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A modeling study was conducted to determine the conditions under which fluidlike zooplankton of
the same volume but different shapes~spherical/cylindrical! have similar or dramatically different
scattering properties. Models of sound scattering by weakly scattering spheres and cylinders of finite
length used in this analysis were either taken from other papers or derived and herein adapted for
direct comparison over a range of conditions. The models were examined in the very low-~ka
!1, kL!1!, moderately low-~ka!1, kL*1!, and high-frequency regions~ka@1, kL@1!, where
k is the acoustic wave number,a is the radius~spherical or cylindrical! of the body, andL is the
length of the cylinders~for an elongated body withL/a510, ‘‘moderately low’’ corresponds to the
range 0.1&ka&0.5!. Straight and bent cylinder models were evaluated for broadside incidence,
end-on incidence, and averages over various distributions of angle of orientation. The results show
that for very low frequencies and for certain distributions of orientation angles at high frequencies,
the averaged scattering by cylinders will be similar, if not identical, to the scattering by spheres of
the same volume. Other orientation distributions of the cylinders at high frequencies produce
markedly different results. Furthermore, over a wide range of orientation distributions the scattering
by spheres is dramatically different from that of the cylinders in the moderately low-frequency
region and in the Rayleigh/geometric transition region:~1! the Rayleigh to geometric scattering
turning point occurs at different points for the two cases when the bodies are constrained to have the
same volume and~2! the functional dependence of the scattering levels upon the volume of the
bodies in the moderately low-frequency region is quite often different between the spheres and
cylinders because of the fact that the scattering by the cylinders is still directional in this region. The
study demonstrates that there are indeed conditions under which different shaped zooplankton of the
same volume will yield similar~ensemble average! scattering levels, but generally the shape and
orientation distribution of the elongated bodies must be taken into account for accurate predictions.
© 1998 Acoustical Society of America.@S0001-4966~97!01210-1#
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LIST OF SYMBOLS

A area
a radius of sphere or cylinder
ā average radius
bm

(s) modal series coefficient for homogeneous flu
sphere

b tilt tilt angle of infinitessimally thin disk or cros
section of body at a particular point on the bo
axis relative to the incident wave~b tilt50 corre-
sponds to broadside incidence to the disk axis
a particular point on the axis!

b L/a
c sound speed
D distance that the end of the bent cylinder is be
f scattering amplitude
f bs scattering amplitude in backscattering directio
f (`) form function for an infinitely long cylinder
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gk ,gr material property parameters in DWBA formula
tion

g r2 /r1

h c2 /c1

i A21 unless used as a summation index or s
script tokW

k acoustic wave number (52p/l)
k i wave number vector of incident field
K k cosu
k compressibility
L length of body
L̄ average length of body
l acoustic wavelength
mp52 phase advance associated with crossing of ca

tics @.2(p/2)k1a/(k1a10.4)#
pscat scattered pressure
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P0 incident pressure
r distance between scatterer and receiver
rc radius of curvature of longitudinal axis of un

formly bent cylinder
r mass density
rpos position vector of axis of deformed cylinder
r v position vector of volume
rA position vector of area
R12 plane wave/plane interface reflection coefficie

~reflection off medium ‘‘2’’ due to incident
beam in medium ‘‘1’’! @5(r2c2 /r1c1

21)/(r2c2 /r1c111)#
RTS reduced target strength
s sL /L̄
su ,sL standard deviation of angle of orientation

length, respectively

INTRODUCTION

There has been an evolution of modeling of the scat
ing of sound by zooplankton in recent years. Up until t
mid-1980s, zooplankton had been modeled mathematic
almost exclusively as spheres~Greenlaw, 1977, 1979
Johnson, 1977; Holliday and Pieper, 1989; Stantonet al.,
1987; and summarized in Holliday and Pieper, 1995!. The
approaches involving sphere models have seen success~1!
some animals are nearly spherical and~2! the sphere mode
can be considered to be a ‘‘first-order approximation’’ und
some conditions for the very complicated scattering proc
of animals with more complex shape. However, the shap
some animals deviates significantly from that of a sphere
can possess dramatically different scattering properties u
certain conditions. For example, euphausiids and shrimp
quite elongated with length-to-width ratios of order 5
higher. These animals have recently been modeled as fi
length cylinders and it has been shown that the scatte
properties are dependent upon shape and distribution of
entation angles~Stanton, 1989; Stantonet al., 1993b; Chu
et al., 1993; Demer and Martin, 1995! in addition to material
properties, size, and acoustic frequency.

Certain important aspects of our understanding of
scattering of sound by finite cylinders are relatively matu
It is therefore timely to perform a systematic comparis
between the scattering by cylinders and spheres under a
range of conditions. Biomass is an important quantity
zooplankton abundance estimation and acoustic scatte
levels are quite often expressed in terms of animal biom
Thus, for zooplankton acoustics applications and for th
comparisons, it is important to formulate the scattering
terms of bodies of the same biomass.

In this paper, various sphere and cylinder models fr
previous publications are reviewed and others are der
herein. All are written in a form so that direct compariso
can be made analytically under certain limiting condition
Numerical simulations are performed to provide comparis
over a broader range of conditions. Dependence of the s
tering upon size, shape, orientation distribution, and acou
frequency are investigated for the various bodies. Given
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t

sbs differential backscattering cross section
s backscattering cross section
TS target strength
T12,T21 transmission coefficients for transmission fro

medium ‘‘1’’ to ‘‘2’’ or ‘‘2’’ to ‘‘1,’’ respec-
tively @Ti j 52(r j cj /r ici)/„11(r j cj /r ici)…#

u angle of orientation relative to the direction o
the incident acoustic wave~u50 corresponds to
broadside incidence!

V total volume of body
v volume of integration
1,2 subscripts indicating medium ‘‘1’’~surrounding

fluid! and medium ‘‘2’’ ~body medium!
^...& average over ensemble of statistically indepe

dent samples
~all quantities in mks units!
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focus on geometrical factors, the dependence upon bulk
terial properties of the bodies will receive only minor atte
tion. The work is limited to homogeneous weakly scatteri
bodies that have smooth boundaries. Direct comparisons
made between bodies of the same volume.~Since the ani-
mals have mass densities close to that of water, compari
based on bodies of the same volume are approxima
equivalent to comparisons based on bodies of the same
volume.! The models are presented in terms of both sin
realizations of size and orientation as well as averages o
angles of orientation~in the case of cylinders! and narrow
distributions of size. The average over size is performed
relate to either ‘‘single-sized’’ aggregations of zooplankt
whose size distribution has a narrow, yet finite width, o
particular size bin of an aggregation with a broader size d
tribution.

