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Gaussian beams provide a useful insonifying field for surface or interface scattering problems such
as encountered in electromagnetics, acoustics and seismology. Gaussian beams have these
advantages:~i! They give a finite size for the scattering region on the interface.~ii ! The incident
energy is restricted to a small range of grazing angles.~iii ! They do not have side lobes.~iv! They
have a convenient mathematical expression. The major disadvantages are:~i! Insonification of an
interface is nonuniform. The scattered field will depend on the location of the scatterers within the
beam.~ii ! The beams spread, so that propagation becomes an integral component of the scattering
problem. A standard beam parameterization is proposed which keeps propagation effects uniform
among various models so that the effects of scattering only can be compared. In continuous wave
problems, for a given angle of incidence and incident amplitude threshold, there will be an optimum
Gaussian beam which keeps the insonified area as small as possible. For numerical solutions of
pulse beams, these standard parameters provide an estimate of the smallest truncated domain
necessary for a physically meaningful result. ©2000 Acoustical Society of America.
@S0001-4966~00!05202-4#
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INSONIFYING FIELDS FOR SCATTERING PROBLEMS

Many representations of scattering functions are ba
on the notion of an incident plane wave~Bass and Fuks
1979; Beckman and Spizzichino, 1963; Felsen and Mar
vitz, 1973; Ishimaru, 1978; Ogilvy, 1991!. To avoid edge
effects at non-normal angles of incidence and to localize
scattering area on the interface, however, some form of
pering at the edges of the plane wave is often employe
theoretical approaches~Pott and Harris, 1984; Thorsos
1988; Zeroug and Felsen, 1994, for example!, numerical ap-
proaches~Hastingset al., 1995; Jensen and Schmidt, 198
Stephen and Swift, 1994; for example! and in laboratory ex-
periments ~Breazealeet al., 1977; Chimentiet al., 1994;
Muir et al., 1979, for example!. In numerical scattering for-
mulations, particularly, it is important to minimize the in
sonified area to keep computer memory and computa
times as small as possible. In this paper we use the Gaus
beam description given by Cˇ ervenýet al. ~1982! to predict
the minimum width of a two-dimensional continuous wa
~cw! beam for a given grazing angle and incident amplitu
threshold. Since in numerical solutions to wave scatter
and propagation problems it is advantageous to keep
computational domain as small as possible, the ‘‘minimum
width beams are considered ‘‘optimum.’’ An extension
this parameterization to pulse beams leads to a definitio
standard beams for validity testing and benchmark mode

The concept of an infinite plane wave as the incid
field originates from Fresnel reflection coefficient theo
~Jackson, 1975, Sec. 7.3! in electromagnetics, and simila
treatments for plane wave reflection coefficients in acous
~Pierce, 1989, Sec. 3.6! and seismology~Aki and Richards,
1980, Sec. 5.2!. In these cases, semi-infinite plane waves

a!Electronic mail: rstephen@whoi.edu
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incident on infinite planar surfaces separating semi-infin
half-spaces. When coupled with the plane or cylindric
wave decomposition of a point source~Aki and Richards,
1980, Chap. 6; Sommerfeld, 1909; Von Weyl, 1919!, the
reflection coefficients can be used to solve the problem o
point source over a planar interface separating two se
infinite media. In seismology these are referred to as Lam
problems ~Lamb, 1904!. All of these problems are wel
posed notions completely consistent with the wave eq
tions. The propagation and scattering~reflection and trans-
mission! are both correct simultaneously. The solutions a
exact and they lead to a number of convenient and powe
concepts in wave theory such as wave number vector dec
positions.

