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This paper introduces a perturbative inversion algorithm for determining sea floor acoustic
properties, which uses modal amplitudes as input data. Perturbative inverse methods have been used
in the past to estimate bottom acoustic properties in sediments, but up to this point these methods
have used only the modal eigenvalues as input data. As with previous perturbative inversion
methods, the one developed in this paper solves the nonlinear inverse problem using a series of
approximate, linear steps. Examples of the method applied to synthetic and experimental data are
provided to demonstrate the method’s feasibility. Finally, it is shown that modal eigenvalue and
amplitude perturbation can be combined into a single inversion algorithm that uses all of the
potentially available modal data. © 2008 Acoustical Society of America. �DOI: 10.1121/1.2821975�

PACS number�s�: 43.30.Bp, 43.30.Ma �AIT� Pages: 667–678
I. INTRODUCTION

In 1987 Rajan et al.1 described a perturbative inversion
method for obtaining the geoacoustic properties of the sea-
bed from measurements of modal eigenvalues. Since the bot-
tom influences the modal amplitudes as well, it seems natural
to ask if the modal amplitudes can also be used to estimate
the bottom properties. Furthermore, perhaps both the modal
eigenvalue and amplitude data can be used together in a
single inversion algorithm to achieve an improved result.
This paper addresses both of these issues. Its main objective
is to introduce a perturbative inversion scheme analogous to
that in Ref. 1 using modal amplitudes, instead of modal ei-
genvalues, as the input data. We then show that modal eigen-
value and amplitude perturbation can be combined into a
single algorithm, thereby combining the advantages of both
methods.

The method assumes that measurements of the acoustic
pressure field due to a cw point source have been made at
one or more low frequencies ��500 Hz� in the water col-
umn. The quantity of primary interest is the compressional
wave speed as a function of depth, but the density and at-
tenuation profiles can also be sought, and we derive the nec-
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essary equations for determining them as well. The effects of
shear waves are ignored in this development, but they could
be included in a more general formalism.

Unlike Rajan et al.,1 who made explicit use of the Han-
kel transform method for estimating the modal eigenvalues,
we intentionally avoid a detailed discussion of the manner in
which the data are collected and processed to obtain the re-
quired modal information. Though this is a critical step along
the path to determining the bottom parameters, it is a sepa-
rate issue from the modal amplitude inversion itself. We
therefore assume knowledge of the modal amplitudes �pref-
erably with an estimate of the uncertainty in those data� as
well as information about the water column sound speed
profiles at the locations where the bottom properties are to be
determined. Whether these estimates are the output of a Han-
kel transform of horizontal line array �HLA� data collected
over range as in Ref. 1, or from filtering the modes on a
vertical line array �VLA� over depth as suggested by Ref. 2,
or by some other method �for example, Ref. 3�, the method-
ology of the modal amplitude inversion will remain the
same. Thus, we avoid in-depth discussion of how the data are
collected, and focus instead on the subsequent use of the data
to estimate the bottom properties. Our preferred method of
obtaining the modal amplitude data from measurements of
the point source acoustic field will be the subject of a future
publication.

Perturbative inversion methods approach the solution of
the nonlinear problem of determining the bottom parameters
from measurements of the acoustic field via a series of small,
linear steps. During the first step of the algorithm a user-
provided background model is used to calculate the param-

eters of the acoustic field �such as the eigenvalues or modal
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amplitudes� using a forward model. Using this background
model, the first-order derivatives of the acoustic parameters
with respect to the bottom parameters are also computed.
Next, the computed acoustic parameters are compared to the
measured values, and we compute the change to the back-
ground model needed to correct �in a least-squares sense� our
estimates based on an assumption of linearity. Since this lin-
ear assumption is not strictly correct, our correction will not
give us the true bottom properties. If the background model
is sufficiently similar to the true bottom, however, the cor-
rection will give us an improved estimate of the geoacoustic
properties which can be used as a new background model,
and the process can be repeated. In theory, each iteration
should bring us closer to the true set of bottom parameters,
and we can accept the result to which the process converges
to be the best estimate of those parameters. This iterative
sequence of steps, which typically involves at most a few
tens of iterations, is to be contrasted with matched field in-
version methods which search the parameter space by com-
puting thousands or tens of thousands of forward models.

The paper is organized as follows: In Sec. II we derive
the perturbation results we use in the method and set up the
linear equations to be inverted. Section III discusses the sin-
gular value decomposition method of performing the inver-
sion, and discusses the errors associated with such an inver-
sion. In Sec. IV we apply the mode amplitude perturbation
algorithm to two data sets to demonstrate its performance.
The first is a simple synthetic case in which the true answer
is known, and the second is a real data set from the LWAD
99-1 Experiment.4 In Sec. V we combine the eigenvalue and
mode amplitude perturbation methods into a single algorithm
and apply this combined method to a synthetic data set to
investigate its capabilities. The last section summarizes our
results and conclusions.

II. DERIVATION OF THE MODAL AMPLITUDE
PERTURBATIVE INVERSION ALGORITHM

In this section we derive the modal amplitude perturba-
tive inversion algorithm, starting with the application of per-
turbation theory to the basic normal mode equations. We
then discuss various approaches to bottom parametrization,
and end the section by describing the inversion process itself.
Our derivation of the perturbation result for the mode ampli-
tudes follows the work of Tindle et al.5

We start with the depth-separated normal mode equation
�cf. Refs. 6–8�

1

��z�
d2Zn

dz2 +
d

dz
� 1

��z�
�dZn

dz
+

1

��z�
�q�z� − kn

2�Zn = 0, �1�

where z is the depth coordinate, positive downwards �with
the air-water interface at z=0�, ��z� is the density, Zn�z� is the
nth mode function, kn is the modal eigenvalue associated
with Zn�z�, and q�z�=k2�z�=�2 / �c2�z��, where c�z� is the
sound speed, and � is the angular frequency of the time-
harmonic source signal. We propose a perturbation to the
waveguide such that q�z�→q�z�+�q�z�, which causes per-
turbations in the other terms: Zn�z�→Zn�z�+�Zn�z�, and kn
→kn+�kn.