I. MODELS

A. Basic quantities

A fundamental quantity common to all scattering mod
is the scattering amplitudef which can be defined in terms o
the incident and scattered pressures as

pscat5P0

eik1r

r
f , ~1!

wherek1 is the wave number in the surrounding water~me-
dium ‘‘1’’ !.

From this definition, the target strength can be defined

TS510 logu f bsu2510 log sbs510 log~s/4p!, ~2!

where the target strength is also expressed in terms of
two backscattering cross sections that appear in the litera
~Urick, 1983; Clay and Medwin, 1977!. Here the scattering
amplitude is evaluated for the backscatter direction. T
units of target strength are dB relative to 1 m2. The ‘‘mean
target strength’’ is based upon the ensemble average of
square of the magnitude of the scattering amplitude:

^TS&510 loĝ u f bsu2&. ~3!
255Stanton et al.: Spheres and cylinders
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Sometimes it is convenient to examine the tar
strength on a dimensionless scale. The ‘‘reduced’’ tar
strength RTS normalizes the target strength by the squar
some outer dimension of the body:

RTS~s!5TS210 log~pa2! ~sphere of radiusa!, ~4!

RTS~eb!5TS210 log~L2!

(elongated body of lengthL). ~5!

B. General models

There are many approaches to modeling the scatterin
sound by objects. The particular approach depends upon
shape and material properties of the body as well as co
tions such as frequency range~or more precisely, range o
size-to-wavelength ratio!. Ideally, one would wish to use a
exact model. However, exact solutions to the acoustic w
equation exist only for a small number of shapes, the sph
being one of them. For shapes such as a finite cylinder
approximate approach is required.

The exact solution for the scattering by a fluid sphe
was derived by Anderson~1950! and can be written for the
~farfield! backscattering direction as

f bs5
i

k1
(

m50

`

bm
~s!~21!m, ~6!

wherebm
(s) is the modal series coefficient for the fluid sphe

andk1 is the acoustic wave number in the surrounding flu
medium. This equation is exact for all homogeneous mat
als that do not support a shear wave~gas or liquid!. ~The
above equation is also written in a general enough form
apply to solid elastic spheres and spherical shells, provi
the appropriate modal series coefficients are used.!

For more complex shapes for which there is no ex
solution to the wave equation, approximate solutions are
quired to describe the scattering. The distorted wave B
approximation~DWBA! is a useful formulation as it can
predict scattering over the entire range ofka and for arbi-
trarily shaped bodies at any angle of orientation. It is
stricted to weakly scattering materials in that the density
speed of sound of the body must be very close~within about
10%! to that of the surrounding medium. Animals like e
phausiids fit that requirement as their density and so
speeds are to within several percent of those of the surro
ing water. The DWBA is given in general form as~Morse
and Ingard, 1968!

f bs5
k1

2

4p E E
v
E ~gk2gr!ei2~kW i !2•rWv dv, ~7!

where the integration is within the entire body whose volu
is described by the position vectorrWv . This formula is the
complex conjugate of the one presented in Morse and Ing
and is consistent with the phase shift conventione1 ikr for an
outgoing scattered wave. Also, in this ‘‘distorted wave’’ fo
mulation, the incident wave number vector in the exponen
evaluatedinside the body or medium ‘‘2’’ @(kW i)2#. This
equation is very convenient to perform numerical integ
tions to check other formulations as well as to be used
256 J. Acoust. Soc. Am., Vol. 103, No. 1, January 1998
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derive analytical expressions for scattering~Chuet al., 1993;
Stantonet al., 1993b, 1998!. The material properties are de
scribed by the termsgk and gr and are allowed to vary
within the body in this formulation. Those parameters can
expressed in terms of the compressibilityk, mass densityr,
density contrastg, and sound speed contrasth as

gk[
k22k1

k1
5

12gh2

gh2 , ~8!

gr[
r22r1

r2
5

g21

g
, ~9!

where the relation

k5~rc2!21 ~10!

and the definitions

h5
c2

c1
, g5

r2

r1
, ~11!

were used~the ‘‘1’’ subscripts refer to the surrounding wate
and the ‘‘2’’ subscripts refer to the body!. For weakly scat-
tering zooplankton whereg and h are each approximately
several percent above unity~e.g., ;1.04!, gk and gr are
approximately20.1 and 0.04, respectively.

For elongated bodies of circular cross section and u
form material properties within any given cross-section
slice, two of the integrations can be performed analytica
leaving a one-dimensional integral:

f bs5
k1

4 E
rpos

a~gk2gr!

3e2i ~ki !2•rpos
J1~2k2a cosb tilt !

cosb tilt
udrposu, ~12!

whereJ1 is the Bessel function of the first kind of order on
and the integral is along the axis of the body whose posit
is described byrpos ~Stantonet al., 1998!. This formulation
describes the scattering by deformed finite length cylind
in which the radius of each circular cross section as wel
the material properties are allowed to vary with positi
along the lengthwise axis. The axis of the body is allowed
bend. This formulation is valid for allka and all angles of
orientation, but restricted to weakly scattering materials.

A formulation that is very convenient to use in the ge
metric scattering region is the Kirchhoff or geometric opti
integral ~Born and Wolf, 1991; Gaunaurd, 1985!. This sur-
face integral is given by

f bs5
ik1

2p
R12E E

A
~ k̂i !1•n̂Aei2~ki !1•rA dA, ~13!

where the integral is over the surface described byrA . (k i)1

is the incident wave number vector evaluated in medium
The ‘‘ ˆ ’’ indicates a unit vector andn̂A is the outward nor-
mal unit vector to the surface. The plane wave/plane in
face reflection coefficientR12 is used in the Kirchhoff ap-
proximation that led to this formula and takes into accou
the penetrability of the material by the following~Clay and
Medwin, 1977; Ogilvy, 1991!:
256Stanton et al.: Spheres and cylinders
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R125
gh21

gh11
. ~14!

Holding the reflection coefficient fixed during the integrati
is an approximation as it will, in general, vary with angle
incidence.

