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ABSTRACT

This thesis studies the dynamics of a rotating compressible gas sphere, driven by
internal convection, as a model for the dynamics on the giant planets. We develop
a new general circulation model for the Jovian atmosphere, based on the MITgcm
dynamical core augmenting the nonhydrostatic model. The grid extends deep into
the planet's interior allowing the model to compute the dynamics of a whole sphere
of gas rather than a spherical shell (including the strong variations in gravity and the
equation of state). Di�erent from most previous 3D convection models, this model is
anelastic rather than Boussinesq and thereby incorporates the full density variation
of the planet.

We show that the density gradients caused by convection drive the system away
from an isentropic and therefore barotropic state as previously assumed, leading to
signi�cant baroclinic shear. This shear is concentrated mainly in the upper levels
and associated with baroclinic compressibility e�ects. The interior �ow organizes
in large cyclonically rotating columnar eddies parallel to the rotation axis, which
drive upgradient angular momentum eddy �uxes, generating the observed equatorial
superrotation. Heat �uxes align with the axis of rotation, contributing to the observed
�at meridional emission. We show the transition from weak convection cases with
symmetric spiraling columnar modes similar to those found in previous analytic linear
theory, to more turbulent cases which exhibit similar, though less regular and solely
cyclonic, convection columns which manifest on the surface in the form of waves
embedded within the superrotation. We develop a mechanical understanding of this
system and scaling laws by studying simpler con�gurations and the dependence on
physical properties such as the rotation period, bottom boundary location and forcing
structure.

These columnar cyclonic structures propagate eastward, driven by dynamics sim-
ilar to that of a Rossby wave except that the restoring planetary vorticity gradient
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is in the opposite direction, due to the spherical geometry in the interior. We fur-
ther study these interior dynamics using a simpli�ed barotropic annulus model, which
shows that the planetary vorticity radial variation causes the eddy angular momen-
tum �ux divergence, which drives the superrotating equatorial �ow. In addition we
study the interaction of the interior dynamics with a stable exterior weather layer,
using a quasigeostrophic two layer channel model on a beta plane, where the colum-
nar interior is therefore represented by a negative beta e�ect. We �nd that baroclinic
instability of even a weak shear can drive strong, stable multiple zonal jets. For this
model we �nd an analytic nonlinear solution, truncated to one growing mode, that
exhibits a multiple jet meridional structure, driven by the nonlinear interaction be-
tween the eddies. Finally, given the density �eld from our 3D convection model we
derive the high order gravitational spectra of Jupiter, which is a measurable quantity
for the upcoming JUNO mission to Jupiter.

Thesis Supervisor: Glenn R. Flierl
Title: Professor, Massachusetts Institute of Technology
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Chapter 1

Introduction

1.1 Motivation

The study of Geophysical Fluid dynamics (GFD) has evolved tremendously over the

past 60 years. Although not complete, we have today a good basic understanding of

many of the physical processes governing the dynamics of Earth's oceans and atmo-

sphere. Many of the unresolved complexities come from the complicated interactions

with continental boundaries, ice, topography, ocean bathymetry, and air-sea interac-

tions. The giant planets which are mainly homogeneous �uid objects do not have

many of these complexities and, due to their fast rotation and large scales, could be

considered as �ideal� GFD objects. Yet, much of the dynamics on these objects are

still poorly understood. These planets reveal some of the most striking dynamical

phenomena in the solar system such as intense multiple jet streams and long-lived

Earth-sized storms. Therefore studying of the dynamics of the giant planets brings

opportunity for understanding how such deep atmosphere may work and gives a crit-

ical insight to our understanding of basic GFD phenomena.

1.2 The Atmospheres of the Giant Planets of the

Solar System

The four outer planets of the solar system are mainly �uid objects. Due to the light

elements constituting these planets they do not condense at solar system temperatures

and therefore do not have a solid surface; rather their atmospheres are deep and merge
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smoothly with the planet's �uid interiors. Despite their size they all rotate faster than

Earth, and all have latitudinal banding and high-speed jet streams. Weather patterns

have a time-scale ranging from weeks to centuries, and internal heat sources, due to

gravitational contraction, are big and comparable in strength to the external heating

from the sun. Even Uranus, whose rotation axis is tipped in 98o relative to its orbital

axis, still exhibits many of the same phenomena. Here we review the characteristics

obtained by observations of the atmospheres of Jupiter, Saturn, Uranus and Neptune.

1.2.1 The Wind Structure

Zonal Jets: The dominant feature on all the outer planets are strong zonal jets.

Both Jupiter and Saturn have strong prograde eastward equatorial jets around the

equator with weaker multiple east-west zonal jets away from the equator in each

hemisphere. On Jupiter the equatorial superrotating region extends 17� in latitude

north and south of the equator (Figure 1.1), with a maximum wind speed of 140m=s,

whereas on the Saturn wind speed of the equatorial eastward jet reaches 400m=s near

the equator, and the equatorial superrotation extends roughly 30� north and south of

the equator. The Jupiter superrotating equatorial jet has two peaks located 8� o� the

equator in both hemispheres with a 30% dip in zonal velocity from maximum values

at the equator itself. Wind speed measurements are made in reference to system III,

a uniform rotation rate which is de�ned by radio emission measurements that are tied

to the magnetic �eld which is presumably aligned with the bulk interior.

Beyond the equatorial eastward jet, Jupiter has at least six more pairs of east-west

zonal jets in each hemisphere with winds with a maximum of 30 � 50m=s , includ-

ing one stronger jet at 24N with an eastward wind reaching 130m=s . Most jets on

Jupiter have the character of a sharper eastward than westward jet, which may be a

consequence of the barotropic stability limit and associated with the positive plan-

etary vorticity gradient (see discussion in section 7.6). Until the Cassini spacecraft

observations (Porco et al., 2003) it was thought that Jupiter's jets extend only up to

midlatitudes, but these observations con�rmed that the jets extend (though weaker

than in the low latitudes), all the way to latitude 80� in both hemispheres. In the

high latitudes however, the zonal jets are not associated with cloud bands.

Wind velocities are deduced from cloud tracking and therefore the assumption

that clouds are passive tracers of the wind is inherent to these wind measurements.
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The lack of topography and the longevity of the cloud features on Jupiter are factors

that should reduce the uncertainty of these measurements. Nevertheless, if the cloud

brightness or contrast is correlated to the dynamics, results might be biased (Vasavada

and Showman, 2005). Observed streamlines seem not to overlap (Ingersoll, 1990) so

the observed features seem to represent a single layer near the top of the clouds. Over

the past 40 years of modern measurements, Jupiter's zonal wind pro�le has remained

nearly constant. The only signi�cant change was a decrease of 40 � 50m=s in the

eastward jet near 24N (Simon, 1999). Smaller changes have been detected near the

equatorial region and near the jet at 50N.

Jupiter Saturn Uranus Neptune

Equatorial radius (103 km) 71.74 60.27 25.56 24.76

Oblateness (% (Re �Rp)=Re) 6.5 9.8 2.3 1.7

Mass (1026 Kg) 18.99 5.68 0.86 1.03

Mean density (Kgm�3) 1330 700 1270 1760

Sidereal day (hr:min) 9:55 10:39 17:14 16:06

Solar distance (AU) 5.2 9.5 19.2 30.1

Sidereal period (years) 11.9 29.5 84 165

Obliquity 3� 27� 98� 29�

H-He fraction of mass 99.99 99.8 98.4 97.9

Equilibrium radiating temperature (K) 110 82 58 47

Solar Flux Wm�2 50.66 14.99 3.71 1.51

Emitted/absorbed �ux ratio 1.67 1.78 1.06 2.52

Tropopause height (mb) 140 60 100 50

Equatorial jet velocity (m=s) 140 275-400 -200 -400

Number eastward jets over 10% of eq. jet 13 6 2 2

Table 1.1: Properties of the giant planets of the solar system (Irwin (2003), or given
in text).

Saturn has a much more subdued appearance than Jupiter due to being masked

by tropospheric and stratospheric haze associated with ammonia condensation. Yet,

its atmosphere is even more energetic than Jupiter's. The wind structure is dom-

inated by the wide equatorial jet which unlike the Jupiter case has gone through

some signi�cant variations between the Voyager (1981) and the Cassini (2005) ar-

eas. Voyager measurements (Ingersoll et al., 1984) have found the equatorial jet to

reach 470m=s, while more recent cloud tracking by Hubble space telescope during the

period 1996-2004 showed a decrease in the intensity of the equatorial jet to 275m=s

(Sánchez-Lavega et al., 2003). Measurements by the Cassini spacecraft in 2004 (Porco

21



et al., 2005) have esstimated the equatorial jet to be between 250m=s to 400m=s. A

possible reason for the variation over time is the fact that the obliquity on Saturn is

26:7�, and therefore seasonal changes, including the signi�cant variation in insolation

due to the shadow of the rings, may have caused these changes. The high latitude

jets, however, have been persistent over this period with three distinct eastward jets

(center latitudes higher than 45�) in each hemisphere, all with maximum wind speed

over 100m=s (Figure 1.1).

The ice giants Uranus and Neptune are di�erent than Jupiter and Saturn. Their

hydrogen-helium atmosphere is only a small component of their mass which is mostly

composed of a large ice-rock interior. The denser ice-rock interior is estimated to

occur roughly 5000 km below the cloud level (Irwin, 2003). Unlike the gas giants

the ice giants have retrograde winds at the equator. The mean wind pro�les of both

planets are smoother than the gas giants with a westward broad jet at low latitudes,

and an eastward jets at high latitudes. The equatorial subrotating jet on Uranus

reaches 200m/s at the equator and spans 25� degrees in latitude in each hemisphere,

and the southern eastward jet peaks at 60S with winds of 200m=s (Smith et al., 1986)

as well. Because of Uranus's large obliquity and length of year, we still have not had

a chance to observe its northern hemisphere with modern technology. Neptune has a

stronger and wider subrotating jet reaching a zonal velocity of 400m=s and two high

latitude jets (250m=s at 70�)(Conrath et al., 1989). The signi�cant di�erence in the

equatorial jet between the ice giants and gas giants may indicate a relation between

the interior structure to the zonal winds. In fact in some ways it is easier to see how a

retrograde jet is driven rather than a prograde jet: Hot air rising initially at rest from

the interior has less angular momentum due to being closer to the rotation axis and

therefore will tend to go westward at the surface. Similarly fast rotating equatorial

air at the equator will acquire additional eastward momentum as it moves poleward.

As we discuss in this work, a mechanism for superrotation is more complex.

Vertical wind structure: There has been only one direct measurement of the

vertical structure of any of the planets. The Galileo probe descended into Jupiter's

atmosphere and returned data until it reached a depth equivalent of 24 bars. The

probe entered inside the equatorial jet at latitude 7:4N where the eastward wind

velocity at 0:4 bars was 90m=s (Atkinson et al., 1997, 1998) which was similar to

the wind velocities previously inferred from cloud tracking (Limaye, 1986). The wind

increased down to a level of 4 bars reaching 180m=s, and then remained constant for
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as far as the data could be retrieved at the 24 bar level. This result is often used as

evidence that the winds are deep, though one should remember that beyond the point

that this is just a single measurement, the data only accounts for a depth of 150 km

which are no more than 0:22% of the radius of Jupiter. In addition the probe entered

in a �hot-spot� (the equatorial zone is punctuated with 10-13 such 5�m spots (Ortiz

et al., 1998)), which may have anomalous dynamics because of non-zonal motions

that have been associated with them (Vasavada et al., 1998).

Other than this measurement, vertical wind structure has been deduced from the

horizontal temperature gradient using the thermal wind relation. This technique is

very limited due to the observations being only of the higher levels. Based on thermal

wind observations of air temperatures from less than 0:1 bar to � 1bar Pirraglia et al.

(1981) suggest that the jets decay with height above the cloud level (Conrath et al.,

1981). Gierasch (1976) suggests that thermal contrasts arising from latent heat release

during the condensation of water at altitudes of 5�10 bars can be large enough so that
through thermal wind balance the jets would not extend a depth of 10 bars (Ingersoll

and Cuzzi, 1969). Others suggest that due to the internal heating the atmosphere

below that cloud level is close to an isentropic state and then the jets extend to the

depth of the planet (Busse, 1976). We discuss these two approaches in greater length

in the next section.

Recently two strong convective outbursts that erupted 9 hours apart and lasted

two months were identi�ed near the peak of the 23N jet (Sánchez-Lavega et al., 2008).

They traveled at a velocity 169m=s which is stronger than the local jet velocity,

causing signi�cant mixing in their wake. The jet however remained robust against

the turmoil generated by the disturbance evolution. This may suggest that the jet

extends deeper below the upper clouds where the motions were measured.

Vortices: Besides the zonal jets the most prominent feature on Jupiter is the

great red spot (GRS). The GRS is an anticyclone extending 10:5 degrees in latitude

(centered at 23S) with an oval shape and a longitudinal extent of about 17000 km

(Simon-Miller et al., 2002). The maximum velocities of the GRS range from 120m=s

(Dowling and Ingersoll (1988), based on Voyager data) to 150m=s (Simon-Miller

et al. (2002), based on Galileo data). The maximum relative vorticity is 6E � 5 s�1

which is roughly one third of the planetary vorticity at that latitude. The center of

the vortex is found to be about 8K cooler than the surrounding cloud tops. Thermal

wind balance then implies that the wind speed should decrease with depth and then

23



Figure 1.1: The mean zonal velocity [m=s] as function latitude for Jupiter and Saturn
as measured by Voyager. Data is courtesy of A. Sanchez-Lavega, A. Showman and
A. Vasavada.

the GRS would be only 200 km thick. Records of the GRS go back as far as 1665

to observations made by Cassini (Cassini, 1672), indicating this anticyclonic storm

has probably existed for centuries. During the period 1880-2002 the GRS has moved

westward with an average speed of 3m=s and superimposed on this it oscillates 1� in

longitude every 90 days (Trigo-Rodriguez et al., 2000). There are many records (e.g.

Sanchez-Lavega et al., 1998) of interactions of the GRS with other vortices absorbing

part of them and expelling other parts.

Although the GRS is the largest and most sustained vortex on Jupiter, there are

many other vortices with diameter ranges of 1000 � 5000 km (Simon et al., 1998).

Typically the ones at high latitudes are smaller and rounder than the ones at low

latitudes. The transition from round to oval vortices occurs at diameters of� 2000 km

indicating that this scale might be where the vortices feel the e�ect of the planetary

vorticity gradient (Vasavada and Showman, 2005). In chapter 7 we use this scale

as the deformation radius in the two layer model. Over 90% of the vortices on

Jupiter are anticyclones. There is a broad literature on this subject and about the

possible preference for anticyclones (Flierl, 1987; Marcus, 1988, 1990; Dowling and

Spiegel, 1990; Yano and Flierl, 1994; Showman, 2004); in this work we do not discuss
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this issue. Interaction of vortices is often observed (Sanchez-Lavega et al., 2001), and

quasigeostrophic models have been successful in describing these interactions (Youssef

and Marcus, 2003).

1.2.2 The Thermal Structure

Temperature: Thermal infrared radiation measurements for all four giant planets

show a nearly uniform meridional thermal �ux pro�le. On Jupiter there are mea-

surements where the poles are even found to be slightly warmer than the equator

(Ingersoll, 1990), and Voyager found the poles of Uranus to be slightly colder than

equator although the poles receive more sunlight (Conrath et al., 1989) due to the

extreme obliquity. Radiation is emitted predominantly from the 0:3-0:5 bar pressure

level and e�ective temperatures are in average 124K, 93K, 59K and 59K for Jupiter,

Saturn, Uranus and Neptune respectively at that level. Variations from these mean

emission temperatures are mainly associated with the cloud structure and not with

the latitudinal location, although solar heating is latitudinally distributed based on

the season and obliquity.

All four planets have a clear tropopause at 140, 60, 100 and 50 mbar respectively

(beginning with Jupiter), which have temperatures of 110K, 80K, 49K and 50K re-

spectively (Bagenal et al., 2004). Below the tropopause the temperatures increase

generally following a nearly dry adiabatic lapse rate (Lindal et al., 1981; Sei� et al.,

1996). The stratospheric temperature in Saturn's atmosphere is generally lower than

in Jupiter's stratosphere as can be expected due to its further distance from the sun;

however, on Neptune the stratospheric temperatures are hotter than on Uranus. Only

Jupiter has good exosphere measurements reaching 1350K, 800 km above the 1 mbar

level (Sei� et al., 1997).

Energy balance: Measurements from bothGalileo and Cassini provide estimates

of the radiation at the upper atmospheres. Infrared radiation can not penetrate the

clouds and therefore the measurements re�ect the temperature of the upper part of

the atmosphere. All planets (except Uranus) radiate away more energy than they

absorb, implying an internal heat source. The radiation is also distributed more

uniformly than the absorbed sun light, which suggests that there must exists some

mechanism for meridional heat transport (Ingersoll and Porco, 1978). On Jupiter

the emission is mostly radiated in the infrared between 10 and 100 �m and has been
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estimated quite accurately. The observed energy is calculated by the incoming energy

from the sun and the albedo. This allows estimating the internal �ux from the core

(5:444�0:425Wm�2on Jupiter) (Hanel et al., 1981) and calculating the energy balance

de�ned as the ratio of emitted thermal to absorbed solar energy. On Jupiter this is

1:668 � 0:085; on Saturn 1:78 (Hanel et al., 1983) and on Neptune 2:3 (Pearl and

Conrath, 1991). The exception is Uranus where the internal heat �ux is much less

than the solar insulation and this ratio is 1:06 Pearl et al. (1990).

Thermal Waves: Several wave features have been discovered by the thermal

measurements on the giant planets. Flaser and Gierasch (1986), who used Voyager

images of Jupiter, discovered waves traveling within the equatorial superrotating jet

with wavelengths of 300 km. They suggested that these waves may indicate a stably

strati�ed layer beneath the clouds supporting the propagation of gravity waves. This

hypothesis was later supported by the Galileo entry probe (Sei� et al., 1997) suggest-

ing there is a stably strati�ed layer between 5 and 16 bars. Similar waves were later

also seen in the Galileo data, (Belton et al., 1996), and Bosak and Ingersoll (2002)

suggested that these waves are produced by Kelvin-Helmholtz instabilities. A much

clearer observation of these waves was recently obtained by the high resolution cam-

eras on the New Horizons spacecraft (Reuter et al., 2007). They �nd the waves to

persist around the planet and occupy a latitudinal region of 10� around the equator.

These waves have crests which extend further eastward at the equator than in higher

latitudes creating crescent shaped waves propagating eastward at a phase speed of

roughly double the local mean velocity. The phase speed for these waves is estimated

between 204 and 276 m/s (Reuter et al., 2007) while the local mean velocity from

cloud tracking both from New Horizons and HST measurements is 100m=s .

Larger, planetary scale waves have also been identi�ed on Jupiter. Wavenumber

10 waves were found at equatorial latitudes at depths between 270 mbar and 1 bar by

several authors (Magalhaes et al., 1989; Orton et al., 1994; Harrington et al., 1996;

Deming et al., 1997). The source of the waves is unknown and hypothesis range

from vertical propagation of Rossby waves (Orton et al., 1994) and mixed Rossby-

gravity waves (Deming et al., 1997), to connection with the plumes in the equatorial

�hot-spots� (Ortiz et al., 1998; Showman and Dowling, 2000) or association with

deep convective cells (Magalhaes et al., 1989). The near stationary appearance of

these waves with respect to system III implies possibly a dynamical link between the

interior bulk rotation of the planet (Irwin, 2003). Another interesting feature which
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was observed in stratospheric temperatures on Jupiter was a periodic 4 year variation

in zonal mean temperatures at 20 mbar (Orton et al., 1991). This feature which

has been continuously observed since 1978 takes the form of periodic warming of the

equator and cooling of the 15� � 30� latitude regions in both hemispheres, and then

cooling of the equatorial region and heating of the higher latitudes. There have been

attempts to link this oscillation to the QBO on Earth (Leovy et al., 1991), but the

precise identi�cation of this oscillatory behavior remains elusive.

1.2.3 Clouds

Jupiter's visual appearance is dominated by dark �belts� and brighter �zones� . Al-

though the general belt/zone structure appears to be very stable, the brightness,

latitudinal extent and presence of discrete features has varied signi�cantly over time

(Vasavada and Showman, 2005). The belt/zone structure is partially associated with

the wind structure, where the peak of the zonal velocities appears to happen on the

boundaries between the belts and zones. The zones are anticyclones, thus in the

northern hemisphere they have an eastward jet on its poleward side and a westward

jet on the equatorward side, and belts are cyclonic. The association between the

belts/zones and wind is less clear at high latitudes. The zones appear more uniform

and steadier in time than the belts, and clouds in them typically extend to higher

altitudes (a few hundred mbar) than in the belts . The origin of the colors and how

they respond to the winds is uncertain.

Chemical structure and Clouds: In all the outer planets the atmospheres are

composed mostly of molecular hydrogen and helium, with some heavier compounds

which vary between the four planets. The abundance of 'heavy' elements in the whole

planet is estimated to be 3 times the solar for Jupiter, 5 times the solar for Saturn and

increasing to 20�30 times solar for Uranus and Neptune. The atmospheres themselves

contain only a fraction of this, and the most abundant elements after hydrogen (H2)

and helium (He) are, in decreasing order, water (H20), methane (CH4), ammonia

(NH3), and hydrogen sulphide (H2S) (Irwin, 2003). The upper atmospheres are

cold enough so that some of these elements condense at various levels forming the

observable cloud decks. On Jupiter the visible clouds are usually ammonia colored

by sulfur, phosphorus and carbon compounds, and their top pressures are thought to

be in the range of 0:3 to 3 bars while their base at 5 to 15 bars.
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1.3 Previous Dynamical Models

Two general approaches have been taken to explain the strong zonal jets on the

Jovian atmospheres. The two emerged almost at the same time in the mid 1970's

after the �rst detailed observations were obtained by the �rst space missions. Busse

(1976), inspired by the Taylor-Proudman e�ect, suggested that if the �ow is deep and

extends all the way through the planet, then the jets may be the surface manifestation

of di�erentially rotating cylinders concentric with the planet's rotating axis. On

the other hand, geostrophic turbulence theory (Rhines, 1975, 1979), assuming the

dynamics are con�ned to an outer �weather layer�, suggests that the zonal jets emerge

from decaying or stochastically forced turbulence on a � plane. These two approaches

have been in debate ever since.

1.3.1 Shallow Models

The �rst to apply the �shallow� approach to Jupiter was Williams (1978, 1979) who

used both barotropic and baroclinic models to show that an imposed turbulent eddy

�eld can lead to an inverse energy cascade leading to jets on the order of the Rhines

scale. Other authors have studied zonal jets appearing from geostrophic turbulence

(Vallis and Maltrud, 1993; Cho and Polvani, 1996; Huang and Robinson, 1998; Man-

ifori and Young, 1999; Huang et al., 2001; Smith, 2003; Lee, 2004). Panetta (1993)

showed that jets can emerge from baroclinic instability in a two layer model which has

an imposed thermal gradient. This model allows transfer of energy from the upper to

the lower layer and results in an equivalent barotropic jet. These jets seem persistent

and stable, however they appear primarily when averaged, while the instantaneous

�elds are dominated by the eddies. Williams (2003) has produced jets in a baroclinic

primitive equation system on a sphere and shows that, depending on details of the

strati�cation and shear, the jets can migrate equatorward. Cho and Polvani (1996)

impose an eddy �eld in a shallow water layer on a sphere and show that the eddy �eld

evolves to a set of zonal jets at the lower latitudes, with an equatorial westward jet.

Using a barotropic vorticity model with small scale random forcing and large scale

friction Huang et al. (2001) and Galperin et al. (2001) suggest a scaling law to the

energy spectra of the jets and show (Galperin et al., 2001, 2006) that it matches the

spectrum of the observed jets on Jupiter. Smith (2003) shows multiple jets emerging

from stochastically forced QG turbulence in an equivalent barotropic system. Show-
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man (2007) show that shallow water simulations forced by mass pulses representing

episodic thunderstorms in the Jovian atmosphere (Ingersoll and Cuong, 1981) can

form equatorial jets (subrotating) and anticyclonic vortices at higher latitudes.

As applied to a gas giant's atmosphere, these shallow water or quasi-geostrophic

models have several �aws exempli�ed by comparison to Jupiter: �rst, the observed

winds violate the barotropic stability condition (Ingersoll and Cuong, 1981), thus

� � uyy < 0 at some latitudes, although the zonal winds appear to be very stable.

In contrast, all of the models produce curvatures uyy which are smaller than �, so

that the predicted jets are weaker or wider than the Jovian ones. Second, none

of these models can reproduce a superrotating jet at the equator. Some shallow

water models (Cho and Polvani, 1996; Cho and Polvani, 1996; Iacono et al., 1999a,b)

produce a westward retrograde jet, and typically the jets that are produced are not

much stronger than the eddy �eld. Third, these shallow models assume a boundary

at a depth of about one scale height, with the �uid below being motionless. But

the thermal wind shear observed on Jupiter (Conrath et al., 1981; Gierasch et al.,

1986) suggests that the �ows will extend deeper and may increase, rather than die out,

with depth. The Galileo probe showed this kind of velocity structure (Atkinson et al.,

1996), implying two separate regimes; an upper radiative regime (above 4 bars) and

an inner deep adiabatic regime below. Fourth, these models either require random

forcing or deal with decay of strong initial perturbations, leaving it unclear how such

a state can be maintained. The exceptions, Panetta's (1993) and Williams' (2003)

baroclinic instability models, require large-scale baroclinicity strong enough to satisfy

the Charney-Stern theorem, so that turbulence can be generated and maintained by

feeding on the available potential energy. But the observed global scale temperature

di�erences (Ingersoll, 1976; Hanel et al., 1981, 1983) seem to be much smaller. Finally,

for Jupiter, Saturn and Neptune the internal heat �ux is estimated to be as strong

as the absorbed heat �ux from the sun (Hanel et al., 1981, 1983; Pearl and Conrath,

1991); the shallow models do not attempt to account for the heat balance.

In Kaspi and Flierl (2007) (also chapter 7 of this thesis) we show that baroclinic

instability in a two layer quasigeostrophic model with the bottom layer having a

di�erent planetary vorticity gradient representing the deep convective columns (see

next section), can form multiple zonal jets that appear in the instantaneous �elds

(thus stronger than the eddies), and violate the barotropic stability condition but still

are stable and consistent in time. Unlike the previous baroclinic models (Panetta,
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1993; Williams, 2003) due to the di�erent geometry this model does not require a

high level of baroclinicity, to generate turbulence which then cascades to zonal jets.

Another approach using a shallow model was to try and deduce the deep circula-

tion by observing the potential vorticity in the overlying �ow. Dowling and Ingersoll

(1988, 1989) have derived a family of possible equivalent height �elds by assuming

conservation of potential vorticity in a barotropic shallow layer. This allows deducing

the deep �ow from the data (up to a parameter), without making apriori assumptions

about the deep layer. One problem with this approach is that the only place where

there is enough variation in vorticity is near big vortices such as around the giant red

spot and white oval. Dowling (1993) shows that this family of equivalent height �elds,

corresponds to a case where the deformation radius is on the order of the Rhines scale,

and then the �ow is stable. Further, by later observations from the impact of comet

Shoemaker-Levy on Jupiter (Hammel et al., 1995), a speci�c member of this family

can be singled out (Dowling, 1995), and a prediction can be made about the strength

of the deep �ow which is comparable to the value obtained from the Galileo entry

probe (Atkinson et al., 1996).

Ioannou and Lindzen (1993a,b, 1994) put forward a totally di�erent approach

to explain the zonal jets (Lindzen, 1991). They suggest that if the interior is even

marginally statically stable, then tides from a dominant moon may provide the mo-

mentum source maintaining the jets. They show that the response to the tides results

in high order Hough modes, which have meridional alternations resembling the alter-

nations in the jets.

For Earth's atmosphere shallow water and quasi geostrophic models have had

tremendous success in describing some of the fundamental dynamics. Due to the

di�erences in the Jovian atmosphere pointed above it is not clear if this would be

the case for the giant planets. Yet, the striking similarity of some of the phenomena

observed on the Jovian atmosphere to the terrestrial atmosphere, and to features

obtained in these models would lead to think that at least part of the dynamical

understanding is captured by the shallow models. Showman et al. (2006) point out

that the source of the forcing (whether deep or shallow) may be decoupled from

whether the zonal winds are deep or shallow. Therefore even if the winds are deep

they might have shallow sources and visa versa. Next we turn to discus the second

approach � the deep models.
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1.3.2 Deep Models

The �deep� approach assumes that the jet's generation comes from within the interior

of the planet. The assumption is based on the fact that since the planet is heated from

within, convection drives it close to an adiabatic state, with nearly zero strati�cation,

leading to Taylor columns that penetrate throughout the planet, and therefore there

is no con�nement to a thin spherical shell. Inspired by laboratory experiments (Busse,

1970), where a homogeneous rapidly rotating sphere was heated from the inside and

such a multi-column structure was formed, Busse (1976, 1994) suggested that the

interior of a planet may be occupied by Taylor columns that surround a hot core.

He suggested that the multi-layered structure of convection rolls might produce the

zonal jets through nonlinear interactions among the columns.

The problem of onset of convection in a rotating sphere was �rst studied in terms

of axisymmetric solutions (e.g. Chandrasekhar, 1952), but as noted �rst by Veronis

(1959) convection tends to form non-axisymmetric cells. Chandrasekhar (1961) set

the standard formulation for the rotation dominated problem which was adopted in

following work discussed here. Roberts (1968) showed that for large enough Taylor

numbers (rapid rotation) the asymmetric modes will be the fastest growing unsta-

ble modes. These modes also appeared in laboratory experiments (Busse, 1970) and

were the basis for Busse's model for Taylor columns in the interior of the giant plan-

ets (Busse, 1976). In both cases the asymmetric modes where con�ned to a thin

chain of convection columns at a distance of about half the radius from the axis of

rotation. Later studies (Zhang and Busse, 1987) showed that the radial structures

of these modes are sensitive to the Prandtl number with a sharp transition between

two distinct modes. In the �rst mode, where Prandtl numbers are higher, convection

columns are at about half the distance to the axis of rotation as suggested by the

asymptotic theory (Roberts, 1968). However, as the Prandtl number is decreased, the

columns begin to stretch and develop a spiraling shape (Zhang, 1992). Decreasing

the Prandtl number beyond a critical point leads to a new state with circular modes

attached to the outer wall. Zhang (1994) showed that these modes can be under-

stood as inertial oscillations which are slightly modi�ed by the e�ects of viscosity

and buoyancy. These calculations matched asymptotic theories discussing the radial

dependence of the unstable modes for the linear problem of the onset of convection,

and was studied both in equivalent cylindrical systems (Yano, 1992) and for a full

sphere (Jones et al., 2000).
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Ingersoll and Pollard (1982) noted that a columnar structure as described by

Busse in a sphere is analogous to � plane dynamics only with a di�erent de�nition

of �. Consequently arguments from Rhines (1975) may still apply and deep two-

dimensional turbulence may create jets. An advantage of this theory is that the

Ingersoll and Pollard (1982) equivalent barotropic stability criterion, which has an

e�ective � which is negative and three times the value from the standard planetary

�, is more consistent with the Jupiter data. On Jupiter the observed winds are close

to marginal stability according to this criterion. Yano and Flierl (1994) have used this

idea of a negative bottom layer � to demonstrate its e�ect on an isolated vortex like

Jupiter's giant red spot in a zonal jet. We use this parametrization for the bottom

layer in the two layer model in chapter 7.

The spiraling modes obtained by Zhang (1992) have a structure that adjacent

convection cells have opposite circulations. This character for weak linear convection

appears in other studies as well (e.g. Zhang and Schubert, 1997; Christensen, 2002).

Following the negative � plane idea of Ingersoll and Pollard (1982), such a structure

when perturbed, develops local relative vorticity based on the interaction of the col-

umn with an exterior boundary, as the columns conserve their total circulation when

stretched or squeezed (Busse, 1994). Such an interaction can cause propagation of the

vortices similar to a propagation of a Rossby wave (Busse, 1986). Busse and Hood

(1982) showed that linear modes will tend to tilt based on the direction of the outer

boundary slope, and eastward or westward shear will form. This shear however was

no stronger than the perturbation itself. The spiraling alternating linear modes ob-

tained by Zhang (1992) have positive Reynolds stresses which can create a mean �ow.

Zhang and Schubert (1996, 1997) have showed that even for a thermally driven con-

vective interior bounded by a corotating convectively stable strati�ed layer, the �uid

motions resulting from the instability develop similar linear modes that concentrate

primarily in the outer stable region.

All the models discussed above were limited to either linear or weakly nonlin-

ear regimes. It is not obvious that any of these modes, and therefore the resulting

mechanisms can be maintained in the nonlinear regime. Glatzmaier and Olson (1993)

showed numerically Taylor columns can still be maintained when the Rayleigh num-

ber is 50 times critical but their experiment was limited to a slowly rotating regime.

A second shortcoming of the models discussed above, is that they were all limited

to the Boussinesq approximation. The only compressible attempt to model such
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�ows (Gilman and Glatzmaier, 1981) was in the solar context (slow rotation) using

the anelastic approximation for an ideal gas (Ogura and Phillips, 1962), where they

showed that non-axisymmetric convection modes still exist in the compressible �uid

for the parameter region of their examination.

With the advance of computational abilities numerical 3D models (Sun et al., 1993;

Aurnou and Olson, 2001; Christensen, 2002) solving the full Navier-Stokes equations

subject to the Boussinesq approximation have demonstrated that in a rapidly rotating

system a broad eastward �ow can develop at the equator. This �ow has been referred

to result from the so-called Busse columns, though none of these studies actually

demonstrated such columns explicitly. Christensen (2002) shows formation of spiral-

ing convection cells in a 3D numerical model for case of quasi-stationary convection

and shows that for higher Rayleigh numbers the convection becomes chaotic with a

superrotating equatorial �ow and higher latitude subrotating �ow. The subrotating

�ow had near equal velocity along the direction of the axis of rotation. A major

di�erence between these �ows and the one suggested by Busse (1976) is that they

did not develop multiple nested cylinders that would interact and produce multiple

zonal jets. Multiple band structures which result from columnar convection have

been shown in laboratory experiments by Manneville and Olson (1996) though these

bands occupy region only within 45o from the equator. Heimpel et al. (2005) using

a Boussinesq model covering one tenth the depth of the planet and a longitudinal

section of 45o, have produced high latitude jets driven by internal convection which

appear when time averaged. These jets though seem to depend on the bottom �ux

fed by the Rayleigh-Benard type convection, and the width of the equatorial �ow

depends on the location of the bottom boundary.

