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An explicit second-order finite-difference scheme has been used to solve the elastic-wave 
equation in the time domain. Solutions are presented for the perfect wedge, the lossless 
penetrable wedge, and the plane parallel waveguide that have been proposed as benchmarks by 
the Acoustical Society of America. Good agreement with reference solutions is obtained if the 
media is discretized at 20 gridpoints per wavelength. There is a major discrepancy (up to 20 
dB) in reference-source level because the reference solutions are normalized to the source 
strength at 1 m in the model, but the finite-difference solutions are normalized to the source 
strength at I m in a homogeneous medium. The finite-difference method requires 
computational times between 10 and 20 h on a super minicomputer without an array 
processor. The method has the advantage of providing phase information and, when run for a 
pulse source, of providing insight into the evolution of the wave field and energy partitioning. 
More complex models, including velocity gradients and strong lateral heterogeneities, can be 
solved with no additional computational effort. The method has also been formulated to 
include shear wave effects. 

PACS numbers: 43.30.Bp 

INTRODUCTION 

In order to test various numerical schemes for range- 
dependent problems in ocean acoustics, the Acoustical So- 
ciety of America has defined a set of benchmark models. 
These were established at the 1986 Fall meeting in Anaheim, 
and preliminary results were presented at the 1987 Spring 
meeting in Indianapolis. The models are presented by Jensen 
and Ferla. i 

In this paper, we give solutions to the benchmark mod- 
els using the finite-difference method applied to the two-way 
elastic wave equation. This code was developed to study 
strong scattering from rough liquid-solid interfaces and lat- 
eral heterogeneities beneath the searleor. 2-s It allows for 
multiple scattering, the effects of shear wave and density 
variations, and either pulse or continuous wave sources. The 
proposed benchmark models are purely acoustic; with no 
shear wave effects and hence are a subset of the class of mod- 

els that the code was intended to address. However, it is 
important that the method solve these problems accurately 
in order to demonstrate its validity for range-dependent 
proNems. Similar codes have already been tested for accura- 
cy for laterally homogeneous liquid-solid interfaces 2 and 
good results were obtained. The next step in the benchmark 
process will be to include shear wave effects in range-depen- 
dent models. 

I. THE FINITE-DIFFERENCE METHOD 

A. The wave equation and differencing scheme 

We solve the two-way elastic wave equation for 
compressional and vertically polarized shear waves (P-SV) 
in two dimensions that can be written as a hyperbolic system 
of coupled equations, in Cartesian coordinates (x,z): 

•U x C•t z 
= (x + + (1) 
= A. 8u• r= (A + 2p)•+ Ox ' 

{ Ou. Ou,• 

where (u•,u=) is the pa•icle-displacement vector, r• and 
r= are nomal stresses, and r• is tangential strew. The den- 
sity (p) and •m•'s parletern (g and •) are functions of 
r•ge (x) and d•th (z). In cylindd•] coordinat• (r•), 
the equations b•ome 

(2) 

Stephen 6 reviews many approaches to taking finite dif- 
ferences of the system (2). For liquid-solid interfaces the 
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scheme of Madariaga 7 and Virieux s is promising both for 
stability and accuracy. They solve the equivalent first-order 
system to Eq. ( 1 ) or (2) in terms of particle velocity and 
stress. The five (or six) field variables 
(3u,/`gt, Ouz/&, r,•,rz•,r,•) and three independent vari- 
ables (p,g,p) are defined on a staggered grid as in Fig. 1. In 
order to reduce memory requirements, we solve Eqs. (1) 
and (2) directly for displacement. We only save the two 
particle displacements at each grid point but compute the 
next time step using stress as a temporary, intermediate vari- 
able. We then use traditional, centered, finite differences. 
For example, consider the first equation in system ( 1 ): 

P ̀ gt • `gx + `9z 
For accuracy and stability, all terms of the equation 

should be defined at the same point in space and in time: 

`9 eu x 
p-•-t2 (m,n,k) mp(rn,n){ [ux (rn,n,k + 1 ) - 2u•, (m,n,k) 

+ u•(rn,n,k - 1) ]/At 2}, (3) 

_•X.(m,n,k) _rxx (m + 1/2,n,k) --r,= (m- 1/2,n,k) Ax ' 

`gr,%(rn,n,k ) • r,• (m,n + 1/2,k) -- rx• (m,n -- 1/2,k) 
Oz Az 

[ We assume here that Ax, Az, and At are the grid increments 
in range, depth, and time and that tn, n, and k are the corre- 
sponding indices, i.e., u(rn,n,k) = u(mAx, nAz, kAt).] If 
vertical and horizontal displacements are known at present 
and past time steps (k and k- 1 ), then Eqs. (3) can be 
solved explicitly in the time domain for the displacements at 
the future time step (k + 1 ). 