Finally, another formulation describing the scattering
sound by deformed cylinders is given by the following lin
integral ~Stanton, 1989, 1992!:

f bs5
2 i

2Ap
eip/4E

rpos

f bs
~`!

3~k1a cosb tilt !
1/2ei2~ki !1•rposudrposu, ~15!

where the form functionf (`) for an infinitely long cylinder is
used in the integrand. The termrWpos is the position vector for
the axis. This approximate formulation is valid for allka and
for any material property profile~e.g., fluid, solid elastic,
fluid-filled shell, etc.! that is symmetrical about the axis i
any given cross-sectional slice. The formulation is only va
for angles near broadside incidence~within about 15° of
broadside for straight cylinders and a wider range for b
cylinders! and for high ratios of length to width
(length/width*5). For a study on the range of accuracies
this model, see Partridge and Smith~1995!. Hence two de-
formed cylinder formulations are provided above. One ba
on the DWBA weak scattering theory@Eq. ~12!# that is valid
for all angles of orientation, but is only useful for weak
scattering materials. The other is based upon infinite cylin
form functions@Eq. ~15!# and is applicable to a wide range o
material properties, but is limited in its usefulness with
spect to angle of orientation.

C. Arbitrarily shaped bodies— kd !1

For weakly scattering bodies of any shape and with
dimensions of the body much smaller than the acou
wavelength~or more precisely,kd!1, whered is the great-
est outer dimension of the body such as length!, the scatter-
ing can quite readily be calculated with the DWBA a
proach:

f bs5
k1

2

4p
~gk2gr!V. ~16!

In this Rayleigh scattering limit, the scattering amplitude
shown to depend upon the product of the square of the w
number and volume,V, of the body. The integral in the
general DWBA integral @Eq. ~7!# was performed quite
readily as the exponent in the integrand was negligibly sm
and the integral reduced to integrating a constant value~as-
suming that the material properties were constant inside
body! over the volume. The scattering does not depend u
angle of orientation which is what one would expect in th
long wavelength limit. An average of the square of the m
nitude of the scattering amplitude over angle of orientat
and a distribution of sizes gives, quite trivially,

^u f bsu2&5
k1

4

16p2 ~gk2gr!2^V2&. ~17!
257 J. Acoust. Soc. Am., Vol. 103, No. 1, January 1998
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These formulas are convenient for making calculatio
of the scattering by complex weakly scattering bodies in
long wavelength limit, especially when there is no exact
lution for the body of interest. Because of the long wav
length restriction, the usefulness is limited. For objects
sembling spheres, the equations are valid forka&0.5, where
a is the equivalent spherical radius. While the scattering l
els for spheres are small in this region, they might be det
able. However, for objects that are very elongated such
euphausiids, the usefulness of the equations is more lim
than for spheres because of the conditionkL&1.0. For elon-
gated bodies with ratios ofL/a of the order 5 or greater, this
(kL) condition results in the equations being valid only f
ka&0.2, wherea is the cylindrical radius. In theka,0.2
region, the scattered levels might not be detectable by
echosounder~especially when individuals rather than den
aggregations are involved!, hence a more complex approac
with fewer approximations needs to be used in calculat
the scattering by elongated bodies in the detectable regi

D. Sphere-single realizations

For spheres in theka!1 or Rayleigh scattering region
the exact modal series solution can easily be used to pre
scattering levels by taking the lowka limit in the modal
series terms. In the lowka limit, the first two modes of
vibration ~m50 monopole term andm51 dipolelike term!
are of the same order ofka and dominate the remainin
terms of the series. Keeping only those terms gives the
lowing commonly used expression:

f bs5a~k1a!2aps , k1a!1, ~18!

where

aps[
12gh2

3gh2 1
12g

112g
. ~19!

This equation shows that the scattering is a function o
product of the square of the wave number and the cube of
radius ~Anderson, 1950!. This limiting expression can be
compared directly with the DWBA result given in Eq.~16!
by writing a in terms of the volume of the body and subs
tuting equivalent expressions forgk andgr given in Eqs.~8!
and ~9! into the DWBA result. The comparison shows th
the two approaches produce nearly identical results with
only difference being in the material property term: the d
nominator 112g in the modal-series-based solution is r
placed by the term 3g in the DWBA expression~this com-
parison is made with a factor of13 moved from outside to
inside the parentheses in the DWBA expression for dir
comparison!. For weakly scattering bodies,g is to within
several percent of unity making 112g'3g'3.

In the region in whichka is of the order unity or greater
the modal series solution requires more terms to conve
and it becomes cumbersome to deal with analytically. C
tainly, the solution can be programmed into a computer
numerical results. However, making use of the modal se
for analytical means is tedious. One approach to circumv
this problem involves applying the~approximate! Kirchhoff
integral in which the scattered field is estimated by summ
contributions from the front and back interface of the body
257Stanton et al.: Spheres and cylinders
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the ka@1 region. Using the Kirchhoff integral given abov
the backscattering by a weakly scattering sphere is appr
mately

f bs5
1
2aR12e

2 i2k1a~11T12T21e
i4k2a!, ~20!

where the transmission coefficients due to the passing of
wave through the front interface~first into the body, then
back out of the body! are given as

T125
2gh

11gh
.1, T215

2

11gh
.1. ~21!

The reflection coefficient from the back interface is simp
equal to the negative of the one from the front interface a
a simple substitution for it in terms ofR12 was made.

Here the integral was performed by dividing the integ
into two parts, one over the front interface where the Kirc
hoff expression was used directly and the other over the b
interface where the expression was multiplied by the prod
T12T21 to account for the fact that the wave experience
slight loss of signal when traveling through an interface. T
normal to the surface in each integral is aimed in the gen
direction of the sound source~i.e., it is the outward norma
for the front interface and inward normal for the back inte
face!. The resultant equation@Eq. ~20!# shows contributions
from both interfaces where the first term~‘‘1’’ ! in the paren-
theses corresponds to the contribution from the front in
face and the second term is due to the back interface.
phase shift difference between the echoes from the front
back interfaces is clear in the second term. This phase
ference will give rise to interferences between the ech
from the two interfaces. The interference will be construct
or destructive, depending upon the value ofka.

