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By use of the recently published deformed cylinder formulation [T. K. Stanton, J. Acoust. Soc. 
Am. 86, 691-705 ( 1989} ], the scattered field due to rough elongated dense elastic objects is 
derived. The (one-dimensional) roughness is characterized by axial variations of radius. 
Explicit expressions are derived describing both the mean and mean square of the stochastic 
scattered field for the rough straight finite length cylinder (broadside incidence) for both 
ka• I and ka>> 1 (k is the acoustic wave number and a is the radius) while only the mean is 
calculated for the prolate spheroid, uniformly bent finite cylinder, and infinitely long cylinder 
for ka>> 1 (again, all broadside incidence}. The modal-series-based solution is used in the 
ka• 1 case as the modal solution simplifies to the sum of two terms (monopole and dipole-like 
terms). For ka>• 1, a more convenient approximate "ray" solution is used in place of the modal 
series solution. The results show that ( 1 ) when ka • 1 the roughness-induced variations of the 
mean and mean-square scattered fields due to the rough straight finite cylinder depend on the 
roughness, but are independent of frequency--an effect that has no counterpart in the area of 
scattering by rough planar interfaces. (2) When ka >• 1 the mean specular (geometrically 
reflected } and Rayleigh surface elastic waves of the scattered field of each object are attenuated 
due to the roughness and their variations are dependent upon the frequency. In addition, the 
(roughness-induced) attenuation of the Rayleigh wave depends on the number of times the 
wave has circumnavigated the object. The mean-square values for the straight finite cylinder 
are attenuated in a similar manner with the additional dependence upon the correlation 
distance of the surface. 

PACS numbers: 43.30.Ft, 43.30.Gv, 43.30.Hw 
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acoustic wave number ( = 2rrlA) 
mean radius of cylinder cross section 
radius of cross section of rough cylinder 
rms roughness relative to mean surface 

amplitude of incident plane wave 
coefficient determined from boundary condi- 
tions 

Bessel function of the third kind (Hankel rune- cs 
tion of the first kind) of order m 
wavelength of sound in surrounding fluid 
distance from axis of cylinder to the field point 
(applied to infinite and finite bodies}. fl• ( •o ) 
azimuthal angle (• = •r is the backscatter direc- 
tion ) 

4-1 
form function for infinitely long cylinder (sub- 
scripts s, tw, R, and • tof (*') stand for specular, 
transmitted wave, Rayleigh wave, and Whisper- 
ing Gallery and Franz waves, respectively.) r 
scattering amplitude for finite sized objects 
pEeL/pc (specific plane-wave/plane-interface e 
acoustic impedance) 
mass density of elastic cylinder 
longitudinal speed of sound of elastic cylinder 

mass density of surrounding fluid 
speed of sound of surrounding fluid 
complex coefficient that accounts for coupling 
efficiency between acoustic wave and Rayleigh 
surface wave on cylinder (inception and radi- 
ation efficiencies are both included in this term) 
related to number of times surface wave circum- 

navigates the cylinder (m = 0 corresponds to 
first received surface wave, m = I is second, 
etc. ) 

phase velocity of Rayleigh surface elastic wave 
attenuation coefficient of Rayleigh surface elas- 
tic wave 

constant phase angle for GR 
constant attenuation coefficient for a fiat fluid- 

loaded interface (this "oo" refers to ka>> 1 flat 
interface limit) 
distance between ends of finite deformed 

cylinder 
position vector from the origin of the coordinate 
system to a point on the axis of the cylinder 
distance from a point on the axis (at rvo• ) to the 
field point (receiver) 
distance between the point on the axis (at rvo• ) 
and the plane that both contains the origin and is 
perpendicular to the direction of the incident 
plane wave 
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K 

0 

L 

k sin 0 7//i, 2 
angle between direction of incident plane wave •(•) 
and tangent to the axis at each point rpos 
unit vectors describing direction of incident and • 
received (scattered) waves 
length of straight finite object; arc length of uni- • 9• 
formly bent cylinder PDF 
roughness perturbation about mean radius a • ',•" 
statistical ensemble average at fixed rpo• position ao 
distance along axis of straight cylinder and pro- Pc 
late spheroid (z axis is lengthwise axis of each 
straight object in this case) SWT 
scattering amplitude for perfectly smooth finite W 
cylinder 

bivariate Gaussian PDF 

normalized autocorrelation function of rough 
surface (it varies along lengthwise axis of body) 
correlation parameter of rough surface 
(--z" -z') 
correlation distance of rough surface 
probability density function 
•'(z'),,•(z" ) 
length of semi-minor axis of prolate spheroid 
radius of curvature of axis of uniformly bent 
cylinder 
Sommerfeld-Watson transformation 

single variable Gaussian PDF 

INTRODUCTION 

There is a variety of volumetric objects in the ocean that 
scatter sound such as bubbles and marine organisms. Other 
objects that are associated with planar boundaries, such as 
ice keels and sand ripples, can be analyzed in volumetric 
terms in "boss" formulations such as that described by 
Twersky. l': Regardless of the type of scatterer the size, 
shape, orientation, and morphology must be thoroughly un- 
derstood before predictions can be made. Research has typi- 
cally involved use of very simple models to describe scatter- 
ing by complex objects such as marine organisms and grains 
of sand. 3-• The exact solutions to the sphere, infinitely long 
cylinder, and spheroid have long been candidates in those 
problems and recently approximate solutions to the straight 
and uniformly bent finite length cylinder have demonstrated 
improvements in the scattering models for zooplankton and 
fish. o-is 

Regardless of the class of shape used in the above scat- 
tering problems, the object was always considered to resem- 
ble a simple mathematical shape with a perfectly smooth 
surface. In some recent articles by this author 9'1ø and Pieper 
and Holliday, 4 it was shown that in order to model the scat- 
tering of sound by zooplankton, the exact scattering solution 
involving the simple shape had to be modified for there to be 
an optimum fit between the "theory" and data. This was true 
for models involving spheres, straight finite cylinders, and 
uniformly bent finite cylinders. The modification involved 
truncation of the modal series solution and it was hypoth- 
esized that because the objects were irregular and did not 
exactly resemble the ideal simple mathematical shapes, that 
the objects would not support the higher modes that were 
inherent in the simple theory. There are relatively few publi- 
cations involving the scattering by irregular objects and the 
solutions to those are limited to analytical solutions involv- 
ing deformations of spheres 16.17 and "simple" cylinders (im- 
penetrable and/or infinitely long), 18-21 and numerical 
methods involving more complex bodies? '23 

Recently, an approximate analytical solution was de- 
rived that predicts the scattering by deformed cylinders of 
finite length. lø The theory was developed to describe the 
scattering by elongated objects whose properties such as the 

cross-sectional radius and material composition may vary 
with respect to the lengthwise axis. In addition, the axis of 
the cylinder may be deformed. The approximation lies in the 
assumption that the boundary conditions at each position 
along the axis are the same as those of the infinitely long 
cylinder, i.e., each infinitesimal section of the cylinder be- 
haves as if the neighboring sections are identical where, in 
fact, their properties are slowly varying. The solution is then 
the integral of these infinitesimal sections over a finite 
length. As a result, the formulation is only valid for angles of 
incidence and reception normal or nearly normal to all tan- 
gents of the axis and for objects with very high aspect ratios 
(>• 5:1 ). In that article there was excellent agreement be- 
tween the deformed cylinder calculations and the exact 
spheroidal wave function solution when the scattering by 
prolate spheroids (aspect ratio of 5:1) was calculated. In 
addition to the calculations involving prolate spheroids, pre- 
dictions were made for uniformly bent finite cylinders that 
agreed with predictions based on Helmholtz-Kirchhoff re- 
sults under limiting conditions. 

While there was exact comparison between limiting 
forms of the solutions and other theories, the comparison 
between the uniformly bent cylinder solution and laboratory 
data (taken from Ref. 3) involving backscattering from eu- 
phausiids (a type of zooplankton) required modifications in 
the approximate theory. The modal series solution was trun- 
cated before convergence for an optimum fit between the 
theory and data with the hypothesis being that each object 
did not perfectly resemble a smooth uniformly bent cylinder 
but was actually a slightly irregularly shaped object whose 
roughness was perhaps a perturbation of the smooth bent 
cylinder. For the optimum fit, the first six terms of the series 
were required while the remainder of the terms were not 
included in the summation. Although this approach is an 
approximation to the actual problem, it also represents an 
improvement over previous attempts to model the scattering 
of sound by zooplankton. For example, Pieper and Holli- 
day 4 and Stanton 9 truncated other solutions to include only 
the first two terms when modeling the plankton as spheres 
and straight finite length cylinders, respectively. Hence, as 
the shape of the mathematical model object approached the 
shape of the actual object, the scattering was more accurate- 
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FIG. 1. Randomly rough elongated object (exaggerated roughness). 

ly described with the accuracy being indicated by the num- 
ber of terms retained in the series. 

In this article, we formulate the deformed cylinder solu- 
tion in such a way that it can analytically illustrate the effects 
of roughness on the scattering by rough elongated objects 
(Fig. 1 ). We chose dense elastic objects in this article be- 
cause simple analytical solutions involving those boundary 
conditions are currently available to adapt to the case of 
rough objects. The essence of the approach lies in allowing 
the radius of the (circular) deformed cylinder to vary ran- 
domly along the length resulting in a one dimensional rough- 
ness. For ka • 1 the approximate solution is based on the 
modal series solution due to an infinitely long cylinder which 
simplifies to the sum of two terms--monopole and dipole- 
like terms--making the solution straight forward. For 
ka >> 1, the modal series solution requires many terms to con- 
verge and is not mathematically convenient to manipulate. 
Therefore we apply a simplified "ray" solution in that region 
involving the Sommerfeld-Watson transformation (SWT) 
of the modal series solution which is much more convenient 

and physically relevant to use. 
In Ref. 10, the modal series solution was used exclusive- 

ly in the deformed cylinder solution and details of its use are 
given in that article. The SWT is applied to the deformed 
cylinder solution for the first time in this present article. The 
properties of the SWT and its use in the deformed cylinder 
formulation are summarized as follows: The SWT-based so- 

lution is a summation of rays due to the "specular" or geo- 
metrically reflected echo from the front surface of the object, 
Rayleigh and Whispering Gallery surface elastic waves, and 
Franz "creeping" surface waves as well as (internally) re- 
fracted waves. In our formulation, the "ray" solution is em- 
ployed in the deformed cylinder solution so that the ray due 
to each infinitesimal element of the deformed cylinder is cal- 
culated with the phase of the rays being related to the rough- 
ness perturbations of the surface. All infinitesimal rays are 
then summed in the integral along the length of the object. 
The end result will be a backscattering cross section whose 
value depends upon the particular realization of rough sur- 
face. This value will vary from realization to realization due 
to the randomness of the phases of the rays. 

Much work has appeared in the literature involving ray 
solutions :4•s ranging from the heuristically written simple 
solution by Veksler and Korsunskii n4 to the more sophisti- 
cated SWT-based and Green's function solutions by a var- 
iety of investigators. Most important to this present analysis 
is a simple approximate formula for the "coupling coeffi- 
cient" that predicts the amplitudes of the surface waves. We 
chose Marston's recently derived approximate formulas for 
use in our analysis as they demonstrate reasonable accuracy 

for the material (tungsten carbide) and range of ka (15-40) 
chosen. 37•ø For simplicity we only analyze the case in which 
the specular and Rayleigh surface waves dominate the scat- 
tering. It also turns out that some of the scattering that re- 
sults in narrow resonances which are ignored in the analysis 
becomes "washed away" due to roughness effects. One could 
use the procedure described in this article for analysis in- 
volving the other waves. 