Also, to improve efficiency, for the models shown here, 

ml 

n+l/• *- .... •- .... 2 

m-1/2 

In m 

m+1/2 

n+l 

•u,p 

lw, p 

FIG. 1, Horizontal and vertical displacements (u,uJ), elastic parameters ( 
/•, and ,• + 2/x) and density (p) are defined at locations offset by halfa grid 
interval from one another as shown. This offset leads to a stable finite-differ- 

ence scheme based on second-order-centered finite differences that has fa- 

vorable dispersion properties over a wide range of Poisson's ratio. 

we have removed the terms that are dependent on shear 
modulus (the shear-wave velocity and tangential stress). 
Equations ( 1 ) and (2) then reduce to acoustic-wave equa- 
tions with range- and depth-dependent compressional wave 
velocity and density. 

We compute pressure (p) from displacements using 

.= (4) 
for Cartesian coordinates, and 

for cylindrical coordinates. 

B. Geometry 

Depending on the application, we can use either Carte- 
sian coordinates or cylindrical coordinates. Because of the 
symmetry assumed to reduce the above systems [Eqs. ( 1 ) 
and (2) ] from three dimensions to two, an omnidirectional 
source in Cartesian coordinates is actually a line source 
along they axis and any range-dependent structure in cylin- 
drical coordinates will wrap around the axis of symmetry 
like an annulus. In cylindrical coordinates, the point source 
must be on the axis of symmetry. Otherwise, it would repre- 
sent a "ring" or "doughnut" source. So, an omnidirectional 
source in cylindrical coordinates (on the axis of symmetry) 
is solving a full three-dimensional problem for a point source 
with cylindrically symmetrical range-dependent structure. 
An omnidirectional source in Cartesian coordinates is solv- 

ing either the line source problem in three dimensions or the 
point source problem in two dimensions. In either case, there 
is inherent dispersion in the solution and waveforms distort 
with range even for perfectly elastic, homogeneous media. 
This inherent dispersion should not be confused with the 
grid dispersion of finite-difference schemes discussed further 
below. 

C. Initial and boundary conditions 

For the models presented here, the initial conditions are 
zero displacement and velocity everywhere on the grid. 

The top boundary is a free surface of a liquid 
(• = r• = 0). This is simulated by introducing an imagi- 
nary row along the top of the finite-difference grid at n ---- 1. 
The free surface is at n = 2. The horizontal displacement at 
the free surface is set identically to zero [ u, (m,2,k) ----0 ] and 
the vertical displacement at the imaginary row is set equal to 
the vertical displacement just below the free surface 
[u•(m,l +-•,k) = u•(m,2 + «,k)]. These conditions as- 
sure that the stress will vanish. 

The left-hand edge for the models in Cartesian coordi- 
nates is an absorbing boundary based on the second-order 
scheme of Clayton and Engquist. 9 It takes a paraxial approx- 
imation normal to the boundary in order to predict what the 
displacements will be on the left edge. For the models in 
cylindrical coordinates, the left-hand edge is an axis of sym- 
metry. 

The right-hand edge for the models in both coordinate 
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systems is an absorbing boundary based on the second-order 
scheme of Clayton and Engquist 9 as above. 

We normally use the same paraxial approximation 
scheme at the bottom boundary of the grid. However, at the 
long time intervals required for some of the benchmarks, this 
scheme was unstable. We used instead an absorbing region 
50 grid points deep in which we solved the "telegraph" equa- 
tion. •o.•.• This attenuates the energy with an operator based 
on the first-time derivative. For example, the left-hand side 
of the first equation in system ( 1 ) becomes 

/ c92ux a c•u• • (6) 
In order to prevent reflections from this region, we increased 
the attenuation parameter, (a), gradually with depth ac- 
cording to the function: 

• • O, Z • Zre f 

=a•q- (a2--a•)(cos[/r(1 q-a3)] q- 1), z>zre e, 
(7) 

where a• = 0.001, a 2 = 0.025, a 3 = (z - Zre r)/(2ma x 
- Zref), Zra is the top of the absorbing region and Zmax is the 
bottom of the grid. 