E. Sphere—Average echoes

Since the scattering by spheres does not depend upo
angle of orientation of the sphere, the average over angl
orientation is trivial. Averaging the square of the magnitu
of the backscattering amplitude in theka!1 region @Eq.
~18!# over a range of sizes is quite simply

^u f bsu2&a.k1
4^a6&aaps

2 , k1a!1. ~22!

The bracket̂ •••& a denotes the average over a distribution
a. For theka@1 region, the average over a narrow Gauss
distribution of sizes using Eq.~20! is

^u f bsu2&a. 1
2ā

2R12
2 @11e28~k2 ās!2

cos~4k2ā!#, k1a@1
~23!

. 1
2 ā 2R12

2 , ~24!

whereT12.T21.1 was used.
This average shows that the oscillatory effect due to

interference between the two interfaces becomes expo
tially small for high ka. In the highka limit, the average
backscattering energy is simply equal to the sum of the
ergy from each interface~the square of the magnitude of th
backscattering amplitude from each interface is equa
1
4ā

2R12
2 !.
258 J. Acoust. Soc. Am., Vol. 103, No. 1, January 1998
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F. Cylinders—Single realizations

For the backscattering by straight cylinders in theka
!1 region, the deformed cylinder formulation has been u
to produce the following equation~Stanton, 1988, 1989!:

f bs.
1
2~K1a!2LapcDSC~u!, straight cylinder, k1a!1,

~25!

where the directivity function is given as

DSC~u!5
sin~k1L sin u!

k1L sin u
~26!

and the material property term is

apc5
12gh2

2gh2 1
12g

11g
. ~27!

Here, the modal-series-based form function of the in
nitely long fluid cylinder was used in the calculations. By t
nature of this approximation, the result is only valid for ne
broadside incidence. Calculations for near end-on incide
would depend strongly upon the particular shape of end~flat,
pointed, rounded, etc.!. It has been convenient to approx
mate the directivity function in Eq.~26! in terms of a Gauss-
ian function as~Stantonet al., 1993b!

DSC.e2aSC~k1L !2u2
, aSC.0.2. ~28!

The empirical directivity parameteraSC should not be con-
fused with the material property parametersaps and apc .
With this expression, averages over orientation can easily
made as shown in a later section~Stantonet al., 1993b!.

The same modal-series-based deformed cylinder for
lation has also been used to estimate the scattering by
cylinders. The resultant formula for lowka is derived from
Stanton~1989! and Stantonet al. ~1993b! as

f bs.
1

2&
~rcl!1/2~k1a!2apcDBC~u!eip/4,

bent cylinder, k1a!1, 2k1D@1, ~29!

where the directivity function,

DBC~u!.e2aBC~2urc /L !2
, aBC.0.8, ~30!

has been added heuristically to include effects due to or
tation ~Stantonet al., 1993b! ~u50 corresponds to the cas
of ‘‘broadside’’ incidence where the cylinder is bent sym
metrically away from the transducer!. The empirical direc-
tivity parameteraBC should not be confused with the mat
rial property parametersaps andapc . HereD is the distance
that the end of the cylinder is bent~D50 for a straight cyl-
inder!. This directivity function is based upon a reasonab
estimate of the angle beyond which the scattering decre
dramatically with angle. However, it does not provide acc
rate estimates of the scattering for near end-on inciden
which, as discussed in the above straight cylinder case,
pends strongly upon the particular shape of the end.
function is convenient for averages over orientation as d
cussed in a later section.

In the ka@1 case, the modal-series-based approach
comes difficult to manipulate algebraically because of
258Stanton et al.: Spheres and cylinders
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fact that it takes many terms for the series to converge. S
eral approaches can be used in this case—the DWBA, Ki
hoff, or form-function-based deformed cylinder solution. In
recent study, a ray-based~form function! deformed cylinder
formulation was used to produce the following equation
the straight cylinder andka*0.1 ~Stanton et al., 1993a,
1993b!:

f bs5
2 i

2Ap
eip/4e2 i2k1aLAk1aR12DSC~u!I 0 ,

k1a*0.1, ~31!

where

I 0512T12T21e
i4k2aeimp52~k1a! ~32!

and

mp52~k1a!52~p/2!k1a/~k1a10.4!. ~33!

The termmp52(k1a) was added heuristically to remove ce
tain phase effects so that the formula, normally valid only
ka@1, could be applied to values ofka down to about 0.1.
In this formulation, a ray-based form function for the in
nitely long fluid cylinder as presented in Marston~1992! was
incorporated into the deformed cylinder formulation. Equ
tion ~31! is broadly similar to that of the sphere forka@1 in
that two terms appear, one corresponding to the echo f
the front interface of the body and the other due to the b
interface. They differ greatly due to the dependence of
scattering by the cylinder uponka and orientation.

For the uniformly bent cylinder, the same ray-based
formed cylinder formulation as described above is applied
the bent cylinder geometry~Stantonet al., 1993a, 1993b!.
The result of that analysis is

f bs5
1
2~rca!1/2R12e

2 i2k1aDBC~u!I 0 , ~34!

where the directivity term has the same limitations as in
ka!1 case.

G. Cylinders—average echoes

Averaging the square of the magnitude of the ba
scattering amplitude over angle of orientation takes adv
tage of the Gaussian form of the above-mentioned directi
functions. Averaging over both angle of orientation and
narrow Gaussian distribution of size results in the followi
set of expressions:

^u f bsu2&L,u5Ai j p~k1ā!3āL̄apc
2 , k1a!1, k1L*1,

~35!

^u f bsu2&L,u52Ai j R12
2 āL̄@12e28~k2 ās!2

3cos~4k2ā1mp52!#, k1a*0.1, ~36!

^u f bsu2&L,u.2Ai j R12
2 āL̄, k1a@1, ~37!

where the termAi j takes on different values for differen
combinations of shapes and orientation conditions~straight/
bent cylinder, Gaussian/uniformly distributed orientati
angle!. Because Eq.~36! involves an extension into theka
,1 region, there is overlap in the frequency regions
which Eqs.~35! and~36! can be used. Equation~36! is from
259 J. Acoust. Soc. Am., Vol. 103, No. 1, January 1998
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Stantonet al. ~1993b!. Equation~35! was derived here in the
same manner as Eq.~36!. SinceAi j was verified numerically
down to aboutka50.1 in Stantonet al. ~1993b!, the same
Ai j are used in both Eqs.~35! and~36!. For the case of ben
cylinders with a Gaussian distributed orientation angle,Ai j

5TB
2CB

2Su /(16AaBsu). Ai j for other cases are given i
Table I of Stanton~1993b!. CB is an empirical parameter an
is approximately equal to 1.2 whileTB in this case is equal to
unity. Su is a complex function of the width of the main lob
of the scatter pattern and orientation distribution parame
~Stantonet al., 1993b!. For orientation distributions that ar
wide enough so that the entire main lobe is ‘‘seen’’ by t
receiver over the course of the averaging, thenSu;1. The
approximationT12.T21.1 was used in Eq.~36!.

