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Gaussian beams provide a useful insonifying field for surface or interface scattering problems such
as encountered in electromagnetics, acoustics and seismology. Gaussian beams have these
advantagesti) They give a finite size for the scattering region on the interféice The incident

energy is restricted to a small range of grazing andies.They do not have side lobe@v) They

have a convenient mathematical expression. The major disadvantagés hrsonification of an
interface is nonuniform. The scattered field will depend on the location of the scatterers within the
beam.(ii) The beams spread, so that propagation becomes an integral component of the scattering
problem. A standard beam parameterization is proposed which keeps propagation effects uniform
among various models so that the effects of scattering only can be compared. In continuous wave
problems, for a given angle of incidence and incident amplitude threshold, there will be an optimum
Gaussian beam which keeps the insonified area as small as possible. For numerical solutions of
pulse beams, these standard parameters provide an estimate of the smallest truncated domain
necessary for a physically meaningful result. 2000 Acoustical Society of America.
[S0001-496600)05202-4

PACS numbers: 43.20.Bi, 43.20.Fn, 43.30.Gv, 43.30[ANN]

INSONIFYING FIELDS FOR SCATTERING PROBLEMS incident on infinite planar surfaces separating semi-infinite
half-spaces. When coupled with the plane or cylindrical
Many representations of scattering functions are base@iave decomposition of a point sour¢éki and Richards,
on the notion of an incident plane wayBass and Fuks, 1980, Chap. 6; Sommerfeld, 1909; Von Weyl, 191the
1979; Beckman and Spizzichino, 1963; Felsen and Marcureflection coefficients can be used to solve the problem of a
vitz, 1973; Ishimaru, 1978; Ogilvy, 1991To avoid edge point source over a planar interface separating two semi-
effects at non-normal angles of incidence and to localize thénfinite media. In seismology these are referred to as Lamb’s
scattering area on the interface, however, some form of tgproblems (Lamb, 1904. All of these problems are well
pering at the edges of the plane wave is often employed iRosed notions completely consistent with the wave equa-
theoretical approachesPott and Harris, 1984; Thorsos, tions. The propagation and scatterifrgflection and trans-
1988; Zeroug and Felsen, 1994, for exampieimerical ap-  mjssion are both correct simultaneously. The solutions are
proachegHastingset al, 1995; Jensen and Schmidt, 1987; exact and they lead to a number of convenient and powerful
Stephen and Swift, 1994; for exampknd in laboratory ex-  concepts in wave theory such as wave number vector decom-
periments (Breazealeet al, 1977; Chimentiet al, 1994; positions.
Muir et al,, 1979, for example In numerical scattering for- However, problems arise when truncating the time and
mulations, particularly, it is important to minimize the in- space domains. The integral transforms can no longer be
sonified area to keep computer memory and computatiogyajuated to infinity and the convenient concepts only apply
times as small as possible, In this paper we use the Gaussiapproximately over certain bandwidths or in given spatial
beam description given byetvenyet al. (1982 to predict  domains. Scattering problems from surface roughness and
the minimum width of a two-dimensional continuous wave yglume heterogeneities introduce “length scales” to the
(cw) beam for a given grazing angle and incident amplitudeyroplem which are not present in the problems of Fresnel,
threshold. Since in numerical solutions to wave scattering gmp), Weyl, and Sommerfeld. In stratified media or in the
and propagation problems it is advantageous to keep th§sometrical opticghigh frequencylimit, the introduction of
computational domain as small as possible, the “minimum™ 4 |ength scale is not a problem if one is careful in defining
width beams are considered “optimum.” An extension of {he pandwidth and the smoothnéagve number contenof
this parameterization to pulse beams leads to a definition ghe medium. In scattering theory for infinite surfaces with
standard beams for validity testing and benchmark models.sma)| stochastic roughness or for infinite surfaces with peri-
The concept of an infinite plane wave as the incideniygic discrete scatterers, it is still valid to consider incident
field originates from Fresnel reflection coefficient theory ;g scattered semi-infinite plane waves. If the domain is
(Jackson, 1975, Sec. 7.t electromagnetics, and similar yryncated, however, either explicitly by tapering the incident
trgatments for plane wave reﬂ.ectlon coefﬁments in acousticgg|q (Thorsos, 1988, for exampler implicitly by adding a
(Pierce, 1989, Sec. 3.@nd seismologyAki and Richards,  gingle discrete scattering element on the interface, semi-
1980, Sec. 5.2 In these cases, semi-infinite plane waves argqfinite plane waves are no longer well posed. It is at this

