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Abstract

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent teratogen that impacts the
developing cardiovascular system. Hallmarks of embryonic exposure include cardiac
malformation, impaired circulation, loss of erythrocytes, pericardial and yolk sac edema,
and early life stage mortality. However, the mechanism of TCDD cardiovascular
embryotoxicity is poorly understood. The primary goal of this thesis was to identify
TCDD-responsive genes likely to be involved in processes of toxicity.

We constructed microarays using cDNA librares derived from zebrafish embryonic
and adult hear tissue. Embryonic hear arays were used for protocol development. The
resulting workfow was employed in the production of adult hear micro arays containing

-2800 unique cardiovascular genes.
These arays were used to establish gene expression profiles of zebrafish embryos

exposed to 1.84:t.42 or 1O.74:t.1.38 ng TCDD/g embryo. Alterations in cardiovascular
gene expression were limited; 44 genes or ESTs were significantly differentially
expressed 2:1.8-fold (p-values :S5x10-4), and only CYPIA and CYPIBI were induced::-
fold. Transcriptional responses to TCDD were highly dose-dependent, and adaptive
responses were a prevalent feature of TCDD-modulated gene expression.

Microaray analyses indicated induction of genes in three major funptional classes-
xenobiotic detoxification, sarcomere structure, and energy transfer. TCDD-modulation
of selected genes was verified by RT-PCR. Induction of mitochondral electron transfer
genes was varable and modest; such induction provides a possible pathway to reactive
oxygen generation and cardiac pathology. Sarcomere genes were generally robustly
induced, but RT-PCR indicated suppression of cardiac troponin T2. The current data
suggest that TCDD causes cardiomyopathy in zebrafish embryos.

Investigation of a TCDD-induced EST cluster led to the discovery of a novel
retroelement, EZRl. EZRl elements lack genes necessary for autonomous
retrotransposition, but are highly expressed in normal and TCDD-exposed cardiac tissue.
Putative regulatory elements in LTR sequences may account for observed expression
patterns. The function, if any, of EZRl remains open to speculation.

Thesis Supervisor: John J. Stegeman, Senior Scientist and Chairman of Biology, WHOI
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CHAPTER 1

Introduction and background:

2,3,7,8- Tetrachlorodibenzo-p-dioxin cardiovascular embryotoxicity
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1.1 Planar halogenated aromatic hydrocarbons

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), often called the most toxic man-made

chemical, is the archetypical halogenated aromatic hydrocarbon (HAH). Halogenated

aromatic hydrocarbons constitute a large class of toxicologically important synthetic

chemicals, including polychlorinated dibenzodioxins, dibenzofurans, and biphenyls

(Figure 1.1). Of paricular concern are laterally halogenated congeners, such as TCDD

and PCBs bearng substitutions in positions 2-6 (and/or 2' -6'). These planar HA

(pHA) are highly persistent in the environment and more potent toxicants than non-

coplanar counterpars. The biological effects of pHAH in vertebrates include severe

epithelial disorders, thymic atrophy and thyroid dysfunction, tumor promotion, endocrine

disruption, and developmental abnormalities (1).

HAH are primarly anthropogenic in origin and have become ubiquitous contamnants

in aquatic environments. Polychlorinated biphenyls (PCBs) were manufactured for

industrial use as lubricants, coolants, diluents, and plasticizers. Dioxins and furans have

never been deliberately produced, but are common contaminants in organochlorine

syntheses (e.g., Agent Orange and PCBs) and are formed as by-products of chlorinated

bleaching processes. Industrial processes and accidental spils have resulted in localized,

high-level HA contamination of certain inland and coastal waters (e.g., New Bedford

Harbor, MA (2)). Recently, large-scale incineration of waste material, paricularly

chlorinated plastics, has become the leading source of HA and has contributed

significantly to their global distribution via atmospheric transport.

Planar HAH are largely recalcitrant to biological or chemical degradation and, due to

their hydrophobicity, may be accumulated to high concentrations in animals' lipid stores.

TCDD has been found in fish tissues at concentrations hundreds of thousands of times

those found in the surrounding environment. A recent survey by the Environmental

Protection Agency found TCDD in fish at 70 percent of 388 sites, with observed body

burdens as high as 204 pglg wet weight (3) At least one dioxin or furan congener was

found in fish at 89 percent of all sites surveyed. Similarly, pHAH have been found in soil

and water, as well as fish, bird, and human tissues from around the globe (4-6). The
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widespread presence of pHAH in biological tissues warants concern about potential

health effects.

The embryotoxic effects of pHAH are of paricular interest due to the potential for

long-term adverse impacts on individual fitness and population success. Indeed, the

importance of understanding processes of developmental and reproductive toxicity has

been addressed in recent reports from the National Research Council (7, 8). Given their

proximity to human population centers, animals inhabiting coastal and inshore aquatic

environments may be uniquely susceptible to the effects of anthropogenic pollutants. In

the case of PCBs, 97 percent of the environmental burden is found in the coastal and

open ocean (4). Understanding toxicological impacts and mechanisms in aquatic

organisms is a pressing problem, and wil remain so as industrialization and human

population levels in coastal regions continue to increase. This is paricularly true for

teleost fish, which are among the most sensitive of all animals to early life stage mortality

caused by TCDD (Figure 1.2).

1.2 TCDD cardiovascular embryotoxicity

TCDD and other pHA are potent developmental toxicants that target the

cardiovascular system. The hallmarks of embryonic TCDD exposure are edema,

hemorrhage, craniofacial malformations, and early life stage mortality. This suite of

symptoms, similar to blue sac syndrome in salmonid fish, has been observed in over a

dozen fish species exposed to TCDD and related pHAH (9-15). The avian equivalent,

GLEMEDS (Qreat 1akes ~mbryo mortality, ~dema, and Qeformties syndrome), has been

described in embryos of chicken, turkey, and several other domestic bird species

experimentally treated with pHAH (16-20). Edema and craniofacial deformties have

been observed in pHAH-exposed rat, hamster, and guinea pig embryos (21).

While susceptibility to cardiovascular impacts by TCDD vares greatly, the similarty

of TCDD-induced syndromes across taxa suggests that a common mechanism may be

involved. In considering possible mechanisms of TCDD cardiovascular embryotoxicity,

it is important to clearly define two terms - embryotoxicity and teratogenesis.

Embryotoxicity includes all adverse effects of toxicant exposure, regardless of
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originating mechanism. In contrast, teratogenesis refers to the production of (usually)

irreversible morphological malformations by specific disruption of a normal

developmental event. Edema and hemorrhage are generally thought to be secondary

manifestations of an underlying teratogenic impact on the developing cardiovascular

system. Significant progress has been made toward unraveling the sequence and

relatedness of teratogenic and embryotoxic events in zebrafish (Danio rerio) and in the

chick embryo.

Cardiovascular impacts in fish

The timing of onset of specific embryotoxic endpoints has been closely scrutinized in

zebrafish, and may provide clues regarding causative teratogenic events (Figure 1.3).

The first overt sign of TCDD toxicity is congestion and reduced circulation in peripheral

vascular beds. Subtle, transient reductions in red blood cell perfusion rate in the brain

and trunk can be detected as early as 48 hours post fertilization (hpf), approximately

concurrent with hatching (22,23). By 60-72 hpf, blood flow in the tail is significantly

slowed and blood begins to pool in the caudal vein (24). Pericardial edema is first

observable at 72 hpf, followed by yolk sac edema several hours later (10). These

conditions increase in severity both time- and dose-dependently, culminating in complete

circulatory failure. The relative timing and progression of circulatory failure and edema

is similar in other fish species, including Japanese medaka and rainbow trout (14, 25). In

zebrafish, circulatory impairment is exacerbated by gradual loss of erythrocytes at 80-96

hpf, resulting from disruption of definitive erythropoiesis (24).

TCDD does not appear to impact early cardiovascular patterning events, as the

window of susceptibility for cardiovascular toxicity falls between 48 and 96 hpf. The

suite of circulatory impacts described above can be produced by exposure of zebrafish

embryos to TCDD at any point up to 48 hpf, and onset is only slightly delayed when

exposure occurs at 72 hpf (24). In contrast, exposure at or after 96 hpfproduces no effect

on cardiovascular performance. Thus, TCDD appears to be specifically modulating

processes that take place between 48 and 96 hpf (e.g., definitive erythropoiesis).

Similarly, in Japanese medaka, the window of susceptibility for cardiovascular effects by
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TCDD is limited to the period during which cardiovascular lesions are observed, on days

4 and 5 of development (14).

It has been proposed that circulatory failure might result from malformation of blood

vessels. This hypothesis was based on the similarty of the TCDD-induced phenotype to

that of genetic mutants with vascular defects, such as cloche, and the sensitivity of

vascular endothelial cells to enzyme induction, apoptosis, and morphological alteration

caused by TCDD (26-28). However, in accordance with the observed window of

susceptibility, the molecular pathways responsible for vasculogenesis are unaffected prior

to 48 hpf, and blood vessel size, number, and patterning is normal in TCDD-treated

zebrafish (24). Vascular damage appears to be, in itself, a toxic endpoint of TCDD

exposure that may constitute one proximal mechanism for generation of edema.

However, it is unlikely to be the cause of circulatory failure.

Alternatively, it is possible that edema and hemorrhage might be secondary effects of

circulatory failure caused by cardiac deficiencies. Indeed, edema is a common phenotype

among zebrafish genetic mutants with cardiac defects (29,30), and there is some

evidence to suggest that TCDD impacts cardiac morphology and function in developing

fish. As expected, early cardiac development, including hear tube formation and cardiac

looping, appears to be unaffected by TCDD. Hear rate also remains normal until after

96 hpf (Figure 1.3), at which point reduced hear rate is most likely a reflection of

impending mortality. However, TCDD treatment results in reduced contractile strength

as early as -50 hpf (Handley, unpublished data), and reductions in hear size are apparent

by 72 hpf (31). Significant reduction in hear size has also been observed in TCDD-

exposed sac fry of rainbow trout (25) There has been some debate regarding whether

such cardiac derangements might be attributable solely to physical forcing by pericardial

edema. However, rearng TCDD-treated zebrafish embryos in iso-osmotic sugar

solutions reduces edema without rescuing the cardiac or circulatory phenotypes (31).

Thus, there are preliminar indications that TCDD exerts a direct teratogenic impact

on cardiac growth and muscle development between 48 and 96 hpf. Unfortunately, this

phase of zebrafish cardiac development has received little attention and is poorly

27



understood. At hatching, cardiac looping is complete and the four chambers of the teleost

hear (sinus venosus, atrium, ventricle, and bulbus areriosus) are distinct. By 96 hpf, the

zebrafish hear is essentially "adult." Presumably, the intervening period is one of

proliferation and, possibly, further differentiation. However, given the current lack of

knowledge, it is difficult to speculate as to the nature of processes that might be impacted

by TCDD during this period.

Dilative cardiomyopathy in avian embryos

In the avian embryo, edema and hemorrhage are secondary effects of TCDD-induced

dilative cardiomyopathy. At dose levels low enough to avoid significant edema or

hemorrhage, TCDD causes enlargement of the hear due to increase in the size of

ventricular luminal cavities, but not in ventricular wall thickness (i.e., dilation) (32).

Prior to observable dilation, cardiomyocyte proliferation is inhibited and apoptosis is

increased in specific cardiac structures (33). As cardiotoxicity progresses, the number

and size of coronary areries is reduced, atrial natriuretic factor mRA expression is

induced, ß-adrenergic chronotropic (hear rate) responsiveness is suppressed, and

subcutaneous edema is observed (32, 33). Overall, these observations are consistent with

TCDD-induced dilated cardiomyopathy that leads to congestive heart failure.

There appears to be a window of susceptibilty for cardiotoxic impacts that coincides

with a period of myocardial remodeling in the embryonic avian hear. Signs of TCDD

cardiotoxicity (molecular or morphological) are not manifest until Day 8 (D8), reach

maximal severity by D12, and cannot be induced by treatment on or after D14 (33,34).

In normal avian development, D8-DlO is a period of extraordinary proliferation and

rearangement of ventricular myocytes (35). The outer, compact layer of ventricular

myocardial cells quadrples in thickness in this two-day period, before settlng into a

more moderate rate of growth. This thickening triggers increased coronary arery

invasion. Also during this period, the compact layer of myocardial cells develops a

highly organized, multi-layer system of spiral myocardial fibers. This new architecture is

necessary to maintain increased hemodynamic pressure. Based on current understanding
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of TCDD cardiotoxicity in the chick, it seems likely that TCDD specifically blocks the

process of ventricular compact layer thickening, and possibly remodeling.

Processes of cardiac remodeling are poorly understood in lower vertebrates (i.e.,

fish). The adult morphology of teleost hears is extremely varable. Many large, fast-

swimmng fish, such as tuna, have hears with similar myocardial architecture and

extensive coronary vascularzation. Others, like zebrafish, are so small that these

elaborations are unnecessary. However, given the fact that some fish develop cardiac

muscle morphology comparable to that of higher vertebrates, it seems likely that

homologous (if simplified) genetic pathways exist in fish. Furthermore, the similarty in

phenotype and ontogeny of TCDD cardiovascular embryotoxicity across taxa suggests a

common underlying mechanism.

1.3 Molecular mechanism of TCDD teratogenesis

Role of aryl hydrocarbon receptor

The aryl hydrocarbon receptor (AHR) is a basic-helix-Ioop-helix Per-ARNT-Sim

(bHLH-PAS) protein that functions as a ligand-activated transcription factor with a broad

affinity for aromatic hydrocarbons (36). AH homologs have been identified in most

animal lineages, including arthropods, nematodes, bivalves, agnathans, carilaginous and

bony fishes, amphibians, reptiles, birds, and mammals (37) The mechanism of ligand-

activated AHR signaling is well understood, and is highly conserved across vertebrate

taxa (36-38). Following ligand binding, cytosolic AHR undergoes a conformational shift

that facilitates release of cofactors, including hsp90 and Ara9, and translocation of AH

into the nucleus. Nuclear AH interacts with aryl hydrocarbon receptor nuclear

translocator (ART) protein to form a heterodimeric transcription factor that binds

enhancer sequences known varously as AH-, dioxin-, or xenobiotic-response elements

(AH, DRE or XR) (Figure 1.4).
AHR plays a significant role in cardiovascular development and function in

vertebrates. AHR is highly expressed in the hear and vasculature of fish and birds (39-

42). AH-null knock-out mice manifest transient alterations in fetal and neonatal cardiac
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morphology, as well as progressive hypertension and cardiac hypertrophy beginning soon

after birth (43-45). It is interesting that the murine AH-null phenotype is, in many

ways, opposite of that resulting from activation of AHR by pHAH. Similarly, AH

expression is increased in hears of human patients suffering ischemic or dilative

cardiomyopathy (46).

Transcriptional modulation by AHR is the primar means by which TCDD effects

toxicity. The toxic potency of specific aromatic hydrocarbons is strongly correlated to

their ability to bind and activate AH (47). Strain-dependent or inter-specific differences

in TCDD sensitivity also depend largely on properties of AHR (48-50). For example,

AH expression and signaling is altered in strains of the salt-marsh killfish, Fundulus

heteroclitus, which have acquired heritable resistance to PCBs and other HAH (51, 52).

Furthermore, chemical antagonists and genetic knock-down/out technologies have

provided direct evidence of the necessity of AHR for TCDD toxicity in zebrafish

embryos (22,53,54) and in both embryonic and adult mice (55-59).

Role of cytochrome P450 lA

While AHR is capable of regulating expression of numerous genes, inducing

cytochrome P450 lA (CYPIA) gene expression appears to be the primary means by

which AH mediates HAH toxicity. Induction of CYPlA enzymes by aromatic

hydrocarbons was first reported more than thirty years ago (60,61), and has since been

shown to be strictly AHR-dependent (62, 63). CYPIA proteins are phase I xenobiotic

metabolizing enzymes whose primary function is oxidative modification of hydrophobic

organic substrates. Such metabolism is intended to facilitate elimination of exogenous

toxicants from the cell, but may have alternative consequences, such as bioactivation or

reactive oxygen production (64), that can contrbute to toxicity. It has long been thought,

based on correlations between CYPlA induction and pHA-induced toxic impacts, that

CYPIA enzymes may be involved in processes of pHA toxicity.

Patterns of evolutionary varation in CYPlA gene complement can be correlated to

susceptibility to pHAH toxicity. Whereas AHR is present in most animals, biochemical,

molecular, and bioinformatics-based surveys have failed to identify CYPlA genes in any
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invertebrate species. Correspondingly, pHAH exposure does not produce overt toxicity

in invertebrates. The number and type of CYPIA genes present may also account for

differential sensitivity to TCDD embryotoxicity among vertebrates. As a rule, teleosts

possess a single CYPIA gene and are extremely sensitive to early life-stage toxicity by

TCDD (Figure 1.2). In contrast, mamals possess two distinct CYPIA genes, CYPIAI

and CYP1A2, and are relatively insensitive to TCDD embryotoxicity and early life-stage

mortality (Figure 1.2). Birds, which are also highly sensitive to TCDD (Figure 1.2), also

have two CYP1A genes, CYPlA4 and CYPIA5 (65, 66). However, as is implied by

their names, these genes are the result of an avian-specific gene duplication and are not

orthologues of mamalian CYPIA1 and CYPIA2 (66, 67).

Xenobiotic induction of CYP1A genes is also correlated with toxic impacts in

vertebrates on temporal, spatial, and dose-dependent bases. For example, in lake trout

embryos exposed to TCDD, CYPIAprotein levels were greatly enhanced in vascular

endothelium at the time of onset of cardiovascular malfunction, and the dose-dependence

of CYPIA induction was closely correlated with that of sac fry mortality (27).

Furthermore, CYPIA induction in vascular endothelium co-localizes with regions of

TCDD-induced apoptosis associated with embryotoxicity (26, 68). CYPIA4 induction in

chick embryos is similarly correlated with cardiovascular toxicity (69). Finally, blocking

CYPlA induction at the level of mRNA expression (70), protein expression (54), or

enzymatic activity (22), protects against pHAH-induced toxicity.

The most likely mode of toxic action for CYPlA enzymes is production of reactive

oxygen species (ROS). pHA exposure results in elevated intracellular reactive oxygen

levels and increased rates of oxidative damage in a varety of biological systems (64, 71-

85), and these processes have been implicated in aspects of pHAH toxicity (26, 86, 87).

pHA-induced reactive oxygen production is largely CYPIA-dependent, as evidenced

by the reduction of oxidative stress in CYPIA-null knock-out mice exposed to TCDD

(70). It is thought that imperfect substrates, such as HAH with multiple lateral chlorine

substitutions, become lodged in the CYPIA active site and uncouple the CYPIA catalytic

cycle, causing production of superoxide radicals without subsequent substrate
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oxygenation (Figure 1.5) (64,88). Alternatively, superoxide production could result

from direct electron withdrawal by chlorine substituents. Superoxide may then be

converted to hydrogen peroxide, a longer-lived species capable of diffusing from cell to

cell and generating highly reactive hydroxyl radicals (Goldstone, pers. comm.).

Missing links

While nearly every aspect of cardiovascular development and function is exquisitely

sensitive to intracellular oxygen conditions, the downstream effectors of TCDD

embryotoxicity have remained elusive. The traditional candidate gene approach has, thus

far, proved unsuccessful in this endeavor. For example, vascular endothelial growth

factor and hipoxia-inducible factor la (VEGF and HIla) have been subject to intensive

investigation based on the potential for modulation by reactive oxygen, or by ARNT-

mediated cross-talk between AHR and HIla (89, 90). However, competition for ARNT

does not significantly impact downstream signaling by AHR and HIla (90-92), and

TCDD-induced alterations in VEGF expression are extremely varable (93-95). In

TCDD-treated zebrafish, VEGF expression is unaffected up to 24 hpf (Appendix A).

Thus, this line of investigation has been largely uninformative with regard to processes of

TCDD embryotoxicity. The sheer abundance of possibilities may playa large role in

obscuring the relevant pathways.

1.4 Toxicogenomics and TCDD embryotoxicity

The recent advent of genomics has revolutionized every area of the biological

sciences, not least of all toxicology. In the past few years, the number of so-called

'omics' has grown steadily to include transcriptomics, proteomics, and metabolomics, to

name a few. The abundance and rapid expansion of the 'omics' represents a widespread

ideological shift toward examnation of biological processes on broader scales than

previously possible. This movement has been thoroughly adopted by the toxicology
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community, which has coined its own 'omics', toxicogenomics (96). Selkirk and Tennant

(97) have defined toxicogenomics as

" a new scientific field that elucidates how the entire genome is
involved in biological responses of organisms exposed to environmental
toxicants/stressors. It combines information from studies of genomic-scale
mRA profilng, cell-wide or tissue-wide protein profiing (proteomics),
genetic susceptibilty, and computational models to understand the roles of
gene-environment interactions in disease."

This definition, while not absolutely all-encompassing, stresses the varety of data types

that might contribute to understanding a single toxicant or pathology. Similarly, Ballatori

and colleagues (98) expressed the idea that disparate data sources might be combined

under the umbrella of toxicogenomics in order to provide" a unified framework for

understanding the biochemical and genetic basis for varous diseases."

While such a synthesis is stil distant, the field of toxicogenomics is already makng

great strides in the areas of elucidating molecular mechanisms of toxicity and defining

chemical-specific expression profiles (99, 100), with the ultimate goal of developing

diagnostic and predictive biomarkers for pre-clinical, clinical, and environmental use

(101-103). Toward these ends, the National Center for Toxicogenomics, a recently

established subsidiar of the National Institute for Environmental Health Sciences, has

developed the Chemical Effects in Biological Systems database to house and integrate

genomics, proteomics, and metabonomics data with conventional toxicplogical

data (104).

Broad-scale gene expression profilng has become one of the primary tools employed

in toxicogenomics research. Methods for assessing gene expression on a genomic scale

include DNA microarays, serial analysis of gene expression (SAGE) (105-107),

differential display reverse transcriptase polymerase chain reaction (DD RT-PCR) (108,

109), and subtraction hybridization (110, 111). The varety of gene expression profiling

techniques facilitates adaptation to nearly any organism or question of interest. The use

of DNA micro arays has become common among researchers studying human biology or

model mamalian species. Subtraction hybridization and differential display RT-PCR

33



have been used to identify genes of interest for generation of DNA arays in species for

which genomic or mRNA sequence information is limiting (112, 113). SAGE may be the

method of choice in laboratories where high-throughput sequencing capacity is more

readily available than the instrumentation required for microaray analysis. Nonetheless,

DNA microarrays are probably the most commonly utilized gene expression profilng

technology. Currently, the number of microaray publications exceeds those for any

other gene expression profiing method by approximately 4: 1.

TCDD expression profiling

The application of DNA microaray technology to the problem of understanding

TCDD toxicity has vastly expanded the repertoire of known TCDD-responsive genes. To

date, conventional methods have identified nearly 50 genes whose expression is

modulated by TCDD exposure, many directly by AHR. While differential display RT-

PCR and suppression subtractive hybridization are global in scope (i.e., no gene(s) is

targeted a priori), the necessity for laborious follow-up work has limited the

informational yield of such studies; nearly a dozen investigations have yielded a similar

number of novel TCDD-regulated genes (114-122). In contrast, five microaray studies

and one SAGE experiment have identified several hundred TCDD-responsive genes (93-

95, 123, 124). Most TCDD-related gene expression profiing work has focused on liver

tissue and cultured hepatocytes (93,95, 123, 124), due to the primacy of liver in TCDD

effects such as CYPIA enzyme induction. However, spleen and thymus tissues (95), and

cultured lung epithelial cells (94) have also been interrogated.

Despite difficulties imposed by disparate gene representation among micro aray
platforms, comparson of gene expression profiing results is elucidating general trends in

TCDD molecular responses. Multiple researchers have observed induction of

plasminogen activator inhibitor I (93, 95, 123, 125), and metallothionein (93, 123, 124,

126, 127). Metallothionein is known to have antioxidant activity, and may be expressed

as par of a protective response to TCDD-induced reactive oxygen production. On a

broader scale, TCDD appears to consistently perturb a multitude of basic cellular

processes, including signal transduction (i.e., phosphorylation and Ca2+), transcriptional
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and translational machinery, cell cycle regulation and apoptosis, and fatty acid

disposition.

Differences between gene expression profilng results are further emphasizing the

complex, pleiotropic nature of TCDD impacts. In comparng three TCDD concentrations

spanning two orders of magnitude, Marinez and colleagues (94 D found that more than

half of all TCDD-regulated genes were differentially expressed at only one dose level and

that many genes manifest non-traditional dose-response curves (e.g., induction at one

dose, suppression at another). Cell- or tissue-type, and the state of cells with regard to

tumorigenesis, also influence TCDD-responsiveness. For example, vascular endothelial

growth factor (VEGF) expression was found to be increased in non-tumorigenic HPLIA

lung cells, unchanged in the malignant, tumorigenic lung cell line A549, and decreased in

HepG2 hepatoma cells (93,94). VEGF expression was induced in an isoform-specific

manner in mouse thymus and liver tissues (95). A wealth of other (as yet unexplored)

biological factors, such as gender and age (developmental stage), are likely to be

significant in shaping molecular responses to TCDD exposure.