Each formula involving a Gaussian distribution of orie
tation angles assumes that the bell part of the Gaussian
tribution contains the broadside angle. It is this assumpt
that allows use of the Gaussian form of the directivity fun
tion. If the broadside angle is part of the averages, then
resultant levels near broadside will dominate the small ne
end-on levels. Hence, errors in the end-on levels are not
nificant in this case. Various numerical simulations involvi
the more precise DWBA approach support this assump
~Stantonet al., 1993b!.

H. Average scattering by targets of equal volume

Some of the above formulas for averaged echoes
now reformulated so that they can be compared with e
other. As discussed above, an important quantity in zo
lankton studies is biomass, which is directly proportional
the volume of the animal. The scattering formulas are the
fore reformulated in terms of the volume of the body.

For arbitrarily shaped objects in the low-frequency r
gion, Eq. ~17!, which describes the average square of
magnitude of the backscattering amplitude~or average back-
scattering cross section!, can be used directly from the abov
analysis without modification. The formula is valid fo
weakly scattering bodies where the wavelength is mu
longer than any dimension of the body~or more precisely,
kd!1!.

At moderately low frequencies whereka!1 but kL*1
for cylinders, Eq.~17! does not apply~although it is still
valid for spheres!. In the moderately low-frequency case fo
cylinders@Eq. ~35!#, the relationship for volumeV5pa2L is
used along withb5L/a to obtain the following formula:

^u f bsu2&5S Ai j apc
2

~pb!2/3D k1
3V5/3,

all cylinders, k1a!1, k1L*1, ~38!

where now the average backscattering levels from cylind
depend upon the product ofk3V5/3. For an object withL/a
510, these moderately low frequencies are in the range
&ka&0.5. As with Eq.~35!, this equation is restricted to th
cases in which the main lobe of the scattering pattern fa
the receiver during part of the averaging.
259Stanton et al.: Spheres and cylinders
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In the high-frequency region whereka@1 ~kL is, of
course, much greater than unity in this region also!, the cor-
responding average echo formulas are reformulated in te
of the volume of the body to obtain

^u f bsu2&a.
1

2 S 3

4p D 2/3

R12
2 V2/3, sphere, k1a@1, ~39!

.0.19R12
2 V2/3 ~40!

and

^u f bsu2&a,u.
2

p2/3 Ai j b
1/3R12

2 V2/3,

all cylinders, ka@ l , ~41a!

.
TB

2CB
2Su

8AaBp2/3

b1/3

su
R12

2 V2/3,

bent cylinder, Gaussian distributedu,ka@1,
~41b!

.0.094
b1/3

su
R12

2 V2/3, ~41c!

where the same orientation restrictions apply to Eqs.~41a!–
~41c! as for Eqs.~35!–~37!. Equations~39! and ~40! were
based on an average of Eq.~24!; Eq. ~41a! was based on an
average of Eq.~37!; Eq. ~41b! used anAi j element from
Table I of Stantonet al. ~1993b!; and TB51, aB50.8, CB

51.2, andSu;1 were used for Eq.~41c! and were taken
from Stantonet al. ~1993b!.

For the case of euphausiids whereb'16 and su

50.349 rad~20°!, Eq. ~41c! can be further reduced to

^u f bsu2&a,u.0.68R12
2 V2/3,

euphausiid,620° motion, ka@1. ~42!

The motion is distributed about an arbitrary mean an
provided that the main lobe of the scatter pattern is ‘‘see
by the transceiver within the range of motion. As can be s
in the above equations in Secs. IC–H, while the formulas
single-realization broadside echoes from the various cy
ders and spheres depart from each other~except at very low
frequency where shape is not a factor!, the averaged echoe
are functionally very similar under certain conditions~Table

TABLE I. Functional dependencies of averaged backscattering upon w
number and volume for spheres and cylinders. Actual scattering levels
depend upon material properties and~for cylinders! distribution of angle of
orientation. The angular distributions for the cylinders in thekL*1 region
are restricted to the case where the main lobe of the scatter pattern
cluded in the average. The averages over size are for a narrow distrib
of size. Volume dependence of scattering will change for cylinders for
tain other distributions of angle of orientation in thekL*1 region.

Cylinders
straight and bent

^u f bsu2&L,u

(0<u<2p)
Sphere
^u f bsu2&a

ka!1
kL!1 k4V2

k4V2

kL*1 k3V5/3

ka@1 kL@1 V2/3 V2/3
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I!. There are significant deviations in scattering levels in
moderately low-frequency case and high-frequency case
certain ranges of orientation distribution.

II. NUMERICAL EXAMPLES

A. Bodies of fixed volume and material properties

Numerical evaluation of some of the general solutio
allows examination of the scattering properties over a w
range of conditions. The exact modal series solution for
fluid sphere and the DWBA integral are used in numeri
calculations of backscattering by fluid spheres and stra
and uniformly bent cylinders, respectively~Figs. 1–3!. All
bodies have smooth boundaries and homogeneous ma
properties. Calculations involving the cylinders were do
for fixed angle of orientation~Fig. 1! and distributions of
orientation angle~Figs. 2 and 3!. The mean angles of 20° an
45° and standard deviations of 20° in Fig. 2 were chosen
represent swimming krill insonified by a downward lookin
echo sounder~Kils, 1981; Endo, 1993; Miyashitaet al.,
1996!. The mean angle of 90° was chosen to represent
tain elongated animals that would be swimming toward
away from a downward looking sounder such as during
urnal migration. The uniform distribution of angles repr
sents the case in which the sounder is looking sideways
there is no preferred swimming direction in the horizon
plane. Since volume~or biomass! of zooplankton is of par-
ticular interest, the volume of each object~spheres and cyl-
inders! is held fixed at 0.30 cm3 as other parameters such
frequency are varied. This volume corresponds to a 34-m
long euphausiid~a shrimplike animal! whose length-to-width
ratio is about 8. The material properties, density and so
speed contrast, were also chosen to resemble those of
phausiid. The radius of the sphere is considered the ‘‘equ
lent spherical radius’’ of the animal.

