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Abstract

Inertial terms dominate the single-gyre ocean model and prevent western-intensification
when the viscosity is small. This occurs long before the oceanically-appropriate pa-
rameter range. It is demonstrated here that the circulation is controlled if a mech-
anism for ultimate removal of vorticity exists, even if it is active only in a narrow
region near the boundary.

Vorticity removal is modeled here as a viscosity enhanced very near the solid
boundaries to roughly parameterize missing boundary physics like topographic in-
teraction and three dimensional turbulence over the shelf. This boundary-enhanced
viscosity allows western-intensified mean flows even when the inertial boundary width.
is much wider than the frictional region because eddies flux vorticity from within the
interior streamlines to the frictional region for removal.

Using boundary-enhanced viscosity, western-intensified calculations are possible
with lower interior viscosity than in previous studies. Interesting behaviors result: a
boundary-layer balance novel to the model, calculations with promise for eddy param-
eterization, eddy-driven gyres rotating opposite the wind, and temporal complexity
including basin resonances.

I also demonstrate that multiple-gyre calculations have weaker mean circulation
than single-gyres with the same viscosity and subtropical forcing. Despite traditional
understanding, almost no inter-gyre flux occurs if no-slip boundary conditions are
used. The inter-gyre eddy flux is in control only with exactly symmetric gyres and
free slip boundaries.

Even without the inter-gyre flux, the multiple-gyre circulation is weak because
of sinuous instabilities on the jet which are not present in the single-gyre model.
These modes efficiently flux vorticity to the boundary and reduce the circulation
without an inter-gyre flux, postponing inertial domination to much smaller viscosities.
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Then sinuous modes in combination with boundary-enhanced viscosity can control
the circulation.
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Title: Professor
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Chapter 1

Introduction

1.1 Westward Intensification

Perhaps the most striking feature of the general oceanic wind-driven
circulation is the intense crowding of streamlines near the western borders
of the oceans. The Gulf Stream, the Kuroshio, and the Agulhas Current
are examples of this phenomenon. The physical reason for the westward
crowding of streamlines has always been obscure. The purpose of this
paper is to study the dynamics of wind-driven oceanic circulation using
analytically simple systems in an attempt to discover a physical parameter
capable of producing the crowding of streamlines.

—Stommel (1948)

There is a peculiar physical mechanism at work in the formation of the western
boundary currents. The fluid chooses a location for the boundary current by compass
direction, a result which is relatively independent of forcing, details of the local to-
pography, and the sense of rotation of the earth (as there are still western boundary
currents in the Southern Hemisphere).

The purpose of this dissertation is to explore the mechanisms which allow Stom-

mel’s ‘physical parameter capable of producing the crowding of streamlines’ to con-
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tinue to function as the models of the ocean become more inviscid and time-dependent.

The thesis of this dissertation is that the effects of boundaries and the effects
of eddies work together as an important control on the strength of the circulation
even as the ocean becomes less viscous. In relatively inviscid models of the ocean,
the input of vorticity from the wind’s forcing is transported by eddies toward the
boundary where it is removed by processes that can only be found at the edges of the

ocean.

1.1.1 Previous Studies Using the Homogeneous Model

Before I introduce the topics covered in this dissertation in detail and summarize the

chapters, it is helpful to place the questions asked here in context with previous work.

A model which is equivalent to the one Stommel used to propose his theory of
westward intensification has come to be known as the homogeneous ocean model.
In this model, the fluid is considered to be rapidly rotating and of uniform density.
Traditionally, it is also assumed that there is a constant depth of fluid. These as-
sumptions allow the Navier-Stokes equations of fluid motion to be reduced to a single
equation for the streamfunction of the 2-dimensional motion (g—f = —y, g—i’ =v). In

the nondimensional form used in this dissertation, it is

OV
ot

+ V- (%) — ﬁaﬁg—jv% + 967

e
oz

Vi) — 63, VV2 + 6sVY) = wg(l1)

Stommel solved for a square ocean, and during nondimensionalization the square
becomes unit length in each direction. The variable ¢ is the streamfunction of the
depth-integrated velocity (u = —% and v = %%). This equation is called the vorticity
equation, because it describes the time evolution of V%, the component of relative

vorticity in the vertical direction.

The nondimensionalization has used the following definitions (asterisks denote
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dimensional quantities):

2 WEfO

r A
0s = AL 53, = ,3_;’ (1.3)
WgfoL t
Y, = gg) Yo ot= 7L (1.4)
z,=Lr y.=Ly (1.5)

The maximum of the wind’s vorticity input is Wg. Twice the rate of angular rotation
of the frame is f. Its value in the center of the domain is f;, and its meridional
derivative is 8. The depth of the moving fluid is D, and the zonal width of the basin
is L. The horizontal eddy viscosity, or Austausch coefficient, is Ay. The decay rate
due to the bottom drag is r

This nondimensional form is chosen so that the coefficients are powers of the
widths of the boundary layers in various traditional models.

All of the models proposed here will be considered to be driven by the wind
(although other forcing mechanisms can be expressed similarly as sources of vorticity).

Thus, the function wg is the vorticity supplied by the forcing of the wind.

Linear Solutions: Breaking the Symmetries

The first truly useful result for studying the wind-driven ocean circulation was found
by Sverdrup (1947). He combined the depth-integrated, linearized horizontal momen-
tum equations with a wind-stress and the continuity equation. This gave him cause
to take the derivative of the Coriolis parameter and thereby derive an equation which

distinguishes the north-south direction.

Written in the nomenclature of the vorticity equation 1.1, Sverdrup’s solution is

Yr = /: wgdz’ (1.6)
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Only one boundary condition is used to solve for this solution: the requirement
that the streamfunction vanish at the eastern boundary (¢(z = z.) = 0).} This
automatically causes the eastern boundary to be impermeable to the fluid.

Sverdrup’s solution will be referred to frequently in this dissertation as it applies
wherever friction and nonlinearity are negligible. In fact, the nondimensionalization of
equation 1.1 is constructed to utilize Sverdrup’s solution in the scaling of the stream-
function. The wind forcing will not vary in the zonal direction, and the maximum
magnitude of the wind forcing will always be 1, and the basin width is scaled to be 1.
Thus, equation 1.6 can be integrated for Sverdrup’s solution in this nondimensional
form, and the maximum magnitude of the streamfunction will be 1 (at z = 0)

Sverdrup realized that since this result uses only the depth-integrated equations
of motion, this balance might hold for baroclinic flows as well as barotropic. In
fact, the Sverdrup relation is one of the only simple constraints on a baroclinic flow.
Many subsequent theories (e.g., the thermocline theory of Luyten et al. (1983)) use
the Sverdrup balance as a starting point precisely because of its simplicity. This
dissertation will frequently return to whether the Sverdrup balance holds in a model
calculation. This is an important issue in assessing the generality of theories such as
that of Luyten et al. (1983).

Sverdrup’s theory breaks the symmetry of 2-dimensional space by distinguishing
the northern direction with the use of the gradient of the Coriolis parameter. The re-
sulting anisotropic term in the vorticity equation, V - (X¢) = %‘f, is usually called the
[(-term, because [ is the typical notation for the derivative of the Coriolis parameter,
although it does not appear in the equations above because they are nondimensional-
ized using it as a unit measure. It results from the advection by the fluid of the fluid’s
vorticity due to the rotation of the Earth. To demonstrate its anisotropy, consider a

90 degree counter-clockwise rotation of the coordinate axes: replace x with y and y

1In this dissertation, the impermeability of the basin will be implemented by setting 1 to zero
on the boundary. This is not necessary, or even correct in some models. However, in the context of
the homogeneous model, it is appropriate.
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with —z in the vorticity equation 1.1. Only this term changes in sign. Thus, were
it not for this term, no direction would be uniquely selected as any solution of the

equation would remain a solution were it rotated by 90 degrees.

Stommel (1948) was the first to group together the dynamics of the western bound-
ary currents with the anisotropy of the S-term. He used a simple model of an ocean
basin: a rectangular impermeable basin with wind, the §-term, and bottom friction,

—85V21). This resulted in the vorticity equation 1.7.

O

— = wg — 65V? 1.7
5y — WE—0sV'Y (1.7)
Stommel chose a particular wind stress (7, = —sin(my/L)) and solved this equation,

but this equation would have applied to any wind stress. The solution is given in
equation 1.8 for a case where wg varies only in y and dg < 1. I have included a plot
of the Stommel (1948) solution (figure 1-1a) for the same wind forcing Stommel used:
wg = —sinmy.

=1 (1- e™/%) (1.8)

The asymptotic solution in the interior (z 3> dg) of Stommel’s model is just ¢; from
Sverdrup’s solution (equation 1.6). Near the western boundary Stommel’s solution
diverges from Sverdrup’s in order to satisfy the impermeable western boundary condi-
tion. A second boundary condition can be imposed because the bottom friction term
raises the differential order of the vorticity equation. Because the bottom friction
term is the only second-order term, it must be responsible for satisfying the second
boundary condition, and it is therefore not surprising to find it to be a large con-
tributor in the region of the western boundary where the second boundary condition

must be satisfied.

Stommel pointed out that without the gradient in Coriolis parameter the model is
symmetric in the east-west direction. He demonstrated this with a plot of the solution

without the B-term. Here it suffices to note that Stommel’s vorticity equation without
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the [B-term is Poisson’s equation and is therefore obviously isotropic.

Equation 1.1 is anisotropic because of the S-term. Sverdrup retained just enough
terms to distinguish north, while Stommel’s model (equation 1.7) has a second asym-
metry — it knows the difference between east and west intrinsically. Sverdrup’s model,
on the other hand, had a vorticity equation which did not distinguish east from west;
Sverdrup’s model distinguishes east and west only by the choice of where the im-
permeability boundary condition is satisfied. Consider a switching = to —z in the
equation for Stommel’s model (equation 1.7), since the B-term changes sign while
the bottom friction doesn’t, clearly the equation changes. Because the (-term has
only one z-derivative while the friction term has two, the solution must exponentially
decay from west to east. Thus, it is not possible in Stommel’s model to substitute an
eastern boundary current, the boundary current must be in the west.

Munk’s first paper on westward intensification came soon after Stommel’s (Munk
(1950)). Munk and Carrier (1950) followed up with more realistic basin shapes and
observed wind stresses. Munk’s achievement was to use a lateral friction with constant
viscosity (03,V*)) instead of the bottom drag used by Stommel. The advantage of
this form of friction is that its viscosity can be thought of as eddy viscosity, a topic
discussed further below. He solved the vorticity equation given by equation 1.9.

% = k VX T4 63,V (1.9)

This vorticity equation requires an additional boundary condition at each boundary.
Munk used no-slip, where the tangential velocity vanishes at the boundaries (—g—% = 0).
This is the boundary condition appropriate for the solution of the Navier-Stokes
equations from which the vorticity equation is derived. However, the viscosity in
Munk’s model is not intended to represent molecular viscosity, it is intended to be
an eddy viscosity, a representation of the mixing by eddies. Because it is not clear
that the parameterization of eddies should obey the same boundary conditions as

that for molecular viscosity, Welander (1964) provided the solution for slip boundary
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conditions (also known as no-stress or free-slip). These boundary conditions require
that the normal stress vanishes at the boundaries (V3 = 0). Both of these boundary

conditions are used in this dissertation, and they produce quite different results.

In the case of no-slip boundary conditions, Munk’s solution is

Vis 1 ﬁxﬂ (1.10)

— /20y A iated e Rdhted
U =Y [1 e (cos %onr + \/gsm T

In the case of slip boundary conditions, Welander’s solution to the Munk problem is

3 1 . 3
P =Yg }} — e~/ %m (cos %ﬂj - ——\/T?; sin %)} ) (1.11)

I have included a plot of the Munk (1950) solution with no-slip boundary conditions
(figure 1-2a).

As in Stommel’s solution, Munk’s solution asymptotically approaches the Sver-
drup balance as z becomes much larger than dy, and like Stommel’s solution the
east-west symmetry-breaking occurs because the §-term changes sign upon changing
z to —z while the frictional term does not. Also as in Stommel’s model, the frictional
term is the term which raises the differential order requiring the imposition of addi-
tional boundary conditions beyond no-normal flow at the eastern boundary. In fact,
because the differential order is raised to four, three additional boundary conditions
are required: no-normal flow in the west, and either no-slip or no-stress at both the
eastern and western boundaries. In the same way as in Stommel’s model, the western
boundary is the only choice for the boundary layer which avoids exponential growth

in the streamfunction as one moves away from the boundary.

The wind-driven solutions of Munk (1950), Stommel (1948), and Sverdrup (1947)
all share the same interior flow in which the advection of planetary vorticity balances
the vorticity input of the wind. In Munk’s model and Stommel’s model, which are

closed, the vorticity input is subsequently removed by a frictional term.

The vorticity equation 1.1 is an equation which can be used to budget the import
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and export of vorticity from region to region. When inertia is included but there are
no frictional terms, the absolute vorticity 62V?t+y is conserved following the motion
of a fluid parcel. On the other hand, when inertial terms are absent, the advection of
relative vorticity is neglected; only the planetary vorticity is advected.

Because Stommel’s and Munk’s models are linear, relative vorticity can not be
advected. This requires that any change in the latitude of the fluid be accompanied
by a change in vorticity to match the new local planetary vorticity. In the Sverdrup
balance, this change is accomplished by the wind forcing, but in the frictional bound-
ary layer, this change must be accomplished by friction. It is not difficult to show
that this implies that the vorticity input by the wind at a particular latitude must
be removed by the friction at that same latitude.

Pedlosky (1965a) presented another way to break the symmetry between west and
east: the propagation of Rossby waves. Free Rossby waves in this model are solutions

to the equation

2
%Vt—qwrv-(;w) =0 (1.12)

Again, the S-term changes sign when the sign of z changes but another term, the rate
of the vorticity change with time, does not. Thus, Rossby waves are not symmetric
in behavior to the east and west. When put in physical terms, Rossby waves have
different wavelengths when their group velocity is eastward rather than westward.
Westward propagating waves are longer than eastward propagating ones. Eastward
propagating waves obey k% > [? while their westward partners do not. So, if eastward
short Rossby waves are reflected at an eastern boundary, they will be reflected as
westward (long) Rossby waves. If westward long waves are reflected at the western
boundary, they will become eastward short waves.

Now, Pedlosky noted that if there is a process which selects to retain long waves
over short ones, the wave activity will tend to be most pronounced near the western

boundary. For example, in the presence of lateral friction, the shorter waves will
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be preferentially dissipated in a time O(d;7k~2). If one considers that these waves
propagate with zonal group velocity C, ~ k%, then short waves generated at the
western boundary will only propagate a distance O(dps) away from the boundary.
Similarly, even though bottom friction isn’t scale selective, the distance traveled by
short waves in the dissipative time is O(dg). Thus, the length scales of the Munk and

Stommel boundary conditions reappear in Pedlosky’s model.

All of the linear theories can be brought together by noting that the vorticity
equation is not only an advective equation for the vorticity following the fluid parcel,
but it is also a flux equation for the point-by-point vorticity. Thus, it describes where,
in the Eulerian framework, the vorticity is supplied, transported, and removed and

by what mechanism.

The S-flux, ¥X, is proportional to X, so it is always an east-west flux. Whether
it is to the east or the west is determined by where the boundary conditions on the
streamfunction are set, i.e., by the sign of 4. If the streamfunction is set to zero in
the east, following Sverdrup (1947), then the [S-flux will be westward for negative
and eastward for positive . In a Sverdrup interior, the eastward flux, or to put it
more sensibly, the westward flux of negative vorticity is caused by a negative vorticity
input from the wind in the basin interior (as is the case in the subtropical gyre). A
westward flux of positive vorticity is forced by a positive vorticity input in the basin

interior.

Whatever sign of vorticity is fluxed to the west by the S-term, it cannot leave
the basin as the (-flux must vanish at an impermeable boundary. Thus, it must
diverge before reaching the boundary. Each linear theory presents a flux divergence
to balance the G-flux divergence—bottom friction, lateral friction, or time-derivative.
All of these balancing flux divergences exhibit symmetry upon switching the sign of
z, while the S-term is anti-symmetric upon switching the sign of . Thus, there is an
intrinsic distinction in the vorticity equation between east and west, and a balance

of the flux divergences can only be struck with a boundary current in the west.
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Similar ideas using vorticity fluxes will be used throughout the dissertation to illus-
trate the physical mechanisms responsible for the collection of vorticity in particular

locations.

Nonlinear Solutions: Returning to Symmetry

Charney (1955) proposed a different kind of theory for the presence of boundary
currents in the ocean. Since the ocean is relatively inviscid, it seemed to Charney that
the friction was playing too much of a role in the theories of westward intensification.
Charney’s solution was to propose an entirely inviscid model which solved a model

similar to

v (iw — fcé?%%V% + 767

%

2 —
=V w) = 0. (1.13)

This solution was intended to apply only near the boundary, and the Sverdrup solution
would hold in the interior.?

Interpreted in the Lagrangian framework, this equation states that the absolute
vorticity 2V2 + y is conserved following a fluid parcel It is therefore automatically
solved so long as a single-valued function exists between 1 and 62V%) + y. Charney
assumed that the boundary current would appear on the west and used the ; from
the Sverdrup solution to determine the relationship as the flow entered the boundary
current. Then, by insisting that ¢ = 0 at the boundary, he could reuse the function
between 1 and §2V%y) + y to generate a boundary layer solution, which turns out to
have a width &;.

The problem with Charney’s solution is that it only works so long as the function
between v and §?V?1) +y remains single-valued, yet in the basin interior the absolute
vorticity is nearly equal to y (as the relative vorticity is negligible). If the fluid is

to enter the boundary current at a small value of y and leave it at a large value of

2Charney did not use the fixed-depth approximation, so the theory presented here differs from
his, but is the corresponding solution in the homogeneous model.
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y, the function between 1 and 62V*) + y can not be single-valued. Making matters
worse, Greenspan (1962) was able to prove that no steady inertial theory could match

smoothly to the interior in the region where the fluid exits the boundary current.

Restating the problem with Charney’s model in terms of the balance of Eulerian
fluxes, the B-flux divergence in the boundary layer is balanced by the constant import
of relative vorticity advected from the interior. When the fluid leaving the boundary
current is advected toward the interior, the import becomes an export and the interior

solution can no longer be matched.

Other competing inertial theories to Charney’s arose, such as that of Carrier and

Robinson (1962) and Morgan (1956), but they were also incomplete.

In a result which is referred to a number of times in this dissertation, Fofonoff
(1954) was able to find a complete solution, but for free modes instead of wind-driven
solutions. His approach was similar to that of Charney, except since he didn’t have
to match to an interior solution, he was free to choose the function relating i and
§2V%1p+y as he pleased, so long as it was single-valued. He chose a linear relationship

and was able to produce free solutions.

However, a completely inertial theory like that of Fofonoff (1954) or Carrier and
Robinson (1962) can never accept a constant input of vorticity from the wind, because
none of the fluxes in an inertial theory—time-dependent, 8-flux, or advection of relative
vorticity flux—can ultimately remove vorticity from the basin. These fluxes can only
move the vorticity around within the basin. Thus, an equilibrium can never be

achieved.

Another problem with any of the purely inertial steady-state theories is that they
do not distinguish east from west. Note that in Charney’s equation 1.13, all of the
terms change sign when z changes to —z. Thus, these theories are incapable of dis-
tinguishing between a western and an eastern boundary layer; any solution which
works with z will also work with —z. The steady-state inertial theories do distin-

guish north from south, but they do not break the mirror symmetry to distinguish
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east from west. In the homogeneous model, one of the following terms is required
to distinguish western boundary currents from eastern. time-dependence (Pedlosky

(1965a)), bottom friction (Stommel (1948)), or lateral friction (Munk (1950)).

Perhaps one can fix the Charney solution and at the same time force the boundary
currents to the west. Suppose only a small amount of friction is used. Then the
relative vorticity of the fluid could change as it propagated through the boundary
current so that the problem with returning to the interior flow might disappear.