For sharp boundaries within the grid, we did not specifi- 
cally code boundary conditions. The effects of the boundary 
can be adequately treated by the implied derivatives of the 
medium parameters in Eqs. ( 1 ) and (2). This is important 
for further applications of the method where boundaries of 
arbitrary shape could be introduced. If boundary conditions 
were specifically coded, the code would change depending 
on the shape of the boundary. 

D. The source 

The source is introduced into the grid as horizontal and 
vertical forces. •2 Previous applications of the code used 
pulse sources in order to study multipathing and scattering 
in sea bottom structure. Continuous wave sources are used 
in the benchmarks, and these were synthesized by using a 
continuous wave as the source function and running the 
code long enough that steady state was reached at all of the 
receivers. Obviously, this is a cumbersome way to solve a 
continuous wave problem. However, it has the advantages 
(i) of automatically including phase information (not as- 
signed for the benchmark problem) and (ii) of being able, 
with the same code, to run a pulse source and to track the 
energy partitioning as a function of time in the model. 

In order to calibrate the propagation loss curves for 
source strength, we ran a homogeneous model for both the 
Cartesian and cylindrical geometry codes. We then comput- 
ed the power at a line of receivers away from the source in the 
same fashion as for the benchmark models. These power-loss 
curves (power in dB versus the logarithm of the range) * were 
then extrapolated back to a range of 1 m to get the reference 
source strength. (These curves were linear with slopes of 
-- 10 dB/log r and -- 20 dB/log r for Cartesian and cylin- 
drical geometry, respectively.) The power results for the 
benchmark models were then corrected for this value to get 
loss in dB relative to the source strength at I m. 

E. Stability and dispersion 

Virieux 8 gives a necessary stability criteria for the 
scheme outlined above. For a given space increment (Ax), 
the time increment (•xt) must satisfy 

Ax 
/Xt( (8) 

where Vpmax is the maximum compressional wave velocity 
in the model. This relationship is based on analysis of the 
scheme for homogeneous media. However, the stability con- 
dition for homogeneous media is only a necessary condition 
for heterogeneous media. 6 Sufficient conditions for hetero- 
geneous media are not known. Some codes are unstable for 
heterogeneous media even though the stability criteria for 
homogeneous media is satisfied locally. Tests of this scheme 
indicate that it is stable over a broad range of contrasts in 
Poisson's ratio at sharp, rough interfaces. 

Stability at absorbing boundaries is another issue that is 
not well understood. The absorbing boundary formulation 
based on the paraxial approximation used above absorbs the 
initially incident compressional and shear waves. However, 
if run to sufficiently long times, as was required for these 
benchmark models, instabilities arose at the boundaries and 
rendered the results unusable. The combination of a paraxial 
approximation on the right-hand edge, and a telegraph equa- 
tion region along the bottom boundary has given acceptable 
results for these models. 

Any finite-difference scheme has numerical dispersion 
in which velocity across the grid becomes frequency depen- 
dent. Because the effective grid spacing normal to a wave- 
front varies with direction, the grid dispersion is anisotrop- 
ic.12'13 The effect of grid dispersion introduces inaccuracies 
in the results. Analysis of the grid dispersion for the above 
scheme in homogeneous media 8 shows that: (i) the disper- 
sion relation for P waves is independent of Poisson's ratio; 
(ii) the numerical Swave always travels slower than the true 
S wave; and (iii) grid dispersion for S waves does not de- 
grade as Poisson's ratio approaches 0.5 (very slow S waves). 
For acceptable grid dispersion, there should be at least ten 
grid points per wavelength. In previous work, we have found 
this acceptable for models out to 100 wavelengths. For the 
models shown here, we used 20 grid points per wavelength. 
Grid dispersion yields progressively less accurate results as 
the wave propagates to longer times and ranges. For the 
benchmark models, we ran the code to longer durations than 
usual to get the steady-state continuous-wave response and 
thus required more dense sampling. Even finer grid spacing 
may improve the accuracy for some models, but this was not 
carried out in this study. 