Thus, determning a universal TCDD signature wil require synthesis of gene

expression profies from numerous biological conditions. Conversely, elucidating the

mechanism of TCDD toxicity in a paricular system wil require specific characterization

of transcriptional responses in that system. This is especially tre in the case of

developmental toxicity, as the molecular and cellular complexity of embryogenesis

cannot be mimicked by any in vitro system in existence.

1.5 Contributions of this thesis

Objectives and ratonale

The goal of this work was to characterize the cardiovascular-specific gene expression

profie of TCDD exposure in zebrafish embryos. In paricular, it was hoped that

identifying genes whose expression is altered during TCDD-induced cardiovascular
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toxicity would begin to address outstanding questions in two areas of TCDD

embryotoxicity:

1) What is the nature of cardiac teratogenesis in fish? How does this compare to

effects seen in other species?

2) What is the molecular mechanism of TCDD embryotoxicity? Specifically, what

are the downstream effectors of AHR and CYP1A?

The zebrafish (Danio rerio) was selected for this work based not only on its proven

utilty as a model for the study of developmental genetics, but also timely and dramatic

increases in resources available for genetic and genomic research in zebrafish. The

zebrafish has been subject to extensive embryological and genetic investigation over the

past three decades, and has recently become a major model organism for toxicological

work (128). At the outset of this work, large-scale chemical mutagenesis screens were

coming to fruition, providing a wealth of information about the roles of individual genes

in cardiovascular development (29, 30, 129). A number of EST sequencing projects were

underway, and a genome sequencing project immnent. Thus, toxicogenomic

investigation in zebrafish seemed feasible, timely, and relevant to a rapidly growing

community of researchers.

Thesis content

cDNA Microarrays. Chapter 2 describes the design and construction of

cardiovascular-specific cDNA microarays, and work to optimize protocols for their use.

This work has provided the technical groundwork necessary to allow toxicogenomic

interrogation of TCDD embryotoxicity in zebrafish. In addition, as pre-fabricated arays

have only become commercially available in the past several months, these micro arays
constituted a significant resource for the zebrafish community. As a result, several

collaborations have developed around the use of these arays for investigation of both

effects of genetic mutations and mechanisms of toxicity in zebrafish, these projects are

beyond the scope of this thesis, but are described briefly in Chapter 5. I have also

explored the possibility that zebrafish microarays might be suitable for use as
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biomarkers of environmental contamnant exposure in fish via cross-species

hybridization (Appendix B).

TCDD cardiovascular embryotoxicity. The central biological question drving this

thesis, namely the nature of transcriptional responses to embryonic TCDD exposure, is

addressed in Chapter 3. Gene expression profilng of zebrafish embryos exposed to two

doses of TCDD revealed several general trends in TCDD-modulated transcription, such

as a high level of dose-specificity and rather limited alterations in cardiovascular gene

expression. This work also identified TCDD-induced changes in expression of cardiac

sarcomere proteins and energy production enzymes that suggest dilated cardiomyopathy

is likely in zebrafish embryos. Furthermore, TCDD exposure influenced expression of a

number of ESTs with undetermned function; these ESTs are exciting in their potential

for revealing novel aspects of TCDD toxicity.

Novel gene discovery. The work described in Chapter 4 follows from an unexpected

result of cDNA micro array analyses (Chapter 3). The highly represented, TCDD-induced

EST cluster TR004 was found to constitute a novel retroelement in the zebrafish genome,

named EZRl. This finding was of toxicological interest, as induction ofretrotransposons

and endogenous retroviruses is coming to be associated with both environmental stress

and a varety of disease states, including cardiac pathologies. Furthermore, the discovery

of a previously unknown genetic element highlighted one of the major advantages of the

chosen microarray strategy.

Future work. It is the nature of micro arays , indeed most high-throughput screening

assays, to provide more questions than answers. The most important contribution of this

thesis may well be the generated body of strong, observation-based hypotheses upon

which further investigation of TCDD embryotoxicity can be built. Further discussion of

the questions posed by this work, and possible approaches for addressing these questions,

can be found in Chapter 5.
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Figure 1.1 Generic structure and substituent numbering system for halogenated dibenzo-

p-dioxins (a), dibenzofurans (b), and biphenyls (c).
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Figure 1.2 Relative sensitivity of vertebrate species to TCDD-induced mortality, as

indicated by LCso (ng/g embryo, fish and chicken) or LDso (ng/g body weight, mamals)

values. Typical cytochrome P450 lA gene complement for each taxon is indicated by the

color of bars (black = CYPIAI and CYPIA2, strped = CYPlA4 and CYPIA5, grey =

CYPlA). Data were taken from Poland and Knutson (1982) (21), Allred and Strange

(1977) (130), Kennedy et al. (1996) (131), Henry et al. (1997) (10), Elonen et al. (1998)

(9). Where multiple measurements are available, standard deviation is shown.
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Figure 1.3 Hallmarks of normal cardiovascular development (top) and TCDD-induced

cardiovascular embryotoxicity (bottom) in zebrafish.
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Figure 1.4 Schematic representation of AHR signaling, including activation by TCDD,

nuclear translocation, dimerization with ARNT, and heterodimer binding to a consensus

DRE sequence. The gray arow indicates transcriptional activation of a downstream

gene, such as CYPIA.
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Figure 1.5 Diagram of the CYPIA catalytic cycle showing hypothesized pHAH-induced

uncoupling and reactive oxygen production, as well as possible points of reactive

oxygen-mediated enzyme inactivation.

46



RH

Fe3+---ROH

Fe3+

ROH

Inactivation

Uncoupling

r02
Fe2+ -0i--- RH

Ae- (NADPH)
Fe2+ -0. - RH2 -----

47



48



CHAPTER 2

Development of zebrafish cardiovascular cDNA microarrays

Abstract

DNA microaray technology has revolutionized the study of gene expression and
transcriptional regulation. However, commercially available arays are limited to a small
number of species, such as yeast and human, for which there is an abundance of genome
sequence data and a significant community of researchers to support the cost of technical
development; zebrafish microarays have only become available within the past year. In
order to enable high-throughput analyses of cardiovascular gene expression in zebrafish
embryos, we constrcted spotted cDNA arays using two cDNA librares derived from
embryonic and adult hear tissue.

We compared alternative protocols at several steps in the process of synthesizing and
using cDNA microarays. Filter purification was found to provide a superior method of
cDNA probe purification over traditional isopropanol precipitations. Similarly, amno-
allyl post-labeling of cDNA for micro aray hybridizations manifest several advantages

over traditional direct dye incorporation protocols. In contrast, most methods of
processing microarays and blocking background fluorescence performed comparably.

Based on this work, we have compiled an effective workfow for cDNA microaray
synthesis and hybridization. In addition, we developed methods for routine quality
control during and after microaray synthesis. Our methodology is critically discussed in
the context of the most recent developments in micro aray technology.

In all, we have produced seven full-scale print lots, MAZOOI-003, AHOOllA, and
AH002A/. With the exceptions of MAZF002 and 003, which suffered from severe
technical difficulties, all arays manifest robust feature morphology and strong
signal:noise ratios. MAZFOOl arays were primarly used for methodological
development. AHOOI and AHOOIA arays contain 4~96 adult hear cDNA clones likely
to represent -2800 unique cardiovascular genes; these arays have been used for gene
expression profilng of zebrafish embryos exposed to TCDD (Chapter 3). AH002 arays
contain a smaller collection of adult hear cDNAs (3456 clones, -2000 genes) and are
being used in ongoing investigations of genetic mutations and toxicological processes in
zebrafish.
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2.1 Introduction

The invention of DNA microarays has been one of the most influential technical

developments in the recent history of biology. DNA microaray technology was first

developed less than a decade ago for the purpose of measuring gene expression levels on

a high-throughput basis (132). Since that time, DNA microaray platforms have been

adapted to a number of other uses, including comparative genomic hybridization (133,

134), high-throughput identification of protein interaction sequences by chromatin

immunoprecipitation (i.e., ChIp-on-chip) (135), and most recently, large-scale DNA

sequencing. However, massively parallel detection of differential gene expression, so-

called gene expression profiling, remains the most common use of DNA microarays.

DNA arays can be separated into three fundamental categories - membrane

(macro ) arays , spotted microarays, and in situ synthesized oligonucleotide arays.

Membrane arays consist of DNA probes deposited, often manually, onto nylon or

nitrocellulose membranes at relatively low densities. Because of issues of size and

sensitivity, large quantities (i.e., several micrograms) of radiolabeled sample DNA may

be required for membrane hybridizations. Thus, the utility of membrane arays is

primarly limited to situations in which the number of genes of interest is limited and

sample tissue is abundant. In contrast, in situ synthesis of oligonucleotides can be used to

generate arays of stunningly high densities (e.g., :S100,000 features per aray), but the

capabilty to manufacture these arays is strictly limited to commercial facilities.

Spotted arays consist of either cDNA fragments, generally PCR products, or long

(40-80 bp) oligonucleotides deposited onto a solid substrate, usually a chemically coated

glass microscope slide, using high-speed precision robotics. Probe sets (i.e., cDNA

librares or oligonucleotides) can be purchased commercially or produced in-house. Most

major academic and research institutions now possess microaray spotting and scanning

equipment, and numerous such commercial services are available. Depending on the

robotics available, maximum feature density may reach 10-30,000 per microaray slide.

Thus, spotted DNA arays provide a flexible, widely accessible, intermediate-density

platform for gene expression profiling.
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While spotted oligonucleotide arays are becoming increasingly popular, cDNA

arays present certain advantages. Extensive oligonucleotide design and quality control is

required to avoid cross-hybridization with non-target sequences and produce consistent

gene expression results (136, 137). Large quantities of genomic and expressed sequence

data are needed to provide sufficient material for high quality oligonucleotide design and

to allow probe specificity to be assessed accurately. cDNA clones, which are generally at

least 500 bp in length, appear to be more robust to slight changes in probe sequence or

hybridization conditions (136) and are generally not susceptible to non-specific cross-

hybridization with sequences that are ;:75-85% identical (138). Furthermore, no

difference in detection sensitivity between the two technologies has been shown (137).

Thus, with relatively little design input, cDNA arays can provide sensitive, specific

detection of gene expression.

The constrction of cDNA microarays requires five major steps: (1) selection of

sequences of interest, (2) synthesis of cDNA probes by PCR, (3) purification of PCR

products, (4) robotic araying of cDNA probes, and (5) pre-hybridization processing of

microarays; this last step includes immobilization and denaturation of spotted probes, as

well as treatment of slides to reduce background noise. At each step of the process, the

technical options are myriad and there is currently no consensus regarding an "optimal

protocol" for cDNA microaray synthesis. This is, in large par, because the best solution

to any technical difficulty wil depend on the specific questions to be addressed with

microarays, as well as available resources, financial and otherwise.

Of course, production of microarays is only par of obtaining gene expression data;

hybridization protocols and data analysis also present significant challenges.

Quantitation of relative gene expression by microaray analysis is generally accomplished

by competitive hybridization. RNA from two experimental samples, such as two tissue

types, are used to make differentially fluorescently labeled cDNA; most often, cDNA is

conjugated to Cy3 (green fluorescence) or Cy5 (red fluorescence). The two labeled

cDNA populations, referred to as target, are hybridized to a microaray (immobilized

probes), and the ratio of gene expression is inferred from the intensity of red and green

51



fluorescence at a given feature. The nature of RNA samples (i.e. total or messenger

RNA), methods of Cy-dye conjugation, algorithms used for image analysis, and statistical

manipulation of microaray datasets are all fodder for debate.

The goal of this work was to generate cDNA microarays (and accompanying

protocols) appropriate for investigation of processes of cardiovascular development in

zebrafish (Danio rerio). In paricular, these arays were intended for use in interrogating

mechanisms of embryonic cardiovascular dysfunction caused by chemical toxicity and

genetic mutants. At the outset of this project, publicly available cDNA clone sets

suffered from clone misidentification rates as high as 90%. Furthermore, the number of

cloned, named genes from zebrafish was less than 1000, many of which had no known

relevance to cardiovascular biology. Thus, for microaray probes, we relied heavily on

two cDNA librares, from embryonic and adult hear tissue, generated in-house. These

librares were supplemented with probes for genes with known roles in toxicological or

developmental processes, as well as zebrafish housekeeping genes and Arabidopsis

thaliana chloroplast genes to be used as controls.

In all, we have generated seven sets of zebrafish cardiovascular-specific cDNA

microarays, three with embryonic hear clones and four with adult hear cDNAs. In

synthesizing these arays and optimizing protocols for their use, we drew on information

from the published literature, as well as personal communication with staff at nearby

genomic research facilities and, of course, wet-lab comparsons of available methods and

reagents. This chapter addresses data from technical comparsons, and provides vital

statistics for probe sets and microaray print lots. An overview of the complete workfow

developed is included, and the advantages of this approach are discussed with regard to

the latest developments in micfOaray technologies.
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2.2 Methods

cDNA Libraries

Embryonic heart

Preliminar work made use of a previously described zebrafish embryonic hear

cDNA library (139). Briefly, this library consisted of 5102 fully sequenced clones

estimated to represent 3690 unique transcripts, including 1242 known genes. An aliquot

of the complete grdded library (i.e. 5102 single-clone bacteriophage cultures) provided

template material for PCR amplification (below).

Adult heart

Aliquots of DH5a E. coli cells transformed with an uncharacterized zebrafish adult

hear cDNA library in were obtained from Dr. Ashok Srinivasan. These aliquots were

spread onto plates of LB-Agar with 100 i.glml ampicilin, and grown overnight at 37°C.

Individual colonies were robotically picked (Genetix Q-bot) into 384-well microplates

containing 65 i.l Luria Broth with 100 i.glml carbenicilin, with or without Ix HM.

Liquid cultures were grown overnight at 37°C, then sealed with adhesive foil and stored

at either 4°C or -80°e. These single-clone bacterial cultures provided material for direct

PCR amplification, as well as inoculation of larger volume cultures for preparation of

plasmid DNA.

peR

For print lot MAZFOOl, embryonic hear ESTs were amplified from 5 i.l phage stock

in 50 J.i reactions containing Ix PCR buffer (1.5mM MgClz), 200i.M each dNTP, 0.5i.M

each primer (Table 2.1), and 1.25U Taq polymerase ,(all reagents supplied by Qiagen).

PCR conditions for all other microaray print lots were altered to provide a final

concentration of 2.0mM MgClz. When amplifying directly from phage stocks or

bacterial cultures, 2-5 i.l was used for template. For clones in plasmids, 1 i.l mini-

prepped DNA was used.
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Embryonic hear clones were amplified using either ZapExPCR-f and ZapExPCR-r

primers (MAZF001) or T3 and T7 primers (MAZF002 and MAZF003), while adult hear

library clones were amplified using universal SP6 and T7 primers (Table 2.1). An

equimolar mixture of SP6, T3, and T7 primers was used to amplify additional clones in a

varety of plasmids. PCR products for mitochondral (Table 2.5) and housekeeping

(Table 2.6) genes were obtained using gene-specific primers

For MAZFOOl, an initial DNA denaturation step (96°C, 5 min) was followed by 35

amplification cycles (30 see at 94°C, 30 see at 58°C, 3 min at 72°C) and a final 10 min

extension period at 72°C. For later print lots, thermocycler conditions were altered

slightly to increase PCR yields; extension time was limited to 2 min per cycle and 40

cycles were run.

peR product purification

Isopropanol precipitation

PCR products were precipitated by addition of 1-2 volumes of cold isopropanol and

2:30 min at -20°C, followed by centrifugation for 45 min at 2,500 rpm. In some cases,

NaCl was added to a final concentration of 200 mM prior to chillng and centrfugation.

Supernatants were removed by aspiration, and DNA pellets were air-dried and

reconstituted in aqueous spotting buffer (3x SSC + 0.1 % Sarkosyl).

Filter purification

PCR products were filter-purified using Multiscreen-96 PCR Purification plates

(Millipore). 100 III reactions were transferred to filter plates. Vacuum pressure (650

mbar, or 20 inches Hg) was applied for 5 min, filter plates were blotted dry on paper

towels, and vacuum pressure was applied for another 2 min. 100 III nuclease-free water

was added to each well, and DNA was resuspended by either repetitive pipetting or 10

min agitation at 500 rpm. Purified PCR products were removed to clean micro-well

plates, dred by vacuum centrifugation (Savant Speed- V ac Concentrator), and

reconstituted in spotting buffer (3x SSC + 0.1 % Sarkosyl, or 50% DMSO).
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Microarray Production and Processing

cDNA probes were printed onto CMT -GAPS slides (Corning) using one of three

arayers - GMS 417 (Genetic Microsystems), OmniGrid (GeneMachines), or a custom-

build split-pin arayer at the Harard Center for Genomics Research. During arraying,

probes were left at room temperature. Before and after, plates were stored at -20°C.

Newly printed arays were allowed to dry 2:30 min following the end of each print run

before being transferred to storage cassettes. Arays were stored in the dark in a room

temperature dessication chamber.

Processing protocol #1

Arrays were individually held face-down over a steaming water bath :S1O see, then

snap-dred by placing face-up on a 95°C heat block. Following this rehydration step,

DNA was immobilzed onto slides by UV cross-linking (Stratalinker, auto cross-linking

function). Cross-linked slides were soaked for 15 min in a freshly prepared succinic

anhydrde/sodium borate solution (5 grams succinic anhydride in 315 mL of n-methyl-

pyrrolidinone and 35 mL 0.2M sodium borate). Arrays held in a glass slide rack were

placed in a larger glass container with a magnetic stir bar to provide gentle circulation.

Upon removal from the succinate solution, arays were washed 2 min each in 95°C

nuclease-free water and 95% ethanol, then air-dred. Processed arays were stored in

darkness with dessication.

Processing protocol #2

Printed cDNAs were immobilized on the slide surace by UV cross-linking, as above,

then washed 2 min each in 95°C nuclease-free water and 95% ethanoL. Arrays were air-

dred prior to storage in a dark dessication chamber.
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Qualit Control

PicoGreen staining

Aliquots (55 ¡..t) of 1:200 dilutions of PicoGreen reagent (Molecular Probes) in Ix TE

were pipetted onto the face of microarays and allowed -20 min in complete darkness to

reach equilibrium binding. PicoGreen staining was visualized and photographed using

high-power (2000x magnification) fluorescence microscopy coupled to a digital camera.

Syt022 staining

Syt022 dye (Molecular Probes) was diluted 1:100 in Ix TE, and 55 III aliquots were

pi petted onto microarays and covered with glass cover slips. After -lhr incubation at

room temperature in complete darkness, slides were rinsed briefly in water and air-dred.

Stained arays were stored in darkness prior to laser-excited fluorescence scanning (Axon

4100B or 4200A).

RNA and cDNA preparaton

Total RNA was extracted from embryo homogenates using TriZol reagent

(Invitrogen) according to manufacturer's protocol. For long-term storage, RNA pellets

were kept in 70% ethanol at -80°e. After removal of ethanol, total RNA was dissolved in

water and stored frozen. mRNA was isolated from total RNA using the OligoTex mRNA

system (Qiagen).

Direct Cy-dye incorporation

mRA (1-2 Ilg) was spiked with A. thaliana chloroplast mRNA (100, 250, and 500

ng of Cab, RCA, and rbcL RNA, respectively; SpotReportQD-3 Aray Validation System,

Stratagene) and incubated with 21lg oligo-dT(2Q)N primer for 10 min at 70°C, then chiled

on wet ice. Reverse transcription reactions were run 2 hrs at 42°C in Ix first strand

buffer plus lOmM DTT, 0.5mM dATP/dGTP/dTT, 0.2mM dCTP, 0.3mM Cy-dCTP,

and 400U Superscript II (Invitrogen). cDNA samples were rid of RNA contamnation by

alkaline hydrolysis (15 III O.IN NaOH added, 10 min at 70°C), then neutralized with 15
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III O.lN HCl. TE (10mM Tris, ImM EDTA) was added to a final volume of 500 Ill, and

cDNAs were purified using Centricon-30 microconcentrator columns (Amicon). Equal

amounts of Cy3- and Cy5-labeled cDNA were combined in 3x SSC with 0.1 % SDS.

Amino-allyl post-labeling

Total RNA (15-25Ilg) was spiked with A. thaliana chloroplast mRNA, as above, and

incubated with 51lg oligo-dT(zo)N primer for 10 min at 65°C, then chiled on wet ice.

Remaining reagents were then added for final reaction conditions of Ix first-strand

synthesis buffer, 10mM DTT, 0.5mM each dATP, dCTP and dGTP, O.3mM dTTP,

0.2mM amno-allyl-dUTP, and 1000U Superscript II reverse transcriptase (Invitrogen).

Reverse transcription reactions were run 2.5 hrs at 42°C, then inactivated by buffering

with 0.5M EDT A and incubating 5 min at 95°C.

RNA was eliminated by alkaline hydrolysis in 0.2N NaOH (incubated 15 min at 65

°c, then neutralized by equimolar HCI and buffered with Tris-HCl), followed by RNase

digestion (xU Ambion RNase cocktail, 30 min at 37°C). cDNA was filter-purified using

QiaQuick PCR Purification columns (Qiagen), replacing Qiagen buffers PE and EB were

replaced by 75% ethanol and distiled water, respectively. cDNAs were dried by vacuum

centrifugation and stored at -20°C.

For CyDye post-labeling, cDNAs were redissolved in 10 III O.IM NaHC03 (pH9.0)

containing an individual aliquot of previously dried amne-reactive Cy3 or Cy5

(Amersham Biosciences), then incubated 1.5-2 hrs at room temperature in full darkness.

The labeling reaction was quenched by addition of excess hydroxylamine (4.5 III at 4M)

and 15 min at room temperature in full darkness. Following addition of 35 III 100mM

NaOAc (pH 5.2) and 50 III nuclease-free water, labeled cDNA was purified using

QiaQuick PCR Purification columns (Qiagen) according to standard protocols. cDNA

concentrations were determned spectrophotometric ally (Az6o, Az8o), then equal quantities

of paired Cy3- and Cy5-labeled cDNAs were combined and dred by vacuum

centrifugation.
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Microarray hybriization

Processed micro arays were pre-hybridized 2-4 hrs at 65°C in 5x SSC with 0.1 %

SDS, 10 mg!ml bovine serum albumin (or casein), and O.lmg!ml sonicated salmon sperm

DNA. Shortly prior to hybridization, arays were removed from pre-hybridization buffer

and washed briefly in water and isopropanol, then air-dred.

Labeled cDNA was redissolved in hybridization buffer (3x SSC with 0.1% SDS)

containing 0.4 i-g!i-1 each polyA blocker (Sigma) and yeast tRNA (Invitrogen), and 0.8

i-g!1..1 sonicated salmon sperm DNA (Fisher Scientific). This mixture was denatured by

heating 2 min at 95°C, then quickly pipetted onto the micro aray surface and covered

with an appropriate cover slip. Arrays were hybridized (14-18 hrs at 65°C) in sealed

hybridization chambers containing a reservoir of 2x SSe. Hybridized arrays were

washed 5 min in 2x SSC + 0.1 % SDS, 3 min in 0.2x SSC, and 3 min in O.lx SSe. Slides

were briefly rinsed in distiled water and isopropanol, then air-dred and stored in

darkness with dessication prior to scanning.

2.3 Results

cDNA probe sets

Embryonic heart cDNA library

At the time this work began, all 5102 clones in the embryonic hear cDNA library had

been sequenced. However, due to the relative paucity of other publicly available

sequence data, many clones were not assigned gene identities. Thus, each clone was

assigned a priority ranking (1-3) based on the redundancy of that sequence within the

library and the level of confidence in the identity assigned to that sequence. Aliquots of

all priority 1 (i.e. known genes; 189 clones) and most priority 2 (i.e. ambiguous identities,

unique sequences; 1155 of 1257 clones) clones were transferred into 96-well plates

entitled MAZF 01-14 (MicroArray Zebra,ish).

Over the next several months, as the NCBI UniGene and TIGR TC EST clustering

databases developed, priority 2 and 3 clones lacking strong homology to known genes
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were assigned UniGene and/or TC identifiers. Based on this information, 378 redundant

clones were removed from replicates of MAZF 01-14 (new plates called MAZF 31-44).

Embryonic hear ESTs representing 759 additional genes or EST clusters were aliquoted

into plates MAZF 45-52. This work was primarly the responsibility of Dr. Matthew

Grow. Complete clone lists for all MAZF plates can be found in supplemental material

(attached disk).

Over time, the integrty of the embryonic hear library declined. Obtaining high

quality PCR products became difficult, then impossible. Phage stocks also lost the abilty

to reinfect bacterial cells. While these issues presumably arose from some error in

storage or handling of the original phage stocks, the precise origin of the problem was

never determned. Nonetheless, it was necessary to discontinue work with this librar.