The general solution is used to derive explicit back- 
scattering expressions for the following randomly rough ob- 
jects at broadside incidence: straight finite length cylinder, 
prolate spheroid, uniformly bent finite cylinder, and infinite- 
ly long cylinder. Since the deformed cylinder solution is used 
as a basis, the soh•tion is valid only for high aspect ratio 
objects ( •> 5:1 ) at angles of incidence at or near broadside. 
The roughness is modeled as continuous, stochastic, and, for 
simplicity, one dimensional (i.e., it depends only on the posi- 
tion with respect to the lengthwise axis). In order that the 
explicit expressions be evaluated analytically, the roughness 
was assumed to be Gaussian distributed with a linear auto- 

correlation function. The mean and mean-square scattered 
field is derived for both ka,• 1 and ka >> 1 for the straight 
finite cylinder while for the other shapes, only the mean field 
in the ka >> 1 region is derived. For the sake of brevity and 
because of the mathematical difficulties involved in describ- 

ing the mean-square field due to the other shapes for ka>> 1, 
the other cases were not investigated. Because the vast ma- 
jority of rough surface scattering articles in the literature 
involves rough planar interfaces, some general comparisons 
between the results in this article will be made with those 

articles. 46-s• The case of axisymmetric roughness presented 
in this article results in effects separate and distinct from the 
case where the radius of the cylinder varies azimuthally. •9-2• 
This article describes effects induced by roughness-related 
pathlength differences while the latter case involves varia- 
tions in the coupling of the surface waves with the fluid. 

This article, involving the mean and mean-square scat- 
tered field, is followed by an article describing the statistical 
behavior of the realization-to-realization fluctuations of the 

scattered signal. s5 Application of the rough cylinder scatter- 
ing theory to zooplankton scatter data is given in Ref. 14 
where the statistics of the echoes from the animals is quanti- 
fied in terms of the backscattering cross section of the ani- 
mals. 

I. GENERAL SOLUTION 

A. Infinitely long undeformed cylinder--Modal series 
and Sommerfeld-Watson transformation solutions 

The scattered pressure due to an infinitely long unde- 
formed cylinder can be expressed as an infinite series of mod- 
al terms'? 

P .... =Po • b,,i"•H•(kr) cosm&, (1) 
rn=O 

where the e •wt time dependence has been suppressed. This 
solution is exact for all kr and ka. 

In the far-field limit, the scattered pressure becomes 

p .... -•Po•eik•f •ø•, kr>> 1, (2) 
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where the form function f(o•) is given in the modal series 
representation, 

f•oo•__ 2 -,,•/4 • rnqb (3) __ ½ b m cos 

_ 2 e-•/• • b•(-1) • (backscatter). 
(4) 

The form functionf ( • ) of this infinitely long cylinder should 
not be confused with the scattering amplitude fused later in 
this article to describe the (spherically spreading) scattering 
by finite-sized objects. Both of these notations are consistent 
with the literature except for the fact that the" m" sign refers 
in this case to the fact that the cylinder is infinitely long while 
elsewhere in the literature it may refer to the condition 
kr• 1. AH results in this article involve the condition kr• 1 
so the distinction is not made. 

The above equations are the well-known modal series or 
pa•ial wave series solution. While this solution has seen 
much use by a number of investigators, it requires many 
terms to converge mathematically in the ka • I region and is 
difficult to manipulate analytically. A convenient approxi- 
mate fern of the solution has been explored by use of the 
SWT, which allows a more physical inte•retation of the 
scattered field at high frequencies by decomposing it into a 
sum of various rays such as the initial specularly "reflected" 
ray due to the front surface of the object ( f• © ) ), internally 
refracted or transmitted (bulk) rays (f•)), Rayleigh 
(f•)) and Whispering Gallery (f•) surface elastic 
waves, and Franz creeping wave (f•) ) :• 

f(•) •f•) +f•) +f•) + • sw• ( 5 ) 
I= WG, F 

Because of the complexity involved in taking into ac- 
count all waves in the rough cylinder formulation, we limit 
this analysis to the materials and range of ka where the 
specular and Rayleigh surface elastic waves dominate the 
scattering: 

f(• swx •f• + f•) (6) 

(conditionally valid, depending on material prope•ies and 
ka). 

Including the other waves would require a case-by-case 
analysis using a procedure broadly similar to the one used in 
this article. The specular term is given simply in its ka • 1 
limit: 

f•)=•e -ia&•, (7) 

where the Rayleigh (plane-wave/plane-interface) reflection 
coe•cient is given as 

• = (z- 1)/(z + 1), (8) 

where this "•" is not to be confused with subsc•pt "R" 
(Rayleigh surface wave) in other terms. 

Expressions forf• © ) are much more complex and are of 
the form: 

f•) = _ Gn e 2(•- •)g•e• 

• • e - avm•nei •vm&ac/cn (9) 

(note that the scattering by other surface waves can also be 
described by this form of equation). The "launching" angle 
0R and phase shift term •/R are given as 

0R = sin- t(c/cR ), (10) 

?IR =ka[(c/cR)(2•r--20R) -- 2cos 0R ], (11) 
where 0R is the local angle of incidence of the curved surface 
at which point the phase velocity of the Rayleigh surface 
wave matches the component of the phase velocity of the 
incident acoustic wave along the cylinder's surface. 

In order to calculate the form function, GR and/3R must 
be known. From Marston, we use the following approximate 
relationship: m 

Since the phase ofG a has been found to be approximate- 
ly constant 5' for cylinders, we can write G• as 

Ga • 8• e•*•/•vka. ( 13 ) 
Note that in Reft 57, • was found to be approximately 
equal to v/4 for ka• 1, although the general form of G• will 
be retained until evaluation in Sec. IV. Also, the dispersive 
characteristics of ca are ignored in the above expressions. As 
illustrated in Re[ 39, the dependence ofc• upon ka is espe- 
cially important for values of ka below 15, hence limiting the 
analysis to ka • 15. Marston also showed that •a can be 
expressed in a simple approximate manner: 

•=ka•(•), karl. (14) 

For tungsten carbide, •h (•) is equal to 0.002 32. The 
above relationship produces reasonable results in the 
15 < ka < 40 range for tungsten carbide. Thus, at least for a 
range of ka, G• varies as ( ka ) m. 

Combining Eqs. (6), (7), (9), ( 11 ), (13), and (14) the 
approximate ray form function is 

f(•) •e i•_ SWT 

Xexp[ - 2(v- 0•)ka•h(•)] 

X exp{ika [ (c/%) (2• - 20, ) - 2 cos 0• ] } 

2•mka• •( • )e i 2•mkac/c a x • e . (15) 

B. Deformed cylinder formulation: Infinite and finite 
length 

In a recent article, we derived an approximate expres- 
sion describing the s•attering of sound by deformed finite 
length cylinders where the cross-sectional radius, material 
composition profile (composition as a function of radial po- 
sition), and bend of the axis were allowed to vary along the 
lengthwise axis of the cylinder. lO The orientation of the axis, 
plane-wave source direction, and point receiver position can 
also vary so long as the directions of incident and scattered 
fields are nearly perpendicular to the tangent of each point of 
the axis (this restriction can be relaxed under some condi- 
tions). The calculation involved integrating the volume flow 
per unit length of the cylinder. Since the expression for the 
volume flow was based on boundary conditions from the 
infinitely long cylinder, the boundary conditions of the de- 
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formed cylinder are then assumed to vary slowly (i.e., the 
radius of curvature of the axial variations are large so that 
the solution to each slice of the cylinder is similar to that of 
an infinitely long cylinder of the same cylindrical radius). 
The solution was shown to be very accurate when describing 
high aspect ratio objects, where the aspect ratio is defined as 
the ratio of the length to diameter. Example calculations in 
that article involved the straight finite length cylinder, uni- 
formly bent finite cylinder, and prolate spheroid. 

While the emphasis of that article involved describing 
the scattering by deformed finite length cylinders, a more 
general solution was derived at the beginning that could 
scribe the scattering by deformed cylinders of any length. 
That solution was then simplified for finite length cylinders 
to help facilitate calculations. (In that article, a cylinder is 
considered to be finite when the distance between its ends, 
Ds, is much smaller than the diameter of the first Fresnel 

zone 2•- of the sonar transceiver. An infinite cylinder 
would span all of the Fresnel zones). 

The general solution describing the scattering of sound 
by deformed cylinders of any length (including infinite) was 
expressed explicitly in terms of the modal series in Eq. (5) of 
Ref. 10. To facilitate use of that formula with both modal 

series and SWT representations, we rewrite the equation in 
terms of the form function: 

X f Idrl (any length), 
(16) 

where kr• 1 and the wave numbers K = k sin 0 are shown 

explicitly in the integrand as well as implicitly inf (• •. Note 
that although certain forms off • may be exact (modal 
series representation), p• is generally approximate due to 
the assumptions given above. 

The radius and cross-sectional profile of material prop- 
erties are allowed to vary with r,o • and the details of the 
derivation of Eq. (16) (in modal series form) and associated 
figures describing scattering geometry can be found in Ref. 
10. Note that the cylinder does not necessarily pass through 
the origin. Also, the cylinder can be of any length with re- 
spect to the diameter of the Fresnel zone provided, as stated 
above, the aspect ratio remains high. Finally, it is worth not- 
ing that while the above equation is used to provide approxi- 
mate results when describing the scattering by finite length 
cylinders, it can be used to describe the scattering by an infi- 
nitely long undeformed cylinder exactly as it reproduces the 
we!l-known far-field solution given in Eq. (2). Equation 
(16) will be used in this article to describe the scattering by 
randomly rough infinitely long cylinders (once the rough- 
ness is introduced, the calculation becomes approximate). 

While Eq. (16) is quite general, it can be simplified to 
describe typical geometries for finite length cylinders when 
the receiver is far away from the cylinder so that r•D• and, 
as mentioned above, Do • 2•/•-. Since the scattered field for 
finite cylinders spreads spherically as opposed to cylindrical- 
ly in the infinitely long case, it was written in Ref. 10 in terms 
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of the scattering amplitude fr•vc (deformed finite cylinder) 
as 

P• = Pc ( e•n•/r)fDvc, (17) 
where we rewrite fore in terms of the form function as 

-- i ei•,/4 f f• • •t•-• 
Xexp[ikr•(•; -- ?,).•] [drpo•[ (finite length). 

The cylinder is now far enough away so that it does not 
matter from which point on the cylinder the distance r is 
measured. The reference phase depends upon the choice of 
the origin for •. 

For the simple case of broadside incidence backscatter 
due to a (straight) finite length object with rotational sym- 
metry about its lengthwise axis, the dot product in the expo- 
nent of Eq. (17) becomes zero and the above equation sim- 
plifies to 

--i e•,•/• f(• k•dz (18) 

(straight finite length, rotationally symmetric, broadside in- 
cidence backscatter) where the axis of the object now lies 
along the z axis of the coordinate system and the wave num- 
ber K in the integrand becomes equal to k as O = 90 ø. This 
equation is useful for objects such as the finite length cylin- 
der and prolate spheroid (aspect ratio • 5:1) at broadside 
incidence. 

We have thus rewritten previously derived integral for- 
mulas describing the scattering by deformed elongated ob- 
jects in a general form so that either the modal series or 
Sommerfeld-Watson transformed solutions can be used in 

the form functionf ( © ). This integral representation is useful 
as the scattered field per unit length of the object is integrat- 
ed over its length. As shown in the next section, each infini- 
tesimal slice of the object can have a radius with a random 
value as well as have correlation with nearby elements. 

C. Randomly rough elongated objects 

The roughness of the deformed cylinders is modeled as a 
perturbation, •(rv• • ), of the radius about the mean radius 

RAN00MLY ROUGH DEFORMED CYLINDER 

FIG. 2. General rough cylinder g•met• illustrating me• (a) and random 
(•) •m•nents of radius 
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a (rpo•) so that the radius of the rough deformed cylinder is 
given as (Fig. 2) 

arc (rpo s ) = a(rpo s ) -• •(rvo s ). (19) 
The parameter •(rpo• ) is a stochastic variable with a zero 
mean such that 

(•(rpo s )) = 0, 
(aRc (r•o•)) = a(rpo• ). (20) 
The above equations describe roughness for cylinders of 

general deformed shape. That is, the roughness can be con- 
sidered as a fine "texture" of cylinders that are also de- 
formed on a larger scale. For example, the roughness can be 
superimposed upon straight cylinders or uniformly bent fi- 
nite cylinders whose radius would have otherwise been con- 
stant with respect to position along the axis as well as prelate 
spheroids whose cross-sectional radius does vary along the 
axis. 