However, problems arise when truncating the time a
space domains. The integral transforms can no longer
evaluated to infinity and the convenient concepts only ap
approximately over certain bandwidths or in given spa
domains. Scattering problems from surface roughness
volume heterogeneities introduce ‘‘length scales’’ to t
problem which are not present in the problems of Fresn
Lamb, Weyl, and Sommerfeld. In stratified media or in t
geometrical optics~high frequency! limit, the introduction of
a length scale is not a problem if one is careful in defini
the bandwidth and the smoothness~wave number content! of
the medium. In scattering theory for infinite surfaces w
small stochastic roughness or for infinite surfaces with p
odic discrete scatterers, it is still valid to consider incide
and scattered semi-infinite plane waves. If the domain
truncated, however, either explicitly by tapering the incide
field ~Thorsos, 1988, for example! or implicitly by adding a
single discrete scattering element on the interface, se
infinite plane waves are no longer well posed. It is at t
point that the trade-off between angle resolution and spa
resolution is introduced if one wants to do both the propa
10957(3)/1095/8/$17.00 © 2000 Acoustical Society of America
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tion and scattering problems simultaneously. Large doma
permit small angle spread and small domains require la
angle spread. Gaussian beams provide a mechanism to
dress this trade-off quantitatively.

This study has been motivated by the computational
cessity, in time-domain numerical solutions to wave eq
tions, to keep the spatial and temporal domains as sma
possible. Spatial domains of only a few hundred waveleng
on a side in two-dimensional problems or only a few tens
wavelengths on a side for three-dimensional problems c
lenge even the fastest and largest computers. It is temptin
use spatial domains that are so small or have such a na
aspect ratio that even results for homogeneous media will
be valid.

As an example, consider propagation in a homogene
two-dimensional medium~Fig. 1!. Figure 1~a! is an example
similar to acoustic well logging problems. The incident fie
is a vertically propagating plane wave, but in an effort
minimize the computational domain absorbing bounda
are placed close together and parallel to the propagation
rection. In this case energy diffracts from the edges of
plane wave into the absorbing regions on either side. A
propagating a short distance, the planar wave front inside
domain no longer agrees with the intended solution of
infinite plane wave. This problem is closely related to t
radiated field from a vibrating piston~Pierce, 1989, Chap. 5!.
Figure 1~b! is an example similar to many problems in co
trolled source or earthquake modeling. It shows a po
source in homogeneous media where the domain has
truncated by absorbing boundaries parallel to the propaga
direction of interest. This is often done in an effort to min
mize the computational domain. In this problem, energy a
diffracts into the absorbing boundaries, and the solutions
even homogeneous media will be incorrect. Although th
examples are trivial, similar but less obvious effects occu
many applications where the medium is more complex.

FIG. 1. In some numerical solutions to wave equations, such as t
domain finite-differences, it is necessary to make the computational dom
in space as small as possible. This is accomplished by adding abso
regions~hashed! around the spatial domain of interest. The examples in~a!
and~b! show a truncated plane wave and a point source, respectively, pr
gating in a homogeneous medium. Because of diffraction of energy into
absorbing region, neither of these examples correctly portrays propag
in infinite, homogeneous media. Similar but less obvious effects occu
many applications where the medium is more complex. As an alternativ
plane waves and point sources, Gaussian beams provide a convenien
useful incident field in these cases of dramatically truncated domains.
1096 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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I. GAUSSIAN BEAMS

Gaussian beams are a useful way to restrict the ang
~or horizontal wave number! content of the incident field
while keeping the interaction localized on the surface~Čer-
venýet al., 1982; Chimentiet al., 1994; Felsen, 1976!. How-
ever, by truncating a plane wave the additional complexity
beam spreading~Huygen’s principle! must be considered
This introduces propagation issues into scattering proble

In this paper we are interested in actual Gaussian be
in homogeneous media which can be used as insonify
fields for scattering problems~Bertoni and Tamir, 1973;
Choi and Harris, 1989; Felsen, 1976; Jensen and Schm
1987; Zeroug and Felsen, 1994, for example!. There is ex-
tensive literature on the Gaussian beam summation me
for computing wave fields from point and line sources
inhomogeneous media~Červenýet al., 1982; Georgeet al.,
1987; Klimeš, 1989; Nowack and Aki, 1984; Weber, 1988
White et al., 1987, for example!. The Gaussian beam sum
mation method is not being addressed here. Rather we
sider Gaussian beams as a physical reality.