The biggest objection to the deep theories is that we do not observe any de�nite

columnar features at the top levels and the similarity between north and south hemi-

sphere, although partially apparent, is not exact. This though can be resolved by the

fact that at the cloud levels other processes including 2D turbulence can play a role

breaking the symmetry at that level. Another criticism of the deep models is that

they do not take into account the existence of a magnetic �eld (Kirk and Steven-

son, 1987). This is based on the notion that the transition between molecular and

metallic hydrogen acts as an interface and inhibits the convection from acting across

that interface (Stevenson and Salpeter, 1976). The depth of that transition remains

poorly known but probably lies between 0:7 � 0:9 Jupiter radii and at pressures of
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1 � 3 Mbar (Guillot et al., 2004). Lorentz forces in the metallic region can act to

break the zonal �ows there. Recently, Liu (2006) suggested that if the zonal �ows

were completely barotropic and magnetic �eld in the interior can be inferred from

their exterior values, then ohmic dissipation will cause breakdown of the deep zonal

�ow even above the level of the phase transition. Laboratory work indicates that

the transition from molecular to metallic hydrogen may not be sharp in density and

conductivity (Weir et al., 1996).

The two major drawbacks of these models are the use of the Boussinesq approxi-

mation and having the physical understanding of the dynamics limited to the linear

models. In this work we attempt to address these two issues.

1.3.3 Discussion: Shallow vs. Deep Approaches

Both approaches have compelling arguments to why they are important to the dy-

namics. On one hand due to the strong convection it is hard to escape having a

nearly barotropic interior and then the Taylor-Proudman theorem will hold in the

interior. On the other hand the resemblance to terrestrial weather and the fact that

infrared observations show that the atmosphere is not barotropic near the cloud level,

supports the approach that there is a stability strati�ed baroclinic level beneath the

clouds and the dynamics may be governed by shallow processes only. Bridging the

two approaches, a scenario that the atmosphere is indeed barotropic beyond some

level but the velocities have become weak by that depth would be therefore be a

plausible case. However, the Galileo probe which showed that indeed the atmosphere

is baroclinic but in the �wrong� way; therefore increasing velocities down to a certain

depth where they become constant would seem to lead back to the importance of

deep processes.

An important di�erence worth noting between the shallow and deep approaches,

is that the shallow models assume that only full 2D turbulence can explain the jets,

while deep models suggest that stepping up from linear to weakly nonlinear theory

leads to closer understanding of reality. Obviously linear dynamics could not describe

the mechanisms leading to formation of jets in 2D turbulence; however as we show in

chapter 7 weakly nonlinear baroclinic instability can give insight to the formation of

quasigeostrophic jets. On the other end we show the transition from weakly nonlinear

to fully turbulent dynamics in our deep model.
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An appealing possibility is that the actual jet structure lies somewhere between

the two, shallow verses deep, scenarios. Ingersoll and Cuong (1981) argue that the

zonal �ow is deep rooted while the coherent vortices like the GRS are con�ned to

the shallow part of the atmosphere. However, Yano and Flierl (1994) point out that

a baroclinic GRS produces a barotropic radiating �eld and thus the GRS could not

be sustained. Vasavada and Showman (2005) point out that such a deep rooted

superrotation underlying a shallow atmosphere can explain the near, but imperfect,

symmetry between northern and southern hemispheres. In this respect as pointed by

Yano (1994) the coupling of deep thermal convection with the atmospheric circulation

is the next step for modeling.

1.4 Fundamental Questions

The previous two sections have pointed to the key observational data and modeling

approaches in our attempt to understand the dynamics on the giant planets. Above

all they indicate the discrepancy between the amount of data that we know and

the level of understanding we have about the dynamics. Questions such as, what

drives the zonal jets? what controls the speed and width of the zonal jets? Why

are the equatorial jets on the gas giant superrotating? Why is there an opposite

equatorial rotation on the ice giants? How deep are the zonal jets? What controls

the jets stability? What drives the wave features observed within the equatorial

superrotation? and what causes the uniform emitted thermal �ux, are all �rst order

questions that must be answered to understand these dynamics. Our goal is to try

and address all these questions, and we come back to discuss them in chapter 8.

1.5 Methodology

The previous sections highlighted the need for a model which is both non-Boussinesq

and capable of studying convective turbulence in the full 3D system. Our main tool in

this thesis is such a model that we built based on the non-hydrostatic dynamical core

of the MITgcm. We focus on the understanding of speci�c physical processes using

simpli�ed con�gurations of this model, a variety of other simpler numerical models

and analytic models. Our new general circulation model is an improvement over

previous models in several aspects: It is both non-hydrostatic and non-Boussinesq
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and thus can address convection in a compressible system (anelastic). The model is

deep, and therefore can address a full sphere of gas (beside a small interior core), with

a constant number of vertical levels per scale height, thus keeping a high resolution in

the atmosphere. It uses an equation of state suited for hydrogen-helium mixtures and

therefore beyond accounting for the compressibility it has the capability of including

the complex thermodynamics in the deep interior of the planet. Finally, it uses a

forcing scheme that represents the cooling of the whole vertical structure, di�erent

from Rayleigh-Benard type convection set by the boundaries, and has a radially

dependent gravity �eld and thermodynamic variables.

We progressively build a physical understanding of the dynamics beginning from

the simpler 2D slowly rotating and Boussinesq cases and move to the 3D rapidly

rotating and anelastic cases. We perform studies for understanding the roles of pro-

cesses such as rotation and strati�cation. For the full 3D anelastic model we extend

these process studies to explore the parameter space of Rayleigh, Ekman and Prantdl

numbers and other model settings such as the total aspect ratio and forcing. We then

focus on the mechanisms driving the cyclonic convection columns, baroclinic shear

and equatorial superrotation. We show that the mechanisms suggested in previous

work of deep convection models mostly in the linear and weakly nonlinear regimes

can be identi�ed in the GCM for the weakly turbulent cases. The transition to

stronger turbulent regimes possesses some of the same mechanisms but also has some

di�erences.

Since Jupiter is the giant planet that we have the most data about both in terms

of meteorology and internal thermodynamics, we set our model parameters to the

Jupiter regime. Many of the physical processes that we �nd however would be appli-

cable to Saturn as well. There is a high level of uncertainty regarding dynamics in

the plasma interior of the planet. Most previous models set the bottom limit above

or at the level of the molecular-metallic boundary. Although this might not be the

best representation of Jupiter itself, we deliberately push the bottom limit well below

this level in e�ort to study the dynamics when the vertical and horizontal scales are

comparable. In fact, as we show, when using a thinner (and maybe more realistic)

spherical shell some of the dynamical features, such as the width of the superrotating

jet, resemble more the observations of Jupiter. In order however not to be biased by

this, and for the generality of the study most of the analysis is done with an aspect

ratio factor of two between outer and inner shell boundary. We do however show the
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whole range from a thin spherical shell to a full sphere.

A completely di�erent model is used in chapter 7 to study the formation of multi-

ple zonal jets. This is a quasigeostrophic two layer model, which has a representation

of the deep dynamics which are demonstrated by the full GCM (although this study

proceeded the development of the GCM). Here again we use a hierarchy of models

ranging from linear stability analysis, through a weakly nonlinear theory and a non-

linear model truncated to one growing mode, to a fully nonlinear model. We show

that multiple zonal jets can form from baroclinic instability and an inverse energy

cascade in geostrophic turbulence.

1.6 Thesis Overview

We begin in chapter 2 by a description of the new general circulation model. Be-

yond the issues of adapting the MITgcm dynamical core to the deep anelastic system,

in this chapter we discuss in detail the anelastic approximation itself and present

a generalization to previous work showing that the anelastic approximation can be

applied, and is energetically consistent, with a general equation of state. Chapter 3

discusses results from the numerical model, beginning from results from 2D axisym-

metric calculations through results from the 3D anelastic calculations. Within the 2D

framework we present only results that are robust and hold for the 3D case (such as

the e�ect of rotation), or results which are di�erent (such as equatorial zonal �ows)

but highlight the role of the asymmetries in driving the 3D dynamics. Another re-

sult obtained from the axisymmetric model is the dependence of the critical Rayleigh

number on latitude. We solve for the 2D Boussinesq case using a local approximation

analytically, and then demonstrate numerically. The latter part of this chapter is

devoted to presenting results from the 3D anelastic model which will be a framework

for future discussion and interpretation.

In chapter 4 we discuss the baroclinic structure of the zonal velocity. The main

paradigm here is that the Taylor Proudman theorem should apply for the zonal veloc-

ity whether the �uid is anelastic or Boussinesq as long as the �uid is in a barotropic

state. We show that baroclinic contributions due to convection are in fact important

in driving the velocity away from the Taylor-Proudman regime, and the baroclinic

contributions due to compressibility create a shear in the zonal velocity while keeping

the alignment with the axis of rotation. We show that although the absolute value
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of the velocities depends on the model parameters the vertical structure of the zonal

�ow does not. We look at the zonally averaged momentum budget, and show that

eddy momentum �uxes acting away from the axis of rotation drive momentum to

the exterior to generate the superrotating equatorial winds. These eddy momentum

�uxes are strongest along a cylindrical surface within the sphere. We show that this

cylindrical surface is caused by smaller scale convection cells, parallel to the axis

of rotation, which surround the interior core and penetrate throughout the planet.

Di�erent from the convection columns suggested by Busse (1976), these cells are all

cyclonic.

In chapter 5 we use three di�erent models to focus on the mechanisms driving

the cyclonic columns and equatorial superrotation. We look at the GCM in a regime

of weak convection where we can better identify the physics driving the circulation

we see in the more turbulent cases. This parameter regime of the GCM allows us

to clearly identify the positive (eastward) phase speed of the convection columns. It

shows the transition from an initial weak-velocity state with alternating cyclonic and

anticyclonic modes, which are similar to modes seen in linear and weakly nonlinear

studies such as Zhang (1992); Zhang and Schubert (1997), to a state with only cy-

clonically rotating columns. The correlation within the columns between the zonal

and vertical velocity anomalies drives the upgradient angular momentum �uxes. This

weakly nonlinear mode of the model also allows us to follow in a more precise way (due

to the less noisy solution) the momentum budget. We follow Ingersoll and Pollard

(1982) and show that their barotropic cylindrical model represents well some aspects

of the turbulent interior and can explain the direction of propagation (through an

equivalent Rossby wave mechanism) and roughly account for the number of convec-

tion columns. Finally, we focus on the mechanism for the angular momentum �ux by

using a simpli�ed barotropic annulus model which allows studying the zonal tilt in the

eigenmodes, which are analogous to a slice through the spiraling convection columns

seen in the full GCM, and point to the role of the planetary vorticity gradient and

viscosity in creating these modes.

In chapter 6 we explore the parameter space of the model. Due to the relative

simplicity of the model the parameter space is rather limited and allows doing a

sensitivity analysis to most parameters. We divide the parameters into two groups:

one of parameters which are associated with the speci�c con�guration of the model

such as the location of the boundaries and model resolution; and the second are
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parameters controlling the coupled six equations we solve which are the Rayleigh,

Ekman, Prandtl numbers, the choice of the forcing pro�le and the details of the

equation of state. We begin by varying the depth of the domain from a thin shell

(10% of the planet's radius) to almost a full sphere (93% of the radius) and look

at the implications in terms of the location of the columns and details of the zonal

�ow. Then we do a systematic study varying the nondimensional numbers controlling

the simulations, look at speci�c solutions which appear during spin-up and study the

dependence on di�erent forcing pro�les. Since this is a new model this study is

essential for any interpretation of our results.

Chapter 7 stands on its own as an independent study, but uses some of the con-

cepts developed in the previous chapters as motivation for the model setup. The main

concept we take from the deep model (and was suggested originally by Ingersoll and

Pollard, 1982) is a negative � plane which comes from the opposite direction of the

background planetary vorticity gradient in the interior of a �uid sphere demonstrated

in chapter 5. We propose that baroclinic instability of a weak shear may play an im-

portant role in the generation and stability of the strong multiple zonal jets observed

in the atmospheres of the giant planets. We use a two-layer quasigeostrophic model

on a � plane where the bottom layer has a negative �. Linear stability theory predicts

that the high wave number perturbations will be the dominant unstable modes for a

small vertical wind shear like that inferred from observations. We develop a nonlin-

ear model truncated to one growing mode which generates a multiple jet meridional

structure, driven by the nonlinear interaction between the eddies. In the weakly

supercritical limit, this model agrees with previous weakly nonlinear theory, but it

can be explored beyond this limit allowing the multiple jet induced zonal �ow to

be stronger than the eddy �eld. Calculations with a fully nonlinear pseudo-spectral

model produce stable meridional multi-jet structures when beginning from a random

potential vorticity perturbation �eld. The instability removes energy from the mean

state weak baroclinic shear and generates turbulent eddies that undergo an inverse

energy cascade and form multi-jet zonal winds. The jets are the dominant feature

in the instantaneous upper layer �ow, with the eddies being relatively weak. The

jets scale with the Rhines' length, but are strong enough to violate the barotropic

stability criterion. We show that the basic physical mechanism for the generation and

stability of the jets in the fully nonlinear two layer numerical model is similar to that

of the truncated model.
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The model discussed in chapter 7 points out the possible importance of the in-

teraction between the convectively driven interior and the shallow stably strati�ed

atmosphere. In chapter 8 we discuss preliminary results of such coupling using the

anelastic GCM when driven by both convection and solar forcing. We show a possible

application for our anelastic model for the upcoming JUNO mission to Jupiter (2011)

which will measure the high order gravity moments. We follow on a suggestion by

Hubbard (1999) that precise measurements of the high order gravitational moments

can give information on the deep wind structure of the planet. We calculate the

gravitational moments resulting from the density �eld for di�erent end-state velocity

pro�les. In chapter 8 we conclude and summarize our results both from the pure

�uid mechanical aspect of the problem, and the application to the dynamics and

circulation on the giant planets.

40



Chapter 2

A Deep Anelastic General Circulation

Model

2.1 Model Overview

We are interested in studying the dynamics of system where the �uid is not con�ned

to a spherical shell, is driven by internal convection and the density varies over several

orders of magnitude. Previous attempts to model this system fall into two general

categories: convection models with deep geometry that are limited to Boussinesq

dynamics (e.g. Zhang and Schubert, 1997; Aurnou and Olson, 2001; Christensen,

2002; Heimpel et al., 2005), or spherical shell atmospheric type models which lack or

parametrize the interior convection (e.g. Cho and Polvani, 1996; Lee, 2004; Lian et al.,

2006). The idea of forming such a model is two fold: one reason is to address in a new

way some of the questions presented in chapter 1 regarding the dynamics on the giant

planets. The second reason is to look at new aspects of �uid dynamics of a rotating

sphere in which the gravity and rotation vectors are not parallel. Such analysis has

never been attempted in a system which is non-Boussinesq, non-hydrostatic and has

a realistic equation of state which is dependent on the pressure variations. As we will

show in the next chapter this model also allows us to reach more turbulent regimes

than achieved in previous work.

A main complexity of this problem is that the system varies in more than four

orders of magnitude in density (from about a tenth the density of air at 1 bar to

a few times the density of water at 10 Mbar), and therefore requires accounting for
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the compressibility of the gas. Typically this problem is overcome by using pressure

coordinates which allows us to use equivalent Boussinesq dynamics, with rede�ning

the vertical velocity, and still to account for the compressibility of the gas (Vallis,

2006). However since this is a convective system and we need to conserve all non-

hydrostatic components in the momentum equations, the use of pressure coordinates

brings additional di�culties. Therefore we have constructed the model in regular

depth coordinates, but use the anelastic approximation to account for the variations

in density. This approximation allows for the variations in mean density but neglects

the density anomalies in the mass equation. Although a natural starting point for

this model would seem to be an atmospheric model, the �exibility, the available non-

hydrostatic core, the reliability, and the available support at MIT led us to choose to

use the MITgcm.

2.2 The Anelastic System

The anelastic approximation was �rst introduced by Batchelor (1953) for a adiabat-

ically strati�ed horizontally uniform reference state. Then it was more rigorously

presented by Ogura and Phillips (1962) in order to �lter sound waves in a non-

hydrostatic system. In essence, they perform a linearization around a speci�ed adi-

abatic state s = s0 which de�nes a reference pressure p(r) and density �(r). The

mass equation loses the @�
@t

term (thereby eliminating the fast sound waves); Ogura

and Phillips showed that with suitable changes in other equations and using an ideal

gas, the anelastic system conserves energy. Durran (1989) showed a more general

solution which he called the pseudo-incompressible approximation, where he relaxes

the assumption that entropy anomalies are small compared to the reference adiabatic

state. In the pseudo-incompressible system density �uctuations which arise through

�uctuations in pressure are neglected, and density �uctuations from temperature are

�gured into the mass balance. Durran's solution may be better applicable for systems

with large horizontal temperature variations, however in a convective system with a

large range of densities and pressures, one can not assume density �uctuations due

to pressure are small, while due to the convection the reference state may be close

to adiabatic. Both Ogura and Phillips and Durran assume the �uid is an ideal gas,

while for the interior of the giant planets the gas diverges signi�cantly from an ideal

gas (section 2.3). We have extended the derivation for a general equation of state,
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and demonstrated that as long as the mean state is close to adiabatic the system will

conserve energy; this is shown in section 2.2.3. Taking the density and pressure to be

� �= � (r) + �0 (�; �; r; t) (2.1)

p �= p (r) + p0 (�; �; r; t) (2.2)

de�nes a background hydrostatic state

dp

dr
= ��g(r); (2.3)

where the gravitational acceleration g(r) is also a function of depth and is de�ned by

g(r) =

rZ
0

G�(r0)
r02

dr0; (2.4)

where G is the Cavendish constant. The density and pressure anomalies vary both

spatially and temporally. With the anelastic approximation the continuity equation

therefore takes the form

r � (�u) = 0; (2.5)

where u is the 3D velocity vector. Throughout the thesis we will try and keep the

equations concise using vector form, but in this section, for completeness, we will

write the model equations in the full form. Given the spherical nature of the problem

we will use spherical coordinates, where � is the longitude, � is the latitude and r is

the radial coordinate. Therefore the velocity vector is de�ned in spherical coordinates

as

(u; v; w) �
�
r cos �

D�

Dt
; r
D�

Dt
;
Dr

Dt

�
: (2.6)

With � de�ned by (2.1) and with the divergence operator in spherical coordinates,

the mass equation (2.5) takes the form

�

r cos �

@u

@�
+

�

r cos �

@

@�
(v cos �) +

1

r2
@

@r

�
�r2w

�
= 0: (2.7)
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2.2.1 The Anelastic Momentum Equations

The momentum equations for a rotating �uid when applying the anelastic approxi-

mation, thus assuming �0 (�; �; r; t)� � (r), in spherical coordinates become

Du

Dt
+
uw

r
� uv

r
tan � � 2
 sin �v + 2
 cos �w = � 1

�r cos �

@p0

@�
+ �r2u (2.8)

Dv

Dt
+
wv

r
+
u2

r
tan � + 2
 sin �u = � 1

�r

@p0

@�
+ �r2v (2.9)

Dw

Dt
� u2 + v2

r
� 2
 cos �u = �1

�

@p0

@r
� �0

�
g + �r2w(2.10)

where D
Dt

is the material derivative,

D

Dt
=

@

@t
+

u

r cos �

@

@�
+
v

r

@

@�
+ w

@

@r
: (2.11)


 = 
 (r; �) is the planet's rotation, � is a constant viscosity, and the Laplacian

operator is given by

r2 =
1

r2 cos2 �

@2

@�2
+

1

r2 cos �

@

@�

�
cos �

@

@�

�
+

1

r2
@

@r

�
r2
@

@r

�
: (2.12)

We have made an approximation neglecting some of the terms when going from a

Laplacian of a vector to that of a scalar (Morse and Feshbach, 1953) in the viscosity

term. Similar to the Boussinesq approximation, the large hydrostatic mean terms

(2.3) can be removed from the vertical momentum equation so that the terms in

the momentum equations tend to be of the same order. Typically in oceanic and

atmospheric applications (Pedlosky, 1987), since the motion is con�ned to a thin

spherical shell, some of the metric terms in (2.8 - 2.10) can be neglected. However,

when studying the dynamics of a full sphere, where r varies considerably, these terms

are important. The Coriolis term associated with the vertical velocity and the Coriolis

term in the vertical equation are typically neglected as well. The �rst is neglected due

to the small aspect ratio between vertical lengths and horizontal lengths leading to

the vertical velocity scaling smaller than the horizontal velocity. Similarly, due to the

small aspect ratio the vertical momentum equation to the �rst order is hydrostatic

(beyond the hydrostatic basic state) and the Coriolis term typically may be neglected.

We emphasize that we do not make any of these approximations, and the importance
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of these typically neglected terms is discussed further in chapter 4. In the deep

sphere much of the intuition such as the vertical balance being close to hydrostatic,

or the similar scaling of zonal and meridional motions does not hold. In fact, as

we will show, in this problem there is a closer connection between the vertical and

meridional velocities, than between horizontal ones.

2.2.1.1 The Anelastic Equations for an Ideal Gas

A main di�erence between the anelastic system and the Boussinesq one is that, since

the background density is not taken as a constant, a more natural variable for the

buoyancy is the entropy. We begin by discussing this for an ideal gas, following Ogura

and Phillips (1962), and then show the buoyancy expression for a general equation

of state. For an ideal gas we can express the entropy as a function of pressure and

density s = s (p; �) so that

s = Cp log � = Cp log T �R log p = Cv log p� Cp log � (2.13)

where Cp and Cv are the speci�c heat at constant pressure and volume for an ideal

gas, and R is the ideal gas constant. Considering a variation s0 from the mean state

s we can express the buoyancy term in (2.10) in terms of density and pressure using

(2.13) so that

�0

�
� �0

�
=

1




p0

p
� s0

Cp
� 1




p0

p
� s0

Cp
; (2.14)

where 
 is the ratio Cp
Cv
. Similarly we can do the same for the mean density gradient

so that

1

�

d�

dr
� 1


p

d�p

dr
� 1

Cp

ds

dr
= �g�


p
� 1

Cp

ds

dr
; (2.15)

where the approximation has been to the same level as the approximation done for the

momentum equations in (2.8 - 2.10). Then the vertical momentum equation (2.10)
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using (2.14, 2.15) can be written as

Dw

Dt
+ 2
cos�u = � @

@r

�
p0

�

�
+
p0

�

�
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p
+

1
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ds

dr

�
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�
(2.16)
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so that the buoyancy term in the vertical momentum equation is expressed in terms

of the entropy only. For a basic state which is adiabatic, this system is analogous

to the Boussinesq system, with the pressure term including the variation in mean

density, and entropy instead of density in the expression for buoyancy.

2.2.1.2 The Anelastic Equations for a General Equation of State

We would like to extend this to a general equation of state. Since our system diverges

from an ideal gas in the interior (section 2.3), this will allow us to apply the anelastic

equations to the deep interior of the planet. We assume a general equation of state,

and de�ne entropy in the general form s = s (p; �). We use the following de�nitions

Cp = T

�
@s

@T

�
p

; Cv = T

�
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V

; (2.18)
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@p

�
T

; (2.19)

for the speci�c heats (at constant pressure and volume), the isobaric expansion co-

e�cient and the isothermal compressibility per unit mass. This allows us to express

the small entropy variation from a mean state as

s0 =

�
@s

@p

�
�

p0 +
�
@s

@�

�
p

�0 = �Cv�
T�

p0 � Cp
T��

�0: (2.20)

Applying the same for the mean state entropy and keeping this derivation general,

thus allowing the mean entropy to vary radially, gives

d�

dr
=

�T�

Cp

ds

dr
+
Cv��

2g

Cp
: (2.21)
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Then the vertical momentum equation can be written as
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Therefore, the buoyancy is expressed by two terms. One involves the mean state

entropy gradient and the pressure variations, and a second term has only the entropy

perturbations. This shows that a natural reference system, analogous to one of a con-

stant background density in the Boussinesq system, would be an adiabatic reference

state so that ds
dr

= 0: In that case

Dw

Dt
+ 2
cos�u = � @

@r
(�) +

g�T

Cp
s0; (2.23)

where � = p0

�
is the anelastic potential. In the case of an ideal gas (2.22) reduces to

(2.17). We can gain more intuition for the buoyancy term by noting that

rT =
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rs+
�
@T

@p

�
s
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rs� �Tg
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; (2.24)

where we have used the basic hydrostatic state (2.3), and the Maxwell identity
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Then for the adiabatic case we can write (2.22) as

Dw

Dt
+ 2
cos�u = � @

@r
(�)� s0rT : (2.26)

Thus under the anelastic approximation, with an adiabatic background state, the

buoyancy term is given directly by the entropy variation and the background tem-

perature gradient. This result is the anelastic system used by Ingersoll and Pollard

(1982) who have used a Legendre transform to obtain this relation directly, thus using

the thermodynamic variables s; T instead of �; p which are typically used in geophys-

ical �uid applications (which we will keep because of using the MITgcm). We have

shown therefore that the anelastic approximation expressed in terms of entropy is
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not limited to an ideal gas, and if assuming an adiabatic reference state it takes the

simple form (2.26).

2.2.2 The Anelastic Thermodynamic Equation

An advantage of this form is that it allows a direct connection to the thermodynamic

equation, which in the most complete form for a general equation of state is written

in terms of entropy so that

Ds

Dt
+r � (�rs) =

Q

T
; (2.27)

where Q is the heating rate per unit mass, and � is the di�usivity which we will

assume to be constant. Then applying the anelastic approximation, and assuming

a basic state which is adiabatic (constant s � see section 2.2.3), we can write the

thermodynamic equation as

@s0

@t
+

1

�
r � (�us0)� �r2s0 =

Q

T
: (2.28)

The forcing is described in section 2.5. For this system to be consistent for a general

equation of state we need to show that the energy equation has a closed form.

2.2.3 Energetics of the Anelastic System with a General Equa-

tion of State

In the Boussinesq system an energy equation can be derived by scalar multiplying

the momentum equations with the velocity to form a kinetic energy equation. A

potential energy equation can be formed by multiplying a buoyancy term with the

thermodynamic equation. The evolution of the total energy can then be expressed

as an energy �ux. Ingersoll (2005) shows in an oceanic context with the density

depending on three thermodynamic variables (pressure, temperature and salinity),

the equations will still be energetically consistent. For the anelastic case Ogura and

Phillips (1962) show that for an ideal gas a similar relation can be formed. We begin

therefore from the momentum equation with the buoyancy in the vertical equation

expressed in terms entropy (2.22)
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where u is the full 3D velocity. We de�ne buoyancy and an anelastic potential as

b =
g�T

Cp
s0 (2.30)

� =
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�
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Scalar multiplying (2.29) with �u and using the anelastic mass equation (2.5) gives
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If the background state is adiabatic, so that the second term on the right hand side

vanishes, we can use the thermodynamic equation (taking only conservative terms)

to replace the right hand side of (2.32). Multiplying the thermodynamic equation

(2.28) by �T gives

�T
@s0

@t
= Tr � (�us0) = �u � Trs0 (2.33)

where we have used the anelastic mass equation again. Then the energy equation can

be written as
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+ Ts0
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�u

�
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2
+ �� Ts0

��
= 0 (2.34)

Therefore for an adiabatic background state there is no requirement to use a speci�c

equation of state for the anelastic equation to be energetically consistent.

2.3 The Equation of State

On Jupiter and Saturn the gas is primarily composed of hydrogen and helium with

small amounts of heavier elements. At low temperatures and pressures in the outer

regions of the planet, hydrogen is a molecular gas and the equation of state (EOS) may

be approximated as an ideal gas. Deeper into the interior, however, due to the high
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densities and relatively low temperatures (compared to stars), the giant planets lie

in an extremely complex thermodynamic regime. The main factors that separate the

gas under these conditions from ideal gas behavior are pressure ionization, electron

degeneracy, and Coulomb interactions (Guillot, 2005). We use an EOS calculated

by Saumon et al. (1995) speci�cally for high pressure hydrogen and helium mixtures

including these thermodynamic complexities. In addition this EOS has been partly

calibrated with high pressure and density experimental data.

Below we review the physics governing this equation of state, estimating the e�ect

of these phenomena on the pressure, given the density and temperature. Although this

thesis focuses on the �uid dynamics we have devoted signi�cant time to understanding

the thermodynamics and estimating their importance on the equation of state and the

reference state of the model. Eventually this boils down to a choice of an equation of

state and the reference state discussed in section 2.4, but this choice was not obvious

at start. In section 8.2.2 we estimate the gravitational moments of Jupiter using our

model, which are a measurable quantity in the JUNO mission. These results may

give further constraints on future equations of state.

2.3.1 Electron Degeneracy

For stars with mass over 0.3 solar, the typical densities and temperatures imply that

the electrons will always behave with near Maxwellian distribution of the momen-

tum. However, the Giant planets lie in a regime where due to the low mass, the

temperatures are relatively cool, while the densities are high, and therefore the Pauli

exclusion principle yields a distribution which is determined by Fermi-Dirac statistics.

The number of electrons in a volume dV and with the momentum [p; p+dp] according

to the Boltzmann distribution function is

f (p) dpdV =
4ne�p

2

(2�mekT )
3

2

e

�
�p2

2mekT

�
dpdV; (2.35)

where k is the Boltzmann coe�cient, T is the temperature, ne is the number density

of the electrons and me is the electron mass. Then for a constant ne the maximum of

the distribution function pmax =
p
2mekT tends to smaller values of p as temperature

becomes smaller, and f (p) becomes higher (since ne is given by
R
f (p) dp). However,

since electrons are fermions, for which Pauli's exclusion principle holds, each quantum
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cell of volume dpxdpydpzdV = h3, where h is the Plank constant, cannot contain more

than two electrons. The Pauli's exclusion principle therefore demands that

f (p) dpdV � 8�p2dpdV

h3
; (2.36)

and therefore giving an upper bound for f (p). Figure 2.1 shows the Boltzmann distri-

bution for di�erent temperatures and the limit from the exclusion principle for both

typical stellar values, and planetary interior values typical to Jupiter. It shows how

due to the low temperatures the exclusion principle is a much stronger restriction for

planetary values than for stellar ones, requiring the electrons to occupy much higher

energy levels. Therefore the equation of state needs to include quantum mechanical

Figure 2.1: The Boltzmann distribution and Pauli's exclusion principle for both plan-
etary and stellar values.

e�ects if the temperature is too low or the density is too high. Due to the relatively

low temperatures in Giant planet interiors this happens relatively close to the exterior

(Figure 2.3). These electrons are referred to as degenerate. The transition to a fully

degenerate state is not a sharp one (for a �nite temperature). The most probable

occupation of the phase cells of the shell [p; p+dp] in momentum space is determined

by Fermi-Dirac statistics, where
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f(p)dpdV =
8�p2dpdV

h3
1

1 + eE=kT� 
; (2.37)

where E = p2

2me
is the energy in the non-relativistic case, and  is de�ned as the

degeneracy parameter. Then
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8� (2�mekT )
3
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with

a ( ) =

Z 1

0

�2d�

1 + e(�2� )
; (2.39)

where we have de�ned � = p (2mekT )
� 1

2 . Therefore the degeneracy parameter is a

function of neT
�3=2 only. The limit of large negative values of  represents the limit

of high temperatures with a classic Boltzmann distribution. In the limit of large

positive  , when introducing an energy so that  = E0

kT
, then for large enough  there

is a discontinuity in the distribution function at energy E0. This corresponds to the

limit of very low temperatures where there is a discontinuity at the Fermi energy.

For intermediate values using medE = pdp and p = (2meE)
1

2 the number density

becomes

ne =
4�

h3
(2mekT )

3

2 F1=2 (	) ; (2.40)

where

F� (	) =

Z 1

0

��d�

1 + e(�� )
(2.41)

is the Fermi-Dirac function. The electron pressure is

Pe =
8�

3h3
(2mekT )

3

2 kTF3=2 (	) : (2.42)

Therefore for a given density and temperature, by inverting (2.38) (the Fermi-Dirac

integrals have a unique inverse function), the electron pressure Pe can be determined.

In Figure 2.2 we show the pressure of the electrons due to degeneracy as function of
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temperature and density. Superimposed is the reference state for Jupiter. It shows

that Jupiter lies in the region where degeneracy is important, where the density has

a stronger e�ect than temperature on pressure. Figure 2.2 shows that for Jupiter

the e�ect of electron pressure is important and, over most of the domain is more

important than the pressure of the atoms themselves approximated by the ideal gas

pressure.

Figure 2.2: The e�ect of electron pressure on the equation of state. left: The pressure
Pe of the electrons as function of temperature and density. The black line is the
pro�le for Jupiter from Guillot and Morel (1995). right: The relative contribution of
electron pressure to the total pressure of an ideal gas of Hydrogen.

2.3.2 Pressure Ionization

The ionization level of an atom is determined by its temperature and pressure. This

is usually given by the Saha relation (Kippenhahn and Weigert, 1990) which holds

for high temperatures in the interiors of stars. However, in Jupiter's interior most of

the ionization is due solely to pressure. This is called pressure ionization and can be

approximated roughly by the fact that an atom must be ionized if the matter is so

dense that the distance between atoms is smaller than twice the Bohr radius. In this

case even an electron in the lowest possible orbit will not be bound. The condition

for pressure ionization could be approximated as

d =

�
3

4�nH

� 1

3

< 2a0; (2.43)
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where d is the distance between atoms, nH is the number density, and a0 is the

Bohr number. For hydrogen this leads to an ionization density of 348 Kg
m3 which

corresponds approximately to 0:92 of the radius of Jupiter and 0:8 for Saturn (Figure

2.3). Therefore we can expect the deep interior to be completely ionized. Even in

the regions exterior to the radius of full ionization, the ionization level will still be

heavily in�uenced by pressure ionization. In the exterior, where pressure ionization

is negligible, calculations from the Saha relation show that temperatures are too low

to cause signi�cant thermal ionization. To estimate the pressure therefore one needs

to take into account the pressure both from the ions and the electrons. An order of

magnitude estimate is that ions and electrons have similar contributions to the total

pressure (Guillot, 2005).

Thus most of the interior is composed of heavily ionized dense plasma, often

referred to as liquid metallic hydrogen. The physics of the phase transition between

molecular �uid to the metallic �uid caused by the pressure ionization remain poorly

understood. There have been attempts to calculate an equation of state for this

phase transitional regime (Saumon et al., 1995) however recent results by the authors

themselves suggests that their previous results were not accurate. Therefore in the

equation of state we will use we include the e�ect of pressure ionization, but ignore

any variations in the equation of state from processes involved in the phase transition

itself.

2.3.3 Coulomb Interactions

Another important quantity that has an e�ect on the equation of state is the coupling

parameter, which is the ratio of the Coulomb potential to the thermal energy. This

measures how strong are the coulomb interactions relative to the thermal energy as

the density changes in the planet's interior. The coupling parameter for hydrogen is

given by

� =
e2

dkT
=
e2

k

�
4�

3nH

� 1

3 �
1

3

T
; (2.44)

where d is the mean distance between nuclei, and e is the electron charge (Guillot,

2005). As � increases due to either an increase in density or a decrease in temperature

Coulomb forces become stronger. Hubbard (1968) has shown that Jupiter's interior is
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not expected to crystallize (happens for � > 180), and should be hot enough so that

the interior will remain a �uid. Saturn's interior is also expected to remain a �uid.