For straight undeformed cylinders whose radius is con- 
stant in the zero roughness case, Eqs. ( 19 ) and (20) simplify 
to 

arc (z) = a + •(z), (21a) 

(aRc (z)) = a. (2lb) 

One of the above two formulas for aRC will be incorpo- 
rated into each of the previously derived scattering equations 
[Eqs. (16)-(18)] to describe the scattering by randomly 
rough deformed cylinders. 

II. EXPLICIT EXPRESSIONS 

A. Straight finite cylinder: ka<• 1 

I. Mean scattering amplitude 

The general (far-field) scattering amplitude of the nor- 
mal incidence backscattered field due to a straight finite 
length cylinder can be derived from Eqs. (4) and (18) as 

_• - - 1 )'" dz (straight cylinde0 
•' J--L/2 

(22) 

where the axis of the cylinder is the z axis. 
For ka • 1, the modal summation for normal incidence 

backscatter due to a fluid cylinder is •ø 

where 

1 --gh 2 1 --g 
2gh 2 1 + g 

At these low frequencies, cylinders exhibit monopole- 
(first term of a, ) and dipole-like (second term of a, ) be- 
havior, hence the shear elastic properties are not a factor for 
elastic cylinders and they produce the same backscattering 
levels as fluid cylinders. tl The following analysis therefore 
applies to both rough elastic and fluid cylinders in the ka • 1 
region. 

Applying the low-frequency limit of the modal summa- 
tion given in Eq. (23) to Eq. (22) gives 

FINITE LENGTH ROUGH 

-L / ----2-- -- --••' 
^ [^ ri rr 

FIG. 3. Rough straight finite cylinder. 

CYLINDER (L<< ;>•'•) 

(Normal Incidence, 
Backscotter) 

'rj'L fDFC --*T a•r (ka)2dz, ka,•l. (24) 
Randomizing the radius of the cylinder by setting 

arc = a + •(z) [Eq. (21a) ] we obtain the general low ka 
formula for normal incidence backscattering due to a 
straight rough finite cylinder (Fig. 3): 

1 r L/2 fRc =-•-ct• [k(a + •) ]2 dz (25a) J - L/2 

:--1 ½• (ka)"/-.,, '-I -I r.., •/• 2 •._ a• (k•') • •z, (2•b) 
where the first term of Eq. (25b) is equal to the scattering 
amplitude when the cylinder is perfectly smooth 9 and the 

eL/2 • dz = 0 was used (zero mean roughness) condition • _ t•/2 • 
on another term. 

Assuming the roughness is Gaussian distributed with its 
PDF given in Eq. (A1) of Appendix A and using (• 2) = cr • 
from Eq. (A5), the statistical mean of the scattering ampli- 
tude is found to be 

(f,c) = «ct,•(ka) 2L [1 + (or/a) 2] (26a) 

=f0 [ 1 + (rr/a)2]. (26b) 

2. Mean-square scattering amplitude 

From Eq. (25a), the square of the scattering amplitude 
of the rough cylinder is 

+ 2a3½(z ') + 4a2½(z')½(z") + 2a½(z')•'2(z ") 

-• a2•'2(z ') -{- 2a•2(z')•'(z" ) .-•-•'2(z')• 2(•")]dj' dj •, 
(27) 

where, again, this involves normal incidence backscatter for 
ka,• 1. The statistical mean of this expression involves the 
bivariate Gaussian PDF, 7•.2, as given in Eq. (A2) of Ap- 
pendix A. The terms in the brackets in the integrand of Eq. 
(27) involve various combinations of•(z'), •(z" ), and their 
products, resulting in six unique classes of integrals. The 
integrals (means) are summarized in Eqs. (A3)-(A8) of 
Appendix A where the short hand notations •'• •(z') and 
• "=--•'(z" ) were used. Using those integrals to calculate the 
mean off 2 in Eq. (27) gives us the final result 
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X(I + 2L •2(•)dz' , 
(28) 

where the remaining integrals involve the autocorrelation 
function • (•) of the surface. Equation (28) cannot • eval- 
uated Mthout knowing the authorrelation function. 

By assuming a simple auto•rrelation function illustrat- 
ed in Ap•dix B that decreas• linearly with • in the range 
0(l• [K• beyond which it remains zero for [• [ > •, it was 
shown in that appendix that the integral in •. (28) could be 
evaluated. Using the r•ults in Appendix B, •. (28) •- 
comes approximately 

I 

(f•c)=fo•[l+ 2(-•)2+(•)•(1+I•--)], (29) 
where the approximate form of the integral was used 
(.•'/L•I ). 

B. Straight finite cylinder: ka• 1 

1. Mean scattering amplitude 

As in the analysis in the previous section where ka • 1, 
we begin with Eq. (18). Rather than using the modal-series- 
based form function, we now apply the SWT-based form 
functionf.(•v•v given in Eq. (15). Randomizing the radius by 
inserting Eq. (21a) into r(ø• and inserting the resultant 
randomized form function into Eq. (18), we obtain 

fRC • --iei,.'4f L/• 2xf• .., - • /2 

X exp{ -- 2 (rr -- Ou )k [a + •(z) ]/3' • ( •o ) }exp(ik [a + •(z) ] [ (c/c•) (2•r - 20• ) - 2 cos Ou ] } 

x • exp( - 2•rmk [a + •(z)]fi• ( oo )} exp(i 2vmk [a + •(z)lc/½u Idz. (30) 

This equation expresses the scattered field explicitly in terms of both phase and amplitude variations of rays from 
infinitesimal sections of the cylinder at point z of length dz that are perturbed by the random variable •(z). The total scattered 
field due to the entire cylinder will be the sum of the infinitesimal contributions. Since •(z) is a stochastic variable, the total 
scattered field will fluctuate from realization to realization of the surface. In order to describe statistical averages of the 
scattered field in a simple analytical manner, further simplifications must be made. 

Appendix C shows that the contributions of the complex or phase-shift terms e-•2kc and exp{ik•[ (c/cu)(2rr 
-- 20u ) - 2 cos 0R + 2n'rnc/c• ] } dominate the dependence of the mean and mean-square terms upon roughness while the 
amplitude-variation terms 4,(a + f), k(a + 0, exp [ - 2(rr - On )k•/3 h ( 0o ) ], and exp [ -- 2n'rnk•fl h ( oo ) ] influence the 
averages a negligible amount. We therefore neglect •(z) in the ( amplitude variation ) real factors to each term in the integrand 
while keeping •'(z) in the (phase-shift) complex exponents. We now write the mean of Eq. (30) as 

--i ei,•/4 ( f L/2 {•e-•=k•e 

Xexp[ -- 2(w -- O• )kafi• ( oo ) ] exp{ika[ (c/c• 

X exp(i 2rrmkac/c,• ) exp{ik•(z) [ (c/cR) (2rr - 

) (2•r -- 20• ) -- 2 cos 0u ] } • exp [ -- 2rrmkafi,• ( oo ) ] 

20u ) -- 2 cos 0• + 2rrmc/cn ] }dz), (31 ) 
I 

where only the • terms that dominate the mean and mean- 
square remain. Note that although the terms ignored in Eq. 
(31 ) contribute a negligible amount to the means, they may 
be important when describing the statistics of the echo enve- 
lope, hence the more general Eq. (30) would be the equation 
to use in that case? 

Equation (31 ) is in a form that the mean of the back- 
scattered echo due to the rough cylinder can be evaluated 
and interpreted in a straightforward manner. The variations 
in the integrand due to the roughness show up solely in the 
exponents and represent fluctuations in the phase of the re- 
spective terms. This formula is broadly similar in form to the 
Helmholtz-Kirchhoffsurface integral where the differential 
Huygen wavelets are summed over the entire surface to pro- 
duce the total scattered field? For far-field normal inci- 

dence backscatter due to a rough surface and small-slope 
conditions that allow one to invoke the Kirchhoff approxi- 
mation, the perturbations of the wavelets due to the rough- 
ness show up simply as variations in their phase. Eckart and 
many later investigators studied the statistical properties of 
echoes from randomly rough planar interfaces 46-54 and the 
following analysis involving rough cylinders will be per- 
formed in an analogous manner. One difference between this 
analysis and some rough (planar) surface scattering theories 
is that the cylinder is taken to be rough only in one dimension 
where many of the rough planar surfaces are two dimension- 
al. 

Since •(z) is a stochastic parameter, the mean of the 
terms in the integrand must be calculated before the integral 
overz is performed. Equation (3 i ) is then rewritten slightly: 
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X exp [ -- 2 (•r -- 0s ) kal• • ( oo ) ] exp(ika [ (c/c•) (2• -- 20• ) -- 2 cos 0• ] ) • exp [ - 2•mka• • ( • ) ] 

• exp(i 2•m•ae/c• ) (exp{i•(z) [ (c/c•) (2• -- 20• ) -- 2 cos 0• + 2•mc/c• ] }) }dz. (32) 
Evaluation of this equation involves knowledge of the distribution of •(z). For rough planar interface calculations, it is 

mathematically convenient and physically reasonable to assume that the roughness follows Gaussian statistics2 ø For the 
same reasons, we assume the distribution of the roughness of the cylinde• to be Gaussian as described by Eq. (A1) in 
Appendix A. Using that fo•ula for W(•), it can be shown thaP • 

(e lag) = e - •/2•ø• (33) 
Applying Eq. (33) to the mean te•s in Eq. (32) we obtain 

(e- •2•) = e- • (34) 
and 

(exp{ik [ (c/c n ) (2• - 20• ) - 2 cos 0 
= exp{ ( - 1/2) k •a • [ (c/cn) (2•-- 20• ) - 2 cos 0n + 2•mc/cn ] •}. ( 35 ) 

Inserting •s. (34) and (35) into Eq. (32) and peffoming what is now a t•vial integration over z, Eq. (32) becomes 

X exp[ -- 2(• -- 0n )ka• • ( • ) ] exp{ika [(c/cn )(2• - 20 n ) - 2 cos 0 n ]} • exp[ - 2•mka• • ( • )] 
X exp (i 2•mkac/ca ) exp{ - ( 1/2) k 2a • [ (c/c n ) (2• - 20n ) - 2 cos 0n + 2•mc/c n ] 2}. (36) 

2. Mean square scattering amplitude 

Because of the large size of the cross terms that result from taking the mean square of the field, we make the following 
definitions: 

Cs =- (c/cn)(2•r -- 20 n ) - 2 cos 0 n (37) 

g•------/• • ( oo )e ieR exp[ -- 2(•r -- 0R )kafi• ( o• ) ]e ikacR (38) 
g•2•(rn) -=exp[ - 2z'rnka/• ( • ) ] exp(i 2•rmkac/cs ). (39) 

Inserting these terms into Eq. (30), taking the mean square of the field, and ignoring the amplitude variation terms as 
justified in Appendix C: 

_-- .•2ka (exp{i 2k [ •(z" ) -- •(z') ] } ) -- •;e - i 2ka ( ka) 3/28X/-• (gta• • ) * 
4'TI' J -- œ/2 J 

X • [g(n2)(rn") ] * (exp( -- ik(2•(z') + (C s + 2rrm"c/c n)•(z")))) -- c.c. + 64'n'kZa21g•a•)[ • 

x 
(40) 

where the primes and double primes correspond to the z' and z" integrals, respectively, and c.c. stands for complex conjugate. 
Each term in Eq. (40) has a mean of similar form, The values of•(z') and •(z" ) are interdependent and require use of a 

bivariate distribution to describe their statistical properties. Assuming the roughness variable • [ upon which •(z') and •(z • ) 
are based] is Gaussian distributed, the bivariate Gaussian distribution •1,• as described in Appendix A is used to calculate 
the averages in Eq. (40). The solution to the above averages is given in the following general formula: 

{e •c'+•c") = exp{ -- (0'2/2) [A • + 2AB•(•) + B2]}. (41) 
The details of the derivation of Eq. (41 ) are similar to those discussed in the aforementioned surface roughness articles (where 
A = -- B = I ) and will not be repeated here. Applying Eq. (41) to the appropriate terms in Eq. (40), we obtain 
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( fRcf•c ) = -• j_ L/2 J- L/2 •2ka exp{ - 4k 2a2 [ 1 - (I)(•) ] } - •e - '2k"(ka)3/28x[•(g(• t) ) * m' = 0 
Xexp( - 4k26 2{• + l{2•m"c/c• + C• )• + •(2wm'c/c• + Ca )•(J)}) - c.c. + 64zk•a2[gh•)[ 2 

X • • gT'(m')[gh2'(m")]*exp(-4k2a•{l(2em'c/ca +C,)2+l(2•m"c/ca +C•) • 

- l(2rm'c/c + c• ) (2wm"c/c• + c• )•(•)})]&' &'. (42) 
The terns to • integrated in •. (42) all have the fore JfF[•(•) ]dz' dz". Condensing the equation, we obtain 

1 •kae_4•l( _ 1) - •e-•2•"{ka)•/22w -l/2(g•'))* • [g•)(m")]* ( ) = = o 
xexp{ - + l{2m"c/c, + G [t(2tm"c/c + )] - c.c. 