668 J. Acoust. Soc. Am., Vol. 123, No. 2, February 2008
If we collect the unperturbed terms we get the unper-
turbed equation. If we collect terms with first-order perturba-
tions we find that

1

��z�
d2�Zn

dz2 +
d

dz
� 1

��z�
�d�Zn

dz
+

1

��z�
�q�z� − kn

2��Zn

+
1

��z�
��q�z� − 2kn�kn�Zn = 0. �2�

We assume that the perturbations are small, so terms of
higher than first order are neglected.

Because the unperturbed normal modes form a complete
set, we can expand any function of z in terms of them. We
propose an expansion of �Zn of the form �Zn�z�
=� janjZj�z�. Substituting this into Eq. �2� we find that

�
j

anj�1

�

d2Zj

dz2 +
d

dz
�1

�
�dZj

dz
	 +

1

�
�q�z� − kn

2��
j

anjZj

+
1

�
��q�z� − 2kn�kn�Zn = 0. �3�

The term in square brackets can be replaced using Eq.
�1�:

�
j

anj�−
1

�
�q�z� − kj

2�Zj	 +
1

�
�q�z� − kn

2��
j

anjZj

+
1

�
��q�z� − 2kn�kn�Zn = 0. �4�

Some of the terms containing q�z� cancel, leaving us with

�
j

anj�kj
2 − kn

2�
Zj

�
+

1

�
��q�z� − 2kn�kn�Zn = 0. �5�

From this point we can make use of the orthonormality
property of the normal modes. If we apply the operator

0

D�•�Zn�z�dz to the equation, we are left with

�
0

D �q�z�Zn
2�z�

��z�
dz − 2kn�kn

= 0 ⇒ �kn =
1

2kn
�

0

D �q�z�Zn
2�z�

��z�
dz , �6�

which is the result in Ref. 1. If we instead apply the operator

0

D�•�Zm�z�dz �note the change of subscript from n to m� we
get

anm�km
2 − kn

2� + �
0

D �q�z�Zm�z�Zn�z�
��z�

dz

= 0 ⇒ anm =
1

kn
2 − km

2 �
0

D �q�z�Zn�z�Zm�z�
��z�

dz , �7�

which is valid for m�n. This result, along with the above-
used expansion, allows us to express the change in a mode
function �Zn�z� due to a change in the profile, �q�z�. Since
the quantity that is actually changing in the bottom is the
sound speed, c�z�, we can use the perturbation result that
�q�z�=−2�c�z��2 /c3�z� to put the expression in terms of the

sound speed perturbation. It should be noted that Ref. 5 lists
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the m=n term as being ann=−1 / 2�m�nanm
2 based on the idea

that the mode function must retain its normalization. How-
ever, this result is inconsistent with the earlier neglect of
terms of second and higher order. It can be shown, however,
that the actual value for the n=m term must be zero, since
the change of the mode function must be orthogonal to the
mode function itself:

�
0

D Zn
2�z�

��z�
dz = 1 ⇒

�

�X
�

0

D Zn
2�z�

��z�
dz =

�

�X
1

⇒ �
0

D 2Zn�z� � Zn�z�/�X

��z�
dz = 0 �8�

for any parameter X that would cause a change in the mode
function. In order to properly make use of the normalization
as in Ref. 5, one would have to retain higher order terms in
the original perturbation.

The sound speed, c�z�, is not the only bottom parameter
that affects the mode functions and eigenvalues. The density
profile ��z� is also a factor. Analogous to the results for
sound speed in Ref. 5, we can use perturbation theory to
determine the effects of perturbations to a density parameter.
If we define the function ��z�=1 /��z� and denote differen-
tiation with respect to z with primes, our modal equation
becomes

��z�Zn� + ���z�Zn� + ��z��k2�z� − kn
2�Zn = 0. �9�

Just as we did for sound speed, we can introduce a per-
turbation, collect first-order terms, expand the perturbed
mode functions in terms of the unperturbed mode functions,
and apply the orthonormality property of the unperturbed
modes. When we do so, we obtain two perturbation results
for the density parameter:

�kn =
1

2kn
�

0

D

Zn�z�Zn��z����
��

�
+ ����dz , �10�

which is the eigenvalue perturbation result for density, and

anm =
1

kn
2 − km

2 �
0

D

Zm�z�Zn��z����
��

�
+ ����dz , �11�

which is the result for the modal expansion coefficients,
analogous to Eq. �7�. Note that because both the equation for
the eigenvalue perturbation, and the expansion of the mode
function perturbation involve z derivatives, discontinuities
must be handled with particular care.

Another bottom parameter of interest is the attenuation
profile. Frisk6 and other texts show that if we introduce an
imaginary component to the sound speed profile by making
k�z� complex, the eigenvalue becomes complex as well.
While the change in the mode function itself is usually neg-
ligible when attenuation is added, the complex portion of the
eigenvalue creates the appearance that the entire mode func-
tion has been reduced. If we make the small change k�z�
→k�z�+ i��z�, the modal eigenvalue will be changed as well:

kn→kn+ i�n, where the modal attenuation is given by
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�n =
1

kn
�

0

D ��z�
��z�

k�z�Zn
2�z�dz . �12�

This leads to the apparent change in the mode function Zn

→Zne−�nr, or �Zn=−Zn�1−e−�nr�. For many purposes it is
often best to look at the apparent change in the mode func-
tion over a range step due to the attenuation within that range
step. In such a case, the apparent change in the mode func-
tion from the beginning of the step to the end will be Zn

→Zne−�n�r, where �r is the length of the range step. If
�n�r�1 we can use the Taylor expansion for the exponen-
tial, and keep only the linear terms, giving Zn→Zn�1
−�n�r� or �Zn�Zn�n�r. Because of its dependence on
range, attenuation can seriously complicate our inversion.
Fortunately, in cases where the measurements are taken at
sufficiently short ranges from the source, attenuation can be
neglected, or estimated by other means.9

Further bottom parameters, such as shear speeds and
shear attenuations, may also be sought, in which case pertur-
bation results for those parameters would also be needed. For
the applications to low-frequency sediment acoustics of in-
terest in this paper, the results for sound speed, density, and
attenuation perturbations are considered sufficient. In fact,
we will focus on the sound speed perturbation results, since
they tend to have the strongest effect on the modal param-
eters.