Adult heart cDNA library

Aliquots of a zebrafish adult hear cDNA library transformed into DH5a E. coli cells

were obtained from Dr. Ashok Srinivasan. The average size of cloned inserts in this

library was -lkb, and ::90% of all clones contained significant inserts (A. Srinivasan,

pers. comm.). To estimate gene representation within the librar, a small aliquot was

plated onto LB-Agar and 96 colonies were randomly selected for plasmid DNA isolation

and sequencing. Approximately 50% of these clones represented known genes, and 35%

were redundantly represented (M. Grow, pers. comm.).

Additional aliquots were used to generate a grdded library. Individual colonies

(76,800) were robotic ally picked from LB-Agar plates and inoculated into triplicate

liquid cultures. One set of cultures (R2) was held at 4°C for frequent use. Other culture

plates contained HM and were stored at -80°C; one set was designated the 'master' (M)

and was retained for archival purposes, while the other (Rl) was used to generate

replacement frequent-use replicates (R3, R4) on an approximately annual basis. At

undefined points during the colony picking process, 7 of 96 pins in the robotic head

malfunctioned, resulting in -7% failure of bacterial growth.
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Additional genes of interest

Gene representation of cDNA librares was supplemented with clones for genes with

known toxicological or developmental importance. Fragments of 11 nuclear receptor and

3 cytochrome P450 (CYP) genes were PCR-amplified from whole adult zebrafish cDNA

using primers designed against publicly available gene sequences (Table 2.2). These

fragments were cloned into the pGEM-T Easy vector (Promega), and the identities of all

clones were confirmed by sequencing. Attempts to clone other nuclear receptors,

including retinoic acid, retinoid, and peroxisome proliferator activated receptors, were

abandoned after two primer pairs per gene failed to amplify the desired product.

We obtained additional clones from a number of other researchers. Members of Dr.

John Stegeman's group (Woods Hole Oceanographic Institution) contributed nuclear

receptor and CYP gene fragments that had been generated through homologous cloning

(Table 2.3). Dr. Frederick Goetz (Marne Biological Laboratory) provided clones for

several genes involved in regulation of cell-cycle and apoptosis (Table 2.4). Multiple

researchers from the Cardiovascular Research Center (Massachusetts General Hospital)

contributed a total of 68 clones for genes with known roles in development and function

of the hear, blood, and vasculature (see supplemental material).

Housekeeping genes and controls

Initially, fragments of 12 mitochondral genes (10 protein-coding genes, 12s

ribosomal RNA, and the D loop region) were PCR-amplified from genomic DNA (M.

Grow). However, this process resulted in low-quality PCR products that did not produce

significant hybridization signal when included on AHOOI microarays (Figure 2.1). PCR

primers designed against transcribed sequences (Table 2.5) successfully amplified l2s

and 16s ribosomal RNAs, the regulatory D loop region, and all protein-coding genes

except A TP synthase subunit 8 (Figure 2.2). These fragments were not cloned, but

rather, amplified from whole embryo cDNA as needed.

Seven housekeeping genes were also targeted for inclusion on microarays based on

previously published use as controls in gene expression studies. In this case,

amplification from genomic DNA was more successfuL. Hybridization signals from
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features on AHOOI arays were far from strong, but fluorescence intensities routinely

exceeded detection thresholds. PCR primers were redesigned to eliminate primer-dimers

and other arifacts that might reduce PCR efficiency (Table 2.6). In 6 of 7 cases, new

primers generated strong, unique bands of the expected size (Figure 2.2); no further

attempt was made to obtain a phospholipase A2 fragment.

Arabidopsis thaliana chloroplast genes were added to zebrafish cDNA probe sets to

provide negative controls (SpotReport(! Aray Validation System kits, Stratagene).

Initially, only three chloroplast genes (A.thl-3, Table) were available as components of

the SpotReport(!-3 system. Later work made use of the expanded SpotReport(!-lO kit

(Table 2.7).

Proof of concept - MAZFOOI

A limited number of MAZFOOI arays were produced for purposes of proof-of-

concept and protocol optimization. cDNA probes were generated from 1344 priority 1

and 2 embryonic hear ESTs (plates MAZF 01-14). After a single attempt at

amplification, 1264 clones (94%) were successfully amplified. Only 32 of 80 initially

failed clones could not be amplified in a second round of PCRs. Thus, the final PCR

success rate was :;97.5% (1312/1344). Of these 1312 clones, 1184 (:;90%) yielded

unique PCR products. Dr. Matthew Grow provided PCR products for housekeeping

genes (amplified from genomic DNA) and a small number of known cardiovascular

genes (plates MAZF 16 & 18). All PCR products underwent isopropanol precipitation

and were reconstituted in 3x SSC + 0.1 % sarkosyl. Purified probes were arayed in

duplicate by the staff at the Harard Center for Genomics Research using a GMS 417

arayer.

Figure 2.3 shows a representative example of hybridizations with MAZFOOI

microarays. Features were round and regular in shape, and hybridization signal was

evenly distributed within features. In addition, duplicate features yielded nearly identical

signal intensities and expression ratios (Figure 2.4). These data constituted a successful

proof of concept. Encouraged by the high quality of these arays, we began work to

produce a large number of higher-density microarays for experimental work.
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Heart-Tox Chips (MAZF002 & 003)

MAZF002 and MAZF003 were produced using the manufacture protocols validated

by MAZFOOI. The Hear-Tox probe set consisted of an expanded set of 2112 embryonic

hear clones (MAZF 31-52), plus mitochondral and housekeeping genes (amplified from

genomic DNA), 14 nuclear receptors and CYPs, and 51 cardiovascular genes. In all,

2243 probes were spotted in duplicate to generate 4486-feature microarays (see

supplemental material for complete print list). An error in the araying protocol resulted

in multiple probes being printed in the same position. Additionally, failure of the

arayer's digital communication port prevented completion of the print run.

The MAZF002 probes were temporarly stored at -20°C and used for print lot

MAZF003. In this case, a custom-built split-pin arayer system (Harard Center for

Genomics Research) was used to print arays. Buffer autofluorescence on selected slides

from this print lot showed a gradual failure of DNA deposition in the second half of the

print run, a situation indicative of clogged arayer pins. As clogged pins carying

spotting buffer and DNA are likely to cause cross-contamnation of probes, the Hear-

Tox probe set was discarded. Due to the technical difficulties described, MAZ002-003

arays were used exclusively for protocol optimization.

PCR product purification

In scaling up from MAZFOO 1 to MAZF002, some disadvantages of using isopropanol

precipitation for the preparation of cDNA probes became apparent. Precipitation yields

were extremely varable, and often very low. Furthermore, on a high-throughput basis,

precipitations were both time- and labor-intensive; cold incubation (::30 min) and

centrifugation (45 min) time became limiting, paricularly with centrifuge capacity

limited to 4 plates.

Thus, the performance of isopropanol precipitations and Millipore Multiscreen PCR

fiter plates were compared using replicate PCRs from 10 randomly selected adult hear

cDNA clones (Figure 2.5). Addition of NaCl to PCRs prior to purification significantly

increased the efficiency of standard isopropanol precipitations. However, this also added

another manual step to the purification protocol. Mean percent yields from four protocols
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utilzing Multiscreen PCR 96-well filter plates were similar to those from isopropanol

precipitations with added salt. The Biobot vacuum manifold (in-house) and the Milipore

vacuum manifold (borrowed from Harard Center for Genomics Research) performed

comparably. Likewise, there was no clearly superior method for resuspending purified

DNA; yields from repetitive pipetting and agitation were similar.

Agarose gel electrophoresis showed significant shifts in the observed size of many

PCR products after fiter purification (Figure 2.5). Addition of lOx PCR buffer (1:10

vol:vol) to purified PCR products resolved such differences (data not shown), suggesting

that apparent size shifts were arifacts of parial denaturation of PCR products in low

ionic strength (i.e., salt-free) conditions. As such size shifts were never observed after

isopropanol precipitations, this data indicated that Multiscreen fiter plates provided a

more complete removal of PCR reagents.

Target cDNA Preparaton

Most early protocols for microaray hybridization called for the use of purified

mRNA as template for reverse transcription in the presence of Cy-dye-conjugated

nucleotides. The need to isolate mRNA was a significant hindrance, as the small size of

zebrafish embryos limits tissue availability and mRNA purification by oligo-dT affinity

is rather inefficient. In addition, so-called direct labeling often produced strong

systematic Cy3-bias. For example, in a dye-swapping experiment comparng RNA from

embryos exposed to two concentrations of TCDD, Cy3 signal overwhelmed Cy5 signal

regardless of which dose group was Cy3-labeled (Figure 2.6). While this phenomenon

was not observed in all hybridizations, sporadic occurrences rendered entire experiments

(and numerous arays) useless.

Amino-allyl post-labeling of cDNA generated from total RNA consistently, provided

comparable or stronger hybridization signal than did direct-labeling of mRNA

(representative comparson shown in Figure 2.7). Furthermore, homotypic hybridizations

using two different print lots and amno-allyl post-labeled cDNA from either whole adult

zebrafish or adult hear tissue revealed limited systematic bias or varance (Figure 2.8).

The unadjusted slopes of best-fit lines for Cy3 versus Cy5 fluorescence intensities were
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1.14 (R2=0.98, MAZFOOl) and 1.19 (R2=0.89, AHOOl), indicating very slight Cy3 bias.

Overall varabilty in measured Cy3:Cy5 ratios was limited; for both hybridizations, 1.8-

fold deviation from the median constituted the 99.7% confidence interval (3 standard

deviations). Plotting log-transformed C3:Cy5 fluorescence intensity ratios against total

fluorescence revealed that both bias and varance were most pronounced at low

fluorescence intensities (Figure 2.9).

AHOOI & AHOOIA

AHOOI and AHOOIA arays were the results of two replicate print runs separated by

approximately 12 weeks. The probe set consisted primarly of 4896 randomly selected,

uncharacterized adult heart cDNA library clones (see supplemental material for complete

list). PCR products from 12 out of every 96 reactions (one row per reaction plate) were

visualized by gel electrophoresis. Based on this sampling, the PCR success rate for adult

hear clones was estimated to be ~90%. All cytochrome P450 and nuclear receptor

clones were successfully amplified. As previously noted, PCR products for

mitochondral, housekeeping, and known cardiovascular genes were later found to be of

relatively poor quality (Figure 2.1). All PCR products were filter purified, dred, and

reconstituted in SSC spotting buffer. A GMS 417 arayer was used to produce two print

lots of 42 slides each. AHOOI and AHOOlA arays were used for further methodological

development (below), as well as experimental work described in Chapter 3.

Microarray Qualit Control

Buffer auto fluorescence

Scanning slides for salt autofluorescence immediately following printing allowed

general aspects of feature morphology to be assessed. However, salt fluorescence was

strongly influenced by humidity and drying time (Figure 2.10). Furthermore,

autofluorescence indicated significantly different feature morphology than did PicoGreen

staining of another slide from the same print run (Figure 2.10), suggesting that buffer
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autofluorescence was not paricularly informative about the quantity or distribution of

cDNA probes.

PicoGreen Staining

In order to test the ability of PicoGreen staining to quantitate DNA in arayed

features, we created a chip with four sub-arays containing different amounts of the same

24 clones. The quantity of DNA per feature was vared by increasing the number of pin

strikes used to deposit DNA in each sub-aray. The entire aray was stained under one

cover slip, then photographed and analyzed using the same magnification, exposure,

brightness, and contrast settings.

This method allowed determnation of cDNA localization within features, as well as

relative DNA probe quantities (Figure 2.11). Background-subtracted feature fluorescence

increased linearly between 1 and 3 pin strkes (Two-factor ANOV A, p-value 0(0.001),

then decreased slightly between 3 and 4 pin strikes.

Syt022 Staining

To assess the performance of Syt022, an AHOOlA aray was incubated with Syt022

solution -1 hr in darkness, then rinsed and air-dred. Fluorescence scanning of Syt022

staining provided results qualitatively similar to those obtained using PicoGreen staining

of another slide from that print lot (data not shown). Syt022 staining was representative

of maximum cDNA hybridization signal, and indicated even, round feature morphology

on AHOOIA arays (Figure 2.12).

Logistical constraints

As PicoGreen and Syt022 provided comparable results, the selection of one protocol

for standard quality control purposes was based largely on logistical constraints. At

sufficiently high magnification to allow visual detection arid high resolution photography

of PicoGreen staining, arays had to be viewed and photographed in multiple portions.

On the other hand, Syt022 required an incubation period three times as long as that for

PicoGreen, and produced fluorescence that was too weak to be visualized by fluorescence
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microscopy; laser-scanning Syt022-stained slides required the use of off-site equipment.

Thus, as neither method was intended to be absolutely quantitative, PicoGreen staining

was used as the primary quality control checkpoint for future aray lots.

Slide processing

Coming provided two alternative protocols for processing arays printed on GAPS

slides. Rehydration of arays and subsequent succinate blocking were suggested as

means to reduce salt fluorescence within features and non-specific background

fluorescence elsewhere. However, the process of rehydrating slides prior to DNA

immobilzation often caused excess DNA to flow beyond the confines of the spotted

feature; the direction of DNA flow was dependent on the way that slides were flpped

face-up after being held face-down over steam (i.e., flpping end-to-end caused vertical

smears). Resulting DNA smears, detected by PicoGreen staining (not shown) or

hybridization (Figure 2.1), gave features a tailed morphology and resulted in overlap

between features.

Rehydrating slides by placing them face-up in an enclosed steam bath for 5 min

eliminated DNA smearng (Figure 2.13). This modified rehydration and succinate

blocking protocol produced low background fluorescence when used in combination with

either albumin or casein blocking at pre-hybridization and hybridization steps (Figure

2.13). However, comparable results were obtained without succinate blocking (Figure

2.13), which required the use of expensive, highly toxic n-methyl-pyrrlidinone.

Prompted by this result, we tested an alternative processing protocol that included

only the DNA immobilization and denaturation steps from the first protocol. UV cross-

linking 100 slides took approximately 30 min, and subsequent washing steps required

less than 10 min per batch of 50 slides. Thus, one person could process 100 slides in

under one hour, less than half the time required to rehydrate and succinate block that

number of slides. This protocol did not sacrifice hybridization quality; levels of

background fluorescence were comparable to that seen on rehydrated, succinate-blocked

arays (Figure 2.13). This abbreviated protocol was used for all future aray processing.
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AH002A & B

Dr. Matthew Grow (Indiana University School of Medicine) provided PCR products

from 8448 adult hear cDNA clones. Based on visual inspection of 96 out of every 384

reactions, PCR success was estimated to be ~90%. PCR products were fiter purified,

then dred by vacuum centrifugation and shipped to Massachusetts General Hospital on

dry ice. Upon arval, 13 of 22 plates contained liquid of an unknown origin. Re-drying

these samples left an unidentified residue that altered the consistency of re-dissolved PCR

products. These probes were discarded; the final AH002 probe set consisted of the

remaining 3456 adult hear cDNAs, plus all genes of interest and housekeeping genes

(see supplemental material, attached disk). These PCR products were dissolved in 50%

DMSO, emperically determned to be the optimal printing buffer for use with the

GeneMachines. OmniGrid arayer (data not shown). AH002A and AH002B print runs

were separated by 4 weeks and generated 100 slides each. PicoGreen staining of

representative arays indicated even distribution of DNA within regular, round features

(data not shown).

Data analysis tools

Two Perl scripts were written to facilitate basic microaray data manipulation;

executable scripts are included in supplemental material (attached disk). The first script,

ArayListModifier.pl, converted print lists output by the GMS 417 arayer into a format

readable by Axon GenePix 3.0 software used for image analysis. GenePix allows the

user to manually flag features as good, bad, or not found; Flagger.pl was designed to

automate this process and eliminate subjective judgements on hybridization image data.

Taking an un-flagged GenePix results fie in tab-delimited text format as input, Flagger.pl

excluded from further analysis any feature with a low signal:noise ratio, significant signal

saturation, or excessive spatial varation in ratio measurement (Figure 2.14). Expression

ratios for features meeting all criteria were then normalized to the median ratio of all such

features on that slide. Flagged, normalized data were output in tab-delimited text format

appropriate for use by text editors or Microsoft ExceL.
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The functions performed by Flagger.pl were later automated and made more user-

friendly by conversion to Visual Basic (VBA) macros with a graphical user interface in

Microsoft Excel (Figure 2.15, and supplemental material). This package enabled

application of user-determned threshold values for data flagging, as well as grouping and

statistical analysis of data from multiple hybridizations (batch processing and grouping

functions). Output files could be formatted for text editors, Microsoft Excel, or common

microaray analysis software, such as Cluster (http://rana.1bl.govÆisenSoftware.htm).

2.4 Discussion

Microarray production

In all, we have generated seven full-scale cDNA microaray print lots, as well as

several small test batches. Initial MAZFOOI arays were of superb quality; feature

morphology was excellent, hybridization signal was generally strong, and the observed

reproducibility of results from replicate features is rare among spotted arays (140).

However, protocols used for production of MAZFOOI arays did not translate well into a

high-throughput work-flow.

Efficiency and consistency are of the utmost importance when designing protocols or

instrmentation for use in high-throughput work of any kind. The need to balance

performance and efficiency were constant considerations in interpreting results of

methodological comparsons and selecting protocols for aray synthesis. For example,

Multiscreen PCR-96 plates (Millpore) were favored over isopropanol precipitations

based largely on their adaptability to high-throughput application. Multiscreen plates are

affordable, utilize a simple, rapid protocol that is easily automated, and provided

consistently high quality results. In contrast, the QiaQuick PCR Purification system

(Qiagen), commonly used for cDNA purification, was eliminated from consideration

because of both protocol complexity and expense.

Dramatic differences in arayer efficiency also influenced protocol selections. Aray

quality was similar when either the GMS 417 or the OmniGrid was used. However, the

OmniGrid is capable of printing a given number of features onto 100 slides in a quarer of
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the time that the GMS 417 could print that same number of features onto only 42 slides.

As we had firsthand experience with the abilty of high-salt buffers to severely clog quil-

tip, or split, arayer pins, the decision to switch to using the OmniGrid, in turn, prompted

a re-evaluation of printing buffers.

Methodological comparsons utilizing MAZOOI arays, as well as technical

difficulties encountered in production of MAZF002 and MAZF003 print lots, resulted in

the development of a robust work-flow for high through-put synthesis, quality

assessment, and use of cDNA microarrays (Figure 2.16). These protocols, with some

deviations, were used to produce nearly 300 zebrafish.adult hear cDNA microarays for

use in experimental work.

Adult heart arrays

The use of an uncharacterized, redundant clone set (i.e., the adult hear cDNA library)

for microarray construction is a unique aspect of this work. The rationale behind this

strategy was two-fold. Firstly, avoiding the expense and time required to sequence a

significant portion of the cDNA library significantly accelerated the completion of cDNA

microarays. Omitting library subtraction or normalization obviously saved additional

time and labor. More importantly, it avoided a common pitfall of these methods, namely

elimination of rare transcripts.

Of course, redundancy in the library restricted microaray gene representation.

Takng into account estimates of PCR failure rates (:S1 0%) and redundancy within the

adult hear cDNA library (-35%), the 4896 adult hear clones on AHOOI arays are likely

to represent approximately 2800 unique cardiovascular genes. Likewise, the 3456 clones

arayed on AHOO2AI probably correspond to approximately 2000 unique genes. To

date, the Cardiac Gene Expression Knowledgebase has documented expression in human

hear tissue of transcripts mapping to 7056 unique loci in the human genome (141).

Assuming similar gene complement and transcriptional regulation in zebrafish, clones

found on adult hear microarays may encompass 30-40% of cardiac transcripts. At this

level of coverage, one would expect all major pathways to be represented by at least one

arayed clone. Thus, while these arays wil not provide complete transcriptional profies

69



(few arays do), they should enable meaningful functional profiling of vared conditions.

Furthermore, the large proportion of randomly sequenced clones with no correlate in

public sequence databases suggests significant opportunities for gene discovery.

Microarray qualit control

The ability to evaluate aray quality prior to performng expensive and labor-intensive

hybridizations is cruciaL. This point was made abundantly clear by technical problems

with MAZF002 and MAZF003 print lots. We have assessed the performance of two

double-stranded DNA-binding dyes, PicoGreen and Syt022 (Molecular Probes), and

developed a method using PicoGreen staining to rapidly evaluate newly printed slides.

This method provides relative quantitation of ::-fold differences in the amount of printed

cDNA; the detection range for this method may be greater than measured here, as

repetitive deposition likely resulted in excessive build-up of salts that would inhibit

PicoGreen fluorescence (142). It should be'noted that the selection of 
Pic oGre en was

based largely on logistical factors, namely the availability of a microaray scanner. Were

an appropriate laser scanner readily available, Syt022 would have been the method of

choice, as images of Syt022-stained slides could be captured and analyzed utilzing the

workfow applied to hybridizations.

However, both PicoGreen and Syt022.suffer from two major limitations - (1) these

dyes detect only double-stranded DNA, and (2) stained slides cannot be used for

hybridizations. dsDNA specificity was not problematic when SSC spotting buffers were

used, but limited the usefulness of these dyes for assessing probes printed in 50% DMSO.

This problem is easily remedied by using similar dyes with affinity for ssDNA, such as

SYBR Green II (143). Thus, the more pressing issue is the fact that only a small number

of slides from each print lot can be examned. As slide-to-slide varability can be a

confounding factor in microaray experiments, the ideal quality control protocol would

allow assessment of each individual aray prior to use. Development of such a method,

involving probe synthesis using PCR primers conjugated to a fluorophore with

absorption/emission spectra distinct from Cy dyes, has only recently begun (144, 145)
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Dye bias and labeling protocols

Cy3 dye bias observed in direct incorporation experiments is unsurprising given the

nature of CyDye-conjugated nucleotides. CyDye-conjugation interferes with base pairing

of modified nucleotides, and the larger size of Cy5 often results in ::lO-fold less efficient

incorporation of Cy5-conjugated dCTP (146). The degree of bias may vary sequence

specifically (147, 148).

A common solution to the dye bias problem is the use of dye-swapping - each pair of

samples is used for two hybridizations with reversed dye labeling (147). Under this

scheme, genes that are subject to dye bias wil show the same expression ratio regardless

of labeling direction; such genes are eliminated from further analyses. This solution has

two drawbacks. Firstly, dye swapping requires two hybridizations for every comparson.

Secondly, while eliminating biased data from analyses improves the quality of the

dataset, it also restricts the gene representation.

Amino-allyl post-labeling provides a better solution. In amno-allyl-modified

nucleotides, the amino-allyl moiety is conjugated to ribose and, thus, does not interfere

with base pairing. Amine-reactive Cy3 and Cy5 are added after cDNA synthesis is

complete (thus, the term post-labeling). The two dyes do not differ in their affinity for

amno-allyl, and steric hindrance is extremely limited when conjugating to the outside of

the DNA backbone. Thus, this step is not subject to significant dye bias. Additionally,

amno-allyl is smaller than cyanine dyes, resulting in overall greater incorporation

efficiency. Accordingly, we observed equal or stronger signal from amno-allyl labeled

cDNA probes. The slight Cy3 bias that was observed is probably due to the fact that Cy5

is inherently a slightly weaker, more photo-labile fluor than Cy3.

Experimental design

A common approach in microaray work has been to print replicate features for each

gene, then average all data from replicate features on pairs of dye-swapped hybridizations

into a single gene expression ratio. In the current case, nearly identical data from

replicate features provided no extra information. Similarly, based on observations of

extremely limited dye bias and systematic varance when using amno-allyl post-labeling,
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dye-swapping seemed superfuous. Thus, we adopted an experimental design strategy to

maximize gene representation and biological replication, rather than technical pseudo-

replication. Adult hear arays contained only one feature per clone to allow more clones

to be included on each aray, and more arays to be produced from a single probe set.

Experiments were designed to include three or more independent biological replicates of

sufficient size to provide for at least one hybridization (see Chapter 3). In accordance

with this approach, data analysis tools were designed for high-throughput fitering and

normalization of data, as well as basic statistical analysis of replicate hybridizations.

Conclusions

Ultimately, there is no single optimal protocol for the synthesis and use of cDNA

microarays. However, certain general guidelines can be drawn from the data at hand.

While isopropanol precipitation is inexpensive and effective on small scales, filter

purification of PCR products is likely to be more efficient on a high- throughput basis.

Selection of a printing buffer should take into account araying technology, as well as

chemical properties of the buffer; high-salt buffers are best suited to OMS (now

Affymetrx) ring-and-pin set-ups, while DMSO mixtures work well with split pins. Most

importantly, routine quality control is absolutely necessary to detect technical problems

early, avoid wasteful use of resources, and ensure high quality gene expression data.

We have produced seven full-scale print lots of zebrafish cardiovascular-specific

microarays. MAZFOOI was completely dedicated to methodological development.