F. Attenuation 

It is difficult to obtain a stable formulation in the time 
domain for the wave equation with general frequency-de- 
pendent attenuation. TM However, the telegraph equation, 
used for the bottom boundary, does have a stable formula- 
tion. For the continuous wave problem posed in the bench- 
marks, we can introduce attenuation into the bottom by us- 
ing the telegraph equation with the appropriately selected 
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parameter a. For a homogeneous, acoustic medium with 
attenuation, system ( 1 ) and relation (6) reduce to the tele- 
graph equation for pressure (p): 

02P + a Jp = c2V•p, (9) 
Ot 2 Ot 

where c = (A/p) [/2. Ifa is small, the solution to this equa- 
tion is exp[ -- ar/(2c) ]g(r -- el) which is a damped, travel- 
ing wave as required. The coefficient a in this equation is 
related to the quality factor Q and the amplitude decay per 
wavelength by 

ct = ro/Q = - 2flog[œ(r + A )/p(r) ], (10) 

wheref is frequency, ,[ is wavelength, log is the natural loga- 
rithm, and re -- 2rrf. So, for continuous wave problems and 
small attenuations, we can use the telegraph equation to in- 
troduce attenuation into the finite-difference code. 

IlL BENCHMARK RESULTS 

A. The wedge with a pressure-release bottom 

The geometry for the wedge models is shown in Fig. 2. A 
25-Hz continuous wave source is located at zero range and 
middepth in 200 m of water and the bottom shallows at a 
slope of I in 20 up to the apex at 4 km. Horizontal arrays of 
pressure receivers are located at depths of 30 and 150 m. 

This problem is particularly challenging for a numerical 
scheme because of the highly oscillatory nature of the propa- 
gation-loss curve. The separation between minima in the 
curve is about 40 m and the wavelength of 25-Hz sound in 
water is about 60 m. So the propagation-loss curve, the am- 
plitude envelope of the wave field, oscillates more in space 
than the free-space wave field itself. In the context of finite 
differences, we normally sample at 10 grid points per wave- 
length but in order to sample this solution adequately, we 
used 24 grid points per wavelength. 

For the bottom of the wedge, we set the parameters on 

the Cartesian grid to represent the sloping bottom stepwise 
(Fig. 3). By sampling the grid finely enough, we should ob- 
tain the solution for the actual sloping bottom case. The ef- 
fect of the free surface at the bottom was simulated by setting 
the compressional wave speed to zero, and holding the den- 
sity constant at those grid points below the stepwise inter- 
face. [The acoustic wave equation in terms of displacement 
isp/i/= r•i J and, r, = Aujj where uj is thejth component of 
displacement and ra is the principle normal stress (shear 
stresses being zero). Setting velocity (A/p) ]/2 equal to zero 
and holding density constant, sets ra to zero by default since 
A is automatically zero. ] 

Our code is based on a time-domain solution to the wave 

equation. In order to solve the continuous wave problem, we 
start a sine wave at the source location and carry out the 
computations until steady state is reached at the receiver 
points of interest. Figure 4 shows how the time series at the 
horizontal line of receivers evolve. The onset of the wave 

field propagates up the wedge and reflects back down, gener- 
ating the complex interference pattern. Once steady state is 
reached at a receiver, we compute the propagation loss by 
taking the root mean square of the amplitude values for pres- 
Sure for four cycles and dividing by the normalization factor 
for the source strength. 

The results for the wedge with a pressure-release bottom 
are compared with the COUPLE (two-way) solution [ in 
Fig. 5. There is an obvious offset in the reference level. In the 
COUPLE (two-way) solution, the reference level was cho- 
sen at 1 m from the source in the actual wedge model. (It is 
not clear how this was obtained since the COUPLE results 

were inaccurate at less than 100 m.) In the finite-difference 
solution, the reference level was chosen at I m from the 
source in a homogeneous medium. Since the grid spacing 
was 2.5 m and the field was oscillating rapidly, we had no 
way of directly computing the field at I m for the wedge 
model. For many applications, the source strength in homo- 

200 m 

FREE SURFACE 

4.0 Km 0.0 Km I I I I 

'"t ............. ?'?"-'-'"" ......... ..................... 100 m c I- 1.5 kin/s ........... • 
• 1.50 m ' • FREE SURFACE 

:"so• .... -...... . .•er•_Ls.u•...m._ :_w.•s. ......................... 
............. .2.:?.?.:. 