The next step in the derivation of the inversion algo-
rithm is to discretize our representation of the bottom. We do
this so that we can solve for a finite number of unknowns
rather than functions of the continuous variable z. We start
by making the assumption that the unknown functions c�z�,
��z�, and ��z� can be written in terms of a weighted expan-
sion of some known depth functions with unknown coeffi-
cients. For example, c�z� can be expanded as c�z�=c0�z�
+�iXici�z�. Here c0�z� is a hypothesized, or background,
model for the sound speed profile. The functions ci�z� are
arbitrary, user-defined functions that should be selected so as
to be able to capture the important features of the sound
speed profile. The unknown scalar coefficients Xi are what
we seek, since once we have them we can reconstruct the
sound speed profile.

The number and complexity of the ci�z� functions that
should be used depends on how detailed a profile is required,
and what kinds of bottom features are considered possible.
Ideally one should use the smallest number of parameters
that fully capture the bottom features. However, since one
does not usually know beforehand what bottom features are
present, it will often be necessary to use more than the ideal
number of parameters.

Once the unknown functions have been parametrized we
can compute the derivatives of the mode functions with re-
spect to the unknown scalars Xi using the perturbation results
we derived earlier. To do this we make the substitution
�c�z�=Xici�z� for the sound speed equations, ���z�
=Bi�i�z� for the density, and ��z�=Ai�i�z� for the attenua-
tion, and use the fact that �Zn /Xi��Zn /�Xi for sufficiently

small values of Xi. The results of this procedure are
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�Zn�z�
�Xi

= �
m

anm
Xi Zm�z� , �13�

where

anm
Xi =

2�2

km
2 − kn

2�
0

D ci�z�Zn�z�Zm�z�
c0

3�z���z�
dz , �14�

�kn

�Xi
=

− 1

kN
�

0

D ci�z�Zn
2�z�

co
3�z���z�

dz , �15�

�Zn�z�
�Bi

= �
m

anm
Bi Zm�z� , �16�

where

anm
Bi =

1

kn
2 − km

2 �
0

D

Zm�z�Zn��z���i

�0�

�0
+ �i��dz , �17�

�kn

�Bi
=

1

2kn
�

0

D

Zn�z�Zn��z���i

�0�

�0
+ �i��dz , �18�

�Zn�z�
�Ai

�
Zn�z��r

kn
�

0

D �i�z�
��z�

k�z�Zn
2�z�dz . �19�

With these derivatives, we are nearly ready to carry out
the inversion. Given our background mode functions, and
measurements of the actual mode functions, we could move
on to the actual inversion. However, in the real world, where
source levels are often not known precisely, and where pre-
cise instrument calibration can be an issue, using the mode
functions themselves can be problematic. Further, since the
expression for the field always contains the product of the
mode functions at two depths, it is usually not possible to
measure the mode function by itself. Because of these issues
we will actually use the ratio of each mode function to the
first mode function. This eliminates source level and calibra-
tion concerns and only slightly complicates our calculation.
If we define the quantity

mn�z,zs� 
Zn�z�Zn�zs�
Z1�z�Z1�zs�

, �20�

we can compute the derivative using the product and quo-
tient rules, and our earlier results. Note that when using the
adiabatic approximation,10 Zn�z� is computed at the receiver
location, and Zn�zs� at the source location. The derivative of
the ratio with respect to some parameter 	 can be written as

�mn

�	
=

�Zn�zs�/�	Zn�z�Z1�zs�Z1�z�
Z1

2�zs�Z1
2�z�

+
�Zn�z�/�	Zn�zs�Z1�zs�Z1�z�

Z1
2�zs�Z1

2�z�

−
�Z1�zs�/�	Zn�zs�Z1�zs�Zn�z�

Z1
2�zs�Z1

2�z�

−
�Z1�z�/�	Zn�zs�Z1�zs�Zn�z�

Z2�zs�Z
2�z�

. �21�

1 1
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Note that the first mode has been selected somewhat arbi-
trarily here. Any other mode can be used in the denominator
if it is more convenient. However, the first mode is usually
the best choice, since it is nonzero everywhere in the water
column and is usually less affected by changes in the bottom
than the other modes.

It should also be pointed out that by dealing with the
mode ratios we are implicitly assuming that there is no mode
coupling. This method is intended for use in cases where the
adiabatic approximation10 is valid. In cases where this as-
sumption is violated the transfer of energy between modes
can give rise to apparent changes in the bottom properties
which do not actually reflect the true bottom. The method
can still be used as long as the true mode ratios, as defined
earlier, are used as input. However, measuring those quanti-
ties when there is mode coupling is a nontrivial problem.

At this point we are ready to set up the inversion. We
create a matrix, ��m /�X�, each row of which contains the
partial derivatives of one mode function at one depth with
respect to each of the parameters sought. For example, if the
parameters sought are X1, X2, B1, A1, the first row of
��m /�X� is

�m2�z1,zs�
�X1

m2�z1,zs�
�X2

m2�z1,zs�
�B1

m2�z1,zs�
�A1

	 , �22�

where z1 is the first measurement depth. We start with m2

because m1 is always equal to 1. The next few rows of
��m /�X� may be the same derivatives but evaluated at dif-
ferent measurement depths. It should be pointed out that us-
ing multiple measurement depths does not necessarily give
any additional, independent information. However, by using
more depths one gets more robustness to measurement noise,
which is especially useful when one depth is near a null of
one of the modes.