Simultaneously, the introduction of friction would distinguish east from west.

With this in mind, we turn to the problem of the inertial Munk and inertial
Stommel solutions. In these solutions, the friction and the advective terms are con-
sidered simultaneously. Once the exact conservation of vorticity is broken, however,
the hope of analytic treatments of equations containing the nonlinear advective terms
drops precipitously. For this reason, our review of westward intensification switches

to computational results.

Once the effects of both inertial and frictional terms are considered simultane-
ously, it is helpful to provide a dimensionless constant which weighs their relative
importance. When lateral friction and inertia are compared, the Reynolds number
is this constant. It relates the typical scale of the inertial terms to the typical scale
of the frictional ones. Since most of the inertial activity here goes on in the western
boundary layer, it is the ratio of the terms in the western boundary region that is
important. There the scaling of Charney’s solution gives the following: %% ~ 07,
and %15- ~ 1. This scaling results from the width of the boundary layer being Char-
ney’s width (d7), and the length of the current being the basin dimension (which is
1). Recall that the nondimensional wind forcing is chosen to give a Sverdrup solution

with ¢ of order 1. Examining these scales, we find:
O(V - (xy)) =~ o1

~c00  s—

O(V (—%8352 V%)) ~ o7
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O (V- (363%LVy)) ~ 67"
O(V -8, VV) ~ %L.

V- (kyp—%67 5L V24957 GE V)
Re = O ( A e > ~ 63/63, (1.14)

The Reynolds number will be very important in this dissertation.

Friction in Numerical Models

In order to get a boundary layer of the correct width, Munk’s model requires that
the viscosity be many orders of magnitude larger than the molecular viscosity of
water. The kinematic viscosity of water is about 1 - 107°m?/s for ocean surface
temperatures. The nondimensional Munk width used here is 6y = (An/(BL%))Y3,
where Ay is the eddy viscosity. Thus, in order to have a 100 km Munk boundary
current in a 10,000 km basin with 8 = 2 - 10“11(ms)"1, the value of Ag needs to be
approximately 2-10*m? /s, ten orders of magnitude larger than the molecular viscosity.
The reason that this is allowable is that the larger viscosity is intended to represent
not molecular viscosity, but eddy viscosity. If an estimate of eddy viscosity is made
from observations, then this larger value is more reasonable. For example, LaCasce
and Bower (2000) determined that the dispersion of subsurface floats in the ocean is
consistent with an eddy diffusivity of floats in the range: 2-10%(m?/s) to 2-10*(m?/s)
for floats separated by greater than 100 km. If the vorticity of the fluid is transported
along with the floats then the eddy viscosity would be equal to the eddy diffusivity
of the floats.

Eddy viscosity is a simplistic way to represent the effects of unresolved eddies into
a model without dealing with the eddying motions themselves; it is a parameterization
of the eddies. Eddy viscosity is a good approximation when the motions of the eddies
are relatively homogeneous and isotropic and have significantly smaller scales in space
and time than the physics being explicitly modeled.

To illustrate the meaning of eddy viscosity and the assumptions it involves, I will
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consider two approaches to the problem: top-down and the bottom-up.

For the top-down approach, consider the running average of equation 1.1 over a
spatial scale Az, Ay and a time scale At. We can then define the slowly-changing
part of any of the fields f as:

—f- = 1 f;+Az fz;y-FAy j:tt-l-At fdtdydm,

RzAyit
ff'=r-71

We can now take the average of each term in equation 1.1. Most of the terms will be

of the form:

f;+Az fyy+Ay j-tt-l—At %dtdydcs

Bg _ 1
0t T AzAyAt ;
W = AzAlyAt j‘ml-l-Al fyy_‘_Ay ftt+At V- thdydl‘

Now, if the integral of the eddy field is such that over the time and space scales of the
integration its integral tends to zero, then the derivatives in the preceding equations
and the integrals approximately commute, just as if the averages were not over space

and time but over an ensemble of different realizations of the flow.

If there were no mean flow and the domain were infinite, then the averages could
be taken in the limit that Az and At go to infinity. If these averages converge, then
the fields are ergodic. Without a mean flow, the ergodic eddy fields’ statistics are

stationary in time and homogeneous in space.

Here, in order to make the averaging formally correct we require the stronger
constraint that these integrals converge rapidly. That is, there must be a separation
of scales between the eddy field and the mean field. If there is a scale separation,
then the integrals and the averages commute. So, for example if equation 1.1 were

considered to be the true dynamics if all scales could be resolved, then it can be

24



written in Reynolds-averaged form:

i v T 0 T2 — ——
8‘87;0 + %% + 5%1](—1;7 V2~'L/7) + 5?](7’[)/’ V2w1) -V 5?\4vv2w + 5SV2¢ ~ g

The operator J is the Jacobian, which is defined as J(A4,B) = g—f%]yi - %—g%—g for
arbitrary A and B. This equation is just like equation 1.1, except instead of acting
on the total field v, it acts on the slowly-evolving field i and there is a new eddy
term proportional to J(¢/, V2¢/) = V - (W' VZ)').

The bottom-up approach estimates the eddy term from the top-down approach.
This approach is related to the one without a slowly-evolving flow first proposed by
Taylor (1921). To begin, we consider a small region in a coordinate frame which
moves along with the mean velocity over the small region and averaged with time so
that w = 0. Then, we consider the motion of a parcel of fluid moving turbulently
beginning at the origin of these coordinates, so that its location and displacement are
both given by x'(t). If we consider a tracer in the fluid which is nearly conserved,
g (with a slowly-varying component g and perturbations from that slowly-varying
component a’) then we expect that as this parcel moves about it retains nearly the
same amount of this tracer. As pointed out in the last section, the absolute vorticity

is a nearly conserved quantity. Thus,
q(x',t) = q(xo = 0, = 0).

If this parcel possesses the tracer concentration typical of its initial location, then the

size of its tracer anomaly at its new location can be estimated:

q(x/,t) = q(x0 = 0,t = 0) = g(x0 = 0,t = 0),

¢ (x,1) = q(x,t) —7(x', 1) = —x" - Vg(x,1)

The last step is a truncated Taylor expansion. This validity of performing and trun-
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cating this expansion relies on two assumptions. First, the terms involving higher
derivatives of § are neglected because 7 is considered to be changing slowly enough
across the domain to be linearized. Thus, again there must be a clear scale separation
between the scale of variation of § and the eddy scale, x’. Second, z’ is considered to

be independent of ¢, that is, g should be a passive tracer.

The eddy flux of tracer is therefore estimated by
u’q' ~ —u'(x' . V?]_)

If we assume that the eddy field is isotropic and make the simplifying assumption

that there are no cross-correlations in the displacements, then*

u'q ~ —%%(m’Q)VG.

Taking the average,

An important assumption has been that the eddy scale is separated from the slowly-
evolving scale. Now, we are in a position to be more precise as to the meaning of
the eddy scale. If the eddies are somewhat random in their movements, we expect
that when the eddies are allowed to evolve over a large enough region and for a large

enough time, the rate of displacement will become constant, that is,
liIn(t,x’)—»oo [%%(?i)] = K.

Now, once again, we require the scale separation of the eddies and the slowly-evolving

3Although there can be a relationship between ¢ and u, ¢ must be passive at least the functional
relationship relating them doesn’t change the form or the Taylor expansion given above.

4This step can be performed without neglecting the cross-correlations, but tensors must be used
to do so. Thus, for simplicity I avoid this step.
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flow; this limit must converge before the slowly-evolving scales are reached.

A similar but more extensive presentation of the meaning of eddy viscosity is
given in Tennekes and Lumley (1972). More rigorous presentations are to be found

in Batchelor (1952) and Batchelor (1960).

Of course, the eddy viscosity model is flawed; eddies in fluids typically do not have
clearly separate spatio-temporal scales from the mean, and vorticity is not a passive
tracer. Furthermore, the presence of boundaries and structure in the time-mean flow

places the assumption of turbulent isotropy and homogeneity in doubt.

To minimize the flaws of eddy viscosity, it is often the goal of numerical modelers
to resolve as many of the eddies as possible. That is, to make the eddy viscosity
small and explicitly deal with as many of the motions that result as possible. Ocean
modelers typically produce large eddy simulations. That is, they use a eddy viscosity
which is larger than the molecular viscosity, but the appropriate eddy viscosity is
governed by the scale of motions explicitly resolved. If this scale changes because
of a change in resolution, more and more of the motions are explicitly calculated,
and so less and less of the eddies are parameterized. Thus, the estimates of eddy
diffusion coefficient in the ocean that I have cited from LaCasce and Bower (2000)
should be interpreted as close to the mazimum eddy viscosity to use sensibly, because
these numbers are found in the limit of very long time averages and very large spatial
averages and therefore correspond to a model for a very slowly-evolving state with

most of the eddies parameterized.

One further point should be made when discussing friction in numerical models:

numerical dissipative errors.

The standard approach to solving partial differential equations is to discretize
using some approximation of the continuous field at points on a fine grid (finite
differences) or approximate the average of the continuous field within little cells (finite
volumes). The operators on the continuous fields are estimated in the discretized

model by arranging to find as many of the terms in a Taylor series expansion of
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the result of the operators using the values at the grid points or the averages over
the volumes. The order of the discretization is the order to which the Taylor series
expansion is satisfied.

Interestingly, some of the errors that result from truncating the Taylor series ex-
pansion act as though the discrete representation is a representation of the continuous
fluid with more viscosity or hyperviscosity than is explicitly incorporated into the dis-
cretized equations. These dissipative errors increase as the grid resolution decreases.

Thus, when a model is set up in finite differences or finite volumes and solved, the
model may act in a more dissipative manner than desired. As the Reynolds number
increases along with the demands on the model resolution, these errors will become
larger and larger, even before the onset of numerical instability due to insufficient
resolution. The primary model used in this dissertation is spectral, which avoids
dissipative errors but has other sorts of errors instead (see section C.5 for a discussion
of these errors)

However, dissipative errors are prevalent in many calculations in publication. Er-
rors are an inevitable consequence of numerical modeling. Thus, when a calculation is
purported to be operating at a particular Reynolds number, but the frictional length
scales are comparable to or smaller than the grid scale, it is likely that the errors
in the discretization make the numerical model closer to a representation of a more
viscous model than a properly-resolved model using the explicit value of the viscosity.
This should be kept in mind when a result is presented from a model with a particular

explicit viscosity and marginal resolution.

Failure at Moderate Reynolds Number

Before going on to two-dimensional calculations, it is the appropriate point to mention
the results of Ierley and Ruehr (1986). They solved a one-dimensional approximation
to the inertial Munk model in the boundary layer numerically, and showed that the

difficultly in connecting to the interior flow in the exit region that troubled Charney’s
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model persists even when friction is present, once the Reynolds number is greater
than one. Apparently, the one-dimensional boundary-layer approach is too limited to

capture the full dynamics.

We now turn to calculations of the inertial Munk and inertial Stommel model in
two dimensions. One school of thought has sought to simplify by keeping all of the
time-dependent phenomena parameterized by the eddy viscosity. These researchers

calculate steady-state solutions of the inertial Munk and inertial Stommel models.

Some interesting results have been found by calculating steady-state solutions.
First, as demonstrated convincingly by lerley (1987) (and further studied by Cessi
et al. (1987) and lerley and Young (1991a)) at the same Reynolds number as the visco-
inertial solutions of Ierley and Ruehr (1986) break down, a recirculation gyre forms in
the exit region from the boundary current. Since a recirculation is a two-dimensional
phenomenon, it need not obey the one-dimensional boundary-layer approximations
used by Ierley and Ruehr (1986) Also, lerley and Sheremet (1995) found that,
because of the nonlinearity of the inertial terms, more than one solution is possible

for the inertial Munk problem with the same forcing.

However, a troubling effect occurs in these steady-state numerical calculations.
As the Reynolds number becomes moderately large, the solution strength increases
rapidly and apparently without bound. This effect was first pointed out in an inertial
Stommel model by Veronis (1966b). Ierley and Sheremet (1995) fully explored this
result in the inertial Munk model. Figures 1-1 and 1-2 show this behavior in steady-

state solutions found with the method described in Appendix B.

A change in circulation strength with a change in viscosity is not unexpected
behavior for a simple physical system. If the friction is removed while the forcing is
kept steady, then of course any system with inertia would behave in this way. The
troubling aspects are that the inertia dominates at such a low Reynolds number,
many times smaller than the Reynolds number estimated to be appropriate for ocean

models and the real ocean, and that westward intensification is lost as the circulation
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Figure 1-1: (a-d) contour the steady-state streamfunction for the homogeneous model
with bottom friction only. (a) shows the §; = 0, és = 0.04 calculation and has
max(y) = 0.70. (b) shows the §; = 0.04, és = 0.04 calculation and has max(y)) =
0.68. (c) shows the 6; = 0.08, s = 0.04 calculation and has max(y) = 0.73. (d)
shows the d; = 0.1, 65 = 0.04 calculation and has max(y) = 0.83. The contour
interval is 0.1 in units where 1 is the maximum of the Sverdrup solution.

strength increases. Although a fairly large recirculation gyre may be consistent with
ocean observations (see Sheremet (2002) for a discussion), it is clear that the the
oceans are western-intensified on the large scale and that figures 1-2¢ and 1-2d are

therefore unrealistic.

Of course, the missing ingredient might be the effect of eddies. It is sensible that
since the large value of the viscosity was intended as an eddy viscosity, lowering it
would require and induce the presence of unstable, time-dependent motions through

the natural instability of fluids. These eddies might be able to replace the effects of
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Figure 1-2: (a-d) contour the steady-state streamfunction for the homogeneous model
with lateral friction only. The frictional boundary conditions are no-slip on the eastern
and western boundaries and slip on the others. (a) shows the §; = 0, dpr = 0.05
calculation and has max(y) = 0.93. (b) shows the §; = 0.05, dys = 0.05 calculation
and has max(¢)) = 1.02. (c) shows the ; = 0.0625, dpr = 0.05 calculation and
has max(y) = 1.5. (d) shows the d; = 0.08125, dpr = 0.05 calculation and has
max(1p) = 4.5. The contour interval is 0.1 in units where 1 is the maximum of the
Sverdrup solution.

lowering the eddy viscosity as the Reynolds number increased, as is crudely the case
in large eddy simulations of homogeneous, isotropic 2-dimensional turbulence (for
example, McWilliams et al. (1994)). Figure 1-3 shows the result of such a calculation
for the homogeneous model. This result agrees with other studies such as that of
Kamenkovich et al. (1995).

In this dissertation, I refer to the solutions such as that in figure 1-3d as inertially-

dominated. Some authors refer to the appearance of inertial-dominance at modest
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Figure 1-3: (a-d) contour the time-mean streamfunction for the homogeneous model
with lateral friction only. The frictional boundary conditions are no-slip on the eastern
and western boundaries and slip on the others. The solution is calculated using the
Chebyshev-polynomial time-dependent integrator described in Appendix C. (a) shows

the 6; = 0, oy = 0.02 calculation and has max(¢)) = 0.93. (b) shows the 6; = 0.02,
dn = 0.02 calculation and has max(1)) = 1.31. (c) shows the 6y = 0.02, 6y = 0.01387
calculation and has max(1) = 3.15. (d) shows the 6; = 0.02, d3; = 0.0117 calculation

and has max(¢) = 4.23. The contour interval is 0.1 in units where 1 is the maximum
of the linear Sverdrup solution.
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Reynolds numbers as the problem of inertial runaway. However, that term will rarely
be used here because it implies that no equilibrium is reached. These calculations do
reach an equilibrium, it is just at a much higher mean circulation strength and less
westward intensified than desired.

One might suppose that perhaps the inertial domination occurs because the ho-
mogeneous model is two-dimensional. The important effects of baroclinic instability
are neglected here. However, even when a model which incorporates the third dimen-
sion using layers of fluid stacked on top of each other is used inertial-domination is
observed at moderate Reynolds number (for example, Holland and Lin (1975)).

Why is it unacceptable that the circulation strength increases so rapidly in this
model? Presumably it indicates the readily apparent fact that there are physical
processes missing from the model. From a historical perspective, the reason Stommel
(1948) began all of this research was to explain why the intensification was toward the
west. As shown in figure 1-3d, the inertially-dominated solutions are not particularly
western-intensified. This lack of westward intensification can be easily understood
by appeal to the flux arguments above. When the circulation strength increases
sufficiently, the westward flux of vorticity of the S-term is swamped by the eastward
flux of vorticity of the inertial terms exiting the boundary current. One expects that
with higher Reynolds number, the solution will become completely symmetric in the
east-west direction as the frictional terms are no longer large enough to break the

symmetry.

1.1.2 What Sets the Wind-Driven Circulation Strength?

A simple model is very likely to become inertially-dominated as the friction decreases;
just as a bicycle wheel would spin faster and faster if the friction were greased away
with a constant torque applied. But, the ocean is not a simple model, it is a complex
physical system, and it can change its response to forcing in many ways. Obviously,

it responds in such a way that it does not require enormous circulation strength at
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small viscosity nor does it possess large viscosity.

Ultimately, of course, the friction will have to play a role in setting the circulation
strength, as the ocean constantly receives an input of vorticity forced by the wind. In
a model of only oceanic processes that conserve energy and vorticity, the quantity of
each would continue to build indefinitely without the effects of friction. As mentioned
above, perhaps it is not necessary for the friction to reach the molecular viscosity, but
at least, it should be clear what processes are represented by an eddy viscosity, and
the parameterization should be replaceable with resolved physics at least in principle.
However, can a model be made which prevents the enormous increase in the time-
mean flow of the wind-driven ocean which is relatively inviscid, simple, and western-

intensified? Such a model is presented in Chapter 2 of this dissertation.

Interestingly, the Sverdrup solution appears to set the circulation strength with-
out considering friction. How is this possible? The Sverdrup relation, though it can
determine circulation strength, in order to do so, it requires a passive boundary cur-
rent. That is, the reason that the Stommel, Munk, and Charney models were able
to attach to the Sverdrup flow was that they did so passively. Passive attachment
requires that the necessary mass flow and the necessary removal of vorticity is per-
formed. The Stommel and Munk models lack advection of relative vorticity, so the
removal of vorticity is no problem. Also, since the solutions are linear, if the solution
exists at one forcing strength it exists at all forcing strengths there is no limit to
the mass transport that these linear solutions can carry. The Charney model can
not reattach passively, so although it removes no vorticity from the flow, it need not

because it doesn’t describe a complete circulation.

Thus, the necessary criterion in for the simple model has to do with reattachment
of the boundary layer to the interior flow. In order to do this, the boundary current
must be able to transport enough mass and remove enough vorticity in the region of
the boundary layer. If not, the reattachment is doomed to fail. As we will see, the

formation and strength of recirculation gyres in the exit region indicates the mismatch
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in rejoining the interior flow. Most of the calculations in figures 1-1, 1-2 and 1-3 do
not have a passive boundary layer. Even when they are not inertially-dominated they
do possess a recirculation gyre which increases the maximum of the streamfunction

some degree above 1, the Sverdrup solution maximum.

The requirement of a change in vorticity in a relatively inviscid boundary layer is
reminiscent of the study by Edwards and Pedlosky (1998). They modeled the cross-
equatorial flow of a deep western boundary current. Thus, the flow was input with a
particular planetary vorticity and removed with a different vorticity. As the Reynolds
number of their boundary current increased, it became increasingly difficult for the
vorticity transformation to occur. We will see that the boundary current found in

the calculations here dynamically resemble the boundary current found by Edwards

and Pedlosky (1998).

1.1.3 The Role of Vorticity

In most of this dissertation, the analysis will closely examine the dynamics of vorticity.
Not only are the dynamics of absolute vorticity mathematically convenient to analyze,
but the amount of absolute vorticity directly addresses the issue of the strength of the
circulation. Of course, vorticity is expected to play an important role in a rapidly-

rotating fluid.

