvalue diagonal matrix, K is the Jacobian
matrix, R is the satellite observation, and Xa is the CO2 first-guess profile.

In the retrieval method, the averaging kernels represent the proportion of information
in the CO2 retrieval profile could be expressed as follows:

Ak = UD−1UTKT R−1K (4)

The atmospheric water, temperature, and ozone profiles required as inputs were gath-
ered from European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis
v5 (ERA5) data featured by an hour time resolution and a 0.25◦ × 0.25◦ spatial resolution
(https://www.ecmwf.int/, accessed on 26 January 2021). ERA5 reanalysis data assimilate

https://www.ecmwf.int/
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a large amount of satellite data and observation data, such as in situ observation data,
which has advantages in terms of long time series recording and high spatial and temporal
resolutions. The water, temperature, and ozone profiles of ERA5 have high precision. In
our retrieval, the above data (e.g., CCRs, ERA5, satellite, and solar geographic information)
and the first-guess profile of CO2 were defined in the NUCAPS fast radiation transfer
model to simulate radiancesRTTOV or BTRTTOV.

4. Results
4.1. Comparison with CARIBIC

To verify the precision of the CO2 profile inversion with CrIS, this section compares the
inverted CrIS CO2 profile with the CARIBIC observation profile. Because version 2.0 of the
CCRs data was updated after 23 May 2018, we only selected the flight data after May 2018.
The flight data of 10 seconds synthesis provided by the official CARIBIC website for four
days (as described in Section 2.2) met our needs. The pressure for the four flights ranged
from 200 to 900 hPa. To guarantee the same spatial resolutions, CARIBIC CO2 profiles
were averaged over 0.5◦ along the flight tracks and colocalized with a 0.5◦ × 0.5◦ average
CrIS CO2 profile. Considering the difference of distribution of CO2 weighting function
of CrIS, the comparisons were divided into mid-latitude (30◦ N–60◦ N) and high-latitude
(60◦ N–90◦ N). To consider different vertical resolutions and allow meaningful comparisons
with the retrieved CO2 profiles, this paper used an averaging kernels (AK) matrix to
smooth the CARIBIC observation profile [59], and the convolved CO2 measurements were
compared to the CrIS CO2 profiles. A smoothed CARIBIC CO2 profile can be obtained
as follows:

∧
X = AkXc + (I − Ak)Xa (5)

where Xc is the CARIBIC observation profile.
In Figure 5, the correlation coefficients between the CrIS CO2 profile and smoothed

CARIBIC observation profile were larger than 0.7. Table 2 shows the correlation coeffi-
cients(r), root mean square errors (RMSE), and relative errors (RD) of the CrIS CO2 profile
and smoothed CARIBIC CO2 profile in detail. The relative error is defined as:

RD =
|CARIBIC− Sounder|

CARIBIC
× 100 (6)

The values of the RD between the CrIS CO2 profile and CARIBIC observation profile
were less than 0.5%, and the values of the RMSE were less than 0.7 ppmv. The results of
Table 2 demonstrated that the correlation coefficient of CO2 inversion in 30◦ N–60◦ N was
greater than that in 60◦ N–90◦ N. This may be due to the fact that the CO2 concentrations
in high latitude are relatively smaller than that in mid-latitude and simultaneously affected
by temperature and water vapor profiles. Figure 6 illustrates the correlations between
CARIBIC observation profile and EDR product. The four flight CO2 correlation coefficients
between CARIBIC observation profile and EDR product were below 0.4, with correlation
coefficients of flights 550, 553, 556, and 557 of −0.2, 0.35, 0.25, and 0.35, respectively.

Figure 7 shows that the mean AKs corresponding to the four flights exhibit significant
overlap, and the maximal values of AK in different latitudes were obviously different.
Those for the middle to high latitudes (30◦ N–90◦ N) showed that the most sensitive
layer was at about 133 hPa, and for middle latitudes (30◦ N–60◦ N), the most sensitive
layer was at about 200–300 hPa. The distributions of AKs in CARIBIC comparisons
also corresponded to Figure 3, where temperature and water vapor greatly influenced
the weighting function and the vertical sensitivity of CO2 retrieval had geographic and
seasonal variability [60]. The distribution of the CO2 AK displayed information about
the vertical resolution. Meanwhile, it also reflected the influence of the a priori profile
on retrieval profile. So larger sensitivities in about 100-300 hPa suggest CO2 in this range
could be better retrieved from CrIS, while smaller sensitivity in surface shows that CrIS
CO2 profile in these altitudes would be dependent mainly on a priori.