point that the trade-off between angle resolution and spatial
dElectronic mail: rstephen@whoi.edu resolution is introduced if one wants to do both the propaga-
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Plane Wave y Absarbing region to Point Source |. GAUSSIAN BEAMS

fo truncate domain to

Gaussian beams are a useful way to restrict the angular
(or horizontal wave numbgrcontent of the incident field
while keeping the interaction localized on the surfaCer-
venyet al, 1982; Chimentet al., 1994; Felsen, 1976How-
ever, by truncating a plane wave the additional complexity of
beam spreadingHuygen’s principlé must be considered.
This introduces propagation issues into scattering problems.

In this paper we are interested in actual Gaussian beams
in homogeneous media which can be used as insonifying
fields for scattering problem¢Bertoni and Tamir, 1973;
FIG. 1. In some numerical solutions to wave equations, such as timeChoi and Harris, 1989; Felsen, 1976; Jensen and Schmidt,
domain finite-differences, it is necessary to make the computational domaii 987; Zeroug and Felsen, 1994, for examp@qere is ex-

in space as small as possible. This is accomplished by adding absorbi%nsive literature on the Gaussian beam summation method
regions(hashed around the spatial domain of interest. The example@)in

and(b) show a truncated plane wave and a point source, respectively, propa(pr computing wave f|§lds from point and line sources in

gating in a homogeneous medium. Because of diffraction of energy into thénhomogeneous medicCervenyet al, 1982; Georgeet al,
absorbing region, neither of these examples correctly portrays propagatioh987:; Klimés 1989; Nowack and Aki, 1984; Weber, 1988;
in infinite, homogeneous media. Similar but less obvious effects occur iny/hite et al, 1987, for example The Gaussian beam sum-
many applications where the medium is more complex. As an alternative to . . .
plane waves and point sources, Gaussian beams provide a convenient am)at'on meth_Od is not being addr_essed h_ere- Rather we con-
useful incident field in these cases of dramatically truncated domains. ~ Sider Gaussian beams as a physical reality.
Assume that the medium is homogeneous and that we

are in a two-dimensional Cartesian coordinate system. For a
tion and scattering problems simultaneously. Large domaingeam waist centered at(,z,) with a half-width at the waist
permit small angle spread and small domains require largedf Ly, and an angle of incidence, the pressure a2 is
angle spread. Gaussian beams provide a mechanism to a@iven by (Cervenyet al, 1982,
dress this trade-off quantitatively.

Energy diffracts into
absorbing region

N
/
(:

% 2z
bt
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This study has been motivated by the computational ne- V2mly . 5
cessity, in time-domain numerical solutions to wave equa- ~®(X.2)= ot e exp2mi[s+n/(2(s+e))]},

tions, to keep the spatial and temporal domains as small as
possible. Spatial domains of only a few hundred wavelengthghere
on a side in two-dimensional problems or only a few tens of _—
wavelengths on a side for three-dimensional problems chal- €~ —i7ly,
lenge even the fastest and largest computers. It is tempting to
use spatial domains that are so small or have such a narrow
E\speclt.dratio that even results for homogeneous media will not - (x—x,)c08 @) — (z—2zp)sin(@). 1)

e valid.