Consider a primarily horizontal time-mean circulation in a closed basin. Suppose
that there are no sources or sinks of mass and that the fluid is incompressible. Then,
the depth-integrated transport streamfunction will form nested circles of circulation.
The transport around each extremum of the streamfunction is governed by the magni-
tude of the extremum. What sets the magnitude of these extrema? Since the stream-
function is set to zero on the boundary, it will be the gradient of the streamfunction
(not coincidentally, the gradient of the streamfunction is the depth-integrated veloc-

ity). By integrating the relative vorticity within a particular streamline and using
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the divergence theorem, we find

[ V¥dA  §Vi-adl
§dl fdi

(1.15)

That is, the average gradient of the streamfunction across a particular streamline is
the amount of relative vorticity contained within that streamline per unit streamline
length.
Thus, if the wind input inside of a particular streamline is allowed to build, the
gradient of the streamfunction will increase and the circulation strength will increase.
Likewise, we can consider the effect of vorticity trapped between two streamlines.
If streamline 2 is nested inside streamline 1, then integrating the vorticity over the

area between the streamlines, we find
|//V21/}dA| - |j§u dl—j{u Al =|<up>Ly— <y > L. (1.16)
2 1

The angle brackets denote the average value of the velocity around that streamline
and L; and L, are the lengths of each streamline.’ So, if vorticity builds up in the
region between two streamlines without changing the position of the streamlines,
the difference in average velocity around the streamlines increases. Thus, if vorticity
builds up between two streamlines, the flow around the inner nested streamlines moves

faster and faster. It is similar reasoning which gives the circulation, I', its name.

r= // V2pdA = fu L. (1.17)

So, it is clear that the question of what controls the circulation strength can be
put in terms of where the vorticity tends to pile up and how it is transported.
The (-flux of vorticity is always in the east-west direction, and the advective flux

by the mean flow of time-mean relative vorticity is along the direction of the time-

5Absolute values are used to eliminate the complications of considering sign conventions and
vorticity of either sign.
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mean velocity. In chapter 2, it is demonstrated that neither of these fluxes can carry a
net flux of vorticity across a time-mean streamline. In the homogeneous model, only
the frictional fluxes and the eddy fluxes (that is, the advective flux of perturbation
relative vorticity by the perturbation velocity) can carry vorticity across time-mean

streamlines.

Therefore, the story of what controls the circulation strength is the story of how
the frictional fluxes and the eddy fluxes can remove the vorticity input by the wind
from within closed time-mean streamlines. A result which has a important impact
on the dynamics of the homogeneous model is that the resolved eddies in this model
cannot destroy vorticity or remove it from the basin as the eddy flux must vanish at
impermeable boundaries. Thus, the interpretation of what friction parameterizes in

this model needs revision from the ideas presented above.

Internal Cancellation

A different consideration in the control of the circulation strength is what happens
when the wind’s vorticity input is not of a single sign. If the wind provides positive
vorticity in one region and negative vorticity in another, then internal cancellation
of the vorticity could occur if the fluid arranges itself to communicate between these
regions. This question has been addressed by many previous authors (for example,

Harrison and Holland (1981), Marshall (1984), and Lozier and Riser (1990)).

Marshall (1984) suggests that one should not consider a single gyre, but two
rotating in opposite directions, representing the sub-polar and subtropical gyres. This
presents the possibility of internal cancellation of the wind’s vorticity input. By inter-
gyre vorticity exchange, the mean flow or eddies could ease the burden on the friction
to remove the vorticity input by the wind. Chapter 4 will deal with this issue in

detail.
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1.2 Dissertation Goals and Choice of Model

In Ierley and Sheremet (1995) it was suggested that the circulation
does not, nor should it, saturate in the limit of vanishing lateral viscosity.
The role of instability is simply to retard the increase in recirculation be-
yond realistic values. Barotropic instability alone, we argue, is insufficient
to retard the increase in recirculation beyond realistic values. Baroclinic
instability and internal gravity waves are obvious candidates for future
investigation.

—Sheremet et al. (1997)

The goal of this dissertation is to address the reasons why the wind-driven circulation
strength is what it is, and to describe some of the processes involved.

In order to address this goal, numerical models were developed. The primary
model, which integrates the time-dependent homogeneous model (equation 1.1), was
chosen for a number of reasons. What makes the model used here unique is that the
viscosity is increased as the eastern and western boundaries are approached.

First, the model ties neatly into the tradition of models of westward intensification.
Only in the spatial variations of viscosity does it vary from these models, so many of
the lessons learned apply directly.

Second, the model is easily and efficiently implemented numerically. The only real
difficulty numerically is accurately representing the derivatives necessary to evaluate
the friction. As the viscosity decreases, the gradients become very large so that
friction remains part of the solution. These gradients require very fine horizontal
resolution as the viscosity decreases. However, this constraint is present in any high
Reynolds number calculation, so common practices such as those given in Orszag and
Israeli (1974) can be adapted.

Third, the vorticity dynamics of the model are simple. As mentioned, only eddy

fluxes and frictional fluxes can carry vorticity across streamlines of the mean flow.
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Because the depth of the model is fixed, only absolute vorticity need be considered.

Fourth, the model possesses few parameters, so a large range of the possible per-
turbations can be explored. This is the driving idea behind what is likely the weakest
point of the model: neglect of vertical and density structure, including the important

effects of topography.

If an omnipotent being were to study what controlled the strength of the ocean
circulation, her model of the ocean would solve the full three dimensional Navier-
Stokes’ equations at any resolution desired. It would have a diversity of phenomena
and boundaries which are like those in the real ocean-rough-but adequately resolve
the pockets of fluid contained in the nooks and crannies of the rough topography and
coastlines. Potentially important effects, such as the time-dependence of the winds
and the astronomical forcing of the tides, would be included. However, it would take

the intellect of an omniscient to understand the results of such a model.

Instead, given the limited resources of computational power and finite intellect,
the only course is to simplify as much as possible without neglecting the critical
features which perform the control of the circulation strength. So, I have chosen the

homogeneous model with boundary-enhanced viscosity.

This model is intended to represent the same idealized wind-driven circulation
envisioned by Stommel and Munk, and makes similar approximations with one ex-
ception. As mentioned above in section 1.1.3, the eddies present in this model cannot
remove vorticity from the basin. This is quite unlike the eddies, turbulence and waves
operating at small scales in the ocean. There are many phenomena which can remove
vorticity from the circulation near the boundaries or which will certainly strongly
affect the eddy field only near the boundaries. Prime examples are bottom pressure
interaction with topography (as recently proposed by Hughes and De Cuevas (2001)),
eddy generation at a sloping bottom (as proposed by Hallberg and Rhines (2000)),

and the breaking of internal gravity waves near topography.
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The homogeneous model is so simple, with its 2-dimensional circulation without
topography or sloping boundaries, that the friction must play a dual role. It must
represent both the eddy viscosity, ¢.e., the random mixing of the mean flow by unre-
solved eddies, and the removal of vorticity from the basin by all processes capable of
performing this removal. The friction parameterizes the mixing by eddies by diffusing
vorticity in the basin interior. The friction parameterizes the effects of interaction
with the boundaries as it is the only mechanism for removal of vorticity from the
basin. Furthermore, the use of friction requires more boundary conditions and tends
to result in frictional boundary layers. In the homogeneous model, these effects of
friction are parameterizations of the interaction of the large-scale flow in the real

ocean with the boundary.

However, the use of a constant viscosity tacitly assumes constant intensity of the
unresolved phenomena whose effects on the large scale circulation are parameterized
by the friction. Clearly, since the friction must represent completely different phe-
nomena near the boundary than it does in the basin interior, it is unfair to expect
these processes to parameterize easily as a constant viscosity. Moreover, because of
the simple topography and physics of the homogeneous model, the only part of the
eddy viscosity which will become explicitly resolved as the Reynolds number increases
are the barotropic eddies. All other unresolved parameterized phenomena will remain

implicit in this model.

It is obviously true that the results here would be more convincing were the
boundary processes resolved rather than parameterized by an increased viscosity.
This dissertation is intended only as a first step to point out the importance of these
processes and to determine their effect on the interior circulation. Later investigations
can determine the precise nature of these phenomena. Also, once the effects on the
interior are established it is no longer necessary to resolve the entire ocean basin,

regional models can be employed to save computation.
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There is a significant omission of physics from this model which deserves mention
here. The model is barotropic, and therefore has no baroclinic effects whatever. How-
ever, so long as the vertical structure is divisible into horizontal layers, the absolute
vorticity budget still must be satisfied within each layer (as shown by the imperme-
ability theorem of Haynes and McIntyre (1987)). This is perhaps related to the result
that some quasigeostrophic baroclinic models have been observed to be inertially-
dominated just as the homogeneous model is sometimes (for example, Holland and
Lin (1975)). Thus, the addition of multiple layers will produce additional sources of
variability (gravity waves and baroclinic instability for example) but will not affect
the fundamental problem of the removal of vorticity. The question of what changes
would occur were vertical structure introduced into this model is quite interesting.
Even the inclusion of variations in depth in a barotropic model will have significant

effects on the eddy field (as shown, for example, by Becker and Salmon (1997)).

Another perhaps significant difference between the eddy field of a barotropic model
and that of a baroclinic model is the way that turbulent energy changes scale. As
pointed out by Batchelor (1969) and later extended to the S-plane by Rhines (1975),
the dynamics of two-dimensional (or barotropic) homogeneous turbulence are very
different from that of three-dimensional (or baroclinic) homogeneous turbulence. In
particular, the conservation of vorticity results in energy cascading to larger scales
rather than to smaller. One could argue that inertial-domination is a natural result
of this cascade to large scales. However, these results are for freely-evolving homo-
geneous turbulence, not forced-dissipative turbulence in the presence of a structured
mean field. As shown by Smith and Vallis (2001), Smith and Vallis (2002), Smith
et al. (2002), and Arbic and Flierl (2003) the forced-dissipative case is quite differ-
ent from the freely-evolving case, and the presence of structures greatly changes the
character of the mixing. As these calculations aren’t remotely isotropic, the impact
of mean flow structures is massive. Furthermore, the forcing here is at the largest

scale, the basin scale, and therefore the cascade cannot proceed further in that direc-
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tion. Thus, it is difficult to make a direct connection between the results of Batchelor
(1969) and Rhines (1975) and the results presented here. Indubitably, significant dif-
ferences in the behavior of the eddy field would result were baroclinic effects added
to the calculations here.

My approach is to address the barotropic model first, because its physics will re-
semble those of every layer in a layer model, although the modes of instability will
be lacking. Only after this model is well-understood can the additional complexities
of vertical structure be addressed. In this dissertation, it will become clear that even
in the single-layer case, the physics are complex and once misunderstood. Including
more layers and baroclinic instability will undoubtedly add interesting and important
changes to the calculations. I expect the primary changes to be that the new mecha-
nisms of instability are likely to produce more eddies and to produce them in different
locations, and these eddies will transfer energy quite differently than barotropic ed-
dies do. Also, later in the dissertation I speculate that profound effects may be
produced if the vertical layers do not reach the boundary and end at the surface of
the ocean. In this case, the absolute vorticity budget can not extend all of the way to
the basin boundary. Because of the limited scope of this dissertation, the intriguing

complications of vertical structure must remain the subject of future research.

1.2.1 Definition of Eddy and Mean

To accentuate the difference between steady-state and time-dependent calculations,
I will almost always use the term eddy to refer to time-dependent motions of short
time scale. Often, they will be the perturbation from a longer time-mean equilibrium.
The precise meaning of the term eddy has consequences for most of the results in this
dissertation.

An additional reason for this choice of definition of eddy is in comparison to data.
Most of the information about the form of the wind-driven gyres is derived from

observations at sea of density used to infer geostrophic velocities and surface drift. In
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both cases, synoptic observation is rarely possible. Thus, what is observed, not by a
single survey, but by repeat observations of the same location is the Eulerian mean
circulation. It was the observations of the Eulerian mean circulation which inspired
Stommel to propose his theory of westward intensification.

Because these observations are what inspired the formulation of the steady homo-
geneous models used to study western intensification, the Eulerian mean is the most
natural representation of the circulation in this case. The complementary definition
of eddy as a perturbation from this mean follows.

In the conclusion, I have a few further remarks on the choice of the definition of

eddy.

1.2.2 Summary of the Chapters

Chapter 2 introduces the single-gyre homogeneous model with boundary-enhanced
friction in detail, and gives the primary results regarding control of the circulation
strength. The primary result of the model calculations is that by increasing the
viscosity in a small region very close to the boundary, the circulation strength of
the entire basin can be controlled. Detailed analysis of the possible mechanisms of
vorticity transport and removal in the model are analyzed in section 2.2 and diag-
nostics are proposed. The flux of vorticity is then analyzed in detail, and a simple
test is found which determines whether the equilibrium will be western-intensified or
inertially-dominated.

Because the model presented in Chapter 2 is able to be run at a much lower
viscosity in the interior while remaining western-intensified, it has some extraordinary
dynamics. Many of these dynamics are introduced and discussed in Chapter 3. Also,
discussions of the effects of bottom friction and slip boundary are presented in Chapter
3, because these results are helpful in understanding the results of Chapter 4.

In Chapter 4, a second wind-driven gyre is added to consider the effects of doing

so. It is demonstrated that with slip boundary conditions with two equal and opposite
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gyres, the results resemble those of Marshall (1984) with an important inter-gyre eddy
flux. However, the inter-gyre vorticity flux is not as important in the case with either
no-slip boundary conditions or gyres of unequal strength. Nonetheless, the circulation
strength is reduced by adding the second gyre. Chapter 4 then proceeds with a review
of different hypotheses of what mechanism reduces the circulation strength with the
addition a second gyre. The most likely hypothesis is that the structure of the eddies
which cannot form in the single-gyre but can form on the jet dividing the gyres

(primarily sinuous modes) effect an efficient transport of vorticity to the boundary.
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Chapter 2

Control of the Wind-Driven Single
Gyre by Eddy Fluxes of Vorticity

to a Region of Enhanced Viscosity

It is unclear what controls the strength of the wind-driven ocean circulation. Tra-
ditional analytic models of the ocean circulation have relied on an interior solution
in Sverdrup balance, attached to a western boundary current which is expected to
close the flow of mass and remove the input of vorticity and energy from the wind.
The Sverdrup interior sets the mass flux, and the western boundary current plays a
passive role.

However, ultimately there must be a balance between forcing and dissipation.
The wind is a constant source of energy and vorticity to the ocean. If there is not a
mechanism for equilibration, it is obvious that what controls the circulation strength
is unknown. This is the danger of Sverdrup’s solution. It is neat, it agrees fairly well
with existing observations, and it is based upon physical principles. However, since
much of the physics is neglected a prior: in this model, it can be only a part of a full
understanding of what controls the circulation strength.

Veronis (1966b) demonstrated that as inertia becomes strong relative to dissi-

45



pation’, the inertial terms become dominant in regions outside the boundary cur-
rent. More recent work has demonstrated that these inertially-dominated solutions
are ubiquitous in the wind-driven single-gyre ocean model with constant viscosity:
time-dependent and steady-state calculations with differing boundary conditions all
demonstrate this behavior (Ierley and Sheremet (1995), Kamenkovich et al. (1995),
Sheremet et al. (1995), Sheremet et al. (1997)). These inertially-dominated solutions
occur at modest inertia to friction ratios, leading one to wonder what occurs in the
ocean where the friction is considered to be much smaller than the inertia, yet the
ocean is strongly western-intensified with inertial western boundary currents and a

relatively non-inertial interior.

The resolution of the dilemma is found by examining the meaning of friction in
these models. The viscosity used is not intended to represent the action of molecular
viscosity; it is many orders of magnitude too large. Obviously the friction used is a
parameterization of unresolved processes.

The use of a constant viscosity tacitly assumes that all the unresolved phenomena
whose effects on the large scale circulation are parameterized by the friction can be
treated equally. The assumption of constant viscosity in the unresolved processes is a
strong and unrealistic constraint on the activity of the parameterized processes. The
activity of small-scale processes in ocean observations is extremely diverse. Observa-
tions of relative dispersion of subsurface floats by LaCasce and Bower (2000) indicate
approximately an order of magnitude variation in turbulent diffusivity. Additionally,
the friction in simple models such as the homogeneous model represents not only the
sub-grid-scale eddies, but also the interaction of the large-scale with the boundaries.
It is overly optimistic to expect the effects of unresolved eddies and the effects of the
interaction of the flow with topography to parameterize identically as a friction with

constant viscosity.

Often, the eddy viscosity is considered as a replacement for the effects of eddies

Veronis used bottom friction with a constant drag coefficient.
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only. A large Reynolds number solution was sought in these simple models because
it was supposed that as the friction decreased, there would be an increase in mixing
by increasingly energetic, yet well-resolved, eddies that would replace the decreased
diffusion from the friction. These eddies would naturally be formed from the insta-
bilities that occurred with increasing resolution and decreasing diffusive parametriza-
tion. More recently, the role of eddy viscosity (and eddy hyper-viscosity) has been
described as merely the mechanism to set the cutoff scale of the enstrophy cascade
(see, for example, Holland (1978), Marshall and Shutts (1981)), and therefore, less
viscosity would only result in more small-scale enstrophy. This view neglects the
important role of the frictional terms near the boundary. As demonstrated by fig-
ure 1-3, this understanding of what eddy viscosity represents is flawed. The idea that
the eddies would be able to replace the friction obviously neglects the role of friction
in representing interaction with the boundary by processes which will not increase
with increasing resolution and increasing Reynolds number, at least not in a model
without topography?.

This chapter provides an idealized framework for understanding how and where
the unresolved processes in a simple barotropic model can and cannot replace the

action of viscous terms.

The experiments herein attempt to verify whether the eddy viscosity can be re-
placed by the action of eddies in the basin interior, although not near the basin
boundaries. Presumably, there are additional physical interactions near the bound-
aries which cannot be easily included without including additional physics (e.g., to-
pography, tidal dissipation, separated boundary layers, etc.). The novel approach
used in this chapter is to try to treat these boundary phenomena simply and see the
result on the basin-wide circulation. It will be shown that while the character of the
eddies changes as the viscosity is lowered in the basin interior, so long as a suffi-

ciently strong frictional layer exists near the boundary, the mean flow is qualitatively

20r even a model with overly smooth topography!
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unchanged.

In this chapter, an idealized model of a northern subtropical gyre is used which
differs from the traditional model in that it has increased viscosity near the boundaries
to the east and west. This is intended to represent the increased activity due to
unresolved boundary physics, and there are also dynamical reasons for the choice.
The primary dynamical reason, which will be derived in this chapter, is that eddies
cannot remove vorticity from the basin; they merely rearrange it. In the model used
here, only the friction can remove vorticity from the basin, and increasing the viscosity
near the boundary is a simple representation of the unresolved physics there which

should allow vorticity to be removed.

It is important to keep in mind that the enhanced viscosity is not a proposal for a
viscous region near the boundaries of the ocean. It is only a very simple parameteri-
zation of boundary processes, some which might be described as viscous and some of

which are certainly not, such as lee wave generation.

Of course, it is likely that a more realistic parameterization would have viscosity
or other operators which are dynamically-variable as well as spatially-variable. For
example, one might use a viscosity which grows with the shear of the mean flow or
a quadratic bottom drag as a dynamically-dependent friction. Because most of the
study will be of the time-mean circulation, where one might expect a dynamically-
variable viscosity to be relatively stable, and because of the demands of simplicity,
only spatial variations in viscosity are considered here. Furthermore, because many
of these calculations tend to be strongly western-intensified, choosing a dynamically-
variable friction may not be significantly different in gross behavior from assigning
a higher value of viscosity near the western boundary. Finally, the parameterization
used here makes it easy to test whether it is possible to have a western-intensified

calculation with a wider inertial boundary width than frictional boundary width.