There are two other quantities that are needed before we
can carry out the inversion: the column vector X, which con-
tains all the parameters we seek, and the column vector �m,
which contains the difference between the mode ratios at
each depth and mode number. Some might find it more in-
tuitive to think of the X vector as a �X vector, which con-
tains the differences between the desired parameters in the
background model and the true case. This notation becomes
a bit cumbersome, however, when partial derivatives become
involved, so we have opted for calling the vector just X.

The various components having been collected, we now
have

� �m

�X
	X = �m . �23�

We can solve this equation in the least-squared error sense
using the pseudoinverse matrix:11–13

XLS = � �m̃#

�X
	�m , �24�

where ��m̃# /�X� is the pseudoinverse matrix of ��m /�X�.
It must be noted that we have worked so far under an

approximation of a linear relationship between the variables

when performing this inversion, when in reality the relation-
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ship is nonlinear. Therefore we should not expect this single-
step inversion to give us the correct bottom parameters.
However, if our background model resembles reality, then
our answer should at least give a correction to our back-
ground, which can be used to generate a new background,
and the process can be repeated. After a few �usually �30 or
less for cases we have examined� iterations, the algorithm
should converge to the values that give the best possible fit
�in a least-squares sense� to the input data, given our param-
etrization. It must be kept in mind, however, convergence is
not guaranteed. An initial background model too different
from the true bottom, or a parametrization of the bottom
which does not capture all important features can result in
divergence.

III. SOURCES OF ERROR

To properly interpret the output of inversion algorithm,
it is necessary to understand the errors that may be present in
it. In this section we will discuss several sources of errors
which can contribute to the overall uncertainty in the final
estimate of the geoacoustic parameters. Even when the errors
in the input vector are small, careless use of the pseudoin-
verse can lead to large errors in the estimates of the bottom
parameters. Avoiding this possibility requires an understand-
ing of how singular value decomposition is used to obtain
the pseudoinverse matrix. As singular value decomposition is
a well-known technique, we will not describe it here, but
instead direct the reader to any standard text on matrix alge-
bra, such as Ref. 14.

In cases where the pseudoinverse is a true inverse ma-
trix, there are three types of errors to consider: �1� Errors in
the measurement vector, �2� errors due to overly simple pa-
rametrization of the bottom, and �3� errors due to conver-
gence to an incorrect local minimum. If the iteration process
converges to the correct answer, and the parametrization of
the bottom is sufficient to match reality, then the error in the
estimate is linearly related to the error in the measurement.
The bias of the input data should be zero. If it is not, it
should be subtracted from the input data before the inver-
sion. For completeness, however, we state that if there is bias
in the input, the bias in the parameter estimation is equal to
the input bias times the inversion matrix:

�XLS� = � �m̃#

�X
	��m� . �25�

Similarly, the variance of the estimate is also dependent on
the variance of the input:

cov�XLS� = � �m̃#

�X
	cov��m�� �m̃

�X
	T

. �26�

This expression allows us to compute the covariance of our
inversion results based on the covariance of our input data,
and thus quantify the uncertainty in our results.

It must be kept in mind, however, that implicit in this
expression are the assumptions that the algorithm has con-
verged to the correct minimum, that the errors in the input
data are small enough that they propagate linearly through

the process to the inversion results, and that the parametriza-
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tion is sufficient to capture all features of the bottom. Errors
in the measurement vector are beyond our control. If they are
so large as to violate a linear approximation, there is little
hope for the algorithm.

The other two sources of error are in competition to
some degree. The more parameters used to describe the bot-
tom, the less likely the algorithm is to miss important bottom
features. However, the more parameters that are used, the
more the problem becomes underdetermined. This results in
a greater reliance on the smoothness and minimum norm
assumptions used to compute the pseudoinverse matrix,
which may not be valid.

Further understanding can be gained by examining the
resolution matrix. This is especially informative when the
problem is underdetermined, as is often the case in such
problems. The resolution matrix, �R�, is defined:

�R� = �V��V�T, �27�

where �V� is the matrix composed of the eigenvectors of
��m /�X�T��m /�X�. When the rank, p, is equal to the number
of unknowns, N, then �R� will equal the identity matrix. Oth-
erwise, �R� will be such that its elements minimize the quan-
tity

�
i

�
j

��R�ij − �ij�2, �28�

where �ij is the Kronecker delta function. The degree to
which �R� resembles the identity matrix gives the user an
idea of the resolution of the inversion result, in that off-
diagonal terms will represent “smearing” of one bottom pa-
rameter into the others. If the �R�ij is nonzero, that indicates
that a change in the ith parameter will show up also as a
change in the jth parameter in the inversion result. The res-
olution matrix is of particular usefulness when using
c-at-each-z type bottom parametrizations, because parametri-
zations that use a small number of parameters are less likely
to be underdetermined. Backus and Gilbert15 address the
concept of resolution in much greater detail.

It must also be pointed out that the pseudoinverse matrix
may very well be unstable if all singular values are used to
compute it. It is usually best to ignore very small singular
values when computing the pseudoinverse to make the inver-
sion more robust to error. Doing so reduces the resolution of
the inversion, but will also reduce the variance in the answer.
Deciding the minimum size of singular values which can be
tolerated can be difficult, and some trial-and-error may be
necessary to strike the right balance.