Assume that the medium is homogeneous and that
are in a two-dimensional Cartesian coordinate system. F
beam waist centered at (xp ,zp) with a half-width at the waist
of LM , and an angle of incidencea, the pressure at~x,z! is
given by ~Červenýet al., 1982!,

F~x,z!5AA2pLM

s1e
exp$2p i @s1n2/~2~s1e!!#%,

where

e52 ipLM
2 ,

s5~x2xp!sin~a!1~z2zp!cos~a!,

n5~x2xp!cos~a!2~z2zp!sin~a!. ~1!

This is an asymptotic solution to the time harmonic, tw
dimensional parabolic wave equation, obtained using a p
bolic approximation to the wave equation about the be
axis. The beam coordinates are~s, n!, wheres is the propa-
gation distance from the beam waist andn is the direction
normal to the beam axis~Fig. 2!. All distances are in terms
of wavelengths. The normalized power, the area underuFu2

as a function of wavelength across the beam, is unity. IfF is
pressure~in Pascals!, r is density ~in kg/m3! and f is fre-
quency~in Hertz!, then the power in the beam~in Watts! is

P5
1

r f E uFu2dn5
1

r f
. ~2!

An equation similar to Eq.~1!, with differences in the phase
and amplitude normalization, can also be derived using
complex source point method~Zeroug and Felsen, 1994!.

In ray coordinates, Eq.~1! can be rewritten as

F~s,n!5AA2pLM

s2 ipLM
2 expH 2p i @s1n2K~s!#2

n2

L2~s!J ,

where
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s

2@s21~pLM
2 !2#

,

L~s!5ALM
2 1S 1

pLM
D 2

s2. ~3!

FIG. 2. ~a! The optimum Gaussian beam for surface scattering problem
defined on the notion that the beam will spread as it propagates across
virtual interface at the mean level of the surface. Optimum beam param
are constrained by the grazing angle and the incident amplitude thres
The incident amplitude threshold is the maximum acceptable incident
plitude at the edges of the scattering region and is chosen based o
acceptable level of artifacts from edge effects. The minimum half-wi
occurs at the beam waist. The origin is defined as the intersection o
beam axis and the virtual interface. The center of the beam waist is loc
at (xp ,zp). The footprint size is the distance along the virtual interfa
between the lower and upper incident amplitude threshold points.~b! To
compute parameters for the optimum beam it is convenient to work in b
coordinates~s,n!. Two parameters that define the shape of the beam are
incident amplitude threshold,aT, and the propagation distance,Smax. From
these one can compute the half-width at the beam waist,L(0), thesize of
the footprint on the virtual interface,f, and the ‘‘nominal’’ angle of inci-
dence,c. By the inverse coordinate transform in Eq.~1! one can also locate
the beam waist in~x,z! coordinates, (xp ,zp). ~c! The locus of points which
have an amplitudeaT is shown in beam coordinates.
1097 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
K(s) controls the divergence of the beam energy or cur
ture of the surfaces of constant phase. The profile of
beam is Gaussian with an ‘‘effective half-width,’’L(s). This
is the half-width to the point where the amplitude decrea
to e21 of the value which occurs at the beam axis. T
functionL(s) defines the beam envelope as a half-width a
is hyperbolic. If the beam envelope is defined by an abso
amplitude, however, there is a small additional factor to
count for the change in amplitude along the beam axis. T
amplitude of the beam is

a~s,n!5A A2pLM

As21~pLm
2 !2

expH 2
n2

L2~s!J . ~4!

The power on lines normal to the beam is constant and
amplitude on the beam axis,a(s,0), is related to the half-
width, L(s), by

a2~s,0!L~s!5A2

p
. ~5!