As an example, consider propagation in a homogeneoud;his is an asymptotic solution to the time harmonic, two-
two-dimensional mediunfFig. 1). Figure 1a) is an example dimensional parabolic wave equation, obtained using a para-
similar to acoustic well logging problems. The incident field bolic approximation to the wave equation about the beam
is a vertically propagating plane wave, but in an effort toaxis. The beam coordinates &g ), wheres is the propa-
minimize the computational domain absorbing boundariegation distance from the beam waist amds the direction
are placed close together and parallel to the propagation dpormal to the beam axig=ig. 2). All distances are in terms
rection. In this case energy diffracts from the edges of th@f wavelengths. The normalized power, the area uidef
plane wave into the absorbing regions on either side. Afte@s a function of wavelength across the beam, is unit. i$
propagating a short distance, the planar wave front inside tharessure(in Pascals p is density (in kg/nv’) andf is fre-
domain no longer agrees with the intended solution of arfluency(in Hertz), then the power in the beatm Watts is
infinite plane wave. This problem is closely related to the 1 1
radiated field from a vibrating pistdiierce, 1989, Chap)5 pP= _f |®|%dn=—. 2)
Figure 1b) is an example similar to many problems in con- pf pt

trolled source or earthquake modeling. It shows a poinian equation similar to Eq(1), with differences in the phase
source in homogeneous media where the domain has begpq amplitude normalization, can also be derived using the

truncated by absorbing boundaries parallel to the propagatio&bmmex source point methd@eroug and Felsen, 1994
direction of interest. This is often done in an effort to mini- In ray coordinates, E¢1) can be rewritten as

mize the computational domain. In this problem, energy also

diffracts into the absorbing boundaries, and the solutions for J2mLy, ) 5 n?
even homogeneous media will be incorrect. Although these ~ ®(s.n)= mexp{ 2mi[s+n°K(s)]- s
examples are trivial, similar but less obvious effects occur in M

many applications where the medium is more complex.  where

S=(X—Xp)sin(a)+(z—z,)co8 a),
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K(s) controls the divergence of the beam energy or curva-
ture of the surfaces of constant phase. The profile of the
beam is Gaussian with an “effective half-widthl’(s). This

is the half-width to the point where the amplitude decreases
to e ! of the value which occurs at the beam axis. The

functionL(s) defines the beam envelope as a half-width and
is hyperbolic. If the beam envelope is defined by an absolute
amplitude, however, there is a small additional factor to ac-
count for the change in amplitude along the beam axis. The
amplitude of the beam is

- V2mly, - n? @
a(s,n)= \/mm)_zex L2(s)|"

The power on lines normal to the beam is constant and the
amplitude on the beam axig(s,0), is related to the half-
width, L(s), by

a2(s,0)L(s)= \E (5)
'

For a given path lengtt§,,.,, in homogeneous media there
is an initial beam half-widthl.2™, which will yield the nar-
rowest beam, as defined by half-width

LoP'= \/Sad 7 (6a)

The corresponding half-width &, is
L(Smax) = \2Smax! . (6b)

Gaussian beams are a convenient incident field for interface
scattering problems because they have such a simple analytic
expression for the beam divergence and they have a predict-
able minimum width for a given propagation distance. For

initial beam half-widths less thah{™, the beam spreads

TSm0 more, so that the half-width aS,, is greater than
© — SnxO L V2Shad . For initial beam half-widths greater thag™, the
n(0) beam spreads less but the resultant half-widtB.at is still

greater thany2S,,,,/7.

