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ABSTRACT

This thesis is made of two separate, but interrelated
parts. _

In Part I the instability of a baroclinic Rossby wave
in a two-layer ocean of inviscid fluid without topography,
is investigated and its results are applied in the ocean.
The velocity field of the basic state (the wave) is charac-
terized by significant horizontal and vertical shears, non-
zonal currents, and unstéadiness due to its westward propa-
gation. This configuration is more relevant to the ocean
than are the steady, zonal 'meteorological' flows, which
dominate the literature of baroclinic instability. Trun-
cated Fourier series are used in perturbation analyses.

The wave is found to be unstable for a wide range of
the wavelength; growing perturbations draw their energy from
kinetic or potential energy of the wave depending upon
whether the wavelength, 27L, is much smaller or larger than
2an, respectively, where Lp is the internal radius of de-

formation. When the shears are comparable dynamically,
L~ Lp, the balance between the two energy transfer proc-

esses 1is very sensitive to the ratios L/Lp and U/C as well,

where U is a typical current speed, and C a typical phase
speed of the wave. For .L = Lp they are augmenting if

U < C, yet they detract from each other if U > C.

. The beta-effect tends to stabilize the flow, but per-
turbations dominated by a zonal velocity can grow irrespec-
tive of the beta-effect.

It is necessary that growing perturbations are com-
prised of both barotropic and baroclinic modes vertically.
The scale of the fastest growing perturbation is signifi-
cantly larger than L for barotropically controlled flows
(L < Lp), reduces to the wave scale L for a mixed kind

(L ~ Lp)and is fixed slightly larger than Lp for baro-
clinically controlled flows (L > Lp).




Increasing supply of potential energy causes the nor-
malized growth rate, aL/U, to increase monotonically as
L ~» Lp from below. As L increases further beyond Lp,

the growth rate aLp/U shows a slight increase, but soon

approaches an asymptotic value.

In a geophysical eddy field like the ocean this model
shows possible pumping of energy into the radius of defor-
mation (v 40 km rational scale, or 250 km wavelength) from
both smaller and larger scales through nonlinear inter-
actions, which occur without interference from the beta-
effect. The e-folding time scale is about 24 days if
U=5cm/sec and L = 90 km. Also it is strongly suggested
that, given the observed distribution of energy versus
length scale, eddy-eddy interactions are more vigorous than
eddy-mean interaction, away from intense currents like the
Gulf Stream. The flux of energy toward the deformation
scale, and the interaction of barotropic and baroclinic
modes, occur also in fully turbulent 'computer' oceans, and
these calculations provide a theoretical basis for source of
these experimental cascades.

In Part II an available potential energy (APE) is de-
fined in terms appropriate to a limited area synoptic den-
sity map (e.g., the 'MODE=I' data) and then in terms approp-
riate to time-series of hydrographic station at a single
geographic location (e.g., the 'Panulirus' data).

Instantaneously the APE shows highly variable spatial
structure, horizontally as well as vertically, but the ver-
tical profile of the average APE from 19 stations resembles
the profile of vertical gradient of the reference stratifi-
cation. .The eddy APE takes values very similar to those of
the average kinetic energy density at 500 m, 1500 m and
3000 m depth in the MODE area.

In and above the thermocline the APE has roughly the
same level in the MODE area (centered at 28°N, 69° 40'W) as’
at the Panulirus station (32° 10'N, 64° 30'W), vet in the
deep water there is significantly more APE at the Panulirus
station. This may in part indicate an island effect near
Bermuda.

Thesis Superv1sor- Peter B. Rhines
Title: Senior Scientist, Department of Phy31cal Oceanography,
Woods Hole Oceanographic Institution.
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-These profiles confirm

From Crease(1962). Trajectories of five series
of floats. Figures at ends of trajectory are
starting and finishing dates. Figures beside
trajectory are average speeds. Currents are
very energetic with an apparent period of 50 to
100 days(Swallow,1971) and an estimated wave-
length of 300 to 400 km(Phillips,1966).

From Schroeder and Stommel (1969). Temperature
anomalies at the Panulirus station in 1960.
Units: hundreds of a degree centigrade.
Vertical scale changes at 200 m. Closed
contours in the thermocline show a strong
temporal variation. Anomaly of 1°C roughly
corresponds to a vertical excursion of 50 m
in the thermocline.

From Wunsch(1972a). Spectrum of temperature near
Bermuda near the depth of the main thermocline,
plotted so that the area under the curve is
proportional to the variance of temperature.
Most of the energy lies in periods of 40-200
days,'lndlcatlng a strong low frequency
variation.

Depth of 10°C isotherm from the data in
Fuglister (1960). Sampling is sparse, but the
presence of multiple scales is apparent at two
separate sections.

From Katz(1973). Depth of isopycnals, S 0.=
26.91 for Tow 300 and ct—26 .87 for Tow 400.
the presence of an
intermediate scale. The distance between a
peak and a valley is 180 km from Tow 400 and
360 km from Tow 300 at least.

Profile of mean speed and mean velocity plotted
from Koshlyakov and Grachov(1973). A large-
scale anti-cyclonic eddy was observed during the
Polygon experiment and its mean speed is over=-
whelmingly larger than mean velocity for all
depth. The main thermocline is located at about

250 m.
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Figure

1.7

From Sanford(1975). Velocity profiles show a

strong shear concentrated in the main thermo-

cline, suggesting the dominance of grave baro-
clinic mode.

From Veronis and Stommel (1956). The dispersion
relations of barotropic and baroclinic Rossby

waves in a two-layer ocean. Thicknesses of upper

and lower layers are 500 m and 3500 m, respec-

tlvelY' f=10~4 Sec_l, B=2X10_13 cm_lBSeC—l.

The radius of deformation based upon the upper
layer thickness is 31 km. Note that the
minimum period of the baroclinic Rossby wave is
about one year.

The stratification of the ocean is idealized by

two homogeneous layers of densities, Py and o
where Py X Pye Thickness of the upper™ layer

is hl and h2 is a height of the interface.
The velocity structure of the basic wave is
characterized by the presence of horizontal
shear as well as vertical shear, associated with
kinetic and potential energies respectively,
which are partitioned by (L /L)2 , where L _1is
the internal radius of p/ 7/ deformation:

Branch I: The regime above marginal stability
curves is unstable and one below the curves is
stable. Note short wavelength limit of
unstable perturbations in the meridional scale
of perturbation(L_) for large scale basic flow,
L > Lp . There P exist unstable modes ir-

respective of the current strength U.
Branch II: The unstable region is both upper
and lower bounded in Lp/Lp . As in Branch I,

unstable perturbation exists for %f< 1.

The beta-effect(B) is relatively strong and the
baroclinic and barotropic instability regimes
are distinct for very large and small value of
L/Lp , respectively. The restoring effect of B

clearly acts to stabilize modes near the center
of the figure.
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Figure

4.2b As the basic flow strengthens (or with a weak
beta~-effect), the baroclinic and barotropic -
instability regimes merge into a smooth growth-
surface. Short wavelength limit in the
baroclinic regime is shown clearly,

4.2c Same as Fig. 4.2b except for a stronger current
- case. The meridional scale of the fastest
growing perturbation is fixed at a scale.
slightly larger than the radius of deformation
in the baroclinic regime and decreases in pro-
portional to the zonal scale of the basic flow
in the barotropic regime.

4.3 Growth rate oL/U, renormalized for the range
' L < L.p . where the barotropic interaction is

important. The scale at the maximum growth

rate is the same as that of the basic flow

for g = o« and % = 1 and the basic flow
p

generates a larger scale as its scale and
strength decrease.

4.4 Recapitulation of Fig. 4.3. Figures beside the
curves are values of U/C and Lp/L.at the maximum

growth rate. Note an increase of the growth
rate as L » Lp , which is possible because of

of an increasing supply of potential energy.

4.5 These curves correspond to vertical cuts in
Fig. 4.2b( 3-mode ). Growth rate shows
basically the same behavior as found from the
3-mode analysis; short wavelength limit and
maximum growth rate at cha Lp in baroclinically

controlled flows, and generation of larger scale
in a barotropically controlled flow.
4.6 For region L < L _this figure is very similar

to Fig. 4.4 from the 3-mode analysis, indicating
truncation errors are small. For L > Lp , a

slight decrease of normalized growth rate as
L > Lp from above is notable. This may be due

to a feedback of energy into the basic wave via
the interaction of Reynold stresses with the
mean horizontal shear.
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- Figure C : | : - Page

4.7

4.8a

From Simmons(1974). The dependence of maximum 86

growth rate on channel width for a steady,

zonal current with profile w=1 - 46(—X— - %)3
where meridional walls are at y = 0, vy . ©

Lower layer is at rest initially and © the
radius of deformation is 1,225 km. Note a
reduction of growth rate due to a non-uniformity
( § # 0 ) compared with the case § = 0. As the
channel becomes narrower ( a horizontal shear
increases effectively ), the growth rate
decreases further, meanwhile the horizontal shear
is intensified. ‘

Fast convergence of series for U < C and L < Lp 88

answers why the results from the 3-mode analysis
are so close to those from the 7-mode one.
Convergence becomes slower as L increases from
Lp and U from C. However, a calculation with

9 modes show very little further change in the

growth rate,

A tendency to generate a strong barotropic 839
component of growing perturbation can be
more easily seen in Branch II. 0dd modes,

n = *1, *3, cececens , are barotropic vertically.
Relative perturbation kinetic energy plotted 91
as a scalar wavenumber spectrum. Wavenumber
unity corresponds to the deformation radius and
the wavenumber of the basic wave is underlined.
Irrespective of U/C and L/Lp , mode n = 0, the

lowest wavenumber representing the zonal - .
component of the perturbation, contributes the

highest peak. It is interesting to produce a
quasi-continuous spectrum from a single mode.

The balance between the two distinct energy 94
transfer processes is very sensitive to the
ratios L/Lp and U/C as well. Potential energy

of the wave is always available for growing
perturbations, yet kinetic energy of the wave
is not. Note a feedback of energy toward the
wave for a strong current, U _ , 5

G .5




Figure

5.1

5.3

Rhines' (1975 ) numerical experiment shows that
a large—scale baroclinic Rossby wave with
L ¥ 4 x Lp is unstable and 'noise' develops

into eddy field. Slow westward propagation
of stream lines are visible along left and
right edges. At t = 1.0 (about 23 days later)
organized eddy field can be identifiable and

- further amplification is very clear at t = 1.5.

Perturbation energy grows exponentially as
predlcted in the theory during the instability
shown in Fig. 5.1.

Energy transfer during the instability shown
in Fig. 5.1 is dominated by the baroclinic
process. Barotropic interaction removes
kinetic energy from wavenumber 6, but the net
kinetic energy increases via the conversion

from the potential energy at the same wavenumber

supplied from wavenumber 2 by the instability.

Initially energy spectrum has two peaks, one
at k = 1 and the other around k = 6.
Subsequent energy transfers toward higher
wavenumbers( k = 8 corresponds to the radius
of deformation ) are concentrated around k = 6
with very little change at k = 1. This
development is consistent with the theoretical
prediction.

Part iI

2.1

An available potential energy(APE) is defined
as work done by a local mean buoyancy force

%gp' for a displacement of z - Zp where o'
is approximated by —Ez(z—zP). Note that the

APE is positive definite. Accordingly each
fluid particle has its own reference level in
the definition of the APE.

Comparison of 5 Chain station data with 5

Researcher station data on the circle of 200 km

in radius in March, 1973. Statistical test
shows that the difference in the average
potential density is not significant for a 95%
confidence interval.
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Figure

3.1b

Same as Fig. 3.la, except that salinity and
temperature are intercompared. The results
of statistical tests are the same as that
for the potential density.

The APE varies very significantly in space,
horizontally as well as vertically.

Profile of an average APE in space from .
19 stations shows remarkably simple vertical
structure, which resembles the profile of

.. vertical gradient of the reference stratifica-

3.4

3.5a

3.5b
3.6

3.7

3.8

3.9

tion. This energy level is very similar to
the average kinetic energy density at 500 m,
1500 m and 3000 m depth.

Estimates of r.m.s. vertical excursion reveal
large vertical movements below the thermocline,
suggesting a strong baroclinicity, which seems .
to contradict the simplified picture sometimes
given, that the deep water is dominated by the
barotropic mode. '

Variation of the APE over a scale of 100 km
suggests that an advection of the APE could be
very important in a local energetics.

Same as Fig. 3.5a, but in June.

Monthly variation of the mean anomaly of
potential energy.

Time-series of fluctuating part(x') of the
anomaly of potential energy. The fluctuations
are strongly coupled between the two layers.
Over all the lower layer has a smaller amplitude
of variation than the upper layer, yet they are

8 ergs/cmz.

of the same order of 10
Monthly variation of the mean potential
density minus the average over 7 years.

Time-series of the APE shows again the coupling
between the water in and below the thermocline.
Note that a typical magnitude of the APE is
smaller than that of the fluctuation in Fig. 3.7
by an order of magnitude at least.
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Figure
3.10 Out of 151 stations the APE is less than the
mean for 71% of them and higher for 29%.

Irregular burst of high energy contributes
the 29%.
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I. INTRODUCTION

Prior to this decade currents in the ocean interior
were modelled as a sum of linear Sverdrup flo& (Sverdrup,
1947) and linear waves (Veronis and Stommel, 1956). 1In
regions of intense boundary currents nonlinearity was ad-
ded later (Charney, 1955), and the instabilitf of these cur-
rents was examined numerically (Bryan, 1963). However, dis-
coveries of intense space- and time-dependent mid-ocean
'eddies', begun with the Aries measurements in 1959-60, led
to growing uncertainty about the linear dynamicsvof either
the meéan circulation or the fluctuations.

Some recent theories emphasize a new physics, in which
the eddies rapidly alter their horizontal and vertical
struétures (in the inertial time—scaie of a few weeks to a
few months). At the same time vestiges of linear wave
theory, persistent westward propagation found in numerical
experiments and observations, still apply so that there is
a dual nature to such eddies.

To capture some of this dual nature we examine the
stability of one of the fundamental linear waves, the
baroclinic Rossby wave. Intense instability is found in
which 'noise' added to the simple wave grows. The re-
sulting transfer of energy to new scales forms a tractable
\analog of energy cascades in the turbulent numerical models.

(The theory was motivated'by an experimental demonstration
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of the instability by Rhines (1975a)).

| In one extreme (large length scale of the basic wave)
the instability feeds‘upon fhe potential energy of the wave.
Classical calculations’ of ‘baroclinic instability emphasize
steady, zonal flows as basic states, which is appropriate
to the atmosphere, whereas here we show the effect of an
'oceanic' basic state that is neither steady nor zopal nor
infinite in scale.
| In another extreme (small initial length gcale) the
instability feeds on the kinetic energy of the horizontal
shear. 'This limit gives, as a special case, the purely
barotropic instability found‘by Lorenz (1972) and Gill
(1974). | |

At the important intermediatebscale (the internal de-
formation scale ~ 50 km), the instability is of a mixed
kind, the two energy sources sometimes augmenting, sometimes
detracting from one another.

The application to the ocean suggests (as do the com-
puter experiments) -that a given 'eddy' may receive energy
from a variety of scales of other eddies as well as from
some time-mean flow, and that these 'eddy-eddy' interactions
are probably more vigorous than the eddy-mean flow inter-
action, except in regions of intense currents. The growth-
rates of the instability theory are reasonably close to the
Spectral transfer rates found in.turbulence, and the struc-

tural similarity of theory and experiments is revealing.
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Background

The unexpected discovery of energetic, highly variable
currents from the research vessel Aries in the deep western
North Atlantic Ocean-(Crease, 1962) opened a new chapter
in the dynamics of ocean circulation (see Fig. 1.1): the
float trajectories revealed relatively high speeds at
nominal depths of 2 and 4 km, of the order of 5 to 10 cm/sec,
with an apparent period of 50 to 100 days (Swallow, 1971)
and an estimated wavelength of 300 to 400 km (Phillips,
1966) .

The hydrographic data from the Panulirus station near
.Bermuda show a very distinct month to month variation of
temperature in the main thermocline as shown in Fig. 1.2
(Schroeder and Stommel 1969). The temperature spectrum con-
structed by Wunsch {1972;)from these data reveals that
most of the vafiance in the main thermocline is located
between the periods of 40 to 200 days as shdwn in Fig. 1.3.
This band of periods is certainly in the same range as
estimated from the Aries measurements.

In the sections of temperature and salinity from
Fuglister (1960) various length scales can be picked by
eye. Upon the basin—wide variation is superimposed wiggly
structures with scales of hundreds of kilometers. The
zonal variations of the 10°C isotherm depth at 24°S and

24°N are shown in Fig. 1.4. Counting the rise and fall of
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the Isotherm depth greater than 20 m between consecutive
samplings, there are four minima at 24°S and six at 24°N
over 5077 km. The distance between the ﬁinimé varies from
about 600 to 1000 km at 24°S and from about 450 to 1100 km
at 24°N. Because of sparse sampling the horizontal resol-
ution is inadequate to show the kind'of variation corres-
ponding to the Aries measurements. Nevertheless these
comparisons are suggestive in implying the presence of
multiple scales at two separated -sections.