+16k2aXlgk"l 2 • • g7'(m')[gT'(m")] * 
Xexp{ - 4k 2a 2 [I {2rm'c/c• + C• )• + 1 {2•m"c/c• + C• )2] } 
X I [ - l ( 2•m' c/c• + % ) ( 2•m " c/c• + Cn ) ], (43) 

•, [g(ff)(m") ]* 

where 

FL/2FL/2 I(a) = e - 4A2'•2'•*(•)dz' dz". (44) 
d -- L/2 d -- L/2 

Equation (43) is quite complex and long. In the low k• 
limit, the equation simplifies greatly and becomes useful to 
examine. The reader is referred to Reft 55 for an analysis in 
that region. 

C. Other shapes 

As demonstrated in Ref. 10, the deformed cylinder solu- 
tion can be used to accurately describe the scattering of 
sound by other objects of high aspect ratio ( •> 5:1 ) such as 
the prolate spheroid, uniformly bent finite cylinder, and infi- 
nitely long cylinder at or near broadside incidence. We now 
apply the previous analysis and the methods presented in 
Ref. 10 to describe the scattering by those objects with rough 
boundaries. For the sake of brevity, only the mean field in 
the geometric scattering region will be considered. In each 
case, only broadside incidence is investigated. 

In each of the following calculations, an integral of the 
form 

•b = fc ø G( v)e it("> dv (45) 
will have to be solved where G(v) varies slowly with respect 
to F(v). Since in each case the condition F'(A) = 0 for 
C <.4 < D exists, then the method of stationary phase can be 
applied to give the approximate general solution 

•1,• 4 iF,2;), G(A)exp[i(F(..t)q-•)l' (46) 
where each prime on F denotes the derivative with respect to 
its argument, and the "+" and "--" signs apply to 
F" (A) > 0 and F" (A) < 0, respectively? The solution as- 
sumes that the only value of v at which F' is zero in the C-D 
range is at v = A. 

f 

Also, for reasons similar to those given in Sec. II B and 
Appendix C, the amplitude variation terms will be ignored in 
the calculation of the mean scattered field due to the follow- 

ing objects as the phase shift terms dominate the scattering. 

L Pro/ate spheroid 

The prolate spheroid is considered in the deformed cyl- 
inder formulation to be essentially a long finite "cylinder" 
with its radius slowly decreasing to zero at the ends. While 
the cross-sectional radius of the spheroid varies, the rms 
roughness is assumed to be constant along the entire length 
of the object. Because we are dealing with high-aspect-ratio 
spheroids, most of the surface is nearly parallel with the ma- 

-L/2 

ROUGH PROLATE SPHROID 

aRC = ORC(•pos ) 

ORC 
Oefor• L/2 

0o 

X 

r i 

FIG. 4. Rough prolate spheroid. 
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UNIFORMLY BENT ROUGH CYLINDER 

Pc 

,Deformed Cylinder '---•' ,• NN aRC 

X 

ri rr (Backscotter) 

FIG. 5. Rough uniformly bent finite cylinder with radius of curvature pc. 
The cylinder is shown to be bent away from the sonar. 

jor axis (especially near the origin). For broadside inci- 
dence, as shown in Fig. 4, that section of the surface that is 
contained in the plane determined by both the incident wave 
vector and the major axis is then nearly perpendicular to the 
direction of incidence (again, especially near the origin). 

In this "small-slope" case, the roughness is assumed to 
vary in a direction along the cylindrical radius. In the plane 
just mentioned, the roughness would vary in a direction par- 
allel to the direction of the incident plane wave. Because of 
this assumption, the rough spheroid described mathemat- 
ically possibly may not describe an actual rough spheroid 
near the ends. For a metal object machined by a lathe, if the 
cutting tool is applied only in the direction perpendicular to 

the major axis, then it is possible that any roughness due to 
imperfections in the cutting process would vary in the direc- 
tion perpendicular to the major axis (i.e., radially as the 
model assumes). If, then, that object is sanded and polished 
by hand, the remaining microroughness would vary in a di- 
rection normal to the surface. Either way, because we are 
describing only high aspect ratio objects at broadside inci- 
dence, it is reasonable to ignore the scattering properties at 
and near the ends for the following (qualitative) reasons: 
( 1 ) this "large-slope" region only takes up a small fraction 
of the object and hence its relative contribution would be 
proportionately smaller, (2) near the ends, the radius de- 
creases to zero. As it approaches zero, the scattering cross 
section crosses into the Rayleigh scattering region (ka ,• 1 ) 
and becomes negligibly small compared with the scattering 
from the mid-section of the object which remains in the geo- 
metric scattering region (kao>)1), and (3) in this kao>)1 
case, the ends of the spheroid will be outside the first Fresnel 
zone. The higher-order zones containing the ends are of al- 
ternating phase and tend to cancel each other (and accom- 
panying errors) out. 

For broadside incidence and distances far from the 

spheroid so that Ds ,• 2x/•-, we use Eq. (18) to describe the 
scattering. For simplicity, the center of the spheroid is at the 
origin with the major axis lying along the z axis (see Fig. 4). 
The difference between this formulation and the one we used 

to describe the scattering by finite cylinders in Eq. (30) is 
that the mean radius varies along the length of the object 
giving it the shape of a spheroid. The radius is given by 

arc (z) = aox/1 -- [z/(L/2) ]2 + •(z). (47) 

This equation was derived by setting a(rpo • ) in Eq. (19) 
equal to the equation for the radius of the smooth spheroid as 
described in Ref. 10 and, again, rpo • becomes z. We now 
proceed in the same manner when the general scattering 
equations were derived for the rough straight finite cylinder 
[Eq. (30) ]. Inserting Eqs. (15) and (47) into Eq. (18), we 
obtain the scattering amplitude 

fRO •m --i e,./4 {•x/k{aox/1 [z/(L/2)] 2 +•(z)} exp( i2k{aox/1 [z/(L/2)] 2 +•(z)}) L/2 -- -- -- 
2x/-• J - L/2 

-- 8x/-•k [aox/1 -- [z/(L/2) ] • + g(z) ]fih ( • )e •*" exp( -- 2(• -- O. )k{ao41 -- [z/(L/2) 12 + g(z))fi• ( • )) 

xexp(ik(ao41 - [z/(L/2)] • + f(z)}[(c/c. )(2= - 20. ) - 2 cos 0. ]) • exp( - 2=mA 

X{ao41 - [z/(L/2) 1• + f(z)}fik ( • ))exp(i 2=mk{ao4] - [z/(L/2) ]2 + •(z)}c/c.)}dz. (48) 
Analysis using this equation is not valid near the ends where the cross-sectional radius approaches zero as the roughness 

pe•urbation becomes greater than the radius. But for the same reasons given earlier in this section, contributions to the 
scattering from near the ends are assumed to be negligible hence making errors in this region also negligible. 

Ignoring all amplitude variation tc•s and making the substitutions • = z/(L/2) and d• = dz/(L/2), the stationary 
phase parameters are calculated with F(•) = -- 2ka o • 1 -- • and G (H) = ( 1 -- •) •/4 for the first term. In the second term 
of Eq. (48), the parameters are 

F(•) = kao • 1 - •2 [ (c/c.) (2• - 20• ) - 2 cos 0n + 2•mc/c• ] (49) 

= 4] - :(=- 0.)aOo- xp[ - 2=maao- 
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The F' = 0 stationary point is at/• = 0 in each term. Using these stationary phase parameters in Eq. (46) gives the approxi- 
mate high-frequency (ka •, 1 ) solution to the mean scattered field of the randomly rough prolate spheroid: 

(iRe) = 1 •Le-'2k'•e-2k2"2 + 2ik•oL/3• ( oo ) exp[ -- 2(•r -- 0 n )kaofl • ( • )]e '*• 

•-- 4 2•r exp[ 2•rmkao/]h(o•)] o (c/cA) (2•r - 20a ) - 2 cos 0n + 2•rmc/ca 

X exp(ikao [ (c/ca) (2•r - 20a ) - 2 cos 0n + 2•rmc/ca ] ) 
X exp( - «k 2a 2 [ (c/cA) (2•r - 20a ) - 2 cos 0R d- 2•'mc/ca ] 2). (51 ) 

2. Uniformly bent finite cylinder 

The backscattered sound for this object is calculated for 
"broadside" incidence where the cylinder is bent symmetri- 
cally away from the source/receiver (Fig. 5). As with the 
other cases, the roughness will be a function of position along 
the axis and will vary radially from the axis. Similar to the 
straight cylinder and in contrast to the prolate spheroid, the 
radial variation will be normal to the mean surface. 

In the case of the uniformly bent cylinder, we begin with 
the more general deformed finite cylinder formulation, Eq. 
(17). It was shown in Ref. 10 that the position vector 
rvos = Pc [ ( 1 -- cos y)• + sin y• ], Idrvo s [ = pc dy, and the 

ire i -- 

exponent in Eq. (17) of this article becomes 
2ikp½ ( 1 -- cos y). Also, the wave numbers in the form func- 
tion and square root factor are multiplied by the quantity 
leos 

Substituting p• y for too • in Eq. (19) gives an expression 
for the cross-sectional radius of the rough bent cylinder: 

a•c (rv•) = a + •(pcy), (52) 

where the radius a is a constant. Incorporating the bent cyl- 
inder geometry into Eqs. (15) and (17) gives the following 
general equation describing the backscattering by the rough 
bent cylinder: 

-- ip• ei,•/n f r'• [ •?•/K [ a -t- C(pc r) ] exp{ - i 2K [ a d- C(p• y) ) } exp[ 2ikp• (1-- cos y) ] 
-- 8x[-•K [ a d- •(p•y) ]/3• ( • )e • exp{ -- 2(•r -- On )K [ a + •(p•y) ]/3 h ( oo )) 

X exp(iK [a d- g'(p½ y)] [(c/ca )(2•r -- 20a ) -- 2 cos 0 n ]) • exp( - 2•rrnK [a + •(Pc Y)]/3 h ( • )) 

žexp(i 2•rmK [a + •(p•a) ]c/cA) exp[2ikp• ( 1 - cos r) }d7/, (53) 

where the angle 27/m• • subtends the entire arc, the total arc length L = 2p½7/m•, and K = k cos 7/. Since the angle between 
directions of incidence and reception and the direction of the tangent to the axis must be nearly 90', then 7/m• cannot be too 
large, although under some circumstances the restriction can be relaxed. m 

Ignoring the amplitude variation terms and applying the method of stationary phase, the stationary phase parameters for 
each term of the mean of the above equation are 
First term: 

F(7/) = -- 2ka cos 7/+ 2kp• ( 1 -- cos 7/), (54) 
G(7/) -- cox•-•e -•k•2•øs•r (55) 

Second term: 

F(7/) = ka cos y[ (c/cA) (2•r -- 20a ) - 2 cos 0n d- 2•rrnc/c• ] d- 2kp• ( 1 - cos y), (56) 
G(y) -- cos yexp[ - 20r - 0n )ka cos ?'/3h ( • ) ] exp[ - 2•rmka cos y/3h ( oo ) ] 

X exp{ - «k :a: cos: y [ (c/ca) (2•r - 20 a ) - 2 cos 0n d- 2•rrnc/ca ] •), (57) 
where the F' = 0 stationary point is at 7/--- 0 in each term. 