Typical values for the interior can be seen in Figure 2.3, and the system is dominated

by the repulsive Colombian potential between nuclei.

2.3.4 The SCVH Equation of State

In summary a large fraction of the interior is composed of metallic hydrogen. In this

region electron degeneracy, pressure ionization, and Coulomb interactions have sig-

ni�cant contributions to the pressure. Outside of this region hydrogen is a molecular

gas, and to a good approximation is close to an ideal gas. In the interior the pressure

can be expressed in the following form (Stevenson, 1991)

P = Pe + Pion + Pcoul + Pex; (2.45)

where Pe is the contribution from the degenerate electron gas, Pion is the contribution

from the ions, Pcoul is a negative term due to the Coulombian interactions of nuclei,

and Pex is a negative term due to electron-electron repulsion because of the exclu-

sion principle. Exact calculations of these e�ects are complex and involve further

approximations that until recently have been untested in the appropriate regimes of

temperature and pressure. Several recent experiments on hydrogen (Collins et al.,

1998; Knudson et al., 2001) now provide data in regimes of interests for giant planets

and can provide constraints on the equation of state. Saumon et al. (1995) have calcu-

lated an approximate equation of state (referred to as SCVH), for both hydrogen and

helium taking into account all these e�ects and extrapolating between the di�erent

regimes.

In Figure 2.3 we compare between the SCVH equation of state for hydrogen (blue),

and an ideal gas (dashed red). To get a feel for rough estimates of the physics diverging

the equation of state from an ideal gas, we show the limits for the phenomenon

discussed in this section. The green lines show the thermal and pressure ionization

limits (2.43), the purple curve shows the electron degeneracy limit (2.42), and the

magenta curves show the Coulomb limits (2.44) for di�erent values of �. It is clear

that beyond 104 bars (2% of the planetary radius) all these e�ects become important

and indeed beyond this region the SCVH EOS diverges from an ideal gas. In the low

temperature and density limit the SCVH EOS is similar to an ideal gas, while for

55



Figure 2.3: Isobars of the hydrogen SCVH EOS and an ideal gas in log � - log T
space. black: the pro�le for Jupiter from Guillot and Morel (1995); red: the adiabat
of the SCVH EOS that matches the Galileo observation; purple: the limit where
pressure from the electron gas becomes signi�cant (2.42); dashed green: the limit of
pressure ionization (2.43); green: the limit of ionization from the Saha relation; pink:
where Coulomb interactions are signi�cant with � = 10 (2.44); dashed magenta: the
Coulomb limit with � = 1.

high pressures it di�ers signi�cantly.

In comparison with hydrogen, the EOS of helium under the conditions of interest

for the giant planets has been less studied. Experimental data for helium is only

available up to 0:56 Mbar (Nellis et al., 1984). A major complication (Salpeter, 1973)

is that hydrogen and helium mixtures can undergo a phase separation where the

heavier helium will form droplets that will fall towards central regions of the planets.

Nonetheless, Saumon et al. (1995) have computed an EOS for helium, though it has

not been compared against experimental data. This should not a�ect the results too

much since for giant planet composition mixtures, hydrogen represents about 90%

of the atoms, and helium about 10%. The consequent EOS for hydrogen-helium

mixtures is then calculated using the additive volume rule such that

��1 = (1� Y ) ��1
H + Y ��1

He (2.46)

where Y is the helium mass fraction. Then the coe�cients in (2.20) can be calculated

based on this rule. This method implicitly neglects any interactions between hydrogen

and helium.
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Given that by using the SCVH equation of state for hydrogen, we are already

making a big step beyond the Boussinesq and ideal gas models, we will not add at

this stage the complexities and uncertainties of the hydrogen-helium mixtures. Using

the hydrogen SCVH equation of state should be su�cient for the level of complexity of

our model. For example, the ideal gas constant for giant planet composition mixtures

(which is relevant for the outer regions - Figure 2.3), will change by less than 10%

when comparing it to the ideal gas constant of only hydrogen. The uncertainty in the

other parameters of our model will be probably larger than the discrepancy between

the equation of states with and without the helium component (see section 6.3). In

addition, we will not account for the variations in the hydrogen EOS at the hydrogen

phase transition that occurs between the molecular and metallic �uid. The equation

of state for this phase transition has been published with the original SCVH paper,

but the authors have recently reported an error in that calculation.

2.4 The Reference State

As discussed in section 2.2.3, using an adiabatic reference state implies that the

anelastic system is energetically consistent. We have shown that this does not limit

the form of the equation of state and, for a convective driven interior, is therefore a

reasonable approximation. The Galileo entry probe has found the atmosphere to be

close to a dry adiabat beyond the 1 bar level (Sei� et al., 1997). We �nd that, when

taking this value of entropy from the Galileo probe measurement, and using it as the

adiabat with the SCVH EOS, the adiabatic pro�le matches well previous estimates

of the interior mean density-temperature-pressure pro�le (Guillot and Morel, 1995).

We therefore use this �Galileo adiabat� as our reference state for the model. The

details of understanding of the interior depend on variations in the adiabacity of the

�uid as suggested by Guillot et al. (1994). However, for the level of sophistication of

this �uid dynamical model, we feel this constant entropy basic state will su�ce. The

variation from this reference entropy is computed dynamically.

The vertical grid is chosen so that grid spacing follows a constant mean pressure

ratio between levels. Relating each pressure level to its vertical depth is set following

calculations of Guillot and Morel (1995), and Guillot et al. (2004). Once the constant

entropy (s), and the mean reference pressure for every vertical grid point are set, the

reference temperature and density can be found from the SCVH EOS. Integrating the
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reference density allows calculating the gravitational acceleration for the vertical grid

(2.4). Figure 2.4 shows these reference �elds as a function of depth. In fact for the

dynamics only �(r) and g(r) come in, where the T (r) is used only in the calculation

of the forcing pro�le (section 2.5). For every layer separately we then �t a polynomial

to the SCVH EOS for the variation in density so that

Figure 2.4: The adiabatic reference state of the model. Plots of density, temperature,
pressure (logarithmic axis), and gravitational acceleration as a function of depth.

� (s; p) = �+

�
@�

@s

�
s0 +

�
@�

@p

�
p0 (2.47)

where the derivatives are calculated from the SCVH polynomial for each reference

pressure (see Appendix A), and s0 and p0 come dynamically from the model. This

variation in density feeds back to the model dynamics. Thus we have a fully coupled

�uid dynamic-thermodynamic system. To the best of our knowledge this is the �rst

time such an elaborate EOS has been incorporated to a dynamical gas-giant model.

We feel the modi�cation of the density�pressure�temperature�entropy relationship

will be a considerable improvement to the existing dynamical models, and will give a

much better representation of the planet's interior and its interactions with the outer

atmosphere. As discussed in chapter 1 since the gas is largely ionized in the deep

interior the magneto-hydrodynamic contributions which we do not include may be

signi�cant as well.
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The pressure-temperature-density relationship is shown in Figure 2.5, where it

can be seen that up to about 1 Mbar (0:9 the radius of the planet) the SCVH EOS

is close to an ideal gas, but it di�ers substantially for the deep interior.

Figure 2.5: Contours of pressure in log� logT space for the SCVH EOS (blue) and an
ideal gas (magenta). The adiabatic reference state (black) is close to the calculations
(red) of Guillot and Morel (1995); Guillot et al. (2004). The model uses a di�erent
polynomial for each layer (green) to calculate the dynamical density (2.47).

2.5 Forcing

The fact that Jupiter emits more energy than it receives from the sun implies that

internal heat is transported from the planet's interior to space. The structure of the

dynamics is related to the mechanisms transporting the heat. In stars heat is often

transported by radiation and conduction. On Jupiter it is estimated that convection

rather than conduction is in e�ect what is transporting heat (Guillot et al., 2004).

The forcing as applied to the model assumes the vertical pro�le is close to adiabatic

and that the planet is cooling on long time scales. Suppose we allow for s to vary on

long time scales so that its variation represents the long time cooling of the planet.

We assume that transport of heat is di�usive so the heating has the form

Q = Cv�r2T : (2.48)
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Over the long non adiabatic time scales the forcing is given by

Ds

Dt
=
@s

@t
=

Cv�r2T

T
; (2.49)

The vertical pro�le of the heating rate (2.49) is shown in Figure 2.6. We constrain

the heating so that, when integrated over the whole volume, the total forcing will

be zero, and thus no net heat is added (or lost) from the system at every time step.

Therefore we shift the conduction pro�le (2.49) so that the net heating is zero, and

the di�erence is the heating associated with the long time scale cooling. Then the

actual long time scale cooling is given by

@s

@t
= Cv�

�r2T

T

�
; (2.50)

where we denoted the di�erence between the original pro�le (2.49) and the shifted

vertical heating pro�le by hi . This is the representation of the long time cooling of the

planet, and this term represents the net loss of energy which is seen in observations.

Then the thermodynamic equation (2.28) including the explicit forcing becomes

@s0

@t
+

1

�
r � (�us0)� �r2s0 = Cv�

�r2T

T
�
�r2T

T

��
: (2.51)

The heat �ux (F ) is related to the heating rate by Q

T
= r � F . Hence, we can

calculate the e�ective �ux at each depth from the heating by

F =
1

r2

Z
�Q

T
rdr + F0; (2.52)

where F0 is zero since the �ux at the bottom is zero. The normalized heating rate

and heat �ux are shown in Figure 2.6. Note that the �ux out of the atmosphere is

e�ectively zero, which is di�erent from Rayleigh-Benard type convection models (e.g.

Heimpel et al., 2005) that have very high outgoing heat �uxes. The interior heat

�uxes are very large but compensate for the use of eddy viscosity terms which are big

due to the size of the grid. We discuss this issue more in section 4.7.
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Figure 2.6: The applied heating function (red) and the resulting heat �ux (black) as
a function of depth. Both are normalized (note that the heating is negative so that
the top levels are e�ectively cooling and the bottom are heating). The integrated
forcing (4.29) over the whole domain is zero.

2.6 Model Summary

The model solves the full spherical momentum equations with no spherical shell ap-

proximations. The mass equation contains compressibility of the mean density which

varies radially. The thermodynamic equation is used in terms of entropy and contains

both advection and di�usion of entropy. The equation of state for the variation in

density includes both entropy and pressure �uctuations, and the vertically dependent

coe�cients are given by the SCVH equation of state. This forms a system of six equa-

tions (2.8, 2.9, 2.10, 2.7, 2.28, and 2.47) solved for the six unknowns u; v; w; s0; �0, and

p0. The gravitational acceleration g(r) is calculated from the mean density. These

equations have the parameters 
; �; � and Q. These parameters are set by three

nondimensional numbers which control the system; the Prandtl (viscosity vs. con-

ductivity), Taylor (rotation vs. viscous damping) and Rayleigh numbers (buoyancy

vs. viscous and thermal damping). These numbers are given by

Pr = �
�
; Ta = 4
2H4

�2
; Ra = B0H4

��
; (2.53)
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where H is the total vertical extent of the model, and B0 is given by

B0 =
Q

sT 0

�g0
H

� 1

2

; (2.54)

where the subscript 0 denotes the top level. The heating therefore is normalized by

the reference entropy value s, and thus reduces the system dependence on the speci�c

choice of the value of s (although this choice still sets the other reference values).

B0 will therefore be the equivalent of the Brunt-Vaisala frequency in a strati�ed

�uid. To keep the parameter range simple and since the grid spacing is fairly uniform

(aka horizontal scales are similar to vertical scales), we use the same viscosity and

di�usivity parameters in all the equations. Often in the text we will use the Ekman

number Ek = �

H2 instead of the Taylor number. Other model settings, which we

experiment with are the total vertical depth (ranging from a thin spherical shell to

93% of the planet radius - section 6.1), and the rotation rate. Since we consider

several forms of thermal forcing, we may have more than one Rayleigh-like number,

e.g., one measuring the horizontal variation in heating in the top layers.
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Chapter 3

Numerical Results

3.1 Axisymmetric Results

When we observe the circulation on the giant planets it appears to �rst order fairly

zonally symmetric. From a modeling point of view the question is can an axisym-

metric model capture the main features of this circulation such as the equatorial

superrotation, alternating jets and poleward heat transport? From our experience

with Earth's atmosphere we know that zonally symmetric models had success in ex-

plaining some of the features of the general circulation (e.g. Held and Hou, 1980), but

eddy �uxes are crucial in understanding the general circulation (Schneider, 2006).

In this section we present results of axisymmetric calculations. We use the full

3D model but truncate it to one grid point in the zonal direction. Much of the model

development was done in the axisymmetric setup, which is simpler computationally

and still contains the vertical modi�cations that were made to the MITgcm. When

comparing to the 3D results we �nd that the circulation is quite di�erent. Nevertheless

comparing the 2D to the 3D results illuminates the role of the zonal asymmetries,

particularly the role of the eddies in driving the equatorial superrotation. Some

aspects of the circulation do carry over from the 2D to the 3D model and we focus

on those in the �rst subsections. We will begin by discussing the e�ect of rotation

on the circulation and then discuss the onset of convection and the critical Rayleigh

number.
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3.1.1 The E�ect of Rotation on Convective Plumes

In a non rotating system the intuition about convecting plumes is simple, and con-

vection is associated with �uid motion along the direction of the gravity vector. In

a rotating system the Taylor-Proudman theorem puts constraints on the dynamics,

where now two key players in determining the direction of motion of a convecting

plume, will be the direction of the rotation and gravity vectors.

In many geophysical models due to the traditional small aspect ratio approxima-

tion the horizontal component of the rotation vector is neglected. However even for

deep oceanic convection the aspect ratio within the convection columns may be near

unity (Lilly et al., 1999; Marshall and Schott, 1999). Then the vertical velocities are

comparable to horizontal ones so that this approximation is not valid. In the case of

a deep convective atmosphere this is not valid as well. The traditional approximation

treats the rotation and gravitation vectors as parallel; the issue of convection when

they are not has been addressed in several studies. Numerical experiments by several

authors (e.g. Zhang and Schubert, 1997) have shown alignment of convective �ow

with the rotation axis. This issue is not simple to treat in laboratory experiments

because the di�culty of creating a �nite angle between the rotation and gravity vec-

tors, and the need of having the center of gravity not coinciding with the center of the

Earth. However as suggested by Busse et al. (1998) the angle between the buoyancy

force and the rotation axis can be produced by the use of centrifugal force. Sheremet

(2004) used this method and found out that oceanic type sinking plumes tend to

sink in an intermediate direction between the e�ective gravity and the rotation and

shift eastward. In a space lab experiment Hart (1985) used a spherically symmetric

electric �eld acting on a dialectrically insulating liquid to simulate gravity in space,

and address the issue of the direction of the plumes in a rotating system.

In this section we show results from the axisymmetric model showing the e�ect

of rotation on the convectively driven �ow. Simplifying the model further, in this

section we use Boussinesq dynamics. In section 4.5 we discuss the e�ect of rotation

on the anelastic model and show the 3D case, but the essence is captured by the

axisymmetric Boussinesq model. This analysis in 2D is simpler also because we can

de�ne a 2D streamfunction, which will describe the motion in the radial-meridional

plane. In the 3D case we can do this only in cases where rotation limits the motion

to be 2D. Without assuming a small Rossby number we can write the steady state
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Figure 3.1: The meridional streamfunction for axisymmetric experiments with di�er-
ent rotation periods.

vorticity equation (Pedlosky, 1987) as

2
 � ru+ [! � ru+r � (!u)] =
1

�0
r�0 � g (3.1)

where ! = r � u is the vorticity vector, u is the 3D velocity vector and �0 is the

constant density. If the �ow were completely barotropic then for small Rossby num-

bers (or rapid enough rotation), (3.1) would be dominated by the �rst term. The

Taylor-Proudman theorem then implies that the velocity is constant along the direc-

tion of the rotation axis. However, since the convection drives plumes with horizontal

gradients the �ow is not completely barotropic. For slow rotation the vorticity �ux

and tilting will balance the baroclinic vorticity production term. For cases of weak

enough convection we �nd that though locally the Brunt-Vaisala frequency can vanish

(in the plumes), on average over the domain it has a positive (small) value. Therefore

the two physical time scales in the problem, the rotation period, and the buoyancy

period, set the character of the �ow. For large 
2

N2
the �ow will be dominated by the

rotation, and the plumes will align with the axis of rotation giving nearly constant
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Figure 3.2: The ratio 
2

jN2j (blue), and the maximum value of the streamfunction (red)

as function of the rotation period for axisymmetric runs.

velocities along this axis. When 
2

N2
is small the buoyancy dominates the rotation

and the plumes align in the direction of the gravity vector. Figure 3.1 shows the

2D radial-latitudinal streamfunction for axisymmetric cases with di�erent rotation

period. The �ow develops circulation cells that change their character based on the

ratio of 
2

N2
. Figure 3.2 shows this ratio as a function of the rotation period for a series

of runs varying only in rotation period. For strongly convective �ow the buoyancy

frequency will not be a good measure of convection. An equivalent measure of the

convection can be the ratio of the nondimensional numbers

� � Ta � Pr
Ra

=
4
2

B0
; (3.2)

where B0 has been de�ned in (2.54). We show in section 4.5 for the 3D case that

this is a good measure to characterize the �ow: thus when � > 1 the �ow is rotation

dominated and aligns with axis of rotation, and when � < 1 it is not. We discuss

this further in section 4.5. Figure 3.2 also shows the normalized intensity of the 2D

streamfunction.

The zonal velocity character is very di�erent from the zonal velocity in the 3D
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case. This velocity structure is shown in Figure 3.4 where we compare the 2D to

the 3D �ow. The results shown in this section are for an Earth size aqua-planet (a

developmental stage of this model) so numerical values can not be compared between

this section and the rest of the thesis.

3.1.2 The Critical Rayleigh Number for a Rotating Fluid on

a Sphere

We study the onset of convection in the rotating axisymmetric system. This again is

a case where the axisymmetric results do not di�er much from the spherical ones, and

to simplify the analysis we look at the Boussinesq case. We look at the onset through

a local linear stability analysis and compare the result to numerical axisymmetric

results. The linear system in spherical geometry is given by

@u

@t
� 2
 sin �v + 2
 cos �w = �r2u (3.3)

@v

@t
+ 2
 sin �v = � 1

r�0

@p

@�
+ �r2v (3.4)

@w

@t
� 2
 cos �u = � 1

�0

@p

@r
+ b+ �r2w (3.5)

1

r

@v

@�
+
@w

@r
= 0 (3.6)

@b

@t
+ wS = �r2b (3.7)

where b = �g�0

�0
is the buoyancy and the rest of the variables and parameters are

de�ned in 2.2. We assume that locally we can describe the perturbation by the form

[u; v; w; b; p] = [u0; v0; w0; b0; p0] e
i(l�+mr��t); (3.8)

which allows writing this system as

0
BBBBBB@

�i� � va2

r2
�2
 sin � 2
 cos � 0 0

2
 sin � �i� � va2

r2
0 0 � il

�0r

�2
 cos � 0 �i� � va2

r2
�1 � im

�0

0 � il
r

�im 0 0

0 0 S �i� � �va
2

r2
0

1
CCCCCCA

0
BBBBBB@

u0

v0

w0

b0

p0

1
CCCCCCA

= 0;(3.9)
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where we have approximated the Laplacian operator by dropping �rst order deriva-

tives and denoted the total wavenumber a2 = � (l2 + r2m2). Solving this system for

� = 0 gives the critical value for instability. This critical value occurs at

S =
�

�

(2
 cos �l + 2
 sin �rm)2

l2
+
a6��

r4l2
; (3.10)

and gives an expression for the critical Rayleigh number

RaC =

�
2


�

�2
r4 (l cos � + rm sin �)2

l2
+
a6

l2
: (3.11)

Therefore the critical Rayleigh number is composed of two terms. The �rst depends

on the rotation period, and the other purely on the wave numbers. In the limit

of slow rotation the solution is dominated by the second term implying that the

onset of convection does not depend on latitude. The solution in this limit is the

classical critical number for Rayleigh-Benard convection (e.g. Chandrasekhar, 1961)

for the case where the zonal wave number is zero. Busse (2002) studies the onset of

convection in an annulus and �nds a similar structure to the critical Rayleigh number,

though with no latitudinal dependence due to the di�erent geometry. In the limit of

rapid rotation if the �rst term dominates then the onset of convection will depend on

latitude.

We can test this solution using the numerical model. To allow quanti�cation of

the dependence of the onset of convection on latitude we use a simpli�ed forcing.

Instead of forcing by the pro�le shown in Figure 2.6 we apply a heat �ux to the

bottom boundary, which is relaxed by Newtonian cooling at the top. We assume the

latitudinal number of plumes is related to the meridional wave number, and then can

plot the intensity of the plumes during the initial stages of convection as a function

of latitude. In Figure 3.3 we compare the outbreak of the convective plumes as a

function of latitude and compare that to the inverse of the critical function obtained

in (3.11). The bottom panel shows a qualitative match between the two pro�les. The

intensity of the convection is stronger towards the poles where the critical Rayleigh

number is smaller. When we look at the spin-up of the model with more complicated

schemes of forcing we see also stronger initial convection at higher latitudes. We �nd
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Figure 3.3: The critical Rayleigh number as function of latitude. (bottom) The color
plot is the intensity of the convection at its onset, for a case where forcing is applied
as a bottom �ux. The dashed line is the inverse of the critical Rayleigh number
(3.11), which matches the pro�le set by the outbreak of convection as a function of
latitude. (top) The critical Rayleigh number as function of latitude and wavenumber.
The level l = 17 correspond to the dashed line in the bottom panel.

therefore that for a radius r0 when

�
2
r20
�l3

�2

> 1; (3.12)

the critical Rayleigh number decreases with latitude.

3.2 From the 2D to the 3D Model

Due to the natural axisymmetric appearance of thermally convecting rotating systems

in nature, they have been initially studied for axisymmetric cases. Chandrasekhar

(1961) showed that thermal convection in a rotating �uid for high Taylor numbers

will form convection cells. Roberts (1968) was the �rst to show that linear asym-

metric modes will be the most unstable in a spherical shell when forced internally by

convection. In several studies Busse suggested that these modes are related to the jets

seen on the outer planets and may lead to equatorial superrotation (e.g. Busse, 1970,

2002). Even on Earth's atmosphere, although a very di�erent type of system, the
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statistically averaged �ow appears axisymmetric. However, the mechanisms driving

this �ow do depend on the zonal asymmetries (Schneider, 2006).

Comparing our axisymmetric simulations to the 3D ones we �nd that the zonal

asymmetries completely change the character of the circulation. The axisymmetric

model is composed of mainly up-down motion along the direction of the axis of rota-

tion with zonal velocities produced by divergences constrained by mass conservation

of this convective �ow. For rapid enough rotation the Taylor-Proudman theorem lim-

its the motion. As a simple example we can think of the �ow at the equator in the

axisymmetric and Boussinesq case. At the equator the direction of the axis of rotation

coincides with the latitudinal direction and therefore the Taylor-Proudman theorem

implies that the meridional velocity is independent of the latitudinal direction. Since

the velocity is non-divergent, then both derivatives independently become zero

1

r

@v

@�
=
@w

@r
= 0: (3.13)

Then, since the boundary condition has no normal �ow there can be no �ow along the

equatorial plane. Since the presence of convective plumes drives the �ow away from

a completely barotropic state, the Taylor-Proudman theorem does not completely

apply even for the Boussinesq case and therefore some cross-equatorial �ow does

develop even in the axisymmetric model. However in the case of forcing only by a

bottom boundary �ux (as in section 3.1.2), we �nd there to be nearly no �ow on the

equatorial plane. A similar argument will hold for the anelastic case even though the

mass divergence contains the mean density. It can be seen in Figure 3.4 that for both

cases the equatorial region is fairly quiescent. In the 3D case, having the extra degree

of freedom, the full 3D velocity divergence allows motion on the equatorial plane

both in the zonal and radial directions even if the Taylor-Proudman constraint is

fully applicable. In chapters 4-6 we discuss in detail the 3D solution, and in chapter 5

we show how this motion on the equatorial plane drives the equatorial superrotation.

In Figure 3.4 we show the Anelastic and Boussinesq cases in 2D and the equivalent

plots for the zonally symmetric �ow in 3D. The left panels are the zonal velocity and

right panels are the meridional 2D streamfunction of the zonally averaged velocity.
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Figure 3.4: Comparing 2D and 3D Boussinesq and anelastic models. Left panels are
zonal velocity (with m=s values in the colorbar), and right panels are the 2D (r � �)
streamfunction (zonally averaged �elds for the 3D cases). 3D runs have parameters:
Ra = 1E7, Ek = 1:5E � 4, Pr = 10, and 2D runs Ra = 1E6, Ek = 4E � 4, Pr = 10
(anelastic) and Ra = 3E6, Ek = 1:5E � 4, Pr = 10 (Boussinesq).
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3.3 The 3D model

In chapters 4-6 we discuss and analyze the 3D results. As a reference for the rest of this

work in this section we present a series of plots which will be the baseline for future

discussion. To describe the 3D spherical statistical steady state of the model, we

present some of the basic �elds in three orthogonal slices on the planet: a meridional

(pole-to-pole) slice of the zonal mean �ow, an equatorial 360� slice around the planet

(for some runs we have done only 90�), and slices on constant mean pressure surfaces.

The meridional extent of these runs has been from latitude 80�N to 80�S. The

choice of not extending the model to the pole was based on numerical convenience

since the convergence of the grid at the pole will require more computation time. In

addition we were more interested in the equatorial dynamics and therefore made this

choice. The depth of the �uid layer was chosen for these runs at 0:55 the radius of the

planet, which corresponds to approximately to 20 Mbar. In chapter 2 we have shown

that beyond about 100 kbar the thermodynamics become di�erent than an ideal gas,

and therefore we are well into that regime. Most previous models of convection in

a deep shell put the bottom boundary at a higher level. However, it has not been

clear how much that choice in�uences the results (in particular the extent of the

superrotation). One of the goals of this work is to study the dynamics of a deep

system and therefore we deliberately push the bottom boundary deep even beyond

what is generally accepted. In section 6.1 we study the dependence of the dynamics

on the location of the bottom boundary using a series of runs ranging from a thin

spherical shell to a full 3D sphere. We use slip boundary conditions on the bottom

and side boundaries, and a free surface on top.

All runs we present here have a 1� resolution and a factor of 1:33 in pressure

between each vertical level, with a total of 120 vertical grid points, giving a total of

160 � 360 � 120 grid points. Because of the convection, the numerical time step is

small (5 seconds) and the runs typically require at least 5E5 time steps to reach a

statistical steady state, beginning with a zero mean �ow initial condition and small

random noise. We run typically on 16 parallel processors and computation time for

such a con�guration is about 6 weeks. We found that using only part of the sphere

(typically 1
4
of the sphere zonally) with periodic longitudinal boundary conditions

does not a�ect the results much, and allows cutting computational time by a factor

of 4. Some of the runs we show therefore will be of a slice of a fourth of a sphere.
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Mainly for presentation purposes throughout this work we use the meridional and

zonal components of the vector streamfunction 	 to describe the �ow on a 2D slice.

Since the quantity �u has zero divergence we can de�ne this streamfunction as

r�	 � �u; (3.14)

where 	 is a 3D vector. In component form this gives

1

r cos �

�
@ (	� cos �)

@�
� @	�

@�

�
= �w (3.15)

1

r

�
1

cos �

@	r

@�
� @ (r	�)

@r

�
= �v (3.16)

1

r

�
@ (r	�)

@r
� @	�

@�

�
= �u: (3.17)

Due to the symmetry along the axis of rotation, on the equator we assume the changes

along the axis of rotation (which coincide with the � direction along the equatorial

plane) are small, and then can neglect the terms containing changes in the � direction

for the equatorial plane. Then, we can integrate either (3.15) or (3.17) to �nd 	�. We

refer to this meridional component as the equatorial streamfunction. In Figure 3.11

we show velocity vectors superimposed on the equatorial streamfunction showing that

integrating from either (3.15) or (3.17) is consistent. As one moves away from the

equatorial plane this approximation becomes less accurate. For the 	r component we

�nd that since the motion is 3D, we can not describe 	r as a 2D �eld. The zonally

averaged values are presented as the averaged meridional streamfunction 	�.

We show in this section results from two runs which have identical parameters

except for the Rayleigh number. Our goal is to run the model in a regime which is

as turbulent as the numerics will allow, and therefore have a Rayleigh number which

is as high as we can a�ord (also depends on grid and time step), though it is harder

to identify the physical processes in those runs. Therefore in section 5.1 we study in

detail a run with a low Rayleigh number which allows easier analysis of processes.

The runs we present in this section have Ra numbers of 5E7 and 3E6 which we

will refer to as the high and moderate Rayleigh number runs respectively. We begin

with the high Rayleigh number run, and in Figures 3.5, 3.6, 3.7, and look at slices

on surfaces of constant mean pressure (depth) which are roughly at the top surface,

0:86, and 0:59 of the radius respectively (1bar, 1 Mbar and 10 Mbar). The �elds are
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averaged over a period of 1 day. For each surface we look at the three components

of velocity, density anomaly, entropy anomaly, and vorticity (top surface) or pressure

anomaly (bottom two). Velocity �elds show the e�ect of the mean density with

smaller velocities in the interior and the superrotation at the equator with a weaker

Hadley cell in the meridional direction. The thermodynamic �elds show how density

is strongly a�ected by pressure in the higher levels while becoming more dependent on

entropy in the lower levels. We discuss this issues in section 4.3.2. Figure 3.8 shows

the corresponding �elds for the same high Rayleigh number run on the equatorial

plane, including the equatorial 2D streamfunction (�ow in the r � � plane), showing

cyclonic eddies on the equatorial plane. The zonally averaged meridional slices are

similar to the moderate Rayleigh number runs (only with stronger velocities), and

therefore we show them for that run only.

For the moderate Rayleigh number runs we look both at the instantaneous �elds,

and at the time averaged �elds averaged over 12 days. Beginning with the instan-

taneous �elds (snapshots) in Figures 3.9, 3.10, 3.11 we show the zonally mean �elds

on the meridional plane, the surface at 1 bar, and the equatorial plane respectively.

Then we show the same slices for the 1bar surface and the equatorial plane without

repeating the meridional plane that is quite similar to the instantaneous �elds because

of the zonal mean. In the following chapters we discuss the features of these runs in

more detail and discuss their dynamics. Figures 3.5 - 3.13 follow below.
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Figure 3.5: 1 bar surface �elds averaged over 1 day for a high Rayleigh number run:
Ra = 5E7, Ek = 1:5E � 4, Pr = 10. upper left: zonal velocity [m=s]; upper middle:
meridional velocity [m=s]; upper right: vertical velocity [m=s]; lower left: density
anomaly [Kgm�3]; lower middle: converted entropy (see Appendix A) anomaly [K];
lower right: vertical vorticity [10�3s�1].
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Figure 3.6: 1 Mbar surface �elds (0:86 of the radius) averaged over 1 day for a high
Rayleigh number run: Ra = 5E7, Ek = 1:5E�4, Pr = 10. upper left: zonal velocity
[m=s]; upper middle: meridional velocity [m=s]; upper right: vertical velocity [m=s];
lower left: density anomaly [Kgm�3]; lower middle: converted entropy anomaly [K];
lower right: pressure [kbar].
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Figure 3.7: 10 Mbar surface �elds (0:59 of the radius) averaged over 1 day for a high
Rayleigh number run: Ra = 5E7, Ek = 1:5E�4, Pr = 10. upper left: zonal velocity
[m=s]; upper middle: meridional velocity [m=s]; upper right: vertical velocity [m=s];
lower left: density anomaly [Kgm�3]; lower middle: converted entropy anomaly [K];
lower right: pressure [kbar].
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Figure 3.8: Equatorial plane slices averaged over 1 day for a high Rayleigh number
run: Ra = 5E7, Ek = 1:5E � 4, Pr = 10. upper left: zonal velocity [m=s]; upper
middle: meridional velocity [m=s]; upper right: vertical velocity [m=s]; lower left:
converted entropy anomaly [K]; lower middle: density anomaly [Kgm�3]; lower right:
equatorial streamfunction [1=s].
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Figure 3.9: Snapshots of zonally averaged �elds on a meridional section for a run
with a moderate Rayleigh number: Ra = 3E6, Ek = 1:5E � 4, Pr = 10. Upper left:
zonal velocity [m=s]; upper middle: meridional velocity [m=s]; upper right: vertical
velocity [m=s]; lower left: converted entropy anomaly [K]; lower middle: density
anomaly [Kgm�3]; lower right: 2D meridional streamfunction [1=s].

79



Figure 3.10: Snapshots of �elds at the 1 bar surface for a run with a moderate Rayleigh
number. Ra = 3E6, Ek = 1:5E�4, Pr = 10. Upper left: zonal velocity [m=s]; upper
right: meridional velocity [m=s]; middle left: converted entropy anomaly [K]; middle
right: density anomaly [Kgm�3]; lower left: pressure anomaly [bar]; lower right:
momentum �ux [10�4m2=s2].
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Figure 3.11: Snapshots of �elds on an equatorial section for a run with a moderate
Rayleigh number: Ra = 3E6, Ek = 1:5E � 4, Pr = 10. Upper left: zonal velocity
[m=s]; upper right: zonal velocity anomaly (subtracting the zonal mean from the
zonal velocity) [m=s]; middle left: vertical velocity [m=s]; middle right: 2D equatorial
streamfunction [1=s]; bottom right: converted entropy anomaly [K]; density anomaly
[Kgm�3].
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Figure 3.12: 1 bar surface for a run with a moderate Rayleigh number time averaged
over 12 days. Ra = 3E6, Ek = 1:5E � 4, Pr = 10. Upper left: zonal velocity [m=s];
upper right: meridional velocity [m=s]; middle left: converted entropy anomaly [K];
middle right: density anomaly [Kgm�3]; lower left: pressure anomaly [bar]; lower
right: momentum �ux [10�4m2=s2].
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Figure 3.13: Equatorial sections for a run with a moderate Rayleigh number time
averaged over 12 days: Ra = 3E6, Ek = 1:5E � 4, Pr = 10. Upper left: zonal
velocity [m=s]; upper right: meridional velocity [m=s]; middle left: vertical velocity
[m=s]; middle right: 2D equatorial streamfunction [1=s]; bottom right: converted
entropy anomaly [K]; vertical momentum �ux [m2=s2].
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Chapter 4

Basic Balances and the Vertical Wind

Structure

4.1 Introduction

One of the most fundamental questions regarding the atmospheres of the gas giant

planets is how deep are the strong winds which are observed in their atmospheres.