Rétz's (1973) experiments have confirmed the presence

of an intermediate scale in the open ocean in Fig. 1.5. The

east-west distance between a peak and a valley is 180 km
and the north—south is 360 km at least. The corresponding
wavelengths will be 360 and 720 km réspectively, which are
somewhat larger than those estimated from the Aries obser-
vations. At the same time Katz's (1973) profiles suggest
that small scales may have slightly (#10 km) contaminated
Fuglister's (1960) sections. It is very interesting to
notice that the strong gradient in tow 300 in Fig. 1.5
along 64° 50'w approximately ié not found in ﬁhe nearest
section at 66°W, indicating that Katz's profiles as well
as the wiggles in Fuglister's sections are not permanent.
During the U.S.S.R. POLYGON experiment in the tropocal
North Atlantic a large-scale anti-cyclonic velocity distur-

bance was observed and Fig: 1.6 shows the average speed
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Fig. 1.6 Profile of mean speed and mean velocity plotted
from Koshlyakov and Grachov(1973). A large-
scale anti-~cyclonic eddy was observed during the
Polygon experiment and its mean speed is over=-
whelmingly larger than mean velocity for all

- depth. The main thermocline is located at about
250 m.
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overwhelmingly iarger than the average velocity from the
suiface to 1500 m depth. This is another important dis-
closure because the thermocline in the Polygon area is
located at about 250 m, compared with about 800 m in the
Sargasso Sea and the mean horizontal density gradient is
much weaker by an-order of magnitude.

Gould, Schmitz and Wunsch (1974) have suggested from
estimates of vertical coherence of currents that thé low
‘frequency currents are gsuaily dominated by the barotropic
and first few baroclinic mbdes.Thevertical pfofile of cur-
rent in Fig. 1.7 from Sanford (1975) shows a very strong
shear in the main thermocline which tends to justify the
use of a simélified vertical structufe in the present
theory (two-layer ocean). |

Bernstein and White (1974) reported océanic subsurface
perturbations in the central North Pacific and argued that
these fluctuations are the manifestation of non-dispersive
baroclinic planetary waves.

In summary, the last two decades' obsefvations in the
mid-ocean have consistently revealed the presence of
energetic eddies with time scales of tens of days, length
scales of tens to hundreds of‘kilometers and a strong
vertical variation, irrespective of where and when the
data were taken. The description of eddies is very sub-

jective and indefinite because most experiments were in-
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Fig. 1.7 From Sanford(1975). Veloéity profiles'show a

strong shear concentrated in the main thermo-

cline, suggesting the dominance

clinic mode.

of grave baro-
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sufficiently extensive in time and space to resolve the
significant variations of eddies themselves. Also the des-
cription of eddies requires data in space and time simul-
taneously so that the Panulixus data are useful, for

example, but their implication is very limited.

Previous theoretical models

What are the theoretical models for the observed eddies
concerning their generation and evolution in the mid-ocean?
There are two extreme lines of synthesizing the observations:
the eddies may be a collection of unique events, each one
'ffom a different origin and in a different dynamic balance,
or they are all from the same origin and in the same dynamic
balance except for the fact that they happened to be obser-
ved at a different place and time. Neither of these ideas
has been justified and it is believed to be premature to
draw any conclusion regarding this subtle qﬁestion at
present because the available data are very limited com~-
pared witﬁ the complexity of dynamics involving the eddies.

However, in theory eddies can be represented by a few
importént parameters andApossible eddy dynamics can be ex-
plored by inveétigating the nonlinear interactions in a
parameter space, as doné in this study. Some of previous
theoretical models are examined here, first linear then

nonlinear models, in order to show where the present
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theory stands.

Considering the scales in&olved, it is apparent that
the basic momentum balance is geostrophic, which is sub-
stantiated by Swallow (1971), Koshlyakov and Grachev (1973)
and Bryden (1975). Veronis and Stommel (1956) have found
two kinds of geostrophically-balanced waves in their study
on the response of a two-layer ocean to a transient wind
systeﬁ. One of theée is a barotropic Rossby wave for which
fluid moves as a column, as if homogeneous, and the other
is a baroclinic Rossby wave for which the two layers move
in opposite directions. It is important to understand
that the perﬁurbations iﬁ the density field are attributed
soleiy to the baroclinic mode. The dispersion relations of
these waves in Fig..l.8 show that the wavelengths and
éeriods of the waves are not ¢ompatible with the observed
scales. Nevertheless, these kinds of waves have been used
extensively in interpreting short-term data by various |
authors. 'Notably Longuet-Higgins (1965a, b) and Phillips
(1966) suggested that the Aries observation may be a sort
of wind-generated barotropic and/or baroclinic Rossby wave.
McWilliams and Flierl (1975) have succeeded in some rough
aspects, in approximating a fit of MODE data. These kinds
of simple description of the eddies as a superposition of
linear, quasi-geostrophic waves seem to be successful over

short times, but tend to produce a dynamically inconsis-
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From Veronis and Stommel (1956). The dispersion
relations of barotropic and baroclinic Rossby
waves in a two~layer ocean. Thicknesses of upper
and lower layers are 500 m and 3500 m, respec-

1 -13 —l3sec—l'

tively.  £307% sec™, g=2x10 cm |
The radius of deformation based upon the upper
layer thickness is 31 km. ©Note that the
minimum period of the baroclinic Rossby wave is
about one year.
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tent model, in which neglécted nonlinear terms are large.
Rhines (1971) took a different dynamic balance where
the stratification plays a'major role in a vortex stretch-
ing over a sloping bottom, but pointed out the féct that
nonlinearity is of order unity.
An estimate of nonlinearity for a thermocline eddy

is typically

UT _ 10 cm/sec x 40 days
L 50 km

v 6.9

where U is the characteristic veloéity scale, T the
time scale and L the length scale (scale being one
cyéle/Zw). This may be smaller, but.greater than unity,
in the deep water, and gives a primary objection against
applying linear models to eddies. /‘

Recognizing the huge available potential energy em-
bedded in the deep thermocline in the North Atlantic Ocean
(Stommel, 1966) most of nonlinear models have been.concerned
with the baroclinic instability. The idea was tested by
Schulman (1967), who found that a° slow meridional current
- is baroclinically unstable in a manner similar to its at-
mospheric counterpart examined by Eady (1949). The
e-folding time-scale is of the order of one year with a
vertical shear of 1 cm/sec across the thermocline, which is
‘a reasonable estimate of the basin-wide shear as can bé seen

in Fuglister's (1960) sections.
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Recently more refined theoriés are suggested by
Robinson and McWilliams (1974), and Gill, Green and Simmons
(1974), in both cases a steady, zonal and horizontally uni-
form current being assumed as an unperturbed state.
Robinson and McWilliams'(l974) include the beta-effect,
bottom topography and mean vertical shear in a two-layer
model and obtain an e-folding time of two months for
5 cm/sec vertical shear. ‘In a continuously stratified
model Gill, Green and Simmons (1974) conclude that the
energy conversion confined .in the upper 400 m may be very
important in eddy-generation.

In short, the baroclinic instability process has been
referred to frequently as a generating mechanism of eddies
in the mid-ocean, and within the boundary currents, because
the theory predicts the scale of the most unstable pertur-
bation consistént with the observations. The e-folding
time scale can be as short as 60 to 80 days if the vertical "
shear across the main thermocline is és large as 5 cm/sec
uniformly over a scale larger than the radius of deformation
by an order of magnitude.. If the shear is reduced by half,
then the e-folding time scale is doubled. In reality, the
uniform vertical shear in the mid-ocean may be a few cm/sec,
substantially smaller than 5 cm/sec, whiéh means an e-fold-
ing time scale close to one year as from Schulman (1967).

Therefore it is doubtful that this process is a major
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denerating process of eddies. - On the other hand it is
clearly possible that the eddies themselves are more un-
stable than the weak mean circulation, since the growth
rates are proportional to the baroclinic velocities. The
'stability of currents in which there is horizontal shear
as well as vertical shear has been a cohtrovefsy and in
limited cases some numerical expetiments (Brown 1969,

Song 1971) and theoretical works (Stone, 1969; McIntyre,
1970; Simmons, 1974) have been carried out for a zonal cur-
'rent. These models are useful, but nét enough, to access
the properties of instabilities for a wide range of length
and time scales. | |

Other shortcomings in the prewvious models are that
the current in the basic state is strictly steady and zonal,
- which may be quite suitable in the atmosphere, but rather
remote from an oceanic state.

Rhines (19750 took the other interesting limit of non-
linear interaction in which the stratification is neglected.
Here the migration of'two—dimensional turbulence in a
homogeneous fluid to larger scales ceases at-a particular
wavenumber kB =(B/2%\% + Where B is the northward |
gradient of the Coriolis parameter. The inferred scale for
the ocean is 70 km. This model does reproduce some of the
properties of observed eddies, that is, the dual nature of

nonlinear eddies, where both turbulent migration and wave
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propagation are‘aétive. A more complete picture comes

frém stratified turbulence models (e.g., Rhines, 1975a).
Having discussed'lineaf and nonlinear models, some

specific questions are raised:

(1) Are the linear, quasi-géostrophic waves stable?
Lorentz (1972) and Gill (1974) found that the baro-
tropic Rossby wave is unstable, but the stability
of the baroclinic Rossby wave remains to be answered.

f(2) What are the instability characteristics of a baro-
clinic current with alfinite horizontal length- and
time-scale? More specifically, suppose that there
are present two dominanf length scales. Their energy
transfef may involve two lengthvscales around the
radius of deformation, or in§olve one sgale around the
radius of deformation and another scalé much larger

than the radius of deformation, such as the scale of

the mean circulation. Which of these will be stronger

and dominate signals during an experiment over a
limited period?
(3) Is it possible to generate larger eddies from smaller,
in a stratified fluid as it is in a homogeneous fluid?
It is very interesting that the stability analysis of
the baroclinic Rossby wave does provide a unique opportun-
ity to answer these questions simultaneously. It is par-

ticularly relevant because the duality of oceanic eddies
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can be kept naturally in the analyéis. In Chapter II,
basic equations are derived and their properties are dis~
cussed. Linearized perturbation equations are derived in
Chapter III and the perturbation energy equation is used
to examine how the perturbations interact with the unper-
turbed field specified as the baroc;inic Rossby wave. In
Chapter IV the perturbation equations are analysed in
Fourier series and characteristics are found in truncated
series. The mathematical results are interpreted»phy—
sically in detail and compared with the previous theo-
retical results in Chapter V. The applications of this
model in the ocean are also discussed. Finally conclusions

are made in Chapter VI.
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II. BASIC FORMULATION

II-1 Basic Equations in a Two-layer Ocean

The stratification of the ocean is idealized by-the
two homogeneous layers of slightly different densities and
the fluid of each layer is assumed to be incompressible and
inviséid; In addition the ocean is assumed to extend in-
finite horizontally.

The dimensional equations of motion relative to the

rotating earth are

Ju

o - -> -> _ __]_,__ . _ 2 ‘
et QN+ %xua = 5 Vp - g. (2.1)
- The continuity equation is
veu = 0. (2.2)

The subscripts e = (1,2) denote upper and lower layers
respectively (see Fig. 2,1).. The velocity vector % has
components (u,v,w) corresponding to positive>eastward_(x),
northward (y) and upward (z) directions. The-rotation vec-
tor f is pafallel to the akis of earth rotation and its
magnitude is twice the earﬁh's angular veloéity. The den-
sity in the upper layer (p1) is slightly lighter than that

in the lower layer (pz) and ‘3 = (0,0,g) is the effective
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Fig. 2.1 The stratification of the ocean is idealized by
: two homogeneous layers of densities, p, and Pyr
where Py 9 Poe Thickness of the upper™ layer
is hl and h2 is a height of the interface.
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gravitational acceleration.

The boundary conditions are

NE + (0 *V)h = w at z=h (h=h + h) (2.3a)
v 1 2’
50t (ul-V)h2 =W at z = h2 ' (2.3b)
sh = '
EEA + (u *V)h =w at z =h (2.3c)
2 2 2 2 -
(EZ-V)B =w at z =B (2.34)

where hl(x;y), hz(x,y) and B(x,y) represent the thick-
ness of the upper layer, the height of the interface and

the bottom configuration.respectively; And there are two
matching conditions at the interface: the vertical velocity
and the-pressure should be continuous.

Lét the scales of the variables be

(x,y) = L(XJ(Y’)
z = Dz~

(u,v) = 0(u’,v”’)

w = UGR%W‘
= L.
| t = Ut
Py = Pof UL

h =D(1 + R F_h”")
0 €
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D(L+RFh )
1 0 1 1

=
i

h =D (1 +RFh %
,2 0 2 2

with the relevant non-dimensional parameters

§ = % aspect ratio
Ro = fgf Rossby number
T
f 21,2
'Fe = ;D external Froude number
f 212
Fi = 8 internal Froude number
g’D
£ 21,2 '
F =2 internal Froude number for the
! ngl upper layer. ‘
F o= =35— internal Froude number for the
2 g b, ~ lower layer

where D. and D are the mean thickness of layers,

1
P, = P
D = D1 + D2, g°=-2—1g reduced gravitational accel-

p2

eration and fo is the magnitude of the vertical component
of ¥ at mid-latitude.
For the range of scales of interest the following can
be shown. |
(1) The dynamic balance in the vertical direction is
hydrostatic: 6 << 1.

(ii) The horizontal motion is quasi-geostrophic: Rb < 1.

£~
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(iii) The beta-plane approximatioﬁ is valid: the effect
of the earth curvature is neglected except in the
meridional variation of ¥ - v; " O(R ) where a
is the mean radius of the earth.

(iv)'The horizontal component of the rotation vector %v
is‘neglected. This is the "traditional" approx-
. imation appropriate to large horizontal scales,
with strong stratification. |
(v)eThe displacement of the free surface is neglected
compared with that of theAinterface.
From (iii) and (iv) the Coriolis parameter £ can be
written |
£f=f (1 + B* L y').
0 a
For the upper layer the nondimensional forms of egs. 53
(2.1),(2.2), (2.3a) and (2.3b) with no primes on the non-

dimensional variables hereafter become

ou su Ju Ju ap

l - *_ = - ’
R (———+u 5§—+v15§—+R W ) (1+B y)v1 3§L (2.4a)
8vl Bvl 'avl av1 L- _ 8p,
S———————" e ———" -.L *.— i W ey Py
Ro(at +ulax +Vlay Rowlaz )+ (148 ay)ul 3y (2.4Db)
) ow ow ow ow ‘c)p1
Lty —Lyy L 1 = emadl )
R J (at u 3% +vlay +R0wlaz ) 5y (2.4c)

with the hydrostatic pressure (Ps), which balances g

such as 0 = - =— 35z ~ 9-
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au AV aw

1l o4 1 4 p 1 - .
ox +_3y * Roaz 0 : (2.5)
dh, 3h,  dh, _ _
RoFe(§E+u15§+v1§§) = Row1 at z =1+ RoFeh (2.6a)
oh 3h oh D

2. 2, 2y - - _2
RoFi(Bt;'ulax 'V18y ) Row1 at z (l+R°F2h2)D (2.6Db)

The nondimensional variables are formally expanded in

[ 2
a power series of R as p1 = X:. R? pfn) . The equations
: " h=o '

-of the zeroth order are

: (o) . ‘
ap . ‘
(o) _ _ .
-Vl = 5§L—— (2.7a) .
o (0) ‘
op
(o) _ _
ul = 3y1 (2.7b)
(o)
0 = - ?pl (2.7c)
92 .
8uf°) 3vf°)
5% .+ 3y = { . : (2.8)

Egs. (2.7a,b,c) show that the zeroth order flow is non-
divergent and the pressure is the stream function of the
flow, ihdependent of =z by eq. (2.7c).

The first order equations become

(o) (o) (0) -
ou 0, U 0y OU - : op
3tl +uf )axl +V1( )___L_._ —Vl(‘l)_.Byvl(1)=_.._l____ (2.9a)

oy
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(o) o ’”'gp(zf

e O e (0 P
3T T, 3% v, ey T4 Y8, 3y
(2.9Db)
ap(l)
_ 1
0 = 0z
(2.9¢c)
aul(l) avl(l) awl(O)
(o) (o) (o)
F (EE———+u ( )EE———+ (0)3h ) " at z = 14R F_h°
ot 90X oy 1 0o €
(o) (o) (o) (2.11a)
3h ) (0)8h2 (o) hz' 0
F (___§E_+u ———5§—+v1 3w = W, at z = (l+R F"h )D
(2.11b)
- B*L . . . .
where B = R 3’ which is assumed to be of order unity by

0 _
the assumption (iii). The cross-differentiation of egs.
(2.9a,b) yeilds

(i) av (1)

] (o) (o) 9 . a1
(5+u —-+v 5;)( L ) 4 13X" 55 *

fgv1(°’ = 0. (2.12)

Substituting eq. (2.10) for the horizontal divergence in

eq. (2.12) and integrating eq. (2.12) vertically through

the layer and applying the boundary conditions we obtain
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v
1

(§%+u1(°)—§+v (0)—20(

X 1 oy ox oy

(2.13)

In this derivation the vertical velocity at the free sur-
face is put to zero because Fe <<-.Fi by assumption (v).
Eg. (2.13) is a vorticity equation for the upper layer,
which states that the rate of change of relative plus
planetary vorticity is due to the stretching of the column
of the fluid via the vertical displacemént of the inter-
face.-

For the lower layet the same procedure with boundary
éonditions at the interface and the bottom yields another

vorticity equation.