The simplicity of having only one type of friction motivates the choice of using

only lateral friction with variable viscosity. Obviously, some aspects of the results
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found here will not apply when a more realistic treatment is possible. However, the
boundary-enhanced viscosity acts primarily as a sink of vorticity and a generator of
eddies which are properties likely to be shared by a more realistic model, it is hoped
that many of the results presented here will be robust.

This chapter is organized in sections. In section 2.1, the specifics of the model
used are presented. Section 2.2 presents diagnostic and analytic constructs that are
used in understanding the behavior of the model. In section 2.3, the results of the
numerical calculations are presented. In the final section, the implications of these

results are discussed.

2.1 Boundary-Enhanced Viscosity in the Homoge-

neous Model

The model used here is the rigid lid, homogeneous-density, single-gyre ocean model
on a (-plane with spatially-varying viscosity. Because of its relative simplicity and
ease of implementation, the lateral friction used is a horizontal diffusion of relative
vorticity (V - 63,V() with a spatially-varying horizontal eddy viscosity (Austausch
coefficient). The viscosity is scalar and varies only in the zonal direction (i.e., per-
pendicular to the western boundary) in these calculations. This, together with the
B-plane approximation, guarantees that the friction used is the same as if a diffusion
of absolute vorticity were used (as V-3,V ({+By) is the same as V63,V when &3, is
a function of z only). Other possible choices of lateral friction operator are available
such as a diffusion of momentum ( 2 - 68—;2) [5?\4(2%’ — %—%)] +4Z 2 {5?\4%3% D 3
In this section, a bottom friction with a constant and spatially-independent decay

time also appears to demonstrate the role of bottom friction in the analysis, although

results with bottom friction are not presented until the next chapter.

3 Another, more dubious choice also not used here is §3,V4¢. This form is peculiar because it
violates the assumption that the frictional flux should be proportional to the vorticity gradient.
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The model solves the following dimensionless barotropic vorticity equation (equa-
tion 2.1) and then inverts the Poisson equation (equation 2.2) to find the streamfunc-

tion at each time step:

D¢ oy : 3
St = = sin(my) + V- 03,V( — 85, (2.1)
Dt ~— ot '\dzdy Oyoz/)

The dimensionless variables are related to dimensional ones in the following way

(asterisks denote dimensional variables):

_t

t = g7, @ = La,yu = Ly, wp. = ~Wasin(ry), o, = Yeftky,

2 — Wgef 3 _— A _
61_:1525[?2,51\4:,"#755:31[‘/,

where Ay is the Austausch coefficient in the horizontal direction and 7 is the bottom
friction decay rate. L is the horizontal basin dimension. D is the basin depth (or layer
depth). The variable ¢ represents relative vorticity, while 1) is the streamfunction of
the velocity (u = —%, v = ‘Z—‘i’) The streamfunction 1 is scaled so that the Sverdrup
solution would have a maximum of ¥y = 1 were it to fill the dimensions of the basin.

The [-plane approximation is used, so the value of the Coriolis parameter at the

center of the domain is fp and its meridional derivative is (3.

The forcing is given by wg = —sin(my), which is a negative input of vorticity
throughout the basin. This form of the wind forcing can be found in one of two ways.
First, it can be found by deriving the barotropic vorticity equation from momentum
equations forced by a body force proportional to — cos(my), which roughly represents
the tropical easterlies at y = 0 and the westerlies at y = 1. Second, it can be derived

as the vorticity flux from an Ekman layer forced by the same wind stress whose
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pumping supplies the vorticity by vortex stretching. In either case, it is the curl of

the wind stress which appears in the barotropic vorticity equation.

This single-gyre wind forcing is intended to roughly model a northern hemisphere
sub-tropical gyre, so the poleward direction is the direction of increasing y, or north.
In Chapter 4, a second gyre with vorticity input of opposite sign will be added,
roughly representing a subpolar gyre. Because the goal of this chapter is to study the
removal of vorticity by friction, use of a single-gyre is preferable, because there is a
net input of vorticity, all of which must be removed by friction. In the double-gyre,
there is no net input of vorticity, so purely internal mechanisms might control the

circulation strength. I will return to this issue in Chapter 4.

The boundaries are located at z = 0 and = 1 in the zonal direction and at y = 0
and y = 1 in the meridional direction. The boundaries are impermeable, which is
implemented by setting ¢ = 0 for solutions of equation 2.2, an appropriate method for
a constant depth model. The lateral friction in equation 2.1 also requires higher-order
boundary conditions. In this chapter, the eastern and western boundaries have the no-
slip boundary condition (g—f = 0), while the other boundaries have slip ({ = 0). For
simplicity these calculations will be referred to as no-slip boundary calculations. In
subsequent chapters, slip calculations will performed where the boundary conditions

on all four boundaries will be slip (¢ = 0).

These frictional boundary conditions were chosen because the no-slip boundary
condition is good for generating instabilities at the western boundary and the slip
boundary condition at the north is more easily compared to the two-gyre and double-
gyre solutions presented in Chapter 4. Thus the slip boundary condition is intended
to roughly represent the fluid boundaries while the no-slip boundary conditions are
intended to roughly represent the solid boundaries. A recurring theme of this disser-

tation is that this idealization is often overly simple.

The parameters, 87, 057, and dg, would be the Charney (1955), Munk (1950), and

Stommel (1948) boundary layer scales, respectively, if dps were constant in a basin of
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unit width. However, in these calculations, the viscosity, and hence 0/, is allowed to
vary. As the parameter 83, is proportional to the dimensional viscosity and plays a
similar role in the nondimensional equations but has different units than the viscosity,
it will be called the viscosity parameter herein.

The interpretation of dys as a boundary layer width will no longer apply directly
if 057 varies. While the solution to the Munk problem with variable lateral viscosity
(neglecting advection of relative vorticity) is not analytically tractable, the Stommel
problem with a bottom drag coefficient exponentially decaying away from the coast
is. In that case, the boundary layer scale changes from dg to d41n(ds/d4) for a bottom
drag coeflicient which is ds exp(—z/d;) with the boundary located where z is zero.

For the calculations presented here, the value of 7 is fixed at 0.02. The value of
Op varies across the different calculations and throughout the basin. The Reynolds
number of the boundary layer for a given viscosity is a useful measure for comparing
different runs; it is defined here as §3/63;.

When the viscosity is allowed to vary, the boundary-layer Reynolds number based
on the interior viscosity (Re(int) = &3/[8p(int)]?) and the boundary-layer Reynolds
number based on the viscosity at the eastern and western boundaries (Re(bdy) =

63 /160 (bdy)]?) are used as constant parameters. The viscosity parameter is

o= 0 - ~z/8q | —(1-2)/84
O o1 [Re(int) * (Re(bdy) Re(int)) (e te )} . (2.3)

) S (2.4)

Re(bdy) and Re(int) are fixed. Thus, the viscosity parameter decays exponentially
from the boundary value to the interior value with a decay scale equal to the frictional
sublayer scale, §q. This functional form was chosen for simplicity and smoothness,
rather than from a rationalized parameterization of a particular physical process.
The first advantage of choosing the frictional sublayer scale as the decay scale is

shown by consideration of the balance of terms in the sublayer. The frictional sublayer
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scale is the scale found by hypothesizing a balance between the mean advection and

the frictional terms (see, for example, Pedlosky (1996)). This proposed balance is

2 (aw oy o a%) o 0 0(6%) 0% 05

I\ 9z Oydz® 0Oy 0z®) Mozt dxr Ox®

If the scale of the velocities is chosen to be that of the inertial boundary layer (%
on the order of 67! and % with a magnitude near -1), then the scale over which
these velocities must vary in order for this balance to be achieved is the frictional
sublayer scale given above. The advantage of choosing the frictional sublayer scale as
the decay scale for the viscosity parameter is that both terms on the right hand side

will have the same scale. Thus, the width of the sublayer will be relatively unchanged

by a change in Re(bdy).

The second advantage of choosing the frictional sublayer as the scale of the vis-
cosity parameter’s decay is that so long as Re(int) is greater than one, the inertial
boundary layer scale will be larger than the frictional sublayer. Therefore, in all of
the calculations with Re(int) greater than one, the outer part of the inertial bound-
ary layer will not pass through the enhanced viscosity. Therefore, relatively inviscid

dynamics must occur in that region.

The frictional sublayer is a theoretical construct which is useful for thinking about
the way in which the frictional terms always become important near the boundaries.
Even if the viscosity is extremely small, because the frictional boundary conditions
must be satisfied this layer will always exist, although its scale will shrink with the
viscosity. However, in a forced-dissipative problem this thin boundary layer almost
always plays a critical role as there is no other region where the effects of forcing can

be balanced. We shall see that this is also the case in the homogeneous single-gyre.

However, recall that the boundary-enhanced viscosity presented here is only a
parameterization of boundary processes. The choice of an exponentially-decaying

viscosity with a sublayer decay scale is a choice. Many of the results in this model
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will be applicable even if the boundary processes parameterized by this viscosity do
not decay with this scale. This scale is chosen only to emphasize that the viscosity
is being raised only within a region which was already strongly influenced by friction

in this model.

Because the meridional extent of eddies is not the basin scale, their scaling is not
the same as that for the mean flow. Thus, the scale of the eddies’ frictional sublayer
is different from that of the mean flow. It is likely that the viscosity’s effect on the
eddies will change differently than its effect on the mean flow changes. This is another

highly desirable feature of our choice of parameterization of boundary processes.

The viscosity is chosen to vary only in z for two reasons. The first is that the
eastern and western boundaries are intended to be idealized solid boundaries, hence
the choice of no-slip boundaries there. Thus, the unresolved but presumably en-
hanced boundary-related physical processes the higher viscosity is intended to repre-
sent should be present there. Second, if the viscosity varies only in z, then the choice
between a friction term which parameterizes sub-grid-scale phenomena as a diffusion
of absolute vorticity and one which diffuses relative vorticity are identical (again as

V - 63, V(¢ + By) is the same as V - §3,V{ when 63, is a function of z only).

A numerical model was created to solve equations 2.1 and 2.2 with the viscosity
parameter given by equation 2.3. Because of the difficulties in accurately differen-
tiating the streamfunction four times as required to evaluate the friction term in
equation 2.1, a Chebyshev pseudo-spectral method is used (see, for example, Got-
tlieb and Orszag (1981) and Boyd (1989)). The details of this model are presented
in Appendix C.

The range of 6; and &), used is governed by both numerical constraints and an
attempt to reach the correct parameter range. The value of d; is 0.02 in all of the
calculations presented here. The maximum interior Reynolds number with reason-
able accuracy at the resolution used (256th-order polynomials) was 9 for this value

of §;. The accuracy at this resolution was confirmed both by spectral decay of the
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Chebyshev coefficients of relative vorticity (for all Reynolds numbers used) and by
comparison with higher and lower resolution calculations (with the parameter setting:
Re(bdy)=3, Re(int)=3). Although the runs at different resolutions differed signifi-
cantly in the details of the eddy field, the time-mean circulation and magnitude of
kinetic energies agreed. Additional discussion of error can be found in section C.5.

The value of &7 is physically relevant and lies in the range used in similar calcu-
lations. Ierley and Sheremet (1995) use values surrounding 0.02, Kamenkovich et al.
(1995) use 0.01, and Bryan (1963) advocates a range of values from 0.03 to 0.005
depending on the depth of the moving layer and basin dimension. The value of 0.02
used here corresponds to a 200 km inertial boundary current scale in a 10000 km
basin with a velocity scale of 1.6 m/s (with 8 =4 -107"(ms)™).

Although proper interpretation of eddy viscosity is model-dependent and therefore
eddy viscosity is inherently difficult to measure, the value of §5; used here is probably
too large. The maximum value of the Reynolds number here is 9, while estimates of a
more appropriate eddy viscosity place the appropriate Reynolds number in the range
of 100-1000 (Pedlosky (1987), LaCasce and Bower (2000)). Rather than increasing
the Reynolds number farther in this overly-simplified model, however, it is likely more
important to include additional physics. It shown below, however, that the value of
Su is small enough to ensure that the frictional sublayer is clearly smaller than the

inertial boundary layer, which is the desired physical criterion.

2.2 Analysis

In this section, some analytic results are presented which will be used throughout
the dissertation. First, the vorticity equation will be written in flux form which
implies that vorticity cannot be locally destroyed and therefore must be carried to
the boundary to be removed. Second, the energy equation will be presented and the

differences between it and the vorticity equation will be presented. Finally, budgets
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over areas of vorticity and energy will be presented. Two regions will receive particular
attention, the area within a mean streamline and the basin as a whole.

The barotropic vorticity equation can be written in flux form, where every term is
a conservative flux of vorticity. This is also true for the Reynolds-averaged barotropic

vorticity equation.

% + V(&Y + 0PuC — V¢ +55VY) = —sin(ry),  (2.6)
% +V - (&Y + 670l + 670 — 63,V +65Veh) = —sin(my). (2.7)

The overbar denotes a time-mean over times long compared to the eddy time scales,
and primes denote fluctuations from the mean.*

Every term in equation 2.7 is a flux of vorticity except the wind-stress source.
Because these terms are fluxes, the vorticity input by the wind cannot be locally
removed. Actually, the wind source of vorticity can also always be written as a flux
rather than a source, as it is the curl of the wind stress itself. The time-derivative
of vorticity can also be written as a flux if helpful. The result that all of the terms
in the equation are fluxes is the impermeability theorem for this system (Haynes
and Mclntyre (1987), Marshall and Nurser (1992)). For the single-gyre, the wind’s
vorticity input is negative everywhere. Therefore, no amount of internal mixing of
the vorticity can cause internal cancellation; the vorticity must be fluxed from the
input region out of the basin. As is demonstrated in equation 2.7, the flux of vorticity
can be carried by the 5-term, the mean advection of mean relative vorticity, the eddy
advection of eddy relative vorticity, bottom frictional flux, or by a lateral frictional
flux. In this dissertation, these terms will be called the 8-flux, the mean flux, the

Reynolds flux, and the frictional flux of vorticity respectively. The fluxes that will be

4This form of the equations is certainly valid when the value of g is constant. However, just
as using a lateral friction which diffuses momentum rather than vorticity yields a different form
for the lateral friction operator, the form of the bottom friction will vary depending on whether it
is intended to be a bottom drag on momentum, a flux of vorticity, an Ekman layer on the ocean
bottom, etc.
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most often discussed in the Reynolds-averaged equation are:

B— flur = Y%, (2.8)
mean — fluz = 6%aC, (2.9)
eddy — fluz = 62u/C, (2.10)
bottom — flux = 85V, (2.11)
lateral — fluz = —63VC. (2.12)

Unlike vorticity, the energy can be locally dissipated. The equation for the kinetic
energy of the mean flow (E = D /2) can be constructed from the vorticity equation 2.6

above by multiplication by — and use of product rules for differentiation.

OF D 2 ? 3 )?
E + V- [—¢EV¢ + 5IuE —_ -§-X + Qﬁ(sMVC — 55V7 — dgihu

2p\? [\’ 8%\ .
V2E — (552_> — (5@_/5> -9 (83083/) — 206sE + ¢sin(my).  (2.13)

For the Reynolds-averaged version, multiply equation 2.7 by —1, producing

:5%

_ o L B -
9 +V- {—ngng + §3E — LR+ 983, V( - 5sVL — fgya
+V - [su- T - P VY|

= —\ 2 b= 2 — 9 o
- 5%/1 {VQE - (?92715) - (%) -2 (%) } — 265 E + ¢ sin(my)

1@ V)T (2.14)

The terms after the equal sign in this equation are local sinks and sources of energy.

All of the frictional terms in equation 2.14 are negative definite except for 63, V?E
which represents a smoothing of sharp energy gradients. The equivalent term does
not appear as a source term in the energy equation if frictional diffusion of momentum

rather than diffusion of relative vorticity is used. In that case, this term is a flux of
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energy rather than a sink. However, in practice, this term is usually small when
compared to the negative definite terms, and the sum of the frictional terms is always
negative on integration over the basin (although it is sometimes locally a small positive

quantity)

The wind energy input term can be of either sign, and the amount of energy de-
pends on the solution through multiplication by 1 as the work done differs depending
on the solution’s alignment with the wind stress. Because of the variable nature of
the energy source and the existence of local sources and sinks in the energy equation,
the vorticity budget is a simpler tool for analysis of this model. Further discussion of

the energetics of the model is presented in section 3.6.

The integral of the vorticity equation within a mean streamline is useful in un-
derstanding the role of eddy and frictional fluxes in this model. If the mean is taken
over the entire time interval, then g—g vanishes. Using the divergence theorem and
noting that the mean fluxes cancel out when integrating along a mean streamline,

the following results for the area enclosed by the streamline where 1) = 9¢:
74 (WT + 65V ~ 63, VC) - fuds = — / / sin(ry)d. (2.15)
e P<ee

Thus, the flux across mean streamlines can only be carried by the friction or by the

eddies.

If the streamline chosen is the one located at the boundary (¢)c = 0), the basin-

wide budget is produced.
ja( (659 — 6, VC) - fuds = —=. (2.16)
Yo

It is obvious from equation 2.16 that it is exceedingly difficult to reduce the viscosity

at the boundary without affecting the mean flow.

Equation 2.16 is the reason for this dissertation’s emphasis on unresolved bound-
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ary processes. Regardless of the model used, because the vorticity equation can be
written in flux form, there must always be a process at the edges of the domain ca-
pable of removing the vorticity. The model chosen here is enhanced viscosity at the
boundary, which obviously relieves the strict nature of equation 2.16 which is evalu-
ated using the value of the viscosity at the boundary only. By using a large viscosity
at the boundary, equation 2.16 can be satisfied and by simultaneously using a small
interior viscosity equation 2.15 can be dominated by resolved eddies rather than by
the parameterization.

If the boundary condition is no-slip, then §gV+ = 0, and neither bottom friction
nor eddies can contribute to the basin-wide vorticity budget. For this reason, the
bottom friction is not used for most of the calculations presented in this chapter (0 =
0). Calculations with bottom friction are presented in the next chapter and reveal
that adding bottom friction produced qualitatively different equilibrium solutions
only when the bottom friction was strong enough to strongly reduce the presence of
eddies.

The mean flow energy budget for the entire basin is obtained by integrating the
energy equation.

B _(8%\ (0% %9 \?
o= [ (5 - () () )

+ / / (~265F + G3(w - V) - W+ Psin(my) ) dA (2.17)

The energy in the mean flow can be removed by lateral or bottom friction or by
turbulent kinetic energy production. Unlike the vorticity budget, the energy budget

does not obviously benefit from enhancing the viscosity in any particular region.

2.2.1 Interpreting Eddy Flux Divergences

In many of the figures in this dissertation, the emphasis is placed on the eddy flux

divergences, not the fluxes themselves. This is because the fluxes are not easily
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determined at a particular location; the interpolation and statistical problems are
challenging. Integrals of the flux divergence, however, have better statistical prop-
erties as they are effectively averages over a large area, and it is much easier to do
proper interpolation for fluxes out of areas of integration than to try to locate a par-
ticular streamline and interpolate the fluxes across it. Also, much of the information
contained in the flux field is not relevant to understanding the effects of the eddies

on the mean flow.

Only the divergences of the fluxes appear in the vorticity equation 2.6, and this
is also true of the vorticity equation for the mean field (equation 2.7). Therefore,
in determining the effects of the eddies on the mean flow, it is more important to

determine the flux divergences than the fluxes themselves.

However, it is often more physically intuitive to consider fluxes, or at least to
connect the divergences to hypothetical fluxes which might be responsible for them.
Figure 2-1 schematizes two methods which I found useful for converting between the
fluxes and the flux divergences. These diagrams represent regions of integration of the
flux divergence field. Upon integration over a region, the flux divergence is converted
to an integral of the total flux out of that region. With a little practice, the result of
these integrals becomes intuitive, and the flux divergence field can be more readily

interpreted.