MA002 and 003 print runs were fraught with technical difficulties; although

frustrating, each difficulty highlighted important technical weakesses in our protocols

and emphasized the need for vigilant quality control. Adult hear arays, AHOOllA and

AH002A/, were constructed with the benefit of lessons leared from three previous

print runs. These high-quality arays have been a significant resource to the zebrafish

toxicology community, enabling the gene expression profiling work presented in this

thesis (Chapter 3), as well as several on-going collaborative projects (see Chapter 5).
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Table 2.1 Names, sequences, and melting temperatures of primers used for PCR

amplification of clones from embryonic and adult hear cDNA librares. ZapExPCR

primers bind regions flanking the insertion site of the À-ZAP bacteriophage vector. SP6,

T3 and T7 primer sequences are derived from corresponding promoter elements found on

the majority of plasmid vectors.
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Primer Name
ZapExPCR-f

ZapExPCR-r

SP6

T3

T7

Primer Sequence

GCCAAGCTCGAA TT AACCCTCACT AAGGG

CCAGTGAA TTGTAA TACGACTCACT AT AGGGCG

A TT AGGTGACACT AT AG

A TT AACCCTCACT AAGGGA

T AA T ACGACTCACT AT AGGG

75

Length
(nt)
31

33

18

20

20

T m (OC)

68.2

68.2

46.9

53.2

53.2



Table 2.2 PCR primer sequences and fragment sizes for nuclear receptors and

cytochrome P450s included on cDNA microarays. Primers were designed using

publicly available sequence data. All PCR products were cloned into the pGEM- T Easy

vector (Promega).
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GenBank Product size
Gene name accession # (bp) peR primer sequences

aryl hydrocarbon receptor 1 (AHR1) NM_131 028 497 ATGTCATTCATCAGAGTGTG

ACCACTATTACAGAGCTCTGC

aryl hydrocarbon receptor 2 (AHR2) NM_131264 1051 CCTCAGGGAGTCCCCACATC

GCTTCCTCAGAGTTGCCAC

AHR nuclear translocator (ARNT) Y08434 700 AGGCGGCGGATGGTTCTTG
TCGGGATGGCAGAACTCCAG

estrogen receptor a (ER-a) AF349412 763 GTAAGATCGCGGAGGGCGTTC
AGCAGGAGCTGGGCCTGGCG

estrogen receptor ß (ER-ß) NM_174862 752 GGAGCGCTGCAGTTATCGAG

GGATGGACTGTTGTTGTGAG

thyroid hormone receptor A (thra) NM_131396 1108 GTGTCAGAGTGGGAACTCATTCG

GTCTGCAGTGCTGGTGGGTTG

thyroid hormone receptor B (thrb) NM_131340 1084 GTGGACATTGAAGCCTTCAGTC

TCGGTCTAGGTACTGTAAGTGC

peroxisome proliferator activated U93473 95 CTTCAGGCGGACGATTCGGCTC
receptor a (PPAR-a) CGACAGTATTGGCACTTGTTCG

retinoid receptor a (rxra) NM_131217 925 GAAGACCTGACGTACACTTG

CGCTGGGGTTATT ACATGC

retinoid receptor õ (rxrd) NM_131238 1045 TCTTCGGGGAAGCATTATGGC

TGCAGTCACAGTTATCTCCAG

retinoid receptor E (rxe) NM_131275 1015 CTGTGAGGAAGGACCTTAGCTAC

CTGCGATACCCTGGTGCAAGC

cytochrome P450 1A (CYP1A) AB078927, 598 TTGACACT ATCAGTACGGCTC

AF21 0727 TTCTGGATCT AGAACACAGGC

ovarian aromatase (CYP19a) NM_131154 1072 GCAGTGCATCGGGATGCATGAGC

GCTGCGACAGGTTGTTGGTTGC

brain aromatase (CYP19b) NM_131642 -800 ATGATGGAAGCCTGAGGACGGC

GTCTGTTGAGACGTCAACCACG
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Table 2.3 Clone information for fragments of cytochromes P450, nuclear receptors, and

related genes contributed by varous researchers. At this time, all sequences except a

330bp fragment of CYPIBI are unpublished.
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GenBank Fragment

Gene Name accession # size (bp) Cloning Vector Contributed by

AHR repressor (AHRR) none T Easy 8.

pregnane X receptor (PXR) none 1132 pGEM-T Easy A. 8ainy

cytochrome P450 18 (CYP18) none -500 pGEM-T Easy 8. Woodin

cytochrome P450 181 (CYP181) AF235139 330 pGEM-T Easy C. Godard

cytochrome P450 2A1 (CYP2A1) none 1497 pGEM-T Easy A. 8ainy

cytochrome P450 2AA 1 (CYP2AA 1) none -1500 PCR product A. 8ainy

cytochrome P450 51 (CYP51) none 1250 pGEM-T Easy A.M. Morrison
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Table 2.4 Clones for genes involved in cell-cycle regulation and apoptosis, provided by

Dr. Frederick Goetz (Marne Biological Laboratory).
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GenBank Fragment

Gene Name accession # size (bp) Cloning Vector Contributed
cyclin A1 (cycA1) AF268045 1639 pBK F. Goetz

cyclin B1 (cycB1) AF268043 1534 pBK-CMV F Goetz

cyclin 01 (cyc01) AF365874 1999 pBK-CMV F. Goetz

cyclin-dependent kinase 9 (cdk9) AF268046 1768 pBK-CMV F. Goetz

cell division control protein 2 (cdc2) AF268044 1236 pBK-CMV F. Goetz

tumor suppressor p53 AF365873 2199 pBK-CMV F. Goetz

steroidogenic acute regulatory protein NM_131663 1291 pBK-CMV F. Goetz
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Table 2.5 PCR primer sequences and product lengths for zebrafish mitochondral genes

included on AH002 cDNA microarays.
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GenBank Fragment

Gene name accession peR primer sequences size (bp)

NADH dehydrogenase subunit 1 NC_002333 TCAACGCTGuCAGAA~~~ 290
TGGTCGT ATCGGAATCGTGG

NADH dehydrogenase subunit 2 NC_002333 TAGCACAACAACACCACCCACG 706
GCTGTGGCTGGTAGGTCTTGmC

NADH dehydrogenase subunit 3 NC_002333 CGACCTTATCATTGGTCTTAGC 290
GGCTCATTCGTAGGCTAGTC

NADH dehydrogenase subunit 4 NC_002333 ACCCGATGAGGT AATCAAGC 727
TCAAGmGGTAGAGGTGGAAG

NADH dehydrogenase subunit 4L NC_002333 CGCACmAGTCTTAACGCAGC 260
T ATGTGGTCAGATCCGTGGG

NADH dehydrogenase subunit 5 NC_002333 TTGGCTGATGAmGGGCGGAC 852
TGTGTCGGGGGCTTCCTAACAG

NADH dehydrogenase subunit 6 NC_002333 AGCCGAGCCTnCCTGAAG 291

GCACGAAGCACACCATAACTAAGAC

cytochrome c oxidase 1 NC_002333 CCAGGATTCGGCATT ATCTCCC 700
CTTCTCGmGGCGGTAAGG

cytochrome c oxidase 2 NC_002333 AGGATTCCAAGACGCAGCATC 588
TT AGCCCCGCAGAmCAGAG

cytochrome c oxidase 3 NC_002333 CCAAGCCCATGACCACT AACTG 700
CGACGAAGTGTCAATATCAAGCG

D Loop NC_002333 CCTGGTATCTGGTTCAATCTCACG 441

TATTGGCTGTACGTTCTCGGGC

12s ribosomal RNA NC_002333 AACTCGTGCCAGCAACC 676
ACTnCCCCCCTTGTCTG

16s ribosomal RNA NC_002333 GCACAAGTGTAAGCCAAGTTG 937
TTCGGGAAGAGGTnAGC

cytochrome b NC_002333 CATCTGTTGTGCAT AmGCCG 808
AGCATGTCTGCTACCAGTGTTCAG

ATP synthase subunit 8 NC_002333 TGCCTCAGCTTAATCCAAC 135
TGTGCTCTTAGCATCAACTTG

ATP synthase subunit 6 NC_002333 ACCAACTT ATGACCCCACTAAC 430
AAGAAGGACGGAGGCAG
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Table 2.6 Highly expressed housekeeping genes included on microarays as biological

negative controls. Primers for G3PDH, ubiquitin, and CAB45 were based on TIGR TC

cluster consensus sequences with strong homology to the gene of interest.
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GenBank
or TIGR Fragment

Gene name accession # peR primer sequences size (bp)

ß-actin NM_131031 TGAGCACGGTATTGTGACCAACTG 750
GCAAGAGAGGTGAIDCCTTCTGC

elongation factor 1-a (EF1-a) L23807 TCTACAATGCGGTGGAATCG 750
CAACCATACCAGGCTTGAGGAC

glyceraldehyde 3-phosphate TC84783 CGAACAGAGGCTTCTCACAACG 932
dehydrogenase (G3PDH) CAGCGTCAAGATGGATGAACG

ubiquitin TC94110 CATCT AAGAGCTGGTGGTGGATTG 555
AGCACAGACAGCCTCATGTGTGAC

Ca2+.binding protein 45 (CAB45) TC96362 GATTCTTGCGGTTATCGGTCTG 756
AACTTCACACGGTATTCGTCCC

ornithine decarboxylase NM_131801 CTGAGTGTGAAGIDGGAGCGAC 550
CATCGGGCTTGGGIDCTTG

phospholipase It NM_131295 IDGGGTGTGAAGGAGACGACC 970
ACTGAGCGAAGGGAACCG
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Table 2.7 Arabidopsis thaliana genes used as negative controls on zebrafish

microarays. All PCR products were purchased from Stratagene as components of the

SpotReportQY-3 (A.thl-3) and SpotReportQY-lO (all genes) Array Validation System kits.

Information shown here was taken from the SpotReportQY-lO Array Validation System

instruction manual (Stratagene catalog #252010).
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Strata gene GenBank Fragment
Clone 10 Gene name product # accession # size (bp)

Ath 1 photosystem I chlorophyll a/b-binding protein 252101 X56062 500

(Cab)

Ath 2 RUBISCO activase (RCA) 252102 X14212 513

Ath 3 ribulose-1 ,5-bisphosphate carboxylase/ 252103 U91966 521

oxygenase, large subun;t (rbcL)

Ath 4 lipid transfer protein 4 (L TP4) 252104 AF159801 527

Ath 5 lipid transfer protein 6 (L TP6) 252105 AF159803 477

Ath 6 papain-type cysteine endopeptidase (XCP2) 252106 AF191028 507

Ath 7 root cap 1 (RCP1) 252107 AF168390 533

Ath 8 NAC1 252108 AF198054 457

Ath 9 triosphosphate isomerase (TIM) 252109 AF247559 498

Ath 10 ribulose-5-phosphate kinase (PRKase) 252110 X58149 497

87



Figure 2.1 Scans of two AHOOI micfOarays hybridized with whole embryo cDNAs

showing general lack of hybridization signal from regions containing genomic PCR

products for mitochondral, housekeeping, and many known cardiovascular clones (white

rectangles). Smearng of cDNA probes due to movement of slides prior to UV cross-

linking is also apparent, to varous degrees, on both slides.
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Figure 2.2 PCR products for mitochondrial (a) and housekeeping (b) genes, amplified

using primers described in Tables 2.5 and 2.6. Each PCR product is shown before and

after purification using Millpore Multiscreen PCR-96 (labeled b and a above the

appropriate well). Several PCR products were not visible by gel electrophoresis after

purification; the presence of these products was confirmed spectrophotometric ally.
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Figure 2.3 MAZFOOI microaray hybridized with 1 J.g direct-labeled cDNA from

zebrafish adult hear tissue (Cy5, red) and from whole adult zebrafish minus hear tissue

(Cy3, green). All probes were spotted in duplicate; panels 2 and 4 are exact replicates of

panels 1 and 3.
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Figure 2.4 Comparson of results from duplicate features on the MAZFOO 1

hybridization shown in Figure 2.3. Replicate measurements of both total fluorescence

intensities (top) and relative expression ratios (bottom) were tightly correlated.
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Figure 2.5 Comparson of yields from isopropanol precipitations and fiter purifications

often PCR products. Two isopropanol precipitation protocols (black bars), with and

without addition of 200nM NaCl, were compared to filter purification using Milipore

Multiscreen PCR-96 plates (striped bars). Two vacuum manifolds (BioBot and

Millpore) and two DNA resuspension methods (repetitive pi petting or gentle agitation)

were compared. Gel electrophoresis of PCR products before (b) and after (a) purification

is shown at left. Spot densitometry measurements were used to determne percent yields

for each PCR product; mean yields for each method are shown at right.
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Figure 2.6 Dye-swapped pair of AHOOI hybridizations comparng cDNA from 72 hpf

larval zebrafish exposed to either 1.7 ng/g or 1.1 ng/g TCDD. Cy3 signal overwhelmed

Cy5 signal regardless of which cDNA sample was Cy3-labeled.
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Figure 2.7 Comparison of fluorescent signal generated by homotypic hybridizations

with (a) 500 ng amno-allyl post-labeled cDNA from adult hear total RNA or (b) 1 l.g

direct-labeled cDNA from adult hear mRNA. Hybridizations were performed on slides

21 and 22 from print lot MAZFOOl.
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Figure 2.8 Fluorescence intensity scatter plots for homotypic hybridizations using

amino-allyl post-labeling of 1 Ilg cDNA from whole adult zebrafish (a, MAZF001) or

365 ng cDNA from adult hear tissue (b, AHOOl). Background-subtracted median

fluorescence intensities from Cy5 (635nm) and Cy3 (532nm) channels were compared.

Linear regression have been fitted to each data set.
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(a) MAZOOl, 500 ng cDNA from whole adult zebrafish
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Figure 2.9 Ratio-intensity plots for homotypic hybridizations. One outlier is not shown

in graph a, two are omitted from graph b.
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(a) MAZ001, 500 ng cDNA from whole adult zebrafish
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Figure 2.10 Effect of relative humidity during araying on feature morphology, as

indicated by salt autofluorescence (grey bars) or PicoGreen staining (black bars). During

the course of the AHOOI print run, relative humidity was recorded each time a new set of

three probe plates was placed into the arayer, approximately every 1.5 hrs. At the end of

the print run, slide #42 was scanned for salt autofluorescence. Slide #7 was stained with

PicoGreen. Slides were divided into regions corresponding to sets of three probe plates,

and feature morphology within each region was ranked on a scale of 1 -5 on the bases of

fluorescence intensity, size, and regularty of shape.
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Figure 2.11 Quantitation of arayed DNA by PicoGreen staining. The quantity of DNA

in each feature was varied by increasing the number of pin strikes used to deposit probes.

Fluorescence from all features generated with a given number of pin strikes was summed.
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Figure 2.12 Laser-excited fluorescence scan of a Syt022-stained AHOOlA microaray

(top), and comparison of feature morphology observed by Syt022-staining to that

observed on two randomly selected AHOOlA hybridizations (bottom).
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Figure 2.13 Comparson of background fluorescence observed when arays were

processed and pre-hybridized according to four alternative protocols.
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Figure 2.14 Schematic representation of the data flagging process implemented by

Flagger.pl. Each feature was evaluated on three criteria, and only submitted to further

anal ysis if passed by all three.
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Is fluorescence intensity at 2:50% of pixels
2:1 standard deviation above background?

YE

Is signal saturation limited to ::5% of pixels?

YE

Is the ratio regression R2 value 2:0.50?

YE

Pass to rrdian normaliation
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Figure 2.15 Screen-dump of graphical user interface for microaray data analysis

macros. VBA macros were developed by Heather Handley; integrated automation and

graphical user interface by Chih Long Liu.
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Figure 2.16 Schematic diagram of microaray synthesis and hybridization workfow,

showing techniques chosen for each production step and appropriate quality control

measures.
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CHAPTER 3

The gene expression profile of 2,3,7,8 tetrachlorodibenzo-p-dioxin in

zebrafish embryos is consistent with dilated cardiomyopathy

Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitous environmental

contaminant and a potent cardiovascular teratogen. Fish and birds exposed to TCDD
during early embryogenesis develop severe edema and hemorrhage typical of congestive
hear failure. There are indications that TCDD-induced dilative cardiomyopathy is the
underlying cause of overt toxicity. However, determning specific cardiac impacts in fish
has been difficult. I have used cDNA microarays (Chapter 2) to establish the
cardiovascular gene expression profile of 72 hpf zebrafish following early embryonic
exposure to -EDI0 and EDI00 doses of TCDD. Alterations in cardiovascular gene
expression were limited; only 25 known genes and 19 ESTs were significantly
differentially expressed 2:1.8-fold (p-values :S5xlO'4), and only CYPIA and CYPIBI
were differentially regulated ::4-fold. The dose-specificity of TCDD responses was
highlighted, not only by the small number of genes significantly differentially expressed
at both doses (7), but also by the abilty of small deviations in achieved doses to account
for the majority of varation between replicate hybridizations.

MicfOaray analyses indicated induction of three major functional classes of genes-
xenobiotic detoxification enzymes, cardiac sarcomere structural proteins, and energy
transfer genes. TCDD-modulated expression of selected genes in each category was
further explored by RT-PCR. As expécted, xenobiotic metabolism enzymes, including
CYPIA, CYPIBl, and glutathione S transferase, were robustly and dose-dependently
induced. Induction of mitochondral electron transfer proteins was varable and modest,
at or approaching limits of detection by either microaray analysis or RT-PCR. Most
sarcomeric proteins appeared to be robustly induced, but RT -PCR indicated strong
suppression of cardiac troponin T2. Despite this inconsistency, the current data suggest
that TCDD causes dilated cardiomyopathy in zebrafish.

121



3.1 Introduction

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widespread anthropogenic

contamnant in the marne environment, and a potent toxicant that disrupts cardiovascular

development in teleost fish. Hallmark symptoms of TCDD embryotoxicity in fish

include reduced hear size, circulatory failure, pericardial and yolk sac edema,

hemorrhage, and early life stage mortality (10, 24, 25). This suite of symptoms, similar

to blue sac syndrome in salmonid fish, has been observed in over a dozen fish species

exposed to TCDD and related pHAH (9-15). In zebrafish, weakened cardiac contraction

can be observed as early as -50 hpf, followed by congestion and reduced perfusion of

peripheral vascular beds, and finally, edema and hemorrhage (10, 22-24). This

progression is generally conserved across fish species (14,25), and is reminiscent of

congestive hear failure.

TCDD-induced dilated cardiomyopathy leading to congestive heart failure with

edema and hemorrhage has been clearly demonstrated in avian embryos (32,33). Dilated

cardiomyopathy appears to be the result of inhibited cardiomyocyte proliferation during a

period of significant ventricular muscle growth and rearangement (33, 35).

Corresponding cardiac remodeling processes in fish are poorly understood, and the

exquisite sensitivity of fish to TCDD-induced edema has made pinpointing impacts on

cardiac morphology difficult. However, similarty in the overt embryotoxicity of TCDD

in fish, birds and mamals suggests that a common molecular mechanism is responsible.

TCDD toxicity is known to be largely dependent on the aryl hydrocarbon receptor

(AH) (54, 55, 57-59). AHR is a basic-helix-Ioop-helix Per-ARNT-Sim family (bHLH-

PAS) ligand-activated transcription factor with a broad affinity for aromatic

hydrocarbons (36). Binding of TCDD by cytosolic AHR causes activation, nuclear

translocation, and dimerization with aryl hydrocarbon receptor nuclear translocator

(ARNT). The AHR-ARNT complex acts via DNA sequence motifs, known varously as

AHR-, dioxin-, or xenobiotic-response elements (ARR, DRE or XR), to modulate

gene expression.
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AHR is capable of regulating expression of numerous genes, and the primar

toxicity-eliciting events are not certain. CYPlA induction by aromatic hydrocarbons is

the most sensitive known response to AH activation, and its potential role in TCDD

toxicity has been subject to much investigation. Developmental expression and induction

of CYP1A is strongly correlated, temporally, spatially, and dose-dependently, with

symptoms of embryotoxicity (15, 26, 27, 68, 69). Furthermore, blocking induction of

CYP1A protein expression (54) or enzymatic activity (22) protects against TCDD-

induced cardiovascular embryotoxicity. Thus, while all indications are that CYPIA is

involved in TCDD embryotoxicity, the precise mechanism is unclear. Aberrant

production of reactive oxygen has been suggested as a possible mode of action (64, 88),

but this issue is stil under investigation.

Recently, micro aray-based gene expression profilng and serial analysis of gene

expression (SAGE) has provided a list of several hundred TCDD-responsive genes (93-

95, 123, 124). Most of this work has focused on liver tissue and cultured hepatocytes

(93,95, 123, 124), but spleen and thymus tissues (95), and cultured lung epithelial cells

(94) have also been interrogated. While certain general trends are emerging from these

broad-scale studies, an abundance of disparties highlights the importance of dose and

cell-type (and likely other biological factors) in shaping molecular responses to TCDD.

As no comparable data are available regarding TCDD-modulated gene expression in

either embryos or cardiovascular tissues, it is diffcult to gauge the relevance of data from

other systems to processes of cardiovascular embryotoxicity.

The goal of the current work was to use cardiovascular-specific cDNA microarays

(technical development described in Chapter 2) to identify genes whose expression is

modulated by TCDD. Gene expression profiling of 72 hpf zebrafish embryos following

early embryonic exposure to two doses of TCDD has revealed relatively limited

alterations in cardiovascular gene expression; 21 known genes and 18 ESTs were

significantly differentially expressed 2:1.8-fold (p-values :S5xio-4). The majority of

known genes fall into three functional classes - xenobiotic detoxification enzymes,

sarcomere structural proteins, and genes involved in cellular energetics. Selected genes
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from each of these categories were further interrogated using real-time RT-PCR. Despite

certain inconsistencies in the current data, the weight of evidence from this work suggests

that TCDD causes dilated cardiomyopathy in zebrafish, as in birds.

3.2 Methods

Embryos and Chemicals

eH)TCDD (ChemSyn Laboratories) and unlabeled TCDD (ChemService) were

obtained from providers in toluene solutions. For experimental use, toluene was

evaporated and TCDD was reconstituted in DMSO, allowing 2:24hrs for complete

dissolution prior to use. Stock solutions of (3H)TCDD alone and 50/50

tritiated/unlabeled TCDD were prepared at 0.2i.M ,1i.M, 2i.M, 5i.M, lOi.M and 30i.M.

Developmentally synchronous zebrafish embryos were obtained by performng

crosses in mating tanks with removable batTers. Trios of two females and one male were

held overnight in divided tanks. The following morning, barers were removed and

fertilized embryos were collected within 30min to ensure all embryos were within two

cell cycles of each other.

At 2Yi-3 hours post fertilization (approximately ioOO-cell stage), embryos were

placed in glass petri dishes containing 0.05% (vol/vol) DMSO or appropriate TCDD

stock solution in E3 egg water. Embryos were held in dosing solutions for 1.5 hrs at

28°C on an orbital shaker. Embryos were then removed from the dosing solutions and

rinsed thoroughly with clean E3 before being transferred to clean plastic petri dishes.

Embryos and larae were maintained in clean E3 egg water at 28°C.

Approximately 24hrs after dosing, triplicate samples of 3 embryos per treatment

group were removed to 20ml liquid scintilation vials, anaesthetized on ice and

solubilzed using 500i.1 Solvable reagent (Packard). Scintiverse II scintilation fluid

(l4.5mls) was added and samples were dark-adapted 2-24 hrs prior to liquid scintilation

counting to establish accumulated embryo loads of eHJTCDD.

At 72 hpf, 50-100 larae per treatment group were removed to 1.7ml tubes and excess

egg water was aspirated. In initial experiments, Iml RNALater was added and embryos
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were stored at -20°C. Embryo samples for the 5nM microaray experiment and for

follow-up experiments were flash frozen and stored at -80°C prior to RNA preparation.

DNA Microarray Hybriizations

AHOOI and AHOOlA cardiovascular-specific cDNA microarays (Chapter 2) were

used for this work. These arays consisted of 5,184 PCR products representing

approximately 2,000 distinct zebrafish genes. With the exception of control genes, the

sequence of arayed clones was unknown prior to hybridization and subsequent analyses.

Total RNA was isolated from embryo homogenates using TriZol reagent (Invitrogen)

according to manufacturer's protocol. For long-term storage, RNA pellets were kept in

70% ethanol at -80°C. After removal of ethanol, RNA was dissolved in water and stored

frozen.

Amino-allyl modified cDNA was generated by reverse transcription in the presence

of arno-allyl-dUTP Total RNA (15-25¡.g) spiked with A. thaliana chloroplast mRNA

(100, 250, and 500 ng of Cab, RCA, and rbcL RNA, respectively; SpotReportCI-3 Aray

Validation Kit, Stratagene) was incubated with 5¡.g 01igo-dT(2o)N anchored primer for 10

min at 65°C, then chiled on wet ice. 5x First-strand buffer (4¡.l)and O.lmM DTT (2¡.l)

were added for a final reaction volume of 20¡.l. Remaining reagents were then added for

final reaction conditions of Ix first-strand synthesis buffer, lOmM DTT, 0.5mM each

dATP, dCTP and dGTP, 0.3mM dTTP, 0.2mM arno-allyl-dUTP, and 1000U

Superscript II reverse transcriptase. Reverse transcription reactions were run 2.5 hrs at

42°C, then inactivated by buffering with 0.5M EDTA and incubating 5 min at 95°C.