For a given path length,Smax, in homogeneous media ther
is an initial beam half-width,LM

opt, which will yield the nar-
rowest beam, as defined by half-width

LM
opt5ASmax/p. ~6a!

The corresponding half-width atSmax is

L~Smax!5A2Smax/p. ~6b!

Gaussian beams are a convenient incident field for interf
scattering problems because they have such a simple ana
expression for the beam divergence and they have a pre
able minimum width for a given propagation distance. F
initial beam half-widths less thanLM

opt, the beam spread
more, so that the half-width atSmax is greater than
A2Smax/p. For initial beam half-widths greater thanLM

opt, the
beam spreads less but the resultant half-width atSmax is still
greater thanA2Smax/p.

Bessel beams have many of the same advantage
Gaussian beams and, in addition, they are diffraction-f
and do not spread~Durnin and Miceli, 1988!. The major
disadvantage of Bessel beams for interface scattering p
lems is that they have multiple lobes and zeros within
beam. Insonification across the beam footprint is dram
cally nonuniform.

Felsen and coauthors~Chimenti et al., 1994; Felsen,
1984; Zeroug and Felsen, 1992! use the complex sourc
point ~CSP! method to generate beams which are close
proximations to plane waves with a Gaussian profile wh
the Fresnel length@pLM

2 in Eq. ~1!# is greater than a wave
length. The beam is constructed by interference of evan
cent~inhomogeneous! plane waves. Their approach has be
applied to the study of reflection of Gaussian beams fr
fluid loaded elastic structures~Chimentiet al., 1994! and the
coupling of beams to leaky modes~Zeroug and Felsen
1994!. Good agreement between the CSP method and la
ratory observations was obtained~Chimentiet al., 1994!.

A number of investigators have used bounded beam
study reflection and refraction at planar fluid-solid interfac
~Bertoni and Tamir, 1973; Breazealeet al., 1977; Pott and
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Harris, 1984, for example!. Deterministic scattering o
bounded beams from rough seafloors has been discusse
Stephen and Swift~1994!, from volume heterogeneities be
low a fluid-solid boundary by Swift and Stephen~1994!, and
from a rough sea surface by Thorsos~1996!, Stephen~1996!
and Hastingset al. ~1997!. In this paper we propose a sta
dard beam configuration for all types of interface and surf
scattering problems including flat interfaces between hom
geneous media, interfaces with volume heterogeneity in
lower medium, interfaces with fine scale roughness and
terfaces with discrete scatterers.

II. THE ‘‘OPTIMUM’’ GAUSSIAN BEAM

When applying Gaussian beams to interface scatte
problems it is desirable to minimize the footprint on the
terface while keeping the half-width of the beam, the amp
tude of the incident field, and the angle of incidence as c
stant as possible across the footprint. The ‘‘optimum
Gaussian beam is defined by considering propagation
homogeneous medium with the beam incident on a virt
interface normal to thez axis in a Cartesian coordinate sy
tem @Fig. 2~a!#. The virtual interface is transparent to th
optimum beam. The virtual interface, however, specifies
location of the mean surface for actual scattering proble
and is the reference for defining the beam parameters.

We choose the origin in~x,z! coordinates to be at th
intersection of the axis of the beam and the virtual interfa
The beam axis intersects the virtual interface with the no
nal grazing angle,c. Since the beam diverges as it prop
gates across the virtual interface@because of the curvatur
factor K(s) in Eq. ~3!#, the actual grazing angle@defined in
this context as the inverse cosine of the slope of the ph
curve in cycles per wavelength~Stephen, 1996!# varies with
range along the interface.

For a given angle of incidence and a given incident a
plitude threshold, the optimum Gaussian beam will minim
the insonified area, or footprint, on the virtual surface. T
incident amplitude threshold,aT , is the largest incident am
plitude that is acceptable at the end of the tapers on the
and right edges of the scattering region@Fig. 2~a!#. It can be
expressed in decibels down from a reference amplitude,

ÂT520 log10~ âT!520 log10S aT

a~0,0! D . ~7!