Note that for typical values ofp•/L •> 1 and ka •> 10, F" (0) in the second term is greater than zero for all multiply 
circumnavigated Rayleigh waves that do not experience substantial loss due to radiation damping hence we use the + •r/4 as 
prescribed in Eq. (46). Using the above stationary phase parameters in Eq. (46) gives the approximate high frequency 
(ka •, 1 ) solution to the mean scattered field of the randomly rough uniformly bent cylinder: 

I •4 p•a _•e_2•,•2 exp[ 2(•'-Oa)ka/•(oo)e •*• ] (iRc)--T l+a/o. e --4a/3h(oo) -- 

X •'• '1 (a/2p½) [ (c/cA) (2•- 20 n ) 2 cos OR + 2rrmc/ca ] 
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X exp{ -- 2rrrnkal3 • ( oo ) } exp'[ika [ (c/c a ) (2rr - 20• ) - 2 cos 0 n + 2trine/Cs ] ) 

X exp{ - «k :a • [ (c/cn) (2rr - 20R ) - 2 Cos Os + 2trine/cs ] •). (58) 

$. Infinitely long, straight cylinder 

The solution to the infinitely long straight rough cylinder (Fig. 6) requires the more general scattering formula given in 
Eq. (16). In contrast to the finite-length objects, where the range to the cylinder r is much greater than the length of the object, 
the distance r s to the individual slices of the cylinder as well as the phase of the resultant scattered field from each slice (even 
for a smooth cylinder) varies with respect to position along the cylinder. Thus Eq. (16) must be used to take both of these 
dependences into account. The solution is in the ka>> 1 and kr•, 1 region. 

For normal incidence backscatter and the axis containing the origin, es is zero in Eq. (16) and we integrate over the entire 
length of the cylinder. Inserting Eqs. ( 15 ) and (21 a) into Eq. (16) gives the following equation for the backscattering from 
the infinitely long rough cylinder: 

p,,at =Po( ø {•x/k[a+•(z)]e-'2kta+•(z)l-8x[-•k[a+•(z)]13h(o•)e "*" 
x exp{ - 2(rr - 0a )k [a + •(z) ]/•/h ( o• )} exp{ik [a + •(z) ] [ (c/c s ) (2rr -- 20 s ) -- 2 cos 0 R ] } 

} e•k•+• X • exp{ -- 2rrrnk [a + •(z) ]/3 h ( oo ) } exp{i 2rrrnk [a + •(z) ]c/cs } •rr • • • dz, (59) 
where the mean radius a is a constant. 

As with the corresponding solutions to the prelate 
spheroid and uniformly bent cylinder, this integral is quite 
complex although, after the mean is calculated, it can either 
be solved exactly for all kr or by the stationary phase approx- 
imation for kr>> 1. In contrast to the solutions involving the 
other shapes, the complexity is not from a property of the 
cylinder that is varying along the axis but rather the fact that 
the cylinder is infinite in length and r• and the phase of the 
infinitesimal slices are varying along the length. The only 
term depending upon z after the mean is taken is the quantity 
outside the brackets. The exact solution to the integral of this 
term is given in Eq. (20) of Ref. 9 and involves a zero-order 
Hankel function. In order to present the solution in a more 
intuitive manner involving the phases we solve the integral of 

I 

•-. e ikr •e - i2kae - 2t•2a2 -- 8,•fl [ ( oo )e •" 

Ithat term in the desired farfield limit by use of the stationary 
phase method given in Eqs. (45) and (46). Ignoring the 
amplitude variation terms, taking the mean, and applying 
the method of stationary phase the stationary phase param- 

eters for the above equation are F(z)= kx/r2+ z 2 and 
G(z) = (r 2 + z •) - •/2 with the F' = 0 stationary point at 

Using these above terms in Eq. (46) yields the solution 
to the following integral: 

foe elt• • + • 2•k• dz = •i(kr + rr/4)• 
x/r + z 

(60) 

which allows us to solve for the mean of Eq. (59): 

X exp [ -- 2 (rr -- 0s ) kal3 • ( o• ) ] exp{ika [ (c/ce) (2rr - 20• ) - 2 cos 0e ] ) • exp [ - 2rrmkal3 • ( o• ) ] 
m=0 

INF,NITELY LONG ROUGH CYLINDER 

•i [ (Normal Incidence Plane Wave) 
FIG. 6. Rough infinitely long cylinder along the z axis. The perpendicular 
distance r between the field (receiver) point and axis of the cylinder and 
distance r, to an arbitrary point on the axis are illustrated. 

X exp (i 2rrrnkac/cs ) exp{ - «k 2a 2 [ (c/c•) (2rr - 20• ) - 2 cos 0• + 2rrmc/c• ] 2) } , ( 61 ) 

which describes the mean backscattered field due to a plane 
wave of sound normally incident upon a randomly rough 
infinitely long cylinder [note that the solution in Eq. (60) is 
the far-field limit of the exact solution in Reft 9 ]. 

III. SUMMARY OF ROUGHNESS EFFECTS 

There are several interesting similarities and differences 
in the effects due to roughness between the ka,• 1 and ka >> 1 
regions and among the different shapes. 

For ka,• 1, the roughness-induced variation of the aver- 
aged echo is independent of frequency and only depends on 
the roughness parameters. As a result, for small frequency, 
effects due to roughness may not necessarily be small. Also, 
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TABLE I. Roughness-induced attenuation of mean scattered field due to various randomly rough objects: ( 1 } planar interface, normal incidence specularly 
reflected wave and (2) various solid elastic elongated objects, backscattering at broadside incidence (straight finite cylinder, prelate spheroid, uniformly bent 
finite cylinder, and infinitely long cylinder). In the volumetric case involving tungsten carbide objects that are rough in one dimension, the m = 0 Rayleigh 
surface wave is shown to dominate the specular and rn > 0 Rayleigh waves for high k•. 

Planar interface 

Specular wave 
Elongated volumetric objects ( ka• 1 ) 

Specular wave Rayleigh surface elastic wave 

exp{ -- «k :a :[ (c/c n ) (2rr -- 2•9 n ) - 2 cos 0 n + 2rrmc/c 
•exp[ -- 2kaa:(0.133 + 1.21m) 2] (tungsten carbide) 
(rn = 0,1,2,...} 

the mean scattered field increases with roughness where the 
opposite is true in the ka>> 1 region. The lack of dependence 
upon frequency for the entire range of frequency is a phe- 
nomenon that is specific to volumetric scattering and should 
be compared with scattering by rough planar interfaces 
where the variations can depend strongly upon frequency. 
For example, Clay and Medwin show that the mean and 
mean-square field vary as e - 2k :•, 2 and e - 4k :,, 2, respectively, 
in the case of rough planar interfacesfi ø The underlying rea- 
son for this difference is the fact that for ka,• 1, variations in 
the scattering amplitude of the rough cylinder are caused by 
variations in the amplitude of the "local" echo from the in- 
finitesimal slice of the cylinder that is integrated while 
phase-shift-induced fluctuations are negligible [Eq. (25a)]. 
The mathematics show that this amplitude-variation-in- 
duced fluctuation is independent of frequency. In contrast, 
variations in scattering due to rough planar interfaces are 
due, in part, to local changes in phase while the local changes 
in amplitude can quite often be considered negligible. The 
phase shifts are frequency dependent, hence causing the fre- 
quency dependence of the fluctuations for rough planar in- 
terfaces. 

In a manner similar to the above discussion, we find the 
same types of differences between the averaged scattered 
field of a rough cylinder at both extremes, ka g I and ka >• 1. 
As a result of the roughness-induced phase shifts of each 
infinitesimal ray in the the kay, 1 region (all shapes), the 
specular and Rayleigh surface waves are modified by the 
exponential term that depends upon both the rms roughness 
a and frequency. The exponential factor in the specular term 
(also see Table I) is exactly the same as that calculated for 
the scattering from rough planar interfaces. 46 That corre- 
spondence illustrates the fact that the front surface of the 
cylinder at high frequencies broadly resembles a planar in- 
terface (at least within the first Fresnel zone). Thus rough 
surface scattering from the front surface of the cylinder 
would broadly resemble scattering from a rough planar in- 
terface. As in rough planar surface scattering, the exponen- 
tial factor will decrease as the product ka increases. That is, 
as the roughness becomes large when compared with the 
wavelength of the incident sound wave, the specular compo- 
nent of the mean scattered wave will correspondingly de- 
crease exponentially. This is due to the fact that the phases of 
the infinitesimal rays that are summed in the integral are 
random for kcr•, 1. The resultant sum of the rays is substan- 
tially decreased due to their incoherent addition. Note that 
for high enough frequencies, substantial decreases can occur 

even for small fractional roughness a/a (it is only the prod- 
uct k•r that is important). 

In a similar manner, the exponential factor in the second 
term (Rayleigh surface elastic wave) decreases that term as 
the product ka increases (again, see Table I). This factor is 
different than the corresponding factor in the specular term 
in an interesting way. In the specular term, the decrease in 
the mean field was due to phase perturbations in the two-way 
ray that travels straight toward and away from the cylin- 
der-hence the exponential factor that resembles the one in 
rough planar surface scattering. In the Rayleigh wave, the 

0 

SMOOIH 

0 1 0 20 30 

•<Cl 

FIG. 7. Comparison between (backscattering) approximate modal-series- 
(dashed) and SWT-based (solid) solutions for smooth straight finite cylin- 
der at broadside incidence. The summations in both solutions are math- 

ematically converged with the flint 36 terms of their respective sums being 
used for the calculations. Both solutions are also approximate as they in- 
volve use of the deformed cylinder formulation. Secondly, the SWT solution 
uses only the "specular" and Rayleigh surface elastic wave components 
with the approximate expression for the coupling coefficient G R as derived 
by Marston used ifi the Rayleigh wave component. The cylinder is con- 
strutted of (solid) tungsten carbide with a density of 15.0 g/cc and 
compressional and shear speeds of sound of 6655 and 3984 m/s, respective- 
ly. S9 Using c = 1460 m/s of the surrounding water, we obtain hc = 4.56 and 
hs = 2.73, where hc and hs are the respective ratios of the compressional and 
shear speed of Sound in the cylinder material to the speed of the sound in the 
water. Values ofc•/c = 2.60,,8 • ( o0 ) = 0.002 32 (Ref. 40) and •R = •r/2 
(best fit) were also used. There is reasonable comparison between the two 
solutions in the 15 < ka < 40 region with respect to mean levels and broad 
oscillations (calculations up to only ka = 30 are shown). 
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phase perturbation is due to variations in both the two-way 
ray and the path length of the circumnavigating wave. Thus, 
not only does the attenuation due to the roughness elements 
depend upon kc, but also on the number of times the wave 
has traveled around the cylinder. As a result, the exponential 
factor in the Rayleigh wave term depends upon m. It is also 
interesting to note that the attenuation of the m = 0 term is 
much less than that of the specular term (see Table I ), hence 
for large kc, the m = 0 Rayleigh wave dominates the scatter- 
ing by tungsten carbide cylinders that are rough in one di- 
mension. 

Interestingly, the scattered fields due to the objects in- 
volving all four shapes in the ka >• 1 region contained the 
above-mentioned exponential factors. In fact, the square of 
the specular term for each shape is equal to the geometric 
scattering cross section for the smooth case (as given in Ref. 
10) times the square of the exponential factor. This consis- 
tency is due to the fact that all of the objects have high aspect 
ratios and ( 1 ) as an approximation, the boundary conditions 
from the infinitely long cylinder are used in all cases result- 
ing in the similar results and (2) the roughness was simply 
an additive term to the instantaneous mean cylinder radius 
at any point of each object. This additive term shifted the 
phase the same amount with each object (at least in the first 
Fresnel zone) hence giving the same attenuation factors. 
Thus the results given in this article probably provide useful 
insight into the scattering properties of other simple high 
aspect ratio objects. 

When examining the mean square of the field, a depend- 
ence upon the autocorrelation function of the surface was 
demonstrated. This dependence was coupled with the de- 
pendences upon frequency and rms roughness. A simplified 
low roughness expansion of these results showed the mean 
square to depend upon the correlation length, rms rough- 
ness, and frequency. 