RNA was eliminated by alkaline hydrolysis in 0.2N NaOH (incubated 15 min at 65

°C, then neutralized by equimolar HCI and buffered with Tris-HCI), followed by RNase

digestion (xU Ambion RNase cocktail, 30 min at 37°C). cDNA purification and buffer

exchange was accomplished by filter-purification according to standard protocols

(QiaQuick PCR Purification Kit, Qiagen), except that Qiagen buffers PE and EB were

replaced by 75% ethanol and distiled water, respectively. cDNAs were dried by vacuum

centrifugation and stored at -20°C.
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For CyDye post-labeling, cDNAs were redissolved in 10 ¡.l O.IM NaHC03 (pH9.0)

containing an individual aliquot of previously dried amne-reactive Cy3 or Cy5

(Amersham Biosciences), then incubated 1.5-2 hrs at room temperature in full darkness.

The labeling reaction was quenched by addition of excess hydroxylamine (4.5 ¡.l at 4M)

and 15 min at room temperature in full darkness. Following addition of 35 ¡.l 100mM

NaOAc (pH 5.2) and 50 ¡.l nuclease-free water, labeled cDNA was purified using

QiaQuick PCR Purification columns (Qiagen) according to standard protocols. cDNA

concentrations were determned spectrophotometrically (Az6o, Az8o), then equal quantities

of paired Cy3- and Cy5-labeled cDNAs were combined and dred by vacuum

centrifugation.

Immediately prior to hybridization, labeled target cDNA was redissolved in

hybridization buffer (3x SSC with 0.1 % SDS) containing 0.4 ¡.gl¡.l each polyA blocker

(Sigma) and yeast tRNA (Invitrogen), and 0.8 ¡.gl¡.l sonicated salmon sperm DNA

(Fisher Scientific). This mixture was denatured by heating 2 min at 95°C, then quickly

pipetted onto the microaray surface and covered with an appropriate cover slip. Arays

were hybridized (18 hrs at 65°C) in sealed hybridization chambers containing a reservoir

of 2x SSe.

Following hybridization, slides were washed 2 min + 3 min in 2x SSC with 0.1 %

SDS, then 2 min + 1 min in each Ix and O. Ix SSC. Slides were dipped into distiled

water, then isopropanol, then air-dred and stored in darkness with dessication prior to

scanning.

Microarray Data Analysis

Aray scanning and image analysis was performed using Axon GenePix 3.0 software.

Axon results fies were either imported to Microsoft Excel for basic statistical analyses

(see Appendix A for VBA scripts), or submitted to the Rosetta Resolver database and

analysis package (administered by the Harard Center for Genome Research).
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Real-time RT-PCR

Total RNA was prepared using TriZol reagent (Invitrogen), then incubated 30 mIn at

37°C with 2 Units DNA-free DNase I (Ambion) to remove genomic DNA contamnation.

DNase was inactivated by addition of 4.5 ¡.l DNase Inactivation reagent; after -5 min,

DNase Inactivation reagent was pelleted by centrifugation. cDNA was generated from 2

¡.g DNase-treated total RNA according to standard reverse transcription protocols

(Superscript II RT, Invitrogen)

PCR reactions consisted of Ix SYBRCI Green PCR Master Mix (Applied

Biosystems), i ¡.l cDNA, and 400 nM each primer (Table 3.1). Initial enzyme activation

(2 min at 50°C) and DNA denaturation (lmin at 94°C) steps were followed by 40 two-

step amplification cycles (15 see at 94°C, 1 min at 60°C). The dissociation curve of each

PCR product was determined after amplification (ABI Prism 7000).

For relative quantitation, SYBRCI Green detection was accompanied by ROX passive

detection and normalization. PCR efficiency was assumed to be 2, and the threshold-

crossing cycle number (Ct) was determned at SYBRCI Green fluorescence R=0.2.

Relative expression ratios (R) were calculated according to the previously described

(149) equation:

R = (Etaget)'~CttageiDMSO - TCDD)
(E )L\CtrelDMSO - TCDD)ref

3.3 Results

TCDD cardiovascular embryotoxicit

The aim of this study was to identify alterations in gene expression correlated with

specific cardiovascular impacts resulting from TCDD exposure. In order to determne

appropriate doses for expression profiling, I assessed the TCDD sensitivity of the

Tübingen long tail (TL) strain used for this work. Developmentally synchronous

zebrafish embryos were exposed to either 0.05% DMSO (vehicle) or varying

concentrations of eH)TCDD (O.lnM, 0.5nM, InM, 2nM, or 5nM) in egg water.
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Embryotoxic endpoints, including pericardial and yolk sac edema, impaired peripheral

circulation, and mortality, were assessed at -80 and -96 hpf.

Susceptibility of TL embryos to edema and mortality was similar to that documented

for other zebrafish strains (10). Early life stage mortality was insignificant at both time-

points (data not shown). Less than 10% ofDMSO-treated (control) embryos exhibited

mild edema, and O.lnM TCDD did not significantly enhance pericardial edema at either

time. At 80 hpf, 2:0.5nM TCDD produced a dose-dependent increase in the frequency

and severity of pericardial edema (Figure 3.1, arows).

Experimental design and sources of varibilit

Samples for microaray analysis were obtained from two separate experiments. In the

first, embryos from multiple clutches were pooled, then randomly divided into groups of

-100 embryos and exposed to either 0.05% DMSO or 0.5nM TCDD (Figure 3.2). In the

second experiment, groups of -100 embryos from each of 4 individual clutches were

exposed to 5.0nM TCDD; -400 embryos pooled from the same clutches comprised a

single control group (Figure 3.2). Overall mean embryo (3H)TCDD burdens for the two

experiments were 1.84:t.42 nglg and 1O.74:t1.38 nglg (

Table 3.2).

The amount of labeled cDNA used in microarray analyses vared with RNA

availability and reverse transcription efficiency. All hybridizations for low-dose samples

utilized :S500ng cDNA (Figure 3.2a), while 3 of 4 initial high-dose hybridizations were

performed with 900-1000ng cDNA (Figure 3.2b, top row). To assess the effect of cDNA

quantity on gene expression results, excess cDNA from two 5.0nM TCDD samples was

used for additional hybridizations with :S500ng cDNA (Figure 3.2b, TCDD B-2 and C-2).

Mean expression ratios calculated from the three high-dose hybridizations performed

with :S500ng cDNA were compared to results from the three hybridizations using -1J.g

cDNA. The two data sets were closely correlated (Figure 3.3), and yielded significantly

different results for only 66 clones (single-factor ANOV A, p-values :S0.01). Thus, all

high dose data were combined regardless of the quantity of target cDNA used
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(NS,On = 6). These results also indicated that quantitative comparson between dose

levels was valid, despite technical differences.

Data from all low-dose (0.5nM TCDD) replicate hybridizations were highly (::80%)

cross-correlated, while correlation coefficients for 5.0nM TCDD replicate hybridizations

ranged from 15% to 59% (Table 3.3). Regression analysis indicated that varation in

correlation values was largely a function of slight differences in accumulated doses

(Figure 3.4). Correlation between low-dose samples was strongly dependent on both

differences in embryo TCDD levels (R2 = 0.93) and on the control sample used (R2 = 1.0,

not shown). Dosage disparties accounted for a smaller proportion of the varation

between high-dose replicate hybridizations (R2 = 0.67), and control sample varation was

null, as RNA from a single pool of DMSO-treated embryos was used for all

hybridizations (Figure 3.2). Additional varation between high-dose replicate

hybridizations may be attributable to the use of individual clutches, rather than pooled

embryos, for replicate groups.

?2-fold differentil expression

A common method of analyzing DNA microaray data is to identify all genes whose

expression is induced or suppressed by 2:2-fold; this approach has been used in most

studies of TCDD-modulated gene expression (93,95, 123). In accord with this standard,

88 arayed clones with at least one dose-specific mean expression ratio ~2.0 or :S0.5 were

sequenced and assigned gene identities based on protein-level homology. The largest

portion of clones (43%) was composed of ESTs with no significant similarty to known

proteins (Figure 3.5); over half of these clones fell into four EST clusters, named TROOl-

TR004. In addition, seven known proteins were identified, including AHR2, CYPIA,

ovaran aromatase (CYPI9a), and cardiac troponin T2 (Figure 3.5). However, 18 clones

(20.5%) were found to contain no insert, and thus, to be false positive results (Figure 3.5).

Statstical confience and systematic varince

In order to reduce the false positive rate, the Rosetta Resolver software package was

used to determne statistical confidence intervals for each microaray feature, then

129



calculate confidence-weighted mean expression ratios and p-values. An appropriate

threshold statistic for fitering the complete dataset was determned empirically from

results for control genes and known false positives. Five out of six negative controls had

p-values 2: Ix 10-3; A. thaliana clone #2 had a p-value of 2xlO'4 at 0.5nM TCDD (Table

3.4). Of all the "no insert" false positives, only one had a p-value :SlxlO'3 (AH042259

high-dose mean expression ratio = -1.86, p-value = 3.llxlO'6). In contrast, confidence

statistics for positive controls fell in a range of p-values ::1.8* 10'5 (Table 3.4). Thus, an

intermediate statistical confidence threshold of p-values ::5xlO'4 was adopted.

A total of 496 clones were assigned at least one dose-specific p-value :S5xlO-4. No

additional false positives were detected among the ;:250 clones for which high-quality

DNA sequence data was obtained. Only 65 clones met the statistical significance

criterion at both dose levels, 276 clones had p-values :S5xlO-4 at 0.5nM TCDD only, 155

at 5.0nM TCDD only (Figure 3.6). At both dose levels, 65-75% of all differentially

expressed clones were induced by TCDD. However, the majority of changes at this

statistical confidence level were relatively subtle, of magnitude (absolute value

expression ratio) 1.3- to 1.6-fold (Figure 3.7).

From among the clones for which high-quality sequence data was available, 95 clones

were assembled into 12 contigs corresponding to 11 known genes and one EST (Table

3.5). Known genes fell into two functional classes - mitochondrial genes, and sarcomeric

proteins. Of the 13 protein-encoding genes in the mitochondral genome of zebrafish

(150), at least seven showed 1.2- to 1.5-fold induction by TCDD (Table 3.5a). Most

mitochondral genes were represented by at least four clones, all indicating similar

magnitude up-regulation. Ambiguity in the number of impacted mitochondral genes

derived from inability to distinguish genes for NADH dehydrogenase subunits 4 and 4L

based on available sequence data.

Effects on structural components of cardiac muscle sarcomeres were mixed (Table

3.5b). Four clones corresponding to cardiac troponin T2 were robustly up-regulated,

paricularly at the lower dose leveL. Observed induction of myosin was more modest, and

cardiac a-actin expression was very slightly suppressed.
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Approximately 4% (19 clones) of all clones with p-values :S5xlO'4 fell into a single

EST cluster, TR004, which was robustly and dose-dependently induced (Table 3.5c).

These 19 clones were all 2:85% identical at the nucleotide level, and jointly spanned

- 1.8kb of sequence. TR004 sequences showed no significant similarty to known

proteins, but very weak similarty to mammalian endogenous retroviral ENV genes.

The prevalence of low-magnitude changes, both generally and among mitochondral

genes, raised the issue of limits of detection. Thus, expected varation in measurement of

null (i.e. no change) results was determned from two observations. Firstly, mean

expression ratios for six negative control genes ranged between -1.61 and +1.38 (Table

3.4). Additionally, 1.8-fold change defined the 99.7% confidence interval (3 standard

deviations) for two homotypic control hybridizations (Chapter 2). Thus, a conservative

limit of detection of differential expression was established at 2:1.8-fold change. While

nearly 400 clones had mean expression ratios 2:1.8 or :S0.55, only 73 clones exhibited

statistically significant (p-value :S5xlO-4) differential expression ::1.8-fold at either dose

leveL.

TCDD-induced differentil gene expression

These 73 significantly differentially expressed clones corresponded to 25 known

genes or ESTs similar to known proteins, and 19 ESTs with no homology to known

proteins (Table 3.6). The identity of one clone was undetermned as a result of poor

sequence quality. As in previous analyses, the majority of known genes fell into three

major functional categories - xenobiotic detoxification enzymes, sarcomeric strctural

proteins, and genes involved in electron transfer and energetics (Table 3.6). The

remaining seven genes represented diverse cellular processes, including steroid synthesis

(20 ß-hydroxysteroid dehydrogenase), and erythrocyte morphology and function

(pyrimidine 5' nucleotidase), transcriptional regulation (cryptochrome la), and water

transport (AH042420). The EST cluster TR004 was also highly represented in this

analysis (Table 3.6f).

The same general trends noted previously were apparent in this analysis. Nearly 75%

of all differentially expressed genes, including sarcomeric proteins and most
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detoxification enzymes, were significantly induced at one or both doses (Figure 3.8). The

excess of up-regulation responses was most pronounced at the higher dose level; only

two genes - 12s and l6s ribosomal RNAs - were significantly suppressed 2:1.8-fold by

exposure to 5.0nM TCDD (Table 3.6d).

The most common expression pattern (27 genes) was significant differential

expression at only the lower dose; only seven genes were significantly differentially

expressed at both doses (Figure 3.8). There was also a general trend toward lesser

magnitude changes at the higher dose. Induction of both CYPIA and CYPIB 1 was

strongly and directly dose-dependent. In contrast, the mean (:t standard deviation)

magnitudes of change for all other differentially expressed genes were 2. 15:t.85 and

1.73:t.69 at 0.5nm and 5.0nM TCDD, respectively (single-factor ANOV A,

p-value -(0.01).

Dose-dependent differences were only statistically significant (single-factor ANOV A,

p-value -(0.01) for 4 genes and 3 ESTs. 20 ß-hydroxysteroid dehydrogenase was induced

in a directly dose-dependent manner. Cytochrome C oxidase, NADH dehydrogenase,

and ESTs AH045277 and AH046249 were more strongly induced at the lower dose.

Suppression of ATP synthase also appeared to be inversely dose-dependent.

EST AH041068 showed a trend toward dose-dependent reversal of response direction

(Table 3.6e). While induction by 5.0nM TCDD was not statistically significant, low- and

high-dose mean expression ratios of -1.88 and +2.06, respectively, were significantly

different from each other (single-factor ANOV A, p-value -(0.01). Conversely, an EST

similar to aquaporin 8 (AH042420) was significantly induced by O.5nM TCDD, and

showed a non-significant trend toward suppression by 5.0nM TCDD (Table 3.6d)

Follow-up by real-time RT-PCR

Real-time RT-PCR was used to further define dose-response curves for TCDD-

responsive genes identified by microaray analyses. Two pools of synchronous embryos

were split into six treatment groups - 0.05% DMSO or 0.5nM, 1.0nM, 2.5nM, 5.0nM or

l5nM TCDD. Duplicate PCRs were run using aliquots of cDNA samples from each

treatment group. To assess genomic DNA contamination, PCR was also run on samples
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from which reverse transcriptase was withheld; significant genomic DNA amplification

was never observed prior to PCR cycle 25 and did not interfere with cDNA quantification

(data not shown).

ARN2 and ß-actin served as negative controls. Neither biological nor technical

replicates were significant sources of varation for either gene (two-factor ANOV As, p-

values ::0.05), and no significant change in ARNT2 or ß-actin expression levels was

observed at any dose level (Figure 3.9a). Thus, for all other genes, technical and

biological replicates were combined (i.e. n=4), and ARNT2 expression ratios were used

as references for normalization.

CYP1A expression ratios were determned from only one technical replicate (i.e. n=2,

biological replicates), as accidental omission of PCR primers resulted in failure of

reactions in replicate plate #2. CYPIA mRA was significantly induced in each

replicate, but the magnitude of induction vared significantly between the two samples

(two-factor ANOV A, p-values ..0.05). In both cases, CYPlA induction increased dose-

dependently up to 1.0-2.5nM TCDD, then declined at 2:5.0nM TCDD (Figure 3.9b).

As microaray results suggested subtle and varable induction of mitochondral

proteins, RT -PCR was used to independently assess TCDD modulation of these genes.

Only one subunit of NADH dehydrogenase was assayed, as microaray results were

similar for all subunits. Mean expression ratios for all four mitochondral genes generally

ranged 1.2-1.5 (Figure 3.9c), but were never significantly different from null (single-

factor ANOV As, p-values ::0.05). Similarly, the subtle down-regulation of cardiac a-

actin suggested by microaray data could not be confirmed by RT-PCR (Figure 3.ge).

In stark contrast to microaray data, RT -PCR indicated strong suppression of cardiac

troponin T2 (Figure 3.9d). This suppression was highly statistically significant at 1.0nM,

2.5nM, and 15nM TCDD (one-tailed paired T-tests, p-values ::0.001). As induction of

troponin C has been observed in other TCDD gene expression profiling work (93),

TCDD regulation of this isoform was also assayed, no significant effect was observed

(Figure 3.ge).
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3.4 Discussion

Limits of detection

The current data were fitered according to dual criteria of magnitude of change and

statistical confidence. Threshold values for each criterion were determned empirically,

as there are no applicable theoretical guidelines. While there is some debate regarding

what level of change is biologically relevant, this question is generally obscured by

technical limitations on detection of differential expression. The current limit of

detection was based on a small number of negative controls and two homotypic

hybridizations. As control and experimental hybridizations made use of multiple aray

sets and cDNA sources, gene-specific systematic varance and/or bias was not assessed.

It is quite possible that many changes of lesser magnitude than the current detection limit

of 1.8-fold are both statistically and biologically relevant.

However, as confidence statistics calculated by Rosetta Resolver cannot be

interpreted as standard p-values, the question of what constitutes a statistically significant

result is not straightforward. Resolver p-values represent the probability that a modeled

normal distribution for a given gene includes the null change value log(ratio) = 0, and

thus, do not take into account varance in the measurement of null change. As a result,

they may overestimate actual significance to an unknown degree. Indeed, application of

p-value thresholds of 0.05 or 0.01 would have resulted in a high false positive rate.

Detection of differential expression at the high dose was restrcted by greater varance

between replicate hybridizations, presumably due to genetic varation between individual

clutches. Such varability was somewhat surprising given the fact that all parental fish

were members of a single inbred strain. There is no notable difference in sensitivity of

TL clutches to TCDD embryotoxicity. However, the occurrence of phenotypes, such as

long fins and lack of skin pigmentation, that result from known background

polymorphisms vares considerably between clutches. While strictly anecdotal, these

observations suggest the presence of significant genetic varation within the TL strain.

Combining clutches, as was done in the low-dose experiment, arificially removes

evidence of such varation, thereby overestimating the biological significance of certain
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changes. This may, in par, account for the need to apply unusually stringent thresholds

to avoid false positives, nearly all of which were detected at the lower dose. However,

such stringent analyses are unlikely to severely impact detection of changes in gene

expression involved in TCDD embryotoxicity; such changes should be as consistent

among TL clutches as is TCDD susceptibility.

General trends in TCDD-modulaed gene expression

At 44 genes or ESTs, the number of TCDD-regulated genes was somewhat lower

than that observed in other broad-scale gene expression studies. Marinez and colleagues

(94) identified 68 differentially expressed genes from a microaray of 2091 genes, similar

to the estimated 2000 genes represented on our zebrafish cardiovascular arays. Other

studies using larger microarays have documented differential expression of 0.9% (123)

and 6.9% (93) of all investigated genes; the current results fall at the low end of this

range. To some degree, the limited number of observed changes may be related to the

restricted (i.e. cardiovascular-specific) focus of the microarays used.

An emerging feature of TCDD-modulated gene expression is a pattern of widespread,

subtle changes in gene expression, as opposed to strong pressure on specific pathways.

In the current work, only two genes - CYPIA and CYPIB 1 - were significantly induced

::-fold. Similar patterns have been noted in other TCDD gene expression profiling

experiments (93, 123). Signal compression in microaray analyses has been an issue of

some concern, but does not appear to explain this trend. Our microaray-based

measurements of CYPlA induction were similar to both current and previously published

RT-PCR data (42). Additionally, Marinez and coworkers (94) confirmed the magnitude

of several subtle changes detected by microaray analyses. Thus, this and other gene

expression profiling work is reaffirmng the highly pleiotropic nature of impacts by

TCDD, as well as the unique sensitivity of CYPlA to TCDD.

The relative importance of AHRs' roles as a transcriptional enhancer and suppressor

is a matter of some debate. Whereas most studies have recorded nearly equal numbers of

up- and down-regulated genes, Puga and coworkers (93) identified twice as many TCDD-

suppressed genes as induced genes in hepatoma cells. In contrast, our work and that of
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Frueh and colleagues (123) indicated that the number of inductions exceeded

suppressions by nearly two-fold. The varation in outcomes of microaray studies

suggests that the balance between induction and suppression vares depending on

biological context. However, speculation on this topic is confounded by the fact that

microaray-based detection of down-regulation is limited by the constitutive level of gene

expression (i.e. suppression of low-level expression wil not be readily detected).

Not surprisingly, dose level appears to be a primar factor in determning

transcriptional responses to TCDD exposure. Only seven genes (c:20% of changes) were

significantly differentially expressed at both doses investigated here. Furthermore,

relatively small differences in actual doses resulting from the same nominal exposure

accounted for the majority of varation between hybridizations. Similarly, in comparng

three dose levels spanning two orders of magnitude, Marinez and colleagues (94) found

that more than half of all TCDD-regulated genes were differentially expressed at only

one dose leveL. The limited number of genes that are responsive to TCDD over a large

range of exposure levels may be of interest as potential biomarkers; certainly, this has

been the case for CYPIA.

Interestingly, traditional dose-response curves (i.e. direct relationship between dose

level and magnitude of change) were primarly limited to detoxification enzymes

(CYPlA, CYPIB1, GSTn). For most other genes, paricularly sarcomeric proteins and

several ESTs, greater differential expression was observed at the lower dose (0.5nM

TCDD). As pooling clutches accomplishes essentially the same end as averaging data

from multiple clutches, differences in experimental design do not account for the

prevalence of reduced magnitude changes at the higher dose. Thus, the current data

suggest that non-traditional dose-response relationships (i.e., stronger responses at lower

doses) are a prevalent feature of TCDD-modulated gene expression. Marinez and

coworkers (94) reached a similar conclusion in examning gene expression profiles in

TCDD-exposed lung epithelial cells. Such low-dose specific responses likely represent

adaptive responses to chemical stress, a category of responses that has been largely
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ignored in favor of toxic mechanisms. However, the prevalence and importance of

adaptive responses is beginning to gain recognition (151).

Xenobiotic responsive gene expression

Observed induction of xenobiotic metabolism enzymes largely met expectations.

CYPIA induction has been observed in all vertebrates studied, and induction of

glutathione S transferase COST) is well documented in mamalian species (152, 153).

Accordingly, current data consistently indicated directly dose-dependent increases in

expression of CYPlA and OSTn. Microaray data also suggested robust dose-dependent

induction of CYPlBl In contrast to CYPIA, inducibility of CYPIB1 by AHR agonists

does not appear to be universal phenomenon. However, CYPIBI induction has observed

in several systems (154-159).

Expression of xenobiotic detoxification genes other than the AHR gene battery was

also altered in response to TCDD exposure. Induction of major vault protein was

somewhat unexpected, and very intrguing, given mixed results with regard to induction

of other multi-drg resistance proteins by TCDD and related chemicals (160, 161).

Glutathione peroxidase was unique among xenobiotic detoxification genes, in that low-

level TCDD treatment strongly suppressed expression. TCDD treatment also reduces

glutathione peroxidase expression in murine liver tissue (124). However, this result may

be better understood in the context of cardiovascular biology, as suppression of

glutathione peroxidase has been observed in cases of dilated cardiomyopathy in

mamals (162).

Pertrbed cellular energetics

While the magnitude of induction of mitochondral energy transfer proteins is

uncertain, all analyses of current microaray data indicated some degree of up-regulation

ofNADH dehydrogenase and cytochrome C oxidase. RT-PCR data did not support a

strong induction of these genes, but were consistent with a small (i.e. 25-50%) increase in

mitochondral gene expression. Thus, it seems likely that mitochondral energy

production processes in zebrafish embryos are subtly enhanced by TCDD. Stronger
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alterations in expression of a Ca2+ -ATPase (SERCa), and ESTs similar to aconitase and

adenylate kinase enzymes suggest additional disruption of downstream energy transfer

processes. Similarly, induction of mitochondral electron transfer proteins, including

cytochrome c oxidase and cytochrome b, and varous perturbations in other metabolic

enzymes has been documented previously (123, 124).

Elevated mitochondral gene expression might contrbute to reactive oxygen-

mediated processes of toxicity. Increased respiration-dependent reactive oxygen

production by mitochondria has been observed in TCDD-treated mouse liver (163, 164).

In hear mitochondra, TCDD-induced reactive oxygen production has been linked to

decoupling of respiration and downstream oxidative phosphorylation processes (165).

Such a situation could arse from concurrent induction of electron transfer enzymes and

suppression of downstream metabolic enzymes, such as ATP synthase. However, any

speculation with regard to A TP synthase is premature given rather contradictory results

for this gene. Nonetheless, observations of altered expression of electron transfer

proteins suggest a potential molecular mechanism for TCDD-induced mitochondral

reactive oxygen production, a problem that has heretofore been studied only on the level

of enzymatic activity.