FIG. 2. The geometry for the wedge models is 
defined. 

Case I sm•s re.lea• on bottom - 

Ca• II 0 attenuation - ] Case It[ 1/2db/JL attenuafon - 

line souse in Cartesian co-ordinates (left boundary is a radiation condition) 

point source in cylindrical co-on:linatcs (sol lion for an invcned cone in 3-D) 
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FINITE-DIFFERENCE BOUNDARY 

62-0.0, P2- Iglcc 

50 m 

[• •.=60m 
n•ls•ansmission 

Io• 

FIG. 3. The detailed view of the bottom 

boundary of the wedge shows how the finite- 
difference grid approximates the sloping 
boundary stepwise. The wavelength (A) and 
the separation between nulls in the propaga- 
tion-loss curve for the perfect wedge (d) are 
shown for comparison. 

geneous media is more meaningful since it is independent of 
the model. It can be used to compare propagation-loss levels 
between models and also to compare modeling results with 
laboratory or field experiments. 

The general character of the two curves in Fig. 5 is simi- 
lar, but there are small offsets in the locations of the peaks 
and nulls. This could be due to the coarseness of approximat- 
ing the sloping bottom by a stepwise function (Fig. 3). The 
COUPLE solution used 500 steps over the 4 kms, but the 
finite-difference solution used only 80 steps. 

60- 

20- 

oo 

oo ,:o 2'o ;o ;.o 
t Range from Source {/•m,t 

• Perfect Wedge Receiver Depth 30m 

• ]" ' , i ,:]', '-' 20 'lll'•il'l • '1 lilltttlb,l•t ' •,:• 
'" ' • ,tll'..I ' ':i. ,-.,........I 

ø ,llll -' ' '1•" ";,:' ;.'.: ' I ::J:i:' c 30 

o•40 --, 
•0 F'nite Differences Coupl (2-way) 

1.0 

Time Series for Perfect Wedge Model Range (kin) from source 

lo• 1•,,• •t•,, •,•, ,.,•,• ,• . J 

• F• •b• ,•. l•,,,•, • •t .,, / 

.., g ao 1 • i!• ' 

5 • •.0 0.2 0.4 0.6 0.8 1.0 
Renge (kin) from source 

FIG. 4. This figure shows the time-domain response of the finite-difference 
solution for the line of receivers at 30-m depth. The 25-Hz continuous wave 
source is initiated and the resulting wave propagates up into the wedge and 
back again. The steady-state response was computed for a window just be- 
hind the retrograde line (labeled rms power). 

FIG. 5. Propagation-loss curves for the perfect wedge. (a) The benchmark 
solution and (b) an expanded view of the first 1.0 km. The upper curvc in 
each case is the COUPLE (two-way) solution of Jensen and Ferla* and the 
lower curve is the finite-difference result. The 20-dB offset in curves is due 

to a different definition of reference-source level in each case. The general 
character of the solution is similar but the specific location of peaks and 
troughs varies. 

1531 J. Acoust. Sac. Am., Vol. 87, No. 4, April 1990 Ralph A. Stephen: Benchmark: Finite-difference methods 1531 



The contoured field solution for this model (Fig. 6) 
ß shows more dearly the separation of the wedge into three 
regions, one region each corresponding to three-mode, two- 
mode, and one-mode propagation. As the wedge gets shal- 
lower, progressively fewer modes are supported by the wave- 
guide. 

B. Wedge with a lossless penetrable bottom 

The solutions in this case were computed in a similar 
fashion to the previous model. However, a point source in 
cylindrical geometry was employed. The problem corre- 
sponds to a point source over an inverted cone. Time and 
space increments were identical to the previous model, but 
total model dimensions varied. The left-hand edge is an axis 
of symmetry and the bottom and right edges are absorbing 
boundaries to handle the energy penetrating the bottom. 

The solutions are given in Fig. 7. Again, good agreement 
with coupled mode solutions (two-way) is obtained except 
for the reference level. The agreement is very good for the 
receivers at 30 m. The agreement is not very good at 3-km 
range for the lower level of receivers. The very low field 
values here are not well represented. Further study is re- 
quired to fully resolve this issue. 