IV. EXAMPLES OF MODE AMPLITUDE INVERSION

In this section we demonstrate the feasibility of the
mode amplitude perturbation algorithm by applying it to two
example cases. The first is a simple synthetic data case with-
out input errors, which serves as a basic proof of concept,
while the second makes use of experimental data. For now,
we keep the mode amplitude perturbation separate from the

already-proven eigenvalue perturbation method in Ref. 1, so
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as to make sure our new method works as expected. In the
next section, we discuss how the two methods can be com-
bined.

The first test of the method is a very simple, two-
parameter, range-independent example with perfect input
data. We hypothesize a “true” waveguide of 75 m of iso-
velocity water overlying 25 m of layered sediment. Below
this, we add a half-space which continues to infinite depth.
We excite a pressure field by adding an acoustic point source
at 50 m depth, emitting a pure tone at 50 Hz. We assume a
constant, known bottom density of 1800 kg /m3 and zero at-
tenuation. We use the normal mode program KRAKEN

16 to
generate the mode functions that will be excited in this
waveguide. For this first test, we will use the mode functions
directly, rather than computing the field and trying to esti-
mate them. This separates out any potential problems in the
inversion method from problems in the mode function esti-
mation algorithm. Since we are using the mode functions
directly, and the problem is range independent, we do not
need to specify a range for the VLA. We do, however, need
to specify the depths of the receivers, and in this case, we
will use a six-element VLA with 10 m spacing. The general
setup is shown in Fig. 1.

The information given so far is sufficient for solving the
forward problem. However, to perform the inversion we also
need to specify a background model, and parametrize the
bottom. We choose a simple two-parameter bottom model
which describes the bottom using only the sound speed at the
water-bottom interface, and the sound speed gradient. This
model is appealing because the low number of parameters
allows us to solve a fully determined problem as long as we
have at least three propagating modes, and because it is often
capable of describing the true bottom as a reasonable first
approximation. While there are layers in the true bottom, the
rate of increase of the sound speed of the layers is nearly
linear with depth, so a gradient can do well to approximate
the sound speed profile.

For the background model, we use a Pekeris-like wave-

FIG. 1. �Color online� The sound speed profile and experimental geometry
for the first example.
guide with a sound speed of 1650 m /s throughout the bot-
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tom. However, unlike the standard Pekeris model, we include
a pressure-release surface at 125 m depth. The reason for this
is that the expression for the derivative of the mode function
includes a sum over all modes. In order to have a complete
set, we must have an infinite number of modes, which is only
possible if we include the nonpropagating modes that have
complex eigenvalues. Solving for complex eigenvalues is a
difficult task, and greatly increases the computation time
needed for solving the problem. By adding a pressure-release
false bottom, we can maintain a proper Sturm–Liouville
problem, and the eigenvalues of the nonpropagating modes
become purely imaginary, and thus much easier to compute.
The error introduced by our use of this false bottom should
be small if it is placed at a depth below the turning point of
the highest propagating mode.17

With all of the necessary components in place, we can
now execute the inversion process. The mode functions are
computed for the background model, and the mode ratios
computed for each mode, and each receiver depth. These are
compared to the mode ratios formed using the output from
KRAKEN. The derivatives of the ratios are computed follow-
ing the results of Sec. II. The linear set of equations is solved
using the pseudoinverse, giving the necessary changes in the
two parameters. These changes in the parameters are incor-
porated into the background model, and the process repeated
again. After five iterations of this process, the algorithm con-
verges to the result shown in Fig. 2, which agrees well with
the true profile.

There is nontrivial disagreement below 100 m depth, but
using our simple two-parameter model, this is unavoidable.
For the first 25 m of the bottom, the fit is as good as our
two-parameter model allows, showing that given perfect in-
put data, the method will provide a good estimate of the
bottom sound speed profile �SSP�. Also, since this result was
obtained using a background model containing a pressure-
release false bottom, we gain confidence that using such false
bottoms in a proper fashion in our background model will

FIG. 2. �Color online� The results of the geoacoustic inversion algorithm
after five iterations. The dotted curve shows the “true” sound speed profile,
while the solid curve indicates the inversion result.
not corrupt the inversion results.
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For our second example we use data from the LWAD
99-1/MOMAX 2 Experiment, which was carried out in the
Gulf of Mexico in February 1999.4 During this experiment
the mode amplitudes were estimated by taking a Hankel
transform of pressure versus range data, a procedure de-
scribed in Ref. 9 and used in Ref. 1. A single hydrophone
suspended from a drifting buoy moved through the sound
pressure field created by a single 175 Hz pure tone source,
suspended from the moored R/V Gyre. A synthetic aperture
HLA was formed as the receiver drifted, providing the input
data for the Hankel transform. This was possible because the
waveguide was very nearly range independent over the sec-
tion of data used, and the 70-m-deep water column was
stable during the time period over which the synthetic aper-
ture was formed.

Figure 3 shows the pressure magnitude as a function of
range measured by the drifting receiver, after the raw pres-
sure measurement was demodulated for the source frequency
of 175 Hz. The magnitude and phase data were then Hankel
transformed to obtain an estimate of the depth-dependent
Green’s function versus horizontal wave number, which is
shown in Fig. 4.

The 19 modal peaks used as input data to the inversion
algorithm are indicated with asterisks. It may seem unreason-
able to assume that all of these peaks are actual modal peaks
rather than sidelobes of the finite-aperture transform, but
each peak lined up surprisingly well with the expected eigen-
value locations based on prior estimates18 of the geoacoustic
parameters for this location. Further, the widths of the peaks
also seem to indicate main lobes rather than sidelobes, as can
be seen by observing the narrow sidelobes to the right of the
first �largest eigenvalue� mode. It is possible that some of the
modes have been misidentified, but we assume the large ma-
jority of the modal peaks are correctly interpreted. The pos-
sibility of misidentifying modal peaks is a common problem
when dealing with experimental data, and is a problem any

FIG. 3. �Color online� The pressure magnitude vs range measured during
MOMAX 2, at 175 Hz.
modal inversion method must be able to handle.
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In order to reduce the errors introduced by a few misin-
terpreted peaks, we use a simple two-parameter model for
the sea floor. By solving an overconstrained problem we tend
to reject unbiased errors in our input, whereas if we solve an
underdetermined problem the algorithm will introduce erro-
neous bottom properties in order to fit the errors introduced
by the measurement. The cost of this, however, is that we are
limited to inverting very simple sound speed profiles in the
bottom. Fortunately, the precruise estimate in Ref. 18 pre-
dicts a bottom that could be described reasonably well with a
two-parameter model. If this were not the case, we would
have to use more parameters to describe the bottom.