Finally, in the limit of zero roughness, the expression for 
the rough infinitely long cylinder converges to the corre- 
sponding solution for the smooth case obtained by inserting 
Eq. (15) in Eq. (2). Thus the approximate integral formula- 
tion is self-consistent in that it was based on partitioning the 
scattering solution of an infinitely long cylinder into the 
summation of the individual contributions from all infinites- 

imal slices of the cylinder and the resultant sum is equal to 
the original solution for the infinitely long cylinder. 

IV. NUMERICAL EXAMPLES 

In this section, we investigate the backscattering charac- 
teristics of randomly rough straight finite cylinders for 
ka •. 1 by numerical evaluation of both the SWT-based solu- 
tion [ (Eq. ( 3 6) ] and the (approximate) modal-series-based 
solution [ statistical mean and mean square of Eq. (18) using 
Eqs. (4) and ( 21 a ) ]. The SWT solution in Eq. ( 3 6 ) is evalu- 
ated directly while the modal series solution is evaluated by 
use of Monte Carlo simulations. The cylinders simulated in 
these calculations are all made of tungsten carbide. Since the 
SWT solution involved the assumption that the amplitude of 
the roughness was Gaussian distributed, the roughness in 
the cylinders simulated in the Monte Carlo averages was 
constructed with Gaussian characteristics. The computa- 

tions not only illustrate some of the properties of the scat- 
tered field due to rough cylinders, but also the range of valid- 
ity of this particular form of the SWT solution that: (1) 
contains contributions from only the specular and Rayleigh 
surface waves, (2) contains an approximate form for the 
coupling coefficient GR of the Rayleigh surface wave, and 
(3) is valid only when the slopes of the roughness elements 
are small. It should also be stressed that the modal-series- 

based solution, while mathematically converged in the fol- 
lowing cases, is not exact as it is evaluated in the deformed 
cylinder formulation where its accuracy increases with de- 
creasing slope of roughness. 

Before we introduce effects due to roughness of the cyl- 
inders into the calculations, we first compare the SWT- and 
modal-series-based solutions for smooth (tungsten carbide) 
cylinders. Thus, the errors due to approximations made in 
the smooth SWT-based solution that are not related to 

roughness [approximations (1) and (2) above] can be illus- 
trated separately from the effects due to roughness-related 
approximations [approximation (3) above]. Figure 7 com- 
pares the backscattering due to smooth tungsten carbide cyl- 
inders at broadside incidence as predicted by the SWT-based 
solution [Eq. (36), c= 0] and the modal series solution 
[ Eqs. (4) and ( 18 ) ]. The backscattering amplitude normal- 
ized by the length of the cylinder is plotted against ka. Be- 
cause the SWT-based solution is more accurate at high ka, it 
is only plotted for values of ka greater than unity while the 
modal series solution is plotted over a broader range of ka. 
Note that, although the value OR = •r/4 as predicted by 
Marston and Williams in Ref. 57 resulted in a reasonable fit 

between the SWT and modal series solution, we used the 
value •PR = •r/2 as it produced the best fit. While the author 
is unable to explain this difference, perhaps it is related to the 
fact that the analysis in Ref. 57 involved numerical deter- 
mination of the speed of the Rayleigh wave while the speed 
used in this article was approximate and constant. The exact 
solution shows there to be significant dispersion, especially 
in the ka 5 15 region? 

The modal series solution is characterized by two re- 
gions, the Rayleigh scattering region (ka,• 1 ) and the geo- 
metric scattering region (ka > 1 ). In the Rayleigh region, 
the backscattering amplitude increases rapidly and mono- 
tonically with ka while for ka > 1 (in the geometric region), 
it oscillates about a mean. The SWT solution is only plotted 
in the ka > 1 region as that is the region in which it is most 
accurate. The trend of the SWT solution is dominated by the 
contribution due to the specular term while the oscillations 
are due to interference between the specular and the Ray- 
leigh surface elastic waves. 

Figure 7 shows the SWT solution to more closely resem- 
ble the exact solution as ka is increased. As illustrated in this 

plot and others not shown, the approximate solution appears 
to be reasonable in the 15 <ka <40 range.. The major 
(broader) features of the resonances in the SWT curve re- 
semble those in the modal series curve for ka above about 15. 
Below ka = 10, only the general trend of the SWT solution 
follows that of the modal series solution. Dispersion of the 
Rayleigh wave and exclusion of the Franz wave account for 
some of the differences in that region. The fine detail in the 
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scattering characteristics over other parts of the ka range as 
predicted by the modal series solution is not predicted by this 
form of the SWT solution because, in part, of the exclusion of 
the Whispering Gallery waves. 

Predicting the sound scattering by rough cylinders in- 
volved direct evaluation of Eq. (36) for the SWT solution 
and a statistical average of Monte Carlo simulations of Eqs. 
(4), (18), and (2 la) for the modal series solution. As in Fig. 
7, the calculations involved backscattering at broadside inci- 
dence. The Monte Carlo simulations first required genera- 
tion of an ensemble of statistically independent randomly 
rough cylinders. The scattered field as described in Eqs. (4) 
and (18) was calculated for each roughness realization given 
in Eq. (21 a) and the results were averaged over the ensemble 
at each ka value. 

The surface of each straight cylinder was calculated us- 
ing Eq. (21a) where the random roughness parameter •(z) 
was generated by use of a sum of sinusolds of random ampli- 
tudes, wave numbers, and phases: 

N 

•(z) = a6• • /•, sin(k,z + •5,). (62) 

Inserting this expression into Eq. (2 l a) gives 

anc(Z) = a --I- •(z) 

=a(l+ cr /'• 7 •'• •1 /•n sin(k•z + . 
(63) 

The amplitude/•,, wave number k,, and phase •5•, were 
all randomized in the simulations. The summation proce- 
dure is analogous to the manner in which time series of ran- 
dom noise is described: the wave number is replaced by the 
angular frequency and the distance z is replaced by time. 6ø 
The factor x/•-/N is a normalization term. The xf• reflects, in 
part, the fact that/•, is uniformly distributed between 0 and 
1. The ratio tr/a in Eq. (63) is the fractional rms roughness. 
It is one of the parameters varied in the calculations of the 
scattered field due to the rough cylinders. 

Figure 8 (a) illustrates several of the cylinders generated 
using Eq. (63) and a histogram of the amplitudes of the 
cylinders. The roughness is exaggerated in the histogram so 
as to illustrate the fit between the histogram and Gaussian 

PDF that is superimposed. The random variables,/b k•, 
and 8•, were created with a random number generator in the 
computer. Since the values of the wavenumber extended 
over a finite range, the roughness is, in the analogy of time 
series analysis, "band-limited noise". As in time series, the 
resultant amplitude should follow Gaussian statistics which 
is demonstrated in the figure. Also shown in this figure is the 
autocorrelation function q• of the rough surface of one of the 
cylinders. The function is shown to decrease more-or-less 
linearly from the origin down to the zero level beyond which 
the function oscillates (although a closer look on an expand- 
ed scale shows the peak to be rounded very near the origin). 
As discussed in Appendix B, the first zero crossing is being 
considered in this article as the correlation distance .fia and is 

shown in Fig. 8(b) to be approximately equal to 0.04 times 
the length of the cylinder in this case. 

Scattering predictions using randomly rough cylinders 
as generated by the above process are illustrated in Fig. 9. 
The expression for the radius given in Eq. (63) was used in 
the approximate modal series solution [ Eqs. (4) and ( 18 ) ]. 
The mean of the field due to 60-90 cylinders was calculated 
and plotted against ka as shown in the dashed curve. The 
total number of cylinders used varied with roughness as only 
60 cylinders were required for convergence in the low- 
roughness case (•r/a<0.04) while 90 cylinders were re- 
quired for greater roughnesses. The calculations were per- 
formed for tungsten carbide cylinders at broadside incidence 
for a variety of roughnesses. Superimposed upon the modal- 
series-based plots are calculations using the SWT approach 
[solid curve, Eq. (36)]. A complete set of calculations was 
not made beyond ka = 30 because of the great computation 
times involved in the Monte Carlo simulations (higher ka 
values require more modal terms). 

As in Fig. 7, the curves are characterized by the Ray- 
leigh (ka < 1 ) and geometric (ka > 1 ) scattering regions 
with additional effects due to roughness in the high ka re- 
gion. Beyond a certain value of ks, the trend of scattering 
amplitude will decrease. This value of ka depends upon the 
rms roughness. As shown in Eq. (36), the specularly reflect- 

lb} 

HG. 8. (a) Ensemble of randomly rough straight finite cylinders and sample of radius statistics. The roughness component of the cylinder was generated by a 
summation of sinusoids whose amplitudes. phases, and wave numbers were randomized. The histogram (solid line), representing the radius statistics at a 
given point on a cylinder was constructed by sampling the radius at the same respective point on each (statistically independent) cylinder. Superimposed 
upon the histogram is a C•aussian PDF (dotted line) with the same standard deviation as in the simulated surfaces. A total of 100 sinusoids were used to 
generate 100 points on each of the 300 rough cylinders generated although only a subset of the data were used in the scattering simulations. The amplitudes of 
the sinusoids were distributed uniformly in the 0-1 range, their wave numbers in the 0.5 to 2.5 range and the phase, 0 to 2r. The position variable covered the 0 
to 50 range. (b) Autocorrelation function of the rough surface of one of the cylinders (60 points long). 
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FIG. 9. Backscattering by rough straight finite elastic cylinders of varying roughnesses ranging from perfectly smooth ( c/a = 0) to very rough ( c/a = O. 3 ). 
Solutions of the mean field were generated by Monte Carlo simulations of the approximate modal-series-based solution (dashed) and numerical evaluation of 
the analytical solution based on the SWT approach (solid) as derived in this article. 60-90 points per cylinder and 60-90 cylinders were used in the Monte 
Carlo simulations (60 points, 60 cylinders for a/a•0.04 and (90,90) for •r/a>0.05 ). The summations in both solutions for these tungsten carbide cylinders 
are mathematically converged. More details of the material properties of the cylinders are given in the caption to Fig. 7. The sharp spikes in the modal series 
plots are shown to disappear as the cylinders are toughened'. All curves are altered downward due to roughness effects for all ka •> 0.5. 

2k2o .2 
ed component of the scattering amplitude varies as e - 
or e-2(ka½(o/a½. AS discussed before, this component dic- 
tates the trend of the scattering for the entire range of ka for 
smooth cylinders and, as will be shown later in the section, 
the low-to-moderate roughness region of rough cylinders. 
The point beyond which the roughness becomes important 
in the trend occurs approximately when the exponent be- 
comes -0.5 at ka= [2a/a]-• (or equivalently, 

k•r = 0.5). This estimate of the "turning point" of the trend 
is consistent with the curves in Fig. 9. For example, for a 
fractional roughness of •r/a = 0.05, the turning point would 
be at ka = 1/[2(0.05)] = 10, which is where the turning 
point occurs on the corresponding plot. This simple formula 
predicts the turning point for the curves at other roughnesses 
as well. As discussed in Section I, the expression e 2k2•2 
appeared originally in the description of the scattering by 
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FIG. 10. Enlarged plot of the •r/a = 0.04 case in Fig. 9. The correlation at 
high ka values between the resonance structures predicted by the two inde- 
pendent techniques is illustrated. 

rough planar interfaces. 46 The fact that both curves, which 
were based on the modal series and SWT solutions, are con- 
sistent with that expression demonstrates the similarity be- 
tween the scattering by the two types of boundaries (volu- 
metric and planar). 

For roughnesses below a/a = 0.05 and ka •> 15, there is 
reasonable similarity between the modal series solution and 
SWT solution demonstrating at least a range of validity of 
the analytical results. The curves are similar both in trend 
and occurrence of oscillations (above ka = 15) about the 
trend. The amplitudes, in general, do not exactly coincide. 
As in the zero roughness case, some of the differences are 
due, at least in part, to the fact that the SWT approach in- 
cluded only the specular and Rayleigh surface waves (ignor- 
ing surface waves such as the Whispering Gallery waves) 
and the Rayleigh wave coupling coefficient was used in an 
approximate form. It is interesting to observe that once the 
cylinder is rough, some of the fine features disappear result- 
ing in a better fit between the theory and simulations. Also, 
both theory and simulations predict a "rounding" of the 
curves once roughness is introduced. At fractional rough- 
nesses greater than or comparable to 0.05, the two curves 
depart at high ka. This departure is not surprising as in this 
high fractional roughness region, the slopes of the roughness 
are not small introducing the possibility for error both in the 
simulations and theory. Note that although the simulations 
and theory are based on the same small-slope assumptions, 
they may break down in different ways. 