Bessel beams have many of the same advantages as
Gaussian beams and, in addition, they are diffraction-free

FIG. 2. (a) The optimum Gaussian beam for surface scattering problems isnd do not spreaa:lDurnin and Miceli, 1988 The major

defined on the notion that the beam will spread as it propagates across a fl - - _
virtual interface at the mean level of the surface. Optimum beam parameter@sadvamage of Bessel beams for interface scattering pI’Ob

are constrained by the grazing angle and the incident amplitude threshold€MS is that they have multiple lobes and zeros within the
The incident amplitude threshold is the maximum acceptable incident ambeam. Insonification across the beam footprint is dramati-
plitude at the edges of the scattering region and is chosen based on #ally nonuniform.

acceptable level of artifacts from edge effects. The minimum half-width . " .
occurs at the beam waist. The origin is defined as the intersection of the Felsen and CoaUthor&h'ment' etal, 1994; Felsen,

beam axis and the virtual interface. The center of the beam waist is located984; Zeroug and Felsen, 1998se the complex source
at (xp.2,). The footprint size is the distance along the virtual interface point (CSP method to generate beams which are close ap-
between the lower and upper incident amplitude threshold paib}sTo nﬁ)roximations to plane waves with a Gaussian profile when
compute parameters for the optimum beam it is convenient to work in bea 2 . .
coordinategs,n. Two parameters that define the shape of the beam are théhe Fresnel Iengtt”TLM n Eq' (1)] 1S greater than a wave-
incident amplitude threshold, and the propagation distanc®,.,. From  length. The beam is constructed by interference of evanes-
these one can compute the half-width at the beam wia(gr), thesize of  cent(inhomogeneoysplane waves. Their approach has been
g‘e f°°tpg”t on the virtual "g_e”aCé- a”‘f’ the_"“é’;;‘”a'" angI(T OfI‘”C" applied to the study of reflection of Gaussian beams from
ence, /. By the inverse coordinate transform in one can also locate . . . .

the beam waist irfx,2 coordinates, X, ,z,). (c) The locus of points which fluid 'Paded elastic structurg€himentiet al, 1994 and the
have an amplitude; is shown in beam coordinates. coupling of beams to leaky modeZeroug and Felsen,

s 1994. Good agreement between the CSP method and labo-
—2[sz+(rrLf,|)2] ) ratory observations was obtainé@himentiet al, 1994).

, A number of investigators have used bounded beams to
/ 1
L(s) L+ wLM) s°. (3

study reflection and refraction at planar fluid-solid interfaces
1097 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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c)

K(s)=

(Bertoni and Tamir, 1973; Breazeadt al., 1977; Pott and
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Harris, 1984, for examp)e Deterministic scattering of
bounded beams from rough seafloors has been discussed by L3(s)= Lfﬁ
Stephen and Swift1994), from volume heterogeneities be-

low a fluid-solid boundary by Swift and Steph&tp94, and  The beam half-width from the axis to the normalized ampli-
from a rough sea surface by Thor4d996), Stephen(1996  tudea is
and Hastinget al. (1997. In this paper we propose a stan-

dard beam configuration for all types of interface and surface

scattering problems including flat interfaces between homo- Nn(s)==*
geneous media, interfaces with volume heterogeneity in the

lower medium, interfaces with fine scale roughness and in- 12
terfaces with discrete scatterers. V24 (mLE)?
—log —_ : 9

2
7Ly

1 2
7T_|_M) 52. (8)

) S
Lyt

2\ 1/2
) —log(a)

7TLM

Il. THE “OPTIMUM” GAUSSIAN BEAM Thg first expression on the right side represents the hyper-
bolic spreading of the beam half-width corresponding to an