Figure 2-1a schematizes integration of the flux divergence field within time-mean
streamlines of the flow, as imagined in equation 2.15. If the mean streamfunction
is relatively simple topologically, as are most of the single-gyre calculations then
there is a region where the time-mean streamfunction is dominantly positive, and
possibly a region where the streamfunction is negative. Within the positive region,
the streamlines will largely be nested one within another, and likewise for the negative

streamlines.

Thus, it is sensible to integrate over the entire region where 1) exceeds a certain

value when the streamfunction is positive. The arrows indicating the total flux into
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the streamline located in the upper, unshaded portion of figure 2-1a, which is obtained
upon integrating the flux divergence within that streamline. If the streamlines are
neatly nested inside that streamline, integrating within that streamline amounts to
integration over the whole region where v exceeds its value on this streamline. As
equation 2.15 demonstrates, in this model only eddy fluxes and frictional fluxes can
have a total flux across a mean streamline. The arrows in this schematic are pointing
inward because typically these fluxes converge to deposit positive vorticity in the
region enclosed by a closed streamline which cancels the negative vorticity input by
the wind. Equivalently, the fluxes can be thought of as outward fluxes of the negative
vorticity input by the wind, because the flux of negative vorticity tends to diverge
within the streamline. Therefore, by analyzing these fluxes, we can determine how
much of the wind input within this streamline is carried out by the eddies and how

much is carried out by the friction.

Likewise, we can integrate over all regions where the streamfunction is less than a
particular value. This is particularly useful for negative values of the streamfunction.
The arrows into of the shaded region enclosed by a mean streamline in the lower part

of figure 2-1a schematize such an integration.

Note that the arrows are pointing inward here as well. There is a choice of con-
vention implied here which is used in this dissertation. The sign of the fluxes are
interpreted as toward the boundary (that is, out of a closed streamline, not in), re-
gardless of the sign of the streamfunction. Thus, these fluxes are inward, so they can
balance the negative wind input within the mean streamlines. This convention treats
the negative and positive streamlines most simply, because it is easy to imagine a
budget of the wind input within a closed streamline being balanced by the frictional

and eddy fluxes across the streamline.

However, when the topology of the streamfunction is not simple some complica-
tions arise. The primary example of this is the ¥ = 0 streamline. Because of the

impermeability boundary condition, this streamline surrounds the entire basin, but it
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also divides the regions of positive and negative streamfunction. We can generate at
least three sensible calculations of the total flux across the ¢ = 0 streamline. First,
we could integrate over the whole basin. This would give the flux out of the basin,
and it is useful for calculating the total vorticity budget of frictional removal and
wind input described in equation 2.16. Second, if we calculate the flux by integrating
the divergence over all regions whose streamfunction is greater than zero, a different
result will be obtained. In this case, it would be the total flux out of all of the un-
shaded regions in figure 2-1a. For some of the streamline bounding this region this
flux would be through the boundary, but in other areas it is into the shaded regions
of negative streamfunction. Third, we could calculate the total flux out of the shaded
regions. Some of this flux would be through the boundary and some would be into
the unshaded regions. It should be clear that by cancellation along the shared bound-
aries, the sum of the flux out of the shaded region and the flux out of the unshaded
region will sum to be the flux out of the basin. Also, if the flux vanishes at the basin
boundary as the eddy flux does, then each flux will have the same magnitude, that of

the flux from the shaded to the unshaded regions. This result is useful in section 3.3.

A lesser problem exists when there are shaded regions separated from each other.
Then, it will not be the flux out of a particular closed streamline which is calculated
by integrating over the region where 1 is less than a particular value. Because of
the topology of the time-mean streamfunctions in this chapter and the next, this
is usually not a big problem, and typically these separated areas will be clumped

together to yield the flux out of the combined region.

Thus, the convention used in the figures displaying the flux across mean stream-
lines is as follows. For all regions where the mean streamfunction is positive, the
fluxes are calculated by integrating the divergence over the region where 1) exceeds
a certain value. Where the streamfunction is negative, the fluxes are calculated by
integrating the divergence over the region where v is less than a certain value. At the

zero streamline these fluxes will not agree as they are fluxes across different closed
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Figure 2-1: Schematics of regions of integration useful in converting from flux diver-
gences to flux out of a particular region. (a) shows the fluxes out of mean streamlines
(regions of negative streamfunction are shaded), and (b) shows the fluxes out of a
box connected to the boundaries. The eddy flux convergence (—V - is shaded
beneath.

loops of the ¥ = 0 streamline, but their sum will be the flux out of the basin. From
equation 2.16, we expect that the sum of the eddy fluxes will be zero while the sum

of the frictional fluxes will be the wind input.

Figure 2-1b schematizes a different conversion from flux divergences to fluxes.
The eddy flux convergences are shaded in this figure. If the flux convergences are
integrated within this box, the total flux across the box’s boundary inward will be
obtained. As the eddy fluxes vanish at the boundaries, only the fluxes across the
interior portion of the box where the arrows are need be considered. Frictional fluxes
do not automatically vanish at the boundary, so they must be analyzed point by
point along the boundary to determine how much of the flux remains in the basin
and how much is transported out. In the figure, a small region of eddy vorticity flux
convergence (light coloring) is inside the box. The convergence acts against the wind
input, that is, the negative vorticity input of the wind is transferred to an outward
eddy flux of negative vorticity there. Equivalently, a positive eddy vorticity flux

into the box results, which is indicated by the arrows. If the box were extended just
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slightly more west and north, at z = 0.1 and y = 0.9, then a region of eddy divergence
would be included. In this case, the eddy vorticity flux would be, on average, out of

the box.

Continuing in this manner, the time-mean transport of vorticity by the eddy field
can be studied. Since the wind input is negative, it is helpful to think of the eddy
fluxes transporting the wind input, which in the subtropical gyre provides negative
vorticity. These fluxes’ vorticity transport originates in the lightly shaded regions,
where they draw off negative vorticity from the mean flow and they transport it to the
darkly shaded regions, where they add negative vorticity to the mean flow. Note that
the reason for considering the convergences is that the path which the eddy fluxes
take may be circuitous or obscured by fluxes which do not interact locally with the
mean flow, as the curl of the eddy fluxes is typically quite large. Only the divergent
eddy fluxes interact with the mean flow, so directly examining the circuitous paths
of the eddy fluxes can be misleading. However, the direct examination of the fluxes
is rarely necessary since the eddy fluxes vanish at the basin boundary, so eventually
the vorticity transported from a divergent region by eddy fluxes must end up being
deposited in a convergent region. A useful analogy to the eddy fluxes of vorticity is
the transport of a passenger-carrying train. To determine which stations will change
in population and where crowds will form, one need only know where the train picks

up and drops off passengers, not how many are on the train.

It can be difficult to determine exactly which divergent region is the source of a flux
to a particular convergent region when there is more than one region of convergence
and divergence. In this case a more careful study needs to be made. Often all of
the fluxes—eddy, beta, mean, and frictional-must be considered. Study of integration
and budgeting over different regions is required to decide where the fluxes originate
and end. I generally have left the details of this analysis out of the discussion and

mention the final results of the calculations in the text.
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2.3 Computational Results

The major computational results found with this model are presented here as sub-
sections. The first subsection shows that increasing the viscosity only within the
frictional sublayer controls the overall circulation. In the second subsection, it is re-
vealed that outside the frictional sublayer, the eddy flux of vorticity is responsible for

decreasing the mean circulation.

2.3.1 Control of Circulation Strength

Figure 2-2 shows the time-mean streamfunction® resulting from different values of
Re(bdy) and Re(int). For a given Re(int), the circulation strength can be reduced
by decreasing Re(bdy). As shown in the introduction, this is not true of a steady-
state calculation, because much of the mean flow never passes through the region of
enhanced viscosity. Therefore, when eddies are present, the circulation in the interior
is controlled non-locally by the frictional sublayer at the boundary.

The mean flow is comparable between some of the calculations and those with
higher Re(int) but lower Re(bdy), e.g., the mean streamlines of the Re(bdy)=0.5,
Re(int)=3 calculation and the Re(bdy)=0.25, Re(int)=5 calculation are surprisingly
similar. Likewise the Re(bdy)=3, Re(int)=3 time-mean resembles the Re(bdy)=0.25,
Re(int)=8 calculation. When two solutions have the similar time-mean streamfunc-
tions, I will call them homoparic, for same mean. Section 3.2 will deal with homoparic
solutions in detail.

Curiously, some regions of the less viscous calculations are shaded. This means
that their mean flow rotates in a direction counter to the direction of the wind forcing.
These counter-rotating regions will be discussed further in section 3.3.

Figure 2-3 compares snapshots of the vorticity and streamfunction from a ho-

moparic pair. The lowered value of Re(int) is apparent in the wispy vorticity field

5The time-means are taken over the second half of the total integration time here and in most of
the dissertation. Exceptions to this rule are mentioned in the text.
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Figure 2-2: Collage of contours of the time-mean streamfunction for different values
of Re(int) and Re(bdy). The contour interval is 0.2 in units where 1 is the maximum
of the Sverdrup solution. Regions of negative streamfunction are shaded.
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Figure 2-3: Snapshots and the time-mean of absolute vorticity and streamfunction are
given for the Re(bdy)=0.25, Re(int)=8 and Re(bdy)=3, Re(int)=3 calculations. The
time-means are in (a),(f),(k), and (p). The upper two rows show the Re(bdy)=0.25,
Re(int)=8 calculation. The lower two rows show the Re(bdy)=3, Re(int)=3 calcula-
tion. Contours are 0.1 for vorticity and 0.5 for streamfunction. Regions of negative
value are shaded.

around the eddies. Closer analysis reveals that the mean flow vorticity dynamics for
these homoparic calculations differ only slightly, yet the eddies are quite different.

More detailed analysis is presented in section 3.2.
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Figure 2-4: (a) plots the ratio of the time-mean of the kinetic energy ( [ 2d2A) 2) to

the kinetic energy of the time-mean flow ( I EdeA/ 2) for calculations with different
Re(int) and Re(bdy). The dotted lines show the range of variability during the interval
of averaging. A line proportional to Re(int)l/ ? is included for comparison, because
the ratio scales approximately as Re(int)'/?. The ratio is relatively insensitive to the
value of Re(bdy), so the energy in the eddies is strongly affected by Re(int) but not
by Re(bdy). (b) shows the kinetic energy of the time-mean flow ( il EdeA/ 2) from
calculations with different Re(bdy) and Re(int). In both (a) and (b), the dashed lines
connect the values for a particular value of Re(bdy), and the thick line connects the
values for constant viscosity parameter, i.e., Re(bdy)=Re(int).

The relationship between the kinetic energy of the mean flow and the total kinetic
energy (which includes both eddy and mean flow energy) changes as the viscosity
decreases. Figure 2-4b shows that the kinetic energy contained in the mean flow
is reduced by decreasing Re(bdy). Figure 2-4a shows that the total kinetic energy
continues to increase with increasing Re(int) despite changes to Re(bdy). Thus, the
control of the mean flow also extends to the energy contained in the mean flow,
because as Re(int) increases a larger proportion of the kinetic energy resides in the

eddy field rather than the mean flow.
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Figure 2-5: Snapshots and the time-mean of absolute vorticity and streamfunction are
given for the Re(bdy)=0.25, Re(int)=>5 and Re(bdy)=>5, Re(int)=>5 calculations. The
time-means are in (a),(f),(k), and (p). The upper two rows show the Re(bdy)=0.25,
Re(int)=5 calculation. The lower two rows show the Re(bdy)=5, Re(int)=5 calcula-
tion. Contours are 0.1 for vorticity and 0.5 for streamfunction. Regions of negative
value are shaded.
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Figure 2-5 shows typical snapshots and time-means of the absolute vorticity and
streamfunction for an inertially-dominated and a western-intensified calculation with
the same Re(int). The eddy activity is strongest in the west for the western-intensified

solution. In both cases, the eddy activity interacts with the recirculation gyre.

2.3.2 Mechanism of Vorticity Transport

As discussed in the introduction, the transport of vorticity is critical to the control
of the circulation strength. Thus, the transport of vorticity in each calculation has
been diagnosed. Ultimately the friction must remove the vorticity from the basin
but en route there are many possible pathways for transport of vorticity. In all but
the most viscous of these calculations, the eddy fluxes dominate the transport of
vorticity across mean streamlines in the basin interior, although they are not often
the dominant term in the vorticity equation. Only in a thin layer near the boundary
does the transport across mean streamlines become frictional.

In this section we will first diagnose the eddy and frictional flux divergences to
see the effects of these processes on the mean flow. The flux divergences of western-
intensified and inertially-dominated solutions will be contrasted, as well as the flux
divergences of the members of a homoparic pair. Then the fluxes themselves will be
analyzed. Finally, the effects of raising and lowering the viscosity on the meridional
averages of the terms in the vorticity equation will be demonstrated, and they will
reveal a simple predictor of whether a calculation will have an equilibrium which is
inertially-dominated or western-intensified.

Figure 2-6a shows the action of the frictional and eddy fluxes of vorticity on the

6 The contours of the mean flow and

mean flow for a western-intensified solution.
the eddy flux convergence are shown. The eddies interact with the mean flow in two

primary regions, within the western boundary current and within the recirculation

gyre.

5The reader may wish to review section 2.2.1 to help interpret these flux convergences.
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Figure 2-6: (a) The time-average streamfunction contours are superimposed on the
eddy flux convergence (shaded) for the Re(bdy)=0.25, Re(int)=>5 calculation. Lighter
shading denotes convergences of u/¢’ (which remove vorticity of the sign of the wind in-
put from the mean flow); darker shading denotes divergences. (b) is similar to (a) but
for Re(bdy)=5, Re(int)=5. (c) and (d) are close-ups of (a) and (b), respectively, near
the western boundary. In (c-d), the friction flux divergence is also superimposed with
thin lines (contours=10, no zero contour, dashed/solid for divergence/convergence).
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Figure 2-6¢ is a close-up of figure 2-6a, and it shows that within the western
boundary current the effect of the eddies is to transport the wind’s vorticity input
in the interior of the basin toward the western boundary. Once there, the frictional
dissipation disposes of it.” The white region of eddy flux convergence at approximately
x = 0.05 removes negative vorticity (of the sign of the wind input) from the mean
flow, and the black region of eddy flux divergence near x = 0.02 deposits this negative
vorticity closer to the boundary. The frictional contours above this black region
in figure 2-6¢ indicate that the frictional dissipation receives this negative vorticity
from the eddies. Because there are few areas of dotted friction contours, we see
that the friction is able to remove negative vorticity from the basin, as anticipated
by equation 2.16. In the western boundary current, the eddies’ effect is to widen
the influence of the frictional dissipation toward the basin interior. The effect of
eddies here is reminiscent of the effect of eddies in traditional, non-rotating turbulent
boundary layers.

Within the recirculation gyre, the eddies are active while the frictional terms are
less so. In this region the eddies transport the majority of the vorticity input across
the mean streamlines (see equation 2.15). This will be quantified later. The second
effect of the eddies in the recirculation gyre is to homogenize the absolute vorticity (as
theorized by Rhines and Young (1984). As can be seen in figure 2-5a and figure 2-5k,
the time-mean absolute vorticity is smoothed within the recirculation gyre.

In figure 2-6b and 2-6d, the flux convergences and mean flow are shown for a
calculation which is inertially-dominated. Note the eddy activity generated at the
eastern boundary near y = 0.85 in figure 2-6b. This activity is important in regulat-
ing the strength of the inertially-dominated solutions. The importance is made clear
by noting that in figure 2-4b that the inertially-dominated solutions have qualitatively
different parametric dependence on Reynolds number than the western-intensified so-

lutions. When the western frictional sublayer removes too little of the wind’s vorticity

" Equivalently, one can consider the eddies to flux positive vorticity from the western boundary
to the basin interior where it cancels the negative vorticity input from the wind.
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input, the recirculation continues to build up negative vorticity and enlarges until the
recirculation reaches the eastern boundary. Once the eastern boundary is reached,
the eddy activity produced there changes the response of the circulation because the
eddies are able to tear vorticity from both the eastern and western boundaries’ fric-
tional sublayers. Because of the qualitative change in behavior when the recirculation
reaches the eastern boundary, reaching it is the criterion used herein to distinguish
western-intensified from inertially-dominated solutions. In section 3.4, it is shown
that a qualitative change in the temporal behavior of the solutions also occurs when

the recirculation gyre reaches the eastern boundary.

One might wonder why the eastern boundary is needed instead of the northern
boundary. In fact, due to a small trapped eddy that forms in the northwest corner
where the western boundary current turns to the east, which apparently is present
only with no-slip conditions, the net effect of the frictional flux through the northern
boundary is to add to the wind input of vorticity by a small amount (0.64 wind
input, O(0.05) through the northern boundary, depending on the Reynolds number).
Similar phenomena have been found in the corners in analytic asymptotic treatments
of other high Reynolds number fluid problems (some are mentioned, for example in
Cowley (2001)). The northern boundary is therefore not effective in helping to remove

vorticity from the basin in these calculations at high Reynolds number.

There is a white region of eddy flux convergence within the frictional sublayer of
the western boundary current (x near 0, y between 0.5 and 0.7) in figure 2-6d that
is not present in figure figure 2-6¢. This region of convergence is consistent with the
notion that the viscosity is insufficient in figure 2-6d to remove all of the vorticity
brought into the frictional sublayer by the mean flow and eddies, because this white
region indicates that the eddy fluxes’ supply of the wind’s vorticity input to the
frictional sublayer reverses direction to transport negative vorticity out of the white
region. In contrast, the black regions in the frictional sublayer figures 2-6¢-d import

negative vorticity from eddy fluxes to be removed from the basin by friction.
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The black regions can equivalently be considered as sources of positive vorticity
brought into the basin by friction. This positive vorticity is transferred by the eddy
flux to white regions where it is used to cancel the wind input of negative vorticity.
The wind’s vorticity input is in turn brought to the white regions primarily by the
mean flow. In the white region of the frictional sublayer figure 2-6d, negative vorticity
is brought into the basin by friction and fluxed by eddies to black regions where it
adds to the wind input of negative vorticity. The amount of vorticity brought into the
basin must equal the wind input for an equilibrium to be reached, but if the frictional
flux changes sign in this white region, this means that the frictional fluz elsewhere
must be larger for a basin-wide equilibrium to be reached. Thus, the solution must
increase the relative vorticity gradients near the boundary. The increase in these
gradients changes the dynamics to be less and less like those of the linear Munk

solution or those at lower Reynolds number.

It will be shown below that the net result of this white convergent region on
the eddy dynamics is that the eddy flux to the frictional sublayer becomes no more
effective than the mean flux in delivering negative vorticity to the western frictional
sublayer. Thus, the eddy’s advantage over the mean flow, that it can flux vorticity

across mean streamlines, is wasted.

The removal of vorticity through the western boundary depends on both the
viscosity and the gradient of the time-mean vorticity (the vorticity flux is —43,V().
Apparently, with constant viscosity the gradient of the vorticity cannot be large
enough to remove the vorticity from the basin at the western boundary alone in the

single-gyre.

As the Reynolds number increases, the increase in the vorticity gradient apparently
changes the flow dramatically. It is difficult to decide which results of the increase
in the vorticity gradient are direct results of gradient and which results are forced
secondarily by the direct results, as all of these events are linked in the inertially-

dominated equilibrium. The total effect of all of these changes is that the eddy
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delivery of vorticity to the frictional sublayer and the frictional removal of vorticity
through the western boundary layer is disrupted when the vorticity gradient becomes
too large, an effect I will call the remouval crisis. 1 will propose three conjectures as
to how this removal crisis begins, but ultimately the cause of this crisis is the lack of

vorticity removal from the basin by friction.

One possible direct result of increasing the vorticity gradient is that it may affect
the formation of eddies or the kind of eddies which are present so that the flux
divergence of these eddies undergoes a sign reversal. Once this sign reversal occurs,
the frictional flux convergence also changes sign to accommodate. As the frictional
fluxes are nearly zonal and do not extend far into the basin, changing the sign of
the frictional flux convergence implies that the frictional flux through the boundary
in that location also changes sign. Once this frictional flux has changed sign, larger
vorticity gradients are required elsewhere along the boundary to remove more of the
vorticity and these larger vorticity gradient affect the eddies even more, closing the

circle of causality in a positive feedback.