Remote Sens. 2021, 13, 1163 10 of 23

Table 2. Comparisons between Cross-track Infrared Sounder (CrIS) CO2 profile and Civil Aircraft
for the Regular Investigation of the atmosphere Based on an Instrument Container (CARIBIC)
observation profile. Average of the relative difference (RD) CARIBIC-CrIS, root mean square error
(RMSE), linear correlation coefficient (r) and the number of collocated 0.5◦ grid cells (N).

Date Latitude RD (%) RMSE (ppmv) r N

29 July 2018
30◦ N–90◦ N 0.19 0.49 0.78 133
30◦ N–60◦ N 0.24 0.56 0.79 94
60◦ N–90◦ N 0.07 0.20 0.52 39

31 July 2018 30◦ N–60◦ N 0.23 0.62 0.86 269

10 October 2018
30◦ N–90◦ N 0.08 0.41 0.70 127
30◦ N–60◦ N 0.09 0.44 0.71 97
60◦ N–90◦ N 0.06 0.24 0.69 30

11 October 2018 30◦ N–60◦ N 0.48 0.67 0.72 281

Figure 5. CO2 comparison between smoothed CARIBIC and CrIS retrievals with the spatial resolution
of 0.5◦ × 0.5◦ (a) flight No. 550, (b) flight No. 553, (c) flight N0. 556, (d) flight No. 557.

From CARIBIC’s flight trajectory, we can see that the No. 556 and 557 flight paths
were mostly over the ocean. Here, we divided the land and ocean according to the surface
types and compared the inversion results with the smoothed values. Figure 8 depicts
that the correlation of land was higher than that of ocean, while there was no significant
difference between RD and RMSE. The number of samples on land and ocean was 524 and
204, respectively. It is possible to speculate that the ocean is affected by the temperature,
humidity, surface reflectance, and fewer data points than the land, which results in the low
correlation of the inversion results. We also found outliers of low CARIBIC values that
were overestimated by CrIS retrievals over land, and conversely, high CARIBIC values
that were underestimated by CrIS retrievals over ocean. In addition to the influence of
temperature and humidity, it may be related to the insufficient distribution of priori profile
samples in marine areas.
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Figure 6. CO2 comparison between smoothed CARIBIC and CrIS Environmental Data Records (EDR)
with the spatial resolution of 0.5◦ × 0.5◦ (a) flight No. 550, (b) flight No. 553, (c) flight No. 556, (d) flight
No. 557.

Figure 7. Mean averaging kernels of CO2 retrievals (a) averaging kernels of flight No. 550, (b) averaging kernels of flight
No. 553, (c) averaging kernels of flight No. 556, (d) averaging kernels of flight No. 557.

Figure 8. CO2 comparison between smoothed CARIBIC and CrIS retrievals in (a) land and (b) ocean.
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4.2. Comparison with TCCON

In this section, we provide a XCO2 comparison between TCCON and CrIS measure-
ments. The detailed information of TCCON sites can be seen in Table 1. To maintain
sufficient data and guarantee dimensional consistency, the NUCAPS CCRs product for
CrIS matched to TCCON sites was resampled at 0.5◦ × 0.5◦ grid resolution. Rodgers and
Connor [61] stated that it was unreasonable to directly compare the measurement results
of different satellite sensors which had different a priori profiles and AKs. The XCO2 of
TCCON is obtained based on near-infrared inversion, which is more sensitive to CO2 in the
boundary layer of the atmosphere. Thermal infrared is more sensitive to CO2 in the upper
troposphere. The inverted AKs represent how much of the information in the inverted
profile comes from the observation. Therefore, the purpose of smoothing TCCON’s CO2
profile data with the retrieved AKs was to prove the inversion accuracy of our algorithm.
Following the methods of Rodgers and Connor [61] and Inoue et al. [62], the smoothing
XCO2

TCCON,smoothed for TCCON weighted by the retrieval CO2 AKs can be expressed as
formula (7) [62].