The contoured field solution is shown in Fig. 8, and this 
also agrees quite favorably with the coupled-mode results 
(see Fig. 8 in Jensen and Ferla •). 

t•ANGE (•m) 

o I 

, 

3 

o0 
FIG. 6. Contoured-field solution for the perfect wedge. The top frame is the 
complete field and the lower frames show expanded views. The three re- 
gions of one-mode (2.2-3.4 km), two-mode ( 1.0--2.2 kin), and three-mode 
(0-1.0 kin} propagation can be identified. 

• 30 =(a) 
• Penetrable. Wedge 
• 40-f'. Receiver Depth 30m 
• • __ Finite Differences 
• 50 •. V ',, /_,, .... co•p•e (2 
v \ ...... , / ,, . ,•-', .- ........ '-. 

',,/ ,,, / ,,., ,, • 60 , , ' 

ß :"/' 
o_ 

Range (km) from source 

.• 30 t,03 ) Penet•'oble Wedge 
40 

• 5o 

o, 6o 
.õ 70 

o• 8o 

Q_ 

9%:0 

Receiver Depth 150m 

?• Finite Differences 

• • / • .... Couple (2-way) 
"\ I 

-'\ /., ..-_. /' 
v \ / \ ,,• \/ \•./ \ ,, 

1.0 2 0 3.o 4.o 

Ronge (kin) from source 

FIG. 7. Propagation-loss curve for the lossless penetrable wedge at (a) 30- 
m depth and (b) 150-m depth. The upper curve in each case is the COUPLE 
(two-way) solution of Jensen and Ferla • and the lower curve is the finite- 
difference result. The solutions at 30.m depth agree very well except for the 
offset in reference source level. The solutions at 150 m also agree well above 
70 dB but lower values are poorly represented by the finite-difference meth- 
od. 

F•ANGE (km) 

Lossless Penetrable Wedge 

FIG. 8. Contoured-field solution for the lossless penetrable wedge. Contour 
interval is 3 dB. The penetration of energy into the bottom as the modes 
cutoff is dearly demonstrated. The solutions agree well within the first 500 
m, where the lateral heterogeneity occurs. It is not clear why there are large 
discrepancies beyond this range. 
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C. Wedge with a Iossy penetrable bottom 

In order to introduce loss into the bottom, we tried the 
telegraph-equation approach as outlined in See. I(F) above. 
For a loss of 0.5 dB/wavelength, the attenuation parameter 
a would be -- 2.88 (for a Q of 54.6). We tried this, but the 
code was unstable at the water-sediment boundary. Since 
2.88 is not a small value, approximating attenuation using 
the telegraph equation is inappropriate. We conclude that 
this approach should not be taken for large attenuations. 

D. Plane-parallel waveguide 

The plane-parallel waveguide problem is defined in Jen- 
sen and Ferla. • The depth of the waveguide is 500 m. The 
sound speed varies in both range and depth within the wave- 
guide. The rigid-bottom boundary was simulated by keep- 
ing the displacements zero in the calculations. The source 
frequency is 25 Hz. The finite-difference solution for a 
source and receivers at 250-m depth is given in Fig. 9 for the 
omnidirectional point source case. 

The reference level of the two curves is within 5 dB in 

this case, and the solutions at less than 700 m are in very 
good agreement. However, beyond 700 m, the COUPLE 
(one-way) solution is oscillating much more rapidly than 
the finite-difference curve. The COUPLE (one-way) solu- 
tion used as the reference here included 17 source modes. 

The finite-difference solution agrees better with the COU- 
PLE (two-way) solution using 10 source modes given in Fig. 
B I0-A of Jensen and Ferla.• The actual analytical solution 
for this problem was not available at the time of submission. 
Since 24 grid points per wavelength should be adequate for 
this problem, we believe the finite-difference solution is cor- 
rect. We should run a finer grid spacing to confirm conver- 
gence. 

The contoured field solution for this problem is given in 
Fig. 10. 

III. COMPUTATIONAL PERFORMANCE 

The computational performance for the three models 
given in this paper is summarized in Table I. The perfect- 
wedge and plane-parallel waveguide models were run on a 
VAX 8800 with 48 Mbytes of random-access (primary) 

3o 
• Plane Parallel Wavegulde 

• [• Receiver Oepth 250m 

• 40 ! -- Finite Differences r•q •t • R, • .... Couple 

c 60 , , , ,, , 

g ' { , , 
o 70 

%'.o , .o 
Ronge (kin) from source 

FIG. 9. Pro•gafion-moss cu•c for the pm•c-•railel waveguide m•cl. 