For a background model, we again choose a simple
Pekeris-like model. While we have a better a priori estimate
of the bottom SSP in this case, one usually will not have such
a good starting point, so it is a better test of the method to
start with a less accurate background model. We use our
background model to compute the mode ratios at the receiver
depth, and compare those to our measurements. We compute
the derivatives of the ratios with respect to our two param-
eters, and solve the linear system for the necessary changes
in the parameters, as described in Sec. III. We repeat this
process until we have convergence, and the results are shown
in Fig. 5.

It is clear that the final inversion result matches the pre-
cruise estimate well. That 25 iterations were required before
convergence may be a sign that some modes were misiden-
tified, or that our bottom parametrization failed to capture
some of the features of the true sound speed profile. It is also
possible that some of the parameters which were treated as
known, such as the density profile, the attenuation, and the
water column SSP, were not accurate. Despite all these pos-
sibilities, however, we achieve a result which compares well
with our expectation, so we can be confident the mode am-

FIG. 4. �Color online� The Hankel transform of the pressure vs range data
shown in Fig. 3. Mode peaks used in the inversion are indicated with aster-
isks.
plitude perturbation algorithm works.
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V. COMBINING MODE AMPLITUDE AND EIGENVALUE
PERTURBATION METHODS

Having seen that mode amplitude perturbation alone can
produce a suitable inversion, we now compare the quality of
the inversion it produces to that of eigenvalue perturbation
method, and then consider the possibility of combining the
two methods to provide a better result than either produces
on their own. To compare the two methods, we require some
metric of performance. The two most common metrics of
performance of an inversion algorithm are the bias and vari-
ance of the error in the inverted parameters.

As stated earlier, assuming the algorithm converges to
the correct minimum, and that the measurement errors are
small enough that they affect the estimate linearly, we can
compute the bias and variance of our inversion from the bias
and variance of the input data using Eqs. �25� and �26�. With
these expressions for error covariance in hand, it is possible
to compare the performance of the two inversion methods.
The “better” algorithm is the one with the lower error cova-
riance. However, it is often the case that one method will
perform better at estimating one parameter, while the other
performs better at estimating another.

For example, eigenvalue perturbation tends to provide a
lower-variance estimate of subbottom features, whereas
mode amplitude perturbation methods do better at estimating
shallower parameters such as interface speeds.19 This is not
unexpected, since the mode functions contain little energy at
large depths, and thus are not much affected by the subbot-
tom, whereas the eigenvalues are determined by the bound-
ary conditions, and thus are highly affected by subbottom
parameters. Thus, which method is preferred will depend, in
part, on which parameters the user is most concerned with
estimating accurately.

Further, which method is better will depend on the qual-

FIG. 5. �Color online� The results of the geoacoustic inversion of the
175 Hz data from MOMAX 2. The vertical dashed line shows the starting
model of the sound speed profile, and the solid curves show iterations 1, 5,
10, and 15. The bold solid curve is the final result after convergence at 25
iterations. The step-like dashed curve is the best estimate of the true bottom
profile available before the experiment.
ity of the input data. If the eigenvalues are estimated very
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precisely, then eigenvalue perturbation will be superior. On
the other hand, if the mode amplitudes are estimated well,
but the eigenvalues have significant error, mode amplitude
perturbation should be used. Which inversion method is
more effective will also depend somewhat on the environ-
ment, as this will change the inversion matrix. In short, in
order to determine the preferred method for a given scenario,
one must perform the inversions and compare the computed
error variances.

Since both methods can provide lower-variance esti-
mates for different parameters, it is logical to ask if we can
combine the two methods for even better estimates. At first it
might seem best to simply take the values of each parameter
from the inversion with the lower error variance. However,
the estimates of the various parameters are not independent,
and mixing and matching them can lead to problems. A bet-
ter solution is to use all the information available to both
methods at once. To do this we can combine the two deriva-
tive matrices into one, and the two data vectors into one,
forming a new equation:

�
�QMA

�X

−

�QE

�X
�X = ��QMA

−

�QE
� . �29�

This equation is essentially the same as the one used by
either of the methods, but we cannot solve it in quite the
same way �i.e., using the Morse–Penrose pseudoinverse�, be-
cause the two types of input data differ significantly in size.
Eigenvalue perturbations are typically on the order of 0.001,
whereas mode ratio amplitude perturbations are closer to or-
der 0.1 or even 1. Using the pseudoinverse to find a least-
squares solution to Eq. �29� would essentially result in the
same answer as if we just used the mode amplitude equation.
The eigenvalue perturbations are just too small to affect the
answer significantly. Thus, we must take into account the
relative sizes of the perturbations rather than the absolute
sizes. One way of doing this is to weight each equation �i.e.,
multiply each row of the above-presented matrix and the
corresponding entry in the data vector� by the standard de-
viation of the perturbation, and then compute the pseudoin-
verse.