B Ly
=) =0

.
(2.14)

(o) - (o)

9. (o) 3 (o)_23 2 2 (o)
(8t+u2 8x+v2 By)( X oy F2h2 Byt

D

where B is the scale of amplitude of topographic vari- |

A\

ation and it is assumed that Di_ <0(1).
0

The continuity of pressure at the interface requires

(o) _ (o) _ (o)
pth' P, P, PP, )
Because p2 - p1 << pz,'we may approximate
(2.15)
n (o) . P (o) _ p (o)
2 2 1

Eq. (2.15) satisfies the matching condition of vertical
velocity automatically. Utilizing the presSure as a stream

function, we may rewrite egs. (2.13) and (2.14) with (2.15) .
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) 2
=+ + - )+ = .
5 J(\PI, )1 (v lbl Fl(wz IPI) By) 0 (2.16)
3 . B
__-l- - + )= R
GGErT (0, e D1 (VR 37, (9 =9 ) +6yig ) = O (2.17)
where w1= p1(°), wz = p2(°). And the Jacobian operators
are used in the advection terms such as J(wv, )=u —§+V —i.
‘ 1 19X 19y

Large—Scale dynamics controlled by the bottom have
been investigated by many authors (Rhines (1970), McCartney
(1975), Freeland, Rhines and Rossby (1975)) and its effect

in the nonlinear processes may be very significaht (Rhines,

private communication), if typical values of ﬁ/RoD approach

or exceed unity. However, in this study the efforts will
be concentrated on understanding the dynamics which are con-

trolled internally, neglecting the bottom effect.

II-2 Energy Conservation

For a flat bottom ocean the basic equations (2.16) and
(2.17) are written in a tensor notation for convenience in

deriving energy equations.

[=2te AL 12 2y +F (¢ -p )+8 } = 0 (2.18a)
ot aBaxa 3x8 Bxi axiVI 1 72 Ta b4 )

[=2te v, o 1{=2 5, +F (Y -V )+By} = 0 (2.18b)
ot aBdx, Oxg 9%, axi‘*’2 , W TV, ITRY . LOD
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where B is the permutation tensor of the second order

and i = (1,2). With an identity

W 5 3 3 5 . 3 3

aBBxa axBAaxi Bxi 1 aBBxi axa ax8 9X. "1

multiplying eq. ( 2.18a) by wl , we obfain

d . aw Bwl 5 5 wl dl aw 1 . _
t(ZF ax ax.)+¢1§E‘¢1'¢1)=ax. F dt 3x (—w ,——SY+¢2-WI)
1 1 1 . i 1
(2.19a)
di ] : 3 ]
where 3t - 3¢ + ui§§ + V15§ (i =1,2).

Similarly the equation for the lower layer takes the form of

a 3 9y | v oa oy
1
3t 3F 7% 3 2’+¢ 0, )= gk D) +
2 1 1 2 1

J(%wzz,ﬁfsy+wl-wz)
(2.19b)

The sum of egs. (2.19a,b) yields the energy equation:

d ' d | voa v, 4
-—t-(KE1+PE1)+a—EfKE2+PE2)=V'{(Fl— FEvy +F Tew,)

1.1 2, 1, 2 .
.-2-(5,-;1p1+-§-2-1p2 )ﬁgV(sy)}
(2.20)
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with the definitions of energy densities

1 ( (0)2

KE = 2F (Vw -Vw ) S5 (0)) :kinetic energy density
1 1
1 1 in the upper layer,
.1 ()2, ()2 e e o ‘
KE = 55 (Vw Vw )= (u +v y:kinetic energy density
2 2 :
2 2 in the lower layer,
'PE = PE 5—%¢ ¢ ) 2= l(h(o) ) potentlal energy density, which
1 is formally divided into two

layers.

It is possible to show that the terms in the right hand
side of eq. (2.20) represents the pressure work.
For a closed basin with zero normal velocity on the

boundary, the integration of eq. (2.20) gives

-—-—-a __-.__l e _.___1 . ;.‘_ -_ 2 =
: ,U{ZFlwl vw1+2F2v¢2 Vp 45y -b '} dxdy = 0
(2.21)

Therefore the total energy of the closed basin is conserved.

II-3 Exact Solutions of the Basic Equations and Their
Stability

It is well-known that the egs. (2.16, 17) have exact

solutions, holding for arbitrarily large amplitude.
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(i) Barotropic Rossby wave: - The stream functions are

wl 1 : _
= wo sin (kx + £y-th)
v, 1 .
with the dispersion relation w_ = =Bk .
T 2 2
ke + &
Correspondingly, hio) = 0 and the horizontal motions

in two layers are in phase vertically.

(ii) Baroclinic Rossby wave: The solutions are

L F .
1 .
= wo sin (kx + Ry - wct)
-F
lPz 2
with we = — Bk . The motions are out of
. k? + 82 + F + F

1 2

phase by 180°,

(iii) Steady zonal current: In the limit k - 0, the
freqﬁencies of both waves go to zero. Therefore
steady 2zonal currents exist as particular cases of
baiotropic and baroclinic Rossby waves. The cur-
rent can be either barotropic or baroclinic.

In fact, the same dispersion relations have been de-

rived in a linearized model by Veronis and Stommel (1956

), whiéh are shown in Fig. 1.8 ; the dispersion re-

lations are the same, because the wave-like solutions of

the basic nonlinear equations are exact,
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the advection terms cancelling each other identically. It

is obvious that the superposition of many different waves

- does not satisfy the nonlinear equations.

The stability of the current configurations described

by these exact .solutions have beenlinvestigated extensively

by various authors, except for the baroclinic Rossby wave.

Some of these earlier studies are relevant here, for

example:

(1)

(ii)

Instability of the zonal current in a barotropic
fluid: The existence of the absolute vorticity ex-
treme is necessary for instability (Kuo, 1949).
Instability of the baroclinic zonal current in a
two-layer system: Thé potential vorticity gradient
must be somewhere positive and somewhere negative
for instability to occur. For a horizontaliy uni-
form current this condition requires a minimum ver-
tical shear to overcomé a stabilizing beta-effect
(Pedlosky, 1964a). There exists a short wavelength
limit of uﬁstableiperturbations and the constant
phase lines of growing perturbation tilt opposite to
the vertical shear (Bretherton, 1966).. The Reynolds
stressés incorporated with.the weak horizéntal shear
intensify the shear'(Simmons, 1974). Physical ex-
planations of (i) and (ii) in terms of vorticity-
induction have been given by Lin (1955, p. 57) and

Bretherton (1966), respectively.
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Instability of a barotropic Rossby wave: - Lorenz
(1972) and Gill (1974) have shown that a single
wave can break down via a generalized kind of shear
instability, eifher with large or small amplitude

of the primary wave.
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IITI. PERTURBATION EQUATIONS

III-1 Linearized Perturbation Equations

The subject of this study is the stability of the baro-
clinic Rossby wave; For a convenience of analysis it is
assumed that the two layérs are of equal depth H and the
effect of different depth will be discussed in Chapter V.
The wave considered propagates due west with a wavenumber

vector (k, 0). Therefore the unperturbed state is described

by

) % sin(k(x - Ct)) (3.1)

where the phase velocity C 1is determined by

C = __=B o (3.2)
k% + 2F '
with F = E%ﬁ—. The corresponding velocities are

(0, U cosk(x-Ct)) and (0, -U cosk(x-Ct)) in the‘upper
and lower layers,respectively. Fig. 3.1 shows schematically
the velocity field, which is characterized by the sinusoid-
ally varying horizontal structure and the vertical shear
concentrated at the interface.

Assuming infihitesimal perturbation stream function

¢, (@ = 1,2) such that [¢ | << |wa| superposed on the




Fig. 3.1

50

.

- — g
’

f§\i\§§‘"“~1~

-Vi (x)=Ucos (k(x-Ct))

VZ(X)':"‘V.‘(X)

VELOCITY STRUCTURE OF A BAROCLINIC
) ROSSBY WAVE

The velocity structure of the basic wave is
characterized by the presence of horizontal
shear as well as vertical shear, associated with
kinetic and potential energies respectively,
which are partitioned by (L /L)z , where L _is
the internal radius of p deformation®
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unperturbed state, we obtain the following linearized per-

turbation equations

3¢l
5% 0
(3.3a)

3 3 N
§E{V2¢1+F‘¢2'¢1)}+U cosk(x—Ct)§§{V2¢1+(F+k2)¢1+F¢2}+B

5 ' 3¢
Oyy2 - - —ce) O (y? 2y 4 -
gLV ¢,+F (¢ =4 ) }-U cosk(x Ct) 5 V%0 +(Fik )¢, +F9 }+p—5Z=0.

(3.3b)

Here the quadratic terms in ¢a from eq. (2.16, 2.17) are
neglected, while the advections of the unperturbed potential
vorticity bj the perturbation velocity and of the pertur-
bation potential vorticity by the-unperturbed are included.
Since the unperturbed state is propagating, it is conven-
ient to anaiyze the stability in the coordinate frame |
moving with the phase speed C. The_nécessafy transfor-

mations are

Yo =Y
= t.
0
In the new frame eqgs. (3.3a,b) become

Iy o2 _ _ 0 ~ 3 2
ET{V,%*F(¢2 ¢1)} [Cg——U coskxg—]{V ¢1+(F+k§¢l+F¢2} =0
(3.4a)
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9 2 d d 2 2
— + - - [Co—t — + + =
5ElV 9, +F (6 ¢,)-IC5 Ucoskxay]{V ¢, (F+k*) ¢ F?r} 0 |
(3.4b)
where the subscripts on the new coordinates are omitted
and the substitution B = -C(k2+2F) from eq. (3.2) is

made for the last terms in egs. (3.3a,b).

III-2 Energy Equation for the Perturbation

From egs. (3.4a,b) it is possible to derive the
equation of perturbation energy, which will serve as an
important guideline in the perturbation analysis and its
physical interpretation. After a similar manipulation
done in deriving the energy equation in Section II-2 we

get

S TID PR V6 14106 =6 1212 (6 —Pvs yag. (s O
TelzF (VO *Vo +V6 Vo )+3(¢ -4 )*}=V (0,570, )V (6,550,

A (3.5)
6 (6 - v (502 Loz k2
¢1[C3X V1(X)3Y]{Fv ¢1+¢1+¢2+ F¢1}
- 9 _ dyrlye k2
9, 05 =V, ()5, 1 {EY ¢, +0, 40 +50 !
| where Vl(x) = U cos kx and Vz(x) = —Vl(x). It is assumed

that the perturbation ‘stream functions are periodic in

space, i.e.

¢a(x,y) = ¢a(x + 3%, y) = ¢a(x, y + 3%)
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where %g is the wavelength of the unperturbed wave and
3% an undetermined meridional wavelength of the pertur-

bation. Integration of eq. (3.5) over a cycle in space

yields

a l . 3 l - 2 =
—ﬁff[ﬁw«bl VO +V6 V¢ )+3(9 ¢ )?] dxdy =
cycle ,

jf(v1 (x)=V, ()¢ —% dxdy +

cycle .
1 AV 89 96 av_ b9 3¢
4 1 1 1, 2
j]’F pe d3x dy dx 9x By] dxdy.

cycle - (3.6)

‘The integration of the terms multiplied by C in eq. (3.5)
vénishes, because the perturbation is assumed to be periodic.
The definition of perturbation energies is very ap-

parent in eq. (3.6): 5%-V¢1°V¢ and f%-v¢2-v¢2 are the
kinetic energy densities in each layer and %(¢2—¢1)2 the
potential energy density. ~The rate of change of the total
perturbation enérgy is determined by the energy transfer

via the interaction-between the perturbation and the un-
perturbed flow specified on the right hand side of eq. (3.6).

The interaction associated with the vertical shear of the

unperturbed state representing an available potential

energy, (the first RHS term) will be called the baroclinic

interaction and that involving the horizontal shear (the
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second RHS term) representing an available kinetic energy,

is the barotropic interaction. The first term is the

familiar product of the perturbation heat flux and the
temperature gradient, while the second is the product of
Reynolds stress and mean horizontal shear. For the scales
under consideration the Richardson number is much greater
than unity, Ri = F—%—y, that the effect of the kinetic
energy with the vertigal shear is negligible.

The intensity of the two interacpions is séaled by
1/F: the baroclinic interaction dominates the barotropic
if F >> 1 and vice versa if F << 1. Because of its
critical role in detérmining the instability characteristics
of the current it is very iméortant to have a good under-
standing regarding. the nondimensional parameter F: it
is a measure of the vortex stretching against the relative
vorticity in egs. (2.16,17) and the potential energy com-
pared with the kinetic energy in eq. (2.21). The para-
meter f ~can be understood as a ratio of two length
scales, F - LZ/Lp2 with the radius of deformation defined
as L ? = 2— , The radius of deformafion is fixed in-

ternally by®the stratification, rotation and depth.

ITIT-3 1Integral Properties of Perturbation

Some important instability characteristics can be

found by specifying the perturbation stream functions even
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before detailed analysis. The perturbations take the form

of

¢1 - R X1 (x) el(zy + ot) (3.7)
€ xz(X)

where x1 and x2 are complex in general and assumed to
be periodic. Substituting eq. (3.7) into egs. (2.16,
17) and multiplying by X1* and xz*, complex conjugates

of X, and xz respectively, and adding two equations we

get
'b., % iq_ * o, 2 2 2 - — 2
alx *X, X, *x, =R () +x, ) =F(x,-x )}
- % "+ + 2__ 2 + ‘+ * })+ + 2__ 2 +F L
Clx, *{x “#(F+k*~2%)x +Fx 1 x,*{x, (F k5-2%)x +FX 1]
(3.8)
- +48U COskx[xl*{x;'i(F+k2—12)xl+Fx2}-
#{y "G (F+k2-22)y + =0
X, *{x, F(F+k*-2%)x _+Fx 1]
o . S 2 e e . - dq -
where the notation g £ g*q and q~ = - are used.

dx
Under the condition that the derivatives of x are also

‘periodic, the integration of eq. (3.8) over (0,%}) yields
-0E + CR + UI =0 (3.9)

h E = {x “24+x “2+22(y %4y )+ - 2}dx
where f{)(1 X, (X1 X, ) F(X1 Xz) }
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R = 2Im {xl*'xl’fl-xz*'xz"+(F+k2—22) (xl*‘x1+x2*’x2)+

*
FX, x]}dx

I =J[[coskx{—xl'2+x2’2+(F+k2-22)(Xlz-xzz)}+

* -— *
E coskx(x1 X,"X, X1)
'k * - * - o
+k sin x(x1 x1 x2 x2 )ldx

The integral E is positive definité,'representing the
total perturbation energy as in eq. (3.6) and R is real.

The imaginary part of eq. (3.9) gives

a, E =.2q/im{2F(coskx)xl*x2+k sinkx(xl*xl'}xz*xé’)}dx

(3.10)
where o, is the imaginary part of a. It can be shown
easily that eq. (3.10) is essentially the same pertur-
bation energy equation as eq. (3.6). The perturbation with
a positive value of oy will damp out and that with a
negative value will amplify its magnitude exponentially in
time. If we write |

- 1@ (%)
Xo ()= Ix,(x)e %,

eq. (3.10) takes the form of
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R.U[j[x ||x |s1n(®-®)coskx dx+ (|x l’@ -Ix |2® )sinkx dx]

a, =
1

f{ 3 (X, THx, TR (x P 2))+—<x -x,) *}ax
(3.11)

It is trivial that o, =0 if &£ =0 and & is assumed
to be positive. ‘The sign of o is determined by the
numerator in eq. (3.11), in which the first integral cor-
responds to the baroclinic interaction defined in the pre-
vious section and the last the barotrqpic interaction. The
structures of the integrals are revealing some consequences
of the interactions and are worth examining in detail here.

(1)  Baroclinic Interaction

The contribution of this interaction depends upon the
correlation between the vertical phase difference in the
perturbation (GDZ—-GQ ) and the vertical shear represen-
ted by cos "kx. |

1f, (@, ®,- @, =0or m,
- the perturbation stream functions in eq. (3.7) are ver-
tically in phase on the plane x = const. if QDZ - ® =0

1

or out of phase if @Dz - QD1 = 7, which means that the
perturbation is either pure barotropic or baroclinic. In
either case there is no baroclinic interaction.

If, (b), 0 < @Dz - ® L, <7 with cosv'kx <0 or

- <®2 - ® < 0 with cos kx>0,

1
the interaction yields a negative value in oy and the per-

turbation is unstable barociinically. It can be seen that
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the common feature is that the lines of constant'phase are
tilted opposite to the vertical shear. This is the same
characteristic vertical structure as found in the unstable
perturbations in zonal currents (Bretherton 1966).

If, (c), -7 < @2 - @1 < 0 with cos kx > 0 or

| 0<®2—®1<1rwithc03kx>0,

the relation between the phase lines and the vertical shear
is opposite to that in (b) and the corresponding per-
turbation is stable.

(2) Barotropic Interaction

This interaction is determined in each layer separately,
hence the name barotropic interaction. As far as this inter-
action is concerned, what is important is the horizontal
shear, not vertical shear.

From these classifications two important features
emerge. .Firstly, the baroclinic process is concentrated
around the maximum vertical shear, while the barotropic
brocess is concentrated around the maximum horizontal shear.
Secondly, each process requifes a unique relation between |
the perturbation and the unperturbed flows. Generally the
two maxima do not coincide and an unstable pefturbation in
one interaction may not have a right phase to be unstable
in the other interaction. 'Therefore it may be possible
that one interaction transfers energy from the unperturbed

to the perturbation flow, -and the other does the reverse.




The balance between the two interactions varies with L/Lp

as discussed and is expected to be very subtle around

ﬁi "~ 1, because the vertical and horizontal shears are

P
comparable.

59
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IV. PERTURBATION ANALYSIS

IV-1 Solutions in Fourier Series

Having found some important characteristics of the
stability, we are going to look at the stability criteria
in terms of the parameters and ﬁhe structures of growing
pertu;bations in detail, by solving the perturbation
equations in Fourier series.

The perturbation stream functions-afe decomposed into

the Fourier Series in space, discrete in x.

oy =
- Re 2: e1(nkx + gy + at) : (4.1)
¢2 00 Cn '

where the amplitudes (En,;n) and the frequency o are
complex in genefal and n will be éalled mode number.