Figure 10 is a blowup of the 0.04 fractional roughness 
case shown in smaller form in Fig. 9. In this enlarged ver- 
sion, the correlation between the $WT and modal series so- 
lutions is evident. As discussed above, both the trend for 
ka > 1 and oscillations about the trend for ka > 15 are similar 
between the two curves, while the amplitudes, in general, are 
different. 

Figure 11 illustrates the root-mean square of the back- 
scattering amplitude of the cylinders modeled in Fig. 9. Only 
the Monte Carlo simulations of the modal-series-based solu- 

tion are given, but clearly, the curves are behaving in a man- 
ner similar to the means in Fig. 9. In particular, the curves 
resemble the zero roughness case in Fig. 7 (dashed) up to a 
value of ka corresponding to k•r-0.5 beyond which point 
the curves deviate in a downward direction. As in the case of 

the mean scattering amplitude, the deviation represents at- 
tenuation of the signal due to the interferences caused by the 
roughness. 

In order to better illustrate the loss of the various waves 

due to roughness, the mean scattering amplitude is plotted 
up to a value of ka -- 100 in Fig. 12 for two roughnesses. 
Only the SWT solution could be plotted as the modal series 
representation involved too much computer time in the high 
ka region. The oscillatory nature of the scattering due to 
interference between the Rayleigh and specular waves is 
shown to decay in the high ka region. This is due to the fact 
that for high ka, the specular (also shown separately) and 
higher order (m >0) Rayleigh waves are attenuated at a 
much higher rate due to the (one-dimensional) roughness 
than the rn = 0 Rayleigh wave. The effects are also shown 
mathematically in Table I where expressions for the rough- 
ness-induced attenuations are given for each wave. 

The m ---- 0 Rayleigh wave dominates the specular wave 
for this tungsten carbide material because of offsetting ef- 
fects illustrated in the exponent in the third column in Table 
I. The phase shift induced at the boundary due to the rough- 
ness, which is represented by the - 2 cos 0 a term, is oppo- 
site in sign to the shift induced by the change in travel path 
along the boundary which is represented by the 
(c/ca) (2•r - 20a ) term. With the ratio ofca/c being 2.6, 
these two terms are comparable in magnitude resulting in a 
small difference equal to 0.133. 

All of the simulations to this point plot some form of the 
scattering amplitude against ka. As a result, the resonance 
structure plays a major role in the pattern of the plots. It is 
also useful to plot the scattering amplitude in such a way so 
that the structure is held constant while the major trends are 
illustrated. That can be done by holding ka fixed and varying 
•r/a. Figure 13 illustrates the mean and root mean square of 
the backscattering amplitude due to rough straight finite cyl- 
inders (tungsten carbide as before) with ka fixed at 30 and 
•r/a ranging from 0 to 0.05. Also plotted is the Eckart attenu- 
ation factor e -2k2"2 as the equations for the mean [Eq. 
(36) ] and mean square [ Eq. (43) ] both contain that term in 
the specular component of the field. For the purposes of 
plotting, the factor is scaled by the scattering amplitude for 
the zero roughness case. 

There is remarkable agreement between the simple plot 
of the Eckart attenuation factor and the simulations for the 

range 0 < a/a < 0.02 which corresponds to low to moderate 
roughness 0 < ka < 0.6. All three plots essentially coincide in 
this range demonstrating the dominance of the Eckart factor 
in the scattering process. The range •r/a > 0.03 corresponds 
to the high roughness region ka> 1 and there are deviations 
between the three plots. Deviations from the simple predic- 
tions are expected in the high roughness region because of 
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FEG. ! L Root-mean-square backscanering amplitude clue to rouBh straight finite elastic cylinders used •n Fig. 9. Only the Monte Carlo simulations of the 
approximate modal-series-based solution were calculated (SWT solution not shown ). 

the dominance of the rn = 0 Rayleigh wave (see Fig. 12). 

V. CONCLUSIONS 

By randomizing the radius in the deformed cylinder for- 
mulation, we have obtained approximate analytical expres- 
sions describing the backscattering of sound by the following 
rough elongated elastic objects: straight finite length cylin- 
der, prolate spheroid (high aspect ratio), uniformly bent 
finite cylinder, and infinitely long cylinder. Depending on 
the value of ka either the modal-series-based (karl) or 
SWT-based (ka • 1 } solutions were used. Both the mean and 
mean-square scattered fields for both ka • 1 and ka • 1 were 

formulated for the straight finite cylinder while only the 
mean field for kaY. 1 was formulated for the other shapes. 
Comparisons of the ka >> 1 expressions involving the straight 
finite cylinders with numerical simulations verify the valid- 
ity of applying the SWT approach and retaining only the 
specular and Rayleigh waves for the given range of condi- 
tions. 

The results of this analysis at/ca >> 1 are quite intuitive in 
that one would expect the various waves to become attenuat- 
ed due to roughness effects. One should also have expected 
the Rayleigh wave to become increasingly attenuated (in 
addition to radiation damping) as the number of times it has 
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FIG. 12. Illustration of dominance of first (m = 0) Rayleigh surface elastic 
wave over the specular and m > 0 Rayleigh waves due to roughness at high 
ka. While all waves are attenuated by the (one-dimensional) roughness, the 
m = 0 Rayleigh wave is attenuated the least (2% and 4% roughness cases 
shown). More details of the material properties of the tungsten carbide cyl- 
inders are given in the caption to Fig. 7. SWT (specular plus Ray- 
leigh waves); - - - SWT (specular component only). 

circumnavigated the object increases. While this research 
only involved dense solid elastic materials in a region where 
the transmitted bulk waves can be assumed to be negligible, 
it is also intuitive that under different conditions where the 

waves are important such as with a higher ka or less dense 
materials, the reradiated transmitted bulk waves will behave 
in a similar manner. One might guess that the attenuation 
would depend upon both k• and on the number of times it 
reflected internally within the object before it is reradiated. 
The same arguments apply to Franz and Whispering Gallery 
waves as well as those waves involved with shelled objects. 
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FIG. 13. Mean, root-mean-square, and Eckart attenuation factor e- 2k'o2 
for ka = 30 over a range of values ofc/a. For the purpose of illustration, the 
Eckart factor is scaled by the zero roughness scattering amplitude. The dif- 
ference between the points and curve is due in part to the dominance of the 
m = 0 Rayleigh wave at high kc. More details of the material properties of 
the tungsten carbide cylinders are given in the caption of Fig. 7. 

This solution describing the scattering by randomly 
rough elongated elastic objects helps provide much insight 
into the previous papers where the scattering of sound by 
zooplankton was modeled. In those papers, an optimum fit 
between the model and data required modification of the 
modal series solution. The modification, in the form of trun- 
cation of the series, was based on intuition, not derivation. 
The results in this paper provide some of the quantitative 
foundation necessary in the scattering description of marine 
organisms. However, much more needs to be done. Depend- 
ing on the type of organism, the material of the bodies ranges 
from weakly scattering fluid to fluid-like-filled shells to gase- 
ous. Thus it will be important to model the scattering prop- 
erties of a broader range of boundary conditions than that 
presented here. 
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APPENDIX A: GAUSSIAN PDFs AND RELATED 
STATISTICAL AVERAGES 

When calculating the statistical mean and mean-square 
scattered field, it is mathematically convenient and physical- 
ly reasonable to assume that the distribution of the rough- 
ness component • is the Gaussian PDF W: s6 

W(•') = ( 1/a 2•)e- •2/2•2 (AI) 
This PDF is useful in calculations of the mean field 

where there is only one stochastic variable •. However, when 
the mean square is calculated, there will be cross terms in- 
volving two stochastic variables, •' and • ", whose values are 
interdependent and the bivariate Gaussian PDF is then re- 
quired? 

•,.2 = (2•r• 2[ 1 -- (I)2(g) ]m) - •exp[ -- [•,2 + g ,2 
- - 2}. (A2) 

Some averages involving both distributions are 

(1) = 1, (A3) 

(• ') = 0, (A4) 

(• ,2) = a 2, (AS) 

while other averages involving only the bivariate distribu- 
tion are 

{•'C ") = a •(•), (A6) 
(•,•.2) = 0, (A7) 

(g,:•,2) = •[1 + 2(I)2(•) ]. (A8) 

APPENDIX B: EVALUATING CERTAIN INTEGRALS OF 

THE FORM $j'F[•(õ)]dz' dz" 

When calculating the mean square of the scattered field 
due to rough cylinders of length L, the following type of 
integral is encountered: 

I = F [•(•) ]dz' dz", (B1) 

where, for the moment, Fis an arbitrary function of the auto- 
correlation function of the rough surface. In order to facili- 
tate evaluation, we apply a transformation of variables quite 
often used in evaluation of the Helmholtz-Kirchhoff inte- 

gral: 

•'=z"--z', z=z', (B2a) 
hence 

z'=z, z"=z+•, (B2b) 

dz' dz • = dz d• (Jacobian = 1 ). (B2c) 

[See Fig. BI for illustration of this transformation to the 
present problem of -- L/2g (z',z ~ ) gL /2. ] 

The choice of the transformation •-----z • --z' is quite 
obvious as the autocorrelation function q•(•) is an explicit 

c L 

-l/2 / 

/ 
/ 

/ // / 
/ // 

/ 
/ 

// / 
/ 

// 

"1 

ß Z" • = Z"- Z' 
Z=Z 

/ z-L/2-• 

L/2 
! 

Z • 

z- -L/Z - • 

FIG. B 1. Illustration of transformation of variables (• = z" -- z', z = if) 
and information relevant to integration along axis of straight finite cylinder 
of length L. 

function of •. The choice of the transformation z = z' is 
somewhat arbitrary and, as stated in Skudrzyk, the new vari- 
ables need not be mutually orthogonalil s One could also 
have chosen, for example, z = z • + z'. The JacobJan then, 
for the resultant relations z' = z/2 -- •/2 and 
z" = z/2 + •/2, would be «. Applying this alternate trans- 
formation to Eq. (B 1 ) would have, through the integration 
technique that is about to be discussed, resulted exactly in 
Eq. (B5) which is the equation based on the transformation 
given in Eqs. (B2a) and (B2b). 

Observing that the integrand in the ease of the straight 
finite cylinder depends only upon •, we first integrate along a 
path of constant •. Using an intuitive method described in 
Skudrzyk •s and illustrated in Fig. B 1 of this article, the inte- 
gration can be divided into narrow strips of constant •'. The 
area of each strip (see shaded portion in Fig. B 1 ) is deter- 
mined by multiplying its width d•/V• by its length where the 
length is given by 

length of integration strip 

= V• dz = d(L -- •v), •v>O ' (B3a) 

dz = v•g(L + •), •'6o. (B3b) 

The 2 - •/2 factor to the differential d• was derived sim- 
ply by taking the ratio of geometric length •2L of the diag- 
onal that is perpendicular to the strip to the full range 2L 
spanned by •. Both $ dz integrations without the v• factor 
represent theprojected lengths along the z axis [the limits of 
the integrals were derived from the transformation given in 
Eq. (B2a) ]. The product (v• dz) X (d•/•2) = dz d• pre- 
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serves the unity value of the Jacobian given in Eq. (B2c) 
(note that Skudrzyk failed to include the factors of • and 
2 - •/2 but since the factors were offsetting, he obtained the 
correct result. ). The lengths in Eq. (B3) range from 0 at the 
corners where 2 reaches the maximum (L) and minimum 
( -- L) values to V2L along the diagonal where • = 0. 