ve
so

in-
on
r-

FIG. 1. Theoretical target strength versus frequency for one ping each o
an individual sphere, straight cylinder, and bent cylinder. All bodies h
the same volume of 0.30 cm3, which corresponds to a 34-mm-long eu
phausiid. The upper curves in the cylinder plots are for broadside incide
and the lower plots are for end-on incidence. The acoustic or ‘‘reduc
length of the animal is 29 mm, the cylindrical radius is 1.82 mm for t
cylinder model, and the equivalent spherical radius is 4.16 mm for
sphere model. The length is reduced to account for the fact that the 5
telson or ‘‘tail-section’’ of the animal is thin and probably does not scat
much sound. The exact modal-series solution was used for the sphere
@Eq. ~6!# and the DWBA method was used for both cylinders@Eq. ~12!#. For
all plots, g51.0357 andh51.0279 @these values were taken from Foo
et al. ~1990! and Foote~1990!, respectively, as they were measured direc
from live euphausiids#. For the bent cylinderrc /L53.0 ~this value for cur-
vature is chosen as it is a reasonable representation of the degree of be
a fully extended euphausiid!. All objects have a smooth boundary and h
mogeneous material properties.
260Stanton et al.: Spheres and cylinders
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In general, the overall levels of the scattering by t
cylinders depend upon the distribution of orientation ang
especially at the higher frequencies~Fig. 2!. Some distribu-
tions will produce scattering levels close to that of t
sphere, while others will cause it to deviate significantly~of
the order 3–10 dB!. At the very low frequencies, all model
converge to the same levels.

The scattering properties of all objects under investi
tion are characterized by a Rayleigh scattering region~ka
!1, wherea is either the spherical or cylindrical radius o
the body!. Also, each object possesses a geometric scatte

FIG. 2. Average theoretical target strength versus frequency for scatte
by statistical ensemble of spheres and bent cylinders. The target stre
was averaged on a linear scale as described in Eq.~3! for the models used in
Fig. 1. The scattering by all bodies is averaged over a narrow Gaus
distribution of sizes~s.d. of Gaussian is 10% of mean body length or dia
eter, averaging is done over the range, mean size62 s.d.!. In addition, the
cylinders are also averaged over various normal distributi

@N( ū, s.d. of u)# of angle of orientation and over a uniform@0, 2p# dis-
tribution in one case.u50° corresponds to broadside incidence and N~90°,
20°! is a distribution centered about end-on incidence. The models, b
dimensions, and values ofg, h, andrc /L are the same as in Fig. 1. Units o
all angles in figure are in degrees.

FIG. 3. Comparison between average theoretical target strength of sp
and bent cylinder under conditions where the predictions were close to
other at high frequencies. Averaging performed over narrow Gaussian
tribution of sizes for both the sphere and cylinder~as described in Fig. 2!
and angle of orientation~cylinder only!. The models, body dimensions, an
values ofg, h, andrc /L are the same as in Fig. 1.
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region (ka@1). Although the transition or ‘‘turning’’ point
at which the scattering changes from Rayleigh to geome
occurs atka.1 for both spheres and cylinders at broadsi
incidence, the point occurs at different frequencies for tho
bodies once the volume is held constant~the ‘‘a’’ is different
for the sphere and cylinders!. For example, for bodies of the
same volume of 0.30 cm3, the point occurs at about 75 kH
for the sphere and at about 150 kHz for the cylinders who
orientation is at broadside incidence or includes broadsid
the averages~Fig. 3!. The turning point for end-on cylinders
is at a lower frequency than for the cylinders at broads
incidence.

In addition, the target strength versus frequency patt
for each object possesses an oscillatory pattern in the g
metric scattering region. These oscillations are especi
pronounced when only single echoes are examined~Fig. 1!.
An interesting trend occurs in the geometric region of t
straight cylinder at broadside incidence where the trend
scattering increases with frequency.

The levels of the backscattering for end-on incidence
markedly lower for these elongated bodies than for t
broadside cases~Fig. 1!. The level of the scattering in this
case is strongly dependent upon the shape of the end o
body @rounded in this case according to the equationa(z)
5a0A„12(2z/L)10

…, wherez is the position along the axis
(z50 is the center of the body andz56L/2 at the ends! and
a05a(0) is the ~maximum! radius at the middle of the ta
pered body.# Note also that boundary roughness and mate
heterogeneities also strongly influence backscattering
end-on incidence~Stantonet al., 1998!.

Once the echoes are averaged over a range of orie
tions and sizes, some of the differences between the sca
ing by the sphere and cylinders tend to diminish~Figs. 2 and
3!. For example, for distributions of orientation that includ
broadside incidence in the bell part of the distribution, t
average backscattering by all bodies at high frequenc
(ka@1 or frequencies much greater than 150 kHz in th
example! tends to be nearly constant with respect to fr
quency and within about a 10-dB range of values@Fig. 2 and
other calculations, such as N~0°,20°!, not shown#. Average
scattering levels for straight cylinders have been shown to
quite similar to those of bent cylinders over a wide range
conditions~due to conservation of energy! and are not shown
in this paper~Stantonet al., 1993b!.

B. Bodies with other volumes and/or material
properties

For bodies with different volumes and/or material pro
erties, predictions~not shown! are broadly similar in form
~but with different magnitudes! to those given in Figs. 1–3
For example, for an animal110 the length of the 34-mm-long
one simulated in the figures~and 1

10 the width, correspond-
ingly!, all curves would shift down uniformly by 20 dB and
to the right by one decade of frequency. This uniform sh
comes about by the fact that the square of the diame
~sphere! or square of the length~cylinder! can be factored out
of each prediction of backscattering cross section. Furth
more, the predictions can be expressed in terms of the
mensionless productka. As a result, predictions are quit
often presented in terms ofreducedtarget strength~i.e., nor-
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malized by the square of a dimension! versuska ~Stanton,
1988, 1989!. The RTS plots are valid only when the absor
tion of sound within the bodies is negligible~absorption does
not scale according to wavelength and body size!. It is also
particularly useful when the ratios of length-to-width a
length-to-radius-of-curvature of the lengthwise axis of t
elongated bodies remain fixed for a given RTS plot. The
set of conditions is a restriction of self-similarity of the o
ject shape which is reasonable for marine organisms.