An even better method is to make use of the stochastic
inverse �SI�.20,21 This method for creating the inverse matrix
not only accounts for the relative sizes of the different per-
turbations but also for the relative sizes of the changes in the
parameters. For example, an interface speed can easily
change by 10 m /s over an experiment, whereas changes in a
gradient are likely to be much smaller. We will leave the
derivation of the stochastic inverse to the references, and
state here only the expression for the inverse. For

d = �G�q + e , �30�

where d is the measurement vector, e a zero-mean noise
vector with covariance Re, and q the unknown, zero-mean
parameter vector with covariance Rq, the stochastic inverse

solution is
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q̂SI = �G̃SI�d = �Rq��G�T��G��Rq��G�T + �Re��−1d . �31�

This inversion minimizes the errors squared, but normalizes
by the uncertainty in the quantity with the error. For ex-
ample, an error in a quantity with variance 0.0001 should be
much less than an error in a quantity with a variance of 0.1.
The inversion also tries to minimize the q vector, again
weighted by the variance of the elements in the vector.

Though the stochastic inverse requires that the user sup-
ply considerably more information, which may have to be
estimated, it allows one to combine the eigenvalue and mode
amplitude perturbation results and find a solution that takes
into account all the data available in the pressure field. By
looking at the covariance of our estimate, we can determine
which of the three methods �mode amplitude, eigenvalue, or
the combination� gives the best estimate of the bottom pa-
rameters.

Another advantage of combining the two methods is a
decreased chance of converging to an incorrect local mini-
mum. While there is little danger of this happening when
only a small set of parameters is used to describe the bottom,
it is quite possible when a large parameter set is used. The
more input data there are, the more “ways out” of the local
minima there are, and the less likely the algorithm is to get
trapped. The possibility of convergence to an incorrect local
minimum is a problem that the user must keep in mind. If the
algorithm converges to a profile that does not seem realistic,
it is likely that it has reached a local minimum, and the user
should try starting with a different background model, to see
if the same result is obtained.

Even if the profile produced does look reasonable and
reproduces the measurements well, it is still possible �though
unlikely� that the profile does not match the true bottom!
Unfortunately, this is inescapable due to the underdetermined
nature of the problem. That said, using more input data does
tend to reduce the risk of local minima. This is only true, of
course, if the additional input data contain at least some in-
dependent information. While much of the information con-
tained in the mode amplitudes is redundant to that in the
eigenvalues, some of the information is independent. Using
both sources of information should reduce the chances of
there being reasonable-looking profiles at incorrect local
minima.

In order to illustrate the combined eigenvalue and mode
amplitude perturbation method we examine a synthetic ex-
ample. For this case we will posit a waveguide 200 m deep
and 4000 m in length. The water column is 50 m deep and is
treated as isovelocity �1500 m /s, 1000 kg /m3�. Below this is
a 70 m deep, range-dependent sediment layer. Two param-
eters �interface speed and gradient� are sufficient to describe
this layer at any given range. Density is treated as constant in
the layer �1600 kg /m3�. Below the sediment layer is a range-
independent subbottom �1800 m /s, 1800 kg /m3�. This
waveguide is shown in Fig. 6.

A synthetic field was generated for the waveguide, simu-
lating a VLA at range 0, and a 100 Hz source moving from
200 to 4000 m from the VLA, at a constant depth of 30 m.
Seven propagating modes were used to generate the syn-

thetic field. The VLA had nine elements, with 5 m spacing,
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going from 5 m depth to 45 m. Zero mean, Gaussian random
noise was added to the field. The modal parameters were
then estimated from the VLA measurements. The method by
which this was done will be described in a future paper, and
it is outside the scope of this paper. All that is necessary for
the inversion is that we have an estimate of the parameters,
and an estimate of the covariance of our parameter estimates.
Figures 7 and 8 show the estimated and true values of the
modal parameters as a function of range.

With the estimates of the mode amplitudes and eigenval-
ues and their variances in hand, we can estimate the bottom
parameters. For the inversions we treat the water and subbot-
tom as known, and invert for the interface speed and gradient
of the sediment layer. We also treat density within the sedi-
ment layer as known and ignore attenuation. As with the first

FIG. 6. �Color online� Sound speed contours of the synthetic waveguide.
The contours indicate lines of constant sound speed. The water column and
subbottom are treated as isovelocity and range independent, whereas the
sound speed in the sediment layer varies both in depth and range.

FIG. 7. �Color online� Eigenvalues estimates used to test the combination of
eigenvalue and amplitude perturbation methods. The values of the seven
eigenvalues at the source location as a function of range are shown. The
solid lines indicate the true values, while the estimates are shown with

dotted lines.
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test case, this is done to keep our example simple, and is not
a requirement of the method. In order to compare the mode
amplitude perturbation method with the eigenvalue perturba-
tion method we do separate inversions using each, and com-
pute the error variances using Eq. �26�.

The error variance of the four estimated parameters is
shown in Fig. 9. In this case, the error variances favor the
mode amplitude perturbation for some of the parameters and
eigenvalue perturbation for others. For example, the interface
speed at the source location as estimated by mode amplitude
perturbation has a lower error variance than it does when
estimated by eigenvalue perturbation. But the opposite is true

FIG. 8. �Color online� Mode amplitude estimates used to test the combina-
tion of eigenvalue and amplitude perturbation methods. The mode ampli-
tudes at 25 m depth on the VLA as a function of source-receiver range are
shown. The true values are depicted with solid lines, and estimated values
are shown as dotted lines.

FIG. 9. �Color online� Error variance of the four inverted parameters. The
eigenvalue perturbation result is shown as solid lines, the mode amplitude
result in dashed lines, and the combined method shown in dotted lines. For
the bottom two plots, the curve for the combined method overlays that of the

eigenvalue method.
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of the receiver-position estimate of the interface speed. Esti-
mated error variance of the source-position gradient is simi-
lar with both methods, but the VLA-position estimate of the
gradient appears to favor mode amplitude perturbation. This,
however, is an error on the part of the parameter estimation
algorithm, which has supplied an overconfident estimate of
the variance. It is informative to track how such an underes-
timate of the variance in our estimate of a parameter propa-
gates through our algorithm and affects the inversion result.