This solution, periodic in x with the periodicity of the
unperturbed flow, is probably not the most general solution:
as in Floquet's theorem for Mathieu's equation, we expect
the general solution to contain an additional ei\)kX

factor where 0 < v < 1l. But the solutions sought here,
analagous to the Mathieu functions, are 1ike1y to be re-
presentative of‘the total set. Substituting the Fourier
series into eq. (3.4a,b) and making use of the orthogonality

of the series we obtain the following equations relating the

amplitudes of three consecutive modes centered at n.
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{ (n? R+P+1) €+ }- 2n( )2{ (n?K+P-1-K) & ey }
(4.2a)
~{(n-1) *R+P-1-K}g _ +z . -{(n+1) 2R+P-1- K}£n+l +1 = 0
—;{ (n?K+P+1) ¢ +g }- 2n( )2{—(n2K+?—l—K)cn+€n}
(4.2b)
+{(n-1) *k+P-1-K}g _ -£ . +{(n+l) *R+P-1-K}g .~ .. =0
2 2
where A = —gr ; K = %;, P = &i' and S = g—. These
UF2 - F . u?

nondimensional parameters can be better understood in terms
of dimensional quantities, bracketed whenever necessary

not to be confused with the nondimensional.

A = Tﬁ}%lT : frequency and/or érowth rate of pertur-
g bation normalized by [U/Lp].
S = {g%z : square of the ratio between the phase ;
speed of the unperturbed and the maximum |
. particle speed.
K = F%4 >: square of the ratio between the radius of
deformation and the écale of the unper-
, turbed field L = 1/k.
‘P - Eij ¢ square of the ratio between the radius of
| deformation and the meridional scale of
the perturbation LP = 1/%.
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Any length scale here is meant to be equal to the corres-
ponding wavelength divided by 2w.
A set of particular combinations of amplitudes

(En,;n) is very useful in the analysis.

o =& 4+ : barotropic part ét n.

o] =§ - : baroclinic¢c part at n.

+

The definitions of (Gn ' Un—) are clear in the inverse

transformation as
N .
g, = 3lo  + 0 ), A (4.3a)
_ 1, |
r = E(gn -0 ). (4.3b)

The sum of egs. (4.2a,b) and the difference between them
yield equations in terms of the barotropic and baroclinic

parts as follows:

'{2A(n2K+P)—2(SK)%n(n2K+P-2-K)}0h+
(4.4a)

Y - r o
-1) 2 - 2 2 - 2 -
+{(n-1) 2K+P-K}P o 1+{(n+l) *K+P-K}P Oo41 = O
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{zA(n2K+P%2)—2(SK)%n(n2K+P—K)}on_

(4.4Db)

+

n+l 0.

+{(n—l)2K+P—2—K}P%6nfl+{(n+1)2K+P—2—K}P%o
These equations form homogeneous equations of infinite
number, imposing an eigenvalue problem for A with
eigenvectors (on+,on_). It is very interesting to find
selective coupling among the modes in their interactions.
The barotropic part of mode n interacts with'thé baro-
clinic parts of neighboring modes (n-1) and (n+l) exclu-
sively in eq. (4.4a). On the other hand, the baroclinic
part of mode n interacts only with the barotropic parts
' of modes (n-1) and (n+l) in eqg. (4.4b). The cohsequence
of this selection is that the entire nonlinear interaction

is divided into two chains of interaction, which are com-

pletely independent of each other as shown below.

The interactions connected by solid and dotted lines
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are called Branch I and Branch II, respectively.

Because there is no overlap between two branches, the
homogeneous equations from egs. (4.3a,b) divide into two
subsets of infihite equations, yielding two eigenvalue

problems. In tensor form they are
A,. X, = -A_X. for Branch I : (4.5a)
= =-A__Y. for Branch II (4.5Db)

where Xj and Y. are

PECIN J - N
+ G-
0__2 -2
o_ ot
-1 -1
X. = o and Y. = o
3 0 J 0
- +
oy oy
oF o,
2 2
\. ) v \ .J
The corresponding matrices .Aij and B, , are made of the
. 1] i

coefficients in egs. (4.4a,b), shown on the following

pages.. N




65

(e9° %)

(g+3%)

(z-a+ie) &

Am+m+mvm.

(ds) z-

wmﬂmxm+va

(d+3¥p) 2

N\mn.H

0 0 0
(z+d+d) 2 0 \A
2d (M=2~d) y 0
A
|
|
A }
O Nm”...: 1 O..
|
| |
(Z+d+M) 2 AL G _ (Z+d+¥) Z
4 (1-2-a) I % | £ & (T-aric)
0 (a+3v)C (d+¥%)
; 2/ed (z-a+3€) %

(3s)¢

J

€T



66

\

(a9° %)
(Z+d+M¥) (Z+d+37) 2
(a+3¢g) mAmmvN wmAN;mv 0 0 °
| e iRt IR .._ i
(a+y)e " (d+M) (a+3) ¢
(as) - _
d(d+3 ~d 5 - 0 0
g (IHE) | e-d & 2d (4-3) "
| N
~ (z+d) Z (z+d)z |
0 | — 0 I 0
! mmAN d) mmANxmv |
]
_ i
| (d+d)z  (a+3) (d+¥) e
0 0 NETE IS TaY
| £ 4 (1-a) z-a 598 | —F(Frae)
e e _____ 400
0 (T+ad+A¥) 2 (Z+d+Mp)
0 0 gd(T-a)  (&+ie) g (IS) ¢

Lt



67

It is worthwhile to explore the possible solutions.
For given values of parameters S, K and P the eigen-

values A and AII will be different in general. Hence

I
the eigenvector of Branch II correSponsing to the eigen-

value of Branch I will be trivial and vice versa. However

. s . . + - .
even the trivial solution in on or Gn is necessary

to determine (£n,cn) in eqgs. (4.3a,b). Suppose Branch II

has a trivial solution, that is

- ,+'_
0~ %17

equivalently

(o]

HQ
N
|
HQ
w. +

€0 = %or Buy =Tiyr Bip T tua, ...
Therefore the components with even mode number are baro-
tropic and those with odd are baroclinic. This structure
will be opposite for a trivial solution of Branch I.

Now let us examine the existeﬁce of a convergent series
as a solution. For a suffiéiently large n > 0 a possible

balance in eq. (4.4a) should be either

+ -
c : o
(a)lo E [ 1 T or (b) | nill N 2(SKfin, and in
n-1 2(SK) “n o o
- +
: °n 1 n+1
eq. (4.4b) either (c) | - | ~ —=—=— or (d) | —=] ~
n-1 2(SK) “n on

2(SK)%n with n > K-g.
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If an eigenvector satisfies (a) and (c), then the series
convérges absolutely by a ratio test (Whittaker and Watson,

1965). Otherwise the series may not converge,

IV~2 Characteristics in 3-mode truncation

It is assumed that the perturbation isvdominated by
three modes n = ¢1, 0, 1) neglecting the rest of modes
compared with these three and the results from this trun-
cation will be carefully re—examined.in higher-mode
analyses. 1In this approximation the matrices Aij and
Bij become finite 3 x 3 square matrices, enclosed by a

dotted line in egs. (4.6a,b), and the eigenvalues are

found easily by so;ving the determinants from egs. (4.5a,b).

2 _ Kp? P {P-(K+2)}
1 = STRepi2y7 * 7 Tor(re2) }iOF Branch I (4.7a)

2 - cK(P=2)% | P(P-K) (P-2) |
ATp = S(P+K)2 + > (PFR) (BF2) for Branch II (4.7Db)

IV-2-1 Marginal stability curves

It will be interesting to find out the regimes of

different stability characteristics. Figure 4.1 shows two
. L :

families of marginal stability curves in (%—,iE) for dif-

: p P
ferent values of U/C. Note that LP is the meridional

scale of the growing instability; the zonal scale is

fixed by that of the unperturbed flow which varies over the
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entire range (0, ).
(L) Branch I: The curve is defined by
P+ SK(S?K? + (K + 2)2);5 = 0,

which divides the parameter space into unstable and stable

regions. - For fi < 1% the value of Lp/Lp increases
o _

monotonically with L/Lp. Near the origin Lp is pro-

. s k
portional to L by (5 + vYS%? + 1)2 and the presence of

Lp is not relevant. For '%i > 5i, Lp/Lp approaches to

p 2
%? asymptotically either from above if z < 1 or from
below if g > 1. 1In any case the regime above the marginal

C
stability curve is unstable and one below the curve is

stable. The unstable regime widens towards smaller values
of Lp/Lp' as U/C increases. The short wavelength limit

of unstable perturbation for éi > 1 is very similar

p
to the usual characteristics of the pure baroclinic in~

stability in a:two—layer model (Bretherton, 1966).

It is most important to note that there are always
some unstable perturbations for any cﬁrrent U/C and any
unperturbed scale L/Lp. Even a weak current with g < 1
is unstable with respect to some infinitesimal perturbations.
This indicates that the beta-effect represented by C in
eq. (3.2) may never be strong enough to stabilize the cur-
rent in this study. With the.parametricélly increasing
beta-effect the perturbation at certain scales no longer
fall within the unstable regime. However, the perturbations

with a sufficiently large scale are still unstable.
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(2) Branch II: There are two equations defining the mar-
ginal stability curve of this branch;

? - 2 =0,

P® + 2SKP? - K2P - 8SK = 0.
The unstable regime is both upper and lower bounded in
Lp/Lp with a band whose width increases with' U/C. As in

Branch I, unstable perturbation exists for g < 1.

IV-2-2 Growth rate for unstable perturbation

From egs. (4.7a,b) it is found that the growth rate of
Branch I 1is always larger than that of Branch II for given
U/C and L/Lp. Therefore only the results of Branch I

are presented here. For a weak current with g = 0.2 the

L

contours of constant growth rate in fi, EE) plane form
' ’ p p

two hills in Fig. 4.2a, one rising towards large I~ > 1

p
with Lp/Lp approaching to unity and the other contin-

uously rising towards a smaller and smaller Lp/Lp as

L/Lp decreases from unity. As a current becomes stronger

as 2 =1.0 and 1.8 in Fig. 4.2b and 4.2c, the hill at

c
large L/Lp tends to disappear and the growth rate changes

very little with L/L the maximum growth rate approaches

L P’
0.4 around EE = 1.2. The restoring effect of B8 clearly

: p
acts to stabilize modes near the center of the figures,
pushing the dominant instability toward small and large

L/Lp; with a strong B-effect the baroclinic and barotropic
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U
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Fig. 4.2a The beta-effect(B) is relatively strong and the
 baroclinic and barotropic instability regimes A

. are distinct for very large and small value of

L/Lp r respectively. The restoring effect of 8

clearly acts to stabilize modes near the center
of the figure. o
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Fig. 4.2b As the basic flow strengthens (or with a weak
_ beta-effect), the baroclinic and barotropic . .

instability regimes merge into a smooth
surface. Short wavelength limit in the
baroclinic regime is shown clearly,

growth-
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" T 7 GROWTH RATE -2 (2-mopE)
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U _
==1.8
0.31
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Lp 0.51 ‘ 0.4
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Fig. 4.2c Same as Fig. 4.2b except for a stronger current
' .case. The meridional scale of the fastest
growing perturbation is fixed at a scale .
”sllghtly larger than the radius of deformation -
in the baroclinic regime and decreases in pro-
portlonal to the zonal scale of the basic flow
in the barotropic regime.
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instability regimes are distinct, while with a weak B-effect,
the regimes merge into a smooth growth-surface.

It should be redognizéd in Fig. (4.2b,c) that the
presence of horizontal shear removes the shOrt—wéve-cut—off
of simple baroclinic instability, allowing a smooth tran-

sition to barotropic instability as one crosses %— = 1.

In L < 1 the normalization of a growth rate by

L
p

U/Lp is not appropriate, because the barotropic interac-—
tion is stronger than the baroclinic, and Lp is not a
dynamically important scale. By renormalizing eq. (4.7a)

it is poésible to obtain

1—,.(§+%)
( ;c )2 = g 1 + 1 ' (4.8)
U/L K - .2 2 K K. 2 - .
(+l+g) 25 1+ 5%

Figure 4.3 shows the renormalized growth rate ﬁ%f as a

function of Lp/L in the range %— <1 and 0.1 <
p

The important results are recapitulated in Fig. 4.4, where , !
the maximum growth rate is plotted. For a strong current !

with g > 1 the growth rate depends very weakly on

G
U/L

U/C; the growth rate for g = 2 1is slightly smaller than

that for g » ®. However it decreases in proportion with
U/C in the range g < 1l. It is most remarkable to find
that the renormalized growth rate increases rapidly with

L/Lp. This phenomena may be explained in terms of avail-

able energies. As shown in section IIT-2 only the kinetic
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Fig. 4.3 Growth rate aL/U, renormalized for the range
L. L Lp., where the barotropic interaction is

important. The scale at'the maximum growth
- rate is the same as that of the basic flow
L

for g = oo and L = 1 and the basic flow

p
generates a larger scale as its scale and
strength decrease. :
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Fig. 4.4 Recapitulétion of Fig. 4.3. Figures beside the
curves are values of U/C and Lp/L,at the maximum

growth rate. Note an increase of the growth
rate as L ~» Lp , which is possible because of

of an increasing supply'of potential energy.
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energy is available for % << 1, but the potential energy
is as évailable as the kingtic énergy with fé- + 1,
Therefore this increase of the growth rate ispmost likely
due to a positively accumulating effect of the barotropic
and baroclinic interactions.

It is instructive to examine thevgfowth rate for a

- very strong current. Taking g + o in eq. (4.7a) we find

the maximum growth rate

[o] . = (3 -'2/7)%[U](f% +

i‘max
p

with the scale

[o. ] > 0.4142 | L \with 1L+ 1.1 L, (4.9)
m p

u .
[ai]max »+ 0.29 [E] with Lp -+ 1.55 L. (4.10)
It is interesting to see, here and in Fig. 4.2c and 4.3,

that whereas any large-scale currents with I >> Lp
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generate the perturbation with the radius of defogmation,
small-scale currents generate the perturbation with scale
larger than L.

The latter is reminiscent of the canonical result of
two-dimensional turbulence, where it is proved that a spread-
ing energy-wavenumber spectrum must move preferentially
toward émall wavenumber (in that the center-of-mass of the
spectrum does so). It is enticing to imagine these in-
stability calculations as mddels of the energy-transfer
occurring in fields of geostrophic turbulence.

In these extreme limits it is expected physically that
the growth rate be comparable with the values from simpler
models. In fact, Simmons (1974, see Fig. 4) found the
growth rate of 0.45 in the instability of a parabolic.zonal
current in a 10,000 km wide channel with the radius of de-
formation 1225 km, which may correspond to the case

_IL>> 1.

L
b The growth rate and the scale for ﬁi << 1 are iden-
tical with that which Gill (1974) found inpthe stability of
barotropic Rossby waves. When fi << 1 the two layers

Aare dynamically independent (and the interface.is effectively
rigid), so that the barotropic instability problem is

subsumed as a special case of the present theory.
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IV-3 Higher—mode-analyseé

Although the results from the truncated series with
three modes n = (—l; 0, lf look physically consistent
in determining the stability criteria, the growth réte
and the scale of the most unstable perturbation, it is
necessary to investigate the stability characteristics
using higher modes in order.to check the reliability of
the 3-mode results by estimating the possible truncation
-error; THerefore analyses have been carried out with five,
seven and nine modes. |

In éach truncation first a polynomial in A is con-
structed by solving the detefminant made from egs.
(4.5a,b), then the polynomial is sol&ed for A analytically.
By doing so, it is possible to get rid of an inevitable
computation error in solving the determinant for A
directly. The direct numerical computation of eigenvalue
A from the determinant is found to be very unstable
around the perturbation scale with the maximum growth rate.

In any case it is found that the growth rate from
Branch I is always larger than that from Branch II as in
the 3-mode truncation and the following analysis will be
mosfly concerned with the results from Branch I. The
analysis in 5 modes does not show any significant depar-
ture from the 3-mode results and its results are included

in the following section dealing with the 7-mode analysis.




IV-3-1 Analysis with 7 modes

' u 1

For given values of parameters '(E, I ER) there are
p p

seven eigenvalues and the current is classified to be

unstable if any of them is complex with negative imaginary
part. If_there'are more than one growth rate, the largest

one is assigned as the growth rate. Figure 4.5 shows how

the growth rate changes with Lp/Lp when g = 1l. For
fi > 1, the behavior of the growth rate is the same as
p

with the 3 modes, as far as the shor£ wavelength limit of

unstable perturbations and the maximum growth rate at

L

ER ¥ 1 are concerned (compare Fig. 4.2b. Fig. 4.5 cor-

p .
responds to vertical cuts in Fig. 4.2b).

For =X < 1 the renormalized growth rate =%— has
L . U/L
the maximum at a certain scale, Lp/L.shown in €he

following table:

g 0.5 1.0 2.5 10.0
L) -0
Lo
4 3.3(3.2) 1.75(1.9) 2.5(1.4) - 1.75(1.4)
.7 2.1(2.2) 1.4(1.4) 1.4(1.2) 1.0(1.1)
1.0  1.5(1.5) 1.0(1.1) 1.0(1.0) 1.0(1.0)

Table: The perturbation scale normalized by the unperturbed

scale, LP/L, at the maximum growth rate. For

&
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These curves correspond to vertical cuts in

Fig. 4.2b( 3-mode ). Growth rate shows
basically the same behavior as found from the
3-mode analysis; short wavelength limit and
maximum growth rate at chz Lp in baroclinically

controlled flows, and generation of 1argér scale

in a barotropically controlled flow.
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comparison the scales predicted from the 3-mode

truncation are also presented in parentheses.