For a reference amplitude we choose the peak amplitud
the beam waist,a(0,0), which in homogeneous media is th
largest amplitude in the problem.~In this paper we use log10

to indicate logarithms to the base 10 and log to indic
natural logarithms.! As the beam propagates along its ax
from the waist, its half-width,L(s), increases and its on-axi
amplitude,a(s,0), decreases according to Eqs.~3! and ~5!.
The normalized amplitude,â, can be expressed in terms
the waist half-width only,

â~s,n!5A pLM
2

As21~pLM
2 !2

expH 2n2

L2~s!
J ,
1098 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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L2~s!5LM
2 1S 1

pLM
D 2

s2. ~8!

The beam half-width from the axis to the normalized amp
tude â is

n~s!56S LM
2 1S s

pLM
D 2D 1/2F2 log~ â!

2 logSAAs21~pLM
2 !2

pLM
2

D G 1/2

. ~9!

The first expression on the right side represents the hy
bolic spreading of the beam half-width corresponding to
amplitude of 1/e. The first term in the square brackets mod
fies the 1/e half-width to the half-width at the normalize
amplitude. The second term in square brackets allows for
decay in amplitude along the beam axis. For a fixed distan
s, the term in square brackets varies much more slowly w
respect to the waist half-width, than the preceding hyperb
spreading term. The waist half-width which gives the n
rowest beam in terms of half-width@Eq. ~6!# also gives the
narrowest beam in terms of constant amplitude. The be
half-width to the normalized amplitude can then be e
pressed as a function of the propagation distance,Smax,

n~s!56S Smax
2 1s2

pSmax
D 1/2F2 logS âAASmax

2 1s2

Smax

D G 1/2

.

~10!

To compute parameters for the optimum beam it is c
venient to work in beam coordinates,~s,n! @Fig. 2~b!#. The
beam shape is defined by the locus of points at the amplit
threshold,âT . The beam half-width, from the axis to th
amplitude threshold, isnT(s). The angle that the beam ax
makes with the virtual interface is the grazing angle,c. The
initial and final beam half-widths,nT(0) andnT(Smax), are

nT~0!56ASmax

p
~2 log âT!,

~11!

nT~Smax!56A2Smax

p
~2 log âT2 logA4 2!.

Now tan c is the sum of these initial and final beam ha
widths divided by the propagation distance,Smax @Fig. 2~c!#.
So for a given grazing angle and a given incident amplitu
threshold, the propagation distance for the optimum Gau
ian beam can be obtained,

Smax5

FA2 log âT1A2~2 log âT2 logA4 2!G2

p tan2 c
. ~12!

OnceSmax is determined, the waist half-width is obtained b
~6! and the beam shape is defined by~3!. The footprint on the
virtual interface,f, is

f 5
Smax

cosc
. ~13!
1098R. A. Stephen: Optimum beam widths
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ing angle for amplitude threshold values of220 and
240 dB. Using minimum footprints is particularly im
portant at low grazing angles where the footprint si
exceeds 100 wavelengths. At higher grazing angl
where the optimum footprint size goes to zero, oth
issues may constrain the footprint size. For example
may be necessary to have a sufficiently large numbe
scattering elements on the interface to adequately r
resent the statistical distribution of scatterers. Sin
angle spread increases with decreasing beam w
widths, defining the beam in terms of grazing angle a
acceptable angle spread may be more useful.
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The center of the beam waist in~x,z! coordinates, (xp ,zp) is

xp52nT~0!
cosc

tanc
, zp52nT~0!cosc, ~14!

Footprint sizes as functions of grazing angle for the o
timum Gaussian beams are shown in Fig. 3 for incident a
plitude thresholds of220 and240 dB. For thresholds les
than 220 dB, footprints greater than 130 wavelengths
necessary for grazing angles less than about 10°. For thr
olds greater than240 dB, at grazing angles near 50° th
footprints drop below about 10 wavelengths. At grazi
angles greater than 50° there will be criteria other than be
spreading which control the footprint size. For example, o
needs a footprint sufficiently large that there will be enou
scattering elements to adequately represent a particular
nomenon. Since angle spread increases with decrea
beam waist widths, defining beams in terms of grazing an
and acceptable angle spread may be more useful.