For weakly scattering bodies of different material pro
erties, the changes are related to differences between the
terial properties~or their products! and unity@e.g., Eqs.~7!–
~9! of this paper; Anderson, 1950; Greenlaw, 197#.
Repeating scattering calculations in this paper for differ
density and sound speed contrasts~g and h, respectively!,
the levels increase by about 10 dB when (g,h)5(1.1,1.1)
and decrease by about 10 dB for (g,h)5(1.01,1.01) when
compared with calculations in this paper which used (g,h)
5(1.0357,1.0279). The locations of the peaks and dips
the TS versus frequency plots shifted horizontally~some-
what! as the material properties were varied.

III. DISCUSSION

The similarities and differences between the vario
scattering predictions can be explained in terms of basic s
tering principles.

In the very-low-frequency case in which all dimensio
of the bodies are much smaller than a wavelength, the m
els show that the scattering levels for the sphere, stra
cylinder, and bent cylinder are the same. This is due to
fact that in this very-low-frequency region, the phase of
echo from each part of the body is the same, regardles
position within the body. The scattered levels then dep
only upon the volume of the body, regardless of the sha

In the case of moderately low frequencies~i.e., ka!1
andkL*1!, the length of the cylinders plays a role. Becau
of phase variabilities of the echoes along the length of
elongated bodies, the scattering becomes dependent
shape and orientation of the cylinders. This dependence
curs in spite of the fact thatka!1 where the scattering is in
the Rayleigh region with respect to the radius of the bo
Here, the phase variabilities are small across any given cr
sectional slice of the bodies. However, for the bent cylind
the phase will vary along the length of the body, regardl
of orientation. Furthermore, for orientations of the straig
cylinder away from broadside incidence, the phase will v
along the length of that body as well.

The transition or ‘‘turning point’’ from Rayleigh to geo
metric scattering is different for spheres versus cylind
having the same volume. For broadside incidence or a
ages over a wide range of angles of orientation, it depe
upon the cross-sectional radius of the body. For bodies
constant volume, the radius of the spherical body is ab
two times bigger than the~cylindrical! radius of the cylinder
whose length to~cylindrical! radius is 16~i.e., for euphausi-
ids!. For end-on incidence, the turning point of the cylinde
depends upon the length which, in this case, is much gre
than the radius of the sphere of the same volume.
262 J. Acoust. Soc. Am., Vol. 103, No. 1, January 1998
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In the geometric scattering region, the phase var
within each cross-sectional slice of each body~sphere and
cylinders! as well as along the length of the elongated bod
~except for the straight cylinder at broadside incidence!. The
complex phase variabilities give rise to both an oscillato
pattern in the target strength versus frequency plots as
as a trend in that pattern that depends upon shape. The
cillatory pattern is due to the fact that there is more than o
echo coming from the body. A small fraction of the ener
of the incident acoustic signal will reflect off an interfac
facing the acoustic source. However, since this is a wea
scattering body, most of the incident acoustic signal pas
into the body relatively unaffected. The internal acoustic s
nal will then reflect off of an interface that is facing awa
from the sound source and reflect back toward the sou
These two echoes will interfere constructively or destru
tively according to the value of the separation of the fac
with respect to the wavelength of the sound. For a sphere
two faces are simply the front and back interface of the bo
regardless of orientation. For each type of cylinder at bro
side incidence, the interferences correspond to echoes
the front and back portions of the body cross section, wh
for end-on incidence the echoes from these extended bo
come from the front and back ends of the bodies. The pe
of oscillation of the target strength versus frequency cur
is related to the radius of the sphere and cylindrical radius
the cylinders at broadside incidence, while it is related to
length of the cylinders at end-on incidence.

The trend of the oscillations depends upon whether
not the object is curved in one or two dimensions. F
spheres and bent cylinders at broadside incidence, the t
is constant with respect to frequency. This is related to
fact that both are curved in two dimensions. However,
the straight cylinder at broadside incidence, the trend
creases with frequency~actuallyka! because of the fact tha
this cylinder is curved only in one dimension. This effect
related to the fact that the size of the cylinder remains m
smaller than the first Fresnel zone in these~finite cylinder!
calculations~Stanton, 1988!. Once the frequencies are hig
enough or the range to the target small enough, then m
Fresnel zones occupy the cylinder and the cylinder app
acoustically like an infinitely long cylinder~DiPerna and
Stanton, 1991!. The trend in this latter case levels off as wi
the other bodies~not shown!. For end-on incidence, the sca
tering is due to the rounded ends of the cylinders and
trend is constant, but at a lower level since the cross sec
of the ends is relatively small.

Once the scattering is averaged over angle of orien
tion, some of the differences between the scattering by
sphere and cylinders tend to diminish. This is due to
directional nature of the scattering by the cylinders: for
single orientation, a substantial portion of the scattered
nals from a cylinder may or may not be in the direction ba
toward the receiver. However, once averaged over all an
of orientation, the orientations where substantial backs
tered energy occurs become part of the average, hence re
ing the differences between the average scattering by
different bodies. For example, at broadside incidence,
scattering by a straight cylinder may be stronger than tha
262Stanton et al.: Spheres and cylinders
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the bent cylinder at broadside incidence. For orientati
away from broadside incidence, the scattered signal from
straight cylinder will diminish much more rapidly than th
from the bent cylinder because the width of the main lobe
the scatter pattern of the straight cylinder is narrower th
that of the bent cylinder of the same length. Hence,
straight cylinder has a stronger but narrower main lobe co
pared with that of the bent cylinder. The average over
angles gives nearly the same value for each type of cylin
indicating that the change in shape of the main lobes off
the differences in overall levels within the main lobes. Th
phenomenon, in essence, is related to the principle of c
servation of energy~Stantonet al., 1993b!. @Of course, aver-
aging over narrower distributions can sometimes resul
differences as well, as illustrated, for example, in Figs. 2 a
3 of this paper, Stantonet al. ~1993b!, and Demer and Martin
~1995!.#

Another effect in the averaging over size and angle
orientation involves the smoothing out of the oscillatory p
tern of target strength versus frequency. For the sphere,
effect of smoothing out is due solely to the fact that t
positions of the nulls and peaks of the pattern are relate
the radius of the body. The pattern is slightly different fro
realization to realization in the averaging over sizes, a
hence the null value of one realization will be averaged w
higher values from other realizations, which will tend to fi
in the nulls. The nulls become increasingly affected for h
frequencies as a given change in size will be larger w
respect to wavelength at the higher frequencies.