Applying the transformation described in Eqs. (B2a)- 
(B2e) to Eq. (BI) and integrating along the length of the 
strip gives 

I = .,,-• ?'• •_•/,_ •, 

+fot.,(V,2 [-•,2-½ \ J-L/z dz)Fl•(2)14(v2)-'. (B4a) 
= F[ep(•)](L+2)d2+ 

L 

(B4b) 

where the lengths given in Eqs. (B3a) and (B3b) appear in 
the right and left terms, respectively, ofEq. (B4a). Note that 
Eq. (B4a) was derived by first applying the transformation, 
then inserting the offsetting factors of V• and 2 - •/: to pro- 
duce the desired differential lengths. Since autocorrelation 
functions are inherently even [•( -- 2) = q•(•) ] (Ref. 56), 
Eq. (B4b) simplifies to 

1=2 F[ep(2)](L--2)d •. (BS) 

This simplification corresponds to taking advantage of 
the symmetry of integration about the 2 = 0 line in Fig. B1. 
The total area of the square in Fig. B1 is equal to twice the 
area in the upper left hand region where 2.>0. 

In order to evaluate the integral, the correlation func- 
tion must be known. For reasons involving physical consid- 
erations as well as mathematical convenience, we choose the 
following function written in terms of a correlation distance 
• for the integrals where sign of the correlation function is 
not a factor: 

,:t,(2) = 1 12l/<1 

=o, 121/>1, (Bt) 

where, as illustrated in Fig. B2, the function decreases linear- 
ly to 0 in the -- •<2<-• range and is equal to 0 outside 
that range. 

Since the function given in Eq. (B6) takes on two func- 
tional forms depending on the value of 2, the integral in Eq. 
(B5) must be partitioned into 0<•<.•d' and •<•<L re- 
gions: 

2 I=2 fo-rFJl--3] (L--2)d, + f.F[Ol(L--R)dg. 
(B7) 

The location of the • = .• dividing line is illustrated in 
Fig. B1 at an arbitrarily placed location (the • = -- • line 
in the region of symmetry is also shown). The value of 
ranges from less than L to much less than L (if it were 
greater than L, the object would not be rough). 

Further evaluation of the above integral requires knowl- 
edge of the function F. In the main text, F is equal to the 

FIG. B2. One-dimensional correlation function of rough cylinder in simple 
convenient form. The correlation parameter • varies along the lengthwise 
axis of the cylinder. This function is used in calculations where the sign of 
the function does not matter (such as where terms like •: appear). 

following functions: •(2), •z(2), and e - 4/•a-'a•(g), where 
a is a real number. One can integrate the first one directly 
without use ofEq. (B7) for functions more realistic than Eq. 
(B6): 

For the second expression that always remains •sitive 
regardless of choice of •rrelation function, we apply Eq. 
(B7) to Eq. (B1) to obtain 

r•/2 r •/z 2 ß 2(•)dz' dz"= • •L - • (B9) 

=]•L (•/L• 1), 
(B10) 

where both the general and limiting expressions •e given for 
the solution in Eqs. (B9) and (BI0). 

In this a•icle, we will not pursue integration of the third 
type of expr•sion. 

Finally it is wo•hwhile mentioning the fact that •. 
(B1) could also have been evaluat• by integrating ff tint 
before z. The transformed integr• is then 

rLI2 rL/• -- z J--L/2o --L/2 z 

The solution will give the same results as in the a•ve an•y- 
sis where z is integrated fi•t, but is extremely t•ious to 
calculate. For ex•ple, the integral in the alternate ap- 
proach corresponding to •. (B7) involv• seven double in- 
tegrals (the integrals, which divide the area shown in Fig. B 1 
into 7 nonoverlapping regions, are partitioned that way •- 
cause •(•) changes functional fo• at ]• ] = • ). The solu- 
tion descried in this appendix where z is integrated fi•t is 
the more attractive approach as it can naturaYy • adapted 
to the pie•wise continuous • (•). 

APPENDIX C: DETERMINATION OF DOMINANT TERMS 
IN MEANS OF SCATTERING AMPLITUDE 

Equation (30) contains several factors in the integrand 
that involve the random component of the radius •'(z). In 
order to make the integration of this equation convenient so 
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that the dominant physical mechanisms are apparent, we 
investigate which terms are dominant so that the others can 
be ignored in the integration. There are terms whose varia- 
tions due to changes in • are real while the remainder involve 
complex variations. We will show that the ones involving 
complex variations are the dominant terms. In particular, 
the dominant terms have an imaginary exponent that con- 
tains •. 

For convenience of illustration, we are evaluating indi- 
vidual terms of Eq. (30) in the low roughness limit where 
both k•r• 1 and •/a• 1. As discussed at the end of this Ap- 
pendix, the results also hold true for finite values of/ca al- 
though c/a must be held well below unity so that the object 
does not break. Secondly, the results of this analysis involv- 
ing individual terms also hold true for the actual products 
involving more complicated expressions containing cross 
products. The terms under investigation can be expanded in 
the ka, •/a,• 1 limits as 
real: 

term l=-.,/k(a + g') =x/•(l + •(• /a) - •(• /a)2), (C1) 
term 2=k(a + 

: ka(1 + •/a) (no approximation necessary), 
(C2) 

term 3=-e 

= 1 - 2(•r - 0R )ka(•/a)fih ( o• ) + 2(•r - 0R )2 

X (ka)2(•'/a)2[,Sk ( c• )]2, (C3) 
term 4=e- 2•,•k•( 

_• 1 - 2•'mka(• /a)fi k ( c• ) + 2'tr2m2( ka) 2 

x (•la) 2 [fi;, ( • ) ] 2; (c4) 
complex: 

term 5=e - i2•c • 1 -- i 2ka(•' /a) -- 2(ka)2(•/a) 2, 
(C5) 

term 6=e •kc( c• + 2rrrnc/cR) 

--• 1 + ika(•/a) (C a + 2rrmc/c• ) 

-- •(ka)2(•/a)2(C• + 2•'rnc/cR)2, (C6) 
where 

C• -- (c/c•) (2•r - 20• ) - 2 cos O•, 

where the terms were divided in two groups: one whose var- 
iations due to changes in • cause real changes in the term and 
the other whose variations are complex. 

1. Mean 

Using the Gaussian PDF given in Eq. (A1) of Appen- 
dix A, the mean values of the above terms are 

(term 1)_xf•(1 -- {(or/a)2), (C7) 
(term 2) = ka, (C8) 

(term 3)_•1 + 2(•r- OR):(ka)2(rr/a)2[fik(•o)] 2, 
(C9) 

(term 4) = 1 + 2rr2m2(ka)2(a/a)2 [fi • ( oo ) ] 2, (C10) 
(term 5) = 1 - 2(ka)2(cr/a) 2, (C11 ) 

(term 6) __ 1 - •(ka)2(o'/a)2(C• + 2•'rnc/ce )2, 
(C12) 

where Eqs. (A3)-(AS) from Appendix A were used. The 
fractional variations induced by roughness in the means 
above are approximately •(o-/a) 2, O, 2(rr-0•) 2 (ka) 2 
X(o'/a) 2 [fik(oo)] 2, 2tr 2 m 2 (ka)2(o-/a) 2 [fik(oo)] 2, 
2(ka) 2 (rr/a) •, and «(ka)2(cr/a) 2 (C• + 2•'me/%)2 for 
terms 1-6, respectively. Obviously, since the mean of term 2 
does not vary with respect to roughness, then it will not in- 
fluenee the functional dependence of the mean. For low 
roughness (ko',o'/a.• 1 ) but high ka (ka>> 1 ), a typical value 
offi k ( c• ) = 0.002 32, and moderate values ofm (moderate 
so that the expansion is valid), terms 5 and 6 that vary as 
(ka)2(o'/a) 2 and m2(ka)2(o'/a) 2, vary by the largest 
amount, hence influencing the mean the most. The varia- 
tions of these two terms are obviously greater than the first 
three. However, in the fourth term (as in the sixth), rn can 
range from 0 to oo and hence at first inspection the high 
values of rn would apparently cause the variations in the 
fourth term to dominate as well. However, by examining the 
series in Eq. (30), there is also severe attenuation due to 
radiation into the surrounding medium of this term in the 
limit of high m. For high ka, the term will be negligibly small 
before the effects on the fluctuations of the stochastic com- 

ponent of the term are realized. For example, 

2rr2m2( ka)2( cr/a)2[ fi • ( c• ) ]2 = 2( ka)2( o./a)2 

when m = 137. For this value of rn and ka = 10, the attenu- 

ation term in Eq. (30) e-2'""k'•fi•(•)•e 2ø22X10-9 
Note that this argument is also true for higher-order terms in 
the expansion. This can be demonstrated by comparing simi- 
lar orders of terms 4 and 5. The higher-order terms will only 
be comparable when m is large, again beyond the point 
where suface elastic waves are important. Thus term 5 is 
shown to vary a larger amount than term 4 before radiation 
damping reduces the contributions due to term 4. Also, since 
term 6 contains a factor ofrn in it, it will dominate term 4 for 
all rn regardless of degree of radiation damping. 

As shown above, terms 5 and 6 are the ones whose 
roughness-induced fluctuations are complex. They are the 
terms whose exponents are imaginary, hence the fluctu- 
ations are due to phase shifts in the local infinitesimal slices 
of the cylinder rather than amplitude variations. Since there 
is one of these complex terms in each of the two major terms 
in Eq. (30), then the mean of the entire expression is in- 
fluenced the most by each of the complex terms, thus vali- 
dating the approximation of ignoring variations due to the 
real terms in Eq. (31 ). 

2. Mean square 

In order to investigate the dominant terms of the mean 
square of the scattering amplitude, we square the separate 
terms and integrate them individually: 
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(term 1 )dz 
ß lJ LI2 

fœ/2 f •,/2 ---- ((term 1)'(term 1)"dz'dz' 
• L/2 

_- F [l ka _ 1 
• - L/2 • -- L/2 4 

I 2•(•))]d• 
4 kaJ J 

X •(•)dz' dz" 

= •L •{1 -- l(a/a)•}; (C13) 

and similarly: 

(Jr (term 3)} •} 
•L •{1 + 4(• -- Oa )•(ka)2[•h ( m ) 

(C15) 

(If 4,}) 
•L •{1 + 2•(m '2 + m '2) (ka)2[• • ( • ) ] •(a/a)2), 

(C16) 

(c•7) 

•L •(1 -- • (ka)•(a/a) 2 
X[(C• + 2vm'c/c•) • + (C• + 2•m•c/e•)z]), 

(C18) 

where the bivariate Gaussian defined in Eq. (A2) of Appen- 
dix A was used in the double integral and the change of 
variables (z%z") -, (z,•) was made as performed in Eq. (B2) 
of Appendix B. Also, the integrals in Eqs. (A3)-(A8) and 
(BS) were used in the evaluation and terms involving 
(o'/a) 4' or powers of the ratio .Y'/L( • 1 ) were found to be 
negligible. 

For the same arguments as given with the means above, 
for ktr, a/a, .L/•IL • 1, and/• • ( oo ) ,• 1, fractional variations 
in the mean square of the scattering amplitude are dominat- 
ed by the complex terms 5 and 6. Thus, again, it is the phase 
shifts of the infinitesimal slices of the cylinder in the inte- 
grand that dominate the averaged field, where this time the 
average is of the square. The analysis to this point in this 
section explicitly justifies ignoring the amplitude variation 
terms in Eq. (30) for calculating the mean square in Eq. 
(43) for this low roughness case, ka, cr/a• 1. 

While the analysis in this Appendix explicitly involves a 
low roughness limit of the various terms of Eq. (30), the 

mean and mean square results can be generalized to the finite 
roughness case of kcr >• 1, although rr/a should remain much 
less than unity so the object does not break. For this finite 
roughness case, many more terms are involved in the expan- 
sions in Eqs. (C1) and (C3)-(C6). In each case, there will 
be higher-order powers of the expansion terms shown, and 
as in the ka,• 1 case, the expansion terms of the complex 
terms "term 5" and "term 6" are much greater than the 
other terms hence resulting in the complex terms dominat- 
ing the variations of the mean and mean square of Eq. (30). 
Finally, while the analysis in this Appendix explicitly in- 
volves the individual terms of Eq. (30), a similar analysis 
(not shown) investigating the dominant terms of the prod- 
ucts and resultant cross product terms produce the same 
results--variations in the complex terms dominate the 
means of Eq. (30). 

In conclusion, regardless of the region, ka,• 1 or ka >• 1, 
the complex (phase shift) terms 5 and 6 dominate rough- 
ness-induced variations in the mean and mean-square scat- 
tered field. 
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