Another mechanism relies on the fact that near this sign reversal the boundary
current meanders slightly away from the boundary and back again so that the fric-
tional flux convergence reverses in sign (which balances the change in the eddy flux
divergence). The meander away from the boundary is located very near where the
recirculation gyre approaches the boundary. Thus, it is possible that the mechanism
for the removal crisis is initiated by unchecked vorticity input to the recirculation
gyre. As more and more vorticity is input by the wind into the recirculation, it be-
comes stronger and stronger. Once this gyre becomes sufficiently strong, it causes a
meander in the boundary current, reversing the sign of the friction flux convergence,
which then leads to a sign reversal of the eddies. However, this hypothesis seems
somewhat unlikely as the steady-state solutions with large recirculation gyres as in

figure 1-2 do not have a reversal in the sign of the friction flux.

Finally, the recirculation gyre strongly interacts with the eddies, and many of the
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Figure 2-7: Maps of the normal frictional flux through each of the boundaries for the
western-intensified Re(bdy)=0.25, Re(int)=>5 calculation (on left) and the inertially-
dominated Re(bdy)=5, Re(int)=5 calculation (on right). The four plots surrounding
each contour plot indicate the frictional flux through the nearest boundary to each
box (—03,V() as a function of distance along the boundary. The flux through the
western boundary needed to remove the wind stress input at the same latitude (as in
the linear Munk solution) is overlaid with dashed lines. Arrows denote the direction
of the frictional flux of positive vorticity. Note that the scales of the flux plots are
different.

eddies form along its outer extent. If the recirculation were to grow unchecked, it
might eventually reach the point where it changes the eddy field enough to change
the sign of the eddy flux divergence. The other effects would follow from this change.

Of course, however this removal crisis at the western boundary is caused, an
equilibrium is reached, so the basin-integrated vorticity input by the wind must be
able to be removed by friction somewhere. The equilibrium is reached in inertially-
dominated calculations when the eastern frictional sublayer provides another source of
positive vorticity for the eddies to draw on once the recirculation has grown sufficiently
large.

Figure 2-7 shows the frictional flux through the boundary for a western-intensified
and an inertially-dominated calculation. Some of the features mentioned above are

worth revisiting in the context of this figure. The removal crisis is present in the
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inertially-dominated calculation’s flux through the western boundary. A dip in the
flux of the western-intensified calculation also occurs near this point, but it does not
actually reverse the direction of the flux. Note how the maximum flux through the
western boundary is nearly 2.5 times larger in the inertially-dominated case than in
the western-intensified one. Because the value of the viscosity at the boundary is 20
times smaller in the inertially-dominated case, this means that the maximum vorticity
gradient at the boundary in this calculation approximately 50 times greater than in
the western intensified case! The fluxes through the eastern boundary are negligible in
the western-intensified case, while the in inertially-dominated case the maximum flux
through the eastern boundary is only 2 times smaller than the maximum through
the western boundary. Thus, figure 2-7 also clearly shows the removal crisis, the
larger gradient of vorticity at the boundary in the inertially-dominated case, and the
necessity of the recirculation gyre reaching the eastern boundary in the inertially-

dominated calculation.

The frictional flux through the western boundary needed to remove the wind input
at the same latitude where it is injected is indicated with dotted lines in figure 2-
7. Clearly, the dip in the frictional flux and the reversal of the frictional flux in
the northwest corner make the removal of vorticity occur at a different latitude in
the western-intensified calculation. These effects are even more pronounced in the
inertially-dominated calculation, where a significant portion of the frictional flux is

through the eastern boundary.

Figure 2-8 is a collage of the eddy flux convergences from the same calculations
depicted in figure 2-2. It is clear that as Re(int) and Re(bdy) increase, the eddy activ-
ity increases. The white region of eddy flux convergence near the western boundary

noted in figure 2-6d is present in all of the inertially-dominated calculations.

The homoparic solutions in figure 2-2 also have similar eddy flux convergences in
figure 2-8. The similarity in convergences does not extend to the scale of the finer

features in the divergence field. For example, compare divergences of the Re(bdy)=3,
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Figure 2-8: Collage of eddy vorticity flux convergences for different calculations. The
shading scheme is the same as in figure 2-6. The -1 and +1 contours of eddy flux
divergence are added for contrast.
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Re(int)=3 calculation to the Re(bdy)=0.25, Re(int)=5 calculation. While the mean
solutions are similar, the eddy flux convergences differ somewhat but the total effect
of friction (including the change in the viscosity) compensates. The fine-scale features
of the eddy convergence and the eddies themselves differ dramatically. The differences
are treated more fully in section 3.2.

An analysis of the fluxes, instead of the flux divergences, is also enlightening.
However, plotting the eddy fluxes of vorticity as a vector field is not particularly
helpful, as the vectors do not obviously point from one divergent region to a convergent
one. To make the flux field seem more rational, past authors have chosen to decompose
the eddy fluxes into divergent and rotational parts. However, as shown in Fox-Kemper
et al. (2003) this decomposition is not unique in a bounded domain. One can study
the effects of only the divergent fluxes, as they are well defined if they are calculated as
the average flux out of a chosen region. As shown in equation 2.15, this is particularly
useful when the area of integration is chosen to be the area within a mean streamline,
as in that case the mean advection terms vanish. In figure 2-9, the results of such a
calculation are shown for two different runs of the numerical model.®

Figure 2-9a shows the frictional and eddy fluxes through a mean streamline for the
same calculation as shown in figure 2-6a which is western-intensified. For 1<0.2, the
eddy fluxes carry more of the vorticity flux. So, in this western-intensified solution,
the wind input is carried from the interior streamlines to the region near the boundary
(where 1<0.2) by the eddies. Near the boundary, the eddies deliver the vorticity to
the friction which then removes it from the basin.

Figure 2-9b shows the frictional and eddy fluxes through a mean streamline for
the same calculation as shown in figure 2-6b which is inertially-dominated. In this
calculation the maximum of the streamfunction is much larger, as the circulation
is inertially-dominated and is much stronger. However, even here the eddy flux of

vorticity is larger than the frictional flux for ©/>0.5. Thus, in the inertially-dominated

8The reader may wish to review section 2.2.1 to help interpret these plots of flux versus time-mean
streamfunction.
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Figure 2-9: (a-b) show the vorticity flux across mean streamlines. Shown are
the eddy flux out of the streamline <§¢Cu’_(’ ﬁds), the friction flux out of

the streamline (— b 53, V¢ ﬁds), and the wind forcing within that streamline

(— T y<pe sin(wy)d%) A balanced budget results when the eddy flux plus the friction
flux equals the forcing. (a) shows the result for the Re(bdy)=0.25, Re(int)=5 calcu-
lation. (b) shows the result for the Re(bdy)=5, Re(int)=>5 calculation. See figure 2-6
for location of mean streamlines for these calculations. The sum of the frictional
fluxes at the boundary is the frictional removal from the basin. The sum of the eddy
fluxes at the boundary is zero. See section 2.2.1 for details.
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calculations it is not a lack of eddy vorticity transport which leads to the inertial-
domination. Rather, it is the lack of friction near the boundary which prevents the

ultimate removal of the vorticity from the basin.

In thermal convection, the Nusselt number is a ratio of heat fluxes used to assess
the increase in efficiency of heat transport due to the presence of convection. It is
defined as the ratio of the total heat transport to what the purely diffusive heat
transport would be for the same flow. Thus, if there is no convection, the ratio is one.
If there is convective transport, this ratio will be in excess of one. The more efficient
the convective transport, the larger this ratio will be. That is, if the convection is able
to make a large transport even with a small gradient, the Nusselt number is large,

and the convection is considered efficient.

The fluxes determined in figure 2-9 allow a similar construction to the Nusselt
number to be made from the vorticity fluxes. The ratio of the total vorticity transport
across a mean streamline to the frictional flux across that mean streamline, like the
Nusselt number, is a measure of how efficiently the eddies are able to flux vorticity
across the mean streamlines. For the purposes of this dissertation, the efficiency of the
eddy transport will be defined as the ability of eddy fluxes to increase the magnitude
of this ratio, and thereby more efficiently deliver vorticity to the frictional sublayer.
Note that for a steady-state solution, this ratio will be one everywhere. Otherwise,
the larger it is, the more important the eddy flux is across a particular streamline.
If it is less than one, it is because the eddy flux is in the opposite direction to the
frictional flux. So, just as with the Nusselt number, if this flux ratio is large, the
eddies are transporting a large flux compared to what the frictional flux, even though
the mean gradient is not large enough to cause a large frictional flux, so the eddy flux

is considered to be efficient.

The Nusselt number is usually defined with a denominator that is the frictional or
diffusive flux which would occur in the absence of motion. Here, however, the denom-

inator of the flux ratio depends on the time-mean solution’s vorticity gradient which

81



changes throughout the basin and as the parameters change. Because the Nusselt
number is compared to a ’standard’ flux which doesn’t change with the parameters,

the Nusselt number is easier to interpret than this flux ratio.

The prototypical Nusselt problem is a fluid trapped between an upper and a
lower surface, each at a particular temperature. In that situation, it is clear that
the heat flux from one plate to another is well-defined. It is sensible to compare the
case without convection to the case with convection, as the plates do not move, nor
does the temperature of each plate. There is no mean flow which changes with the

parameters to include.

The flux ratio used here, on the other hand, is not as easy to define or interpret
because the mean flow and the source of vorticity change with the parameters. To
remove the effects of the changing mean fluxes from the ratio, we consider the flux
across mean streamlines. The result of this, however, is that unlike the two fixed
plates in the Nusselt problem, the source of vorticity changes as the mean streamlines
change and enclose more or less of the wind input. In the Nusselt problem, the
flux across a plane parallel to the two plates at any vertical level is the same in
equilibrium. Here, the flux across the innermost nested streamline is small (as it
encloses little of the wind input) while the flux across the streamline closest to the
boundary is large (as it includes almost all of the wind input). Thus, the flux across
each streamline is different and cannot be compared to a standard value of the flux as
in the Nusselt problem. Thus, the flux ratio here needs to be a function of the mean
streamfunction, which leads unavoidably to a variable denominator. Although this
flux ratio is therefore not as satisfying as the traditional Nusselt number (and should
not be directly compared to Nusselt numbers in other calculations for this reason), it

seems the best choice available.

A plot of this ratio is given in figure 2-10 for the same calculations shown in
figure 2-9. It is clear from figure 2-10 that the calculation with boundary-enhanced

viscosity has more of its total vorticity flux across mean streamlines carried by the
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Figure 2-10: This figure shows the ratio of the total vorticity flux across a mean
streamline to the frictional flux across a mean streamline as a function of mean
streamfunction. It is constructed from the fluxes in figure 2-9.

eddies in the basin interior. For both calculations, the ratio approaches one as v
approaches zero as there is no eddy flux through the basin boundary.® Thus, the
eddies are able to control the circulation strength in the boundary-enhanced viscosity
case while they are not able to do so in the constant viscosity case.

To understand what separates the inertially-dominated and the western-intensified
equilibria, it is helpful to see the changes in the meridional averages of the terms
in the vorticity equation with Reynolds number. Figure 2-11a shows the viscosity
parameter used in three separate calculations which share the same value of Re(bdy).
Figures 2-11b-d show the effect of changing the viscosity on the meridional average
of the vorticity flux convergences. Of the three calculations, the two with the largest
interior viscosity are western-intensified, while the other one is inertially-dominated.
Figure 2-12a shows the viscosity parameter used in three separate calculations, while

figures 2-12b-d show the effect of changing the viscosity on the meridional average

9The eddy flux across the zero mean streamline is nonzero due to the flux into the counter-
rotating region. This is due to the way that the fluxes across mean streamlines are defined in this
figure, as discussed in section 2.2.1.
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Figure 2-11. (b-d) show the meridional average from y=0 to y=1 of the vorticity
flux convergences as a function of z within the frictional sublayer for solutions with
three different values of Re(int): 3 (solid lines), 5 (dashed lines), and 8 (dotted lines).
Re(bdy)=0.5 for all three cases. (a) shows the three different viscosity parameters
(63;) used. (b-d) show the frictional, eddy and mean flux convergences, respectively.
The [-flux is similar across the three calculations in this region (not shown). In
the inertially-dominated solution (Re(bdy)=8 (dotted)) the mean advection deliv-
ers negative vorticity closer to the boundary than the eddy advection, while in the
western-intensified cases (Re(int)=3 (solid) and Re(int)=5 (dashed)) the eddies de-
liver negative vorticity closer to the boundary.

84



) ) . x . . . n
3.2 ><1o-: 3 E
28] Re(bdy)=0.25 C
2.0 x1075 3 £
1.6 x1075 3
1.2 x1075 E
8.0 x1078 - - _ _ _ Re(bdy)=1 E
4.0 x1078 ] ot Tt Uy ey ey F

0.0 x10° d i : : : : T :
0.000 0.010 0.020 0.030 0.040

a) Viscosity Parameter

L : . . . . s .
80. 1 Re€5dy)=7"... C
60. - | e -
20. 1 # Re(bdy)=1-"" . T~ L
20. 1 el T el -
0. : € dy)=025 R o :

T . T . : : . .
0.000 0.010 0.020 0.030 0.040

b) Conv. of Friction Flux

20. . . T : . . :
10. 7 Re(bdy)=0.25 " =" TTT 777 Baiinie s +
0. 3 - s
—-10. 1 RN - .
~20. ] - Re(bdy)=1 C
_30 E E
~40. 1 Relbdy)=7" r

-50. T T T T T T T T
0.000 0.010 0.020 0.030 0.040

c) Conv. of Eddy Flux of Vort.

10. . ) . ) . . . .
o0 1. bdy)=0.25 !
—10. ] Re(bdyl=1 ; ez N
—20. 1 e e 7 L
i “Re(bdy) =7 L

-30. : : ; . T ; . .
0.000 0.010 0.020 0.030 0.040

d) Conv. of Mean Flux of Rel. Vort.

Figure 2-12: (a-d) are as in figure 2-11 except for solutions with three different values
of Re(bdy): 0.25 (solid lines), 1 (dashed lines), and 7 (dotted lines). Re(int)=7 for all
three cases. In the inertially-dominated solutions (Re(bdy)= 1 (dashed), 7 (dotted))
the mean advection delivers negative vorticity closer to the boundary than the eddy
advection, while in the western-intensified case (Re(bdy)= 0.25 (solid)) the eddies
deliver negative vorticity closer to the boundary.
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Figure 2-13: (a-b) show the average from y=0 to y=1 of the eddy and mean vorticity
flux convergences as a function of z within the frictional sublayer for two different
solutions: (a) Re(bdy)= 0.25, Re(int)=5 (western-intensified), and (b) Re(bdy)=
0.25, Re(int)=9 (inertially-dominated). In the inertially-dominated solution the mean
advection delivers negative vorticity closer to the boundary than the eddy advection,
while in the western-intensified case the eddies deliver negative vorticity closer to the
boundary.
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of the vorticity flux convergences. Of the three calculations, only the one with the
largest boundary viscosity is western-intensified, while the other two are inertially-

dominated.

The balance is similar in the six calculations shown in figures 2-11 and 2-12, with
friction, eddy and mean vorticity flux convergences all playing important roles in the
frictional sublayer. The B-flux convergence is also an important term but does not

vary significantly with viscosity, so it is not shown.

The relative location of the peak of the eddy and mean flux convergences is dif-
ferent for the western-intensified and the inertially-dominated calculations. Where
the solution is inertially-dominated, the mean transport peaks closer to the boundary
than the eddy transport, while western-intensified calculations have the eddy advec-
tion delivering the vorticity deeper into the frictional sublayer. It is sensible that in
a parameter range where the steady-state calculation is inertially-dominated but the
time-dependent calculation is western-intensified that the eddies should be able to
deliver vorticity closer to the boundary than the mean flow. Otherwise, the eddies
would be no more effective in reducing the circulation strength than the mean flow.
The predictive skill of this simple test holds true throughout the calculations carried
out here, and it is directly related to the region of eddy flux convergence pointed out
in figure 2-6d. As the friction is insufficient to remove all of the vorticity delivered
to the frictional sublayer, the eddies reverse their flux in this region and transport
vorticity back toward the basin interior. This effect, when averaged, is what causes
the peak of eddy vorticity flux convergence to be located farther out than in the case
where the friction is sufficient. Figure 2-13 compares the location of the peaks in an

inertially-dominated versus a western-intensified calculation.

Thus, the delivery of vorticity into the frictional sublayer by the eddy fluxes breaks
down in the inertially-dominated solutions. This is shown on average in figures 2-11,
2-12, and 2-13 and is also present in figures 2-6 and 2-8. In the inertially-dominated

solutions near the center of the frictional sublayer, the eddy flux divergence changes
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sign because the frictional sublayer does not remove enough of the vorticity (see
especially figure 2-6d)

In summary, eddy fluxes are the primary transport of vorticity across mean stream-
lines transport throughout the basin. Only in the frictional sublayer is the friction
dominant. If the frictional sublayer is sufficiently strong, the eddies are able to flux
vorticity deeper into the sublayer than the mean flow can. This flux prevents the
solution from entering an inertially-dominated configuration. Therefore, the eddies
can replace the frictional flux across mean streamlines in the basin interior as the
viscosity is lowered. Occasionally, with smaller and more energetic eddies in solutions
with higher Re(int), the mean flow of solutions with different Re(int) an Re(bdy) can
be made similar (homoparic), where the increase in the eddies and the decrease in

friction manage in concert to produce a similar effect on the mean flow.

2.4 Conclusion

In this chapter, the well-known result that the eddies in a wind-driven, single-gyre
model are unable to accommodate a reduction in the viscosity everywhere in the
basin is confirmed. This is because although the eddies are capable of replacing the
frictional fluxes across mean streamlines in the basin interior, they are unable to flux
vorticity through the basin boundaries.

Because the friction is intended in part to parameterize the effects of eddies, this
result has caused much confusion in the past. It was thought that as the parametriza-
tion was removed, the newly energized eddies would be able to take over for the pa-
rameterization. Because this does not occur, the increasing domination of inertial
terms throughout the basin is sometimes called inertial runaway.

However, in this chapter, it is pointed out that the friction in the homogeneous
model represents not only the eddies, but also the unresolved interactions with the

boundary. In particular, it represents all of the processes that might ultimately
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remove vorticity from the basin. By using a constant viscosity, one tacitly assumes
that these processes are equivalent to the unresolved eddy processes. The results in
this chapter demonstrate that if a separation is made between the boundary processes

and the interior processes, the conundrum of inertial runaway is avoided.

When the viscosity is large in only a narrow frictional sublayer, even one which is
thinner than the width of the inertial boundary layer, but small in the basin interior,
the circulation can be controlled with a resulting equilibrium state which is western-
intensified. The mechanism of this control relies upon the efficient removal of the
wind’s vorticity input from the basin. The removal of this vorticity occurs in steps.
First, the vorticity is absorbed from the wind primarily by the mean flow. As the
viscosity is small in the basin interior, the mean flow is relatively inviscid, and so it
carries the vorticity along to the western boundary. The western intensification model
presented by Charney is quite similar to the concentration of the vorticity into a thin
boundary layer which occurs in this model. Because the frictional sublayer is smaller
than the inertial boundary layer, some of the mean flow passes through the frictional
sublayer, but some of it does not. The eddies are able to take the vorticity in the
mean flow which doesn’t penetrate this frictional sublayer and transport it across
the mean flow’s streamlines closer to the boundary and into the frictional sublayer
where they deposit it. Thus, the effect of the eddies and of the mean flow is not to
remove vorticity, but to transport it. Finally, the friction removes the vorticity from

the basin.