Perturbations in energy production and transfer are also in accord with current

understanding of cardiomyopathy and hear failure. Heritable mutations in mitochondral

genes are associated with congenital cardiomyopathies (166). Induction of mitochondral

electron transfer proteins, including NADH dehydrogenase, has been seen in both dilated

and hypertrophic cardiomyopathies (162). Decreased functionality of energy transfer

enzymes, including adenylate kinase, is also typical of failing myocardium (167, 168).

Altered cardiovascular gene expression

Alterations in expression of cardiac sarcomere proteins is also indicative of TCDD-

induced cardiomyopathy. Loss-of-function mutations in cardiac troponin T2, cardiac

actin and cardiac myosin heavy chain are leading causes of human congenital

cardiomyopathies (169). Paradoxically, significant induction of sarcomeric proteins,

including troponins and myosins, has been observed in both dilative and hypertrophic
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cardiomyopathies in mammals (162, 170, 171). Cardiac myosin levels are also increased

in chick embryos with TCDD-induced dilated cardiomyopathy (32), and troponin C

expression is elevated in TCDD-treated hepatoma cells (93).

Microaray data for multiple myosin isoforms and cardiac troponin T2 are in accord

with other observations of induced expression of sarcomeric proteins in cardiomyopathy.

In contrast, RT-PCR data indicated strong suppression of cardiac troponin T2, a condition

more similar to loss-of-function mutations that cause cardiomyopathies. While

conflcting data from the two methods is a significant technical concern (see below), it

does not preclude the drawing of some tentative biological conclusions. Regardless of

the direction of change, disruption of normal expression of cardiac troponin T2 and

cardiac myosins would be indicative of cardiomyopathy.

Nonetheless, directly conflcting microaray and RT-PCR data regarding cardiac

troponin T2 are troubling and difficult to justify. One explanation is that this gene suffers

disproportonately from some systematic dye bias in microaray analyses. However,

post-labeling protocols, such as that used in the current work, were specifically designed

to avoid dye biases that are pervasive in direct labeling systems; the same modified

nucleotide is used to generate both control and treated cDNAs, and subsequent dye

coupling is not subject to significant steric hindrance. In the present case, a low rate of

systematic bias was quantified by homotypic control hybridization, and taken into

account by the use of a magnitude-of-change threshold. Nonetheless, it would be

interesting to perform a dye-swap experiment to rule out dye bias as the source of this

conflict.

It is also possible that differences in assayed sequences introduce discrepancies in end

results. Whereas arayed cDNA clones for cardiac troponin T2 were 600-900bp in

length, PCR products for real-time RT -PCR analyses were constrained to -100bp.

However, priming sites for RT-PCR fell within arayed sequences. Thus, how this

difference would produce such drastically disparate results is unclear.
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TCDD-regulaed ESTs

Altered expression of numerous ESTs is an intriguing aspect of this work, as each

EST presents an opportunity for novel gene discovery and insight into unexplored aspects

of TCDD embryotoxicity. In many cases, additional sequence data would likely reveal

these to be 3' untranslated regions of proteins that have been characterized in other

species. However, it is worth noting that all annotations of the human genome include

several thousand predicted genes with no homology to known proteins. Our knowledge

of the vertebrate gene repertoire is far from complete.

Certain ESTs presented paricularly interesting opportunities for further investigation.

EST AH041068 demonstrated a unique dose-response relationship - suppression at low

dose, induction at high dose, the origin of which would be fascinating to investigate. The

EST cluster TR004 is another interesting case. The number of TR004 clones encountered

suggests expression at a level comparable to cytochrome C oxidase. Furthermore, robust,

dose-dependent induction suggests the possibility of involvement in TCDD toxicity.

However, the identity of this EST could not be established from available sequence data.

Conclusions

Gene expression profilng of TCDD-exposed zebrafish embryos has provided a

unique perspective on TCDD transcriptional modulation; the majority of other available

data pertains to mamalian liver cells and tissue. Incorporation of the current data into

comparsons of broad-scale gene expression data from multiple systems lends weight to

several emerging general trends. For example, the vast majority of TCDD-induced

changes detected in this and other studies are relatively subtle (i.e., -:5-fold); the

significance of this observation is uncertain. However, against a background of many

small changes, induction of CYP1A stands in stark contrast. Thus, surveys of thousands

of genes in multiple cell and tissue types are reaffirmng the primacy of CYPlA

induction among molecular effects of TCDD. Another important aspect of TCDD-

modulated gene expression is the prevalence of low-dose specific, presumably adaptive,

responses. Growing recognition of the importance of adaptive responses to TCDD and

other chemical stressors may (hopefully) influence future approaches to risk assessment.
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In addition to further elucidating general trends, this work has contributed to our

understanding of TCDD cardiovascular embryotoxicity specifically. Altered expression

of proteins that compose cardiac muscle sarcomeres was a consistent feature TCDD gene

expression profiles in zebrafish embryos. In the case of cardiac troponin T2, microaray

and RT-PCR data were (inexplicably) in direct disagreement. Thus, the nature of TCDD-

induced alteration in cardiac troponin T expression requires clarfication. However,

taken as a whole, this work provides preliminary indications that early embryonic TCDD

exposure causes dilated cardiomyopathy in zebrafish, as in birds.

This and other gene expression profiling work has provided hints of perturbed cellular

energetics resulting from changes in expression of electron transfer proteins. In this case,

most clones of mitochondral genes indicated only subtle (1.3- to 1.5-fold) induction, but

a few showed more robust responses. Unfortunately, such slight changes were well

beneath the detection sensitivity of RT -PCR. However, induction of mitochondral

proteins might be important either as a step toward TCDD-induced mitochondral

reactive oxygen production or as a further indicator of cardiomyopathy. Certainly, the

weight of evidence is sufficient to urge further investigation in this area. It wil be

paricularly important to determne whether slight changes in mitochondral gene

expression are sufficient to generate detectable changes in respiration rates, and whether

such changes are causally or secondarily related to TCDD toxicity.

141



Table 3.1 Primer sequences and PCR product information for real-time RT -PCR

analyses. Primers for CYPIA and ARNT were provided by Dr. Mark Hahn.
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Sense (top) and anti-sense (bottom) Annealing Product size
Gene name primer sequences temp. ee) (bp)-
ß-actin ATGGCTTCTGCTCTGTATGGCG 52.6 75

TCCCCTGTTAGACAACTACCTCCC

cytochrome C oxidase 1 TGTAGGAATGGATGT AGACACCCGAG 52.4 105

CCGTGGAGAGTGGCTAATCAGC

cytochrome b CACACTTCT AACAGCGAGGAATAGC 53.3 135

TTGTCCAATGATGATGTAGGGGTG

NADH dehydrogenase 2 TCTCATTGGAGGGTGAAGCGG 52.5 125

CAATCAGAGT AAGTTGCGGAGCG

A TP synthase 6 TATCCTCGTTGCCATACTTCTACCTTG 52.1 120

ATAAGTTGGTTGTGAATCGTCCAGTC

cardiac troponin T2 GAGAGACGGAGTGGAAGAACAG 52.2 105

GAGAGCAGATTCATTGGCATTGTC

troponin C AATCCCTGCCCTCATAACGC 53.3 95

GTGTTCATCTGTCTGTCTGCTGC

cardiac a-actin CTCCATCGTCCACAGAAGTGC 50.9 75

AAGGCATACGGGGGGTTAGTTG
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Table 3.2 eH)TCDD levels (ng/g) in treated embryos, as determned by liquid

scintilation counting. For each treatment group (e.g. TCDD 1, TCDD 2, etc.), three sub-

samples of three embryos each were counted. Measurements in pmol TCDD/embryo

were converted to ng TCDD/g embryo weight assuming Img embryos. Treatment group

means (:t standard deviation), as well as the overall dose-level means (:t standard

deviation) are shown.
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TCDD 1

O.5nM TCDD: 1.37 :! 0.14
TCDD 2

1.99 :! 0.14

TCDD A TCDD B
5.0nM TCDD: 12.21:! 0.46 9.l9:! 0.31

TCDD 3

2.17 :! 0.15

MEAN

1.84 :! 0.42

TCDD C TCDD D MEAN
11.54 :! 0.36 10.00 :! 0.55 1O.74:! 1.38
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Table 3.3 Pairwise correlation coefficients for replicate hybridizations for 0.5nM TCDD

samples (a) and 5.0nM TCDD samples (b). Correlation analysis was performed on all

features that were detected and flagged "good" on all hybridizations from that dosage

group; the number of features used is indicated below each table. Self-self correlations

are shaded in grey.
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(a)

O.5nM rCDD 1 2 3

1 1

2 0.82 1

3 0.81 0.99

n=3772

(b)

5.0nM rCDD A B-1 C-1 D B-2 C-2

A 1

B-1 0.18

C-1 0.61 0.43

D 0.25 0.49 0.35

B-2 0.15 0.58 0.45 0.59 1

C-2 0.50 0.32 0.45 0.34 0.30 1

n = 3478
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Table 3.4 Clone information and mean expression ratios for positive and negative

control features. Fragments of Arabidopsis thaliana chloroplast genes were arayed and

spiked into hybridization samples in equal quantities to provide external, or technical,

negative controls (a). Genes used as internal, or biological, controls (b, c) were selected

based on established patterns of expression following TCDD exposure (42, 51). Unique

clone identifiers and, where available, corresponding GenBank accession numbers are

provided.
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Genbank Mean Fold Change (p-value)

Gene Name Accession # Clone 10 O.5nM TCDD 5.0nM TCDD

(a) Arabidopsis thaliana external negative controls

photosystem I chlorophyll a/b-binding X56062 A.th_1 1.29 (0.02) -1.07 (0.69)

protein (CAB)

RUBISCO activase (RCA) X14212 A.th_2 -1.61 (0.0002) -1.29 (0.0064)

ribulose-1 ,5-bisphosphate carboxylase! U91966 A.th_3 1.44 (0.08) -1.1 (0.46)

oxygenase large subunit (RBCl)

(b) Internal negative controls

aryl hydrocarbon nuclear translocator (ARNT) ARNT-1 1 16 (0.56) 1.21 (0.30)

b-actin NM_131031 beta-actin 1.38 (0.17) -1.37 (0.05)

ubiquitin ubiquitin -1.5 (0.31) -1.12 (0.57)

(c) Internal positive controls

aryl hydrocarbon receptor 2 (AHR2) NM_131264 AhR2-5 1.91 (9.76e-13) 1.94 (1.80e-05)

cytochrome P450 1 A (CYP1 A) AB078927, CYP1A-1 28.63 (1.13e-09) 62.85 (0.0)

AF21 0727 
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Table 3.5 Microaray expression data for redundantly represented genes determned to

be differentially expressed at p-value :S5xlO-4. These genes fell into three functional

classes - mitochondral genes (a), sarcomeric proteins (b), and ESTs (c). For each gene,

the overall mean expression ratio, as well as the range of values for individual clones, is

shown. The number of clones representing each gene is indicated (N).
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O.5nM TCDD 5.0nM TCDD

GENE N Mean Range Mean Range

(a) mitochondrial genes

NADH dehydrogenase, subunit 1 4 1.34 1.21 - 1.60 1.21 1.5 - 1.30

NADH dehydrogenase, subunit 2 6 1.51 1.26 . 1.63 1.26 1.13 -1.40

NADH dehydrogenase, subunit 4/4L 7 1.54 1.36 - 1.71 1.27 1.6 -1.30

NADH dehydrogenase, subunit 5 5 1.33 1.09 - 1.41 1.46 1 11 . 1.59

Cytochrome C oxidase, subunit 1 20 1.45 1.23 - 1.69 1.23 1.05 . 1.48

Cytochrome b 11 1.45 1.31 - 1.66 118 1.02 - 1.27

A TP Synthase 2 1.26 1.8 - 1.33 1.36 1.31 -1.41

(b) sarcomeric proteins

Troponin T2 4 1.92 1.8 - 2.4 1.65 1.3 - 1.9

Cardiac a-actin 4 -1.23 -11 ..1.5 -1.3 -1.3..1.4

Cardiac myosin heavy chain ß 10 1.6 -1.6 - +2.0 1.07 -1.1 . 1.2

Cardiac myosin light chain 2 3 1.59 1.4 - 1.8 1.24 1.-1.4

(c) ESTs

TR004 19 2.19 1.1 - 3.3 2.59 1.6 - 7.7
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Table 3.6 Identities and mean expression ratios of genes whose expression was altered

by embryonic TCDD exposure. Unique clone identifiers and, where available,

corresponding GenBank or UniGene (for ESTs) accession numbers are provided. The

strength of statistical support is indicated by asterisks to the right of fold-change values

(no asterisk = not statistically significant, * = p-value :S5xlO-4, ** = p-value :SlxlO-7, ***

= p-value :SlxlO'lO). Genes have been separated into the following functional classes: (a)

genes involved in xenobiotic detoxification, (b) sarcomeric proteins, (c) enzymes

responsible for electron transfer and cellular energetics, (d) genes with assorted known or

predicted functions, (e) ESTs with no significant similarty to known proteins

(undetermned = low quality sequence), and (f) EST cluster TR004.
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(a) Xenobiotic detoxicification genes

Genbank Mean Fold Change

Gene Name Accession 1# Clone 10 O.5nM TCDD 5.0nM TCDD
aryl hydrocarbon receptor 2 (AHR2) NM_131264 AH040775 2.23 2.11 *

AH042846 2.43 * 2.71 ***

AhR2-5 1.91 *** 1.94 *

cytochrome P450 1A (CYP1A) A8078927, CYP1A-1 28.63 ** 62.85 ***

AF21 0727 

cytochrome P450 181 (CYP1 81) AF235139 CYP181-1 ND 4.9 *

glutathione S transferase n (GST n) none AH045159 1.46 2.01 **

major vault protein AH046177 1.61 * 1.85 ***

EST, similar to phospholipid hydro- Dr.24921 AH041475 -2.02
***

-1.02

peroxide glutathione peroxidase
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(b) Sarcomeric proteins

GenBank Mean Fold Change

Gene Name or Descrip.tion Accession # Clone ID O.5nM rCDD 5.0nM rCDD
cardiac troponin T2 AF282384 AH039524 2.24 * 1.87

AH041 025 1.8 * 1.92 *

AH041916 1.86 *** 1.82

AH042942 1.76 *** 1.92 *

AH042942 1.76 *** 1.92 *

AH044533 2.11 * 1.58 *

AH046261 2.35 *** 1.33

cardiac myosin light chain 2 AF114428 AH044350 1.83 *** 1.22

myosin light chain, similar to atrial forms AH046137 1.86 * 1.8

ventricular myosin heavy chain AF114427 AH042793 1.91 * 1.6
AH045706 1.97 ** 1.15

AH046321 1.93 ** 1.1

AH046397 3.30 * 1.24

myosin heavy chain, similar to AH041834 1.92 * 1.44

cardiac forms

myosin heavy chain, similar to skeletal AH045853 1.93 *
-1.05

slow muscle forms
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(c) Electron transfer and energy production enzymes

GenBank Mean Fold Change

Gene Name Accession # Clone ID O.5nM rCDD 5.0nM rCDD
cytochrome c oxidase subunit I NC_002333 AH040733 1.84 * 1.10

AH042406 2.39 *** 1.7
AH0448 1.80 ** 1.0
AH044694 2.25 *** 1.23

AH046473 2.09 *** 1.42 **

NADH dehydrogenase subunit 5 NC_002333 AH044990 1.93 *** 1.36 *

Ca2+ ATPase (SERCa) AH045786 1.90 *** 1.23

EST, similar to aconitase (aconitate Dr.2353 AH046765 2.17 * 1.82

hydratase, citrate hydrolyase)

A TP synthase NC_002333 AH038800 -1.89 * -1.06

AH039011 -1.91 ** -1.22

EST, similar to adenylate kinase AH039190 -1.97 * -1.50
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(d) Assorted genes with known or predicted functions

GenBank Mean Fold Change
Gene Name Accession # Clone 10 O.5nM TCDD 5.0nM TCDD
20 ß-hydroxysteroid dehydrogenase AH038811 1.16 2.37 *

pyrimidine 5' nucleotidase, cytosolic AH039334 1.41 1.88 *

mitochondrial16s ribosomal RNA NC_002333 AH038898 -1.46 -1.89 *

mitochondrial12s ribosomal RNA NC_OO2333 AH038991 -2.91 * -1.75 ***

ribosomal protein S8 AH041743 3.25 2.69 *

cryptochrome 1 a NM_131789 AH046188 1.55 1.84 ***

EST, similar to aquaporin 8 Dr.916 AH042420 1.89 * -3.18
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(e) ESTs with no significant similarity to known proteins

UniGene Mean Fold Change

Gene Name Accession # Clone ID O.5nM rCDD 5.0nM rCDD
EST Or.11104 AH045730 2.13 *** 1.25 *

EST Or.22367 AH044506 1.83 * 1.10

EST Or.23041 AH045277 1.83 ** 1.21

ESTs Or.24483 AH041557 2.41 *** 3.93

AH046684 2.13 * 2.27 ***

EST Or.25291 AH042159 -1.99 * 1.11

EST Or.23558 AH045251 NO 1.92 *

EST AH042885 1.89 * NO

EST AH042622 2.16 * NO

EST AH044370 8.39 1.99 *

EST AH041 068 -1.88 *** 2.06

EST AH040900 -2.02 * -1.14

EST AH038788 -2.46 * -1.71

EST AH039003 -2.07 * -1.61

EST AH046249 1.98 * -1.2

EST AH046847 -2.41 *** -1.01

EST AH038815 -1.84 * -1.04

EST AH042851 -1.8 * -1.12

undetermined AH045830 1.86 * 1.90 *
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(f) EST cluster TR004, with weak similarity to retroviral envelope proteins

Mean Fold Change

rR004 Clone 10 O.5nM rCDD 5.0nM rCDD

AH044277 1.63 ** 2.78 **

AH042756 1.87 2.22 ***

AH042241 1.88 2.20 ***

AH039458 1.89 *** 2.14 *

AH044293 1.89 *** 2.48 ***

AH040801 2.04 3.10 ***

AH043006 2.25 1.98 ***

AH044418 2.44 2.83 **

AH046610 2.58 * 2.29 *

AH042961 2.60 *** 2.66 **

AH046681 2.61 *** 2.54 ***

AH041814 2.77 *** 2.20 ***

AH046805 2.89 *** 2.41 ***

MEAN.: Std. Dev. 2.26.: 0.41 2.45 .: 0.32
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Figure 3.1 Dose-response curves for TCDD-induced pericardia! edema (a) and

impairment of caudal circulation (b), as observed at 80 hpf. Severity of impacts was

scored on an individual basis according to a discrete ranking system, and mean severity

scores were calculated from a sample size of 39-45 embryos per treatment group.

Occurrence was determned as the percentage of all individuals exhibiting a given

symptom at any severity leveL. TCDD concentrations selected for use in transcriptional

profiing are indicated by black arows.
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Figure 3.2 Schematic representation of experimental designs for TCDD exposure and

microaray analyses. Replicate treatment groups are represented by ovals (DMSO) and

rectangles (TCDD). Hybridization pairings are indicated by connecting arows, with Cy-

dye labeling shown in color (Cy5 = red, Cy3 = green). The quantity of labeled cDNA

used in each hybridization is indicated in parentheses beneath the TCDD sample name.
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Figure 3.3 Lack of effect of cDNA quantity on microaray gene expression results, as

determned by comparison of gene-specific mean expression ratios determined from three

high-dose hybridizations using either :S500ng cDNA (5.0nM TCDD A, B-2, C-2) or -1/-g

cDNA (5.0nM TCDD B-1, C-L, D).
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Figure 3.4 Inverse relationship between degree of difference in embryo TCDD levels

and correlation between low-dose replicate hybridizations (red, squares) and high-dose

replicates (blue, diamonds). Self-self correlation values (i.e. TCDD A vs. TCDD A) were

excluded to avoid skewing results. Linear regression equations and R2 values are shown.

Data are taken from tables 3.2 and 3.3.
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Figure 3.5 Percentage of 2:2-fold changes made up by genes with known functions

(black, with selected genes listed inset), ESTs with no significant similarty to known

genes (dark grey), clones whose identity was undetermned due to low quality sequence

(light grey), and clones that were found to have no insert (white).

168



no insert
21%

known genes

25%

ESTs
43%

169

aryl hydrocarbon receptor 2

cytochrome P450 1A

glutathione S transferase 1t

20b-hydroxysteroid dehydrogenase

ovarian aromatase (CYP19a)

cardiac troponin T2

12s ribosomal RNA

undetermined
11%



Figure 3.6 Summary of gene expression results fitered according to a statistical

confidence threshold of p-values :S5xlO-4.
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Figure 3.7 Frequency distribution of magnitude (absolute value fold change) of

statistically significant (p-value :S5xio-4) mean expression ratios at 0.5nM (gray) and

5.0nM TCDD (black). Expression ratios ::4.0 were limited to CYPIA and CYPIB1, and

are not shown.
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Figure 3.8 Summary of TCDD-induced significantly differential expression (i.e. 2:1.8-

fold change, p-values :S5xio-4), showing the excess of inductive responses and the

relatively small number of genes whose expression was significantly altered at both

TCDD dose levels.
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Figure 3.9 Gene expression ratios for selected genes, as determned by real-time RT-

PCR. ARNT2 and ß-actin provided negative controls (a), while CYPIA served as

positive control (b). Subtle changes in expression of mitochondral electron transfer

proteins were not confirmed by RT-PCR (c, central panel). In contrast to microaray

analyses, RT-PCR indicated strong suppression of cardiac troponin T2 (d). Relative

expression levels for additional sarcomeric proteins, troponin C and cardiac a-actin, are

also shown (e). Statistically significant results (single-factor ANOV A, p-values ::0.01)

are indicated by astrices.
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CHAPTER 4

EZRl: A novel unorthodox LTR-retroelement in zebrafish (Danio rerio)

Abstract

Retroelements make up nearly 40% of some vertebrate genomes and can influence
gene expression and genome rearangement. This chapter describes a group of novel,
unorthodox, LTR-containing retroelements, EZRl (Expressed Zebrafish Retroelement
group 1), found in zebrafish. EZRl elements consist of canonical LTRs flanking an
integrase-like open reading frame and a non-coding region similar to retroviral envelope
protein genes. As EZRl sequences do not encode a reverse transcriptase, RNase H, or
protease, these elements must be non-autonomous with respect to retrotransposition.
Furthermore, they cannot be placed into any current LTR retroelement class.

The initial discovery of EZRl resulted from our investigations of TCDD-altered gene
expression in zebrafish embryos; EZRl transcript levels approximately doubled
following TCDD exposure (Chapter 3). AHR binding motifs are completely absent from
the EZRl LTR, indicating that observed EZRl induction by TCDD cannot be attributed
to direct AH signaling. Alternatively, EZRl induction may be a secondary effect of
either CYPIA-mediated increases in AP-l activity or cross-talk between AHR and GR.
Given the abundance of EZRl transcripts in the hear and reported involvement of certain
endogenous retroviruses in cardiovascular disease, the relationship between EZRl
induction and cardiovascular toxicity caused by TCDD exposure warants further
investigation.
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4.1 Introduction

Retroelements, such as short and long interspersed repeat elements (SINs and

LINs), retrotransposons and endogenous retroviruses, are potentially mobile genetic

elements that require an RNA intermediate for transposition. Such elements are integral

components of eukaryotic genomes, composing as much as -40% of total genomic

material in mamals (172, 173) Amplification of retroelements can have immediate

impacts on gene expression (i.e. insertional mutagenesis) and local chromosomal

structure, as well as lasting influence on recombination and genome rearangement events

(174) Different classes of retroelements exhibit a varety of retrotransposition

mechanisms, amplification rates, and fates in the host genome. Endogenous retroviruses

and closely related retroelements comprise a distinct group defined by the presence of

flanking long termnal repeats (LTRs) utilized in host genome integration.

While diverse at the level of primary sequence, LTRs possess several conserved

features that can be used for de novo identification of LTR retroelements in genome

sequences (175, 176). Most LTRs are identical, direct repeats of approximately 300-500

bp in length, delineated by short (2-4 bp) inverted repeats, 5' -TG(TA) ... (TA)CA-3'

Additionally, integrated retroelements are flanked by direct repeats of 4-6 bp of host

genomic sequence generated during the integration process. Canonical LTRs consist of

three subunits - U3, R, and U5. The central R domain is delineated on the 5' end by

transcription initation sequences, and on the 3' end by a poly-adenylation signaL. Since

the R region is typically less than 80 bp in length, the proximal (5' LTR) poly-

adenylation site is usually ignored. Many retroelements have an additional signal, a poly-

adenylation downstream sequence (PADS), in the U3 region that further specifies use of

the poly-adenylation site in the 3' LTR. Sequence elements responsible for regulation of

gene expression are also generally found in the upstream U3 region.

The internal composition of LTR retroelements is similar to that of exogenous

retroviruses, from which they are thought to have derived. As a general rule, the LTRs

flank a small number of long open reading frames (ORPs), including homologs of the

retroviral genes gag, pol, and env. Gag encodes structural proteins that form intracellular
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nucleocapsid particles. The pol polyprotein typically yields an asparic protease (Pro), a

reverse transcriptase (RT), ribonuclease H (RNase H), and an integrase (Int) enzyme

similar to the transposases found in DNA transposable elements. Finally, env encodes

envelope glycoproteins necessary for host cell invasion by infectious retroviruses.