The only direct observation is from the Galileo probe, which showed an increase in

zonal velocity from 80m=s to 160m=s down to the 4 bar level, and then a constant

wind speed for as far down as the data could be retrieved (the 24 bar level), (Atkinson

et al., 1996). Beyond the problem of having only a single measurement pro�le, the

probe entered a �hot-spot� which may not be a good representation of the general �ow

(Bagenal et al., 2004). Other observational evidence for the deep �ow comes from the

fact that the heat emission on both Jupiter and Saturn has a nearly uniform merid-

ional structure (Ingersoll, 1976; Hanel et al., 1981, 1983), suggesting deep transfer of

heat (Ingersoll and Porco, 1978). One of the main goals of the JUNO mission is to

put constraints on the depth of the jets via gravity measurements (section 8.2.2) .

Recently, Liu (2006) put theoretical constraints on the possible extent of deep �ows

based on the ohmic dissipation created by the zonal �ows in an electrically conducting

�uid by the magnetic �eld. They suggest that if the zonal �ows in the interior would

be as strong as they are on the surface, and the magnetic �eld can also be deduced by

the surface values, then the zonal winds could not penetrate more than 0.95 and 0.87

of the radius on Jupiter and Saturn respectively. In this study we do not include the
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e�ect of the magnetic �eld; however we show that even without the magnetic �eld

acting to dissipate the �ow in the interior, we do not expect to �nd interior velocities

as large as the atmospheric ones, based only on the big increase in density between

the outer atmosphere and the interior.

In this chapter we attempt to address the question of the deep velocities using

our numerical model. Previous models could not address this issue since they were

either shallow type models (e.g. Cho and Polvani, 1996; Showman et al., 2006) or

deep models that were restricted to the Boussinesq approximation (Sun et al., 1993;

Zhang and Schubert, 1996, 1997; Aurnou and Olson, 2001). For example Heimpel

et al. (2005) and Heimpel and Aurnou (2007) show superrotating equatorial zonal

�ow, with higher latitude meridionally con�ned jets in a Boussinesq model which

goes down to 0:9 of the planetary radius. The zonal velocities persist throughout

the depth of the planet, and the meridional extent of the equatorial superrotating jet

depends on the location of the bottom boundary. Clearly for addressing the baroclinic

structure of the zonal winds we want allow density variations over the depth of the

planet. Using both an anelastic model and a suitable equation of state allows us to

address this issue more thoroughly. We try to decouple our results from the choice

of the location of the bottom boundary and therefore push it deep below what is

believed to be the boundary of the molecular �uid (we experiment with the bottom

boundary location in section 6.1). We �nd the compressibility e�ects very important

in understanding the vertical wind structure.

As discussed in the introduction, based on emission measurements and on 1D ra-

diative theoretical models it is believed that the deep atmosphere is in a convective

state (Guillot, 2005). A common assumption is that if the interior is convective it is

close to a purely barotropic state. This is based on the assumption that convection

causes uniform mixing limiting the density variations across pressure surfaces. We

note two things: First convection tends to form plumes meaning that even if the at-

mosphere is driven by strong convection since the regions of strong upwelling plumes

tend to be very localized (Lindzen, 1977), much of the atmosphere may be slightly

stably strati�ed with small regions of convectively unstable plumes, and the atmo-

sphere can still have horizontal density gradients. Second, the density anomalies are

not just a function of entropy or heat anomalies, but also in an anelastic system are

a�ected by the compressible e�ects, thus giving a signi�cant baroclinic contribution.

In this chapter we begin by looking at the basic balances showing that to �rst or-
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der the motion is geostrophic and hydrostatic. Then we show how the thermal wind

relation is revised when considering a deep atmosphere rather than one restricted

to a spherical shell. Incorporating the anelastic approximation the vorticity equa-

tion highlights the importance of the baroclinic contributions, which are not small

for a compressible gas. In the barotropic limit the system will still give the Taylor-

Proudman constraint, but this is a more speci�c case than it appears for a Boussinesq

�uid. We show that anelastic models must have density depending on two thermo-

dynamic variables and otherwise can be misleading. We show how convection drives

the system away from a barotropic state, and thus away from the Taylor-Proudman

constraint. The convectively driven �ow in steady state is in a state in between hav-

ing Taylor columns, with the zonal velocity being constant along the direction of the

rotation axis, to constant momentum (�u) along this direction. The baroclinic contri-

butions therefore set the vertical shear, and in section 4.7 we proceed to parametrize

the shear of the zonal �ow using scaling arguments. We show the details of the interior

circulation including the formation of large scale columnar structures which have been

suggested in qualitative studies (Busse, 1976). These columnar structures surround

the interior core and have vorticity in the same sense as the mean shear. We analyze

the angular momentum and heat �ux budgets and show the roles of eddy and mean

�uxes in driving the circulation. We �nd that the zonal asymmetries and angular

momentum eddy �uxes play an important role in transporting angular momentum to

the equator and forming the equatorial superrotating zonal �ows.

4.2 Basic Balances

Given the set of model equations (2.7), (2.8), (2.9), (2.10), (2.28) and (2.47), and the

solutions presented in section 3.3 we begin by looking at the leading order balances

in these solutions. These balances are important for understanding the key physical

mechanisms in the dynamics and for further analysis when developing theories with

higher order expansions. Beginning with the zonal momentum balance, for small

Rossby and Ekman numbers the leading order terms in the momentum equations
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Figure 4.1: Geostrophic balance: the two plots on the left show the geostrophic
balance for the zonally averaged �elds (meridional section) and the di�erence between
them is shown on the right.

(2.8-2.10) give

�2
 sin �v + 2
 cos �w = � 1

�r cos �

@p0

@�
(4.1)
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@p0
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(4.2)
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@r
� �0

�
g (4.3)

where all variables and coordinates are the same as de�ned in chapter 2. Density and

pressure have been expanded as in (2.1 and 2.2) to a mean horizontally independent

hydrostatic part and an anomaly. Note that we are using the standard form of the

vertical momentum equation and not the equivalent anelastic form with the revised

gravity term as in (2.26). As discussed in section 2.2 in the deep system, apriori

all four Coriolis terms contribute to the geostrophic balance. Here we show that

indeed this is the case. The numerical results presented here are from 3D runs at a

1� resolution and 120 vertical levels extending to 0:55 the radius of the planet. The

pressure variation is from 1 bar in the upper level to 12 Mbars in the interior with a

pressure increase of ratio 1:33 between vertical levels. Rayleigh, Prandtl and Ekman

numbers as de�ned in (2.53) are 5E7, 10 and 1:5E � 4 respectively. In Figure 4.1

we show that to the �rst order the �ow is in geostrophic balance; thus the pressure
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Figure 4.2: Hydrostatic balance: left: buoyancy term; middle-left: radial pressure
gradient; middle-right: di�erence between the panels on the right; right: vertical
Coriolis term

gradients are in balance with the Coriolis term in equation 4.2. In (4.1) the zonally

averaged Coriolis terms balance each other. The ageostrophic contributions to the

momentum equation are an order of magnitude smaller and are dominated by the

convection, which gives the signature of plumes aligned with the axis of rotation

as shown in section 3.1.1 for the 2D case and will be discussed later on for the 3D

case. This implies that for the parameter regime of Jupiter the assumption of a small

Rossby number, which will be used in later analysis is valid.

Next we look at the vertical momentum balance. In the traditional shallow type

system the leading order balance would be between the vertical pressure gradient and

buoyancy giving hydrostatic balance (beyond the higher order basic state hydrostatic

balance @�p
@r

= ���g). However due to the large aspect ratio, the Coriolis acceleration

in the vertical momentum balance is not negligible. In Figure 4.2 we show that the

di�erence between the hydrostatic terms is almost exactly the vertical momentum

equation Coriolis term. This veri�es that (4.3) is indeed the leading order balance.

This is important when looking at thermal wind balance for the deep system which

we do in the next section. Therefore we refer to the basic balance being geostrophic

and hydrostatic but unlike the classic shallow �uid case it includes the non-negligible

vertical Coriolis term.
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4.3 The Vertical Structure of the Zonal Velocity

4.3.1 Thermal Wind for a Deep Anelastic Setting

We begin by revisiting the thermal wind relation for a deep atmosphere. As discussed

in section 4.2 unlike the traditional approximation the aspect ratio between vertical

and horizontal scale is not small, and therefore the Coriolis term in the vertical

equation and the one associated with vertical motion in the zonal equation are not

negligible. We are interested in the e�ect of the Coriolis terms and the density gradient

on the velocity structure. Taking the radial derivative of (4.2) and using (4.3) gives

@u

@r
=

g

2
r� sin �

@�0

@�
� 1

�r

@�0

@�
cot �u� 1

r
cot �

@u

@�
� 1

�

@�

@r
u (4.4)

More information would be needed to get independent expressions for the vertical

and latitudinal velocity gradients, but noting that the direction parallel to the axis

of rotation is given by

@

@z
= sin �

@

@r
+ cos �

1

r

@

@�
(4.5)

we can write the zonal velocity gradient in the direction parallel to the rotation axis

as

@u

@z
=

g

2
r�

@�0

@�
� u

�r
cos �

@�0

@�
� 1

�

@�

@r
u sin �: (4.6)

This expression includes non orthogonal derivatives, unlike the standard approxi-

mation (Pedlosky, 1987) which is su�cient for a shallow system where the shear is

associated with the perpendicular density gradient. In addition the zonal velocity

gradient has contributions from both the vertical and latitudinal density gradients.

Note that all terms on the right hand side have the mean density in the denominator.

If density gradients driven by the internal convection have roughly the same scale on

the top and bottom of the deep atmosphere, while the density is much bigger at the

bottom rather than on top, one may expect a stronger vertical shear on top than at

the bottom. We look at this more in detail in section 4.7 and show a parametriza-

tion for the shear based on scaling arguments which we compare to the numerical

results. Scaling the terms in (4.6) shows that the second term on the right hand side
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is an order �0

�
smaller than the other terms. Then the leading order balance becomes

approximately

@u
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=

g

2
r�

@�0

@�
� 1

�

@�

@r
u sin � (4.7)

Therefore the shear in the direction of the rotation axis is composed of the meridional

density anomaly gradient and the vertical mean density gradient. In section 4.3.2 we

show numerically how each of these varies spatially.

4.3.2 The Role of Compressibility in the Baroclinic Vorticity

Production

Another way of obtaining balance between the zonal velocity and the density gradients

would be to take directly the curl of the 3D momentum equation multiplied by the

full density � giving

2
r � (�u)� 2
 � r (�u) = r�� g: (4.8)

Then, assuming the density has a mean horizontally independent hydrostatic part

and a smaller anomaly (2.1), and applying the anelastic approximation (2.5) gives

2
 � r (�u) = r�0 � g (4.9)

which is similar to (4.7). In the Boussinesq limit this gives the standard thermal wind

relation. Note that if the right side would vanish this would not be the barotropic

limit, since in the barotropic limit the cross product of the full density and full pressure

vanishes. To see the barotropic limit we rewrite the right hand side of (4.9) as

r�0 � g =
1

�
r��rp� 1

�
r��rp: (4.10)

where we have split both density and pressure into a hydrostatic part and a smaller

anomaly (2.1, 2.2). In the barotropic limit the second term on the right hand side of

(4.10) is identically zero, and for a geostrophically balanced �uid the �rst term would
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give

1

�
r��rp =

1

�
r�� (�2
� u) = ur� � 2
� 2
 (r� � u) (4.11)

Using the anelastic approximation and expanding the right hand side of (4.8) with

(4.11) gives

2
� � ru� 2
�r � u = 0 (4.12)

which is the classic Taylor-Proudman theorem for a barotropic �uid (Pedlosky, 1987).

Thus if the �uid is barotropic we would expect that the zonal velocity is independent

of the direction parallel with the rotation axis and, if the �uid is also Boussinesq we

expect that the full velocity vector is independent of this direction. We are interested

though in going away from these two limits and study the role of the baroclinic e�ects

in an anelastic �uid driven by convection. The convection would drive the density

gradients away from zero, and the level of baroclinicity will set how far we are from

the Taylor-Proudman theorem regime. The baroclinic form of (4.12) can be seen by

taking the curl of the momentum equation (without multiplying by the density �rst)

giving

2
� � ru� 2
�r � u = �1

�
[r���rp0 +r�0 �r�p] : (4.13)

Expressing the density in terms of pressure and entropy as in (2.20)

r�0 (p; s) =

�
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�
s
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�
@�

@s

�
p

rs0 (4.14)

allows rewriting the vorticity equation (4.13) for an adiabatic reference state to the

highest order as

2
� � ru� 2
�r � u = �1

�

�
@�

@s

�
p

rs0 �r�p =

�
@�

@s

�
p

rs0 � g: (4.15)

Hence, equations (4.9) and (4.15) give two equivalent forms of the vorticity equa-

tion where the baroclinic terms are given once in terms of the density gradients, and

once in terms of the entropy gradients. We have shown in chapter 2 that for an anelas-
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Figure 4.3: The contributions of entropy and pressure to the density anomaly and
shear. left: the entropy anomaly contribution to (4.17), middle: the pressure anomaly
contribution to (4.17); right: the density anomaly contribution (equal to the sum of
the two left panels - equation 4.14).

tic and adiabatic �uid the buoyancy naturally is given in terms of entropy rather then

density (since the background density is varying while the entropy is not). Therefore

this form of the vorticity equation is consistent with the barotropic limit where the

right hand side vanishes. However, while in a Boussinesq �uid the velocity divergence

will vanish as well giving the standard Taylor-Proudman theorem in the anelastic

case it will not and therefore the velocity gradient will depend on the compressibility.

To understand the role of the pressure gradient from (4.14) in (4.9) we consider

only the zonal component of (4.9) and (4.15), so that

2
�
@u

@z
=

�g

r

@s0

@�
(4.16)
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r
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r

@p0
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where � and � are the isentropic and isobaric coe�cients in (4.14), which are de�ned

explicitly in (2.20). Therefore subtracting (4.16) from (4.17) shows that the relation

2
u
@�

@z
=

�g

r

@p0

@�
(4.18)

must hold. This means that the pressure contribution to the density anomaly accounts
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Figure 4.4: The vorticity equation balance

for the variation in the mean density. Expression (4.17) then suggests a few possible

situations: if the contribution of (4.18) to the right hand side of (4.17) is small, then

the zonal velocity gradient would depend on the derivative of the entropy anomalies.

In the barotropic limit this would give the standard invariance of u in the direction

parallel to the axis of rotation, similar to the barotropic Boussinesq case. However

if the contribution of (4.18) is not small then compressible e�ects are important and

the system becomes di�erent from the barotropic case. In a particular case where the

two terms on the right hand side of (4.17) cancel each other then we expect the zonal

momentum (�u) to be constant along the z axis.

We �nd that in statistical steady state of our numerical simulations the system is

in a state in between these two extreme scenarios and that this level of baroclinicity

depends greatly on latitude. In Figure 4.3 we look at each of the terms in the vorticity

equation to see its relevant contribution in (4.17). We can see that the contribution

of pressure anomalies is large especially around the upper boundary while entropy

contribution is larger in the interior. This is seen clearly also in Figures 3.5, 3.6 and 3.7

which are surface slices taken roughly at the top middle and bottom of the atmosphere.

Near the top density anomaly is strongly in�uenced by the pressure anomalies while in

the interior density anomalies are in�uenced by the entropy anomalies. If we would

not have included the pressure variation contribution to density, then the density
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Figure 4.5: The zonally averaged zonal velocity for an Anelastic run (left) and a
Boussinesq run (right). Runs di�er in Rayleigh number : Ra = 3E6 for Anelastic
and 1E7 for Boussinesq where Ek = 1:5E � 4 and Pr = 10. (Figure 3.4 shows a
similar plot with same Rayleigh numbers for both runs).

represented only by entropy anomalies will not be balancing the compressible part of

the term on the left hand side of 4.17. In a case of small entropy anomalies this will

lead to appearance of having �u close to constant along the direction of the rotation

axis. Therefore we conclude that the pressure contribution is crucial when using the

anelastic approximation. In a Boussinesq system where the system has a constant

mean density the perturbation can be described by only the entropy.

In order to understand the zonal velocity vertical structure we should look at how

the density contributions above contribute to the di�erent components of equations

4.9 and 4.15. First we note that looking at the two right panels in Figure 4.4 shows

that relation 4.9 holds as we expect for a small Rossby number. Then breaking this

balance into its components on the two left hand side panels in Figure 4.4 shows

that at low latitudes the z-shear of the zonal velocity itself is smaller than at high

latitudes, but at the higher latitudes where the z-shear of zonal velocity is larger it is

accompanied by a compensating shear in � leading to a partial cancellations of these

two contributions.
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4.3.3 Anelastic versus Boussinesq Cases

The importance of the anelastic e�ects are demonstrated in Figure 4.5 where we

compare two similar runs one anelastic and one Boussinesq. The anelastic case has

the density varying from 0:15 Kg=m3 at the top level (at 1 bar of pressure) to 1983

Kg=m3 at the bottom level (Figure 2.4), while the Boussinesq case is set so that the

mean density is constant and equal to the weighted averaged density of the anelastic

case (921 Kg=m3). In this case Anelastic and Boussinesq experiments have similar

magnitudes of their zonal velocity. In Figure 3.4 we show similar 3D experiments

where the anelastic and Boussinesq runs have exactly the same parameters. For the

Boussinesq runs since the mean density does not depend on pressure the density

anomaly is just a function of entropy and not of pressure. In Figure 4.5 we look at

meridional slices comparing the zonally averaged zonal velocity �elds.

Both runs have a similar velocity structure at the surface; however while the

Boussinesq run is barotropic (in the z direction) with strong velocities in the interior,

the anelastic case has strong baroclinicity near the surface with strong shears at mid

and high latitudes with a weaker baroclinic structure (though still not barotropic)

closer to the equator. The meridional extent of the superrotation is similar in both

cases. To look at the baroclinic structure along the z axis more speci�cally we look at

velocity sections along the z axis for two runs of similar Rayleigh numbers. In Figure

4.6 each section is named by the latitude in which it outcrops at the surface.

4.4 The Angular Momentum Balance

In section 4.2 we showed that to the leading order in the zonally averaged zonal

momentum equation the vertical and horizontal Coriolis terms would balance each

other. Next we look at the dynamical balances of the zonally averaged zonal momen-

tum equation. We divide the zonal velocity into a zonal mean and a deviation from

that mean denoted by

u = u+ u0: (4.19)

Then to the leading order

@u

@t
+
uw

r
� uv
r
tan ��2
 sin �v+2
 cos �w+

1

��
r�(�u���u)+ 1

��
r���u0u0� = �r2u (4.20)
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Figure 4.6: Zonally averaged zonal velocity for Anelastic and Boussinesq runs along
slices parallel to the axis of rotation. Each slice goes from the surface (denoted by
the latitude) to the equatorial plane.

where zonal averaging is denoted with the bar. Beyond the lowest order geostrophic

balance between the Coriolis terms in (4.20) as implied by (4.1), we �nd looking at

the numeric values that to the next order the leading terms are the eddy momentum

�ux divergence and the viscous �ux so that

�2
 sin �va + 2
 cos �wa +
1

��
r � ��u0u0� t �r2u (4.21)

where we denote with the subscript the next order component. Since the variations

along the axis of rotation are small, then when looking on the equatorial plane (the

equatorial line in the zonally averaged picture) the leading order balance is

1

�

@

@r

�
��w0u0
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r2
@2 (r2u)

@r2
(4.22)

where in fact only the higher order viscosity derivatives are signi�cant. In Figure 4.7

we show both components of the momentum �ux divergence for a section along the

equator. It shows that the momentum �ux divergence is dominated by the radial

�uxes. The momentum �uxes are outward and big in a localized region. This mo-
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Figure 4.7: The radial and latitudinal (dashed) contributions to the zonal momentum
�ux divergence as function of radius at the equator.

mentum transfer is the basis for understanding the circulation of the model and the

formation of the equatorial superrotation. We discuss this further in section 5.1.

It is convenient to rewrite equation (4.20) in terms of the angular momentum

M = 
r2cos2� + urcos� (4.23)

so that

@M

@t
+1
�
r � ��uM�+ 1

�
r � ��u0M 0� = �r2M (4.24)

where we have split the angular momentum into a perturbation and a zonal mean.

Integrating this equation multiplied by the mean density over a volume contained

by the exterior surface and a constant angular momentum surface (which is nearly

parallel to the axis of rotation because of the dominance of the �rst term in M), will

cause the contribution from the mean �uxes to vanish sinceZ
r � ��uM� dV =M

Z
r � (�u) dV = 0:

Therefore in steady state friction is necessary to balance the angular momentum eddy

�uxes. This also shows that, for the 2D case, no mean zonal circulation can form.

For the 3D case only eddy angular momentum �uxes can carry angular momentum

cross mean angular momentum contours (although locally mean �uxes can do so as

well). Considering the meridional plane streamfunction shown in Figure 3.4 the fact
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Figure 4.8: Angular momentum (left) and heat (right) mean (red) and eddy (blue)
�uxes in a meridional cross section.

that the zonally averaged (or 2D) meridional circulation is con�ned to narrow bands

along the axis of rotation is related to the fact that the mean circulation can not

cross angular momentum contours which are parallel to the axis of rotation. The

width of these bands will be related therefore to the magnitude of the viscosity, and

we expect that in the limit of small Ekman number these convective mean meridional

circulation bands will become narrower. Comparing the angular momentum mean

�uxes (without the solid body component of M), to the angular momentum eddy

�uxes in Figure 4.8, we �nd that while the mean �uxes transfer angular momentum

mainly parallel to the mean angular momentum contours, the eddy �uxes transport

the angular momentum across mean angular momentum contours to low latitudes.

This mechanism is most prominent in the region outside the tangent cylinder where

the large scale columnar structures interact with the mean shear. This transfer of

angular momentum through the turbulent �uxes to the equatorial outer regions of

the planet drives the equatorial surface superrotation. We discuss this mechanism in

chapter 5.

The right hand panel shows the equivalent eddy heat and mean heat �uxes. As

opposed to the angular momentum, there are strong heat �uxes also in high latitudes.
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Figure 4.9: The zonal (blue), meridional (red) and vertical (green) zonally averaged
surface velocities for a run with parameters: Ra = 1E7 , Ek = 1:5E�4 and Pr = 10:
The dashed line is the normalized mean angular momentum.

This transfer of heat mainly parallel to the rotation axis moves heat from lower to

higher latitudes (a section parallel to the rotation axis outcrops in a higher latitude in

the upper boundary than in the lower boundary). This results in heating of the polar

regions. We hypothesize that this mechanism of heat transport to higher latitudes by

internal mean heat �uxes parallel to the axis of rotation can balance the solar heating

resulting in the observed �at emission on Jupiter and Saturn. Figure 4.9 shows the

zonally averaged surface velocities and normalized mean angular momentum. At low

latitudes we �nd a Hadley cell (weaker than the zonal �ow) which is driven by the

equatorial upwelling seen in Figure 4.8. Exterior to the tangent cylinder containing

the eddy angular momentum �ux convergence we �nd an inverse meridional cell (sur-

face �ow away from the pole), which is a surface return �ow driven by the poleward

heat �ux. The latitude where eddy angular momentum �uxes are zero, meaning that

the mean surface zonal velocity is zero, is also where the meridional surface �ow van-

ishes due to the relation between the meridional velocity and the eddy �ux divergence

(4.21).

4.5 The E�ect of Rotation

We have seen that for the parameter regime of Jupiter and Saturn Rossby numbers are

small and therefore rotation is important in the basic balances. In the 2D Boussinesq
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Figure 4.10: The ratio 
2

jN2j and the value of jN2j as a function of the rotation period.

runs we have shown that the ratio of 
2

N2 is an important measure for characterizing

the �ow. For the anelastic case due to having a mean state with a density gradient

the buoyancy frequency is de�ned in terms of entropy. We show this by di�erentiating

the linear non-rotating case of equation (2.26) in time, which gives

@2w

@t2
� w

@s0

@r

@T

@r
= � @2�

@r@t

where we have used relation (2.28) as well. Therefore for the anelastic system the

equivalent to the traditional Brunt-Vaisala frequency is

N2 = �@s
0

@r

@T

@r
:

Since in (2.26) the temperature gradient replaced gravity, and we have shown that

entropy rather then density is the natural variable for buoyancy in the anelastic sys-

tem, then this buoyancy frequency is the natural outcome. For the convective system

however this value becomes negative. In the 2D system convection was concentrated

in speci�c regions and therefore for most cases the mean N2 when averaged over the

whole domain was still positive, however for the 3D experiments shown here the mean

N2 is negative. Still, the absolute value (although not a buoyancy frequency) gives
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Figure 4.11: The nondimensional number � =
�
Ta�Pr
Ra

� 1
2 as function of the rotation

period and the mean zonal velocity at the surface averaged around the equator as
function of the rotation period for a set of experiments with equal parameters but
varying rotation period Ra = 3E6, Pr = 10.

a good measure for the intensity of the convection. In Figure 4.10 we show a set of

experiments where we vary the rotation period for a given model con�guration. We

�nd that the value of jN2j grows (even though the Rayleigh number is kept constant)

with faster rotation period, but 
2

jN2j decreases as the rotation period grows, and to

a reasonable approximation when 
2

jN2j is less than one the �ow is no longer aligned

with the rotation axis. When 
2

jN2j > 1 the �ow is aligned with the rotation axis.

As discussed in section 3.1.1 a similar measure which is better de�ned in terms of

convection and uses the nondimensional parameters of our system is

� =
Ta � Pr
Ra

:

In Figure 4.11 we plot this parameter as function of the rotation period. For the

set of parameters of this experiments at a rotation period of 85 hours � = 1 . As

seen in previous sections for the rotation period of Jupiter and Saturn the velocities

are aligned with the rotation axis characterized by strong superrotation around the

equator. On the same plot we show also the mean surface zonal velocity around the

equator for these runs. We �nd that at about 50 hours the velocity changes from being
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positive (eastward velocity) to negative. The numerical experiments with fast rotation

period all have very similar velocity pro�les, characterized by strong superrotation at

the equator. Beyond a rotation period of 50 hours though, the nature of the dynamics

changes quite rapidly and the zonal mean develops large closed circulations in the r-�

plane with no alignment with the rotation axis. This is similar to what we have

shown for the 2D case (Figure 3.2), however this circulation is also accompanied with

subrotation at the equator. In Figure 4.12 we show the zonally averaged velocity for

two examples out of this set of runs, one with the rotation period of Jupiter (9:92

hours), and the second with a rotation period of 80 hours. We �nd one of these

two states to appear for the whole range of experiments presented in Figures 4.10

and 4.11. The transition between the two states at a rotation period of 50 hours is

very rapid. The estimate for this transition based on 
2

N2 is at 30 hours, but since by

averaging N2 we are approximating the mean buoyancy in the whole domain this is

estimate seems within the reasonable error. The estimate based on the limit � = 1 is

at 85 hours.

4.6 Properties in the Zonally Asymmetric Circula-

tion

So far we have looked at the zonally averaged �elds in the 3D model. The di�erences

between the 2D and the 3D �ow indicate that zonal asymmetries are important for

the 3D circulation. We have seen that eddy momentum �uxes carry momentum away

from the axis of rotation to the outer equatorial part. Next we look at the zonal

structure of the circulation.

4.6.1 Formation of Columnar Convection

Looking at the equatorial plane the most prominent feature beyond the strong pro-

grade velocities near the upper boundary and the retrograde velocities near the inner

boundary are large positively rotating (in respect to the rotation of the planet) eddies

in the interior. Busse (1976) has suggested that Taylor columns can form around a

hot convective interior and the interaction of the columns can drive the jets in the

atmosphere. Zhang and Schubert (1996) have shown formation of convection cells in a

Boussinesq 3D model for Rayleigh-Benard type convection. Here we use the anelastic
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Figure 4.12: The e�ect of rotation: Velocity �elds for a fast and slow rotating planet.
(left) rotation period of 9:92 hours; (right) rotation period of 80 hours; In color are
the zonal mean zonal velocities where red is eastward, and the arrows are the zonally
averaged radial and meridional velocities.
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Figure 4.13: The 2D streamfunction on slices oriented toward the center of the planet
(radius-longitude surfaces), showing the formation of Columns which are driven by
the convection. Plus signs are located at an equal distance from the rotation axis in
all panels, and located within one of the columns, showing that these columns are
parallel to the axis of rotation.

model to show the formation of such columnar structures that extend almost from

one boundary to the other crossing the equatorial plane at about 2/3 the planetary

radius. In Figure 4.13 we show the 2D streamfunction on slices along the longitude-

radius planes on constant latitude surfaces (so that the surfaces are not parallel).

The slices are spread apart in 5� in latitude going northward. The closed structures

on the equatorial plane (upper left panel) extend out in radius as they move out in

latitude so that they are parallel to the rotation axis. To demonstrate this we have

marked the center of one of the columns on the equatorial plane with a plus sign, and

the plus signs on the other planes have an equal distance to the rotation axis, and

the same longitudinal angle. We �nd these columnar features to be a robust feature

in all numerical experiments.
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4.7 Scaling Estimates for the Vertical Pro�le of the

Zonal Wind

We try to estimate the scale of the density gradients driven by the convection. This

is bene�cial for understanding whether the representation of convection in our model

can be interpreted in terms of simple scaling arguments; also by estimating the den-

sity gradients, we hope to have an estimate for the zonal velocity vertical shear. It is

important to distinguish between the density gradients from the convective plumes,

and the larger scale geostrophically balanced density gradients. We begin by estimat-

ing the amplitude of the velocities driven by the convection and comparing them to

the corresponding velocities obtained by our numerical model. Following Fernando

et al. (1991), and Ingersoll and Pollard (1982) we estimate the mean heat �ux carried

by convection as

F = �Cpw
0�T; (4.25)

where � is the mean density, Cp is the speci�c heat (which we can calculate from

the EOS properties (Kippenhahn and Weigert, 1990), and is a function of depth),

�T is the temperature across the plumes and w0 is the convectively driven vertical

velocity. Due to the rotation we can relate the production of vorticity and the buoy-

ancy anomaly via the vertical momentum balance which gives a balance between the

Coriolis force and the buoyancy so that


u0 =
�g�T

�
: (4.26)

Now we can write an expression for the correlation of these two velocities as a function

of the thermodynamic variables and the heat �ux so that

u0w0 =
�gF

�Cp

: (4.27)

All variables on the right hand side of (4.27) are given by the EOS and the reference

state of the model. The �ux can be inferred from the prescribed radial heating pro�le.

The forcing as applied to the model assumes the vertical pro�le is close to adiabatic

and that the planet is cooling on very long time scales. The forcing is applied to the
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Figure 4.14: u0w0 estimated from scaling arguments and the rms from the model. The
plot has the model output for u0 and w0 separately where w0 is bounded to zero at

the upper boundary while u0 has a slip condition, and the combined (u0w0)
1

2 .

heat budget as a heat source Q given by

@s0

@t
+

1

�

@

@r

�
�s0w0� =

Q

T
= r � F (4.28)

which when integrated over the volume is zero. Therefore we can calculate the e�ec-

tive �ux (F ) at each depth from the heating by

F =
1

r2

Z
�Q

T
r2dr + F0 (4.29)

where F0 is zero since the �ux at the bottom is zero. Comparing the right hand

side term in (4.27) shows a good agreement with the eddy rms velocities given by

the model, this is shown in Figure 4.14. This means that our convectively driven

velocities are on average well approximated by these arguments, even though the

convective velocities themselves are stronger than what we expect on Jupiter because

the heat �ux prescribed to the model is stronger than the heat �ux we expect to �nd

on Jupiter.

A common feature of numerical models is that the forcing (in terms of heat �ux)

must exceed in orders of magnitude what we believe exists in the interiors of the

giant planets (which is on the order of 10 W
m2 on Jupiter (Hanel et al., 1981), and
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even less on Saturn (Hanel et al., 1983)). The reason for this over-forcing is that

due to numerical grid size limitations the turbulent viscosities and di�usivities used

in numerical models averages the turbulence in a grid box rather than represent the

molecular value, and therefore the Ekman numbers are orders of magnitude too large.

This means that to reach �ux Rayleigh numbers which exceed critical and are as tur-

bulent as numerics allows, the large viscosities and di�usivities must be compensated

by e�ectively large �uxes exceeding the values we believe exist on the giant planets.

In fact, even when over-prescribing the �uxes, the Rayleigh numbers are many order

of magnitude smaller the expected planetary ones. Therefore these numerical models

should be thought of only in terms of the nondimensional parameters and not in terms

of the actual heat �uxes, viscosities, di�usivities etc. Nevertheless, our objective is to

infer from these models actual characteristics of the planet and overforcing the heat

�ux is a problem we should address. Therefore we present our numerical results for a

range of Rayleigh numbers in order to show the dependence on the forcing, still being

away from real planet values which will require molecular size grid not achievable

with current computational abilities.

The result in Figure 4.14 shows that even though we are overforcing the system the

scaling arguments still hold, resulting in higher turbulent velocities than we believe

exist in the interior of the planet. However since the model mean velocities (not

convective) are of the right order of magnitude and for small Rossby numbers are

geostrophically balanced, the mean densities are well represented. Bridging this gap

between the overforcing and the resulting scales is a major challenge of numerical

modeling in convective systems.

Away from the boundaries we see in Figure 4.14 that the rms zonal and vertical

anomaly velocities are of the same order. Due to the slip boundary condition they

di�er along the boundaries. Therefore for the interior if we assume that u0 � w0, we

can get an estimate for the convective density gradients by using (4.26) and (4.27) so

that

��0 =

�
F�
�

gCp

� 1

2

: (4.30)

This gives an estimate to the turbulent density anomalies, and therefore an upper

limit to the steady state geostrophically balanced density gradients. Relating the

convective density anomalies to the mean geostrophic ones is the main leap of this
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Figure 4.15: Dashed lines are the approximation for typical zonal velocities from
(4.33) for 4 bar (blue) and 10 Mbar (red) as a function of Rayleigh number. Dots are
the corresponding mean rms zonal velocity values from the numerical model.

approximation and therefore we treat this as an upper limit. Now we use this scale

of the mean density gradients to estimate the geostrophic velocities and shears.

In the numerical results presented in the previous section we showed that for

Jupiter and Saturn type parameters the Rossby number is small, and there are two

di�erent length scales in the problem. One scale is the planetary scale and we take

this to be the scale of the planet denoted by R. The second scale is the scale of the

large columnar cells (driven by convection but are larger than the convective length

scales), which we denote as L. The vorticity of these columns can be produced in two

ways: one is the by stretching the columns and then the rate of vorticity generation

is given by

u

L�
=

2
u

R
(4.31)

where u is the scale of the mean velocity, and � is a time scale. The second way of
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producing vorticity is by the curl of the buoyancy force (4.9) which can be scaled as

u

L�
=

g��

�L
<

1

L

�
g�F


�Cp

� 1

2

(4.32)

where we have used the upper limit for the density gradients as given by (4.30).