When the viscosity is too small in the frictional sublayer, the friction cannot re-
move all of the vorticity that the eddies deposit within only the western and northern
frictional boundary layers. Thus, in an area of the frictional sublayer, the eddies’
vorticity transport reverses direction and transports negative vorticity toward the
interior. The buildup of negative vorticity in the recirculation gyre causes the re-
circulation to grow until the eastern boundary is reached, at which point the strong

mean flow of the recirculation gyre against the eastern boundary’s frictional sublayer
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is able to provide an additional source of vorticity to oppose the wind’s input.

Ultimately, these are consequences of the fact that the removal of vorticity through
the western boundary relies on both the viscosity and the gradient of the time-mean
relative vorticity (the vorticity flux is 63,V(). Thus, as the viscosity near the bound-
ary decreases, the relative vorticity gradient increases. This gradient is active in the
inertial terms as well, and a consequence, the eddy delivery of vorticity to the fric-
tional sublayer is interrupted. When this occurs, the eddies are not able to deliver the
vorticity any closer to the boundary than the mean flow, and so the interior stream-
lines of the mean flow have no outlet for the vorticity input by the wind. Only when
the recirculation gyre reaches the eastern boundary and a new source of vorticity is
found is an equilibrium made possible. From this point on, a change in circulation
strength at equilibrium with increasing Reynolds number is reduced. However, the
recirculation gyre now fills most of the basin, and so the equilibrium is inertially-

dominated.

Thus, when the frictional sublayer is sufficiently strong, the solutions can be con-
trolled. The primary effect of friction in the interior, transport of vorticity across
mean streamlines, can be replaced by eddies. Sometimes, when the Reynolds number
changes, the changes in the eddies and those in the friction compensate so that the
mean flow is relatively unchanged. These homoparic solutions lend great hope that

there may be a truly accurate eddy parametrization possible for this model.

The importance of these results in the context of the real ocean is that although
eddies in the ocean interior may transport vorticity, they cannot create or destroy it.

Therefore, there will always be a role for boundary processes.

Also, there is little reason to believe that inertial-domination will not occur in more
inclusive ocean models eventually. General circulation models cannot be operated
with viscosities small enough for this to be a problem now, but this will be possible
soon. Then, it will be time to turn not to the strengthening of eddy processes in

the interior, but to the interaction of eddies and the boundary. The appropriate
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interpretation of the results here is that the eddies produced in this model will have
analogues in more complex models. It seems likely that the additional sources of
instabilities that lead to eddies in more complex models should make it easier for
the eddies to perform the transport of vorticity across mean streamlines. Thus the
ability of the simple eddies present here to effect enough vorticity transport indicates
that even in the general circulation models it is likely that inertial-domination be
controlled by ensuring the boundaries are accurately parameterized with sufficient
capability for vorticity removal.

This model, though simple, has been able to point out the importance of the struc-
ture very near the boundary and its role in the removal of vorticity from the basin.
As general circulation models reach higher Reynolds numbers and finer resolution,
these issues will become relevant in understanding the results of those more complex
models as well. When these models are well-understood enough to correctly predict
the transports and recirculations of the western boundary currents without tuning of
parameters it is now clear that the interaction of eddies with the boundary will play

a role.
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Chapter 3

Eddies’ Effects in the Single-Gyre
Model with Low Interior Viscosity

The previous chapter demonstrates that the circulation strength of the single-gyre can
be controlled at a larger Reynolds number using a combination of eddy transport and
boundary-enhanced viscosity. Once this control is achieved, it is possible to produce
calculations which remain western-intensified at a much higher Reynolds number in
the basin interior. In these relatively inviscid calculations, a number of interesting
phenomena occur. Although many deserve more attention than is possible here, brief
introductions to those phenomena that I have found interesting are in this chapter. In
particular, much of the interest present in this model is created by the existence and
the effects of strong eddies. Along with these introductions, two sections—one on the
effects of bottom friction and one on changing the boundary conditions to slip-help
to place the results of this model in context with the work of others and the next
chapter.

The structure of the boundary layer in the main region of eddy activity is explored
in section 3.1. The structure of the boundary layer in this region is novel, with the
eddies playing a critical role.

The homoparic solutions that were observed in the results of the first chapter are
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explored in more detail in section 3.2. Some diagnostic calculations reveal that these
homoparic solutions are not exactly the same, in particular the energetics and scales
of the eddies are quite different.

The counter-rotating gyres that were pointed out in the less viscous calculations
in the previous chapter are diagnosed in section 3.3. The eddies again play a critical
role.

The eddies form a complicated temporal structure for the calculations which is
discussed in section 3.4. Although they are in a equilibrated state, some of the
solutions have a large degree of variability, and they can be variable on rather slow
time scales.

The presence of variability that resembles the linear basin modes of oscillation is
noted in section 3.5.

In the previous chapter, the role of eddies and friction in the removal of vorticity
was presented. In section 3.6, the complementary removal of energy by the eddies
and friction is discussed.

The final sections of this chapter present some of the effects of adding bottom
friction in addition to the lateral friction and using slip boundary conditions on the
eastern and western boundaries. The eddies in the model are significantly altered by

these changes.

3.1 Boundary Layer Balances

In order to compare the solutions generated here with traditional boundary layer
theories (such as Stommel (1948), Munk (1950), and Charney (1955)), the balance
of terms in the vorticity equation is presented near the western boundary. The three
plots in figure 3-1 show the meridional average of the terms in the vorticity equation,
with the average taken over different regions of the boundary layer. These regions are

indicated in figure 3-2. Figure 3-1a shows the average in the region where the interior
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Figure 3-1: (a-c) show the meridional average of the vorticity flux convergences as
a function of & for the Re(bdy)=0.25, Re(int)=5 calculation. (a) shows the average
over the Charney boundary layer region where the interior flow enters the boundary
current (y=0 to 0.5). (b) shows the average over the region between the Charney
region and the exit region. (c) shows the average over region where the boundary
current leaves the western boundary. The averaging regions are indicated in figure 3-2.

flow enters the boundary layer. Figure 3-1b shows the average in the region between
where the interior flow enters the boundary layer and the exit region. Figure 3-1c
shows the average in the region where the boundary current exits to rejoin the interior
flow.

Figure 3-1a shows the meridional average of terms in the vorticity equation in the

region where the interior flow enters the boundary layer. In this region, the Char-
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Figure 3-2: Contours of the time-mean streamfunction of the Re(bdy)=0.25,
Re(int)=5 calculation with the regions of the boundary layer that are analyzed in
figure 3-1 indicated.

ney (1955) inertial boundary layer solution can exist (as demonstrated by Greenspan
(1962)), and for the outer part of the boundary current (where the S-term still indi-
cates a strong northward flow, 0.04 < z < 0.08.) the calculation’s balance resembles
the Charney (1955) model as the advection of planetary vorticity and relative vortic-
ity are in balance. Although the Charney boundary layer width is 0.02, this is only
the a priori estimate of the exponential scale of the boundary current, the vorticity
balance the Charney model proposes is important over a somewhat wider region. For
z < 0.03, there is a frictional sublayer acting to enforce the no-slip boundary condi-
tion. There, the friction balances the mean advection of both relative and planetary
vorticity. In the middle region, 0.03 < z < 0.05, there is significant action of eddies.
The eddies widen the influence of the frictional sublayer to this region by transporting
vorticity to the frictional sublayer. In essence, the solution in the entry region of the
boundary layer agrees with the Ierley and Ruehr (1986) steady-state picture of an

inertial boundary layer with a frictional sublayer, except that the eddies join in to
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widen the influence of the frictional sublayer toward the interior.

Figure 3-1c shows the meridional average of terms in the vorticity equation in
the exit region of the boundary layer, where it combines with the recirculation gyre.
As shown by II'in and Kamenkovich (1964) (and in English in Kamenkovich (1966))
and Ierley and Ruehr (1986), there is no steady-state boundary layer solution here.
In this region, the dynamics are dominated by the mean flow toward the interior.
The primary balance is between the advection of relative and planetary vorticity. For
0.08 < z < 0.15, the eddy flux convergence is balanced by all of the other terms
combined. There is a frictional sublayer present here as well, except in this region,
the friction is acting to add negative vorticity to the basin, rather than to remove it.
This appears to be a necessary consequence of the transition in this region from no-
slip to slip boundary conditions. In the next chapter, we will see that this transition

has significant consequences in the structure of the boundary layer.

Figure 3-1b shows the meridional average of terms in the vorticity equation in
the region between the entry and exit region. Here, the boundary layer structure is
unlike any of the traditional steady-state theories. Like the ideas of Pedlosky (1965a),
the presence of time-dependent phenomena near the boundary is important, but here
the critical feature is not the presence of reflecting remotely-forced Rossby waves;
these eddies are locally generated by shear instabilities. The eddies play a critical
role in energy and vorticity transport in this region, and they are present because the

vorticity build-up near the boundary leads to shear instabilities.

Edwards and Pedlosky (1998) find that a similar boundary layer structure is pos-
sible when mass needs to be transported across the equator in a relatively inviscid
boundary layer. In their model, a vorticity transformation is required for the flow
to cross the equator. Edwards and Pedlosky (1998) find that at sufficiently large
Reynolds number, the necessary transformation of vorticity is carried out by the
combined effects of eddies and friction. The eddies transport vorticity from an rela-

tively inviscid boundary layer to a frictional sublayer. The removal of the vorticity
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from the boundary layer fluid by the eddies changes the vorticity of the boundary
layer fluid as it progresses.

Toward the interior in figure 3-1b, the balance is between eddy advection of vortic-
ity and the advection of planetary vorticity, and toward the boundary there is a fric-
tional sublayer. This region could be described as having an eddy-inertial boundary
layer with a frictional sublayer, or perhaps as having a turbulent frictional boundary
layer. In this region of the boundary layer the change in vorticity due to the northward
advection of planetary vorticity is relieved by the eddy vorticity flux convergence.

To summarize, the boundary layer structure in the single-gyre model with boundary-
enhanced viscosity has a clear separation into an outer inertial region and an inner
frictional sublayer. Where a steady-state inertial boundary layer solution exists, this
inertial region is of this type. In this part of the boundary layer, the eddies work
to widen the influence of the direct action of friction. Farther along the boundary
layer, the steady-state solution no longer exists, and in this region the eddies play a

primary role-they balance the S-term single-handedly.

3.2 Homoparic Calculations

In section 10, it is pointed out that some of the solutions with different values of
Re(int) and Re(bdy) have very similar mean fields. In this section, two pair of these
homoparic calculations are examined closely. The first pair contains the Re(bdy)=0.5,
Re(int)=3 calculation and the Re(bdy)=0.25, Re(int)=5 calculation. The second pair
contains the Re(bdy)=3, Re(int)=3 calculation and the Re(bdy)=0.25, Re(int)=8
calculation.

Figure 2-2 shows that the two members of each pair have quite similar time-mean
streamfunctions. The vorticity dynamics of the time-mean fields are therefore quite
similar as well, although there are small differences. On the other hand, the eddies

present in the homoparic calculations differ significantly between the pair members.
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This section demonstrates that these solutions have only small differences in the
mean fields, while the frictional flux divergence (including the effects of changing the
viscosity) and eddy vorticity flux divergence differ slightly in a compensating way,

and while the eddies themselves are quite different.

Figure 3-3 shows the meridional averages of the terms in the vorticity equation
near the western boundary for the two homoparic pairs. In each pair, the meridion-
ally averaged vorticity flux convergences are similar. The small differences that do
appear in the flux convergences can be divided into two general groups, those whose

magnitudes vary and those whose gradients vary. An example of each is shown here.

In figure 3-3b, all of the terms are similar except the eddy and frictional terms
which change in magnitude as Re(bdy) and Re(int) change. In the Re(bdy)=0.25,
Re(int)=5 calculation, the eddies have a larger magnitude of vorticity transport than
in the other case. The frictional term also increases magnitude modestly to accommo-
date this change in the eddy fluxes. Thus, although the eddy fluxes change, the net
effect of the eddy fluxes and frictional fluxes on the mean flow does not. Because the
frictional term is proportional to a higher derivative of the streamfunction than the
mean advection or S-term, this adjustment can be made without a significant change
to the other terms. A small change is present in the §-term, which indicates that the
boundary current is slightly wider in the Re(bdy)=0.25, Re(int)=>5 case than in the
Re(bdy)=3, Re(int)=3 case. The differences between the members of this homoparic
pair are typical of homoparic pairs where the Re(bdy) and Re(int) changes are not

large.

Figure 3-3a shows a homoparic pair where the changes in Re(bdy) and Re(int) are
larger than those in the homoparic pair shown in figure 3-3b. In figure 3-3a it is the
gradients in the mean fields, rather than the magnitudes which are different. This can
be understood by noting that since the same vorticity flux must be transported by the
frictional term as the boundary is reached, there must be a change in the mean field

so that §3,V( remains the same at the boundary. In figure 3-3a, the Re(bdy)=0.25,
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Figure 3-3: (a-b) show the meridional average of the vorticity flux convergences
in the Reynolds-averaged vorticity equation for two pair of homoparic calculations.
(a) shows results from the Re(bdy)=3, Re(int)=3 calculation (solid lines) and the

Re(bdy)=0.25, Re(int)=8 calculation (dashed lines)

(b) shows results from the

Re(bdy)=0.5, Re(int)=3 calculation (solid lines) and the Re(bdy)=0.25, Re(int)=5

calculation (dashed lines).
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Re(int)=8 calculation has higher viscosity near the boundary and lower viscosity
in the interior than the Re(bdy)=3, Re(int)=3 calculation. Thus, the gradients in
the time-mean fields are weaker near the boundary and stronger in the interior in
the Re(bdy)=0.25, Re(int)=8 case. This change in the gradients slightly widens the
boundary current and moves it away from the boundary as can be seen in the §-term

and mean advection term in figure 3-3a.

Along with the necessary change in the frictional flux convergence, the eddy,
S—, and mean flux divergences are located farther away from the boundary in the
Re(bdy)=0.25, Re(int)=8 calculation. Although I have not been able to pinpoint
why each of these terms shifts outward, it should be clear that once the shift has
occurred in the frictional flux convergence, the rest must also shift if the structure of
the time-mean fields is to be similar for the homoparic pair. The global structure of
the time-mean fields is incredibly sensitive to the dynamics in this region (as pointed
out in section 2.3.2). The same amount of vorticity must be transmitted across the
same mean streamlines with the same efficiency, even if they are located slightly
further away from the boundary. Therefore, as the frictional flux convergence shifts
outward to allow for a reduced gradient when Re(bdy) decreases, the other terms in

the vorticity equation must also occur farther out if the solution is to be homoparic.

As the members of a homoparic pair have the same input of vorticity by the wind
and the same output of vorticity by friction (although with different vorticity gradients
at the boundary), the pair member with higher Re(int) must have more efficient eddy
transport of vorticity across mean streamlines in the interior. This must be the case
as the time-mean vorticity field is similar to that of the other pair member, but the
viscosity is smaller; thus, the implied frictional vorticity flux is smaller. In order to
have the same transport of vorticity across mean streamlines, the eddy flux must be
correspondingly larger. Figure 3-4 shows the ratio of the total vorticity flux to the
purely frictional vorticity flux across mean streamlines. This reveals that indeed in

the calculation with larger Re(int), the eddy flux across mean streamlines plays a
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Figure 3-4: This figure shows the ratio of the total vorticity flux across a mean stream-
line to the frictional flux across a mean streamline as a function of mean streamfunc-
tion. It is constructed from the fluxes for the homoparic pair with Re(int)=Re(bdy)=3
and Re(bdy)=0.25, Re(int)=8.

larger role than the frictional flux across mean streamlines when compared to the

other homoparic pair member.

The homoparic solutions in figure 2-2 also have similar eddy flux convergences
(shown in figure 2-8). However, although the convergences are similar, the scale of
the finer features in the convergence field is smaller in the pair member with larger
Re(int).

The smaller scale of eddies in the inviscid calculations can be easily understood
as a change of viscosity in the interior of the basin strongly affects the enstrophy
cascade there. In homoparic calculations, we expect that there will be more small-
scale features in the vorticity field of the member of the pair with higher Re(int).
It is pointed out in the introduction that considering eddy viscosity as merely the
cutoff of enstrophy at high wavenumbers can be misleading when boundary layers are
present. However, the cutoff of the enstrophy cascade remains a useful model for the

dynamics of eddies’ evolution away from the boundary.
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The presence of these small-scale enstrophic features can be seen by eye in fig-
ures 2-3 and figure 2-8, but figure 3-5 is a quantitative presentation. Figure 3-5
demonstrates that the amplitudes of small-scale Chebyshev modes tend to be larger
in the homoparic pair member with a larger value of Re(int). Because the Chebyshev
modes are smaller in scale at higher mode number, a slower decay in the spectrum
with mode number indicates more small-scale phenomena. In this respect, the square
of the Chebyshev coefficient is similar to a traditional squared-Fourier coeflicient spec-
trum plotted by wavenumber, but with with enhanced weighting near the boundary.
The connection between the Fourier and Chebyshev transforms is presented in Ap-

pendix A.

Finally, by careful analysis of figure 3-11, and by viewing of movies of the ho-
moparic pairs, I have noted that there are significant differences in the spin-up time
of the homoparic pair members. The one with greater Re(int) tends to take longer to
spin-up. Thus, although the effects of the eddies are 'parameterized’ by the changes
in the viscosity, the parameterization does not extend fully to the time-dependence

of the homoparic pairs.

In this section, I have shown that while the time-mean streamfunction of the ho-
moparic pairs members is similar, upon evaluating the terms in the vorticity equation
using these terms, small differences can be found. These small differences can be
either in the magnitude of the frictional flux convergence and eddy flux divergence or
in the gradients of all the terms. Because of the compensating changes, the resulting
time-mean field is similar. It seems that there ought to be a way to analyze the mech-
anism of compensation closely and devise an effective eddy parameterization. I am
unable to find a suitable approach to this problem, however promising it remains. In
section 3.6, I return to the subject of homoparic pairs where it is shown these pairs of
calculations differ energetically. In section 3.4, I also show that the homoparic pairs

differ temporally.
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Figure 3-5: (a-d) show the spectral decay of the square of the Chebyshev coefficient
of ¢ two homoparic pairs. (a) shows the average over time and z-Chebyshev mode for
the Re(bdy)=0.25, Re(int)=8 calculation and the Re(bdy)=3, Re(int)=3 calculation.
(b) is the same as (a) except it shows the average over time and y-Chebyshev mode.
(c) and (d) are the same as (a) and (b) except for the Re(bdy)=0.5, Re(int)=3 and
Re(bdy)=0.25, Re(int)=5 homoparic pair.

3.3 Counter-Rotating Gyres

Preceding sections have focused on how eddies can take over for the friction flux across
mean streamlines as the eddy viscosity is lowered. However, there are significant and
important differences between the eddies and the eddy viscosity. One difference is
the appearance of counter-rotating gyres in the more inviscid calculations.

Figure 2-2 reveals the presence of closed circulations in the southeast corner of the

basin in the more inviscid calculations. The mean flow in these regions is in a direction
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opposite to that of the wind-stress; they are counter-rotating gyres. These counter-
rotating gyres are present in the figures of Holland and Lin (1975), Kamenkovich et al.
(1995), and Sheremet et al. (1995), but are significantly weaker than those present

here and go uncommented upon in the text of those papers.

Greatbatch and Nadiga (1999) and Holm and Nadiga (submitted 2002) observe
these counter-rotating regions in double-gyre calculations with slip and superslip
boundary conditions and in calculations with hyperviscosity instead of lateral friction.
They also propose parameterization methods so that these counter-rotating regions
will be present in coarse resolution calculations without eddies. In Greatbatch and
Nadiga (1999), a parameterization of the effects of eddies is given in which the eddy
parameterization fluxes vorticity down the mean gradient (equivalent to £V (67¢+y)in
my notation), but the boundary condition allows for no flux of absolute vorticity out
of the basin. The solution which they obtain from this parameterization is steady,
yet it possesses counter-rotating regions. This parameterization is not allowed in the
models here, as there is a net vorticity input which could not be balanced were the
boundary condition no flux of absolute vorticity. However, it is interesting to note
that the parameterization used by Greatbatch and Nadiga (1999) produces counter-
rotating regions by simply homogenizing absolute vorticity. Thus, it is possible that
the counter-rotating regions here may also be the effects of homogenization of absolute

vorticity by the eddy field.