Endogenous retroviruses tend to maintain all three genes, although often with inactivating

mutations, while other retroelements generally lack an env ORF.

Traditionally, LTR retroelements have been divided into five major groups - BEL,

Tyllcopia, Ty3/gypsy, DIRS1, and the vertebrate endogenous retroviruses. This

classification system is based primarly on domain order within the pol ORF and

phylogenetic analyses of reverse transcriptase genes. The DIRSI group presents a

challenge to this scheme; the defining features of DIRS 1 retroelements are integrase

genes distinct from either retroviral integrases or DNA transposon endonucleases, and

unorthodox termni consisting of either split direct repeats or non-identical, inverted

repeats (177, 178). The recently discovered zebrafish retroelement, bhikhari (bik), also

defies traditional classification (179). Bik is flanked by extensive direct repeats

manifesting all conserved features of LTRs, but it contains only a single ORF with no

homology to any known protein.

Gene expression profiling of TCDD-exposed zebrafish embryos identified an EST

cluster with weak homology to retroviral envelope proteins (Chapter 3). Further

characterization of these ESTs, described herein, has revealed a novel, unorthodox LTR

retroelement, EZR1 æxpressed Zebrafish Retroelement group 1). Examnation of

multiple EZR1 transcripts and genomic copies indicates that EZRl elements consist of

canonical LTRs flanking a single integrase-like ORF and a non-coding region similar to

retroviral env genes. EZRl elements lack a recognizable RT domain, and thus, cannot be

placed within any existing LTR retroelement classes. EZRl transcripts are abundant in

normal embryonic and adult tissues, paricularly the hear, and retroelement expression is

enhanced by the environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin. Predicted

transcription factor binding sites provide hypotheses regarding the regulation of EZRl

expression. However, the biological function of EZRl, if any, remains uncertain.

181



4.2 Methods

Zebrafish Embryos

All fish used in these experiments were from an inbred line of wild-type TL zebrafish

(Danio rerio) maintained in the Fishman laboratory facility at Massachusetts General

HospitaL. To obtain embryos, trios of one male and two female mature fish were held in

divided mating tanks overnight. To ensure that all embryos were synchronous to within

two cell cycles, embryos were collected within 30 min after removing the barer the

following morning. Embryos were maintained in Tübingen E3 egg water (5mM NaCl,

0.17mM KCl, 0.33mM CaCiZ, 0.33mM MgS04) at 28°C.

At 48 and 72 hours post fertilization (hpf), groups of 100 embryos were anaesthetized

on ice and placed in lml 4% paraformaldehyde for 2 hrs, or overnight at 4°C. Fixed

embryos were rinsed three times with lml methanol, and subsequently stored in Iml

methanol at -20°C. Additional embryos (72, hpf) were flash frozen in liquid nitrogen and

stored at -80°C for subsequent RNA isolation.

in sit Hybriizaon

High resolution in situ hybridization was performed essentially as per previous

description (180). Briefly, digoxygenin-Iabeled anti-sense RNA probes were prepared by

in vitro transcription from lJ,g plasmid DNA using SP6 RNA polymerase. Fixed

embryos were gradually rehydrated, then incubated with anti-sense probes, followed by

primary and secondary antibodies, and finally, by chemiluminescent detection reagents.

Embryos were then post-fixed in 4% PFA, photographed, and stored in phosphate

buffered saline

RNA Preparation

Total RNA was prepared using TriZol Reagent (Invitrogen) according to

manufacturer's protocol. Briefly, 50-100 embryos were homogenized in Iml TriZol.

Phase separation was accomplished by addition of chloroform (0.2 ml). RNA was

precipitated from the aqueous phase using isopropanol (0.5 ml), and the resulting pellets
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were washed with 1 ml 75% ethanoL. Air-dried RNA was reconstituted in DEPC-treated

water and stored at -80°e.

5' RACE and RT-PCR

cDNA was generated from total RNA using the SMART RACE kit (BD Biosciences

Clontech) according to standard protocols. Briefly, total RNA (2 Ilg), 5' -RACE CDS

primer (20 pmol), and SMART II A oligo (20 pmol) were incubated together 2 min at

70°C, then chiled on ice. Reverse transcription reactions (20 III final volume) containing

Ix first strand synthesis buffer, 2mM dithiothretol, ImM dNPs, and Powerscript

reverse transcriptase (2 Ill) were then incubated 2 hrs at 42°C. cDNA was diluted 1 :2.5 in

dH20 and stored at -20°e.

5' RACE PCRs were performed using Advantage 2 Polymerase (1 Ill) in 50 III

reactions containing Ix reaction buffer, dNPs (200IiM each), and one gene-specific

primer (20nM) plus either Ix Universal Primer Mix A or Nested Universal Primer A

(1¡.) (BD Biosciences Clontech). For all other PCR, Taq polymerase (Epicentre) was

used with two equimolar gene-specific primers (20nM) under otherwise identical reaction

conditions. The amplification program consisted of an initial 1 min denaturation step

(95°C), followed by 30 cycles of 10 see at 94°C, 10 sec at 58°C, and 3 min at 72 0e.

Completed PCRs were held at 4°C prior to visualization by agarose gel electrophoresis

and subsequent purification. Gene-specific PCR primer sequences (5' to 3') were as

follows:

Fl - CCATGCAACCAGGATAAAACGAGC

Rl - GCCTGACAACACAGGATGGACAGG

R2 - CAGTCCCAATGTCCAT AGCCACTTC

R3 - AGGTGCTCGTTTATCCTGGTTGCATGG

R4 - GTTCTGGTT ACAGCCACGACATCCGTCC

DNA Sequencing

Contamnating dNPs and enzymes were removed from aliquots of PCR reactions

(30lil) using QiaQuick PCR Purification spin columns according to standard protocols
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(Qiagen). Purified PCR products (3ld) were ligated into pGEM-T Easy vector (1¡.l) in

LO¡.L reactions containing Ix rapid ligation buffer and l¡.l T4 DNA ligase (Promega).

Ligations were incubated 2hrs at room temperature, then stored at 4°C prior to

transformation into JMI09 cells by standard heat-shock protocol (Promega). Transformed

cells were grown overnight at 37°C on LB agar plates containing ampicilin (100¡.g/ml),

IPG and X-gal.

Selected colonies were transferred to liquid LB (lOO¡.g/ml ampicilin) and grown

overnight at 37°C with agitation (220rpm). Bacterial cells from 4mls of liquid cultures

were pelleted, and plasmid DNA was prepared using QiaPrep Spin Mini-Prep columns

according to manufacturer's protocol (Qiagen). Universal SP6 and T7 primers (40pmol

each) were used to amplify insert fragments from l¡.l mini-prep'd DNAs in lOOul PCRs

containing Ix PCR buffer, 2.0mM MgCli, 400¡.M dNTPs, and 5U Taq DNA polymerase

(Qiagen). PCR products were purified using QiaQuick PCR Purification spin columns

(Qiagen), and DNA concentrations were adjusted to 20ng/lOO bp length. DNA

sequencing reactions were performed by the Massachusetts General Hospital DNA

sequencing core facility.

Radiaon Hybri Mapping

Mapping PCRs were performed using 5¡.l genomic DNA from the Goodfellow T51

radiation hybrid panel (181) in LO¡.L reactions containing Ix PCR buffer (Qiagen),

2.0mM MgCli, 200¡.M dNPs, and 2¡.M each primer (pI and R2, sequences above). An

initial 30 see denaturation step at 95°C was followed by 35 amplification cycles (30sec at

94°C, 30sec at 52°C, lmin at 72°C) and a final extension period of 7 min at 72°C. PCR

products were stored temporarly at 4°C, then visualized by agarose gel electrophoresis

and scored as present (1), absent (0), or ambiguous (2).

Sequence Analysis

Nucleotide sequence alignments were produced using ClustalX, with default settings

modified to include gap opening penalty = 25 and gap extension penalty = 2. Paup 4.0
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was used to perform a maximum likelihood analysis (HKY85 model assumed, stepwise

addition of taxa). Bootstrap confidence values were calculated from 100 branch-

swapping (tree-bisection-reconnection) replicates. This result was compared to the most

probable tree morphology found by 100,000 generations (trees sampled every 100

generations) of an incrementally heated Metropolis-coupled Monte Carlo Markov Chain

analysis (MrBayes v3.0, 4-by-4 nucleotide substitution model with rate varation

according to determned gamma distrbution).

Transcription factor binding motifs were identified by using MatInspector v2.2 to

search the TransFac 4.0 database (182). All other in silico sequence analysis was

performed in GCG/SeqLab (Wisconsin Program Package). Zebrafish genomic sequence

data used herein were produced by the Zebrafish Sequencing Group at the Sanger

Institute and can be obtained freely from ftp://ftp.sanger.ac.uk/publzebrafish/.

4.3 Results

Characterization ofTR004 transcripts

Teratogenic doses of TCDD had been found to cause robust induction of several

closely related ESTs, collectively referred to as TR004 (Chapter 3). Specifically, the

TR004 cluster consisted of 19 non-identical clones, ranging in length from c:250 bp to

nearly 2 kb. These transcript fragments were aligned to form a single assembly 1915 bp

in length, termnating at a common poly-A taiL. Despite obvious sequence similarty, this

alignment revealed a large number of single nucleotide mismatches and ambiguities, as

well as a region of -500 bp near the 3' end that contained several sites of distinct

sequence motifs and significant deletions. Thus, I undertook to better characterize the

sequence and identity of the TR004 transcripts.

RT-PCR primers were designed against the initial 100 bp, represented by only a

single clone, and the highly conserved final 185 bp of the assembled sequences. These

primers, dubbed Fl and Rl, amplified a unique band of -1.7 kb (expected size of 1,685

bp) from RNA from 72hpf wildtype TL zebrafish embryos (data not shown). The Fl-Rl
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fragment was cloned into the pGEM-T Easy vector, and four individual clones were

sequenced using vector-targeted primers.

In addition, 5' RACE was used to obtain further upstream sequence. Nested primers,

R3 and R4, were designed against the 5' -most 100 bp of the assembly; the upstream, or

internal, primer (R4) was the reverse complement of the aforementioned primer Fl.

Used individually, each of these primers amplified a unique fragment of -2.5 kb in

length. Serial nested PCRs resulted in enhanced amplification of (presumably the same)

-2.5 kb fragment. As before, this fragment was cloned and two individual clones were

sequenced to completion. Both clones contained inserts of 2515 bp in length. The 3'

ends of these fragments overlapped the 5' end of the original TR004 assembly by 88 bp,

and the F1-Rl PCR products by the 28 bp representing the common Fl/R4 priming site.

All above sequences were assembled into a single contig of 4312 bp (Figure 4.1, top).

No two clones in this assembly were identical, and 9.8% of the consensus sequence

consisted of ambiguities. The primary sources of varation were two extended regions

with ;:50% polymorphism rate and significant insertions/deletions in some subset of

clones (Figure 4.2). Outside these varable regions, the mismatch rate was approximately

1/39 nucleotides, more than twice the polymorphism rate expected based on allelic

varation. The 5' half of the assembly appeared to be more highly conserved than the 3'

half, likely due to lesser sequence coverage (i.e. 2 clones versus 23).

The consensus sequence of the complete assembly was found to contain a single open

reading frame spanning positions 1136 bp to 2518 bp, with a conserved poly-adenylation

signal (AATAAA) at position 2521 bp (see schematic in Figure 4.1, bottom). The 462aa

protein sequence putatively encoded by this open reading frame demonstrated strong

homology to retroviral pol polyproteins. In paricular, a complete integrase core catalytic

domain was identified by probing NCBI's Conserved Domain Database. Directed

searching revealed no further homology to reverse transcriptase or other typical pol

constituents. To reflect this fact, this open reading frame was designated into

As had been previously observed, the region downstream of the int ORF manifested

moderate (e-values :S 4xlO'4) amno acid similarty to retroviral env gene products.
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However, no open reading frame was detected in this region when either the TR004

consensus sequence or individual clones were interrogated. No similarty to known gag

genes was detected. Nonetheless, based on the similarty, in both sequence and gene

order, of the current int and env regions to retroviral genes, the described transcripts were

collectively renamed EZRl, for Expressed ~ebrafish Retroelement group 1.

Putatve EZRl LTR Strcture

The 5' and 3' termni of the EZRl sequence assembly were found to constitute a 27

bp identical direct repeat, possibly indicative of the presence of long termnal repeats

(Figure 4.1, bottom). To confirm the presence of LTRs, I identified zebrafish genomic

sequences with regions of 2:98% identity to the final 185 bp of the EZRl transcripts,

presumed to be LTR sequence. Dot-plot comparson of the complete EZRl consensus

sequence to genomic sequence contig ctg9483 revealed two direct repeats of a sequence

composed of -500 bp similar to the 3' end of the EZRl transcripts, followed by a region

of similarty to the first -50 bp of EZRl transcripts (Figure 4.3).

To further characterize this putative LTR, additional genomic sequences were aligned

with an arificial sequence constrct consisting of the initial 100 bp of the TR004

consensus sequence appended (via the observed 27 bp overlap) to the final 700 bp. The

3' end of the L TR was defined as the position at which conservation between genomic

sequences and either the putative LTR construct or other genomic contigs ended. This

boundary fell 67 bp downstream of the 5' termnus EZRl transcripts, and was marked by

the canonical tetranucleotide sequence T ACA.

A definitive 5' boundary could not be determned, as the only genomic copy

containing a putative 5' LTR manifested distinctly different internal sequence and LTR

structure (possibly as a result of sequence misassembly). Thus, the 5' -most

tetranucleotide TGT A (inverted repeat of the final tetranuc1eotide) within the region

conserved among all genomic and cDNA clones was used as a proxy for the 5' boundary.

This designation was supported by the presence of an 11 bp poly-purine tract

immediately upstream of this location. Assuming these boundares produced a putative
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LTR of -630 bp in length (alignment length of 633 bp), only slightly longer than the

usua1300-500 bp.

I used sequence motif searching to delineate the U3, R, and U5 domains within this

putative LTR. The 5' boundary of the R domain was defined by a consensus

transcription initiation sequence (TACG) at LTR consensus position 601 bp, directly

abutting the observed 5' mRNA termnus at 605 bp (Figure 4.4). A canonical TATA box

(overall 96% identity to 15 bp motif matrix) was found 28 bp upstream of the putative

initiation site, lending further support to this prediction. A consensus poly-adenylation

signal was detected at consensus positions 613-618, 15 bp upstream of observed poly-A

tails (Figure 4.4). In addition, a strong GT-rich retroviral polyadenylation downstream

sequence (PADS) element (matrx similarty score of 91.2%) was identified in the

putative U3 region at positions 343-357. Thus, all data supported the existence of a

typical, if short (12 bp), central R domain, flanked by U3 and U5 regions of 600 bp and

21 bp, respectively. This further confirmed that the observed transcripts conformed to

the expected domain structure R-U5-internal-U3-R.

Genomic distrbution of EZRl

The region of greatest sequence varability between individual transcripts was

observed to fall largely within the putative LTR, strongly suggesting multiple EZRl

copies. LTR positions 316 bp to 606 bp were used for phylogenetic analyses, as

sequence information for this region was available for all cDNA clones (excepting RACE

products). Both the Bayesian most probable tree and the maximum likelihood 50%

consensus tree placed the majority of EZR1 transcripts into two primar clades (Figure

4.5). However, resolution within clades was extremely poor and there were several

discrepancies between results generated by the two phylogenetic methods. Together with

the observed high polymorphism rate and the fact that no two transcripts were identical,

these data suggested the presence of at least 7, and likely many more, distinct EZRl loci

in the zebrafish genome.

PCR primers located in the int ORF region amplified a band of expected size from

nearly all of the 95 genomic DNA templates in the T51 radiation hybrid panel (data not
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shown). This result suggested that most linkage groups cary at least one EZRl copy.

Not surprisingly, a nucleotide BLAST search of the zebrafish genome assembly (version

2.0, pre-released April 3, 2003) with the full-length (4.35 kb) EZRl consensus sequence

resulted in well over 100 significant matches. However, many matches were incomplete

(the final -200 bp of the EZRl transcript was often missing) or included significant

insertions/deletions or rearangements.

Profie hidden Markov models (HMs) are statistical models of multiple sequence

alignments that provide greater sensitivity and discrimination in homology searching than

does a traditional BLAST search. In an attempt to better estimate the EZRl copy number

in the zebrafish genome, a profile HM was built from the aligned putative LTR

sequences and used to search the zebrafish genome assembly. Nearly exact copies of the

complete EZRl LTR were found in 25 genomic sequence contigs (e-values.: 5xlO,i2o)

An additional 20 sequence contigs contained related, often incomplete, sequences

(e-value range 1.7xlO'96 - 2.2xlO'\

Cardiac expression of EZRl

EZR1 transcripts were found to be extremely abundant in cDNA librares from

wildtype adult hear tissue, regardless of genetic strain or originating facilty. EZRl

clones comprised approximately 0.4% (19 of 4,896) of adult hear cDNAs randomly

selected for use in constructing the cDNA micro arays with which EZRl was identified.
This level of representation was comparable to that of structural genes, such as cardiac

myosin, and mitochondral energy production enzymes (Chapter 3). Similarly, a single

UniGene cluster composed of ESTs ~90% identical to the EZRl int region accounted for

1.6% and 2.2% of sequences in two independent adult hear cDNA librares.

EZRl-like ESTs were also detected, albeit in lesser quantities, in cDNA librares

from a varety of tissues and developmental stages. BLAST searching the zebrafish EST

database revealed over 100 matches with e-value = 0.0. These ESTs were drawn from

tissues including hear, brain, liver, kidney, ovary and testis, fin, and whole embryos

ranging from shield stage (6hpf) to 5 days post fertilization. In situ hybridization using
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three distinct EZRl clones as probes further confirmed a broad expression pattern in 48

and 72hpf embryos (Figure 4.6).

Putative LTR regulatory elements

I identified potential transcription factor binding sites in the EZRl LTR sequences by

searching the TransFac 4.0 database of known binding motifs (182). Matches were only

accepted if all LTR sequences contained an absolutely conserved core sequence within a

motif 2:85% identical to the complete corresponding weight matrix. As expected, most

predicted transcription factor binding sites were located in the putative U3 region; 6

matches were discarded based on coincidence with either the TATA box or transcription

initiation site, and no predicted sites fell within the U5 region. In all, 18 binding sites for

14 individual transcription factors were predicted (Table 4.1, Figure 4.4).

Binding sites for hematopoietic transcription factors accounted for a significant

fraction of all matches. Of paricular note, two strong (~94% matrx similarty) GAT A- 1

binding sites were predicted. Each of these sites was also identified as matching

recognition sites for LMO-2/GATA-l complexes. However, similarty was restricted to

the GATA-l half of the motif, with no corresponding similarty to LMO-2 specific

sequences. The predicted BRN-2 binding site overlapped the GATA-l site at position

483 bp over two thirds of its length; the significance (if any) of this finding is unknown.

Similarly, the region beginning at 278 bp might be predicted to interact with either

lkaros-2 or MZ-l, as the predicted 1k-2 binding sequence is entirely encompassed by the

MZ-l motif. Finally, a well-conserved (92.5% matrix similarty) serum response factor

recognition site was identified at position 534 bp.

Binding motifs for activator proteins were also conspicuous. Two conserved binding

sites were predicted for the AP-l (c-Fos/c-Jun) complex, and two more for AP-4. Several

additional AP-l binding motifs were found in some subset of EZR 1 L TR sequences. The

AP-l site at 526 bp overlapped (in reverse orientation) an extremely well conserved TCF-

11 binding sequence (98.1% matrix similarty).
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The remaining motifs did not fall into any clear functional group. These included a

glucocorticoid response element, and binding motifs for the cardiac homeobox factor

Nk-2.5 and the sex determning region Y protein.

No AHRARNT binding sites, or dioxin response elements (DREs), were found in the

putative LTR sequences. One consensus DRE was found in the internal EZRl sequence,

135 bp into the int ORF. Likewise, binding motifs for NFKB were absent from EZRl

sequences.

4.4 Discussion

A novel class of non-autonomous LTR retroelements

All available data indicate that EZRl is an LTR-class retroelement. EZRl

transcribed sequences begin and end with direct repeat sequences. These ends can be

recombined to generate a putative LTR sequence that is nearly identical to several

zebrafish genomic DNA regions, and manifests all features of canonical LTRs (e.g.

flanking inverted tetranucleotide repeats, a central R domain with strong initiation and

poly-adenylation signals, and a U3 region rich in putative regulatory elements). EZRl

also contains other retroelement-specific sequence motifs, including a retroviral PADS

element in the U3 region and a poly-purine tract immediately upstream of the 3' LTR.

The internal sequence and structure of EZRl also bears relationship to retroviruses

and derived retroelements. The single EZRl open reading frame appears to encode a

retroviral-type integrase protein; the presence of a conserved catalytic domain suggests

the possibilty of an active enzyme, but this has not been confirmed. The region

downstream of the int ORF is devoid of significant open reading frames, but (if

translated) demonstrates significant similarty to retroviral env proteins. This suggests

the presence, at some point in the past, of an env gene that has been degraded by

subsequent mutation. In vertebrate retroviruses, as well as Ty3/ gypsy and BEL

retrotransposons, integrase is the final domain of the pol gene. Env genes are generally

absent from L TR retroelements, but are found downstream of the pol gene in
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retroviruses. Thus, the int-env organization of EZRl is strongly reminiscent of the 3' half

of retroviral genomes (Figure 4.7).

What is truly unusual about EZRl is the absence of elements from the 5' half of

retroviral genomes. There is no evidence in any EZRl sequence of a gag gene, past or

present, or of the reverse transcriptase, RNase H or protease domains of pol. As the

current scheme of LTR retroelement classification is based primarly on aspects of the

pol gene, EZRl cannot be fit into any existing LTR retroelement class. More

importantly, without gag and pol, EZRl lacks the means to generate reverse transcription

machinery necessary for autonomous replication and retrotransposition. In this regard,

EZRl is similar to the recently discovered zebrafish retroelement, bhikhari (179) Bik

appears to be even more remotely related to other retroelements, as it contains a single

ORF encoding a protein with no significant similarty to any known proteins (Figure 4.7).

EZRl and bik are distinct from retroelement pseudogenes, the only other known non-

autonomous LTR retroelements. Most pseudogenes differ from active relatives by single

nucleotide mutations or modest deletions or rearangements. Furthermore, retroelement

pseudogenes are generally not replicated, and thus, are found at very low copy numbers

(174). In contrast, EZR1 and bik appear to represent independent, replicating lineages.

Their internal gene content is vastly different from any autonomous retroelements, and

both are represented by 25-100 copies per genome (179), suggesting amplification in the

absence of autonomous retrotransposition capability. Thus, EZRl and bik seem to

constitute a novel class of non-autonomous LTR retroelements.

Whether these elements are currently active (i.e. transposing) is unknown. Both

EZRl and bik are abundantly expressed in normal zebrafish embryos and adult tissues.

Indeed, the level of EZRl expression is comparable to that of the yeast Tyl

retrotransposon family, which contains both autonomously and non-autonomously active

elements (183). However, expressed autonomous retroelements, upon which EZRl and

bik would depend for retrotransposition machinery, have yet to be found in zebrafish.

Likewise, according to the timescale devised by Goncalves and colleagues (184), the

range of sequence variation among EZRl transcripts supports a history of sporadic EZRl
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retrotransposition over a period of several tens of millons of years. Unfortunately, given

the current state of misassembly of the zebrafish genome sequence, it is difficult to

distinguish whether closely related EZRl transcripts reflect recent transposition events or

allelic varation on integrated loci. However, it seems likely that retrotransposition by

EZRl (or bik) is an infrequent event.

LTR regulaon of EZRl expression

Although no full-length cDNA has been examined, all evidence supports the

conclusion that complete 4.35 kb retroelement transcripts are expressed under control of

the EZRl LTR. Experimental data and in silco predictions were in absolute agreement

regarding the site of transcriptional initiation. Similarly, all EZRl ESTs termnated at a

single poly-adenylation site that was strongly supported by the presence of a retroviral

PADS element upstream of the conserved poly-adenylation signaL. Thus, all EZRl

elements appear to conform to the canonical domain structure R-U5-internal-U3-R.

Furthermore, numerous non-identical transcripts, presumably originating from multiple

loci, exhibited similar patterns of expression. These similarties argue that EZRl

expression is drven by common LTR sequences, rather than regulatory elements in a

specific genomic context.

Putative regulatory elements might account for many aspects of the observed

expression patterns. EZRl is expressed at low or moderate levels throughout zebrafish

embryos and adult fish. While the transcription initiation site and upstream TAT A box

both conform to expectations for a strong initiation site, no CCAA T box was found. Stil,

moderate basal expression might be accomplished, even without additional enhancers.

TCF-ll is a ubiquitous transcriptional enhancer that might also contribute to general

expression via the strong binding site predicted in the EZRl U3 region.