The most unstable scale is determined by comparing growth
rates calculated for discrete valués of ‘i? so that
there may be some uncertainty in pinpointing.the scale and
fhevgrowth rate. Nevertheless it is quite clear. that the
7-mode results are over all in very good agreement with
the 3-mode. It is very significant that the nonlinear
interactions generate the perturbation with a scale
iarger than the uﬁperturbed one for L < Lp and the ratio

between the two scales enlarges as %L -decreases.

o
Figure 4.6 shows the variation of the maximum growth

rate ' with respect to the perturbation scale as a function

ﬁi. In the range fi < 1, the behavior is strikingly
p p
similar to the 3-mode variation (see Fig. 4.2b and 4.4);

of

the series converges quickly in this range as shown inva
later section.The extremum in the growth rate at g =1, v |
is not satisfactorily understood. Compared with the
3-mode analysis in Fig. 4.4, the 7-mode analysis shows
about 15% incxease in the growth rate.

In the range %L.i 1‘>there is very little change
in the most unstable sgale, but greater departure in the

. growth rate ffom_the 3-mode results'exists. The growth

rate U/g increases confinuously with L/Lp and appears

P
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Fig. 4.6 For region L < L _ this figure is very similar

to Fig. 4.4 from the 3-mode analysis, indicating
truncation errors are small. For L > Lp ;s a

slight decrease of normalized growtﬁ rate as
L > Lp from above is notable. This may be due

to a feedback of energy into the basic wave via
the interaction of Reynold stresses with the
mean horizontal shear.
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to approach an extreme value. A similar tendency has been
found by Simmons (1974) from the stability analysis of a
parabolic zonal curreht, which is reproduced in Fig. 4.7.
In both cases the introduction of a weak horizontal shear
(non-zero ¢ in Simmons' case, ﬁi > 1 in our case),
into the baroclinic current reduces the growth rate. The
growth rate for the widest channel in Fig. 4.7 is 0.45

and just the same value is predicted in this study for a
L

‘ U
~corresponding case with 5 =1 and = = 2.6, the channel

C L
p

width being approximated aé a half wavelength. However,
the characteristics of the two models become widely dif-
ferent as L/Lp approaches ﬁnity and decreases further:
Simmons® curfent is stable, while thé meridional current
in this study is still unstable. vThe horizontal structure
in this study is closer to another zonal current from
Simmons (1974), which is made of two sinusoidally varying
currents (see eg. 5.1, Simmons) and found to be also un-
stable in a narrower channel. |

To examine truncation error, the growfh rates from
the 3-mode and 5-mode analyses are plotted together in

Fig. 4.6 for

Qlc

=1, which represents the rest as far as
the comparison of the growth rate is concerned. There is .
no sign that the growth rate increases with L/Lp from the

3-mode analysis; the truncation error depends upon EL.
p

The error reaches about 20% at =~ = 10 based upon the

L
o
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7-mode growth rate. "~ The 5-mode gréwth rate differs from
the 7-mode one, but in fact a calculation with 9 modes

shows very little further change. The growth rate from the

9-mode analysis is 0.5125 at ﬁi = 10, compared with

0.5114 from the 7-mode when g

o

1 and 0.5428 compared
with 0.5304 when g = 5. At this stage it was decided
that the 7-mode analysis is accurate enough within the
range of parameters considered here.

Figure 4.8a shows the distribution of relative mag-

nitudes of amplitude at the maximum growth rate. Clearly

the series converge very fast for small value of U/C and

'L/Lp and slower and slower as U/C and L/Lp become
large. In four cases (g, ﬁi) = (1.0, 1.5),(1.0, 1.),
p

(2.5,2) and (10.0, 10.0) the amplitudes at n = *2 are
larger than those at n = *1. This is believed to be some
manifestation of the structure of the unstable pertur-
bation when ﬁi_> 1, which has larger barotropic com-
ponents than bgroclinic, recalling that all the even modes
are barotropic in Branch I. The same kind of perturbation
structures have been found in Branch II, now odd modes
being barotropic, whose examples are shown in Fig. 4.8b.
In all three cases the largest amplitudes are at n = *1
and the amplitude at n = 0 takes the nekt. In one of
them n = *3 have larger amplitudes than n = *2. It is

speculated that this preferential partition, particularly
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AMPLITUDE DISTRIBUTION
AT MODES (-3-2,-1,0,1,2,3)

 BRANCHTI
(’(;U"::‘p%f;) | < (25,2,1) (10.0,10, 1)

=(1.0,10,1) _

Fig. 4.8b A tendency to generate a strong barotropic
component of growing perturbation can be
more easily seen in Branch II. 0dd modes,

n = %1, £3, cccecee: , are barotropic vertically.
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at n = 0, which represents a puré zonal component in the
perturbation, may cause the growth rate of Branch II smaller
than that of Branch I.

The fastest growing perturbation haga unique meri-
dional scale and is comprised of four zonal scales in the
7-mode analysis; it is natural, therefore, to plot the
perfurbation kinetic energy as a developing (scalar) wave-
numbef spectrum, Fig. 4.9. Irrespective of U/C and
L/Lp, mode n = 0, the lowest wavenumber representing the
zonal component of the perturbation, contributes the highest
peak, as suggested in Fig. 4.8a. Therefore the meridional
scale serves as a good measure of the perturbation scale.
The spectrum is felatively wide-spread for small L/Lp and
declines toward hiéh wavenumber very quickly as L/Lp in-
creases from unity. The pattern of-major energy transfer,
to a larger scale if L < Lp and to a smaller scale (the
radius of deformation) if L > Lp, is‘basically the same
as discussed already regarding Fig. 4.3 and 4.5. Thus we
are able to produce with a single inétability mode a dquasi-
continuous Fourier wavenumber spectrum. This constrésts
the recent geostrophic turbulent theories, which describe

observed sloping spectra as being a part of a turbulent

cascade.
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Fig. 4.9 Relative perturbation kinetic energy plotted
as a scalar wavenumber spectrum. Wavenumber
-unity corresponds to the deformation radius and’
the wavenumber of the basic wave is underlined.
- Irrespective of U/C and L/Lp , mode n = 0, the

lowest wavenumber representing the zonal
component of the perturbation, contributes the
It is interesting to produce a
quasi-continuous spectrum from a single mode.

highest peak.
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IV-3-2 Baroclinic interaction vs. barotropic interaction

The growing perturbation draws its energy from the un-
perturbed field and two energy transfer processes called
barotropic and baroclinic interactions are discussed in
section III-2. Since these interactions occur at the same
time and each interaction requires a unique relation be-
tween the perturbation configuration and the -unperturbed
~field, the exact contribution of each process in the in-
stability has been left to be answered until the structure
of the perturbation is found in detail. ' From eq. (3.6) it
is possible to derive the interactions in terms of eigen-

vectors.

Baroclinic Interaction = 2w UF{A Alsin(e1 -8 ) - AIA2
0 "o

sin(6_ -6 ) + AA sin(6 -6 ) - A A sin(6 -6 ) +...}
2 1 2 3 3 2 3 4 4 3
(4.11)
Barotropic Interaction = —ﬂsz{AoAl sin(e1 -6 ) +.38 A
sin(6 - 0 ) + 5A A sin(8 -6 ) + ...} (4.12)
2 1 2 3 3 2
where A = |c 7|, a =lo |
, q 2q 29-1 20-1

e = phase (o +), o
20

29 20=1

with the reference A0 = 1 and 06 = 0.




93

In the extreme limits when ﬁi >> 1 or fi << 1, the
, P
energy transfer is dominated by the baroclinic or barotro-

pic interaction respectively. The instability near f?—= 1
' p
is of a mixed type, however, and the contributions to the

energy transfer are of great interest. The interactions
. 1 and shown in
Lp

are calculated in three cases around

1=

Fig; 4.10. A strong current case with = 2.5 will be
considered first. The baroclinic préCeéé_alﬁays releases
available potential eﬁergy’towards the perturbation, but
the barotropic process does not. When fi = 1.0 and 2.0,
the flow is unstable baroclinically and a part of the per-
turbation energy feeds back to the unperturbed kinetic
energy through the barotropic interactions, which are 14%
and 4% of the baroclinic energy transfer, respéctively.
The direction of the energy transfers resembles the
results of classical baroclinic instability problem with
a weak horizontal shear (Stone, 1969; McIntyre, 1970), but
fhe horizontal shear in this case is not weak at all. For
é reduced horizontal scale aé fi = 0.4, the barotropic
interaction not only works in thg opposite direction con-
verting the available kinetic energy towards the pertur-
bation, but overrides the baroclinic interaction by 0.63
to 0.37. This augmentatioﬁ of the instability accounts for
L

a s e N
/T near i; =1, in Fig. 4.4. A similar

reversal in the kinetic energy transfer was also found in

the rise in

a channel flow by Simmons (1974). These two examples
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illﬁétrate a dramatic change‘in the energy transfér for a
relatively small change of length scale around the radius
of deformation; from a baroclinically controlled flow into
a barotropically controlled flow and from ihtensifying the
horizontal shear into releasing the same shear.

For a two-layer cosine jet in the atmosphere Brown
(1969) has found numerically a potential energy transfer
to the jet, in ratio 1 to 0.06, at the largest growth

‘rate (See Table 1, Brown).

= 0.5 the effect of baroclinic

ala

In a weak current as
interactions are similar to a strong current case, but the re-
storing B-effect. stops the feedback of the kinetic energy

to the unperturbed field at I~ = 1.0 and 2.0, in contrast

P
with a strong current case. When ﬁi = 1.0 the baroclinic

p
interaction accounts for 29% of the total energy transfer

to the growing perturbation. For fi = 2.0 it becomes 91%.

P .
This is a new result which has not been known until now

and could be significant in a geophysical situation where

the current is not strong.
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V. DISCUSSIONS AND GEOPHYSICAL APPLICATIONS

The prime object of this study was to find the fastest-
growing perturbation and iﬁs energetics in a wide variety
of velocity and length scales, appropriate to the géo—
physical situation; Before going into the discussion of
the properties of nonlinear interactions it may be worth-
while to seek the justification of the method employed
'in the analysis and its accuracy. The parameter ranges

considered in this study are 0.1 < g <10 and 0.1 < ﬁi_< 10.

It was decided that the Fourier analysis is most i
suitable.for the object of this study, because it is uni-
formly valid»for a wide rangé of parameters as long as a
convergent series exists. There are other methods such
as WKBJ analysis (Stone, 1969; Gent, 1974) and perturbation
formalism (McIntyre, 1970), but their usage is limited in
a current with a weak horizontal shear, corresponding to

fi >> 1. The accuracy of the truncation analysis depends

p .
upon how fast a series converges. The distribution of

streamfunction amplitudes in Fig. 4.8a shows a very fast

convergence for g < 1 and fi < 1 and a rather slow
conVergence for g > 1 and T 1. But no significant
o

change in the characteristics is expected by including more
modes than analyzed here because the amplitudes at n = 3
which are the highest modes in 7-mode analysis, drop to

20% of the amplitude at n = 0 .already and the 9-mode
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growth rate is found to be different from the 7-m6de one
by only 2% at most. It is also encouraging to find that
the growth rate from this study is almost identical with
the value for the same parameters from Simmons (1974) which

is claimed to be accurate to one part in a thousand.

Beta-effect

The most interesting>result of this study is that the
meridional current is apparently unstable irrespective of
its strength and horizontal scale. The instability of a
weak current will be discussed first. The existence of
growing perturbations in a current with %g% <1, [U]
being the amplitude of a meridional current and [C] the
phase SPeed of the baroclinic Rossby wave, is shown anal-
ytically in egs. @.7a) and @.7b) from the 3-mode analysis
and the same conclusion is drawn from the higher mode anal-
yses. In other words, the beta-effect represented by the
bhase speed |[C] is not capable of stabilizing certain
perturbatlons in the merldlonal current, however strong
it may be. We must, however, admit an incompleteness in
the analysis in the limit g + 0. There, the choice of
Fourier compohents wiil have the added constraint that the
perturbations satisfy the freé-wave dispersion relation.
Such a resonant-wave instability requires special analysis.

All indications are that the instability will continue to
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be effective, while selecting from a narrower set of waves
than in the present case. |

This instability with a relatively strong beta-effect
is in oontrast with what is found in the instability of
a zonal current. For . a barotropic current Kuo (1949)
found that an extremum of absolute vorticity is necessary
for;instability. For a.baroclinic current with a hori-
zontal shear in a two-layer model Pedlosky (1964a) showed

that for the instability it is necessary

2
da, |¢,l2
dy 2: H o o

o dy T——:—T— =0
o=1 Ua clz

with the potential vorticity gradient defined as

—3§ =B - Uyt F(ul-uz) and E3§ = B - uzyy+ F(u -u ).
Thig is a special case of the instability criteria derived
5y Charney and Stern (1962) for a continuously stratified
fluid and includes kuo's‘(l949) criteria naturally if
u1 = uz.- In either case whether the current is barotropic
or baroclinic, it is very clear that a'sufficiently strong
beta-effect cbmpared with the horizontal and vertical
shears will always stabiliée the zonal current.

Then what happens in a meridional current? The role

of the beta-effect is to propagate disturbance. by restoring

a meridional component of the disturbance velocity. An

oo
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_ incipient perturbation motion in a.zonal current is oriented
meridionally and the motion feéls the beta-effect as soon
as fluid starts to move.  Therefore the perturbation will
simply propagate unless it has a sufficient momentum to
overcome the restoring mechanism by the beta-effect. How-
ever the zonally oriented particle motion associated with
pertﬁrbations in a meridioﬁal current is fully adjusted to
the béta—effect already and this effect has no apparent
~control on such perturbations. It should be remembered
that the basic state is propagating and the perturbations
are analyzed in a moving frame with the phase speed of the
basic wave.

The same kind of a dYnamical consequence was once found
by Schulman (1967) Who concluded in an investigation of the
instability of steady, uniform meridional current that the
fact that the perturbation motion is on the beta-plane is
irrelevant in so far as locating the absolute maximum grow-
ing wave. Recently Robinson and McWilliams (1974) have
stated that the iﬁfluences of both the beta-effect and
topography diminish as their grédient directions become
parallel ta the shear direction, suggesting a similar
dynamical situation without any specific éonsideration.

It may be pointed out that most of basic flows considered
by Robinson and McWilliams (1974) are not, themselves,

steady solutions of the equations of motion, for they
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cross geostrophic contours. The instability results for
such flows should be reexamined.‘ The'preéent work is

meant to improve upon the situation, for the basic (oscilla-

ting) state is a solution.

Instability of Current with L < Lp

The current in this study 1s characterized by the
presence of a horizontal shear as well as vertical shear.
The relative strength of the shears is measured by the
parameter L/Lp and the stability analysis for various
values of L/Lp makes it possible to examine the changing
role of each shear in energy transfers. First we will con-
sidef the range L‘< Lp. In a limit L/Lp‘+ 0 the coupling
between the two layers is negligible and each layer behaves
more or less independently. In terms of’ehergy there is
very little available potential energy associated with the
vertical shear compared with the available kinetic energy
withithe horizontal shear. Therefore it is expected the
characteristics.are close to those of barotropic instability.
Indeed the growth rate in eq. @.8) is found to‘be identical
with what Gill (1974) found in a barotropic Rossby wave.
The vertical structure of the gréwing perturbations, a
mixture of barotropic and baroclinic parts, in this limit
merely assures that two independent instabilities will

occur simultaneously in the two layers.




101

It is interesting to compare the scales involved.

The fastest-growing pérturbation has a scale larger than
the scéle of the unperturbed state by about 50%. The dif-
ference is not very large, but it is persistent. As the
unperturbed scale L approaches the radius of deformation
Lp, the perturbation scale also approaches the radius

of deformation. What distinguishes the perturbation from
the unperturbed field is their vertical structures. The
pure baroclinic field transforms into a mixture of baro-
clinic and barotropic. There is also a very significant
change in the growth rate. The normalized growth rate
ﬁ%f increases almost linearly with L as shown in Fig.
4.6. This must be due to-the increasing importance of the
vertical shear as L +-Lp: more poténtial energy is avail-

able for the perturbation and it can be released without

interfering with the barotropic interaction. For ﬁi = 0.4
p
the baroclinic generation accounts for 25% of the total
energy transfer when g = 0.5 and 37% when g = 2.5. This §

enhanced instability by the vertical shear is believed to

be a novel result.

Instability of current with L > Lp

Compared with a wide range of possible unperturbed
scales it is rather remarkable to find that the meridional

scale of the most unstable perturbation is fixed at the
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radius of deformation. Zonally the perturbation,is ekpressed
as a superposition of many modes and it is found that the
purely zonal component with n = 0 has the largest amplitude.
It should be pointed out that the higher mode with [n| > 0
does not introduce a scale larger than the meridional scale
.as can bé seen in eq. #4.1). Therefore the meridional scale
is the largest possible scale in the perturbation. Thé
perturbation amplitudes at n = #1, *2 in Fig. 4.8a are
- substantial for I'>>Ib' with scales equal to

Lf);,

Lp/(l + n? ;;—)2 . prever, these do not change the scale
very much because: Lﬁ o Lp and L >> Lp. In summary we
conclude that any current with a scale larger than the
radius of deformation is most unstable with‘respect to the
perturbation with the radius of deformation.

The reduction in the growth rate 57%_ -with a de-
creasing L/Lp is a most interesting featgre in this range.
It can be noticed that the rate of reduction increases as
ﬁ -> Lp. In fact, this can be explained in terms of the
individual energy transfers. From the scale it is obvious
that the available potential energy is the main source of
the growing perturbation. The question is what the baro- -
tropic interaction with the horizontal shear does during
the instability process. In a strong current with g = 2.5

it is found in Fig. 4.10 that the barotropic interaction

counteracts the baroclinic interaction and transfers
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energy back to the unperturbed field. The stronger the

horizontal shear is, the more feedback of energy. Therefore .

the effect of the horizontal shear,.which is negligible
when L >> Lp, is to cause a reduction in the growth rate
as L ~» Lp. In fact this is not an entirely new finding
and there have been numerous studies where the same ten-
dency is found either analytically or numerically. But no
systematic approach has been carried out so far because of
" the difficulty in mathematical analyses.