XCO2
TCCON,smoothed = XCO2

a + ∑
j

hjaj(XTCCON,in−situ − Xa) (7)

aj = (hT AK)j
1
hj
(j = 1, . . . , 100) (8)

where j is the index of the j-th layer, h is a pressure weighting function [31], XCO2
a is the

column-averaged dry air mole fractions of CO2 for the a priori Xa, and XTCCON,in-situ is the
retrieved CO2 profile of TCCON. Formula (7) uses the CO2 profile retrieved of TCCON, but
TCCON only provides the a priori profile XTCCON,a . To ensure that the obtained TCCON
profile XTCCON,in-situ and the a prior profile XTCCON,a have the same shape and XCO2 of
TCCON remains unchanged, we used Formula 9 to obtain the retrieved CO2 profile of
TCCON XTCCON,in-situ.

XCO2
TCCON,a

XCO2TCCON,in−situ =
XTCCON,a(i)

XTCCON,in−situ(i)
(i = 1, . . . , 71) (9)

XTCCON,a(i) (obtained from TCCON data) and XTCCON,in-situ(i) are the a priori and
observation profile of the i-th layer. Then the obtained profile XTCCON,in-situ was interpolated
to 100 layers according to the inversion pressure.

Figure 9 depicts the XCO2 daily variation of the a priori, TCCON smoothing ob-
servations, and CrIS retrievals from June 2018 to 2019. Because of the missing data for
the NUCAPS CCRs products for CrIS from April to July of 2019, the inversion results of
TCCON stations in Figure 9 are missing in this period. Table 3 displays the average of
XCO2 comparisons between the a priori, retrieval, and smoothing TCCON results. The dif-
ferences between the average of the a priori, retrieval, and smoothing TCCON results were
within ±0.2 ppmv. Compared with 2018, XCO2 showed an increasing trend in 2019. There
was little difference between the a priori retrieved and the smoothing XCO2 in most listed
TCCON stations (except East Trout Lake and Garmisch sites). The difference between the
three kinds of data was within ±0.5 ppmv for Caltech, Edwards, Izana, Karlsrube, Lamont,
and Park Falls. A larger difference in East Trout Lake and Garmisch was observed in spring,
autumn, and winter due to the a priori and limited observation days in different seasons.
The sums of each AK column were called “areas of the AK” or the “verticality” [60,63]. The
mean column AKs in different seasons for TCCON stations (as shown in Figure 10) showed
that the peak sensitivity mostly occurred in summer, while the peak sensitivities appeared
in East Trout Lake and Garmisch in spring and autumn, respectively. We also found that
most of the maximum values of the mean column averaging kernels were greater than
0.8, but those in East Trout Lake, Karlsrube, and Garmisch were almost less than 0.6. This
is related to the latitude of these stations (as shown in Table 1). Generally, the lower the



Remote Sens. 2021, 13, 1163 13 of 23

latitude is, the greater the influence of temperature and humidity profile is, and the greater
the peak value of the mean column averaging kernels is.

Table 3. Average of XCO2 comparisons between the a priori, CrIS retrieval, and smoothing TCCON results.

Scheme. A Priori (ppmv) CrIS Retrieved (ppmv) Smoothing (ppmv)

Caltech (USA) 409.52 409.47 409.48
East Trout Lake (Canada) 406.05 405.97 405.82

Edwards (USA) 408 407.93 407.95
Garmisch (Germany) 406.71 406.65 406.65

Izana (Tenerife) 408.21 408.21 408.13
Karlsrube (Germany) 406.44 406.29 406.31

Lamont (USA) 408.66 408.67 408.60
Park Falls (USA) 407.29 407.17 407.23

Figure 9. Cont.
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Figure 9. Cont.
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Figure 9. XCO2 comparisons between a priori (red line), CrIS inversion (blue line), and smoothing
Total Carbon Column Observing Network (TCCON) (green line) observation products. (a) Caltech,
(b) East Trout Lake, (c) Edwards, (d) Garmisch, (e) Izana, (f) Karlsrube, (g) Lamont, and (h) Park Falls.
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Figure 10. The mean column averaging kernels in different seasons for TCCON stations: (a) Caltech, (b) East Trout Lake,
(c) Edwards, (d) Garmisch, (e) Izana, (f) Karlsrube, (g) Lamont, and (h) Park Falls. The blue, red, black, and turquoise lines
represent spring, summer, autumn, and winter, respectively.