Using the stochastic inverse, the estimated covariance of
the errors in our measured acoustic parameters, and an esti-
mated matrix of the unknown parameter covariance �the pa-
rameters were considered uncorrelated, but the true variances
of each parameter were used�, we can solve the combined
mode amplitude/eigenvalue perturbation equation. And just
as we did with the pseudoinverse, we can use the stochastic
inverse to compute the error variance of our inversion. When
we do so for our synthetic example, we get the best of both
methods, which is shown in Fig. 9. As can be seen, the
estimate of the source location interface speed is improved
over either method, and the variance of the estimate of the
VLA position parameters matches that of the eigenvalue
method. On the other hand, there is a slight decrease in the
quality of the estimate of the gradient at the source position.
This is due to our overconfidence in the mode-amplitude
method’s estimate of this parameter.

Now that we have looked at the predicted accuracy of
our inversion, let us examine the actual accuracy. Figures
10–13 show the true values of the parameters along with the
inverted values from the three methods. Figure 10 shows the
inversion results for the interface speed at the source posi-
tion. While all three methods are fairly comparable in qual-
ity, for most of the experiment the combination result tracks

FIG. 10. Interface sound speed at the source, real and inverted. The true
interface speed �solid� as a function of range for the synthetic experiment is
shown. The three inverted values are also shown. The eigenvalue perturba-
tion result is shown as dashed lines, the mode amplitude inversion as dotted
lines, and the combination method result in dash-dotted lines. For most of
the experiment, the combination method tends to track whichever of the two
inversion results is closer to the true value.
the better of the two other inversions. The differences are not
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particularly dramatic in this case, but over the course of the
experiment, the combination result does appear to be the best
of the three.

Figure 11 shows the inverted values of the interface
speed at the VLA position. Here the improvements of the
combination method are clear. The eigenvalue perturbation

FIG. 11. Interface speed at the VLA, real and inverted. The eigenvalue
perturbation result overlays the constant true value of the VLA-position
interface speed. As the estimate of the VLA position eigenvalue changes
very little, the inverted value of the parameter changes very little as well.
The mode amplitudes, however, can change due to changes at the source, or
at the VLA, and thus the mode amplitude perturbation result varies with
range, and has much larger error. The combination inversion method tracks
the result of the eigenvalue perturbation well, and thus remains at the true
value.

FIG. 12. Gradient at the VLA, real and inverted. As in Fig. 11, the true value
is constant, and the unchanging local eigenvalue estimate gives a good result
for the eigenvalue perturbation method. The mode amplitude perturbation
method, however, has trouble distinguishing between local and source-
position changes, and thus provides a poorer estimate of the parameter. The
combination result tracks the eigenvalue perturbation result, and the true
value, well. Note that the level of error in the mode amplitude perturbation
result is at odds with the predicted error variance for this parameter shown
in Fig. 9. This is due to an overconfidence �i.e., too low a value for the

estimated variance� in some of the estimates used as input data.
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method, using an estimate of the unchanging local eigenval-
ues, does a good job of tracking the true value of the param-
eter. The mode amplitude method, however, uses mode ratios
which are affected by changes at both the source and receiver
position, and because of this struggles to distinguish between
changes at the source, and changes at the VLA. Thus, its
estimate of the parameter is nonconstant, and has signifi-
cantly larger errors than the eigenvalue perturbation method.
The combination method is able to use the local eigenvalue
estimate, and thus tracks the true value well. Figure 12 is
similar. Again the mode amplitude perturbation method
struggles to distinguish between local and source-position
changes, and thus gives a nonconstant estimate with larger
errors. The methods that make use of the estimate of the
local eigenvalue, however, do a good job at tracking the
parameter. Note that Fig. 9 would lead us to believe that the
mode amplitude estimate would be more precise for this pa-
rameter, and yet clearly the eigenvalue estimate is superior.
The combined method tracks the eigenvalue result, as we
would hope, despite the overconfidence of our variance esti-
mate.

Figure 13 shows the estimates of the gradient at the
source position. Similar to the source-position interface
speed estimates, all three methods have similar levels of bias,
though the mode amplitude and combination methods pro-
vide better estimates of this parameter over the last kilome-
ter. Additionally, the combination method does significantly
better than the other two methods at tracking the features of
the parameter in range. The maxima and minima of the pa-
rameter are clearly visible in the combination method esti-
mate, though the values of the estimate are slightly off.

Overall, while the differences between the various meth-
ods were not drastic, the combination method tended to do
slightly better than the other two methods. Its results tended
to resemble those of whichever method produced the better

FIG. 13. Gradient at the source, real and inverted. The source-position gra-
dient as a function of source-receiver range is shown. The true value is
shown with a solid line. All three estimates are comparable, and show simi-
lar amounts of error. However, the combination method does the best at
tracking the features of the parameter with range.
estimate of each parameter. As stated earlier, which method
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is best will depend on the quality of the estimates of the
input data and the parametrization of the bottom selected.
Since the combination method tends to track the better of the
two estimates in each case, it can be expected to provide
results similar to the better method, whichever method that
happens to be in a give case.

VI. CONCLUSIONS

In this paper we have derived the results necessary to
carry out a mode amplitude perturbative inversion method
for determining the geoacoustic properties of the seabed. We
have applied this algorithm to two data sets: One a simple
synthetic data case with a known solution, and the other a
LWAD 99-1 experimental data set, where a previous estimate
of the bottom sound speed profile was available. In both
cases the algorithm was able to successfully estimate the
bottom geoacoustic parameters. The modal amplitude inver-
sion algorithm is analogous to the modal eigenvalue inver-
sion algorithm described in Ref. 1, the major difference be-
ing the type of input data that is used. As a consequence, it is
natural to compare the two methods and to combine them so
as to gain the benefits of each. Using the stochastic inverse
matrix approach, we demonstrated the effectiveness of this
hybrid inversion algorithm.
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