III. EXAMPLES AND DISCUSSION

As an example of an optimum Gaussian beam, cons
a 400 Hz beam insonifying a surface at 10° grazing angle
water~velocity of 1500 m/s, density of 1000 kg/m3! ~Fig. 4!.
This is similar to the incident field used in Test Case 1
Thorsos ~1996! which was generated by a vertical arra
Gaussian beams for Test Case 1 are also discusse
Stephen~1996!. Figure 5 shows the projection of the incide
optimum Gaussian beam on the surface for an incident
plitude threshold of240 dB. The footprint size is 1023 m
1099 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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~273 wavelengths! compared to the 750 m~200 wavelengths!
footprint used in Test Case 1. Figure 6 shows the co
sponding grazing angle across the surface. Even though
nominal grazing angle was 10°, the actual grazing angle v
ies from about 7 to 10.5°. The angle spread for the optim
Gaussian beam of 3.5° is narrower by about 1° than the a
spread for the beam used in Test Case 1. The waist h
width of the optimum beam is 34.68 m and is considera
wider than the half-width of the vertical taper used in Te
Case 1, 27.55 m. The depth of the midpoint of the wais
also deeper, 73.30 compared to 66.12 m.@The ‘‘optimum
Gaussian beam’’ discussed in Stephen~1996! was based on
slant range, rather than the amplitude threshold criteria
fined in Eq.~12!. This gave a more meaningful compariso
with the other beams discussed in that paper but was no
rigorous in terms of incident amplitude constraints.#

In some formulations of the scattering problem~Hast-
ings et al., 1995; Thorsos, 1988, for example!, the incident
field is ‘‘layed-down’’ on the scattering surface, rather th
propagating the incident field up to the scattering surfa
The scattered fields are compared with theoretical results
incident plane waves. Gaussian tapers, however, are use
the mean scattering surface to truncate the domain, and
incident field in the medium adjacent to the scattering s
face is undefined and could be quite complicated. Comp
son with results from other methods, where it is impracti
to ‘‘lay-down’’ the incident field, would be difficult. In these
formulations, the optimum Gaussian beams defined h
would provide useful incident fields with simple and we
a-
ce
FIG. 4. As an example of an optimum beam calcul
tion, consider a 400 Hz beam insonifying a free surfa
at 10° grazing angle in water~velocity of 1500 m/s,
density of 1000 kg/m3!.
1099R. A. Stephen: Optimum beam widths
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for the example shown in Fig. 4 has a footprint of ov
1000 m for an incident threshold value of240 dB. If
beam spreading were ignored and geometrical op
was used to project the beam, the footprint size wou
be only 750 m. The projection of the Gaussian beam
the horizontal surface is asymmetrical because of be
spreading.
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defined propagation characteristics. In one example, H
ings et al. ~1995! for a rough sea surface with a grazin
angle of 10° used a footprint of 180 wavelengths and a h
width for the Gaussian taper of 40 wavelengths. The o
mum Gaussian beam with an incident amplitude threshol
236 dB has a footprint of 245 wavelengths and the pro
on the footprint has a half-width of about 54 wavelengths
is beyond the scope of this paper to investigate the nume
implications of using optimum Gaussian beams in th
methods, but it would be worth considering them. The op
mum beam profile could be used in these calculations w
very little additional computational effort. In addition to ha
ing the propagation of the incident field well defined, t
angle spread over the footprint would also be well defined
this case it is less than 3.5°.
1100 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000
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In a third example, Stephen and Swift~1994! use a
Gaussian pulse-beam as the insonifying field for seafl
scattering problems in a Numerical Scattering Chamber
ing time-domain finite-differences. Their footprint calcul
tions assume a uniform ‘‘channel width,’’ rather than a min
mum incident amplitude threshold. The optimum Gauss
beam, based on the peak frequency in pressure, for a gra
angle of 15° and an incident amplitude threshold of220 dB,
would have a waist half-width of 4.25 wavelengths located
~223.27,26.24!. The footprint would be only 58.9 wave
lengths compared to the 72 wavelengths used in the ea
study. The depth of the computational domain would n
change appreciably, but there would be a reduction in
length by 20% and computational time would be reduced
35% for the same problem. The divergence, caused by
am
ly
es
-