For the cylinders, the pattern of target strength ver
frequency is dependent upon both size~as with the sphere! as
well as orientation. Consequently, averages over both
and orientation cause reduced structure in the pattern. H
ever, because of the fact that the backscattering value
broadside incidence are much greater than those at end
the pattern near broadside incidence will tend to domin
the scattering. Still, the average over sizes affects the pa
as much as with the sphere.

While the averaging reduces differences between
scattering by the bodies of various shapes, the scattering
depends upon the particular distribution of orientation of
bodies. For averages over the distribution of angles of or
tation N~20°,90°! for the cylinders, the scattering levels we
similar for the cylinders and spheres in the geometric reg
~Fig. 3!. For other distributions, the averages were som
times quite different, especially when the mean angle of
entation of the cylinders was well away from broadside
cidence~Fig. 2!. For distributions of N~20°,20°!, N~20°,60°!,
and uniform~0–2p!, the scattering is within several dB o
that of the sphere at high frequencies~Fig. 2!.

IV. FIELD IMPLICATIONS

The results show that for high enough acoustic frequ
cies and certain distributions of angle of orientation, int
pretation of surveys of elongated animals is relatively ins
sitive to the choice of model shape~i.e., sphere versus
cylinder!. However, for lower frequencies or other beha
ioral conditions, the animal shape and orientation distri
tion need to be taken into account. For example, interpr
263 J. Acoust. Soc. Am., Vol. 103, No. 1, January 1998
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tion of the echoes from a 38- or 120-kHz single frequen
system could be affected by about 5 dB when survey
34-mm-long euphausiids with a N~20°,90°! distribution
while the work at 200 or 420 kHz would be relatively una
fected for that length of animals~Fig. 3!. For a distribution of
N~45°, 20°! the interpretation for 34-mm-long euphausiids
affected by about 6–7 dB for most frequencies at or ab
38 kHz, except for frequencies near 120 kHz where the
ferences are much less~Fig. 2!. These types of~decibel!
errors can translate into errors in estimates of the number
animals causing the scattering~Table II!.

Success of a two- or multi-frequency system is also
fected by the shape and behavioral conditions. Each
proach not only depends upon the value of the scatte
levels, but the ‘‘transition point’’ between the Rayleigh an
geometric scattering region~Greenlaw, 1979; Holliday and
Pieper, 1995!. A crucial phenomenon illustrated in these ca
culations is the fact that the transition point for the sphere
different from that of a cylinder~Fig. 3!. For example, for a
29-mm-long cylinder, the point is at about 150 kHz. For
sphere with the same volume as that of a 29-mm-long cy
der, the point is at about 75 kHz. Hence the transition po
are different by a factor of 2. This difference would have
profound effect on an analysis or algorithm that relies
knowing where the transition point is.

V. SUMMARY AND CONCLUSIONS

Comparisons between the scattering by weakly scat
ing spheres and cylinders of the same volume have sh
similar or identical levels under certain limiting condition
and dramatic differences under other conditions. The lev
are identical in the limit of very low frequencies when th
product of the wave number and all outer dimensions of
body is much less than unity. However, that region is n
particularly useful because the echo levels tend to be ne
gibly small in practical survey systems. For moderately lo
frequencies (ka!1,kL*1) and higher, there are distinct dif
ferences between the scattering levels of the different bo
due to the elongated nature of the cylinders and orienta
effects. For certain orientation distributions, the averag
scattering levels of all bodies are very close to each othe
the geometric scattering region. Other distributions prod
substantially different average levels between the sphere

TABLE II. Number of objects per cubic meter it would require to produ
a volume scattering strength of270 dB. The volume of each object is fixe
at 0.30 cm3. The angular distributions of the bent cylinders are varied
indicated at the top of the columns. The models, body dimensions, ave
over size, and values ofg, h, andrc /L ~cylinders only! are the same as in
Fig. 2. The frequencies chosen correspond to those of commercially a
able echosounders.

Freq.
~kHz! Sphere

Cylinder

N
~20°, 20°!

N
~30°, 20°!

N
~40°, 20°!

N
~50°, 20°!

Uniform
@0, 360°#

38 27 50 76 140 280 160
120 31 3.3 5.6 14 55 11
200 12 4.9 8.2 20 60 16
420 11 5.9 9.9 24 74 19
263Stanton et al.: Spheres and cylinders
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cylinders. Regardless of orientation distribution, the turn
point between Rayleigh and geometric scattering occur
different frequencies for the bodies.

These results show that for surveys of elongated anim
in the ocean, the averaged echo energies~say, from an echo
integrator! could be relatively insensitive to shape at hi
enough acoustic frequencies~for example, greater than 30
kHz for a 34-mm-long euphausiid! and for certain distribu-
tions of angles of orientation. However, for surveys invo
ing other distributions of angles of orientations at high f
quencies or lower frequencies~the ‘‘moderately low
frequency range’’ which would be, for example, 20–2
kHz for 34-mm-long euphausiids!, the results become
strongly dependent upon shape and the modeling must
tinguish between spherical and cylindrical animals.

Also, while the focus of this work involved shape d
pendencies of acoustic scattering for bodies with the sa
material properties, variations in material properties also
nificantly affect the scattering levels as briefly discuss
herein@see, for example, Stantonet al. ~1994! for data and
modeling of animals with various material properties as w
as references in that paper to other works on the subjec#.

In conclusion, as observed in this study and the ma
studies referenced herein, the scattering of sound is a c
plex function of size, shape, orientation, and material pr
erties of the body as well as acoustic wavelength. Idea
one should take each factor into account in scattering pre
tions as accurately as possible. However, some of these
tors may be more important than others, depending u
conditions such as which scattering region the object is
~Rayleigh/geometric! or whether or not the echoes are bei
averaged over a particular distribution of angles of orien
tion. Analysis of the scattering therefore requires determi
tion of the conditions and which factors~such as shape an
orientation distribution! need to be taken into account in th
modeling.
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