A newifinding may be that the feedback does not occur

in a weak current. As explained already the current with

‘g < 1 1is unstable and the barotropic interaction also ex-
tracts energy from the unperturbed flow for ﬁi = 1.0

v p
and 2.0 when U. 0.5, as shown in Fig. 4.10 This indicates

Cc
that the kinetic energy transfer in baroclinic flow depends

not only on thé scale, but on the current strength too.

The reduction in the growth rate for a weak current may be
an extension of the increasing growth rate in the range |
L < Lp, but the physical explanation requires further in-

vestigations.

Rhines' Numerical Experiments

Some of the numerical experiments carried out by
Dr. Rhines at the Woods Hole Oceanographic Institution are
closely related to this study. Two experiments are dis-

cussed here . with Dr. Rhines' permission. In Rhines' model
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the lower layer is thicker than the upper layer by a factor
of 3.5 and fluid is viscous. The vorticity equations iden-
tical to egs. (2.16,17) are solved first‘in a wavenumber
space and the solutions are transformed into a physical
space. The wavenumber corresponding to the radius of de-
formation is kp = 8. Experiment I which originally
motivated this study, is concerned with the instability of
a lérge-scale baroclinic Rossby wave and Experiment II is
useful in comparing instabilities associated with two very
diffefént iength scales.
Experiment I: Instability of a baroclinic Rossby wave
g=3.2, X =4

L
p

Figure S.l shows the development of the instability
in a series. The stream lines run in a meridional direc-
tion initially wiﬁh very weak perturbations. At t = 1.0 |
(t = 1 is equivalent to about 23 days) the growing pertur-
bations are easily visible and'further amplification is
very clear at t = 1.5. The slow westward propagation of
the stream lines can be seen along the left and right edges.
The wavenumber of the fastest-growing perturbétion is
k_ = 6, which suggests a scale larger than a predicted
scale from the theory by 30%. This discrepancy may be due
to the different vertical structure and initial noise at
wavenumber 6 and 7. The variation of energies at k = 6
in time is shown in Fig. 5.2.- The growing rate of the

total energy is indeed almost exponential, which is 14% -
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INSTABILITY OF A BAROCLINIC ROSSBY WAVE

STREAM LINES IN UPPER LAYER
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Fig. 5.1 Rhines' (1975a) numerical experiment shows that a large-scale baroclanic Rossby wave |
with L ¥ 4 L,
wwowm@mmwos of stream lines are visible along left and right edges. At t = 1.0

(about 23 days later) organized eddy field can be identifiable and further
amplification is very clear at t = 1.5 _

0.0 . 105 | /=10 . | t=15

.u.qw unstable and 'noise' develops into eddy field. Slow zmmﬁzwﬁm
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predicted in the theory during the instability
shown in Fig. 5.1.
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smaller than the predicted rate from the theory for the
L

case g = 2.5 (3.2 in the numerical experiment)‘and I =_4.
In Fig. 5.3 the energy transfer is dominated by the
potential energy transfer from k = 2 to k = 5,'6 and 7,
which is consistent with the theory. There is a loss of
the kinetic energy at k = 6, but the net kinetic energy
increases via the conversion from the potential energy at
the same wavenumber supplied by the instability. If is be-
‘lieved that the dissipation is so small it does not affect
the energy transfer. This'experimenf occupies-only one

point in the parameter space, but it verifies the nature

of the theoretical results.

Experiment II: Instability.with-Two Scales
At the beginning the lower layer is at rest and the
energy spectrum has two peaks, one at k =1 and the other

at k =5, 6 and 7. The energies are prescribed as follows:

k kinetic energy potential energy -
1 2.2512 x 10”2 1.1256

5 3.7538 x 10”1 7.0384 x 1071

6  6.5691 x 1071 9.3845 x 10”1

The subsequent development is presented in terms of the
‘energy transfers in Fig. 5.4. Tt is obvious that the inter-

actions around k = 6 are of order of magnitude stronger
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INSTABILITY OF BAROCLINIC ROSSBY WAVE

L t=105 o . T
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WAVE NUMBER

x {
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+
o. POTENTIAL ENERGY TRANSFER
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CONVERSION FROM POTENTIAL TO
KINETIC ENERGY
O DISSIPATION

5.3 Energy transfer during the instability shown
in Fig. 5.1 is dominated by the baroclinic
process. Barotropic interaction removes
kinetic energy from wavenumber 6, but the net
kinetic energy increases via the conversion
from the potential energy at the same wavenumber
supplied from wavenumber 2 by the instability.
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INSTABILITY WITH TWO SCALES

- 1=0.16
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: WAVE NUMBER

5.4

_TOTAL ENERGY TRANSFER
KINETIC ENERGY TRANSFER

POTENTIAL ENERGY TRANSFER

CONVERSION FROM POTFNTIAL T0O
KINETIC ENERGY
DISSIPATION

Initially energy spectrum has two peaPs, one
at k = 1 and the other around k = 6.
Subsequent energy transfers toward higher
wavenumbers ( k = 8 corresponds to the radius
of deformation ) are concentrated around k = 6
with very little change at k = 1. This -
development is consistent with the theoretical
prediction.

g.p o +
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than those at k =1, although thé potential energy at
k =1 1is the largest initially. The high kinetic energy
level at k = 6 makes the wavenumber six most unstable as
predicted from the theory. It should be noted in the com-
parison that.the current forb k =1 flows zonally in
Rhines' experiment and it may be dynamically stable since
' C is slightly smaller than U. It is speculated that the
strong dissipation of energy throughout the wavenumbers
may tend to drain energy from the low wavenumber to high
wavenumber as energies at high wavenumber increase.
Experiments I and II are also repeated when a realistic
‘bottom topography is present. The results can be stated
that the bottom does affect the lower layer motion by
scattering energies toward the high wavenumbers, but it
does not totally inhibit the instability process in any

case.

Geophysical Application

What does this model imply in the ocean? Applying the
theoretiqal results it is now possible to examine the
stability of various currents of different strengths. So
far the instability theories concerned with the oceanic
process have been limited for_a steady cﬁrrent with such a
large scale that the current can be considered to be hori-

zontally uniform (Robinson and McWilliams, 1974; Gill,
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Green and Simmons, 1974). Although the predicted scale of
the most unstable pefturbation is similar to the scales of
the observed eddies, the artificial assumbtion of steadiness
and uniformity requires an artificially large vertical shear
across the main thermocline greater than or equal to 5 cm/-
sec, as it is steady and uniform, to give an é-folding time
scale of 60-80 days.

In reality the large vertical shear does exist, but it
is associated with a finite scale, as .found in the eddies
themseives, and intermediate scales of Katz (1973), which
" means that the assumption of uniformity cannot be justified
in reality. Nevertheless this argument does not exclude
a possibility that the very large-scale density field is
unstable. Its shear is weak in reality so that it will take
such a long time as one year for its perturbation to grow.
Measurement of this slow process is very doubtful. However,
the geostrophic shear associated with Katz's (1973) profile
is 2 cm/sec/100 m, which gives a shear of 4-5 cm/sec at
least across the thermocline. The e-folding time scale

from this model is

L
P
U

3
i
1| =

where I is the nondimensional growth rate U;%—' As shown
in Fig. 4.6, TI' varies about 20% as the scale of the unper-

turbed field changes from Lp to ten times Lp, but its
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effect in Te is minor compareq‘with the change'due to U.
Taking T = 0.45, 'Lp =50 kn, U=5cm, we have T = 30
days. Larger shears than this one are often seen, and im-
ply even faster growth of the instability.

This example shows clearly that nonlinear interactions
_between scales around the radius of deformation are much
strbnger than any other interaction in the geophysical
situation. It should be emphasized that there is no unique
mean current as far as the energetic eddies at the radius
of deformation are concerned, since they receive energy
from any scale. Upon sepafating currents into edaies and
a time-mean flow, the present ahalysis may"be described as -
a model of eddy-eddy interaction, which shows its vigor,
compared with‘eddy—mean flow interactions in mid-ocean.

The instability of currents with scales smaller than
the radius of deformation generates a scale which is closer
to the radius of deformation. This suggests that all the
energies will be eventually transferred to the radius of
“deformation through a series of similar instability if the
system is left to interact freely. This feature is similar
to what Rhines (197%b) found in a homogenebus:fluid; expan-
sion of scalé is ceased at the radius of deformation in a
stratified fluid here, Wheféas the beta-effect stops the
migration of energy at a particular wavenumber (B/2U)% in

Rhines' case.
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Another aspect of interest ié the change in vertical
structure accompanying these instabilities; a purely baro-
clinic field generates a mixture of barotrophic and baro-
- clinic modes, and reduces its vertical shear. This is a
theoretical indication of thé strong changes of vertical
structure found in geostrophic turbulence.

- Some assumptions and simplification are made at the
beginning of the analysis ‘and deserve discussion in the
application of this model. Hart .(1974) shows a reduction
of the growth rate for a two-layer ocean with an upper
layer thinner than the lower layer by a ratio of & < 1.
‘'The growth rate decreases in proportion to 6% approxi-
mately; it éhanges very gradually for 0.3 < § <1 and
drops significantly for & ~ 0.1. To be realistic, it is
necessary to take into account this change. The neglect
of fhe bottom topography may be justified, based upon the
Rhines' numerical experiments, which show that the realistic
bottom does not interfere with the inétability process
until the perturbation reaches a finite magnitude. This
model is‘not applicable for finite amplitude perturbations,
because they are assumed to be infinitesimal.

Finally, it should be mentionea that there is a need
to explore a further general solution, iﬁcluding subhar-

monic components, aperiodic part, and weak interaction

limit as g + 0.
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VI. CONCLUSIONS

The stability ahalyéis in a truncated Fourier series
shows-that any baroclinic Rossby wave prdpagating westward
in a two-layer ocean with currents oriented meridionally
is unstable with respect to an infinitesimal perturbation
and barotropic and baroclinic perturbation currents are
generated. This is consistent with the dual nature of non-
linear eddies that currents propagate while changing their -
vertical and horizontal structures simultaneously, which
has béén found in observations as well as numerical experi-
ments.

The beta-effect has no apparent stabilizing effect in
the meridional current in contrast with its decisive role
-in the stability of a barotropic or baroclinic zonal current.

The velocitj field described by a’baroclinic Rossby
wave contains both vertical and horizontal shears with po-
tential and kinetic energies available for growing pertur-
bations, which are partitioned by LZ/LS, L being a
wavelength/27 and Lp the radius of deformation. This
study provides an opportunity to examine the Qariation of
instabilityvcharacteristicé with L/L-p especially around
L = Lp, which covers the most neglected part in the clas-
sical theory.

For L > 2 the source of growing perturbation energy

L
p

is a potential energy associated with the vertical shear
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and the fastesthrowing perturbation has the scale of ALp.
There exists a short wavelength limit of unstable pertur-
bations in a meridionél diréction. It is found that the
nondimensional growth rate increases gradually and‘approa-

ches an asymptotic value as L/Lp increases.

For %— It
p

extract their energy from both kinetic and potential ener-

0.4 it is found that growing perturbations

.gies. In a region L << Lp, the functional relationship
between the growth rate and the length scale is found to be
the same as that in the inétability Qf a barotropic Rossby
wave shown by Gill (1974).

In the region 0.4 < fi'< 2, . this study shows a smooth
transition in the growth rage, but‘aﬁ abrupt c¢hange in a
kinetic energy transfer. The nonaimensional growth rate,
ﬁ%f if %i < 1 or 67%—‘ if %L > 1, incréases with L/Lp.
Although ng specific crigeria arg established, it is argued
that the change in the direction of a kinetic energy trans-
fer is responsible for the asymmetry in the instability |
characteristics, that is, the ho#izontal shear in a baro-
clinic curfent reduces the growth rate, while an introduc-
tion of a vertical shear in a strong barotropic current en-
hances the instability substantially.

The results of this study are particularly relevant in

looking at the nonlinear interactions in the mid-ocean which

'may be characterized by a continuous spectrum of length
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scales and no preference in the current direction. A zonal
vertical shear of a few cm/sec across the main thermocline
is stable, but a meridional shear of the same magnitude is
dynamically unstable according to this model. Furthermore
the scale of a current is not necessarily much larger than
the radius of deformation for instability to occur. Instead
the current with a scale close to tne radius of deformation
is more unstable in a sense that it has a shorter e-folding
time. It is believed that this kind of intense instability
around the radius of deformation is observable-in a“time-
scale of a few months in an eddy-rich region such as the
Sargasso Sea.
This model also suggests an influx of energy toward a
particular scale, the radius of deformation, from scales
both larger and smaller than the radius of deformation
which in turn explains why the most energetic eddies found
in the ocean have scales close to the radius of deformation.
The vast difference between the size of the ocean basin
and the radius of deformation makes a direct nonlinear inter-
action between‘the two scalés less efficient than any other
interaction arbund the radius of deformation, which suggestsv
that the understanding of nonlinear interactions arnund the
radius of deformation and the collective properties of eddies
is crucial in constructing a nodel of the general cinculation

in the ocean which may possibly contain hindiéds of. eddies.
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PART II
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I. INTRODUCTION

The role of potential energy in the»dynamics of ocean
currents was not fully recognized until it was realized
that it can be converted to kinetic energy via baroclinic
instability. In Part I of this thesis the transfer of
energy between scales has been further investigated, show-
ing that potential energy is always available for a growing
.perturbation and the instability. characteristics change
significantly with the availability of potential energy.
Also the results of recent large-scale experiments suggest
that the meso-scale dynamics are highly nonlinear as dis-
cussed in the ¥ntroduction of Part I.

" One way to grasp the dynamics of a nonlinear system is
to look at the flow of energy. The understanding of ener-
getics in the ocean will not tell us the exact dynamics,
but it will show us how the ocean works as a mechanical
system. This is a classical approach which has been suc-
cessfully applied in understanding the general circulation
in the atmosphere. In discussing energetics'in the ocean
it is natural to ask what is meant by potential energy and
how big it is and how it changes,‘yet there is surprisingly
little relevant information in the literature.

It is familiar that eddies of scales near the deforma-

tion radius, Lp, have roughly equal potential and kinetic
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energies, but the exact amounts are crucial to the dynamics,
and do not seem ﬁo have been evaluated. 1In éart, this may
be due to the difficulty in defining"available pdteﬂtial
energy.' The objects of Part IIllie here. Firstly, so-

called available potential energy will be defined analytic-

ally. Secondly, this definition will be applied in the
MODE-I and the Panulirus density dafa in order to gauge
the strength of the potential energy present in mid-ocean
in comparison with the kinetic energy.

The primitive definition of potential enefgy for a
fluid particle with density p in a stratified, rotating

.system may be written
PE = pg(z - Zr) (1.1)

where g is the effective gravitational acceleration and
(z - ir) the vertical distance from a reference level Z.+
It should be pointed out that all particles have the common
reference level'zr. Imagine now a state where the surfaces
of constant density are level, which could be reached by
redistributing the whole mass adiabatically. Then it is
obvious fhat the potential energy at this particular state
can not be converted into kihetic energy internally;

This led Lorenz (1955) to introduce‘the.cdncept of
available potential energy (AéE) and to derive an énélytic
expression of the APE from the primitive definition by mak-

ing use of the property of the potential temperature
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conservation. The exact formula of the APE defined on the
potential temperature-coordinate system is not practical
and an approximate form of the formula has been used ex-
tensively in the estimate of the energetics in the atmos-
phere, notably by Oort (1964).. For clarity, Lorenz's
(1955) conceptual definition is quoted here,."The avail-
able potential energy of the atmosphére may be defined as
the.difference between the total potential energy and the
minimum total‘potential energy which could result from any
adiabatic iedistribution of mass. It vanishes if the den-
sity stratification is horizontal and statically stable
everywhere, and is positive otherwise."

A definition close to the concept of the APE has been
used by Fofonoff (1962a), which is called the anomaly of
potential energy X,

P
x (P) = J PSdPp (1.2)

Q[

where P is pressure and § the anomaly of specific volume.

The anomaly § is defined conventionally as

[
it

(o]
a(5,T,P) - a_ (35 /oo o ¢, P)

where o is a specific volume, equal to 1/p, at salinity S,

temperature T and pressure P and oy is a reference value.
Table 1 shows examples of X calculated from the data taken

at an ocean station known as site D on three occasions. It
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Table 1. Anomaly of potential energy Y.

Unit is  10° ergs/cm?.

Pressure 18-VI~67 9~VIII-67 3-X-67
1 .000 ©.000 .000

50 .201 .226 .301
100 .722 .799 .930
150 1.527 1.616 1.689
200 . 2.617 2.661 2.623
300 5.311 5.158 4.800
400 8.398 7.864 7.148
500 11.618  "10.663 9.695
600 14.856 13.650  12.267
700 18.233 16.926 15.243
800 21.840 20.533  18.572
900 . 25.787 24.504 22.294
1000 30.162 - 28.902 26.430
1200 40.189  38.978 36.052
1400 51.971 50.885 47.694
1600 . 65.399 64.804 61.095
1200 80.402 80.478 76.386
2000 97.226 97.720 93.334
2200 116.713 111.737

2400 137.529 131.463
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is noticed immediately that the anomaly ¥ increases mono-
tonically with depth. Over the depth, most part of x does
not change in time and the amplitude of its fluctuating
part also increases with depth. This tendency contradicts
our anticipation of the APE distribution.