We assume that for the large scale motions the relevant time scale is the advective

time scale � = L
u
(alternatively one can assume the time scale is 1



, this would give

back an equivalent to (4.27) as an upper limit, because assuming the upper limit in

(4.32)). Plugging the advective time scale in the equations for production of vorticity

(4.31,4.32) gives a scale for the mean zonal velocity as function of the thermodynamic

properties and the forcing

u =

�
Rg�F

�Cp

� 1

3

: (4.33)

The values given by this expression give a good order of magnitude estimate to the

velocities given by the model. The question is can we infer from this, the velocities

on the real planet with planetary type �uxes? First we note that comparing (4.33)

for the atmosphere at 1 bar to the interior at 1Mbar the density increases by 4 orders

of magnitude and the thermal expansivity will decrease by 3 orders so we can expect

the interior velocities to be substantially smaller than the atmosphere ones. In Figure

4.15 we compare the rms velocities at 4 bar and 10 Mbar in our model to the velocities

inferred from (4.33) for di�erent Rayleigh numbers. We keep the viscosity constant

so the change in the Rayleigh numbers re�ects the change in �ux. The scaling seems

to be robust for a range of Rayleigh numbers for the interior values, while for the

atmosphere (though still giving right orders of magnitude) the scaling gives less than

model values (a problem for the atmosphere scaling is that the e�ective forcing for

the uppermost level is zero (4.29) so we must look at a few levels below and therefore

we look at the 4 bar level and not the 1 bar level which is the upper most level of

the model) . Applying Jupiter values of F = 10 W
m2 , � = 10�2 1

K�
, R = 7E7m,

Cp = 1:3 � 104 J
KgK�

, and � = 0:1 Kg
m3 for the atmosphere, and F = 10 W

m2 , � = 10�5 1
K�

,

� = 103 Kg
m3 for the interior, we �nd velocities on the orders of 50m=s at the 1 bar

level and 0:03m=s for the interior. This shows a signi�cant change in zonal velocities

between the atmosphere and the interior. To further examine the vertical pro�le and

to address the issue of the over forcing, we look at zonal velocity pro�les along sections
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Figure 4.16: Zonally averaged zonal velocity (ms�1) along slices parallel to the axis of
rotation. Each slice goes from the surface (denoted by the latitude) to the equatorial
plane. Similar velocity pro�les are shown for four experiments with di�erent Rayleigh
numbers of 1E7, 5E6, 3E6 and 1E6, other parameters in these runs are Ek = 1:5E�4
and Pr = 10. The velocity is scaled by Rayleigh number to show the similar pro�les.
The velocity values matches that of Ra = 1E7. Scaling to the velocity can be inferred
by Figure 4.15.

parallel to the rotation axis (denoted by the latitudes at which the sections cross the

top surface) in Figure 4.16. The sections are separated in 5 degrees in latitude. These

sections show a baroclinic structure of the velocity which has a latitudinal dependence

due mainly to the variation in density and thermal expansivity which have di�erent

pro�les along di�erent sections. An important point regarding the overforcing is that

the pro�les (which are normalized by the Rayleigh number ratio) do not depend on

Rayleigh number. This means that although the value of the velocity depends on

Rayleigh number the baroclinic pro�le does not, and therefore the result of weaker

zonal velocities in the interior is robust, and it roughly matches the scaling given

by (4.33). Note that for a constant forcing and thermal expansivity, the vertical

pro�le of velocity will go inversely with �
1

3 , a state in between the barotropic limit

and momentum column limit presented in section 4.3.1. All this suggests that with

a strong vertical variation in density, the velocity can vary substantially from the

atmosphere down to the interior. This is demonstrated well when comparing the

anelastic to Boussinesq models in Figure 4.5.
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Chapter 5

Weakly Nonlinear Analysis of

Column Formation and Superrotation

In this chapter we focus on the mechanisms leading to the dynamics seen in the

fully turbulent model presented in chapter 3. We have shown formation of equatorial

superrotation, rotating cyclonic columns parallel to the rotation axis and a strong

shear in the vertical structure of the wind. We have seen that upgradient angular

momentum eddy �uxes drive angular momentum perpendicular to the axis of rotation

and contribute to the superrotation. However, we have not answered the question of

why are the �uxes pointed in that direction? why do we �nd only cyclonic convection

columns? why do the columns propagate? and what sets the number of columns

around the sphere? In this chapter we answer these questions.

In this analysis we use the full GCM, a simpli�ed analytical model and a simpli�ed

single layer type numerical model. We look at the GCM in a parameter regime where

convection is weak, and allows us to examine the dynamics while nonlinear e�ects

are small. We can then understand the preference for positive shear and prograde

rotation and show the transition from a state with weak cyclones and anticyclones on

the equatorial plane to one dominated by only cyclones. Then in section 5.2 we look

at a simpli�ed model of a single column (Ingersoll and Pollard, 1982) parallel to the

axis of rotation and show how a Rossby wave type mechanism explains the direction of

propagation and the number of columns. In section 5.3 we present another simpli�ed

model of a shallow water annulus and show how this model demonstrates some of the

dynamics seen in the full GCM.
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5.1 The Weakly Nonlinear Limit

We begin with looking at the 3D model results in the limit of small Rayleigh and

Prandtl numbers. We �nd that in this limit the solution initially looks like linear

solutions to the problem of convection in a rotating sphere as shown by Zhang (1992)

and Zhang and Schubert (1997), and then goes to a state which is qualitatively similar

to the one we see in the fully turbulent experiment shown in chapter 3. In the new

state the �ow has only columnar cyclones rotating around the equatorial plane. This

weakly nonlinear solution allows us to understand the physical mechanism seen in the

fully turbulent cases. Figure 5.1 shows snapshots of the equatorial streamfunction (see

de�nition in section 3.3) as it evolves in time beginning from spin-up, and reveals two

very distinct regimes.

The �rst regime, while the velocities are small (we begin with zero velocity), is

a series of equally spaced cyclonic and anticyclonic vortices on the equatorial plane.

They propagate eastward and spiral radially (see Figure 5.1). In section 5.2 we discuss

the Rossby wave type mechanism causing the eastward propagation. The spiraling

of the phase lines is due to a larger planetary vorticity gradient in the outer region.

We discuss and demonstrate this in section 5.3. Initially since the velocities are small

the nonlinear contributions to the dynamics are weak, providing an equivalent linear

solution. Several authors (Zhang and Busse, 1987; Busse, 1994; Zhang and Schubert,

1997) have looked at the linear problem of convection in a spherical rotating shell.

Zhang and Schubert (1997) solve the linear problem for a Boussinesq �uid where the

�ow is driven by an internal heating pro�le. The solutions they �nd for the velocities

and the temperature �elds are given as an analytic expression in terms of spherical

harmonic Legendre polynomials and spherical Bessel functions. These solutions look

very similar to our solution in this �rst regime. Therefore as long as the perturbation

is small and the �ow is close to linear our solutions match previous linear analysis.

The system is constantly driven by the convection and therefore in time (while the

e�ect of dissipation is small), the velocities become larger. As they become stronger

due to the tilt in the direction of the convection columns as given by the linear solution

(there is a correlation between the direction of zonal and radial velocities) angular

momentum is �uxed to the outer parts of the sphere creating a vertical shear. As the

shear becomes stronger, with eastward zonal velocity towards the outer boundary and

westward �ow towards the inner boundary, the anticyclones can not survive against
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Figure 5.1: The Weakly nonlinear run: Ra = 1:5E5, Ek = 4E � 4, Pr = 0:5. (top)
Snapshots of the equatorial streamfunction in time, red is cyclonic rotation and blue
is anticyclonic rotation. (bottom) The maximum of the equatorial streamfunction in
time.
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Figure 5.2: The eddy momentum �ux divergence and the viscous terms at time
t = 100 (corresponding to Figure 5.1).

the shear and only the cyclones survive. Then the system goes into the second regime

which can be seen in Figure 5.1. The cyclones continue to propagate eastward with

nearly the same phase velocity as before (see Figure 5.8).

Figure 5.3: The contribution to the eddy momentum �ux divergence and the viscous
term from �uxes perpendicular to the axis of rotation at time t = 100 (corresponding
to Figure 5.1 and to Figure 5.2).

In this second, weakly nonlinear, regime the amplitude of the �ow oscillates until

the nonlinearities act to bring the �ow to a stable state. This behavior is similar

to the behavior we have found in our quasigeostrophic two layer model (chapter

7), where once the nonlinear contributions become signi�cant the solution oscillates

around a stable state due to the eddy-mean �ow interactions (see analysis in section

7.4). In contrast to the quasigeostrophic inviscid model here viscosity also plays a

role in inhibiting the growth, and the balance is between the eddy �uxes transferring

momentum to the outside to the viscous �uxes which �ux momentum inward. Figure
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Figure 5.4: The evolution of the u0 �eld in the weakly nonlinear run. top: snapshots
of the u0 �eld on the equatorial plane during the linear (left) and weakly nonlinear
(right) stages; bottom: the evolution of the maximum of the u and u0 components of
the zonal velocity in time. The radial dependence of u is shown in Figure 5.5.

5.2 shows the vertical and meridional contributions to the eddy �ux divergence and

the viscous terms, which after the instability are close to balance. During the growth

stage the viscous contribution is small and the eddy �uxes contribute to the growth of

the mean zonal velocity @u
@t
. Figure 5.3 shows contributions of the eddy �ux divergence

and the viscous terms, from �uxes acting in the direction perpendicular to the axes

of rotation.

It is useful to look at the zonal velocity during this instability and transition

between the linear and nonlinear regimes. We divide the zonal velocity into two

parts, the zonal mean and the part not containing the zonal mean so that

u = u (r; �) + u0 (r; �; �) : (5.1)

Figure 5.4 (bottom) shows that the growth of u0, and with it the outward �ux of

angular momentum, precedes the growth in u. Therefore it is the �ux of angular

momentum outward which contributes to the development of the mean zonal velocity

u. The amplitude of the mean velocity always follows the behavior of the zonally

varying component meaning that the outward �ux of angular momentum is causing
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the development of the zonally averaged component and consequentially the shear.

Once the shear is developed the anticyclonic spiraling vortices which were part of

the linear solution disappear and only vortices in the direction of the shear survive.

These cyclones are still tilt eastward being in balance between the eddy and the

viscous �uxes. Figure 5.4 (top) shows the structure of u0 both during the linear stage

and the nonlinear stage, and in both cases the structure is similar (only with di�erent

amplitudes and a overlaying lower mode in the initial stage) and again consistent

with the linear calculations of Zhang and Schubert (1997). The radial structure of

the shear is shown in Figure 5.5 for the stage after the weakly nonlinear system has

reached equilibrium. As seen in Figure 5.4 in earlier stages the zonal mean velocity

oscillates around this state until reaching the shear which is in balance with the eddy

and viscous �uxes.

The structure along the direction of the axis of rotation is consistent with the

structure seen in the fully turbulent case (Figure 4.13). The Taylor-Proudman con-

straint (with the anelastic adjustments - section 4.3), allows small variation in the

direction of the axis of rotation and therefore both the initial anticyclones and cy-

clones, and the later stronger cyclones extend through the planet forming columns.

Figure 5.6 shows the streamfunction on conic surfaces at di�erent latitudinal angles

for the weakly nonlinear regime at the stage after the instability. The conic surfaces

vary in intervals of 10� in latitude, showing how the cyclones move outward in lat-

itude such that the cyclones are always in equal distance from the axis of rotation,

and therefore are perpendicular to the equatorial plane, forming columns.

In this section we have explained the mechanism leading to the superrotation

through the �ux of angular momentum and the transition of the linear modes. This

weakly nonlinear regime allowed us to connect the linear solution as shown analytically

by Zhang and Schubert (1997) to the full nonlinear solution we see in the GCM. In

the more turbulent cases the modes are not distinct but the general structure with

the cyclones on the equatorial plane and columns extending throughout the planet

persists. Another question raised by the turbulent model was the mechanism driving

the waves seen on the surface of the planet. These waves seen in Figure 5.7 are

embedded within the mean equatorial superrotation and have phase lines which are

tilted eastward in both north and south hemisphere with a maximum at the equator.

The weakly nonlinear model explains this feature, since superimposed on the mean

zonal �ow (Figure 5.5), there is a contribution to the zonal velocity from the u0
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Figure 5.5: The zonal mean component of the zonal velocity on the equatorial plane
after the velocity has reached quasi-steady state (t = 140) in Figure 5.4.

component (which is not necessarily weak) and associated with columns. Due to the

spherical geometry of the surface, and the eastward tilt in the columns, the surface

zonal velocity resulting from the columns at the equator (u0 in Figure 5.4) would

be more eastward than the zonal velocity (u0) at the outcrop of the same column.

Therefore the phase line of the column extended to the surface of the sphere has

an appearance of a wave with an eastward bend in its phase line. In the turbulent

model there are no distinct phase lines but since the columns appear in a turbulent

form in the interior, their u0 component is manifested to the surface with the wave

structure appearance. As mentioned in chapter 1, waves with a similar appearance

with curved phase line embedded in the superrotation have been observed on Jupiter.

These waves had a smaller latitudinal extent but as we will show in section 6.1 the

latitudinal extent is a�ected by the vertical extent of the model. Therefore we propose

that this might be a plausible mechanism for the waves although the wavelength of the

observed waves is less than the resolution of our model. Note that for high Rayleigh

number experiments these phase lines become less apparent. In addition since u0 is

strongest radially (ignoring the anelastic e�ect for this argument) towards the center

of the column, then the u0 component is strongest at the outcrop of the columns to

the surface, giving the appearance of stronger jets at mid latitudes. Both weakly

nonlinear and fully turbulent surface zonal velocities can be seen in Figure 5.7.

The existence of the waves in the fully nonlinear case shows that the same general

mechanism exists in the fully turbulent (higher Reynolds number and/or lower Ek-

man number) cases. In chapter 6 we discuss the sensitivity to these parameters and
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Figure 5.6: The 2D streamfunction on conic surfaces of constant latitudinal angle.
Snapshots correspond to t = 140 days in Figure 5.1 and show that the cyclones seen
in the equatorial plane are cyclonic columns extending through the sphere.
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Figure 5.7: Waves embedded in the equatorial surface zonal velocity (m=s) for the
weakly nonlinear case (Ra =; Ek =; P r = 10), and a fully turbulent case (Ra =
3E6; Ek =; 1:5E � 5Pr = 10).

show that for lower Ekman numbers the �ow develops more columns and therefore

the equatorial superrotation appears smoother. We �nd also that, when going from

a 2� resolution run to a 1� resolution run, the latitudinal extent of the equatorial

superrotation is reduced. We emphasize that the waves that appear on the surface

are superimposed on an eastward zonal mean velocity.

We have explained therefore the mechanism for the equatorial superrotation based

on the weakly nonlinear runs. This mechanism however relies on the tilting of the

columns for the outward �ux of angular momentum, and indirectly on the propagation

of the perturbation eastward. In the next sections we discuss these processes in

more detail using di�erent models. We begin with a simple model to understand the

mechanism for the eastward propagation of the columns.

5.2 Single Column Barotropic Model

In order to understand the dynamics of the columns we see in the turbulent �ow we

turn to a much simpler model. Since we have shown in chapter 4 that the interior is

close to barotropic, and the �ow is aligned with the rotation axis, a natural system

in which to describe a single column model will be a barotropic system in cylindrical

coordinates. We follow a similar derivation done by Ingersoll and Pollard (1982)

where they have a scale separation between the scale of the columns and the size of

the domain. Rewriting (2.8 - 2.10) in cylindrical coordinates (which aligns with the

spherical system at � = 0 with replacing the meridional coordinate with z and noting
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that now � = � (r; z)) gives,

Du

Dt
� uw

r
� 2
w = �1

r

@�

@�
(5.2)

Dv

Dt
= �@�

@z
(5.3)

Dw

Dt
+
u2

r
+ 2
u = �@�

@r
(5.4)

Note that we are not using the traditional cylindrical coordinates, to be consistent

with our previous notation, so that u is the azimuthal velocity, w is the radial velocity

and only v is rede�ned as v = dz
dt

(but locally on the equatorial plane coincides with

the spherical form so that dv = rd�). In this system the Coriolis terms parallel to

the rotation axis vanish and we have used the anelastic potential as de�ned in (2.23).

The mass equation 2.5 gives
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= 0: (5.5)

We scale time by the advective time scale, but where there is a length scale separation

between the local length L and the domain radius r0 so that L � r0. Then for a

small Rossby number to the highest order when cross di�erentiating (5.2) and (5.4),

subtracting them and adding (5.5) we get that
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The term is the square brackets is the vorticity, and the terms on the right are the

contributions to the vorticity from stretching and the variations in the mean density.

This expression therefore will describe the vorticity of a single column within the

sphere as shown in section 5.1. This system resembles a quasigeostrophic system,

although (5.3) is di�erent. Ingersoll and Pollard (1982) show this equivalence using

the ratio between ratio of cylinder and the ratio of the sphere as the small parameter

in analogy to the Rossby number in QG.

At the limit of small Rossby number the quasigeostrophic equivalent scaling of

(5.3), and (5.4) will give to the highest order

w =
1

2
r

@�

@�
; u = � 1

2


@�

@r
; (5.7)
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Figure 5.8: left: the relation c(k) from eq. (5.14), and the Hovmoller diagram from
the weakly nonlinear run with the phase speed of 51m

s
superimposed.

so that the anelastic potential is the geostrophic streamfunction. We assume a ba-

sic state as shown in section 5.1 where the �ow develops a basic state u(r) and a

perturbation which can be described by a streamfunction (5.7)

� = 2
 (r; z) eik(���t); (5.8)

where k is the zonal wave number and � is the frequency. Following (5.7) the velocities

therefore become

u = u(r)� d 

dr
eik(���t) (5.9)

w =
ik

r
 eik(���t) (5.10)

v = �(z)eik(���t): (5.11)

Then to the highest order assuming the mean �ow is larger then the perturbation,

(5.6) and (5.3) become

(u� c)

�
1

r

@

@r

�
r
@ 

@r

�
� k2

r2
 

�
+

�
2


�

@�

@r
� 1

r

@

@r

�
r
@u

@r

��
 =

2
r

�

@ (��)

@z
(5.12)

(u� c) k2� =
@ 

@z
: (5.13)

We turn now to our numerical simulations where we have seen that on the equatorial

plane the meridional variations in the streamfunction are small (Figures 3.9, and
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4.13), and therefore to make this system separable we assume that the right hand

side terms containing the variation in the meridional direction are negligible. From

(5.13) this is similar to assuming the zonal wavelength is small compared to the

radial wavelength, which leads to having the streamfunction  independent on z so

that  =  (r) only. Thus the �ow on the equatorial plane can be described as a 2D

streamfunction. We have therefore set an eigenvalue problem which can be solved to

�nd the phase speed. The phase speed will describe the propagation of the columns

on the equatorial plane which we have seen in the previous section. Alternatively, we

can do a local estimate for the phase speed by using the local numeric values we have

for the shear and streamfunction at the radial location of the columns. We then get

a local estimate for the phase speed as function of the zonal wavenumber

cjrc =

h
2

�
@�
@r
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r
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(5.14)

where rc denotes the radial location of the maximum of the zonally averaged equa-

torial streamfunction (the radial location of the columns). In Figure 5.8 we show

c(k) for the weakly nonlinear run presented in section 5.1 calculated in this method.

We �nd that this gives an inverse relation between the zonal wavenumber (number

of columns), and the phase speed. Figure 5.8 shows a Hovmoller diagram of the

equatorial streamfunction around the radial distance of the columns. We see that the

columns propagate eastward at a phase speed of 51m=s. Using this value in Figure

5.8 corresponds to a wave number of k = 28 . The number of columns in the model

is 18 however given the rough approximation of this model (mostly assuming inviscid

dynamics) it might be a right ball-park number. More importantly, (5.12) predicts an

eastward propagation of the columns. It is important to note the similarity between

(5.12) and the barotropic stability equation on a beta plane (e.g. Pedlosky, 1987),

where the term of the radial derivative of the mean density acts as the e�ective �.

Multiplying (5.12) by �, and integrating in the z direction (assuming as discussed

above that the streamfunction is independent of z) between the places the columns

intersect with the surrounding sphere denoted by �h and h gives

(u� c)
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Figure 5.9: The e�ective � B(r) (5.16) as a function of radius for both Anelastic and
Boussinesq cases.

where

B(r) =
2


M

dM

dr
(5.16)

and

M =

hZ
�h

�dh: (5.17)

B(r) therefore is the e�ective �, and is a function of the radial distance in the sphere.

For a Boussinesq �uidM would simply grow as r becomes smaller due to the spherical

boundaries of the sphere. In the anelastic case M will have a more complex behavior

due to the e�ect of the boundaries, and the radial dependence of � itself. This is

demonstrated in Figure 5.9. In both cases since dM
dr

is negative the e�ective � in the

interior of a sphere would then be negative. Ingersoll and Pollard (1982) use this

expression do derive an alternative barotropic stability criterion which we come back

to in chapter 7.

To understand the e�ect of the negative beta intuitively, one can think about the

stretching of a column of �uid as it is moved closer to the axis of rotation. While

in the standard spherical shell such a column will shrink in length as it is moving

poleward, a column in the interior will stretch. In the thin spherical shell, this e�ect
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Figure 5.10: Left: The relation c(k) for the fully turbulent run (moderate Rayleigh
number as in Figures 3.9-3.11 Ra = 3E6, Ek = 1:5E � 4, Pr = 10); right: the
corresponding Hovmoller diagram with the phase velocity of c = 120m

s
superimposed

with the black line.

is equivalent to a positive planetary vorticity gradient (which in terms of conservation

of potential vorticity is equivalent to a bottom slope growing towards the pole in a

shallow system). In the deep system the stretching of the columns is equivalent to

having a negative planetary vorticity gradient towards the poles. Here therefore, we

can think about the e�ect of B(r) as the background planetary vorticity only with

the opposite e�ect to that of a thin spherical shell. Similarly, a Rossby wave will

propagate in the opposite direction. If we go back to Figure 5.1 the set of positive

and negative perturbations feels the e�ect of the planetary vorticity gradient and

by conserving potential vorticity on the equatorial plane propagate eastward. The

mechanism is similar to that of a Rossby wave except that instead of polar movement

causing negative relative vorticity, motion toward the center of the planet (poleward)

causes positive relative vorticity and positive phase speed. In chapter 7 we look how

baroclinic instability changes in the presence of a negative �. Figure 5.10 is similar to

Figure 5.8 only for a more turbulent case. Again we �nd that the phase speed of the

propagation of the columns is close to the values predicted by (5.14) for the number

of columns we �nd in the numerical model.

We have explained the eastward propagation of the columns and shown an estimate

for the number of columns that form. However the mechanism described in section

5.1 would not work if there was no �ux of momentum as the columns propagate.

Therefore we now turn to another model - 'the annulus model' to understand the

reason for this �ux, and preference for only cyclonic rotating columns.
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Figure 5.11: Mapping the square (0; 2�) to the annulus grid. (left) M = 4; r0 = 1,
(middle) M = 8; r0 = 2, (right) M = 1; r0 = 1

5.3 The Annulus Model

An important aspect of the process leading to the superrotation which was discussed

in the previous sections was the �ux of momentum to the outer parts of the sphere due

to the spiraling in the linear modes. In this section we use another simpli�ed model to

study this process. In order to represent the spherical geometry in a simple channel

model, we use a barotropic model with varying height, and use a conformal mapping

to map this channel to an annular surface (Mehta, 1998). By this we can represent

the beta e�ect with the variation in the model height (a deeper interior represents

a negative planetary vorticity gradient and visa versa). Using a linear slope will

approximate a constant beta, a convex slope will have a bigger values of beta towards

the outside and a concave slope will have the opposite e�ect. The mapping of the

channel to the annulus gives the proper metric of the sphere's equatorial plane. The

model assumes conservation of potential vorticity and the height weighted velocity is

nondivergent.

We construct the annulus coordinates by using the following mapping,

r = r0e
y
M (5.18)

� = � x

M
(5.19)

Z = z; (5.20)

which relates the annulus coordinates (x; y; z) to cylindrical coordinates (r;�; Z).

Figure 5.11 shows how the Cartesian square between 0 and 2� is mapped to the
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Figure 5.12: Snapshots from a run using the H(r) pro�le from the full spherical
model (equation (5.16) at radius 0:6 � 0:8). The �ow forms vortices through an
inverse cascade that propagate eastward.

annulus for di�erent values of M and r0.

We solve the following system

Dq

Dt
= 0 (5.21)

r � (uH) = 0 (5.22)

where q = �+f
H

is the potential vorticity, H is the depth of the �uid, f is the Coriolis

number, � is the relative vorticity, and the 2D streamfunction  is de�ned so that

uH = r�  : (5.23)

The streamfunction is therefore related to the vorticity by

� = r � 1
H
r (5.24)

We de�ne U = uH so that (5.21), and (5.22) combine to give

@q

@t
+

1

H
r � (Uq) = 0; (5.25)

or equivalently

@�

@t
+r � (Uq) = 0: (5.26)
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Next we calculate the scale factors necessary to transform the Cartesian channel

model to the annulus coordinate system. Inverting equations (5.18 - 5.20), and de�n-

ing a Cartesian system (�; �; &) gives the following transformation from a Cartesian

grid to an annular one

y =
1

2
M ln

�
�2 + �2

r20

�
(5.27)

x = �M tan�1

�
�

�

�
(5.28)

z = &; (5.29)

so that the Jacobian giving the area scaling factor from the Cartesian to the annular

system is

@ (x; y)

@ (�; �)
=

M2

r2
: (5.30)

Therefore this will be the factor scaling the Jacobian term in equation (5.26), when

transforming the Cartesian system to the annular one. Similarly using (5.24) both

the divergence and the gradient operator contribute a factor M
r
, so that the vorticity

equation with the transformation factors becomes

M2

r2
@� 0

@t
+
M2

r2
r � (U0q0) = 0; (5.31)

and the potential vorticity is

q0 =
M2

r2
� 0 + f

H
: (5.32)

Therefore we can calculate the change in vorticity by solving for the potential vorticity

�ux. The scaling factor will come only in the potential vorticity.

The pro�le of H(r) would therefore control the nature of the dynamics on the

annulus plane. The case that would represent our full numerical model would be

to take the H pro�le given by (5.16). In Figure 5.12 we show the resulting �ow

when beginning from an initial high modal perturbation, and a zero mean vorticity.

Due to the negative beta e�ect the �ow develops a eastward propagation. Opposed

to the convective model, since the model is not continuously forced by small scale
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Figure 5.13: Hovmoller diagrams of the perturbation potential vorticity for cases of a
positive and negative linear slope in H(r): The positive slope (shallow �uid at smaller
radius - positive �) develops westward propagation, and the case that simulates a deep
sphere (deeper �uid at smaller radius - negative �) propagates eastward.

convection it develops an inverse energy cascade and forms large cyclonic vortices.

Note that the reason for the formation of these vortices is di�erent from the columnar

vortices in the full model since there a mean shear develops due to the outward �ux of

angular momentum. In Figure 5.13 we show Hovmoller plots from two experiments

with a linear slope of H(r), where one slope is positive and the other is negative.

The Hovmoller plots show the opposite direction of propagation of the vortices in

both cases. Where the slope makes a shallower �uid in the interior of the annulus

(equivalent to positive beta) the vortices develop a westward propagation.

5.3.1 Solving for the Eigenmodes

We now turn to look to the reason the modes seen in Figure 5.1 are spiraling. We

should make �rst a distinction between the convection model and the annulus model.

In the convection model energy is continuously �uxed outward, accelerating the su-

perrotation, and in steady state dissipated by the viscosity. The annulus model on

the other hand evolves from a given initial condition, and modes are not growing.

Therefore when looking at the eigenmodes in the annulus model they will have a

�nite and real phase speed. Then, the only way the eigenmodes can be complex, and

thus be tilted in respect to the radial direction, will be in the presence of friction.
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Figure 5.14: Eigenmodes for cases of linear slope in H(r) and a curvature slope in
H(r).

Linear models showing the spiraling in the linear modes (Zhang and Schubert, 1997)

have also had �nite Prandtl numbers.

We solve therefore for the same system presented in (5.21, 5.22) but add a constant

viscosity so that

@�

@t
+ U � rq = �r2�: (5.33)

We solve now for the eigenmodes by assuming a solution for the vorticity of the form

� = eik(x�ct)z0 (y) ; (5.34)

where x and y are de�ned in (5.27, 5.28), k is the azimuthal wave number and c is

the phase speed. Plugging (5.34) in (5.33), and de�ning an operator M so that

� = r � 1
H
r �M ; (5.35)

gives an equation of the form

�
M�1 @q

@y
� i�

k

�
�k2 + @
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@
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��
z0 = �cz0; (5.36)
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where z0 are the eigenvectors and c is the eigenvalue. Therefore in the absence of

friction, and if the linear modes are not growing the eigenmodes will be real (only

depend on r) and there will be no tilting or spiraling of the z0 eigenmodes. However,

the presence of a �nite viscosity still does not guarantee that the eigenmodes will be

spiraling.

We should separate the issue of tilting of the modes from the issue of eastward

spiraling of the modes. First, in the convection model due to the outward �ux of

energy, theoretically modes may develop a tilt (and therefore a correlation between

zonal and vertical velocity directions), because of the direction of energy propagation,

leading to an outward �ux of angular momentum. However, in the lack of spiraling

(without considering boundary e�ects) this �ux would be nondivergent and therefore

will not accelerate a zonal superrotating �ow as demonstrated in (4.24). In the

convection model we �nd that due to the inherent radial variation of the planetary

vorticity, due to the sphericity, it is di�cult to separate the issue of tilting from that

of spiraling (spiraling of the columns includes tilting). In the annulus model since

we have no convective �ux, we can not separate these issues either since without

variation of planetary vorticity we do not develop neither spiraling nor tilting.

In order to see this in the annulus model, we show in Figure 5.14 the eigenmodes for

two cases of equal parameters, but one with a linear slope and one with a curved slope.

The linear slope is equivalent to a constant �, and the curved one is equivalent to a

varying �: Only the curved one develops spiraling in the direction of the eigenmodes

in respect to the radial axis. Therefore the spiraling of the modes is related to the

radial variation of planetary vorticity.

A semi-analogous case (considering more the issue of tilting and not the angular

momentum �ux) which may resemble more the convection case with energy continu-

ously �uxed outward, is a case of ocean waves approaching a sloping beach and being

refracted due to the variation in the ocean bottom slope. The slope in the bathymetry

will result in the local variation in the phase speed c = (gH)
1

2 , and cause a refraction

in the orientation of the crest resulting in the waves approaching the coast parallel

to the shore line. In the case of the convection model the restoring force is the plan-

etary vorticity rather than gravity, and the cause of the spiraling is the variation in

planetary vorticity gradient rather than the surface slope, but the analogy is in the

tilting of the wave guide.

To analyze the issue of spiraling further using the annulus model, we de�ne the
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Figure 5.15: The angle of the spiraling of the eigenmodes as a function of the linear
and the quadratic coe�cients of the depth H(r): Angle is given in degrees eastward
of a line along the radius.

height of the �uid layer as

H(r) = H0 � ar � br2;

where H0, a, and b are constants. We then solve for the eigenmodes for a series

of experiments where we vary the linear and quadratic coe�cients a, and b. The

curvature grows for larger b values. Figure 5.15 shows the results for a series of

experiments where a and b vary for the complete range of positive depths. The

angle of spiraling (zero is no spiraling) is calculated using the ratio of the real and

imaginary parts of z0 at the radial point where the imaginary part is maximum for

the fastest growing mode. We see that as the curvature becomes stronger, larger

spiraling develops which in the spherical convection model will be associated with an

angular momentum eddy �ux divergence and the formation of superrotation. Note

that even cases of b = 0 may e�ectively have some curvature because the way the

gradients are de�ned in (5.35).

133



134



Chapter 6

Model Sensitivity Analysis

In the results presented so far we have used one speci�c geometric con�guration

of the model, extending radially from the surface to 0:55 of the planetary radius,

and several nondimensional parameter con�gurations ranging from weakly nonlinear

runs to more turbulent runs. In this chapter we systematically vary each of these

parameters, namely the Rayleigh, Ekman and Prandtl numbers, to study their e�ect

on the various features studied in previous chapters. In addition we study the e�ect

of varying the geometric con�guration of the model ranging from a thin spherical

shell to nearly a full sphere.

To preform a systematic assessment of these parameters, due to the long compu-

tational time of the 1� resolution runs presented in the previous sections, we use a

lower resolution con�guration of 2� resolution latitudinally and longitudinally and a

pressure ratio of 2 between vertical levels. When comparing this con�guration to the

1�con�guration we �nd that the overall structure of the circulation (equatorial super-

rotation, number of columns, etc.) does not change signi�cantly. However, the small

scale features at high latitudes disappear, and in particular the equatorial superro-

tation is on average 5� wider latitudinally. Nevertheless we �nd these experiments

useful in studying the parameter regime of the model, and we point to the di�erences

due to resolution in the discussion.

Beyond the magnitude of the forcing, we have made in chapter 2 assumptions on

the vertical pro�le of the forcing. Here, we study the e�ect of the continuous forcing

assumption made in section 2.5 by looking at a di�erent type of forcing, and discuss

the e�ects solar forcing can have on the convectively driven circulation. In addition

we give examples of interesting solutions we �nd during spin-up that are unstable,
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and therefore have not been presented earlier when discussing the statistically steady

state solutions.

6.1 From a Spherical Shell to a Full Sphere

In previous chapters we have used a con�guration in which the model extends radially

down to 0:55 the radius of the planet (� 12 Mbar). In chapter 3 we discussed

this choice which is deeper than what has been done in the previous Boussinesq

models, and due to the complexity of the interior thermodynamics and the resulting

MHD e�ects, might even be beyond the relevant regime for Jupiter (although this is

controversial). However, the goal is to study a system where the vertical scales are

comparable to the horizontal ones, and to be in a regime where the location of the

bottom boundary does not put constraints on the dynamics. In this section we will

vary the depth of the model and study its e�ects.

We begin therefore with varying the geometry of the model by moving the location

of the bottom boundary. Since both Rayleigh and Taylor numbers depend greatly

on a depth scale (which we take to be the vertical extent of the model), then instead

of holding the Rayleigh and Taylor number constant in these experiments we hold

directly the viscosity and heat �ux constant. Perhaps the best parameter to keep

constant in such experiments would be the ratio � = Ta�Pr
Ra

which was shown in

section 4.5 to characterize the dynamics and has the H4 dependence of the Rayleigh

and Taylor number cancel but still has a H
1

2 dependence on the total depth. To keep

the experiments simple we held constant the viscosity and heat �ux directly.