These gyres are not present in linear calculations (where the Sverdrup relation
is satisfied in this region) or in steady-state solutions of the traditional nonlinear
problem with lateral friction and slip or no-slip boundary conditions (see, for example
Terley and Sheremet (1995) and figures 1-1 and 1-2) because they are eddy-driven. By
examining the region where 1 is negative in figure 2-9 (which represents the counter-
rotating gyre in that calculation) one notes that friction does not significantly affect
the cross-streamline vorticity flux in this region. All of the vorticity input within these

mean streamlines is moved toward the boundary by eddies. During this process, the
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eddies and mean flow interact in such a way as to have an average circulation in a

direction counter to the direction of the wind stress.

The eddy flux convergences in figure 2-8 and 2-6 reveal regions of eddy flux con-
vergence in the region of the counter-rotating gyre (the closed contour filled with
light coloring in the southeast quadrant of the less viscous calculations). The large
spatial scale of these convergent regions indicates the character of these modes of
vorticity transport. They are basin-scale motions reminiscent of the basin mode os-
cillations. The wave-like motion of absolute vorticity present in these modes can be
seen propagating from east to west in the southern portion of figure 2-5. In the more
inviscid calculations, these modes have gained sufficient strength so as to drive a cir-
culation, which is the counter-rotating gyre. These modes will be discussed further

in section 3.5.

Pedlosky (1965b) solves for the weakly-nonlinear interaction of basin modes forced
by a traveling wave (wg = cos(kz — wt)sin(nmy)) in a homogeneous model with
bottom friction only. He finds that in the weakly nonlinear limit, the zeroth-order
solution responds linearly to the wind forcing while the first-order solution contains
a response to the nonlinear interaction of the zeroth-order solution. This result is
relevant here as the zero-frequency response to the nonlinear interaction can possess
a region which rotates counterclockwise in the southern portion of the basin. How-
ever, Pedlosky (1965b) proposes a primary balance for this region with the eddy flux
convergence balanced by the (-term, whereas the counter-rotating regions here are
in primary balance between the eddy flux convergence and the steady wind forcing
with the B-term as a next-order correction (see figure 3-6). Regardless, the results
of Pedlosky (1965b) show that a nonlinear interaction of basin modes can cause a
steady circulation, and I believe that a similar analytic calculation can be created to

explain the counter-rotating regions here.

To explore the possibility that these counter-rotating regions are driven by basin

modes, a simple additional experiment was performed. A calculation was performed
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Figure 3-6: (a) and (b) show the meridional and zonal averages, respectively, of terms
in the time-mean vorticity equation in the region where ¢ < 0 (the counter-rotating
gyre) from the Re(bdy)=0.25, Re(int)=5 calculation.

with a basin that was extended to be twice as long in the zonal direction, except
with wind forcing only in the western half of the basin. Therefore, the linear Munk
solution would only extend halfway across the basin. Different calculations using this
model are presented in section 3.5, and more discussion on the model is presented
there. Figure 3-7 shows the time-mean streamfunction from this calculation. There
are clearly steady circulations which occur in the eastern half of the basin where there
is no wind forcing. In fact, there is a region which rotates counterclockwise in the

southern half of the basin as the counter-rotating gyres do, and there is a region
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Figure 3-7: The time-mean streamfunction showing the the counter-rotating gyre in
a calculation in a elongated basin with Re(bdy)=3, Re(int)=3. There is wind forcing
only in the western half of the basin. The contour interval is 0.025. regions of negative
streamfunction are shaded.

which rotates clockwise in the northern half of the basin. This is just as in some of

the analytic solutions of Pedlosky (1965b).

Furthermore, figure 3-8 shows the meridional and zonal averages of the terms in
the vorticity equation in the counter-rotating region. The most southwestern part
of the counter-rotating gyre extends into the wind forcing, and therefore experiences
some wind forcing, which is balanced by the eddy flux convergence in the zonal mean
(figure 3-8b). However, in figure 3-8a, it becomes clear that only the westernmost
part of the counter-rotating region experiences the wind forcing and the easternmost
region is frictional. The middle of the counter-rotating region has a balance between
the B-term and the eddy flux divergence, just as the resonant solutions in Pedlosky

(1965b) do. Therefore, it seems that in the regions devoid of the wind forcing, a
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Figure 3-8: (a) and (b) show the meridional and zonal averages, respectively, of terms
in the time-mean vorticity equation in the region where 1) < 0 (the counter-rotating
gyre) from the long basin calculation in figure 3-7.

version of the dynamics proposed by Pedlosky (1965b) with lateral friction would
apply. Also, so long as the western boundary region is excluded, it appears that only
a small change would be needed to add in the effects of a steady wind forcing.

I have used empirical orthogonal functions to determine the structure and fre-
quencies of the large scale modes in the calculation shown in figures 3-7 and 3-8.1
The result is that the large scale motions in this model are consistent with the pres-
ence of modes of variability similar to one of the basin modes. The nonlinearly-forced
first-order solution given by Pedlosky (1965b) for this basin mode has three equally-
spaced counter-clockwise gyres in the southern half of the basin and three equally-
spaced clockwise gyres in the northern half of the basin (figure 3-9). The pattern of
eddy-driven regions in figure 3-7 is consistent with such a pattern. It is quite easy
to imagine three gyres above and below the midpoint of the basin. Considering that
Pedlosky’s solutions use bottom friction and possess no mean flow resulting from

steady wind-forcing, this result is highly suggestive that the proper explanation of

1These results are not shown, but more will be said about using empirical orthogonal functions
to identify basin modes in sections 3.4 and 3.5. The mode found here is the (m,n)=(3,1) mode.
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Figure 3-9: Contours of the streamfunction of the analytic first-order estimate by
Pedlosky (1965b) of the steady circulation resulting from the nonlinear interaction of
the (3,1) basin mode. Light colors are clockwise circulations, dark colors are counter-
clockwise circulations.

these counter-rotating gyres is to be given by an analysis similar to that of Pedlosky

(1965b).

Returning to the case where there is wind forcing throughout the basin, if these
basin modes are global and forced at the opposite end of the basin, how is it that the
adjustment occurs so that the wind forcing is exactly balanced by the eddies? There
seems to0 be a causal problem in this case. Of course, it is not the eddies which adjust,
but the mean flow; if the closed streamlines contain too much or too little wind stress
then they will build up a vorticity anomaly and can not remain in that position at
equilibrium.

It is interesting that the counter-rotating gyres exist, because in this region of
the basin, the Sverdrup solution would be adequate. Yet, it should be quite clear
from the inertially-dominated solutions that the adequacy of the Sverdrup solution is
not sufficient to guarantee that effects from other parts of the basin do not overrun
the Sverdrup solution. If the hypothesis that the basin modes interact nonlinearly to
create these regions, then a forcing in a remote region excites the basin modes (which
are addressed in section 3.5) which in turn cause a circulation in this region in a sense

opposite to that expected from the local wind forcing.

The counter-rotating regions play an intriguing role in the energy budget, as the
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energy input of the wind to these regions is negative. For example, in the Re(bdy)=3,
Re(int)=7 calculation, the counter-rotating gyre reduces the energy input to the mean
flow by 12.6% when compared to the same solution except with v set to zero in
the counter-rotating region. The necessity of reduction of energy input as Reynolds
number is increased has been proposed previously by Scott and Straub (1998). The

energetic impact of the counter-rotating gyre is discussed in section 3.6.

Salmon et al. (1976) propose that the most likely equilibrium statistical mechan-
ical solution to the quasigeostrophic equations is the one which maximizes entropy
production. Griffa and Salmon (1989) were able to show that in a closed basin the
maximal entropy production states for the unforced, non-dissipative calculation are
modes resembling those of Fofonoff (1954). These Fofonofi-like modes have been seen
in models more recently (for example, Griffa and Castellari (1991), Ozgtkmen and
Chassignet (1998)). One might suspect that the counter-rotating gyres seen here are
of this variety. However, this is not the case, as the Fofonoff (1954) modes are primar-
ily a balance between mean advection of vorticity and the §-term and are symmetric
in the zonal direction (as discussed in the introduction). Fofonoff-like solutions are
also characterized by inertial boundary currents on the eastern and western coasts.
Furthermore, the ansatz of the Fofonoff solution—that ¢ = ¢(¢) is not satisfied in the

counter-rotating region (see figure 3-10).

Figure 3-6 shows the meridional and zonal averages of the terms in the vorticity
equation within the counter-rotating region. This figure reveals that the counter-
rotating gyres have a strong asymmetry from east to west and the primary balance of
terms in the vorticity equation is wind forcing balanced by eddy flux convergence. The
unforced, non-dissipative limit sought by Griffa and Salmon (1989) is not applicable
here. Only as higher-order corrections to this primary balance do the mean advection

and (-term enter.

Interestingly, the other correction at the next order is a frictional sublayer on

the eastern boundary, driven by the eddy flux convergence. As this gyre is counter-
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Figure 3-10: The relationship between the mean values of 62C + y and ¥ from the
Re(bdy)=5, Re(int)=>5 calculation. Note that the relationship is not a single-valued
function as required by the Fofonoff ansatz.

rotating, the frictional sublayer acts in the opposite sense from elsewhere in the basin.
The friction fluxes vorticity of the same sign as the wind input into the basin in the
counter-rotating region. Figure 3-6 shows the terms in the vorticity equation which
are important in these gyres.

The counter-rotating gyres are therefore quite unlike the Fofonoff-like modes de-
scribed by Griffa and Salmon (1989), at least for the case of no-slip boundary condi-
tions at the eastern and western boundaries. However, the question of whether the
counter-rotating gyre represents the maximal entropy production solution remains
open but is outside the scope of this investigation.

To summarize, the strong basin-mode like oscillations in the relatively inviscid
calculations drive a region of the mean flow which rotates in a direction opposite
to the wind forcing. The primary balance of terms in these regions is eddy flux
convergence and wind forcing. The counter-rotating regions appear to be effects
of the nonlinear interactions of basin modes similar to those studied by Pedlosky
(1965b). The dynamics are remarkably similar when a basin with wind forcing in
only the eastern half of the domain is used. The counter-rotating regions are unlike
the Fofonoff (1954) solution and the Griffa and Salmon (1989) statistical mechanics

solutions for freely-evolving flow. These counter-rotating regions reduce the wind
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power input, as will be discussed further in section 3.6. These counter-rotating regions
are proof that although eddies sometimes neatly replace the action of eddy viscosity
in the basin interior, at other times they behave quite differently, even producing

non-local effects.

3.4 Temporal Structure of the Solutions

Resolved eddies differ from eddy viscosity in the temporal character of the solution.
In a linear calculation, where eddy viscosity represents all of the effects of the eddies,
a steady wind forcing always results in a steady solution. Even if the wind forcing is
variable, the frequencies of the response by a linear system are easily predicted by a
knowledge of the resonant modes of the system. In the inviscid calculations presented
here, despite the steady forcing the solution has a significant range of variability on
many time scales, both resonant and not.

Even within the small parameter range studied here, there is a diversity of tempo-
ral behaviors. Asshown in figure 2-4, there is a qualitative difference in the parametric
response between solutions that have a recirculation gyre which reaches the eastern
boundary (inertially-dominated) and those that do not (western-intensified). There is
also a qualitative difference in temporal behavior. The western-intensified solutions
can be further divided into three categories: steady solutions, harmonic solutions,
and chaotic solutions. All four cases are shown in figure 3-11.

The lowest Reynolds number calculation shown in figure 3-11 has Re(bdy)=0.5
and Re(int)=0.5, is western-intensified and reaches a steady state. This solution is
only slightly influenced by nonlinear terms, and its response to forcing is much like
that of a linear model.

At slightly higher Reynolds number, the solutions remain western-intensified, but
the kinetic energy is seen to oscillate periodically or exhibit a superposition of a

few frequencies. This is the regime where instabilities are present, but only of a

113



103 l

T

Re(bdy)=7, Re(int)=7
1 Re{bdy)=5, Re(int)=5

. S ] " Re(bdy)=1, Re(int)=7
A Wﬂ»w@ﬂ'*‘ﬁ}mﬁ Re(bdy)=0.5, Re(int)=7 [

Re(bdy)=1, Re(int)=5 ' Re(bdy)=0.25, Re(int)=9 |

T

Total Kinetic Energy

Re(bdy)=0.5, Re{int}=5
Re(bdy)=0.25, Re(int)=7

Re(bdy)=1, Re(int)=3
Re(bdy)=0.25, Re(int)=5

oy MWW
o ‘v i

Ay,

Mﬁ‘"‘ 2 *{

x‘m\)ﬂ

Re(bdy)=0.5, Re(int)=3

Wy

wﬁv‘ﬁ‘ iy ¢’!= " 0 i

n’v"‘k v

i’“ i A Re(bdy)=0.25, Re(int)=3
{

i M‘”&
Ty

}/’“M SRR Re(bdn)=1, Re(in)=1

10" -
ssins Re(bdy)=0.5, Re(int)=1 C
] Re(bdy)=0.25, Re(int)=1 3
Thoeeroeo——— Re(bdy)=0.5, Re(int)=0.5 L
10° T | T I T T
2000 6000 10000 14000 18000
Time

Figure 3-11: Semi-log plot of total kinetic energy (] ¥?dA/2) versus time evaluated
every 25 time units for different calculations. The four temporal behavior classes are
exemplified here (ordered from small total kinetic energy to large): steady, harmonic
solutions, and chaotic solutions which are western-intensified and chaotic solutions
which are inertially-dominated. The averaging interval for the time-means given
throughout this dissertation is usually the second half of the length of integration.
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few types. Each type has a typical frequency, and the variability caused by these
instabilities interacts in a weakly nonlinear manner to produce harmonics. Because
these modes are weak and do not strongly affect the mean flow, these calculations
oscillate about a mean solution which is very similar to the steady solution. The
modes of instability present in these calculations are addressed in Sheremet et al.
(1997), where an analysis of the eigenfunctions of linear perturbations about the
steady-state solutions is presented. This analysis is able to correctly predict the
onset of instability. However, Sheremet et al. (1997) do not fully address the nonlinear
interaction between these modes, so mention of it will be made here.

As an analytic example to place the nonlinear interaction in context, consider
a weakly-nonlinear perturbation analysis of two basin mode oscillations occurring
simultaneously. If the modes are free and inviscid, to lowest order they must satisfy
the non-dimensional equation

ovy |, 0 _
ot or

0. (3.1)

The streamfunction must also be constant along the boundary to guarantee imper-
meability of the boundaries. If, as in the numerical model, the boundaries are located
where z and y are zero and one, then the solutions for mode number (m,n) are of the

form

=R [1/)0 sin(mmnz) sin(nwy)ei(”m”Hﬁ)] , (3.2)
?’[) = % I:Emnei(o’mnt-i-%%;)] , (33)

For a more complete introduction to the free basin modes, see Pedlosky (1987).
The complex function E,,, is the envelope function for mode (m,n) and is complex
so that it sets the phase of the wave as well.

In a series expansion of the weakly nonlinear perturbation analysis, the next order
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in the expansion will be forced by the evaluation of the nonlinear interaction of these
linear, lowest-order modes. As an example, consider a weak nonlinear interaction
between only two basin modes, the (m,n) mode and the (k,1) mode. Evaluating one

of the two nonlinear terms in the vorticity equation (#1) gives

#1 = J(W(k, 1), V23p(m,n)) (3.5)
= ( (k, 1), g%{[ 2(m2n? + n’n?) + 2011"} Emnei(amnwﬁ;)})

ori+omn)

_ { [( OBy | zEkl) 0Bmn _ 0B (BEmn + iEmnﬂ ei[(akz+omn)t+m—]}

Oz 20k Oy Oy oz 20mn

8Ekl —_ ,LEI:Z OFEmn _ aEzl OFmn + iBmn ei[(_akl-'_o-mn)t—i_%]
201 dy Oy oz 20mn ’

The other nonlinear term, J(1(m,n), V2 (k, 1)), will be similar in form, except with
(k1) and (m,n) exchanged. This calculation shows that the frequency of the in-
teraction term-and also by symmetry the frequency of the other interaction term
(J(¥(m,n), V2(k,1)))~depend on the sum and the difference of the frequencies of
the original modes. Therefore the frequencies of the variability forced by this nonlin-
ear interaction will also be at or near frequencies which are the sums and differences

of the original frequencies.

This is the reason why the nonlinear interactions between basin modes as treated
by Pedlosky (1965b) has relevance for the counter-rotating gyres. If there are two
modes of different phase with the same (m,n), then their nonlinear interaction will
force a response at two frequencies: ¢ = 0 and 20,,,. It is the steady response which

is to be considered as a cause for the counter-rotating regions.

Notice also that the wavenumbers of the interaction terms are the sums and dif-

ferences of the wavenumbers of the original modes:

- Umn 1 1
oa —Om) 1 _ 1 (3.6)
OkiOmn Okl Omn
mn 1 1
(O + Omn) _ 1 , (3.7)
k10 mn Okl Omn

116



Most of the interaction here is between modes which are not pure waves and so do not
have an obvious wavenumber, but this result is still useful is interpreting the spatial

structure of the interaction modes.

Although the free, linear basin modes are not exactly the eigenfunctions solved
for by Sheremet et al. (1997), they are similar in their interaction. Therefore, in the
weakly nonlinear limit, we expect to see a small number of unstable modes, which
interact nonlinearly with frequencies that are the sum and difference of the modes’
frequencies. Figure 3-12 shows just such an interaction between two periodic modes

in the Re(bdy)=1, Re(int)=1 calculation.

In figure 3-12, the empirical orthogonal functions (EOFs) were calculated from the
relative vorticity field. The presence of these EOFs over time was then calculated.

Approximately two EQOFs are present for each mode of instability.

In chapters 3 and 4, EOFs are calculated in an attempt to empirically quantify
the primary modes of variability in the time-dependent numerical model. The em-
pirical orthogonal functions are discussed in detail elsewhere (for example, Berkooz
et al. (1993), Wunsch (1996)) In these calculations, the quantity of interest (¢, ¢,
etc.) was interpolated onto a uniformly-spaced 101x101 grid for a lengthy subsection
(0(3000) units of 1/(8L)) of the integration time after equilibration had occurred.
The empirical orthogonal functions were then calculated on this grid over this time

interval.

The EOFs are roughly able to represent basin modes, but not exactly. The basin
modes have the form given in equation 3.3. With appropriate definitions of the

complex coefficients 1; and 1),, this can be rewritten as a sum of two standing waves:

v = R {@/)1 {sin(mﬂx) sin(nmy) sin <2;mn>] ei"’""t} (3.8)
+R {wQ {sin(mﬂx) sin(nmy) cos ( 2fmn>} ei"m”t} (3.9)

The spatial pattern of these standing waves (in brackets) does not change as the phase
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Figure 3-12: The upper two rows contour the EOFs of relative vorticity perturbation
from the time-mean for the first six EOFs for the Re(bdy)=1, Re(int)=1 calculation
and give the percent of the total variance associated with each EOF. The lower two
rows give a multi-taper estimate of the power spectral density of the presence of each
of the six EOFs. The 95% confidence interval is shown with dotted lines.
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Figure 3-13: As in figure 3-12 except for the EOFs of streamfunction perturbation
from the time-mean for the Re(bdy)=1, Re(int)=1 calculation.
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of the wave changes, instead the their magnitude increases and decreases with time.
The decomposition into the two standing waves is not unique, a constant could have

been added to the spatial phase of each (e.g., cos ( I+ A)) The two EOF's which

200mn

were generated per basin mode should agree to some extent with the spatial structure
of these standing waves (at some arbitrary spatial