Suppose that the r.m.s. vertical excursion of a fluid
particle is roughly uniform, vertically. Then we expect
that the APE should be largest in the thermocline and de-
creases downward because the stratification does. The APE
defined in the present study indeed reveals the expected
vertical distribution and it is smaller than the fluctuating
part of x by an order of magnitude for all depth.

The exaét formula of the APE in the ocean should be
derived from the primitive definition utilizing the conser-
vation laws of salinity and entropy in principle. However,
the empirical equation of state of sea water is nonlinear
with respect tolthermodynamic variables (Fofonoff, 1962b)
and there is ho one-to-one correspondence among the density
and salinity and entropy, because thermodynamic coefficients
are again functions of state. Therefore the procedure which
was taken by Lorenz (1955) in defining the exact formula in |
the atmosphere does not hold at all in the ocean. ﬁever—
theless it is possible to derive an approximate exprgssion
of the APE in the ocean in terms of the potential density,
which is equivalent to its counterpart in the atmosphere in

terms of the potential temperature.
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To‘summarize, below the APE will be formally separated
into two parts, mean APE and eddy APE, and two energy equa-
tions afe derived for them. The definitions vary with the
type of data available (for instance, a time-series at a
point or an instantaneous spatial map), and our notion of
eddy and mean APE also depends on the constraints put on the
fluid motion: the definitions are proéess—dependent.

4 Locally the energies are changed by advection, transfer be-
tween the mean APE and the eddy APE and buoyancy fields.
Available data will be used to estimate the eddy APE. The
eddy APE per unit volume averaged over the MODE area ranges
from 100 ergs/cm3 at 300 m to 20 ergs/cm3 at 2000 m, which
are comparablé with the kinetic energy density. The compar-
ison of the eddy APE levels in the MODE area and at the
panulirus station shows a geographical difference below the

main thermocline, which has not been seen before.
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II. DEFINITION QF AVAILABLE POTENTIAL ENERGY

Potential energy is part of total energy of a fluid
parcel and here we want to relate the available potential
energy (APE) to kinetic energéy (KE) without going into de-
tailed discussions regarding the total energy and its

variation. An energy equation can be written in the form of

[g% + u » V] (KE + APE) = -u *+ Vp + source terms,

where u is a velocity vector. 1In an ocean which is iso-
lated energetically (in such a time-scale that source
terms aré not important), the total energy of the system is
conserved so that internal conversion and redistribution of
energies are very important. Now the scalar product of u

and the Boussinesqg momentum equation (Veronis, 1973) gives
[ +u * VI(KE) = -V = (P u) + gpw

Where B is the local deviation of the potential density and
w a vertical componentrof u. The conversion from the APE is
ggw, as we shall see later.

Following a fluid particle in sea water, the potential
density Py is conserved approximately as discussed by
Veronis (1973), who has shown the dynamical significance of

the potential density and the limitations to its use as well.

It should be pointed out that the potential density is

o
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referred to a reference pressure at one atmosphere, which

is conventional but dynamically important because it repre-
sents density after all the pressure effects are femoved.

In terms of the éxact equation of state it is debatable
whether the potential density is really conserved or not,
but for present purposes,vwhere we follow water parcels for
times of order one year, and depth'excursion of order 100 m,
the approximation should suffice. Therefore, neglecting

Qiffusion and source,
(2= +u > Vp, =0 (2.1)
ot = 0 - )

First, suppose that the potential density is separated

into three parts:

Pg (X,v,z,t) = plz) + ;(x,y,z,t) + p'(x,v.2Z,t)
(2.2)
whefe
5 = 1oy}
P! = pg ~ <pg> ¢

Here the bracket <g> denotes an average of g over some suit-
able horizontal area (a few hundred kilometers squared) and
"{g} an average over the entire horizontal space. Hence an

instantaneous density field is represented by the reference
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Stratification p, slowly varfiﬁg ﬁean'field ; and'g'.a deVia—
tion frqm (p + ;). This separation is appropriaterto a data
set of spatiél maps of the density field, covering at least
a few hundred kilometers squared. The idea is to maké a

-~ two-scale separation in which the basin-wide APE appears in

p, while the APE in energy-containing eddies appears in p'.

- Substituting for Pg in eq. (2.1) yields

(at +u V)p+(§E+E Vip' = -w 3~ . (2.3)

Multiply eq. (2.3) by p and take an average with < >, it is

possible to obtain after some manipulation:

(X +u- M) =V - I <ptu>]
- (2.4)

~

+ <p'u'> + Vp - pw p,

Qalaa
Njo|

where B'Z =

Here, it is assumed approximately that

B h oty = <a' - V(dp)> = <pu + Vp'> =
5g <P P > = <u V(zp )> = <pu Vp'> 0

and V * u = 0 by Boussinesqg approximation. Multiplying eq.

(2.3) by p' and taking an average < > again we obtain

(g% tu e V)(% <pf2> = =<p'u'> + Vp - <p'w'>p,
(2.5)

with <u' e V%p'2> = 0 approximately.
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Multiplied by -g/p,, egs. (2.4) and (2.5) take the form

of
~ ~ 2 M ) -~
(5% +u + V) (%9 L= 3dv - (p <p'u'>)
=P, P,
@ _ ®
- _—_g—- <p'L1"> « Vp + gpw (2.6)
Pz
© )
+ gp wr
®
~ 12 ) ~
g +u s Wigg 2) = Sprats - Vo
~Pz Pz
© ®
+ g<p'w'> + gp'wr
@ @

B | (2.7)
‘ Prz
where r = ———— .

2(p,)?

It is possible to show that term @ is relatively small
compared with @® and @ small compared with @ as follows.
The ratios are

® ~ @ |2~

\id
- = pr, = o

& o W

r.

For a mean potential density profile obtained by averaging 19
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CTD and STD station data in a circle of 200 km in radius
in the MODE area, the value of r varies from 1.8 x 10 to
10* in c.g.s. units. The last ratio @ /@ 4is found to
be as large as 0.22 at 500 m depth at the Chain station 9
(see Table 2a and Fig. 3.5a); but it is typically less than
0.1 for the depth from 300 m to ZOQO m if it is assumed
that |;|'§_lw'|. Similarly ® /@ will be of the same
order as @ /@ 1if ; is the same order of magnitude as p'.
If we estimate 5 and p' by Ezh where h is a magimum verti-
cal excursion of a fluid particle from the reference state,
then (®/® , @ /@) ~ h/H where H is the height scale of a
‘thermocline. A typical estimate of h/H may be 0.2 if
h=200m aﬁd H = 1000 m. Based upon the direct estimate
from data and the typical order of magnitude estimate we
may neglect the terms ® and @ in egs. (2.6) and (2.7).
The definitions of the APE are apparent in @ in
eq. (2.6) and @ in eq. (2.7) and the physical meaning of
the APE can be best illustrated by an example. Suppose a
reference stratification shown as a solid line and an in-
stantaneous state as a broken line in Fig. 2.1. The APE
of a particle P is given by the formula in eq. (2.9) later,
which can be rewritten as %gp'(z - 2;) by approximéting
p' = —Eé(z - zp) locally where zj is the reference position
of the particle P. Now the APE can be intérpreted as the
work done by a local mean buoyancy force %gp' for a d;s«

placement of z - Zp. Accordingly each fluid particle has
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POTENTIAL DENSITY (/‘76’}

>

. DEFHWTTON OF AVAILABLE POTENTIAL ENERGY

1

An available potential energy(APE) is defined
as work done by a local mean buoyancy forcel

%gp' for a displacement of z -~ Zp 1 where p'
is approximated by —Ez(z-zp). Note that the

APE is positive definite. Accordingly each
fluid particle has its own reference level in
the definition of the APE.
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its own reference level in the definition of the APE and the
APE measures the amount of work required to move a particle
away ffom its individual reference level. This definition
of potential energy is familiar in the study of internal
waves (Fofonoff, 1969; Garrett and Munk, 1972). .

Why should we be denied an "exact" potential energy?
The answer lies in the need to relaté the local density
anomaly (relative to the time-mean at the same level, say)
to the amount of work done, equal,to'—'J(buoyancy) « dz,
in raiéing the fluid from its 'rest' level. This can be
done exactly if Ez is iinear, but curvature in the mean
profile makes the work done depend on the history of the
particle trajectory as well as its local value of p'. (Of
course, in a layered model the definition of the APE again

becomes exact, for the dependence on history disappears.)

Definition: The available potential energies per unit volume

are defined as:

~ 2

Ay = "21‘9 p_ | ~(2.8)
-pz .
f2

A, = %.g L | (2.9)

where AM will be called the mean available potential energy
and AE the eddy'available potential energy. The mean and
eddy APE represent part of.the APE associated with p and p',

respectively.
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A second definition is apprépriate to an oceén without
basin-wide variations (i.e., the potential density field is
statistically homogeneous). Then we divide the potential
density into two'parts,'E(z) and p*, and the available

potential energy will be defined as

(2.10)

and the energy equation corresponding to this definition will

be

(g% +u - V(59 BT ) = gp*wll + 0(%)]- (2.11)
While this situation may not exist in practice, it is an
idealization that permits useful analysis of hydrographic
time-series at a single geographical point.ﬁ

With the definitions of the méan APE and the eddy APE
in egs. (2.8) and (2.9) the meaning of the terms in egs.
(2.6) and (2.7) become clear. In eq. (2.6) @® represents
ﬁhe redistribution of'AM by the eddy.field, © the conver-
sion between AM and Aps ® the conversion between Ay and
the mean kinetic energy, %pé . i. Also in eq. (2.7) ®
represents the convefsion, equal to ~@© , and (@ the con-
version between AE and the eddy kinetic energy %pg' s u'.

"It should be remembered that not AE, but the horizontal

average of AE by < > is involved in eq. (2.7).
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The definitions of AM and AE are equivalent to Lorenz's
(1955) expressions of the APE in the atmospheré in terms of
the potential temperature, which can be easily tranéformed
into the expressions in the potential density. However sea
water is a multi-component solution for which it is best to
define available potential energies directly in-terms of

the potential density. It should be.pointed out that the
APE in the atmosphere includes both the potential and in-
ternal energy (Lorenz, 1955), but it represents only the
potential energy in the ocean since'sea water ié assumed to
be incompressible in the Boussinesq approximation. Also it
should be mentioned that the definitions of the APE are com-
- patible with the conservation of potential vorticity as
Charney and Stern (1962) have shown in a perturbation theory
of a quasi-geostrophic current.

The APE defined in egs. (2.8) and (2.9) are positive
definite and vanish only when ; = p' = 0. In other words
the reference state is the state of the minimum potential
energy and any deviation from the reference state will cause
an increase in the APE.

The-anomaly of potential energy X defined by Fofonoff
(1962a) bears some consideration to make clear how close it
is to the concept of the APE in comparison with the defini-
tions in egs. (2.8) and (2.9); Approximating P =¥ —pégz in

eq. (1.2), where P is a mean density, it follows
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P .
J (—Dng) (a0 - ao)pgdz

p O

=-59I (p. = p) gzdz
(o)

oY J (p = p,lgzdz .

The anomaly per unit volume is (p - po)gz. It is very clear
that the individual reference level,.which is a key concept
in the.APE, is not accounted for at all in this anomaly and
the density term (p —'po) does not represeht a dynamically
important density deviation but a simple departure from an

arbitrarily chosen value Pp"
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III. APPLICATION OF THE AVAILABLE POTENTIAL ENERGY

In order to demonstrate the dynamical significance of
the éoncept of the APE the definitions are applied in the
MODE-I and Panulirus data. The data base is not sufficient
to separate the APE into the hean and the eddy and the ap-

plication is limited in the eddy APE.

VIII—l Available Potential Energy in the MODE area

In applying the definitions of the APE it is most im-

portant to define the reference stratification and the slow- .

ly varying mean density field properly. This requires good
density data over a very large horizontal area and the
question is whether the spatial coverage of the MODE-I den-
sity data is sufficiently wide to resolve the slow variation
of the mean density field <p>. Regarding the reference
stratification, the exact definition of'{pe} cannot be kept
as is, because it requires data over the entire ocean.
Instead‘{pe} is substituted by a potential density field
obtained by averaging 19~station data.

The streamline maps constructed by Freeland and Gould

(197%) show that a single synoptic eddy observed during the

MODE-I field experiment is typically as large as the size
of the entire MODE area, particularly in the upper ocean.

This indicates that the averaging to obtain <pgy> should be
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taken over the entire MODE area if the estimate of the APE
associated with MODE eddies is of interest. Keeping in
mind the scales involved, let us examine what daté are
available. During a four-month period 708 CTD and STD
stations were occupied in a circle of approximately 200 km
radius centered at (28° N, 69° 40' W). According to the
density program there were 37 grid-points in the area of
100 km in radius, the mean spacing between stations being
33 km, and 40 grid points in the outer region, spaced every
50 km approximately. Now there are 587 statioﬁ data
available within 200 km in radius. Each grid point was

- occupied 8.3 times within 100 km in radius (except 41
stations at the central grid point) and 6.5 times in the
outer region. However, the horizontal coverage becomes
somewhat poorer after 176 stations are abandoned, 136 of
them having no salinity or bad salinity values and no data
being available for 40 stations. The problem caused by the
loss of 176 stations is more serious than expected as far
as the estimate of the APE is concerned. Because the MODE
area was divided according to ships and most of the bad

data were taken from particular ships, the loss results in

very poor sampling locally and the coverage of good stations

is extremely variable in time. Fortunately, it is found
that at the beginning and the end of the field experiment

stations were occupied regularly in space over the entire
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area. Therefore it is decided the following is the best
procedure in using thé MODE-I density data.

(i) The mean density field <pe> is aetermined by
averaging 19 station data. It should be pointed out that
the horizontal variation Qf <pe> cannot be resolved from
the available data.

- (2) The eddy available potentiél energy AE is calcu-
lated every 50 decibars from 300 to 2700 decibars for each

station.

III-1-1 Mean density field

Tables 2a and 2b show the list of stations used for the
calculation of the AE. For convenience the two periods will
be referred to as March and June, although some stations
were not occupied in_these months. The source data are the
final form of the MODE-I density data available in computer
format (Scarlet, 1974).

Because there is no information about intercomparison
of data taken from different ships, a simple test is carried
out to find out whether they can be mixed in the analysis.

Five Chain stations and five Researcher stations in March

located on the circle of 200 km in radius are picked for the

test. The Chain stations were occupied about one month

ahead of the Researcher stations and this separation in

time should not be neglected, considering an apparent




Table 2a.

Ship

Chain

Discovery

Researcher

List of Stations in

Station Number — Date
c2 March 11
c4 March 12
C5 March 13
C6 March 14
Cc7 March 14
Cc8 March 15
c9  March 16

Cl0 March 31
Cil April 1
Ci2 April 2
C1l7 April 12
C36 April 22
D25 April 11
D45 April 17
R62 Aéril 15
R66 April 16
R71 April 17
R76 April 18
R78 April 19

28°
29°
27°
26°
27°
28°

29°

28.

27°
28°
28°

27°

27°

29°

26°
28°
29°
27°

26°

March

Position
01.
00.
21.

26.

01

33.

38

39.

09.

19.
36.

59

59.

21.

38.
le6.
21.
41.

12.

9'N

6'N

2'N

8'N

.7'N

8'N

L7'N

5'N
0'N
7'N

2'N

L3N

1'N

8'N

9'N
5'N
9'N
2'N

0'N

69°
68°
68°
69°
71°
71°
69°
70°
69°
69°
69°

68°

70°

70°

68°
67°
69°
71°

70°

137

40.7'W
14,0'w
02.4'W

23.0'W

02.1'W

19.0'w
59.5'W
17.3'wW
57.1'W
03.9'w
18.5'W

37.5'W

25.1'W

41.8'w

06.9'W
29.9'W
07.9'W
42.1'W

10.0'w



Table 2b.

Researcher

List of Stations in

Station Number Date
Cl36 June 26
Cl40 June 28
Cl41 June 29
Cl42 July 1
C143 July 1
Cl44 July 2
Cl48 July 4
R170 June 1
R173 June 2
R179 June 3
R190 June 6
R215 June 13
R218 June 14
RéZO June 14
R223 June 15
R226 June 16
R228 June 16
R231 June 17
R233 -June 18

28°
27°
27°

29°

28°
26°

28°

27°
27¢
28°
28°
29°
29°
28°
28°
27°

26°

26°

26°

June

38.5'N

Position
09.0'N 68°
19.92'N 69°
08.6'N 70°
36.2'N 69°
33.1'N 71°
56.2'N 71°
00.9'N 69°
40.0'N 70°
41,.5'N 71°
51.6'N 70°
13.9'y 67°
22.,3'N 70°
22.1'N 69°
55.5'N 69°
55.7'N 68°
32.8'N 68°
37.8'N 68°
10.5'N 69°
70¢°

138

38.5'W
02.3'w
01.3'w
58.8'w
23.0'w
04.0'W

35.7'W

47.2'W
41.4'W
03.8'W
30.3'W
42.4'W
09.0'wW
06.8'W
06.5'W
07.1'W

06.9'W

40.4'w

11.1'w
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westward propagation_of temperature with the speed of 2.1
km/day or 2.6 km/day depending on the depth (Davis,; 1975).
Figure 3.1 shows the difference in the mean of the poten~
tial density, salinity, and temperature with the standard
deviation of each data set.

The standard deviations of salinity and temperature

from the Researcher data are approximately twice of

those from the Chain data for most of the depth, indicat-

"ing that the Researcher data are noisier than the Chain

data. From 300 decibars to 1500 decibars both salinity

and temperature from the Researcher data are lower than

from the Chain data. However, these differences will not

show any irregularity in-the potential temperature-salinity

" (6-8) space, since the discrepancieé are not inconsistent
with the historical 6-S curve. A t-test shows that the
difference in the potential density at 300, 900; and 2100
decibars are not significant for a 95% confidence interval
and the same is true for salinity and temperature. There-
fore it will be assumed that there is no systematic bias

in the data.