4.3. Spatial Distribution of CO2

Based on the sensitivity of the CrIS instrument, the zonal distributions of seasonal mean
CO2 in the mid-upper troposphere at 300 hPa (60◦ S–60◦ N, 180◦ W–180◦ E) from June 2018
to May 2019 are illustrated in Figure 11, with a spatial resolution of 1◦ × 1◦. The seasons are
defined as June-July-August (JJA), September-October-November (SON), December-January-
February (DJF), and March-April-May (MAM). Because of the limitations of the solar zenith
angle with RTTOV, inversion values are not available in some regions.

It can be easily found that the seasonal cycle of CO2 concentration can be clearly seen
in the Northern Hemisphere. The maximum values of CO2 retrieved from CrIS appeared
in JJA with a larger CO2 seasonal amplitude appearing in the east of Asia and the west and
east of North America. A slight decrease was also observed in SON, and the minimum
was reached in DJF. This trend was nearly in agreement with in situ measurements and the
CO2 retrieval from the Television Operational Vertical Sounder (TOVS) [64]. Conversely, in
the Southern Hemisphere, the CO2 variation was complicated. The CO2 retrieval of CrIS
displayed relatively high mixing ratios in the latitude zone of 30◦ S to 60◦ S in SON and
DJF. This may be due to the fact that areas in the Southern Hemisphere with high CO2
concentrations included subtropical storm paths and “convergence zone” cloud belts [65].
These cloud belts promote the convective activities of high concentrations of CO2 and are
transported to the free troposphere [23]. Moreover, the Southern Hemisphere is generally
represented by a combination of biosphere and biomass burning [66]. The high CO2
concentrations in the Southern Hemisphere could be due to lofted smoke plumes from the
strong fire seasons in South America and Southern Africa.

The latitudinal gradient of CO2 is also affected by atmospheric emission sources and
the atmospheric circulation system [67]. The regions with the maximum CO2 concentrations
were mostly found in the northeast of Asia and the northeast of North America. The
distributions were mainly controlled by the carbon cycle of the terrestrial biosphere [68]
and the long-distance transport of greenhouse gases [69].



Remote Sens. 2021, 13, 1163 17 of 23

Figure 11. Seasonal CO2 at 300hPa from May 2018 to April 2019 for (a) June-July-August (JJM),
(b) September-October-November (SON), (c) December-January-February (DJF), and (d) March-
April-May (MAM), with 1◦ latitudinal resolution.

4.4. Uncertainty Analysis

In this study, the remote sensing problem of retrieving atmospheric CO2 is ill-conditioned
and has no unique solution. Therefore, not only is an optimal solution from a limited
number of possible solutions needed, but the evaluation of its the accuracy is also required
to analyze the various error sources and their impact on the inversion accuracy. As seen
from Figure 2, the sources of errors in CO2 inversion mainly include the temperature and
water vapor profiles used for the forward model. The differences in the temperature of
ERA5 in the troposphere and lower stratosphere were less than 0.2 K from 1000 hPa to
10 hPa, while the differences were greater from 10 hPa to 1 hPa and were generally ~2 K.
The specific differences in the humidity of ERA5 were ~5%. In our work, according to the
accuracy of the ERA5 temperature and humidity profile, the temperature profile changed
by 0.2 K from 1000–10 hPa and 2 K from 10–1 hPa, and the humidity profile changed by
5% for each station (the selected TCCON stations in Section 2.2), resulting in variations
in the computed CO2 mixing ratios for June 2018 to December 2019. Table 4 shows the
mean and standard deviation of variations of CO2 induced by variations of temperature
and water vapor in different seasons. The mean differences between the “modified CO2”
and the “reference CO2” in different seasons were almost null. The standard deviations
were between 1.037–2.081 ppmv, with the highest in summer and autumn and the lowest
in spring. The effect of temperature and humidity changing together was almost the same
as that of the temperature change.
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Table 4. Means and standard deviations of variations of CO2 induced by variations of T (1–10 hPa:
2 K; 10–1000 hPa: 0.2 K) and H2O (5%) in different seasons.