When applying Gaussian beams to interface scatteringmplitude of 1¢. The first term in the square brackets modi-
problems it is desirable to minimize the footprint on the in-fies the 1¢ half-width to the half-width at the normalized
terface while keeping the half-width of the beam, the ampli-amplitude. The second term in square brackets allows for the
tude of the incident field, and the angle of incidence as coneecay in amplitude along the beam axis. For a fixed distance,
stant as possible across the footprint. The “optimum”s, the term in square brackets varies much more slowly with
Gaussian beam is defined by considering propagation in gespect to the waist half-width, than the preceding hyperbolic
homogeneous medium with the beam incident on a virtuaspreading term. The waist half-width which gives the nar-
interface normal to the axis in a Cartesian coordinate sys- rowest beam in terms of half-widtfEq. (6)] also gives the
tem [Fig. 2(@]. The virtual interface is transparent to the narrowest beam in terms of constant amplitude. The beam
optimum beam. The virtual interface, however, specifies thdialf-width to the normalized amplitude can then be ex-
location of the mean surface for actual scattering problemgressed as a function of the propagation distaBgg,,

and is the reference for defining the beam parameters. 12
We choose the origin itix,2 coordinates to be at the S+ s\ M NSkt S?
intersection of the axis of the beam and the virtual interface.  N(S)=* —logl a \| ——
T Simax Shax

The beam axis intersects the virtual interface with the nomi-
nal grazing anglejy. Since the beam diverges as it propa-
gates across the virtual interfafeecause of the curvature To compute parameters for the optimum beam it is con-
factor K(s) in Eq. (3)], the actual grazing angl@efined in  vVenient to work in beam coordinate,n [Fig. 2(b)]. The

this context as the inverse cosine of the slope of the phadeéam shape is defined by the locus of points at the amplitude

range along the interface. amplitude threshold, ia(s). The angle that the beam axis

For a given angle of incidence and a given incident amJnakes with the virtual interface is the grazing angkeThe
plitude threshold, the optimum Gaussian beam will minimizeinitial and final beam half-widths)7(0) andn+(Sy.y), are

the insonified area, or footprint, on the virtual surface. The S,

incident amplitude thresholdy, is the largest incident am- n(0)=+ *(—logar),

plitude that is acceptable at the end of the tapers on the left &

and right edges of the scattering regiétig. 2(a)]. It can be 2S (11
expressed in decibels down from a reference amplitude, N (Spay) = * \/T(—Iog éT—Iog‘{/E).

)_ ) Now tan ¢ is the sum of these initial and final beam half-
a(0,0 widths divided by the propagation distan&,., [Fig. 2(c)].

o for a given grazing angle and a given incident amplitude
threshold, the propagation distance for the optimum Gauss-

ian beam can be obtained,

AT: 20 Ioglo( é.-r) =20 |O&O

For a reference amplitude we choose the peak amplitude
the beam waista(0,0), which in homogeneous media is the
largest amplitude in the problertin this paper we use lgg

to indicate logarithms to the base 10 and log to indicate 2
natural logarithmsg.As the beam propagates along its axis v—logar+ \/2(—'09 ar—logi2)
from the waist, its half-widthl_(s), increases and its on-axis Simax=

amplitude,a(s,0), decreases according to E@3) and (5). mtart i

The normalized amplituded, can be expressed in terms of Onces,,,, is determined, the waist half-width is obtained by

(12

the waist half-width only, (6) and the beam shape is defined(By. The footprint on the
2 5 virtual interfacef, is
/ T -n
a(s,n)= - 5 exp{ > J f= Smax_ 13
Vs?+(mLg)? L) = Cosy’ (13
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Footprint Sizes for Optimal Gaussian Beams

250

FIG. 3. Footprint sizes are shown as a function of graz-
ing angle for amplitude threshold values 20 and
—40 dB. Using minimum footprints is particularly im-
portant at low grazing angles where the footprint size
exceeds 100 wavelengths. At higher grazing angles,
where the optimum footprint size goes to zero, other
issues may constrain the footprint size. For example, it
may be necessary to have a sufficiently large number of
scattering elements on the interface to adequately rep-
resent the statistical distribution of scatterers. Since
angle spread increases with decreasing beam waist
widths, defining the beam in terms of grazing angle and
acceptable angle spread may be more useful.