In Figure 6.1 we show the zonally averaged zonal velocity for a meridional section

(similar to Figures 3.9) for a series of experiments where we vary the location of the

bottom boundary. We denote by D the ratio D � rt�rb
rt

where rt is the top boundary

and rb is the bottom boundary. The range of the experiments is from a relatively thin

shell (still has three orders of magnitude variation in density) occupying 10% of the

radius (D = 0:1), to almost a full sphere occupying 93% of the radius (D = 0:93).

For numerical reasons we can not reach a singular point in the interior, but higher

ratios are achievable with smaller time stepping. Jupiter is believed (Guillot et al.,

2004) to have a solid core occupying the inner 10% of the planet radius. This series

of plots shows that the superrotation is robust for most runs, though for the runs

with small aspect ratios the superrotation has a smaller latitudinal extent. For the
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Figure 6.1: The zonal mean zonal velocity as function of model depth. D � rt�rb
rt

is
the total depth where rt is the top boundary and rb is the bottom boundary. Red
colors are eastward velocities and blue colors are westward velocity. The magnitude
of the eastward velocity can be seen in Figure 6.3.
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Figure 6.2: Location of columns (blue) in terms of the fraction of the radius covered
by the model as function of model depth. The dashed blue line is the total depth
of the �uid. The red dots are the meridional extent of equatorial superrotation as
function of model depth. Each point is a numerical experiment ran to a statistically
steady state.

thinnest case (D = 0:1) we do not �nd superrotation, perhaps because there wasn't

enough resolution for formation of columns; or since � does depend on the depth of

the domain, and decreases with depth, then this thinner case may be in a parameter

regime where rotation is not dominant � < 1 similar to the case of slow rotation. As

can be understood from our analysis in chapter 5 the smaller latitudinal extent is due

to the columns being closer to the outside due to the smaller overall depth. However

as the model becomes deeper the columns develop further from the bottom boundary.

This shows that for a shallow model the choice of the location of the bottom boundary

sets the width of the superrotating jets, and perhaps the depth of the dynamically

signi�cant region can be therefore deduced from the observations of the jets in the

outer atmosphere. Calculating this depth based on the observations of Jupiter and

Saturn gives a bottom boundary at approximately 0:07 and 0:2 respectively. Previous

numerical convection models have chosen a shallower domain than the one used in

previous chapters and indeed had a narrower superrotating jet. Note that even if

the dynamics are con�ned to a relatively shallow domain, it still will contain most of

variation in density and pressure seen in the deeper model we have been using, and it
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Figure 6.3: Number of columns (blue) and zonal velocity intensity (red) as function
of model depth.

would have been harder to identify the mechanisms driving these dynamics working

with only the shallower domain.

An interesting feature is that as the model gets deeper, approaching a full sphere,

the columns do not move signi�cantly deeper and the resulting width of the super-

rotation does not extend much beyond 50� in latitude. This is shown more explicitly

in Figure 6.2 which shows on the left (blue) grid the location of the columns (taken

as the averaged radial location of the maximum in equatorial 2D streamfunction) as

function of the aspect ratio (D). Each point represents a numerical experiment, and

the dashed line is the total depth of the �uid. As the aspect ratio grows (model gets

deeper) the location of the column drifts slowly inward but becomes further away from

the bottom boundary. Looking at the equatorial plane we can identify the columns

and similarly to the standard case shown in chapter 2 they are all cyclonic.

The number of columns (estimated by a Fourier analysis of the 2D streamfunction

on the equatorial plane) around the 360� equatorial plane is higher for smaller aspect

ratios and is fairly constant as the model becomes deep. This is shown in Figure 6.3.

However the intensity of the columns and the resulting superrotation grow with depth

even though forcing is constant. This is despite � becoming bigger as the model is

deeper.
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Figure 6.4: A solution with multiple columns. This structure appears during spin-up
but in time will reduce to having only cyclonic columns. left: the equatorial stream-
function containing both cyclones and anticyclones. middle: the total momentum �u
in meridional section; right: The zonal velocity in a meridional section. Meridional
�elds are of snapshots taken at 17 days from spin up and the equatorial slice is at 25
days.

6.2 Multiple Column Layers

In Busse's original heuristic picture (Busse, 1976) for multiple zonal jets driven by

interaction between cylinders, he suggested that multiple columns at di�erent radii

from the center may interact to cause alternating jets. In this picture the cylin-

ders were con�ned to the region outside the tangent cylinder surrounding the core

and extended throughout the planet. The discovery of jets at high latitude (Porco

et al., 2003) later overshadowed this suggestion since this would require the layers of

columns to extend deep into the region contained within this tangent cylinder. Only

if the internal region with no dynamics would be very small could such a scenario be

plausible. None of the linear models, or the numerical Boussinesq models have found

solutions with multiple column layers. In the previous section we have shown that

even when extending the model almost all the way to a full sphere we �nd only one

layer of columns and they are located at an equal distance from the axis of rotation.

In this section we show that we often get such multiple columns during the spin-
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up, however eventually due to shear they disappear and we �nd the solutions with

one dominant layer of column at an equal distance from the axis of rotation. Figure

6.4 shows on the left an equatorial slice where we �nd an inner set of anticyclones

(blue) and at a greater radius a set of cyclones (red). Looking at di�erent slices shows

that, similar to the case of Figure 4.13, these features extend as columns, parallel to

the axis of rotation, to the outer levels. The middle panel shows the zonal velocity

with multiple east-west zonal jets at the surface. Such a picture would be desirable

for the Jupiter case with a wide superrotating jet and then alternating jets at high

latitudes, however we �nd that such a scenario is not stable and the multiple columns

eventually disappear. It is interesting that at this stage �u is nearly constant along

the axis of rotation, meaning as discussed in section 4.3.2 that the baroclinic vorticity

production has a near equal and opposite contribution from entropy and pressure

�uctuations. In time the interior part of the column becomes more barotropic and

the solution looks like Figure 3.9. The parameters for the run presented here are

the same as the in Figure 3.9, and are of instantaneous �elds. We �nd that as we

decrease the viscosity such solutions survive for larger times, despite the increase in

magnitude, or the circulation and vertical shear. It is possible that therefore that

experiments with higher resolution, where we can use smaller viscosities would have

stable solutions with such multiple columns and surface alternating zonal �ows.

6.3 Model Sensitivity to Nondimensional Parame-

ters

In this section we look at the model sensitivity to Rayleigh, Prandtl and Ekman

numbers. Due to the simplicity of the model, and the use of uniform viscosity and

di�usivity coe�cients the model is controlled by only these three parameters. Al-

though these nondimensional parameters de�ne the system, since the GCM is not

naturally written in terms of these parameters, we �nd it useful to study both the

e�ect of the nondimensional parameters and the physical parameters that compose

them, namely the viscosity, di�usivity and heat �ux. There is an obvious overlap

between these two approaches, but as we show they are not redundant and it is help-

ful in looking at di�erent slices through the parameter space. For most examples we

keep the rotation period constant (9:92 hours), and therefore Ekman number (and
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experiment Ra Ek Pr ��1 = Ra � Pr�1Ek2 varying param. range color

Ra1 varies 1:5E � 4 10 varies Ra 1E6� 5E7 red

Ra2 varies 4E � 4 10 varies Ra 5E5� 2E7 blue

Ra3 varies 8E � 4 10 varies Ra 1E5� 1E7 black

Pr1 3E6 4E � 4 varies varies Pr 0:8� 12 green

Pr2 varies 4E � 4 varies 0:048 Pr 0:1� 5E3 purple

Ek1 3E6 varies 10 varies Ek 1:5E � 4- 1:5E � 3 magenta

Ek2 varies varies 10 0:048 Ek 1E � 4- 1:5E � 3 gray

Ek3 3E6 varies 10 varies Ek 7E � 5- 7E � 3 orange

Table 6.1: Table of parameters for numerical experiments in chapter 6.

alternatively Taylor number) will depend only on the viscosity. The results will be

presented in terms of Ekman numbers and not the Taylor numbers but can be easily

converted. For convenience we write again the nondimensional numbers

Pr = �
�
; Ta = 4
2H4

�2
Ra = B0H4

��
Ek = �

2
H2 (6.1)

where H is the total vertical extent of the model, and B0 is given by

B0 =
Q

sT 0

�g0
H

� 1

2

(6.2)

where the subscript 0 denotes the top level. We try and explore a parameter regime

as wide as the con�guration and computational resources allow us. Ideally we would

like to increase Rayleigh numbers by decreasing the viscosity and di�usivity while

keeping reasonable heat �uxes, and therefore make the model as turbulent as we could.

This however is limited by the grid scale. For example the standard 1� resolution

con�guration has 360 � 160 � 120 � 6 ' 4E7 computations per time step. Time

steps are small (typically 5 seconds) due to the convective nature of the system, and

therefore calculations are computationally demanding. We �nd it therefore useful

for these series of numerical experiments to use the low resolution 2� runs. These

runs are presented in Table 6.1 where only Ra1 are 1� resolution cases. An important

component of this analysis is the e�ect of the rotation period. This has been discussed

in both sections 3.1 and 4.5, and therefore we will refer to those sections for this

discussion. We will use these results, though, in our discussion on the e�ect of the

Ekman number.
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6.3.1 The Rayleigh Number

We begin with experiments where we vary the Rayleigh number while holding the

Prandtl and Ekman numbers constant. The Rayleigh number depends on all three

physical parameters (viscosity, di�usivity, and heat �ux), and therefore since rotation

period (9:92 hours) is held constant, then a constant Ekman number implies a con-

stant viscosity. Then in e�ect in this set of experiments only the amplitude of the

heat �ux is varied. We repeat these experiments (Ra1� 3 see table 6.1) for di�erent

values of Ekman numbers denoted in Figure 6.5 with di�erent colors. Two degree res-

olution runs are denoted by diamonds, while one degree resolution runs are denoted

by squares. Each numerical experiment presented here, denoted by a single dot, has

been run to statistical steady state and data has been taken from the instantaneous

�elds.

The left panel in Figure 6.5 shows that as the Rayleigh number increases the

magnitude of the equatorial superrotation increases as well. A stronger heat �ux

provides more potential energy (from the convection) to the system resulting in a

stronger kinetic energy and superrotation. For the more energetic runs, the curves

level o� reaching possibly an asymptotic limit. Christensen (2002) suggested a linear

relationship when looking at the Rossby number as a function of the heat �ux. Runs

of similar Rayleigh number will have higher velocities for higher Ekman number,

though the model resolution seems to possibly have an impact as well. This shows

that the magnitude of the superrotation in our runs does depend on the magnitude

of the forcing, however this dependence may decrease for high Rayleigh numbers as

indicated particularly by the higher resolution runs (red). In section 4.7 we have

shown that although this magnitude does depend on the choice of the Rayleigh num-

ber it is still consistent with mixing length theory estimates for the magnitude of the

velocity as function of the forcing. For the whole range of Rayleigh numbers that

we have experimented with we have found that the convective structures and mecha-

nisms studied in chapter 5 are consistent. In Boussinesq, Cartesian, Rayleigh-Benard

convection experiments Sprague et al. (2006) have found that as Rayleigh number is

increased the �ow within the columns increases in strength, as in our experiments,

but leading eventually to a breakdown of the Taylor columns due to enhanced lateral

mixing. In our experiments we have not found this to happen, and actually have

found the ratio of the vorticity of the columns to the background vorticity to grow

with Rayleigh number, with more profound columns. However, even if the columnar

143



Figure 6.5: The model sensitivity to Rayleigh number. left: The magnitude of equa-
torial superrotating zonal velocity [m=s]; right: latitudinal extent of equatorial su-
perrotation [degree];

structure would break for some higher Rayleigh number, the convective plumes will

still be aligned with the rotation axis (as in the Sprague et al. (2006) experiments at

high Rayleigh number), and therefore much of the angular momentum �ux and the

mechanisms described in chapter 5 will still hold.

The equatorial superrotation on Jupiter extends roughly to latitude 17� and on

Saturn to latitude 30� (Figure 1.1). We have shown in section 6.1 that in our model

the latitudinal extent can depend on the depth of the domain for shallow cases (Fig-

ures 6.1, 6.2). In Figure 6.5 we show that this latitudinal extent depends on the

Rayleigh number as well and runs with higher heat �ux develop a narrower equato-

rial superrotating jet.

Extrapolating these results to the regimes relevant to Jupiter and Saturn is dif-

�cult since the model (eddy) viscosities are many orders of magnitude larger than

mean molecular viscosities.Therefore to maintain a large Rayleigh number we must

compensate with a larger heat �ux. If one used the Rayleigh number with the eddy

viscosities to calculate the actual heat �ux, the resulting �ux would be many orders

of magnitude too large.

A useful measure which eliminates the dependence on molecular parameters will

be ��1 � Ra � Pr�1Ek2. We have shown already (section 3.1.1) that this parameter

determines the level to which the convective plumes are aligned with the rotation axis,

separating therefore between the rotationally dominated convection to gravitationally

dominated convection. Using the parameter ��1 allows comparing a larger set of

numerical experiments. For most cases (all but Ek3) the rotation period is constant
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and therefore ��1 is a measure of the magnitude of the convection. In the upper

panels of Figure 6.6 we look again at the magnitude and latitudinal extent of the

superrotation. The upper bound of ��1 values is the limit where the convection

will not be aligned with the rotation axis. At that point no convection columns

will appear and the whole mechanism for superrotation described in chapter 5 will

break. As seen in Figure 4.11 at this point the equatorial �ow would rapidly switch

from super-to-sub rotating. The lower limit of ��1 is when convection is weak and

is limited by either the critical value of convection (3.11) or numerical limitation of

the eddy Ekman number. It can be seen on the left panel that the higher resolution

experiments can reach lower ��1 values since the higher resolution allows having a

smaller eddy viscosity. The importance of this is that they are supercritical for lower

��1 numbers, and seem to reach a point where more turbulent runs do not necessarily

have stronger equatorial velocities. This is seen also but to a lesser extent in the 2�

resolution runs. Such a scenario will mean that the velocities in our model, which are

on the order of magnitude of the winds on Jupiter and Saturn, might be more robust

than indicated by the slope in Figure 6.5.

In the lower left panel in Figure 6.6 shows the dominant wavenumber for the

streamfunction on the equatorial plane. This will serve as an approximation for

the number of columns surrounding the interior core. The results indicate that the

further the model is into the rotationally dominated regime, the more convection

columns we �nd around the equatorial plane. As a caveat, note that since there is

a clear separation between the high and low resolution results the numerical values

are a�ected by the model resolution. These results might imply that going to higher

resolution runs with lower Ekman numbers will lead to signi�cantly more convection

columnar structures which will result in a higher frequency waves on the surface.

The waves observed on the surface of Jupiter (Reuter et al., 2007) have a 300 km

wavelength which is currently ~1
3
of the resolution of our runs. Therefore it is hard to

identify our results with the observed waves; however the spatial resemblance (crests

that are curved eastward and centered at the equator), the phase speed which is about

equal to the mean zonal velocity (as in the model), and this result suggesting that

the number of columns (and therefore resulting waves), will increase with resolution

brings us to hypothesize that the observed waves might be a surface manifestation of

�ner structure convection columns.

The lower right panel in Figure 6.6 compares the full kinetic energy to that of the
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Figure 6.6: Model dependence on � = Ra � Pr�1Ek2. Run color code corresponds
to parameters in table 6.1. upper left: latitudinal extent of equatorial superrotation
[degree]; upper right: magnitude of equatorial superrotating zonal velocity [m=s];
lower left: mean number of columns around the equatorial plane; lower right: ratio
of total kinetic energy to the kinetic energy of the non-zonal components.

non zonal components. In all cases we �nd that the zonal kinetic energy dominates.

Although it is hard to follow a particular trend for a speci�c set of runs, in general

it seems that the higher energy runs have a stronger zonal component in the total

kinetic energy. Some of the sets of runs reach a maximum beyond a speci�c heat �ux

but determining this will require more runs.

We conclude that in the parameter regime we have studied the Rayleigh number

does a�ect both the amplitude and the latitudinal extent of the jet. We may expect

that runs at higher resolution which will be capable of higher Rayleigh numbers and

lower Ekman numbers will not depend (magnitude wise) on the Rayleigh number and

will have (even without the e�ect of the bottom boundaries) a narrower superrotation.
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Figure 6.7: The dependence on Prandtl number with constant heat �ux (di�usivity).
left: ratio of total kinetic energy to the kinetic energy of the non-zonal components.
right: magnitude of equatorial superrotating zonal velocity [m=s].

6.3.2 The Prandtl Number

To study the dependence on the Prandtl number we perform two sets of experiments.

In one we hold the Ekman and Rayleigh numbers constant and vary the Prandtl

number (Pr1). In this case di�usivity varies and the heat �ux adjusts accordingly to

keep the Rayleigh number constant. These results have been presented in Figure 6.6

and have a similar e�ect to holding the Prandtl number constant and varying the heat

�ux. The second set of experiments (Pr2) is holding the Ekman number constant

and varying the Prandtl number while the heat �ux is constant (��1 = 0:048), so

that the Rayleigh number will vary as well. In this case, since only di�usivity varies

Ra � Pr�1 is constant. In Figure 6.7 we look at the results for this experiment. The

right side plot shows on the horizontal axis both the Prandtl number (bottom) and

Rayleigh number (top) since only di�usivity is varying. It shows the increase in the

mean amplitude of the superrotation up to a level where beyond it the mean velocity

remains roughly constant. This plot can be seen as an extension of the corresponding

plot in Figure 6.5 extending into a region of higher Rayleigh number so that the

magnitude of the velocity is no longer a function of the Rayleigh number. Despite the

high Rayleigh numbers the run is not more turbulent and only means that beyond

Pr � 2, for these run parameters, di�usivity is small so that the amplitude of the

zonal velocity is insensitive to the Prandtl number.

We �nd that the latitudinal extent of the superrotation does not depend on the

di�usivity. Runs with higher Prandtl number do have a higher wavenumber to the

equatorial streamfunction on the equatorial plane, and as in the case of the zonal
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Figure 6.8: The model sensitivity to viscosity. left: maximum values of equatorial
streamfunction. right: surface superrotation zonal velocity.

velocity it becomes constant beyond a certain point for high Prandtl numbers. The

left panel in Figure 6.7 shows the ratio of full kinetic energy to that of the non zonal

components and indicates higher ratios for lower Prandtl numbers. The run with

Pr = 0:5 is the weakly nonlinear run presented in section 5.1.

6.3.3 The Ekman Number

We study the e�ect of the Ekman number in three sets of experiments. In the �rst we

keep the Rayleigh and Prandtl numbers constant and vary only the Ekman number

(keeping again the rotation constant) so that we change e�ectively the viscosity and

the heat �ux adjusts accordingly. In the second set of experiments we keep the Prandtl

number and heat �ux constant, so that when varying the Ekman number (viscosity),

the Rayleigh number changes as well. The third experiment is similar to the second

one only varying the Ekman number by changing the rotation period instead of the

viscosity.

Beginning with the �rst case, since the Prandtl number and heat �ux are constant

we look at the model e�ectively as only the viscosity changes. In Figure 6.8 we show

the magnitude of the equatorial streamfunction and superrotating zonal velocity as

functions of the Ekman number. We �nd, as can be expected, that as viscosity

increases the magnitudes of both decreases. Going back to the zonal momentum

balance in (4.20), as angular momentum is �uxed outward by the eddy �uxes, the

balance between the eddy �ux term and the viscosity happens earlier as � increases,

and therefore both the superrotating winds and the rotation of the columns (correlated
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Figure 6.9: The model sensitivity to the Ekman number. upper left: The mean
number of columns (wave number) on the equatorial plane; upper right: mean surface
zonal velocity of the superrotation; lower left: Meridional extension (latitude) of the
superrotation; lower right: ratio of full kinetic energy to the non zonal kinetic energy.

to the eddy angular momentum �ux) are weaker.

For the second case keeping both Prandtl and Rayleigh numbers constant as the

Ekman number (viscosity) varies, the heat �ux adjusts accordingly. Therefore a

higher Ekman number means a larger heat �ux, and thus we �nd that the strength

of the superrotation increases with Ekman number, although Rayleigh number is

constant. This means that the strength of the superrotation is related to the heat

�ux and not to the values of the Rayleigh number itself. On the other hand, as we

increase the Ekman number the number of columns, which is estimated by a Fourier

analysis of the streamfunction, on the equatorial plane decreases. This indicates that

in a higher resolution model where we would be able to reach lower Ekman numbers

we may expect to �nd more columns and surface waves. In addition as we increase

the Ekman number the meridional extent decreases although it levels o� for lower

Ekman numbers. Finally the ratio of the full kinetic energy to that of the non zonal

components grows with Ekman number.
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6.4 The E�ect of the Forcing Pro�le

In section 2.5 we discussed the use of an adiabatic vertically continuous forcing pro�le,

which does not con�ne the convection to the boundaries and is a way of representing

the longer time scale cooling of the planet. Other models (e.g. Heimpel and Au-

rnou 2007) have used isothermal boundaries and therefore forced Rayleigh-Benard

type convection; however this is an extreme oversimpli�cation of the forcing and the

planet does not have an isothermal boundary. A similar boundary dependent forcing

Figure 6.10: Comparing di�erent forcing pro�les for 2D and 3D cases. upper left:
2D with vertical forcing pro�le (section 2.5). upper right: 2D with bottom �ux and
Newtonian cooling on top; bottom left: 3D with vertical forcing pro�le; bottom right:
3D with bottom �ux and Newtonian cooling on top.

would be applying a heat �ux at the bottom boundary and relaxing to a reference

temperature on top. We have used this pro�le for the discussion about the critical

Rayleigh number in section 3.1.2. Although less realistic than the continuous pro�le

it is worth comparing the statistically steady state solutions to learn if the result is

dependent on the form of the forcing. Here, we compare the results using both types

of forcing for both the 2D and 3D cases. As can be seen in Figure 6.10 we �nd that
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for the 2D experiments a bottom heat �ux will cause the dynamics to be constrained

to the inner part of the sphere. For the 3D although at the initial stages (not shown)

the convection is di�erent (plumes rising from the bottom boundary), after enough

time the pro�les with both types of forcing become quite similar. The reason this

makes a di�erence in the 2D case is the constraint given by (3.13) which is even more

limiting in this case because of the convective plumes only rising from below. Note

that the 3D runs are of 2� resolution; as discussed in section 6.3 the higher latitudes

do not maintain the �ner structure seen in the 1� resolution runs such as in Figure

3.9. All cases here are using the full anelastic density variation.

6.5 Summary

The deep anelastic GCM we developed and studied in previous chapters is analyzed

over a range of parameters. Such a study is essential in order to get a feel for the

parameters of the model. Due to the simplicity of this idealized GCM the parameter

regime is limited to mainly three nondimensional parameters beyond the geometric

con�guration of the model and the choice of forcing pro�le. We perform sets of nu-

merical experiments changing both the geometric con�guration of the model and the

nondimensional control parameters. We �nd that using a shallower or deeper domain

preserves to the most part, the main characteristics of the circulation, including the

superrotation and convection columns. A shallower domain which is consistent with

some of the recent MHD estimates (Liu, 2006), would in fact limit the superrotation

to a narrower latitudinal band which is consistent with the observations on Jupiter

and Saturn. On the other hand extending the model to a full sphere does not extend

the superrotation to the poles, and beyond a certain depth the superrotation is close

to being invariant to the depth of the domain.

We �nd that the magnitude of the superrotation in our model does depend on

the Rayleigh number for the parameter regime studied. An important distinction is

whether the amplitude of the superrotation is sensitive to the full Rayleigh number or

to the heat �ux itself. The results at this point are still indecisive. If the total Rayleigh

number is key, then the use of large eddy viscosities is justi�ably compensated by the

use of large heat �uxes. If on the other hand, the e�ect of the viscosity saturates at

some limit (still far from the molecular limit) then possibly the velocities resulting

from realistic heat �uxes will be considerably smaller. For the parameter regime
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we have been able to explore this questions remains open. We �nd that beyond a

certain limit the Prandtl number becomes irrelevant due to the small di�usivities,

and although Rayleigh numbers will grow for such a case, e�ectively the circulation

will not change. In general we �nd that using smaller Ekman numbers and larger

Rayleigh numbers (which are in the direction of more realistic numbers), will result in

more, and smaller scale, convection rolls and a resulting superrotation which is more

latitudinally con�ned.

Other possible solutions, such as ones with multiple layers of convection columns,

which currently naturally appear during spin-up, but usually are sheared apart as the

model spins-up toward having one layer of cyclonic convection columns, have been

shown. Since for the lower Ekman number cases these solutions are sustained for a

longer period, despite the shear being large, we suggest that in high resolution runs

we may �nd such solutions which are stable.
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Chapter 7

Formation of Multiple Zonal Jets by

Baroclinic Instability

7.1 Introduction

In this chapter we use a simpli�ed model to look at a di�erent aspect of the dynamics.

The full GCM has been instrumental in understanding the mechanism for superro-

tation and the dynamics arising from convection in a rotating spherical deep system.

We have seen the formation of columnar modes which propagate eastward due to the

background planetary vorticity gradient. The mechanism causing the propagation of

these modes is similar to that of a standard Rossby wave on the exterior of a sphere,

only that the planetary vorticity gradient is in the opposite direction, thus growing as

one goes to lower latitudes (the equivalent of moving radially outward in the interior

of a sphere).

The opposite planetary vorticity gradient can be thought about in terms of conser-

vation of vorticity in column of �uid. If constrained to a thin spherical shell then as as

a �uid column moves towards the axis of rotation the �uid column shrinks in length,

and therefore this would be equivalent to a sloping surface with a positive slope, as

the planetary vorticity grows, and therefore a positive � e�ect. On the other hand

columns which penetrate the depth of the planet as we have seen in our GCM (Figure

4.13), will stretch as they move towards the axis of rotation, and therefore will be

equivalent to having an opposite sloping surface to conserve planetary vorticity which

is equivalent to a negative � e�ect. Following the approach of Ingersoll and Pollard
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(1982) we have shown that for an anelastic �uid the radially varying density pro�le

will cause a larger magnitude negative �. The equivalent � for both the Boussinesq

and anelastic cases can be seen in Figure 5.9.

We have discussed the two very di�erent and essentially decoupled approaches used

to model the atmospheres of the giant planets (section 1.3). We have shown that the

deep approach which we have taken for our convection model can explain some ele-

ments of the dynamics such as superrotation, meridional poleward heat transport and

possibly some of the waves observed within the equatorial superrotation. However, el-

ements such as the formation of multiple zonal jets do not appear in the deep anelastic

model. Our simulations indicate that possibly a higher resolution model with smaller

viscosities will be able to produce more meridional structure in the zonal wind �eld.

Examples of such solutions we present in section 6.2. Nevertheless, the similarity of

the observations to weather patterns seen on Earth, and the existence of a thin but

important stably strati�ed layer at the top of the atmosphere due to solar insulation,

leads us to assume that there are important components to the dynamics beyond the

convectively driven system.

Therefore in this chapter we look at a simpli�ed model which contains components

from both the shallow and the deep approaches. We use a two layer quasigeostrophic

model where the upper layer is a standard quasigeostrophic layer on a � plane, and

the lower layer represents the deep interior convective columnar structure using a

negative � plane. The model is shallow in the sense that is quasigeostrophic and the

jets are created by interactions of the eddies on a � plane. However, the presence

of the negative � for the bottom layer makes the dynamics, and particularly the

criterion for baroclinic instability, quite di�erent than a standard quasigeostrophic �

plane model. We suggest that the interaction between the isentropic interior and the

�weather layer� drives the multiple zonal jets.

This approach can be distinguished from previous shallow type models in several

aspects. First, due to the weak meridional temperature in the upper atmosphere of

the giant planets, baroclinic instability has been assumed to play a minor role in

the dynamics of the jets. However as we show, due to the di�erent geometry in the

interior, even a weak baroclinic shear can result in substantial zonal �ows that are

stronger than the eddy �eld, and moreover baroclinic instability introduces a strong

meridional variability in the velocity �eld. The instability acts as an energy source

for the eddies, and the nonlinear eddy-mean interactions act to stabilize the �ow.
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Therefore unlike previous shallow water or quasigeostrophic models which use either

random forcing or deal with decay of strong initial perturbations, leaving it unclear

how such a state can be maintained, this model accounts for the energy of the eddies

through baroclinic instability. Baroclinic instability provides an energy source, so

that energy does not have to be pumped in to maintain the jets. Other baroclinic

instability models (Panetta, 1993; Williams, 2003), require large-scale baroclinicity

strong enough to satisfy the Charney-Stern theorem, but which may be larger than

the level of baroclinicity on the giant planets.

Second, the observed winds violate the barotropic stability condition (Ingersoll and

Cuong, 1981), thus ��uyy < 0 at some latitudes, although the zonal winds appear to

be very stable. In contrast, all of the shallow models produce curvatures uyy which are

smaller than �, so that the predicted jets are weaker or wider than the Jovian ones.

We �nd that � and uyy have similar values (thus the barotropic stability condition

is violated) and still the jets are shown to be stable. Third, most previous model

assume a boundary at a depth of about one scale height, with the �uid below being

motionless. Although this model is not deep due to the quasigeostrophic assumptions

we show that the jets in the upper levels are maintained and are baroclinic when the

bottom layer gets deeper. Using the negative � assumption gives some representation

of the deep dynamics seen in the full convection model. Finally, in many cases (e.g.

Panetta, 1993) the jets are obvious only in the zonally or time average pro�les, while

here the jets are seen in the instantaneous picture as well. A main di�erence is that in

those models the scales of both the instability and the resulting jets are on the order

of the Rossby deformation radius, while here there is a scale separation between the

instability which is much smaller than the jets which are again on the scale of the

deformation radius.

Several authors have used this idea of a negative � plane. Ingersoll and Pollard

(1982) developed a stability criterion for columnar motions inside of a compressible

�uid sphere. Their equivalent barotropic stability equation has an e�ective � which is

negative and three times the value from the sphericity of the planet. On Jupiter and

Saturn the observed winds are close to marginal stability according to this criterion.

Yano and Flierl (1994) have used a negative bottom layer � to demonstrate its e�ect

on an isolated vortex like Jupiter's giant red spot in a zonal jet, and Yano (2005)

suggested that this can e�ect the direction of the equatorial jet. We will show that

having di�erent and opposite-signed � values in the shallow and deep layer makes the
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dynamics di�erent and favorable for creating jets even for weak baroclinic shears.

We begin with analysis of the stability problem in a two layer quasi-geostrophic

model similar to the Phillips model (Phillips, 1954), but with the lower layer deeper

than the upper layer and having a di�erent geometry represented by the di�erent �.

Unstable modes appear at high wave numbers for low shears, implying there may be

a signi�cant scale separation between the eddies and the mean �ows generated by

the nonlinear interactions and the energy cascade. Next, since the fastest growing

mode is the key contributor to the initial instability, we develop an analytical theory

for the nonlinear problem containing of only this mode and zonal �ow corrections.

This truncated model which is presented in section 7.4 gives an analytic expression

for an induced zonal �ow which has a multi-jet meridional structure, and which is not

limited to the weakly supercritical case (Pedlosky, 1970) so that it can be as strong

as the eddies. We show that this model can reduce to the weakly supercritical case

in section 7.5.

Then, using a pseudo-spectral fully nonlinear numerical model containing many

initial modes, we show that indeed an induced zonal �ow with a multi-jet meridional

structure is generated from the baroclinic instability. The truncated model predicts

well both the number of jets and their amplitudes. This emphasizes the importance

of the truncated model which allows us to isolate the physical mechanism of the jet

formation before the system becomes turbulent. In time, as more unstable modes are

generated, quasigeostrophic turbulence begins and an inverse energy cascade gener-

ates wider and stronger jets. Once the meridional scale of the jets has reached the

Rhines scale, these jets become stable and in most cases have a bigger amplitude

than the eddy �eld, thus creating a multi-jet structure across the whole channel. A

complete description of the numerical experiments is given in section 7.6.

A few mechanisms govern the generation and stability of the zonal jets: baroclinic

instability extracts energy from the basic shear at high wave numbers to form small

scale eddies, eddy interaction creates an induced zonal �ow with a strong meridional

variation, and eddy-mean �ow interaction creates exchange of energy between the

eddies and the mean �ow which stabilizes the �ow. The truncated model allows us to

isolate these phenomena. Baroclinic instability tends to sharpen and intensify the jet

once it is created while quasi-geostrophic turbulence will tend to cascade the energy

into larger scales. Both e�ects can be seen in the numerical experiments. A discussion

of these mechanisms and its relation to the Jovian jets is given in section 7.7.
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7.2 The Two-Beta Model

We use a two layer quasigeostrophic model (Phillips, 1954), with a simple shear �ow

on a � plane in a zonal channel of meridional width L. The layer thicknesses are

di�erent, such that the upper layer is much shallower than the lower layer, in order to

represent a thin weather layer and a deep adiabatic interior. Although the two-layer

model is often thought of as representing homogeneous incompressible �uids with the

deep layer having a slightly larger density, Flierl (1992) argues that an isentropic

interior with a thin weather layer of higher entropy gives the same equations. In

order to parametrize the deep layer �ows (Ingersoll and Pollard, 1982), we use a

negative � plane in the bottom layer and a standard � plane for the upper layer, as

discussed in section 7.1. The opposite-signed �0s make the stability problem quite

di�erent from the classical case (c.f. Pedlosky, 1970). There is a free interface between

the two layers whose horizontal height gradient is related to the di�erence in pressure

gradients within the layers. The quasigeostrophic inviscid potential vorticity equation

for each layer, dimensioalized in the standard way as in Pedlosky (1987) is

�
@

@t
+
@	n

@x

@

@y
� @	n

@y

@

@x

� �r2	n+

(�1)n Fn (	1 �	2) + �ny] = 0: (7.1)

where n denotes the layer, 	n is the stream-function and Fn is the non-dimensional

Froude number given by

Fn =
f 2L2

g0Dn
(7.2)

where f is the Coriolis parameter, g0 is the reduced gravity, and Dn is the layer depth.