FIG. 6. Grazing angles for the optimum Gaussian be
in Fig. 4, with a nominal grazing angle of 10°, actual
vary from about 7.0 to 10.5°. Narrower angle rang
~less diffraction! can be obtained by using wider foot
prints.
1100R. A. Stephen: Optimum beam widths
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curvature of the phase fronts, of the optimum Gaussian b
would be about 5°.

In a Gaussian pulse-beam the various frequency com
nents of the beam will spread at different rates. For the sa
initial half-width and propagation distance~in meters, not
wavelengths!, lower frequency beams will spread mor
Table I shows half-widths and normalized amplitude thre
olds at the peak frequency and upper and lower half-po
frequencies for the time wavelet used in Stephen and S
~1994!. The table assumes a peak frequency of 10 Hz an
propagation velocity of 1500 m/s. At the lower half-pow
frequency the beam has spread 25% more, and the thres
amplitude at@Smax,nT(Smax)# is 37% greater than at the pea
frequency. If these discrepancies are judged to be signific
a more conservative value of the incident amplitude thre
old should be used in the beam design.

By considering Gaussian beams as the incident field,
gain some insight into the problem of backscatter in the li
as grazing angle goes to zero. It is challenging to imagin
plane wave incident on an interface at 0° grazing angle.
quite natural, however, to consider a Gaussian beam, suc
in Fig. 2~c!, propagating at 0° just above an interface with
particular incident amplitude threshold. The optimum be
notion, discussed above, would not apply, but the incid
field into the interface would consist solely of diffracted e
ergy from beam spreading. The insonified length betw
incident amplitude thresholds would still be bounded b
cause of decay in amplitude along the beam axis. Scatte
elements, either roughness on the interface or sub-bo
heterogeneity, would scatter a finite amount of energy b
into the upper medium in all directions.

Although in this paper we considered Gaussian beam
two-dimensional media, a similar approach can be take
obtain optimum beams for interface scattering problems
three dimensions using the formulas for three-dimensio
Gaussian beams~Červený, 1985, Sec. 9; Pott and Harris
1984; Wang and Waltham, 1995; Zeroug and Felsen, 19
for example!.

IV. CONCLUSIONS

In applying cw Gaussian beams to seafloor scatte
problems there are optimum beam parameters which m
mize the size of the scattering region on the interface. Fo
given footprint size, these optimum Gaussian beams have
most uniform half-width and the least angle spread across
footprint. The optimum beam parameters are constrained
the angle of incidence and the incident amplitude thresh
In finite bandwidth, pulse-beam problems, standard be

TABLE I. Frequency effects on beam parameters.

At s50: L(0)-meters â(0,nT(0))
Peak frequency~10 Hz! 638.1 0.1000
Upper half-power frequency~13.6 Hz! 638.1 0.0707
Lower half-power frequency~6.8 Hz! 638.1 0.0707
At s5Smax: L(Smax)-meters â(Smax,nT(Smax))
Peak frequency~10 Hz! 902.4 0.1000
Upper half-power frequency~13.6 Hz! 792.8 0.0402
Lower half-power frequency~6.8 Hz! 1132 0.1373
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can be defined by applying the optimum beam parameter
the peak or center frequencies. By using optimum Gaus
beams investigators can minimize and standardize the pr
gation effects in beam scattering problems.
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