FIG. 10. Contoured-field solution for the plane-parallel waveguide model. 
Contour interval is 3 dB. 

memory. They required 11 and 21 h of CPU time, respective- 
ly. We have run similar finite-difference codes on the Cyber 
205 and Cray-XMP supercomputers and obtained another 
factor of 15 improvement over the VAX-8800. So, we esti* 
mate that these jobs would run on the supercomputers in 40 
and 80 min, respectively. 

The penetrable wedge was run on a microVAX-II office 
computer with 16 Mbytes of random-access (primary) 
memory and required 240 h of CPU time. Although this is 
clearly not the optimal way to work, it does demonstrate that 
the code can run effectively on general desk-top computers. 
As configured, this job ran in the background for 10 days 
while other office work and smaller finite-difference jobs 
were run in the foreground during the day. Although not 
very efficient in terms of "turn-around" time, it is reasonably 
cost effective since the microVAX was office equipment jus- 
tified on the basis of an interactive work station. The ability 
to run large jobs in the background is an extra benefit at no 
additional cost. 

For the benchmark problems, we removed the shear 
modulus terms from the wave equation to improve perfor- 
mance. Models with shear wave effects in the bottom would 

require longer computational times than those indicated 
above. However, shear waves excluded, the models above 
could be made more generally complex without increasing 
computational time. For example, we could add vertically 
and horizontally varying sound speed and/or density in the 
water column, including high-velocity inclusions. We could 
add an arbitrarily rough seafloor to the models. We could 
introduce velocity gradients (vertical and/or horizontal) to 
the subbottom in the penetrable-wedge case. We could add 
statistically varying velocity and density in the seafloor to 
look at the effects of scattering due to heterogeneity. All of 
these additional complexities can be added without increas- 
ing the cost or run time of the calculations. 

IV. DISCUSSION 

The finite-difference solution to the two-way wave equa- 
tion provides good solutions to the acoustic-benchmark 
models. Although computationally more intensive than oth- 
er methods, it has the flexibility to handle more generally 
complex media including shear-wave effects in the seafloor. 
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TABLE 1. Numerical parameters and CPU times for benchmark solutions. 

Total range Total depth Total duration Virtual memory 
Test case Ar (m) Az (m) At (m/s) (m) (m) (s) No. ofstairsteps allocated (M/bytes) CPLI time Machine 

Perfect wedge 
I 2.5 2.5 1.00 4,762_5 215 6.25 80 5.46 I 1 h 3min VAX 880(I 

Lossless penetrable wedge 
2 2.5 2.5 1.00 4,125.0 500 6.25 80 10.63 239 h 16min. microVAX 

Plane parallel waveguide 
4a 2.5 2.5 0.83 5,000.0 500 3.33 N/A 13.02 20 h 52min VAX 8800 

The method also yields phase information for a given prob- 
lem and if run for a pulse source, shows the energy partition- 
ing of the wave field. Insight into the physical propagation 
effects can then be obtained, which is not offered by full 
continuous wave solutions. As yet, we have not implemented 
an effective way to handle large attenuations with the formu- 
lation, but the work of Day and Minster •4 describes a possi- 
ble solution. 

Since these models were run to longer times than are 
usually carried out, it may be necessary to go to finer grid 
spacings to obtain the best accuracy. Further computations 
should be carried out along these lines. Finer grid spacing 
would also represent the sloping bottom better in the wedge 
models. 

The inaccuracy at low-propagation loss for the lower 
line of receivers in the penetrable wedge model was surpris- 
ing. Further studies should be carded out to quantify this 
and minimize it. 

We regard the comparison of techniques for benchmark 
models to be an extremely useful process: (i) Relatively mi- 
nor coding errors can be detected and fixed; (ii) There is 
incentive to calibrate the code and produce output in a stan- 
dard format; (iii) Comparison of codes can be readily made 
in terms of versatility, accuracy, computational effort, etc.; 
(iv) We can identify the range of parameters over which 
acceptable answers can be obtained; and (v) it provides a 
framework within which further work can be defined. 
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