For future notation we denote the full potential vorticity in each layer as

�n = r2	n + (�1)n Fn (	1 �	2) + �ny: (7.3)

We will assume the simplest basic state with a uniform �ow in each layer,

	0n = �Uny: (7.4)
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The total streamfunction is composed of the mean part (7.4) and a perturbation

	n = 	0n + �n (7.5)

and the equation for the perturbation stream function is

�
@

@t
+ Un

@

@x

�
qn + [(�1)n Fn (U1 � U2) + �n]

@�n
@x

+ J(�n; qn) = 0 (7.6)

where

qn = r2�n + (�1)n Fn(�1 � �2) (7.7)

is the perturbation potential vorticity and J(�n; qn) is the Jacobian of streamfunction

and potential vorticity. The boundary conditions on the walls of the channel at

y = 0; 1 are that the meridional velocity vanishes and the zonally averaged circulation

on the two walls is conserved (Phillips, 1954) so that

@	n

@x
= 0 ;

@

@t

Z
@	n

@y
dx = 0 (7.8)

7.3 Linear Stability Analysis

We begin by addressing the linear stability problem in a similar fashion to Phillips

(1954) and Pedlosky (1970). Wave solutions which satisfy the boundary conditions

(7.8) can be found in the form

�2 = 
�1 = 
Aeik(x�ct)sin (m�y) (7.9)

where m is an integer, k is the zonal wavenumber, A is the amplitude of the wave in

the upper layer, and 
 is the ratio between the amplitude of the perturbation in the

lower to that of the upper layer. Only k is restricted to be real. Substituting (7.9)
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Figure 7.1: Stability curves for the two � case for the vertical shear as function of the
total wave number . The contours are of the growth rate in non-dimensional units,
and the parameters used here are F1 = 100, F2 = 20, �1 = 10, and �2 = �30.

into (7.6) and solving the linear eigenvalue problem gives the dispersion relation

c = U2 +
US
2

�2 + 2F2

�2 + F1 + F2
� �2 (�

2 + F1) + �1 (�
2 + F2)

2�2 (�2 + F1 + F2)

� 1

2�2 (�2 + F1 + F2)

�
U2
S�

4
�
�4 � 4F1F2

�
(7.10)

+ 2US�
2
�
(�2 � �1)

�
�4 � 2F1F2

�
+ �2 (�2F1 � �1F2)

�
+

��
�2 + F1

�
�2 �

�
�2 + F2

�
�1
�2
+ 4F1F2�1�2

o 1

2

where US = U1 � U2 and �2 = k2 + l2 where l = m�. The solution also gives an

expression for the ratio between the perturbation amplitude in each layer


 = 1 +
�2

F1
� F1US + �1
F1 (U1 � c)

: (7.11)

As seen in Figure 7.1 the short wave cut-o� for classical two-layer baroclinic in-

stabilities has disappeared and the marginal instability curve has a tail towards the

high wave numbers. This e�ect does not require the bottom layer � to be negative,

only to di�er from the upper one as shown by Steinsaltz (1987) for the case of a slop-

ing bottom or by Robinson and McWilliams (1974) for a case of a varying bottom

topography. However, the form of the potential vorticity (7.3) shows that for cases

where the sign of � is di�erent in the two layers, the necessary condition for instability
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can be reached for arbitrarily weak shears, and analysis of (7.10) shows that this tail

asymptotes to zero shear as k ! 1 (Figure 7.1). Therefore, baroclinic instability

may arise with the maximum growth rate at high wave numbers even when the shear

is very small. As seen in Figure 7.1, the growth rate for a very small shear may itself

be very small, and may seem insigni�cant, but since the observed zonal jets on the

outer planets are long lived, an energy source from the weak instability may su�ce.

The form of c (7.10) is symmetric in the meridional and zonal wavenumber. Apri-

k/π

m neutral stability

2 4 6

2

4

6

Figure 7.2: Growth rates in horizontal wave number space for the two � case. The
x axis is the zonal wave number and the y axis is the meridional one (divided by
�). The growth is con�ned to a band of few wave numbers. Due to the boundary
conditions, the fastest growing mode (in this case km = 5; lm = 3 - marked with an x)
is not necessarily the gravest mode. The parameters used here are F1 = 100, F2 = 50,
�1 = 10, �2 = �30 and US = 0:153.

ori, one might think that the lowest meridional wave number for a given shear will

be the most unstable (since the growth rate is kci(�) =
p
�2 � l2ci(�)) so that the

growth will not generate much meridional structure. However, the meridional and

zonal wave numbers must be quantized as multiples of � to satisfy the boundary

condition in the channel, and for weak shears the band of unstable wave numbers is

thinner than � in wave number space. Thus for a given shear it may be that only

high meridional wave numbers are unstable. This is demonstrated in Figure 7.2.
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7.4 The Nonlinear Truncated Model

The linear stability analysis implies that the short wave perturbations will become

dominant for weak shears. In relation to the Jovian jets this implies the possibility

of baroclinic instability creating a highly varying meridional structure. Of course,

this must be tested in a full numerical model, and obvious questions are: can this

meridional variation evolve into zonal jets? And if so, are the zonal velocities stable

over time? In section 7.6 we use a full nonlinear numerical model to test this. However,

before doing that, we can get some insights by solving the nonlinear system truncated

to a perturbation in one wavenumber. Although this restricts the nonlinear nature of

the solution, the band of initial growing modes in the two � case is limited (Figure

7.2), so that this solution actually reproduces quite well (Figure 7.5) the initial stages

of the fully nonlinear solution obtained numerically in section 7.6.

Therefore, we proceed to examine the nonlinear dynamics with taking the per-

turbation to have only one zonal wave number and one meridional wave number.

Rewriting (7.6) in terms of the barotropic �T ;	T and baroclinic �C ;	C components

gives

@

@t
�T + J (	T ;�T ) + J (	C ;�C) = 0 (7.12)

@

@t
�C + J (	T + �	C ;�C) + J (	T ;�C) = 0 (7.13)

where the barotropic and baroclinic components of the potential vorticity are

�T =
��1 +�2

1 + �
(7.14)

�C =

p
�

1 + �
(�1 � �2) (7.15)

and � = D1

D2
is the layer depth ratio. The same structure applies for the barotropic

and baroclinic stream functions 	T and 	C . The parameter � = (1��)p
�

comes from the

unequal upper and lower layer thicknesses. Split into a basic state and a perturbation

and using (7.3) and (7.4), the barotropic and baroclinic potential vorticities and

streamfunctions are
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	T = �T (7.16)

	C = �UCy + �C (7.17)

�T =
(��1 + �2) y

1 + �
+ qT � QTy + qT (7.18)

�C =

" p
�

1 + �
(�1 � �2) + (F1 + F2)UC

#
y + qC � QCy + qC (7.19)

where UC is the baroclinic shear, and � and q are the perturbation stream function and

potential vorticity respectively. Note that the basic state barotropic streamfunction

has been taken to be zero. This can be done due to the Galilean invariance of the

two-layer system. Then the barotropic and baroclinic equations (7.12, 7.13) take the

form

@

@t
qT + UC

@

@x
qC +QT

@

@x
�C +QC

@

@x
�C

+J (�T ; qT ) + J (�C ; qC) = 0 (7.20)

@

@t
qC + UC

�
@

@x
qT + �

@

@x
qC

�
+QT

@

@x
�T

+QC

�
@

@x
�T + �

@

@x
�C

�
+ J (�T + ��C ; qC) + J (�C ; qT ) = 0 (7.21)

We express the solution as a single potential vorticity perturbation wave which satis-

�es the boundary conditions (7.8) of the form

qT = q0T (t) e
ikxsin (ly) + c:c: (7.22)

qC = q0C (t) e
ikxsin (ly) + c:c: (7.23)

and then the perturbation stream functions can be expressed via the inversion relation

so that

�T =
�qT
�2

(7.24)

�C =
�qC

�2 + F1 + F2
(7.25)
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The main advantage of writing the quasi geostrophic potential vorticity equations in

this form is that when plugging (7.22-7.25) into (7.20,7.21) the Jacobians from the

barotropic equation (7.20) vanish, while the baroclinic nonlinear contribution (7.21)

gives

J (�T ; qC) + J (�C ; qT ) =

ikl (F1 + F2)

�2 (�2 + F1 + F2)

h
q0Cq

0�
T � q

0�
Cq

0
T

i
sin (2ly) (7.26)

This is where the truncated nature of the solution appears. The nonlinear baroclinic

interaction gives a zonal mean correction to the basic �ow with a speci�c meridional

structure which depends on the choice of the truncated mode. Nevertheless, as men-

tioned in the linear analysis (which applies when the perturbation is small) since the

band of growing modes contains only few modes (Figure 7.2) an approximation of

only one growing mode turns out to be a fair approximation. Since the basic zonal

�ow is �xed, we can specify this mode to be the fastest growing mode. Therefore we

can split the baroclinic equation (7.21) in two: one part for the linear perturbation,

and another for the nonlinear correction. From the solution to the nonlinear part

(7.26) we can approximate the structure of the nonlinear correction to the potential

vorticity as having the form

qC = q0C (t) sin (2ly) : (7.27)

This form is unlike the linear perturbation part (7.7, 7.9), having no zonal dependence

and a di�erent meridional structure. This nonlinear correction to the basic baroclinic

state must also satisfy the two boundary conditions given by (7.8). In order to ensure

this, we use the inversion relation from (7.7) for the zonally averaged case

�
@2

@y2
� (F1 + F2)

�
�C = qC (7.28)

which, when solved for �C with the boundary conditions, gives a correction to the
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basic zonal velocity

UC =
2lq0C (t)

4l2 + F1 + F2

�
2
4cos (2ly)� cosh

�p
F1 + F2

�
y � 1

2

��
cosh

�p
F1+F2
2

�
3
5 (7.29)

This result is similar in form to that found for the weakly nonlinear theory by

Pedlosky (1970). Here though, the weakly nonlinear requirement is relaxed (but

replaced by a truncation assumption) and this correction may extend into the highly

supercritical regime, as we show in the numerical experiments in section 7.6. The

amplitude of this zonal �ow is not limited to the weakly varying parameter and, in

fact, can be stronger than the eddies themselves.
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Figure 7.3: The analytical baroclinic induced zonal velocity UC (7.29) from the trun-
cated model as function of the channel width for the �rst four meridional modes.

Figure 7.3 shows the shape of the mean �ow correction for the �rst few modes,

and indicates that for the higher modes we expect to get a multi-jet meridional struc-

ture. This baroclinic contribution tends to reduce the shear rather than increase it,

causing oscillations in the amplitude of the perturbation in the classical weakly su-

percritical case (Pedlosky, 1970); once the correction reduces the shear enough it goes

back into the stable regime, halting the growth until the e�ect of the nonlinearities

decreases, and the cycle repeats. Here, since the �ow may be strongly rather than

weakly supercritical the nonlinear wave e�ects may not be enough to halt the growth.

For the cases of high wave number perturbations, though, the growth band (Figure
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7.2) becomes narrow in wave space so that the e�ect of the nonlinear correction is

similar to that of the weakly nonlinear case, and the perturbation may reach a steady

equilibrium. These oscillations can be seen in Figure 7.4.

The truncation and the separation of the nonlinear part out of the baroclinic

equation allows us not only to �nd the baroclinic induced zonal velocity UC , but

to solve for the perturbation amplitudes and the baroclinic mean. We can write

the truncated system as a closed system of three equations for three unknowns; the

perturbation amplitudes q0T ;q
0
C and the baroclinic mean q0C:. The speci�cs of this

derivation are given in Appendix (B.1). The resulting system is

@

@t
q+ ikLq+ ikq0CNq = 0 (7.30)

@

@t
q0C +

ikl (F1 + F2)

�2 (�2 + F1 + F2)

h
q0Cq

0�
T � q

0�
Cq

0
T

i
= 0 (7.31)

where q =

 
q0T
q0C

!
and the operators N and L are given in Appendix (B.1) as well.

This solution is shown in Figure 7.4 which plots the evolution of enstrophy in time for

the linear case, the truncated nonlinear case, and a full nonlinear model containing

many modes (section 7.6). This example shows how the nonlinearities stabilize the

initial instability in both the truncated and full model.

Since the initial perturbation is small, and the system is baroclinically unstable,

the perturbations in all models grow similarly. When the e�ect of the nonlinearities

is large enough, the nonlinear models separate from the linear model and, since the

perturbation is dominated by the most rapidly growing mode, the truncated model

with only this mode gives a reasonable estimate of this separation point. Then the

truncated model begins to oscillate by exchanging energy between the perturbations

and the basic �ow, whereas the full model (which resolves harmonics neglected in

the truncation) equilibrates with a much more steady amplitude. In general this

truncated solution captures well when, where, and how the interaction with the mean

�ow halts the instability. We have seen a somewhat similar interaction between the

nonlinearities and the mean �ow in the convection model (section 5.1). There, the

nonlinear eddy �uxes induced a mean zonal velocity and then acted to exchange

energy between the upgradient momentum �uxes and the viscous �uxes (see Figures

5.1 and 5.2).
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Figure 7.4: The enstrophy as a function of time. The dash-dot line is the linear growth
rate for the fastest growing mode using the linear growth rate from (7.10). The dashed
line is the growth calculated from the truncated model (7.30 and 7.31). This shows
that when the perturbation is small the system aligns with the linear growth rate,
until the nonlinear terms become dominant and the system begins oscillating while
exchanging energy between the eddies and the mean �ow. The solid line is the result
for the full nonlinear system (run S4) which qualitatively follows the truncated model
but contains many modes and therefore does not have a pure oscillation .

In summary, the truncated model allows us to examine qualitatively the nonlinear

interactions which have several roles. First, they create an induced zonal �ow with

a highly varying meridional structure which (as we show in section 7.6) may be

stronger than the eddies and therefore have the potential of becoming zonal jets.

Second, this induced �ow stabilizes the growing perturbations. This �toy model�

provides a closed system of equations for the perturbation amplitude in both layers

and the change in the basic �ow due to nonlinearities, without requiring the system

to be only slightly supercritical; for such cases the correction due to the nonlinearities

becomes signi�cant (as opposed to being on the order of the departure from the

critical curve) and a strong multi-jet structure may emerge. Indeed, since the high

wave number instability dominates the two � case, we might expect multiple jets for

a weak baroclinic shear.
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7.5 The Weakly Supercritical Limit

Most previous treatments of nonlinear baroclinic instability have required the system

to be weakly supercritical (e.g. Pedlosky, 1970). Instead, we have truncated the

system to one unstable mode. Here we present the truncated model in the limit

where the shear is taken to be just slightly supercritical. This limit corresponds to

the weakly supercritical theory of Pedlosky (1970), except that we allow for the more

general case of di�erent layer depths and a variable �: If we vary the value of the

critical shear by a small parameter �, so that it slightly exceeds the critical value

US = Uc +�; (7.32)

then the imaginary part of the linear growth rate (7.10) becomes

ci =
�

1

2p
2� (�2 + F1 + F2)

�
UC�

4
�
�4 � 4F1F2

�
(7.33)

+
�
(�2 � �1)

�
�4 � 2F1F2

�
+ �2 (�2F1 � �1F2)

�	 1

2

Thus it is proportional to �
1

2 . Therefore we follow Pedlosky (1970) and de�ne a slow

time scale, T , such that

@

@t
! @

@t
+�

1

2

@

@T
: (7.34)

With these expansions we are able to obtain an analytic solution to the system of

equations (7.30,7.31). The small variation to the shear U0 ! U0 + � leads to an

expansion of the operators in (7.30)

L = L0 +�L2; (7.35)

and we assume the system is weakly nonlinear so that N will be O (�). The op-

erators themselves are given in Appendix (B.2). We expand the potential vorticity

perturbation (7.7) as well

q = e�ikc0t
h
q0 +�

1

2 q1 +�q2 +O
�
�

3

2

�i
(7.36)
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By the choice of c0 as the neutral phase speed q0 does not depend on t. Expanding

(7.30) in powers of �
1

2 , gives

O
�
�

1

2

�
: ik (L0 � c0I)q0 = 0 (7.37)

O (�) :
@

@t
q1 + ik (L0 � c0I)q1 +

@

@T
q0 = 0 (7.38)

O
�
�

3

2

�
:

@

@t
q2 + ik (L0 � c0I)q2 +

@

@T
q1 (7.39)

+ik
�
L2 +Nq0C

�
q0 = 0

Solving this system with the equation for the mean baroclinic correction (full solution

in Appendix (B.2)) gives an amplitude equation for the growth of the perturbation

@2A

@T 2
� k2c2iA+ k2NA

�jAj2 � jA (0)j2� = 0 (7.40)

where A is the amplitude of the perturbation and the nonlinear parameter N is the

Landau coe�cient which is given also in Appendix (B.2). For very small amplitudes

the system thus reduces to the linear system. As the amplitude grows the cubic term

becomes more dominant and if N > 0 this term will act to slow the growth and

eventually reverse it. At a certain value of A this term will change sign and begin

increasing the growth, and thus a limit cycle is created. This type of oscillation is

seen in Figure 7.4.

7.6 Fully Nonlinear Model and the Generation of

Multiple Zonal Jets

The truncated model predicts a multi-jet structure for high wave number instability.

In this section we use a fully nonlinear numerical model to explore the role of the

other modes on the generation of eddies and jets, and on the e�ect of quasi-geostrophic

turbulence on these jets. The model we use is based on the same equations analyzed

in the previous sections. It is pseudo-spectral (Boyd, 2001), where each layer has

a spatial resolution of 64x128, is periodic in the zonal direction, and is con�ned

within a channel in the meridional direction. On the channel walls we require no

meridional �ow and that the circulation is conserved (implemented by requiring the
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mean ageostrophic meridional velocity to vanish).

The parameter regime is fairly simple since we only set the layer depths (by setting

the nondimensional Froude numbers), the � parameters and the baroclinic shear. If

we were to fully compare the numerical model to the truncated model we would set

the shear in such a way that only one mode will be growing (see Figure 7.2). For

our standard run, following Dowling and Ingersoll (1989) and Ingersoll and Pollard

(1982) we choose the typical Rossby deformation radius to be on the order of 2000

km. This value corresponds to the observed scale of the jets on Jupiter. We take the

domain width to be an order of magnitude bigger then the deformation radius, thus

setting the upper nondimensional Froude number to be F1 = 100 (Fn = L2

L2
D

). The

bottom layer is taken as to be 5 times as deep so that F2 = 20: �1 is set according

to the curvature of Jupiter (�1 =
2
 cos �
RJ

L2

U
) giving the nondimensional value �1 = 10,

with the characteristic velocity being 50 m/s and the same typical horizontal length

scale of 2E4 km. Following the barotropic stability analysis by Ingersoll and Pollard

(1982) which shows that �2 is at least �3�1 we set �2 to this value. Their analysis

shows that this is a lower limit for stability and in fact a more negative lower layer �

will be stable, but for our standard run we choose this limit. Unlike other models for

jets (Williams, 1979; Panetta, 1993; Vallis and Maltrud, 1993) we �nd in the upper

layer that the standard barotropic stability criterion Kuo (1949) is violated (Figure

7.14), much as we see in the observations, but the �ow is still stable. We refer to

these values as our standard run (denoted with S and the run number - see Table

7.1), and experiment sets B and F show a sensitivity analysis to the parameters of the

standard run. The vertical shear is set so that several growing unstable modes exist,

as demonstrated in Figures 7.1 and 7.2. Since the two layer model is invariant under

translation (Pedlosky, 1987) it is only necessary to set the baroclinic shear U1 � U2

and not the absolute values of the basic state velocities.

We begin all our experiments with a small random potential vorticity perturbation

�eld, with initial perturbations in all � multiple wave numbers up to k; l = 10�. Since

the system is forced by a constant vertical shear, eventually the system becomes

baroclinically unstable and the fastest growing mode dominates. We denote this

fastest growing mode with the notation km; lm such that k = km� and l = lm�. As

seen in Figure 7.4 the enstrophy begins growing in agreement with linear theory (since

the amplitude is small). When the e�ects of nonlinearity grow enough, the enstrophy

diverges from the theoretical linear growth curve as predicted by the truncated model.
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Figure 7.5: The induced zonal velocity as a function of the channel width. The
solid line is the theoretical baroclinic correction UC (7.29) from the truncated model;
the circles are the result from the nonlinear numerical model (the 65 points are the
meridional resolution of the grid) towards the end of the baroclinic growth stage for
U1, and the dashed line is the steady state of the numerical results after the inverse
energy cascade.

It can be seen that the nonlinear truncated model predicts quite precisely where this

separation takes place. Moreover, when we plot a snapshot of the top layer induced

zonal �ow U1 at this time from the numerical experiments (circles in Figure 7.5), it

matches well the truncated model theoretical prediction. The reason for this is that

as long as the growth of the perturbation is dominated by the fastest growing mode

according to the truncated model there is no induced barotropic velocity. From the

form of (7.14, 7.15) we can write the induced zonal velocity in each layer

U1 =
1p
�
UC + UT U2 = �

p
�UC + UT (7.41)

and therefore the induced zonal �ow in each layer has the same structure as the

baroclinic induced zonal �ow UC . We see exactly a ratio of � between of the amplitude

of the induced zonal �ow in the upper and lower layers.

In Figure 7.5 the analytic result of equation (7.29) is plotted for the cases of

meridional wave numbers m = 4; 8 with the results from the full model for runs S2

and S14. The numerical results contain 65 points (the meridional resolution of the

170



Run F1 1=� �1 B US km; lm 1=� �1 �2

S1 100 5 10 -3 0.0263 10,8 7 1.87 0.11

S2 0.0296 9,8 8.9 2.32 0.13

S3 0.0332 9,7 6.37 3.1 0.15

S4 0.0338 8,7 7.09 3.17 0.13

S5 0.0372 10,4 6.25 3.33 0.13

S6 0.0385 8,7 5.79 2.54 0.17

S7 0.0413 10,3 7.53 1.56 0.11

S8 0.044 8,6 5.44 3.18 0.25

S9 0.045 8,7 7.71 3.46 0.15

S10 0.0455 9,4 4.14 3.26 0.17

S11 0.0494 8,4 6.88 3.07 0.19

S12 0.05 9,3 6.14 1.35 0.14

S13 0.0525 9,2 4.28 3.2 0.28

S14 0.0562 8,4 6.5 2.94 0.22

S15 0.0612 7,5 6.92 1.94 0.36

S16 0.0622 8,3 5.63 2.36 0.31

S17 0.0632 7,3 5.76 2.07 0.25

B1 100 5 10 -10 0.1032 10,4 8.56 2.27 0.1

B2 -5 0.056 10,4 7.33 1.83 0.11

B3 -2 0.0277 9,6 7.26 1.63 0.15

B4 -1 0.0183 9,6 5.92 0.73 0.16

B5 0 0.0088 none no jets 0 0

B6 1 0.0006 none no jets 0 0

F1 100 1 10 -3 0.0382 10,4 6.15 0.48 0.21

F2 10 0.037 9,7 10.25 2.78 0.11

F3 100 0.0369 8,5 6.04 0.51 0.03

Table 7.1: Numerical experiments using the fully nonlinear pseudo-spectral model. F1

is the Froude number for the upper layer; � is the layer depth ratio between the upper
and lower layer (and inverse of the Froude number ratio); �1 is the �-plane parameter
for the upper layer; B is the ratio �2

�1
; US is the imposed baroclinic shear; km; lm are

the fastest growing baroclinic modes; � is the meridional spectral maximum of the
statistically steady state averaged across the channel (thus 1

�
gives an estimate for the

average number of jets), and � is the ratio of the induced zonal velocity amplitude to
the eddy amplitude (see text) in each layer.
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model) and are a snapshot of U1 (which has the same structure as the UC �eld (7.41))

taken just before the time when the two models diverge. Therefore, although the

Figure 7.6: Instantaneous total zonal velocity �elds at di�erent times for the top
layer (run S5). Beginning with a random vorticity perturbation (a), then becoming
baroclinically unstable (b) dominated by the fastest growing mode (in this case km =
10, lm = 4), then several jets are formed (c) matching the prediction of the truncated
model, and cascading to stable jets (d) with a typical width on the order of the
Rhines scale. Full simulations of the zonal velocity �eld for this run are available at
http://lake.mit.edu/~glenn/yohai/movies.html

choice of only one mode in the truncated model seems initially quite restrictive for

a nonlinear prediction, in this type of instability scenario where the fastest growing

mode dominates until turbulence develops, the truncation is quite useful. After the

models diverge and more modes come into play, the truncated and the full numerical

models di�er in the sense that there is no pure oscillation in enstrophy in the full

model as in the truncated model (although we can create such oscillations for special

weakly nonlinear cases), but rather a noisier (higher frequency) signal (Figure 7.4).

However, the amplitude in the two models is of the same order. Qualitatively, this

equilibrium state is the same as seen in the truncated model for one mode, except
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Figure 7.7: Zonally averaged �elds for the top layer at steady state (run S5). left:
potential vorticity (q1); center: total zonal velocity (u1); right: streamfunction ( 1)

that, as the energy cascades more modes appear, and the combination of them all

creates this leveling of the enstrophy. Figure 7.5 then also shows the �nal steady

state after the inverse cascade, showing distinct jets with a scale set by the baroclinic

induced zonal velocity UC . The jets have sharper eastward than westward winds, due

to the asymmetry in the barotropic stability criterion (Figure 7.14).

The total zonal velocity in each layer is composed of three components; the con-

stant basic �ow creating the vertical shear, the induced zonal velocity created by the

nonlinear interaction Un and the u0n eddy �eld . As the instability grows, the induced

zonal �ow grows by many orders of magnitude and, as discussed above, forms into a

multi-jet structure. Once the growth is halted, and the enstrophy settles into equilib-

rium, quasi-geostrophic turbulence causes the mean horizontal scales to increase. The

inverse energy cascade also a�ects the jets and the initial multi-jet structure (which

so far was determined only by the dominant growing mode) breaks down; then fewer

but stronger jets appear (Figure 7.11).

An example of the formation of jets is presented in Figure 7.6 which shows snap-

shots of the zonal velocity �eld of the top layer (without the constant applied velocity

U1 to emphasis the change of the amplitude following the instability) at di�erent

times. Initially a small random perturbation is applied to the basic state (7.6a). At

some time the fastest growing mode (in this case km = 10; lm = 4) becomes dominant

(7.6b) and the perturbation grows exponentially. Then, as predicted by the truncated

model, the nonlinear interactions form several jets (7.6c). In time, more modes come

in, the �ow becomes turbulent, and an inverse energy cascade begins setting �ve ma-
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Figure 7.8: The transition from baroclinic instability to jets: Instantaneous to-
tal zonal velocity �elds at di�erent times for the top layer. These snapshots
�zoom in� on the transition from the growing baroclinic perturbation to jets; be-
ginning from a weak random eddy �eld (a) to a growing baroclinic perturbation
(b) and transitioning to a jet structure (c) cascading to larger meridional scales
(d). Full simulations of the zonal velocity �eld for this run are available at
http://lake.mit.edu/~glenn/yohai/movies.html

jor jets (7.6d) in the channel (two westerly and three easterly) with a typical width

on the order of the Rhines scale (Figure 7.9). Figure 7.10 includes arrows for the total

velocity for the same run (S5), indicating the dominance of the zonal velocities over

the meridional velocities. In Figure 7.7 we show the top level zonal mean potential

vorticity, streamfunction and zonal velocity for the same run presented in Figure 7.6

(S5) at steady state. It shows the potential vorticity is dominated by the background

component, but the signature of the potential vorticity staircase is apparent.

Figure 7.8 shows a similar plot to the one in Figure 7.6 but for a case of higher

vertical shear, which grows in a lower wave number (km = 6, lm = 3) and cascades

rather quickly into 5 jets and then one wide central westerly jet with two narrower

easterly jets. The snapshots in this case are closer in time and show the transition
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Figure 7.9: The jet width as a function of the applied shear. The marks denote the
average width of the jets in the top layer for each standard run. The width of the jet
is determined by a spectral analysis of the �nal statistical steady state, and averaging
the leading meridional wave length across the channel. The solid line is the theoretical
value for the Rhines scale using the non-dimensional shear and the � value for the
upper layer.

from a linearly growing disturbance into a strong zonal jet.

Geostrophic turbulence theory predicts that after the system becomes turbulent

the typical scale will cascade up to the Rhines scale L� = �
q

2U
�
(Rhines, 1975). The

relation of this scale to the meridional scale of the Jovian jets has been proposed by

Williams (1979). It can be seen in Table 7.1 that our numerical results agree with this

scaling, since the lower the shear the higher the mode of the fastest growing mode

might be, and then more initial jets may be formed. Typically, more jets at the initial

stages result in more jets at equilibrium after the inverse energy cascade. Figure 7.9

shows the mean typical scale of the jets as function of the shear for all standard runs

(some presented in Table 7.1). The width of the jet is determined by doing a spectral

analysis of the �nal statistical steady state for each run and averaging the leading

meridional wave length across the channel. We can see that in general the �nal scale

is governed by the Rhines scale.

Figure 7.10 shows the �nal zonal state for a few of the experiments shown in

Table 7.1. The experiments di�er in the applied shear which sets a di�erent induced

meridional structure resulting in a di�erent statistical steady state after the energy

cascade. An example for the evolution of the U1 �eld in time is given in Figure 7.11.

In all experiments the nonlinear correction Un which is initially weak (due to
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Figure 7.10: Examples of the �nal steady state total velocity �elds for di�erent runs.
The contours are the zonal velocity and arrows show the total velocity (zonal and
meridional). The upper left panel is run S13 with an applied shear of US = 0:0525
and fastest growing mode km = 10, lm = 8; upper right panel is run S5 with an applied
shear of US = 0:0372 and fastest growing mode km; lm = 10; 4; lower left panel is run
S14 with an applied shear of US = 0:0562 and fastest growing mode km; lm = 8; 4;
lower right panel is run F2 (� = 0:1) with an applied shear of US = 0:037 and fastest
growing mode km; lm = 9; 7.
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the small initial amplitude) grows substantially to the order of the basic �ow. This

induced zonal velocity always has a multi-jet structure, and therefore since the basic

�ow is always constant the emergence of the jets depends on the amplitude ratio

between the eddy zonal velocity and the induced zonal velocity. To quantify the

Figure 7.11: The evolution of the induced zonal �ow of the top layer U1 in time. It
begins from a weak random �eld (a) until the fastest growing mode picks up. As
this mode grows (b), an induced meridionaly varying �ow emerges matching the pre-
diction of the truncated model for UC (superimposed by the dashed line), until the
nonlinearities become big enough that more modes come in. Then the �ow becomes
turbulent (c); and the jets become less organized (d), diverging from the initial struc-
ture of eq. (7.29). The jet meridional scale increases to the Rhines scale (shown by
the solid line on the right), leaving the system with �ve jets (e). Once it reaches the
Rhines scale the induced zonal �ow remains stable. A longer time of the same run
(S5) can be seen in the bottom panel of Figure 7.12.

strength of the jets we de�ne a parameter � for each layer, as the ratio of the mean

of the Un �eld to the mean of the eddy �eld u0 averaged over time

�n =

0
@
D
Un

2
E

hu0n2i

1
A

1

2

: (7.42)

Therefore a � > 1 value is a �ow dominated by the jets while a � < 1 value is a �ow

dominated by eddies. The � values for both layers in di�erent runs are given in Table

7.1.
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Figure 7.12: The kinetic energy for the induced velocity �eld Un and the eddy �eld u0n
for both layers as a function of time (run S5). The bottom panel is the corresponding
evolution of U1 in time across the channel.

Alternatively, it is useful to look at the kinetic energy of the eddies and the mean.

Figure 7.12 shows these kinetic energies as a function of time in both layers. Due

to the fact that the induced �ow is a consequence of eddy interaction, the mean

kinetic energy is smaller than the eddy kinetic energy in the initial stages. However

once geostrophic turbulence takes over and the energy cascades to larger scales, the

kinetic energy is transferred to the mean and the mean zonal �ow dominates over the

eddy �eld. In the bottom deep layer however the energy remains in the eddy �eld,

meaning that for this time scale the �ow does not become barotropic and the jets are

concentrated in the upper layer.

7.7 Discussion

In all numerical results shown above, the jets are seen in snapshots of the total

velocity �eld without applying zonal or time averaging. We �nd that when we use
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such averaging as is often done in studies of jets (c.f. Panetta, 1993) even stronger

jets seem to be created and with a bigger � value, yet in some of these cases the

instantaneous eddy �eld u0n is actually dominant over the Un �eld (� � 1), and the

snapshot plots seem not to resemble jets. This is often the case in the deep layer where

the averaged induced zonal velocity U2 is smaller than U1 by a factor of 1=�(7.41).

In the top layer however, whatever the applied shear, there is an induced zonal �ow

which is typically at least as strong as the eddy �eld (� > 1). This can be seen in

Table 7.1 where in addition to the standard run showing the relation between the

applied shear and the number of jets (Figure 7.9), sensitivity studies to the ratio of

�s and layer depths are given. We �nd that the bigger the absolute value of the

negative �, the more jets exist in the top layer (due to the equivalence to weaker

shear - Figure 7.1), and the bigger the depth ratio the weaker is the induced zonal

velocity in the bottom layer, while the top layer is dominated by jets.

Figure 7.13 shows on the left side panels the instantaneous picture after the system

has reached steady state and on the right side panels the corresponding temporally

averaged velocity. The upper panels (run S3, �1 = 3:1) features four westerly jets and

three easterly jets in the snapshot plot, and indeed the time mean �gure on the right

shows the same meridional structure with similar amplitudes. The middle �gure (run

S1, �1 = 1:87) shows a case with a �eld showing some jets but within an obvious eddy

�eld, while the time average plot shows distinct jets. The bottom panels show a case

where the zonal velocity �eld is dominated by large eddies (bottom layer of run S13,

�2 = 0:28) without any jets, yet when averaged the eddies disappear, leaving only the

induced zonal velocity which gives an appearance of a strong meridional variation and

a jet structure. Therefore we emphasis that in this work we do not need to perform

such averaging to the velocity �eld, and the jets appear in the instantaneous picture.

In the observations of the Jovian planets the �ow �eld is established by tracking cloud

features, and therefore we expect the instantaneous picture to be most closely related

to the data.

The main caveat to keep in mind regarding the model we used here is the as-

sumed baroclinic structure, which although converted from the standard terrestrial

case based on estimates of Ingersoll and Pollard (1982), still is quasi-geostrophic, a

questionable approximation for deep atmospheres. However, assuming baroclinicity

does play a role in the dynamics, and given the Galileo observations of Jupiter that

imply that there is an upper non-convective layer (Sei� et al., 1996; Atkinson et al.,
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Figure 7.13: Comparison of the instantaneous and time mean steady state total zonal
velocity �eld for di�erent cases. Upper panels show a case (S3) where the time mean
represents well the instantaneous �eld; the middle panels show a case (S1) where
the instantaneous �eld shows some jets but also strong eddies that do not appear in
the time mean, and the bottom panels show a case (bottom layer of S13) where the
instantaneous picture is totally dominated by big eddies while the averaged picture
gives an appearance of a strong meridional variation.

1996) resembling a terrestrial weather layer, then this model may give some insight to

the mechanism driving the Jovian jets. Of course there is much more to be desired in

terms of observations of the outer planet's atmospheres in order to develop theoretical

understanding of the deep columnar structure.