8
S

Footprint (Wavelengths)
]
©

100

50

0 10 20 30 40 50 60 70
Grazing Angle (degrees)

The center of the beam waist {Rr,2 coordinates, X, ,2p) is (273 wavelengthscompared to the 750 1200 wavelengths
cosy footprint used in Test Case 1. Figure 6 shows the corre-
——,  z,=—n(0)cosy, (14) sponding grazing angle across the surface. Even though the
tanys nominal grazing angle was 10°, the actual grazing angle var-
Footprint sizes as functions of grazing angle for the op-4es from about 7 to 10.5°. The angle spread for the optimum
timum Gaussian beams are shown in Fig. 3 for incident amGaussian beam of 3.5° is narrower by about 1° than the angle
plitude thresholds of-20 and—40 dB. For thresholds less spread for the beam used in Test Case 1. The waist half-
than —20 dB, footprints greater than 130 wavelengths arewidth of the optimum beam is 34.68 m and is considerably
necessary for grazing angles less than about 10°. For thresfiider than the half-width of the vertical taper used in Test
olds greater than-40 dB, at grazing angles near 50° the Case 1, 27.55 m. The depth of the midpoint of the waist is
footprints drop below about 10 wavelengths. At grazingg|so deeper, 73.30 compared to 66.12[ifhe “optimum
angles greater than 50° there will be criteria other than beargygssian beam” discussed in Stepli@@96 was based on
spreading which control the footprint size. For example, ongjant range, rather than the amplitude threshold criteria de-
needs a footprint sufficiently large that there will be enoughfined in Eq.(12). This gave a more meaningful comparison

scattering elements to adequately represent a particular phgsh the other beams discussed in that paper but was not as
nomenon. Since angle spread increases with decreasug%orouS in terms of incident amplitude constraihts.
beam waist widths, defining beams in terms of grazing angle

and acceptable angle spread may be more useful.

Xp=—N(0)

In some formulations of the scattering probldiast-
ings et al,, 1995; Thorsos, 1988, for exampléhe incident
field is “layed-down” on the scattering surface, rather than
propagating the incident field up to the scattering surface.
As an examp|e Of an Optimum Gaussian beam, Conside-Fhe Scattered fle|dS are Compared W|th theoretical I‘esultS fOI’
a 400 Hz beam insonifying a surface at 10° grazing angle inncident plane waves. Gaussian tapers, however, are used on
water(velocity of 1500 m/s, density of 1000 kg?MFig- 4). the mean scattering surface to truncate the domain, and the
This is similar to the incident field used in Test Case 1 ofincident field in the medium adjacent to the scattering sur-
Thorsos (1996 which was generated by a vertical array. face is undefined and could be quite complicated. Compari-
Gaussian beams for Test Case 1 are also discussed $@n with results from other methods, where it is impractical
Stephen(1996. Figure 5 shows the projection of the incident to “lay-down” the incident field, would be difficult. In these
optimum Gaussian beam on the surface for an incident anformulations, the optimum Gaussian beams defined here
plitude threshold of—-40 dB. The footprint size is 1023 m would provide useful incident fields with simple and well-

IIl. EXAMPLES AND DISCUSSION

750m

J—y

10 .
~ rough, free surface / FIG. 4. As an example of an optimum beam calcula-

= tion, consider a 400 Hz beam insonifying a free surface
at 10° grazing angle in watgwvelocity of 1500 m/s,
66.12mM .
density of 1000 kg/r).