III-1-2 Eddy available potential energy in the MODE area

Figure 3.2 shows some of the vertical profiles of Ap
in March. It is immediately noticed that the energy level

- changes very significantly in space, vertically and
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Fig. 3.la Comparison of 5 Chgig station data with 5.
Researcher station data on the dircle of 200 km
in radius in March, 1973. Statistical test
shows that the difference in the average
potential density is not significant for a 95%
confidence interval.
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 horizontally as well. The average AE over 19 station is

shown in Fig. 3.3, whose profile resembles the profile of
the gradient of the reference stratification. It is in-
teresting to observe in Fig. 3.4 the estimate of vertical

excursion corresponding to the mean A The extrema in the

Ec

average A_ do not appear any more and the r.m.s. excursion

E
is rather uniform except the increase around the depth of
1500 decibars. Also Fig. 3.5 shows the horizontal distribu-
tion of the AE for a column of water obtained by integrat-

ing the A_ over the depth of consideration.

B

The strong horizontal gradient in A, implied in Fig.

E
3.2 and shown directly in Fig. 3.3 suggests that the process

involving A_ is highly nonlinear and the advection term in

B
eq. (2.7) may be very important in the local balance of AE’
However, once AE is averaged, the profile is much simpler
and probably interpretable. Table 3 shows the average AE

at three different depths in comparison with the average
kinetic energy density estimated from Huppert and Rhines
(1975, see Fig. 4.3b). Although the estimate of the average
AE is not as confident as that of the kinetic energy, it

can be seen that the energies are very nearly equal within

a factor of two. This is not inconsistent with the pre-
dicted properties of the geostrophic turbulence by Charney

(1971). It is interesting that some features of Charney's

"(loc. cit) theory appear in the ocean even though the theory
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Fig. 3.3 Profile of an average APE in space from
19 stations shows remarkably simple vertical.
structure, which resembles the profile of
vertical gradient of the reference stratifica-—
tion. This energy level is very similar to
the average kinetic energy density at 500 m,
1500 m and 3000 m depth.
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MEAN VERTICAL EXCURSION (m)
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Fig. 3.4 Estimates of r.m.s. vertical excursion reveal
large vertical movements below the thermocline,
suggesting a strong baroclinicity, which seems
to contradict the simplified picture sometimes
given, that the deep water is dominated by the

" barotropic mode. '
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Fig. 3.5a Variation of the APE over a scale of 100 km
suggests that an advection of the APE could be
very important in a local energetics.
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Fig. 3.5b Same as Fig. 3.5a, but in June.
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Table 3. Comparison of the available potential
energy (APE) with the kinetic energy (KE) * %
in the MODE area. |

Unit: ergs/cm3

Norminal Depth - APE KE
March June

500 m 39.4 51.0 63.0

1500 m 8.3 14.8 7.1
2700 m 8.5 5.1

3000 m 8.0

** Grand average of the kinetic energy density
estimated from Figure 4.3b of Huppert and

Rhines (1975).
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was derived for small-scale turbulence which does not feel
boundaries. The apparent equipartition of energies in the
deep Water seem to contradict the simplified picture some-
times given, that the deep water is dominated by the baro-

tropic mode.

III-2 Available Potential Energy from the Panulirus Data

The Panuiirus hydrographic stations have been occupied
‘about 20 km southeast of Bermuda approximately twice per
month since June 1954. In wearly stages, stationé were not
occupied regularly and often did not reach the deep water.
Therefore only the data taken from March 8, 1960 to June
27, 1967 are analyzed here. We will adopt the second parti-
‘tion of the potential density giveﬁ earlier, py = o+ p*,
based in time averaging. If the ocean were statistically
homogeneous in the horizontal space, the resulting APE would
be identical to the APE based on total spatial integration.
But the utility of doing this in an inhomogeneous ocean is
clear, because of the dominance of the energy-containing
eddies at the radius of deformation.

Schroeder and Strommel (1969) showed a strong seasonal
variation near the surface and a significant monthly mean
variation in the steric level referred to 2000 decibars.
Because an intérnal variation is of primary interest in

this work, the apparent seasonal response is not considered-
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here;"The monthly'mean variation is taken into account in
the following analysis. The water column is divided into
two layers - layer I from'400 to 1160 decibars and layer II
from 1160 to 2040 decibars. For a quantitative comparison
potential energy is calculated in terms of ¥ in éq. (1.2)
and AE‘in eq. (2.9).

III-2~1 Anomaly of potential energy ¥x

' Variation of ¥ with a period longer than a year is
assumed to be negligible and x is divided into three parts

in each layer.
X=X +X+x'

where ; is the average of x over thé entire record, which is
therefore constant in time, X the deviation of an average
when the anomalies are grouped by the month from ;. For
example X for January is the average of all the values of ¥
in January over the duration of the record minus i. And '
is the deviation of x from (X + X). In the actual calcula-
tion of X the computer program at the Woods Hole Oceano-
graphic Institution is used. The average § énd its standard

deviation is:

8

(63.60 ergs/cmz,

>
—
e}
e
i

=+

3.98) x 10

7;89)><108 ergs/cmz,

I+

(67.84

<
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H
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Where I and II in the bracket ( ) denote the layers for
which x is calcuiated. Figure 3.6 shows the ﬁonthly varia-
tion of X; a significant seasonal variation exists‘in layer
II and the variation in layer I is obscured by a minimum in
April which is a reflection of the monthly variation of
mean density field. This relation is evident in the defini-

tion of ¥, which is rewritten here for convenience.

P
[ oo ar
(o}

=
Il
Q|+

Pressure P is constant in time and the temporal variation of
X is due to the variation of § or the variation of density
in situ equivalently. In Fig. 3.8 in Section III-2-2 there
is an indication of seasonal variation below 1151 m, but
the variation between 398 and 1151 m is dominated by three
peaks. It can be seen that the variation of ¥ (I) is almost
a mirror image of the monthly variation of the potential
density at 775 m. |

From a times series of X' in Fig. 3.7, the following
may be concluded: |

(1) x'(I) and X' (II) change in phase, suggesting a
strong coupling between the two layers.

(2) In part of the series a regular pattern with a

period of 4~6 months exists, as can be seen in 1963-1964.
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(3) There is a significant variation in a peak-to-peak
amplitude from one year to another. For example, 1962 and
1963 are relatively quiet years compared with 1964 and 1965.

(4) Over all layer II has a smaller amplitude of vari-
ation than layer I, yet they are of the same order of 108
ergs/cmz. Tt should be pointed out that this magnitude is
greater than the APE estimated from the MODE data by a fac-
tor.of ten at least.

In both layers the fluctuating part of X is remarkably

smaller than its mean X by an order of magnitude.

III-2-2 Eddy available potential energy

In applying the definition of the AE in the Panulirus
‘data the following approximations are adopted:

(1) The reference stratification is substituted by
the 7-year average potential density.

(2) The monthly variation of mean density field is
taken into account by defining twelve mean potential density
fields obtained by averaging the potential density after be-
ing grouped by the month. The deviation of tﬁe twelve mean
fields from the 7-year average is shown in Fig. 3.8 whose
variations are barely significant over the.year. The idea
of applying the twelve mean fields instgad of the 7-year
average in defining p' is to distinguish the eddy APE from

the mean APE as far as it is possible. By definition the
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two energies are separable only in space and it is assumed
here that the long-térm variation is associated with large-
scale variation. However, this assumption should be verified
from the real data in the future.

Figure 3.9 shows the time series of AE integrated over
the depth of each layer defined in the previous section.
E(I) is coupled

with AE(II) is the same as found in the time series of X'

The strong tendency that the variation of A

B
fied by taking the variance of p'.

and it is clearer in A_ because the signal has been ampli-

For most of the record the levei of AE(I) is relatively
higher than that of AE(II). " However, because of occasional
high peaks in AE(II),the averages ofIAE(I) and AE(II) over
the entire record are about the same. In the comparison it
should be remembered that layer II .is deeper than layer I by

115 meters and AE(I) and AE(II) are the integrated value.

—_—t 6 5
AE(I) = 4.35 x 10" ergs/cm

ot 6 2
AE(II)' = 4.25 x 10 ergs/cm

(2.9 x lO6 ergs/cmz)

where the superscript t denotes averaging in time. The
value in the parenthesis is the average when the abnormally

high A_'s in October 1962 and September, October, and

E
' November in 1965 are excluded from the averaging, because
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salinity values are bad. It is very important to note the

remarkable difference in their magnitudesbetween yx' and AE.

Instantaneously AE is less than one-tenth of x' in both

layers as expected from the definitions themselves. It is
also interesting to compare the average AE with AE from

MODE-I averaged in space for the same depth range.

—_—s
March (MODE-I): AE(I) = 4,89
—85
AE(II) = 1.29
: — s
June {(MODE-I): AE(I) = 3,58
——— s
AE(II) = 1.63

where unit is 106 ergs/cm2 and the superscript s denotes
averaging in space. The energy levels at the two locations
are close to each other in the upper layer, but notably
different in the lower layer. It appears that geographical
location does not matter for eddies in the méin thermocline,
but it does in the deep water. The comparison of the ref-
erence stratifications at the two locations shows no differ-
ence in the deep water and it is possible that the difference
in the energy level may be a manifestation of someyisland
effect which.has not been found before. Further discussion
will be carried out later at the end of this section.

It may be worth mentioning that the eddy APE calculated

with respect to the 7-year average potential density does
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not show any significant departure from the previous values
of AE with the twelve mean potential densities, because p'
in either case is much larger than the amplitude of the
monthly variation of the twelve mean potential densities
shown in Fig. 3.6.

In the time series of AL it is most remarkable that a
burst of high energy occurs irregulafly. Figure 3.10 shows
the frequency distribution of stations with respect to the
‘total A, integrated over the depth from 400 to 2040 deci-
bars...The»mean over the entirevrecord is 8.6 X 106 ergs/cm2

6 ergs/cmz, which is substantially

and the median is 4.8 x 10
smaller than the mean. Out of 151 stations the total An is
less than the mean for 71% of them and higher for 29%. The
oceanic state suggested by this distribution may be described
by two classes of eddies, one representing most of the
eddies of a relatively low energy level and the other stand-
ing above the first class with a prominent peak. Here it is
implicitly assumed that the variation of Aj is due to hori-
zontal advection of some eddy field as suggested by
Wunsch (1972a).

In relation to this implied spatial variation it would
be appropriate to discuss the island effect further.
Wunsch (1972b) showed a steep deepening of isotherms of the

main thermocline in the immediate vicinity of Bermuda where

a strong jet passed the island temporarily. .The 14° C




162

06

“%6C U3

sojngTaluod Kbxous ybIY JO 3Isang AeTnbaral
*%6¢ JOF I9ULTY pue weyl JO $TL I0JF uedUw

SYy3 Uey3l sSOT ST EAV Y3} SUOTIRIS T§T FO 3INO

\NSu\mm\mb OlX) A9H4INT TVILNILOd FT8YV TV

0T°¢ *bta

: 08 Q\ 0¢ Ot
| T

2 I

\v o | NVIQan

0¢

op

NOILVLS SO HIGHNN



163

isotherm goes from 525 m to 600 m in a distance of about

45 km and the 10° C isotherm changes in depth from 675 m to
800 m in the same distance at the northefn side where the
jet passes, but there is no significant change of isotherm
depth at all at the southern side. The distance between

the Panulirus station and Bermuda is about 20 km, which

is approximately equal to one-half of the size of the

island if the bottom contour of 100 m is conéidered'as a
.measure, and a portion of the characteristic scale of an
eddy in mid-ocean. Thefefére it is reasonable to expect
some island effect at the Panulirus étation when mid-ocean
eddies approach Bermuda. An estimate of peak-to-peak
vertical excursion during 1964 is 190 m at the depth of

398 m, 90 m at 775 m, 130 m at 1101 m, 200 m at 1536 m and
500 m at 2019 m. The range of excursion increases both
upward and downward from the center of the main thermocline.
The excursion below 1151 m is larger than that at the MODE
area in Fig. 3.4 by a factor of two at least; Probably it
is necessary to qualify what phenomena is meant by an
island effect. Hogg (1972) presented a theoretical model
of a steady current interacting with an island. The eddy
APE is associated with p', which is a fluctuating part in
the potential density after the mean <pg> is subtracted from
Pgr and here the island effect refers to a large variance of
“p', not a permanent effect in the density structure due to

the presence of Bermuda.
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IV. DISCUSSION AND CONCLUSIONS

Definition of the Available Potential Energy

The available potential energy (APE) in the ocean is
defined in terms of the potential density. This definition
is exact if sea water were single—cbmponent fluid like the
air and the reference stratification were linear. In the
upper 3000 m it is believed that this definition adequately
represents the dynamically important part in tﬁe primitive
potential energy pg(Z—Zr), but some modification may be
‘necessary in the very deep water because of the thermo-
dynamic nonlinear effect in the density as discussed by
Veronis (1972). The effect of a curvature in the reference
density profile is locally neglected in the definition (it
can be included exactly if the APE is defined in an integral
form, which is not practical), accepting an error of the
order. of h/H, Qhere h is a maximum vertical excursion and H
a scale height of the thermocline.

It‘should be mentioned that this definition is equiva-
lent to-its counterpart in the atmosphere defined in terms
of the potential temperature by Lorenz (1955). Eséentially
the APE is equal to work done to move a fluid particle from
a reference state of the miniﬁum total potential enérgy in
which isopycnal surface is level. Therefore the concept of

the APE involves the whole system, the atmosphere of the
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ocean, as pointed out by Lorenz (1955), because the ref-
erence state is conceptually reached by redistributing the
whole,mass of the system, However, once the reference state
is defined the APE can be considered for individual fluid
particles.

Recognizing the two-scale nature of the density varia-
tion in the oéean, the density is seﬁarated into the grand
mean, regional, and the eddy part. It should be remarked
that this separation is to isolate the‘APE of a certain
scale>procéss, for example MODEfI eddies, from the APE with
larger scales and it is not necessarily assumed that there
are only two scales in the ocean. 1In fact it is possible
to separate the APE into three or more scales as it is done
for kinetic energy in the turbulence'(Mollo—Chriétensen,
1971).

The conversion between the mean APE and the eddy APE
is a product of separating the APE into two parts, which i
would not appear otherwise. To compute this conversion
term in the energy equations it is necessary to know not
only ;, but also its gradient which can be resolved only
from data over an extended area. For example an area of
400 km in radius should be covered in order to evaluate the
céhversion in a circle of 200 km in radius equivalent to
the size of the MODE area. There are other processes in

the local balance of the APE,. advection, redistribution,
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and conversion to kinetic energy. Thermal forcing and topo-

graphic effect are not considered in the energy equations.

Application of the Definition

The horizontal variation of the mean potential density
field <pe> cannot be resolved from the MODE-I data because
of the reason mentioned earlier, Some error is expécted in
Athe estimate of p' away from the center of the MODE area.
The eddy APE is calculaﬁed'at 19 stations and its instan-
taneous vertical profile shows an exfremely complex struc-
ture, which varies from one station to another. It is
interesting to find that the average of the 19 vertical pro-
files is rather simple and resembles the profile of the
gradient of the reference stratification. At 500 m and
2600 m depth the average eddy APE is larger than the average
kinetic energy by a factor of 1.4 and 1.2 respectively.
Because the equipartition of the energies is.one of the
properties of the geostrophic turbulence proposed by
Charney (1971) it is speculated that the dynamic character-
istics of MODE eddies may not be unrelated to the geo-
strophic turbulence. |

For 71% of the 151 stations at the Panulirus station
the APE of the columnof water is below its mean over the
“entire record. The concentrated temperature variance be-

tween 40 to 200 days in the spectrum constructed by Wunsch
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(1972a) may need qualified interpretation. The béhavior of
the APE shows that the burst of high energy occurs intef—
mittently, not periodically. Further statistical test is
under way to verify the_intermittency. |

Compared with the energy level in the MODE area, the
mean APE at the>Panulirus station is comparable in the main
thermocline and substantially large below the thermocline.
The cause of this geographical difference below the thermo-
cline is not known and it is suggested from the considera-
tion of the scales involved that some island effect should
be responsible.

In summary, the quantitative examples of the APE show
that the definition of the APE is valid and very meaningful.
The anomaly of potential energy X fluctuates with an ampli-
tude greater than the APE by an order of magnitude at least.

Density data from large-scale experiments have been
used primarily in recognizing a gross pattern of eddies, but
it is demonstrated that their value lies not only in.a simple
pattern recognition, but in understanding the dynamics and
the structures of geostrophic eddies. |

The vertical profile of the average eddy APE shows
substantial ehergy level below the main thermocline in con-
trast with a common notion.that the deep current is dominated
by a barotropic mode. In fact, an r.m.s. vertical excursion
below the thermocline is estimated to be larger than that'in

the thermocline by a factor of two approximately, indicating
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again a strong baroclinicity.

The stﬁdy of the APE neédS'further investigation. How-
ever, it is shown clearly that local energetics in the ocean
cannot be budgeted properly without the APE. Therefore it
is very strongly recommended that any density program in'
future field experiments be designed with a specific object
to estimate the APE and its‘variation. Any good estimate
of either the kinetic energy or the APE alone will be simply
insufficient and the understanding of eddy dynamics can bé
achieved only when both energies are known simultaneously.
This point seems to be too familiar to be mentioned, but it
is emphasized here because the conservation of energy is so

fundamental.
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