One of the main questions arising from observations on Jupiter and Saturn is that

from the data it seems that the barotropic stability condition is violated (Ingersoll

and Cuong, 1981; Smith et al., 1982; Stamp and Dowling, 1993), yet the jets seem

stable in time. Barotropic instability in a single-beta model, whether one or two lay-

ers, is very e�cient and eliminates such gradients quickly. Thus, previous barotropic

models featuring stable jets had to have this inconsistency with the data. Ingersoll

and Pollard (1982) resolve this problem by suggesting an alternative stability crite-
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Figure 7.14: The uyy=�1 curve as function of the width of the channel for some of
the runs (a. S1, b. S2, c S3, d. S5, e. S13, f. S4, g. S8, h. S9, i. B2). The dashed
line on the right is the standard barotropic stability criterion, and the dashed line
on the left is the one suggested by Ingersoll and Pollard (1982). In most cases the
curve crosses the barotropic stability curve several times, similar to what is seen in
the observations.

rion due to the internal columnar structure. They suggest that in order for the �uid

to to have stable jets � should be bigger then �1
3
uyy. Their analysis is consistent

with the Voyager data. In our model due to the special geometry used for the bottom

convective layer, which results in a scale separation between the scale of the instabil-

ity and the resulting jets, the barotropic stability condition is still violated (Figure

7.14), and yet the jets are stable in time, due to the continuing exchange of energy

between the mean �ow and the eddies and the in�uence of the deep layer on the upper

layer �ows (in the spirit of Stamp and Dowling (1993), but with jets which are less

barotropic). We note that the upper layer uyy appears to approach �2 on the negative

side, indicating again the importance of the coupling between the layers.
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7.8 Summary

Traditionally there have been two hypotheses for the existence of the jets observed on

the giant planets. One approach (Busse, 1976) assumed that the interior is barotropic

and the jets are generated by an internal columnar structure, while the other approach

treats the gas planets as a shallow water system (Dowling and Ingersoll, 1989) as-

suming the deep atmosphere is passive and jets can emerge from eddy interactions

(Williams, 1979; Cho and Polvani, 1996). Recent observations (Atkinson et al., 1996;

Porco et al., 2003) imply that taking only one of these approaches may be omit-

ting important components of the dynamics. In this chapter we tried to combine

these two approaches assuming a baroclinic structure which internally is dominated

by columnar structures interacting with an upper layer resembling a regular weather

type layer. In addition, we propose that baroclinic instability may provide the energy

source, even in the limit of weak vertical shear as suggested by observations.

We show an analytic solution for the generation of jets in the limit of a single

mode perturbation interacting with baroclinic zonal �ows and then proceed using

a pseudo-spectral fully nonlinear numerical model to show that such jets can be

generated by baroclinic instability. The analytical solution provides useful insight into

the mechanism observed in the numerical results, especially in the way nonlinearity

organizes the zonal �ow �eld. The obtained jets are stable on long time scales and are

visible in the instantaneous spatial numerical picture without the need for zonal or

time averaging. Clearly there is much more to be understood in the dynamics acting

in the interior of such gas giants, and such a parametrization of the interior is just

a �rst step. However it does suggest the importance of coupling these two regimes

even though they may be governed by very di�erent physical mechanisms.
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Chapter 8

Conclusion

8.1 Thesis Summary

We look at the results of this work on two di�erent levels. One is the pure �uid

dynamical aspect of convection in an anelastic rotating sphere, and the second is the

application of the results, and this new GCM, to the dynamics and circulation of

the giant planets. We will begin with discussing the �rst aspect, and then proceed

to discuss the second in line with the questions raised in section 1.4 regrading the

circulation on the giant planets.

8.1.1 Convection in a Rotating Anelastic Sphere

From only a �uid dynamical point of view we have built a new model to examine a

problem which has been well studied before. Using anelastic dynamics rather than

Boussinesq, the fact that the density anomaly depends on pressure as well as entropy,

the general equation of state and the full 3D spherical system, make this treatment

unique. We have shown that some of the ideas suggested by linear and Boussinesq

theories can be extended into cases of anelastic turbulent convection. In other respects

however these solutions are limited.

We begin with looking at the issue of convection in a system where the direc-

tion of gravity and rotation are not parallel. This problem has both oceanographic

applications (Sheremet, 2004), and is addressed in the planetary literature as well

(e.g. Busse et al., 1998). We show that the ratio � = Ta�Pr
Ra

is an important measure

in characterizing the dynamics, and sets a limit between rotationally and gravita-
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tionally dominated convection. This parameter will determine if the convection is

aligned with the axis of rotation or not, and therefore whether convection columns

are formed. We show that when convection is not aligned with the axis of rotation,

superrotation will not develop, and in fact for such cases, the equatorial velocity will

be retrograde. Superrotation forms only when convection columns align parallel to

the axes of rotation and are tilted in the direction of the shear. We �nd that this is

a robust result as long as � > 1, due to convection driving the �uid to being close to

isentropic. The number of columns and amplitude of the shear depends on the values

of the nondimensional numbers.

The issue of the tilting or spiraling of the columns was shown previously by studies

such as Zhang (1992). These cases however were either linear or weakly nonlinear

so that both cyclonic and anticyclonic cells formed. We �nd that this state can not

be sustained when the shear becomes strong, and therefore we �nd it only when

velocities are small during spin-up. When the shear exceeds a critical value only the

rotating cells that are in the direction of the shear are sustained. The circulation cells

before and after this transition are tilted and provide therefore an angular momentum

�ux outward. The tilt or spiraling of the columns is associated with the variation in

planetary vorticity in the direction perpendicular to the rotation axis. However there

is still a single and positive phase velocity which sets propagation of the modes. While

the perturbation is growing, the angular momentum �ux is balanced by the growing

mean zonal velocity. The shear is created by the prograde surface �ow on the exterior

and retrograde surface �ow in the interior. Once the shear has become large enough

and the circulation undergoes a transition to having only cyclonic cells the balance

is between the upgradient momentum �uxes and the viscous �uxes. Superrotation is

maintained near the equator and is stable, while in the interior there is a subrotating

�ow.

The strength of the subrotation depends on the level of compressibility of the

�uid. In a Boussinesq �uid the strength of the westward subrotation in the interior

would be comparable to the eastward superrotation. However when the density in

the interior is larger, the subrotating �ow will be weaker than the superrotation due

to a baroclinic contribution to vorticity which is associated with the compressibility

of the �uid (section 4.3). Anelastic e�ects are therefore strongest along the outside

edge of the sphere, where compressibility is greatest. We �nd that this radial shear

associated with the compressibility varies also in latitude.
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Although superrotation has been shown in several 3D Boussinesq studies, these

have not demonstrated the link to the linear theories and have not shown explicitly

the mechanism for the superrotation in a 3D system. In some of the other models this

circulation appears only when averaging in time. To the best of our knowledge this

is the �rst model which shows the convective columns explicitly in the 3D �ow, the

eastward propagation of these columns, the shear within the column in the direction

of the rotation axis and the transition to only columns rotating in the direction of the

shear. In chapters 4 and 5 we use simpler models to understand the physics governing

these processes, and give approximate analytic expressions to their dependence on the

properties of the �uid.

8.1.2 Application to the Atmospheres of the Giant Planets

The second aspect of this work is the application of these results to the dynamics of

the giant planets. In this respect, our general circulation model is an improvement

over previous models due to the including of compressible dynamics, more realistic

thermodynamics and a forcing which is not con�ned to the domain boundaries. Be-

yond the improved physics an important advantage of this new model is that it is now

part of the MITgcm standard package, and can be downloaded and used by anyone.

One of the problems with comparing numerical results is the limited accessibility to

other models and speci�c con�gurations which could not be cross examined. The

open code philosophy of the MITgcm and the available manual and help resources,

make this model easily accessible.

In section 1.4 we have raised several questions regarding the circulation on the

giant planets. We come back to these in light of our study.

Both Jupiter and Saturn are dominated with a strong superrotating equatorial

�ow (Figure 1.1). We have shown that angular momentum eddy �uxes associated

with convection in a rotating system can drive superrotation with velocities similar

to the velocities on the giant planets. The �uid velocities in our model do depend

on the Rayleigh and Ekman numbers; however the mechanism for superrotation does

not depend on the nondimensional numbers (see discussion in 5). We show in section

4.7 that although the velocities depend on the nondimensional numbers the velocity

pro�le remains consistent for a range of Rayleigh numbers (Figure 4.16). Another

result which our model con�guration is sensitive to is the latitudinal extent of the
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superrotating jet. For our standard type simulation (with an inner boundary at about

half the radius of the planet) the jet is wider than the observation on Jupiter (close

Saturn's superrotation). We show however that for a relatively shallow domain the

jet width is sensitive to the location of the bottom boundary. Due to the uncertainty

in the dynamics of the interior, this suggests a link between the width of the super-

rotation and the depth of the jet. This is consistent also with the weaker interior

circulation due to anelastic e�ects. We �nd that for more turbulent �ows (higher

Rayleigh number, lower Ekman number) the equatorial jet is narrower and stronger.

We focused our work on Jupiter parameters but much of our results should apply

to Saturn as well and to a lesser extent to Uranus and Neptune which probably have a

much shallower dynamical region. This brings the question of why are the equatorial

winds on the gas giants superrotating, while on the ice giants they are subrotating?

We described above the mechanism for superrotation on the gas planets. We �nd

that the only criterion that the �uid has to obey in order to get superrotation is that

the parameter we de�ned as � = Ta�Pr
Ra

is greater than one. Descriptively that means

that the �uid is dominated by rotation and not by convection. We show that for

the parameters of Jupiter and Saturn this indeed is the case. This raises a question

about the ice-giants since while rotation on them is not even half as slow, convection

is at least an order of magnitude weaker than on the gas giants, implying therefore

that rotation is even more dominant. However, since the � parameter also depends

on the domain depth ,the � parameter may still be less than one for the ice-giants.

Particularly, given the gravitational acceleration on the ice-giants, if the depth of the

relevant �uid region is 30 times smaller, this would balance a �ux which is an order of

magnitude smaller. Then the shallower circulation may bring the planets to a regime

of equatorial subrotation.

Another key question is how deep are the zonal winds. Thermal wind estimates

and the Galileo probe observations have provided some data (section 1.2) yet, also

much uncertainty. The main advantage of this model compared to the previous

Boussinesq models is that it is closer to a realistic dynamic and thermodynamic

representation of the interior. However if the �uid is barotropic and has small Rossby

and Ekman numbers we would still expect the Taylor-Proudman theorem to hold

whether the �uid is Boussinesq or anelastic. We �nd though, that the convection does

homogenize the entropy so that baroclinic terms are still important in the vorticity

balance. Particularly the strong variation in density in the upper levels gives a big
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baroclinic contribution due to compressibility, which results in a zonal velocity shear

within the convection columns. Consequently the interior zonal velocities are weaker.

This result is di�erent than previous suggestions, which either assumed a deep source

for the jets with strong interior velocities or a shallow driving force and weak interior

velocities. Therefore solely due to compressible e�ects we expect to �nd vertical shear

resulting in weaker interior velocities.

Recent observations have identi�ed waves embedded within the equatorial super-

rotation. We �nd waves in our simulations which are a surface manifestation of the

convection columns and are therefore embedded within the superrotation. It is dif-

�cult to be sure the observed waves have the same dynamics, since the observed

waves have a wavelength which is � 1
3
of the �nest grid resolution in our simulations.

However the spacial resemblance with crests centered at the equator that are curved

eastward, the phase speed which is about equal to the mean zonal velocity, and the

fact that for more turbulent �ow we �nd waves which are narrower and with a higher

wave number brings us to hypothesize that the waves that we see on the planet are

related to �ne structure convection columns from within Jupiter's interior. If indeed

this is the case, then based on the latitudinal extent of the waves (10�) the columns

will penetrate no more than 1% into the interior of the planet.

Another important question is why is there a nearly latitudinally uniform thermal

emission on the gas giants. Since solar forcing is stronger at the equator and lower at

the poles (not considering seasonal e�ects), there must be meridional heat transport

in the poleward direction. Due to the strong zonal dominance at the cloud level it

is unlikely that this is a shallow process. To address this question quantitatively we

must have solar forcing in our model (section 8.2.1). However the alignment of the

convective heat �uxes along the direction of the axis of rotation (Figure 4.8), leads us

to hypothesize that the relative heating of the pole may be associated with transport

of the interior heat poleward and not the meridional redistribution of the solar heat.

Finally we come to the question of the jet stability and multiple zonal jets. The

convection model typically produces an eastward jet at the equator, two westward

jets in midlatitude and a region dominated by eddies at high latitudes. It is probable

that the high meridional wind structure is associated with turbulent processes that

our convection model can not resolve (although we do �nd multiple jet structures

which are not steady over time - section 6.2). Particularly important may be shear

processes in the upper stably strati�ed levels. In our two layer model we provide
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a representation of the deep interior, and �nd that multiple baroclinic zonal jets

emerge from decaying quasigeostrophic turbulence. The energy of these jets comes

from baroclinic instability. These jets are stable due to eddy mean �ow interactions,

similar to the processes we have seen stabilizing the superrotating jet in the convection

model. We suggest therefore that even weak baroclinic instability (due to the weak

meridional temperature gradient) can provide an energy source for jets. This model

points to the possibility that the deep mechanism that we described previously is the

underlying basic structure of the winds, and the shallow shear processes overlay this

deep induced �ow.

8.2 Future Work

8.2.1 Solar Forcing

One of the original goals of this work was to study the interaction between the con-

vective driven �ow and the circulation driven by solar forced meridional temperature

gradients. We have experimented with cases where the interior is driven by the reg-

ular convection, while the top is forced by a latitudinally varying entropy gradient,

so that the upper levels are gravitationally stable. The problem of having a model

which can both treat the convection and resolve shear instabilities turns out to be

very computationally demanding. The problem rises since the viscosities which must

be used for the convection problem make the Reynolds number too small for shear

instabilities. We have experimented with di�erent ways of resolving this problem

such as separating the horizontal and vertical values of the physical parameters, and

increasing the resolution of the simulation. We have had only partial success in doing

this and this is left for future research. An inherent problem is that in a convective

system the deformation radius by de�nition is non-existent to extremely small, and

therefore resolving this scale is not possible. The existence of a stably strati�ed layer

on top is therefore essential.

We will show however some very initial results of the 2D system. In Figure 8.1

we show two cases where one is driven only by an exterior temperature gradient with

no internal convection (left panel), and the second has both internal and external

driving. The external forcing creates a large Hadley type cell which in the presence of

convection is broken by the convective structures which as we have shown in Figure

188



Figure 8.1: The meridional streamfunction for cases driven by only an exterior tem-
perature gradient (left) and both internal convection and a similar exterior forcing
(right).

3.4 when comparing the 2D and 3D results, and are stronger at high latitudes in 2D.

Since these are only 2D cases there is no equatorial superrotation. When repeating

these experiments in 3D for the parameter regime of the convection model we �nd

similar large Hadley type structures with an associated zonal velocity which increases

away from the equator. As mentioned the interaction of the exterior and interior

forced system in 3D is left for future work.

8.2.2 Gravitational Moments

Since the giant planets have short rotation periods and they are essentially �uid

objects, the planets bulge out at the equator in response to the centrifugal force (see

Table 1.1) . Since we have made the approximation of using a sphere and not an

oblate sphere we do not expect that when calculating the low order gravitational

moments from the density �eld they would match the planets low order gravitational

moments. However the higher order moments are less dependent on the oblateness of

the planet. Hubbard (1999) has suggested that precise measurements of the high order

gravitational moments can give information on the deep wind structure of the planet.

He showed that two extrema cases, one where the whole planet rotates as a solid

body and the other where there is rotation along concentric cylinders as suggested by

Busse (1976) di�er considerably beyond the tenth moment. In this section we look

at sensitivity of the gravitational moments calculated for our model for two cases, an
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anelastic and Boussinesq case.

The gravitational potential outside a planet satis�es Laplace's equation and in

spherical coordinates (but limiting to an axisymmetric solution) has a solution of the

form

V =
1X
n

�
Anr

n +Bnr
�(n+1)

�
Pn (sin �)

where Pn are Legendre polynomials . Assuming the potential will tend to zero as r

goes to in�nity allows taking An = 0. Then taking the gradient of the potential we

can �nd the gravitational acceleration as a function of the radius

g (r; �) = �GM
r2

 
1�

1X
n=2

Jn

�
R

r

�n
Pn (sin �)

!

where G is the Cavendish constant and M is the mass. We can then compute Jn

by calculating the appropriate moments of the density distribution. Thus given the

density distribution from our model we can calculate the gravitational moments.

In Figure 8.2 we compare the moments resulting from our model for anelastic and

Boussinesq 3D cases to the ones estimated by Hubbard (1999). The green and black

dots are the moments for a model where the planet is rotating like a solid body and

where the planet is rotating along concentric cylinders respectively as calculated by

Hubbard (1999). The diamonds are the observed values for J2, J4 and J6 as measured

using Pioneer and Voyager data (Campbell and Synnott, 1985). As can be seen from

the green and black curves beyond n = 10 the two scenarios tested by Hubbard

diverge signi�cantly. The red points are the moments calculated using the density

anomalies from the anelastic model, and blue points are the moments calculated using

the density anomalies from the Boussinesq model. Since our model is a symmetric

sphere the low order moments which are dominated by the oblateness of the planet

do not appear in our calculations. The J8 moment however matches Hubbard's model

for both the anelastic and Boussinesq cases.

The signi�cance of the this result is still to be determined. We have tested the

sensitivity of the gravitational moment results and found so far that for experiments

Ra1 and Ra2 (Table 6.1) the moments are a�ected somewhat by the choice of the

Rayleigh number but we could possibly estimate this e�ect by a limiting to Rayleigh
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Figure 8.2: Gravitational moments for di�erent interior velocity structures. The green
dots are the moments for a model where the planet is rotating like a solid body and the
black dots are the moments where the planet is rotating along concentric cylinders.
In both cases the data is courtesy of Bill Hubbard. The diamonds are the observed
values (Campbell and Synnott, 1985). The red points are the moments using our
anelastic model, and blue points are the moments using the Boussinesq model. The
solid line is the detectable limit of JUNO.

numbers that have velocities on the order of the ones on the planet. A particular ques-

tion that has been raised is a discrepancy between the theoretical and the observed J4

moments. One possibility is that this discrepancy is due to density �uctuations due to

the velocity �elds (which are not taken into account in the theoretical calculations).

Studying the e�ect of density �uctuations in our model on J4 might help in address-

ing the importance of the circulation related density �uctuations. This study is in

very preliminary stages, and is brought as an addendum to the thesis, highlighting

a possible particular implementation of our model. This becomes now particularly

relevant due to the upcoming JUNO mission to Jupiter, which will measure the high

order gravity moments in order to try and solve the question of how deep are the

zonal winds. The mission is scheduled to be launched in 2011 and reach Jupiter in

2017. The solid black line in Figure 8.2 is the detectable limit of JUNO. The model

might be able to distinguish between the gravitational signature of di�erent velocity

structures and address the discrepancy in J4.
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Appendix A

Applying the Deep Anelastic System

to the MITgcm

In this appendix we discuss some of the technical details associated with adapting the

MITgcm to giant planets. Due to the nonhydrostatic capability of the ocean-MITgcm,

we have chose to use it over the atmospheric version. The atmospheric version would

allow to treat more easily the compressibility e�ects, but addapting the nonhyrostatic

version to pressure coordinates adds other di�culties (see further discusion in section

2.1). Therefore we adopt the anelastic approximation and use the ocean-MITgcm.

Extending the model to a full sphere

The MITgcm has been designed for for calculations on a thin spherical shell, and

therefore did not allow a vertical variation of the grid size (the zonal grid does vary

as a function of latitude). The depth of the ocean is typically less than 0.1% of the

radius of the planet, and thus allowing such an approximation. When extending the

model to a full sphere, horizontal grid size must change as a function of depth and

maintain all vertical �uxes. We have applied this by de�ning a geometrical factor

based on the spherical geometry, which is set in a vector that multiplies all zonal

and meridional grid spacings (dx and dy). We have veri�ed this modi�cation by

comparing results for for di�erent planet radii, and comparing �uxes and geometrical

factors in simple test cases.
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Applying the anelastic dynamics

Similarly to rede�ning the grid spacings we have de�ned a vector that multiplies

the mean density by a factor which varies as a function of depth. This factor is

calculated from the mean density which is set by the adiabatic reference state and

the equation of state (see below). Having the model written in �ux form allowed

inserting these factors directly into the divergence. The MITgcm solves �rst for the

hydrostatic pressure (2D solver) and then for the nonhydrostatic part (3D solver). In

both the Laplace type equation for pressure is solved in an iterative process. Making

the density a function of depth requires special care since the vertical components

have an additional terms (3D solver). We have checked consistency in the Boussinesq

limit (although the Boussinesq limit is simpler not only because the independence

of � but also because the density �uctuations from the equation of state are not a

function of pressure), and veri�ed �uxes consistantancy.

Implementing interior and exterior forcing

We have discussed the interior forcing by a continuous forcing pro�le in section 2.5.

This is implemented by using the mean temperature pro�le T (set by the reference

state) to calculate the forcing in (2.48). We then constrain the heating so that, when

integrated over the whole volume, the total forcing will be zero, and thus no net

heating is added from the system. We do so by integrating this pro�le weighted by

the vertical grid spacing and the mean density. This basically shifts the cooling pro�le

of the planet so that the interior is heating and the exterior is cooling. The heating for

every vertical level is added to the external forcing routine of the MITgcm as entropy

per unit time. The second, simpler, pro�le we have used and discussed in sections

3.1.2 and 6.4 is simply applying a heating rate to the bottom boundary. We balance

the heating by relaxing the top few layers to a reference temperature which we can

deduce from the observed values (Sei� et al., 1997). The solar heating is applied as

a meridionally varying heating of the top grid levels. We apply this in the same way

as the bottom heat �ux with a Newtonian relaxation on top (section 8.2.1).
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Setting the reference state

The reference state of the model is �rst set by setting the vertical grid spacing. We

have found that the most numerical stable con�guration is to set a constant factor in

which the mean pressure grows as a function of depth down to a depth beyond which

the vertical grid spacing itself is constant. Using a geometric series in mean pressure

all the way down will require a very high resolution at the top of the atmosphere,

in order to get reasonable representation of the interior. Using constant grid spacing

throughout is not necessary because most of the scale heights are on top. Another

possibility which can be attempted is setting a constant number of grid points per

scale height, but this might have an unnecessary resolution in the interior. Once

the vertical pressure spacing is set we use the tables of Guillot and Morel (1995), to

determine the relative depth of each mean pressure level. This allows calculating the

level depths (dz), which are the input of the ocean MITgcm.

As discussed in section 2.2.1 we assume an adiabatic reference state. We use the

data from the Galileo probe (Sei� et al., 1997) to set the constant reference entropy

level of the adiabat. Then using the SCVH EOS (Saumon et al., 1995) we can �nd

the temperature and density vertical pro�les of this adiabatic reference state. We

�nd that this pro�le based on the entropy value found by the Galileo probe (which

is close to being constant, but goes down only to 24 bars) matches well the deep

temperature and density pro�les of Guillot and Morel (1995), (Figure 2.5). Once the

density, entropy, pressure and temperature vertical pro�les are set we can calculate

the local density dependence on entropy along isobars, and the density dependence

on pressure along the adiabat, which will be the coe�cients for the equation of state.

Implementing the SCVH equation of state

For the ocean-MITgcm the EOS is given as a polynomial, where density is a function

of potential temperature and salinity. We take advantage of this framework (poly3),

and set the density as a function of entropy and pressure. We de�ne a revised entropy

variable so that entropy could be written in terms of potential temperature so that

this converted entropy is de�ned as

s0 = T (1) e
�0

Cp
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where �' is the original entropy in entropy units, and Cp is the isobaric speci�c

heat for an ideal gas (we show it does not vary considerably even in the interior).

Therefore the entropy has an arbitrary constant (the reference level) in its value but

this does not e�ect the dynamics set by equations (2.8,2.9,2.10,2.7,2.28 and 2.47).

For every level in our vertical grid we then match a polynomial to the variation of

density as function of entropy along the mean isobar. This gives us a vector with the

leading order coe�cient of the polynomial (for each vertical level) which we then use

for the dependence of density on entropy in the EOS. The second set of coe�cients

(dependence of density on pressure along an adiabat) is simpler since the reference

state is adiabatic and therefore these coe�cients can be deduced from the mean �elds.

We calculate the vertical gradient of density in respect to pressure for every vertical

level and obtain a second set of coe�cients. Then using the framework of the poly3

EOS we determine the full density as a sum of the reference mean density for each

vertical level, and the entropy and pressure anomalies weighted by the coe�cients

described above so that

� (s; p) = �+

�
@�

@s

�
p

s0 +
�
@�

@p

�
s

p0: (A.1)

For a Boussinesq system the density anomalies will not be a function of pressure and

therefore we set the second set of coe�cients to zero and the last term vanishes. This

reduces computation time by almost an order of magnitude compared to the anelastic

case, since the pressure �uctuation is obtained from the previous time step, and

therefore requiring a small time step (typically 5seconds for the 1� resolution runs).

We have shows in section 4.3.2 the necessity of including the pressure anomalies in

the EOS for the anelastic case. We also use the SCVH EOS to calculate the density

and temperature mean pro�les along the adiabat we have set for the reference state

as described above.

Implementing the variation in gravity

In the terrestrial spherical shell models, since the model occupy only a small fracture of

the planetary radius, the gravitational acceleration is taken as a constant. Here, in the

deep model we can not make this approximation, and we calculate the gravitational

acceleration separately for every vertical grid point. This is calculated by integrating

the mean density (2.4) from the interior to the vertical level where g is calculated.
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We calibrate the interior values so that the gravitational acceleration at the surface

matches that measured on Jupiter. The model is then given this vector similar to the

way we implement the vertical variation in grid size and density.
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Appendix B

Nonlinear Truncated Solutions for the

Two-Beta Model

B.1 The Derivation of the Truncated Model

In this Appendix we derive the nonlinear solution for the truncated model. We begin

by rewriting the barotropic and baroclinic perturbation equations using QT and QC

as de�ned by (7.18 and 7.19).

@

@t
qT + UC

@

@x
qC +QT

@

@x
�T +QC

@

@x
�C

+J (�T ; qT ) + J (�C ; qC) = 0 (B.1)

@

@t
qC + UC

�
@

@x
qT + �

@

@x
qC

�
+QT

@

@x
�C

+QC

�
@

@x
�T + �

@

@x
�C

�
+ J (�T + ��C ; qC) + J (�C ; qT ) = 0 (B.2)

Expressing the perturbation potential vorticity as a single perturbation wave (7.22,

7.23) and using the inversion relations (7.24, 7.25) for the streamfunctions, we �nd

that the Jacobians in the barotropic equations vanish while the ones in the baroclinic

equations give an expression of the form

qC = q0C (t) sin (2ly) (B.3)
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as given by (7.26). Using the inversion relation (7.28) and the boundary condition

(7.8) gives an expression for the correction to the basic streamfunction given by

�C =
�q0C (t)

4l2 + F1 + F2
(B.4)

�
2
4sin (2ly)� sinh

�p
F1 + F2

�
y � 1

2

��
p
F1 + F2cosh

�p
F1+F2
2

�
3
5

which when di�erentiated gives a correction to the mean �ow as given in (7.29).

Now we rewrite the barotropic and baroclinic perturbation equations (B.1,B.2) using

(7.22,7.23 and B.3). For clarity we note that the baroclinic basic zonal �ow now has

the form

UC = U0 + UC � U0 + q0C (t) fu(y) (B.5)

where fu is de�ned by (7.29). Then (B.1,B.2) become

sin(ly)
@

@t
q0T + ik sin(ly))

��
U0 + q0Cfu

�
q0C �QT

q0T
�2
� (B.6)

�
QC + 2lq0C cos(2ly)

� q0C
�2 + F1 + F2

�
= 0

@

@t
(sin(ly)q0C + sin(2ly)q0C) + (B.7)

ik sin(ly)

��
U0 + q0Cfu

�
(q0C + �q0C)�QT

q0C
�2 + F1 + F2

�
�
QC + 2lq0C cos(2ly)

��q0T
�2

+
�q0C

�2 + F1 + F2

��
ikl sin(2ly) (F1 + F2)

�2 (�2 + F1 + F2)

h
q0Cq

0�
T � q

0�
Cq

0
T

i
= 0
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Multiplying by sin(ly), integrating over the channel and normalizing by
R
sin(ly)2dy

gives

@

@t
q0T + ik

��
U0 + q0CIu

�
q0C �QT

q0T
a2
� (B.8)

�
QC � lq0C

� q0C
�2 + F1 + F2

�
= 0

@

@t
q0C + ik

��
U0 + q0CIu

�
(q0C + �q0C)�QT

q0C
�2 + F1 + F2

(B.9)

�
QC � lq0C

��q0T
�2

+
�q0C

�2 + F1 + F2

��
= 0

where the integral Iu is de�ned as

Iu =
�l

4l2 + F1 + F2
(B.10)

�
2
41 + 16l3tanh

�
�
p
F1+F2
2l

�
�
p
F1 + F2 (4l2 + F1 + F2)

3
5

while projecting by sin(2ly) gives an equation for the baroclinic mean correction

@

@t
q0C +

ikl (F1 + F2)

�2 (�2 + F1 + F2)

h
q0Cq

0�
T � q

0�
Cq

0
T

i
= 0 (B.11)

Equations (B.8, B.9 and B.11) de�ne the system which we can solve for q0T , q
0
C

and q0C . We rewrite the equation for the perturbation (B.8) and (B.9) in the form

@

@t
q+ ikLq+ ikq0CNq = 0 (B.12)

where q =

 
q0T
q0C

!
and the operators are

L =

 
�QT

�2
U0 � QC

�2+F1+F2

U0 � QC
�2

�U0 � QT+�QC
�2+F1+F2

!
(B.13)

N =

 
0 Iu +

l
�2+F1+F2

Iu +
l
�2

�Iu +
�l

�2+F1+F2

!
(B.14)
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The limit where N = 0 gives back the linear problem.

B.2 The Weakly Nonlinear Limit to the Truncated

Model

In this section we give the full derivation for the analytic expressions for the compo-

nents of the Landau-Gintzburg equation for the amplitude of the weakly nonlinear

perturbation given in (7.40). This limit where the shear is taken to be just slightly

supercritical is similar to the weakly supercritical theory of Pedlosky (1970), only for

a more general case of di�erent layer depths and a variable �: In the linear problem

we noted that (7.33) the linear growth rate is proportional to �
1

2 , where � was a

small increase to the critical shear . Therefore we can de�ne a slow time scale (so far

we have treated the truncated nonlinear problem without requiring it to be weakly

supercritical or de�ning a slow time scale) thus

@

@t
! @

@t
+�

1

2

@

@T
(B.15)

and the slow time expansion sets the operator

L = L0 +�L2 (B.16)

where L0and L2are

L0 =

 
�QT

�2
U0 � QC

�2+F1+F2

U0 � QC
�2

�U0 � QT+�QC
�2+F1+F2

!
(B.17)

L2 =

 
�

p
�F1
�2

+ F2p
��2

1� F1+F2
�2+F1+F2

1� F1+F2
�2

� �
p
�F1

�2+F1+F2
+ F2p

�(�2+F1+F2)
+ �[1�(F1+F2)]

�2+F1+F2

!
(B.18)

for U0 ! U0 +�. We expand

q = e�ikC0t
h
q0 +�

1

2 q1 +�q2 +O
�
�

3

2

�i
(B.19)

and we assume the system is weakly nonlinear thus N will be O (�). By the choice

of c0 as the growth rate, q0 does not depend on t. q1 and q2 may depend on t but

when expanding, the solvability condition implies that all have the same t dependents
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(they depend di�erently on the slow time scale T ). Then expanding (B.12) in powers

of �, gives

O
�
�

1

2

�
: ik (L0 � c0I)q0 = 0 (B.20)

O (�) :
@

@t
q1 + ik (L0 � c0I)q1 +

@

@T
q0 = 0 (B.21)

O
�
�

3

2

�
:

@

@t
q2 + ik (L0 � c0I)q2 +

@

@T
q1 (B.22)

+ik
�
L2 +Nq0C

�
q0 = 0

The eigenvalue c0 is the growth rate at the critical point, thus it is a double eigenvalue.

We de�ne a vector r so that

q0 = A (T ) r (B.23)

thus r is the eigenvector of L0. ry is the left eigenvector and since c0 is a double

root then ryr = 0. Therefore if we dot the system with ry then it falls that q1

is also independent of t, and then the solvability condition implies that the terms

independent of t in the O
�
�

3

2

�
equation vanish as well. So that the system becomes

ik (L0 � c0I)q1 +
@A

@T
r = 0 (B.24)

ry
@

@T
q1 + ik

�
ry
�
L2 +Nq0C

�
r
�
A = 0 (B.25)

The �rst equation de�nes q1 so that

q1 =
is

k

@A

@T
(B.26)

where

s = (L0 � c0I)
�1
r (B.27)

Finally the O
�
�

3

2

�
gives an equation for the slow time scale growth of the amplitude

of the perturbation

rys
@2A

@T 2
+ k2

�
ry
�
L2 +Nq0C

�
r
�
A = 0 (B.28)
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All is left is to add the growth of q0C from the mean equation (B.11). By expanding

the same way as in the perturbation equations we �nd

�
@

@t
+�

1

2

@

@T

�
q0C +

ikl (F1 + F2)

�2 (�2 + F1 + F2)

�
h�
q0 (2) + �

1

2q1 (2)
��

q�0 (1) + �
1

2q�1 (1)
�
� (B.29)�

q�0 (2) + �
1

2q�1 (2)
��

q0 (1) + �
1

2q1 (1)
�i

= 0

where the �rst components in the vector is the barotropic part and the second is the

baroclinic part. Since the lowest order eigenvectors are real (they are at the critical

point), the lowest order terms of (B.29) vanish. Then the slow time evolution of the

mean is

@

@T
q0C +

ikl (F1 + F2)

�2 (�2 + F1 + F2)
(B.30)

� [q0 (2)q�1 (1) + q1 (2)q
�
0 (1)� q�0 (2)q1 (1) + q�1 (2)q0 (1)] = 0

using (B.23) and (B.26) this becomes

@

@T
q0C +

l (F1 + F2)

�2 (�2 + F1 + F2)
(B.31)

� [r (2) s (1)� s (2) r (1)]
@

@T
A2 = 0

Integrating, assuming the correction is initially zero gives

q0C =
l (F1 + F2)

�2 (�2 + F1 + F2)
(B.32)

� [r (2) s (1)� s (2) r (1)]
�jAj2 � jA (0)j2�

which completely de�nes the system. Therefore given a basic shear, F1; F2; �1 and �2

the weakly non linear stability problem can be solved.

It is clear from (B.28) that if N = 0 then (B.28) reduces to an equation with an

exponential solution and the growth rate is just the same as in the linear solution

(7.33). Therefore we can denote

c2i =
ryL2r

rys
(B.33)
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and the nonlinear term as

N =
ryNq0Cr
rys

=
ryNr
rys

� l (F1 + F2)

�2 (�2 + F1 + F2)
(B.34)

� [r (2) s (1)� s (2) r (1)]
�jAj2 � jA (0)j2�

So �nally the equation for the slow time scale amplitude is

@2A

@T 2
� k2c2iA+ k2NA

�jAj2 � jA (0)j2� = 0 (B.35)

which gives equation 7.40.
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