Cartesian coordinates
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Projection of Gaussian Beam on Interface

0 T T
! . Nominal Grazing Angle is: 10degrees
b S N o\  Thresholdis: ~4048 ]
B T ST R A R R e P PP SR -
S s N 1
5 FIG. 5. The optimum beam projection on the interface
g : : : : : : for the example shown in Fig. 4 has a footprint of over
T§_—2°‘ """" Y A P Do A 7 1000 m for an incident threshold value ef40 dB. If
= : : : : : beam spreading were ignored and geometrical optics
[ . . .
© sl NG | was used to project the beam, the footprint size would
% be only 750 m. The projection of the Gaussian beam on
g : : : : : : the horizontal surface is asymmetrical because of beam
E__so_. AAAAAAAAA ............... , ,,,,,,,,,,,,,,, ............... AAAAAA - Spreading.
] e R R R R R R P P R R R PERE (R SR -
. Foolprint at ~40dB is: 1023.2m
_40_ ...... ——_____.-—.————‘—___ -
s ; : ; ; : ;

—400 —200 [ 200 400 600
x {m) for 400Hz in water

defined propagation characteristics. In one example, Hast- In a third example, Stephen and Swift994 use a
ings et al. (1995 for a rough sea surface with a grazing Gaussian pulse-beam as the insonifying field for seafloor
angle of 10° used a footprint of 180 wavelengths and a halfscattering problems in a Numerical Scattering Chamber us-
width for the Gaussian taper of 40 wavelengths. The optiing time-domain finite-differences. Their footprint calcula-
mum Gaussian beam with an incident amplitude threshold dfions assume a uniform “channel width,” rather than a mini-
—36 dB has a footprint of 245 wavelengths and the profilemum incident amplitude threshold. The optimum Gaussian
on the footprint has a half-width of about 54 wavelengths. Iltbeam, based on the peak frequency in pressure, for a grazing
is beyond the scope of this paper to investigate the numericangle of 15° and an incident amplitude threshold-&0 dB,
implications of using optimum Gaussian beams in thesevould have a waist half-width of 4.25 wavelengths located at
methods, but it would be worth considering them. The opti-(—23.27, —6.24). The footprint would be only 58.9 wave-
mum beam profile could be used in these calculations withengths compared to the 72 wavelengths used in the earlier
very little additional computational effort. In addition to hav- study. The depth of the computational domain would not
ing the propagation of the incident field well defined, thechange appreciably, but there would be a reduction in the
angle spread over the footprint would also be well defined. Idength by 20% and computational time would be reduced by
this case it is less than 3.5°. 35% for the same problem. The divergence, caused by the

Projection of Gaussian Beam on Interface

" ' ! ! ! ! !
105k . A Ll S e -
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10} -~ e L N T TR e
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: : N : : :
I T U N U U L 4
52 : : a N z :
n N
B b N S
g’ N : : FIG. 6. Grazing angles for the optimum Gaussian beam
s : : : : N : : in Fig. 4, with a nominal grazing angle of 10°, actually
g BB N D vary from about 7.0 to 10.5°. Narrower angle ranges
> : : : : \\5 : (less diffraction can be obtained by using wider foot-
.E F-] S ,,,,,,,,,,,,,,, ............... ................ \\ ............. ...... - prints.
@ : : : : SN :
N :
...................................... NIRRT
N
A
\: ...... -
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TABLE I. Frequency effects on beam parameters. can be defined by applying the optimum beam parameters at
the peak or center frequencies. By using optimum Gaussian

At s=0: L(0)-meters a(on(0)) . . ... .

Peak frequency10 H2) 638.1 0.1000 beams investigators can minimize and standardize the propa-
Upper half-power frequenc13.6 H2 638.1 0.0707 gation effects in beam scattering problems.

Lower half-power frequency6.8 H2 638.1 0.0707

At 5= Spax: L(Smax-meters  a(Spax:M(Snax)

Peak frequencyl0 Hz) 902.4 0.1000

Upper half-power frequenc{13.6 H2 792.8 0.0402

Lower half-power frequency6.8 H2) 1132 0.1373 ACKNOWLEDGMENTS
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Table | shows half-widths and normalized amplitude thresh-
olds at the peak frequency and upper and lower half-power
frequencies for the time wavelet used in Stephen and Swift

(1994)' The table a.'ssumes a peak frequency of 10 Hz and ﬂki, K., and Richards, P. G(1980. Quantitative Seismology: Theory and
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