T H2O Both Variables

Spring 0.041 0.0498 0.0372
1.037 1.006 1.042

Summer
0.0165 −0.0176 0.0155
1.846 1.829 1.854

Autumn
−0.002 −0.021 −0.006
2.081 2.077 2.080

Winter
−0.016 0.013 −0.013
1.372 1.369 1.372

5. Discussion

To prove the importance of channel selection, in this section, we carried out inversion
after the retrieval channel changes for the Edwards and Izana stations in 2019 and then
compared the inversion results with the inversion results in Section 4.2. The inversion
channels of the Edwards station were swapped according to seasons, i.e., spring and
summer used the autumn and winter channels, and autumn and winter used the spring
and summer channels (as seen in Figure 12). The inversion channels of the Izana station
were changed according to latitude as Izana is located in low latitude. We consequently
used the channels from a high latitude area for the inversion of Izana (as seen in Figure 13).
It is seen that after changing the channels that the RMSE between the inversion results
and smoothing TCCON observations of Edwards increased from 0.21 to 0.52 ppmv, the
average value of absolute error increased from 0.18 to 0.55 ppmv, and the maximum relative
error was 2.02 ppmv. The RMSE of the inversion results of Izana increased from 0.22 to
0.53 ppmv, the average value of absolute error increased from 0.18 to 0.45 ppmv, and the
maximum relative error was 1.03 ppmv. Through the above analysis, we can conclude
that the inversion accuracy can be improved via the inversion of latitude and seasonal
inversion channels.
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Figure 12. Comparison of Edwards observations with inversion results (a) and inversion results
using channels in opposite seasons (b). Red line is for a priori, blue line is for CrIS inversion, and
green line is for the smoothed TCCON observation.
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Figure 13. Comparison of Izana observations with inversion results (a) and inversion results using
channels in high latitudes (b). Red line is for a priori, blue line is for CrIS inversion, and green line is
for the smoothed TCCON observation.

In this work, greater validation data of CARIBIC were required to prove the accuracy
for CO2 profiles in different latitudes. In later research, the biases of ERA5 parameters
in different latitudes will be further investigated. We will also focus on error analysis of
the algorithm and the validation of the retrieval products, and this retrieval algorithm is
planned to be applied to HIRAS onboard the FY-3D satellite. Furthermore, we will quantify
CO2 sources and sinks if our retrieval results support the source of the hypothesis. We will
also study the impact of transportation on the global carbon dioxide distribution [60]. It is
hoped that high-quality CO2 distribution data will lead to a better understanding of CO2
budgets and provide the basis for reducing greenhouse gas effects.

6. Conclusions

In this paper, NUCAPS CCRs products for CrIS, with a spectral resolution of a 0.625 cm
and 2223 channels (updated from 22 May 2018) with cloud effects cleared from an IR
cloudy field of view, were applied to retrieve CO2 concentrations. The operational CrIS
CO2 retrieval algorithm and some of its features were introduced in Section 3. As for
this approach, a key point in selecting the retrieval channels is based on the different
distributions of CO2 Jacobians in four situations where the sensitivity reaches a peak in
higher altitudes for LS and lower altitudes for HW. The peak values of the CO2 Jacobians
for HS and LS were larger than LW and HW. From the AKs, it can be concluded that the
maximum sensitivity of CO2 retrieval appeared in the mid-upper troposphere. It is worth
noting that for CO2 retrieved by CrIS with in situ measurements, the averaged correlation
coefficients were 0.72 and 0.85 for CARIBIC and TCCON, with root mean square errors of
0.45 ppmv and 1.12 ppmv, respectively. Moreover, the correlation of the inversion results
in 30◦ N–60◦ N was greater than that in 60◦ N–90◦ N. The relative error between the
retrieval value of CrIS and the observation value of CARIBIC was less than 0.5%. The
inversion values agree well with measurements from the TCCON sites. The retrieved CO2
concentrations highlight latitudinal and seasonal variations which could be attributed to
large sinks for atmospheric CO2, where CO2 uptake dominates during such a time. In the
Southern Hemisphere, the CO2 variation is complex. Generally, the CO2 retrieval results
based on NUCAPS CCRs products for CrIS can serve as a reference for the distribution of
CO2 in the atmosphere.
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