The extraordinarly high levels of cardiac-specific expression inferred from EZRl-

like EST abundance in adult hear cDNA librares is more difficult to account for. One

moderately conserved Nkx-2.5 binding site was identified. While Nk-2.5 is a cardiac-

specific homeobox transcription factor of known importance in hear development and
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function in zebrafish (185, 186), it seems unlikely that Nk-2.5 activity at a single site

could drve EZRl expression to levels of 0.5-2.5% of all cardiac transcripts.

Based on the number of hematopoietic regulatory elements detected, it seems likely

that EZRl is expressed in blood. Whether EZRl expression would be restricted to

certain blood cell-types is uncertain, as GATA-l, MZ-l and Ikaros-2 are active

primarly in erythroid, myeloid and lymphoid lineages, respectively. While it is possible

that blood trapped in dissected hears contributed to cardiac cDNA librares, blood-

specific expression is not likely to account for observed EZRl EST quantities. Certainly,

no other blood-specific genes are found at remotely comparable levels in these librares.

Thus, the origin of high-level cardiac expression of EZRl remains elusive.

EZRl induction by TCDD

The initial discovery of EZRl was based on its transcriptional induction by 2,3,7,8

tetrachlorodibenzo-p-dioxin (TCDD), a widespread and persistent environmental

contamnant with potent teratogenic properties. Finding a possible mechanism for this

induction was a major goal of the current work. The predieted regulatory elements

suggest unexpected mechanisms for induction of EZRI by TCDD. Most toxic effects of

TCDD are mediated by the aryl hydrocarbon receptor (AHR) (22, 53-59). Furthermore,

AHR and NFKB binding sites in the L TR of HI are known to be necessary for

potentiation of HI infectivity observed in Hepa- 1 cells following exposure to TCDD

(187). Thus, the absence of binding motifs for either of these factors was surprising.

Instead, the current results suggest that glucocorticoid receptor (GR) and/or the AP- 1

complex might be responsible for induction of EZRl expression by TCDD. GR has been

implicated in TCDD-responsiveness of sequences placed under the control of the murine

mamar tumor virus LTR (188). Cross-talk between AHR and GR signaling has also

been observed in other systems (189). Thus, the glucocorticoid response element in the

EZRl LTR could be a target for indirect effects of TCDD.

The nature of the effect of TCDD on AP-l has not been fully resolved, but TCDD has

been shown to enhance both expression of constituent proteins and AP-l DNA binding

activity under some conditions (152, 190-194). Thus, the multiple potential AP-l
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binding sites in the EZRl LTR might account for the observed increase in EZRl

transcript levels. It is interesting to note that both AP- 1 induction and mv potentiation

by TCDD require enzymatic activity, and presumably reactive oxygen production, by

CYPIAI (187, 190). Thus, reactive oxygen may constitute a common stimulus for

activation of both endogenous and exogenous retroelements by TCDD.

Biological implicatons of EZRl expression

The implications of specific retroelement expression independent of transposition are

matter for speculation. EZRl is abundantly expressed in cardiac tissue, possibly in

response to specific L TR elements, while bhikhari expression in developing mesoderm is

drven by activin signaling (179). Similarly, a murine endogenous retrovirus-like gene is

expressed in early mouse embryos and may be necessary for progression from 2 to 4 cells

(195). Certain Drosophila retrotransposons are also expressed in tissue-specific patterns

during embryogenesis. Specificity of expression is one possible indicator of recruitment

of novel genomic elements to cellular functions. However, the nature of the functions

that might be performed by either EZRl or bik are completely unknown.

The repercussions of EZRl induction by TCDD are also unclear. It has been

hypothesized, by Barbara McClintock and others, that mobile genetic elements may be

activated in response to environmental stress in order to facilitate potentially beneficial

genome rearangements (the genome shock theory). Certainly, there is evidence to

indicate that diverse mobile elements are activated by a varety of stimuli, including

chemicals similar to TCDD (196, 197). However, given the inability of EZRl to

retrotranspose autonomously, this does not provide a satisfactory explanation in this case.

Perhaps a more relevant analogy would be the induction of endogenous retroviruses

in certain disease states. Paricularly interesting is the correlation between elevated levels

of certain endogenous retroviral transcripts in myocardium and cardiovascular disease in

rats (198, 199). Likewise, EZRl transcript abundances were observed to be dose-

dependently increased by doses of TCDD that caused cardiovascular toxicity and

disrupted cardiomyocyte gene expression (Chapter 3). Thus, possible links between

EZRl expression and cardiac malfunction in zebrafish warant further investigation.
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Table 4.1 Predicted transcription factor binding sites in putative EZRl LTR sequences.
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Matrix PositionTranscription Factor Name Score Binding Motif (bp) StrandAP-1 (Activator Protein 1, c-Fos/c-Jun) 0.902 yaTGACttcwg 47 - 57 plus0.882 taTGACtagcc 526 - 536 plus

AP-4 (Activator Protein 4) 0.883 cgCAGCttca 449 ' 458 plus
0.858 atCAGCccct 560 - 569 plus

BRN-2 (Brain-specific POU factor 2)
0.900 cagatatgAJATa(Ug)g 485 - 500 plus

GATA-1 0.948 CtcaGA T Atgaaa 483 - 495 plus
0.944 ggctGAT Agcaga 554 - 566 minus

GFI,l (Growt Factor Independent 1)
0.871 KggracatAA TCwgaag 45 - 68 minus

GRE (Glucocortcoid Response Element) 0.918 aggacaaTG~ctc 290 - 305 minus

HN-3b (Hepatocyte Nuclear Factor 3b) 0.888 tgtatT A ~ttcctt 141 - 155 plus
0.879 tacaaTG~tgatga 184 - 198 plus

Ik-2 (Ikaros-like 2) 0.882 agagGGActga 278 - 289 plus

MZ-1 (Myeloid Zinc Finger 1) 0.986 agaGGGa 278 - 285 plus

Nk-2.5 (tinman homolog) 0.884 agAJGTg 334 - 340 plus

SRF (serum response factor) 0.925 gcCCATatttggag 534 - 547 plus

SRY (sex-determning region Y) 0.874 tagACAAaatg 511 - 522 plus

TCF11 homodimer
0.981 GTCAtacagcatt 519 - 531 minus

TH1E47 (Hand1Æ47 heterodimer) 0.895 accatggtCTGGtttc 429 - 44 plus
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Figure 4.1 Schematic ilustration of EZRl sequence assembly (top), including TR004

ESTs (black), PCR (blue) and 5' RACE (red) products, and the resultant consensus

sequence (bottom). Gaps in sequence coverage are indicated by dotted lines. Regions of

concentrated sequence varabilty (pale green), the integrase ORF (lnt), and a non-coding

region of homology to retroviral env genes (pale grey) are depicted on the consensus

sequence schematic. Flanking direct repeats are indicated by black triangles, with

sequences inset.
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Figure 4.2 Multiple sequence alignments taken from major varable regions spanning

positions 2567 to 2690 (a) and 3689 to 4114 (b) in the EZRl sequence assembly. Gaps

inserted during sequence alignment are indicated by periods (" "), lack of sequence data

by tildes ("-"). Positions that are ~95% conserved are highlighted in grey.
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Figure 4.3 Dot-plot comparson of the complete EZRl consensus sequence to zebrafish

genomic sequence contig ctg9483, positions 90,000-95,000.
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Figure 4.4 Schematic ilustration of the putative EZRl LTR structure, showing U3, R,

and U5 domain boundares and the complete R domain sequence (inset). Triangles depict

locations of predicted binding sites for GAT A-I (red), MAF-l/I-2 (orange), AP-l

(blue), and TCF-ll (green). Triangles above the grey bar indicate motifs on the plus

strand, those below represent motifs on the minus strand.
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Figure 4.5 Most probable tree morphology, as determned by Bayesian inference of

phylogeny, for EZRl LTR sequences. Nodes with ::50% support are labeled with both

Bayesian posterior probabilities and maximum likelihood bootstrap support values.
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Figure 4.6 Representative photographs showing spatial distribution of EZRl expression

in 72hpf zebrafish embryos, as visualized by in situ hybridization with anti-sense probes

generated from TR004 ESTs AH041814 (a) and AH042756 (b) (blue/purple staining).

General, high-level expression of cytochrome c oxidase subunit I is shown for

comparson (c).
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Figure 4.7 Schematic depiction of canonical domain strctures for vertebrate

endogenous retroviruses (a), LTR retrotransposons (b), zebrafish bhikhari (c), and EZRl

(d). Green arows indicate protein coding regions. LTR = long termnal repeat, PBS =

primer binding site, PPT = poly-purine tract, ORF = open reading frame, gag = group

antigen gene, pol = poly-protein gene, env = envelope protein gene, int = integrase gene.
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CHAPTER 5

Conclusions and future work
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5.1 Summary

The primary goal of this thesis was to identify TCDD-responsive genes likely to be

causally involved in processes of cardiovascular embryotoxicity. Toward this end, we

constructed microarays using cDNA librares derived from zebrafish embryonic and

adult hear tissue. Three sets of embryonic hear arrays were used in methodological

testing that led to the development of an effective workfow for high-quality aray

synthesis and use. These protocols were then used in the production of adult hear

microarays, AHOOllA and AH002A1. AHOOllA arays were used for gene expression

profiling of TCDD-treated zebrafish embryos. The results and implications of this work

are discussed in greater detail below.

AH002AI arays continue to be applied to a varety of collaborative projects. In

conjunction with Dr. Hiroki Teraoka's laboratory, I have used AH002 arays to analyze

gene expression in zebrafish embryos exposed to thiuram, an increasingly widespread

environmental contamnant. I have been working with Dr. Afonso Bainy to characterize

the effects of phenobarbitol and related chemicals on hepatic gene expression in adult

zebrafish. Expression profiing has been an integral par Dr. Elaine Joseph's efforts to

understand the mechanism by which mutation of a general transcriptional elongation

factor translates into a specific cardiac phenotype in zebrafish embryos. Other projects,

including examnation of zebrafish embryos in which AHR or CYPIA have been

knocked down using morpholinos, are in their infancy. In light of the expanding scope of

ongoing work, a careful assessment of the current micro aray strategy is in order.

5.2 Zebrafish adult heart cDNA microarrays

The approach taken in generating adult hear cDNA microarays, specifically the use

of uncharacterized, redundant probe sets, was (and is) unique. As the full ramifications

of such a strategy could not be predicted, going forward with this work required a leap of

faith. From a technical perspective, this faith has been born out; there is no evidence of

any negative impact on the quality of microarays or hybridization data. However,
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effects on more abstract aspects of this work, such as rate of progress and meaningful

interpretation of gene expression data, have been mixed.

As hoped, this approach significantly accelerated the synthesis of microarays by

eliminating months of sequence analysis and cDNA library manipulation. However,

much of the time saved at the beginning of the project has simply been delayed until the

end stages of each project. At this point, nearly 500 adult hear cDNA library clones

have been sequenced as a result of selection by microaray analyses. This number wil

continue to grow, as AH002 arays are being used in on-going investigations of several

rather disparate conditions (described later in this chapter). High-throughput DNA

sequencing and sequence analysis can be largely automated, and does not require the

same degree of care and scrutiny that has been applied to targeted sequencing. Thus,

characterizing 5000 or more clones would likely have required little additional time, and

araying sequenced clones would have both hastened and improved data analysis.

The most pressing problem in interpreting data based on targeted a posteriori

sequencing stems from the obvious fact that the identities of unchanged clones remain

unknown. Thus, it is unknown whether there are additional clones representing a gene

deemed to be differentially expressed that would indicate no change. In this way, the

current strategy might lead to overestimations of responsiveness to a given stimulus. In

the case of mitochondral genes, the degree of induction remains uncertain due to a wide

range of observed expression ratios. Gene expression results for other genes, such as

AHR2, cardiac troponin T2, and myosin isoforms, were significantly less varable.

Nonetheless, accurate estimates of varability are crucial in assessing "real" changes, and

are not necessarly obtained by targeted a posteriori sequencing.

Short of sequencing all arayed clones, one way of resolving such ambiguity would

be to perform microaray hybridizations with labeled DNA from individual differentially

expressed clones. This would identify all clones with a given sequence, thereby allowing

a complete interpretation of relative expression data for that specific gene. However,

even with only 44 observed TCDD-responsive genes, this process would be extremely

labor- and resource-intensive. Given current DNA sequencing costs, single-pass
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sequences for at least 2500 clones could be obtained at approximately the same price as

50 hybridizations. As AHOOI print lots have been nearly exhausted, a major sequencing

effort involving that clone set would be unwaranted. A limited number of hybridizations

with individual high-priority clones, such as cardiac troponin T2 and some mitochondrial

genes, would serve to boost confidence in conclusions drawn from work with AHOOl

microarays. In the case of AH002 arays, though, sequencing of arayed clones may be

the most time- and cost-effective route to high quality gene expression data.

Despite certain drawbacks, the current method presented unique advantages. The

discovery of a novel and unusual retroelement, EZRl, highlighted the opportunity for

gene discovery via microarays. Although microaray analysis is often referred to as

"blind" or "hypothesis free," the probe designselection phase of microaray synthesis

incorporates significant presuppositions and biases. Certainly, under the priority ranking

system applied to the zebrafish embryonic hear library, the combination of excessive

redundancy, high genomic copy number, and uncertain gene identity would have

eliminated EZRl ESTs. The completely blind nature of the current approach prevented

the imposition of such biases, thereby enabling the completely unexpected discovery of

EZRl. It is interesting to note that the only other similarly unconventional LTR

retroelement, bhikhari, was discovered using differential display, another completely

blind screening method.

5.3 Expressed Zebrafish Retroelement 1

The discovery of EZRl is possibly the most intriguing single result of this thesis.

EZRl is a moderate copy LTR retroelement that bears significant resemblance to

endogenous retroviruses, but lacks both a gag gene and a reverse transcriptase domain.

Without these components, EZRl cannot autonomously function as a retrovirus, or even

a transposon. While there are many inactive retroelements in vertebrate genomes, EZRl

is striking in that it is highly expressed in normal cardiac tissue and is robustly induced

by TCDD. There are three alternative ways to account for the EZRl expression pattern-

(1) expression of EZRl elements may be specifically regulated by elements in the LTR,

(2) a subset of EZRl elements may be integrated into the 3' untranslated regions of
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cardiac-expressed, TCDD-responsive genes, or (3) EZRl elements may be induced as

par of a more general stress response including activation of mobile elements.

Specific regulation of EZRl by LTR sequences seems most likely, largely on the

basis of observed coordinated expression of 19 distinct EZRl copies. The alternative

explanation, that EZRl elements have been integrated into 3' UTRs of 19 separate

cardiac-expressed genes that are all similarly induced by TCDD, seems contrived.

Specific, LTR-drven transcriptional regulation by cellular factors has been clearly

demonstrated for developmental expression of bhikhari (179), and for induction of mv

activity in TCDD-treated cells (187). Specific regulation would not necessarly indicate

any functionality, but suggests at least the possibility of adoption into some (unknown)

cellular process. The same idea has been raised with regard to normal developmental

expression of both bhikhari (179) and murine ERV-L elements (195).

If, on the other hand, mobile element activation by TCDD is a general phenomenon,

there may be broad implications with regard to TCDD toxicity. Elevated levels of

endogenous retroviral transcripts are associated with mamalian hear disease (198,

199), providing a potential mechanism for TCDD cardiovascular toxicity. Endogenous

retroviruses have been implicated in any number of autoimmune diseases (200), an

intriguing observation in light of known immunosuppressive effects of TCDD. Finally,

activation of transposable elements might have repercussions for carcinogenesis or even

next-generation congenital disease. While compellng in its universality, this hypothesis

does not account for high levels of EZRl expression in normal tissue. Of course, a

combination of regulatory mechanisms is possible.

These speculations suggest several avenues for further investigation in this area. First

and foremost, full-length genomic and cDNA copies of EZRl elements should be

amplified by PCR and sequenced to absolutely confirm the structure of EZR1; this should

be a straightforward process given the sequence data contained in this thesis. Two

further experiments would help distinguish between the above-mentioned hypotheses.

Firstly, inverse genomic PCR could be used to determine the genomic context of

integrated EZRl elements. Unfortunately, due to the high rate of misassembly, the
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zebrafish genome project in its current state is of little help in this endeavor. Secondly,

full-length EZRl clones could be subjected to standard promoter analysis to determne

regulatory LTR sequences. While it would be interesting to know whether TCDD causes

a general activation of mobile DNA elements, current knowledge of zebrafish

transposons is too limited to allow a broad sampling. This question might be better

addressed using human or murine cell culture.

5.4 TCDD-induced dilated cardiomyopathy

It wil be important to further investigate the nature, origin, and impact of TCDD-

induced changes in expression of cardiac troponin T2 and cardiac myosins. The

microaray and RT-PCR data in this thesis are in direct conflct regarding the direction of

change in expression of cardiac troponin T2, but agree that TCDD exposure results in

significant differential expression of cardiac troponin T2. Resolving this difference

should be a top priority. However, it is difficult to say how this should be accomplished.

Additional microaray hybridizations using dye-swapping might be tried, although this

seems unlikely to resolve the issue since there are no indications that amino-allyl post-

labeling is subject to dye bias. As troponins and myosins are highly expressed, Northern

blot analysis should be possible and would provide a third data source. It would also be

interesting to examne upstream genomic DNA sequence for known regulatory elements.

Such information could not substitute for experimental validation, but might add weight

to one set of observations by providing a potential mechanism for either induction or

suppression.

Ultimately, any change in cardiac troponin T2 is consistent with cardiomyopathy, as

is induction of myosins. Furthermore, TCDD-induced dilated cardiomyopathy

accompanied by elevated myosin levels has been clearly demonstrated chick embryos

(32,33). Thus, the relevant question is no longer "What is the nature of cardiac impacts

of TCDD?" but rather "How does TCDD cause cardiomyopathy?" Given the current

data, it is impossible to know whether observed changes in gene expression are causally

related to toxic impacts or whether they are secondary manifestations of toxicity.
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Obviously, clarfying this relationship wil be crucial in advancing our understanding of

toxic mechanisms.

One way this might be accomplished would be to examne gene expression at

multiple times during the progression of TCDD toxicity. As the window of susceptibility

to TCDD cardiovascular toxicity is limited to a 24-hour period (48-72 hpf) in zebrafish

(24), it would be possible to obtain a high resolution temporal map of gene expression

with perhaps a dozen sampling times. In this way, likely causative events (i.e., changes

in gene expression that precede toxic impacts) could be teased apar from later secondary

responses. Time-courses at multiple TCDD concentrations could also provide

information about the interplay between dose level and exposure time. Dose-dependent

differences in gene expression profies observed at 72 hpf may be reflective of

differential rates of progression of toxicity rather than completely distinct processes; so-

called "low dose specific" responses may simply occur at an earlier time at higher doses.

Thus, establishing a three-dimensional dose-time-response surface would be

extremely informative. It was originally hoped that this could be accomplished as par of

this thesis work, but the labor and cost required for such an experiment was prohibitive.

However, RT -PCR could be used to describe dose-time-response relationships for a

limited number of genes identified by microaray analyses; real-time RT -PCR data

presented in Chapter 3 are a step in this direction.

5.5 TCDD and reactive oxygen species (ROS)

Stimulation of reactive oxygen production is an increasingly common theme in the

study of TCDD, one touched on by several aspects of this thesis. Cytochrome P450

lA(I) (64) and mitochondra have been identified as AHR-dependent sources of ROS

(163, 164). Whereas current knowledge can be compiled into a detailed hypothesis

covering steps from AHR activation to decoupling of specific steps in the CYP1A

catalytic cycle (see Chapter 1), no such context exists for mitochondral ROS production.

TCDD-induced differential expression of mitochondral and downstream energy transfer

genes has been observed in this and other gene expression profiing work (123, 124), and

suggests a mechanism for decoupling of mitochondrial electron transfer associated with
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ROS production (165). In turn, mitochondral ROS production might be one pathway to

cardiomyopathy and cardiovascular failure; evidence of a causal link between excess

reactive oxygen and cardiac pathologies is increasing (201-203).

Accounting for differential expression of mitochondral genes is more difficult, and

consideration of this question leads to the conclusion that mitochondral dysfunction may,

itself, be a secondary effect of other reactive oxygen production (i.e., CYPIA). The

events triggering mitochondral ROS production related to heart disease are unknown.

TCDD-induced mitochondral ROS production requires AH (164), but AH

modulation of gene expression must be via indirect means as there are no AHR binding

elements in regulatory regions of the zebrafish mitochondral genome. Data from

CYPIAl-null knock-out mice suggest that CYPIAI may be the link between AHR and

mitochondra (70). As CYPIA(l) has no inherent transcriptional regulatory capacity,

such effects would presumably be mediated by ROS.

Indeed, reactive oxygen may be a common regulatory force governing many of the

changes in gene expression documented in this thesis. As previously noted, there is

growing support for a role of reactive oxygen in generation of varous hear diseases; the

exact nature of that role is uncertain, but would likely involve modulation of gene

expression. Thus, it would be extremely interesting to see which aspects of TCDD gene

expression profiles can be mimicked by direct exposure of zebrafish embryos to reactive

oxygen species, such as hydrogen peroxide. Conversely, it would be interesting to

compare TCDD gene expression profies in the presence and absence of anti-oxidants.

In paricular, reactive oxygen signaling via the redox-sensitive transcription factors

NF-KB and AP-l may be important in TCDD toxicity. Both factors are activated by

TCDD (190) and have been implicated, by this and other work, in varous TCDD

responses. NF-KB is necessary for activation of HI by TCDD (187, 204), while AP-l
activity could contribute to hypothesized LTR-drven regulation ofEZRl. AP-l binding

sites in upstream regions of mamalian glutathione S transferase genes are thought to be

responsible for ROS activation (153,204). As the zebrafish genome project progresses, it

wil be important to search upstream regions of TCDD-responsive genes for AP-l and
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NF-KB binding sites. It would also be useful to directly probe the roles of NF-KB and

AP-l in cardiovascular embryotoxicity by either (a) over-expressing these proteins in 48-

72 hpf embryos, or (b) using morpholino technology to knock down functional protein

levels in TCDD-treated zebrafish embryos.

5.6 Alternative mechanisms of gene expression regulation

While this work has focused on transcriptional modulation by TCDD, there are

alternative pathways that might lead to altered expression profies. For example, elevated

levels of mRAs for mitochondrally-encoded genes might reflect an increase in the

number of mitochondra per cell. Increased mitochondral density is seen in cases of

elevated oxygen and/or energy demand (205), and could be par of an adaptive response

to either general physiological stress caused by toxicant exposure, or to specific cardiac

impairment by TCDD. This explanation would account for the lack of relevant

transcription factor binding sites in the mitochondral genome, as well as the universality

of mitochondral gene induction. This alternative could also have implications for

toxicity; proportionate increases in mitochondron abundance and mitochondral gene

expression might be less likely to result in aberrant ROS production than would

overexpression of specific proteins within mitochondra. Thus, it would be interesting to

determne mitochondral density, both generally and within cardiomyocytes, in TCDD-

treated zebrafish embryos.

Alterations in RNA stability might contrbute to observed differential expression of

some genes. Specific regulation of RNA degradation is a feature of developmental

processes, steroid hormone signaling, and stress responses caused by hypoxia (206).

Modified RNA stabilty and secondary structure is an important aspect of retroviral

replication and gene expression. Mitochondral genes are also subject to post-

transcriptional regulation (207-209). Furthermore, observed differential expression of

pyrmidine 5' nucleotidase and ribosomal RNAs and proteins might have implications for

RNA degradation and post-transcriptional processing. Further investigation of RNA

stability following TCDD treatment would be intriguing, as it represents a potentially

AHR-independent mechanism of regulation of gene expression.
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5.7 Conclusions

The ability to target specific cellular processes and formulate detailed hypotheses

regarding TCDD embryotoxicity is an indicator of the progress that has been made over

the course of this thesis. In large par, the impetus to generate zebrafish cardiovascular

microarays stemmed from frustration with a fundamental lack of information about

cardiac impacts of TCDD. The strength of micfOarays is not in their abilty to address

specific hypotheses, but rather, to generate a large body of observations that can be

collated and sorted to produce workable theories and testable hypotheses. This work has

provided a significant body of observations and hypotheses on which to build future

investigation of the mechanisms of TCDD cardiovascular embryotoxicity. Furthermore,

the discovery of EZRl has provided an intriguing introduction into the poorly explored

area of chemical regulation of endogenous retroelements, and remaining ESTs offer

opportunities for exploration of novel aspects of TCDD activity.
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APPENDIX A.

Expression of vascular endothelial growth factor in early zebrafish

embryos is unaffected by 2,3,7,8-tetracWorodibenzo-p-dioxin exposure
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A.I Introduction

TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) is a potent and environmentally

widespread teratogen that severely disrupts cardiovascular development. The hallmarks

of embryonic TCDD exposure are edema, hemorrhage, craniofacial malformations, and

early life stage mortality. This suite of symptoms, similar to blue sac syndrome in

salmonid fish, has been observed in over a dozen fish species exposed to TCDD and

related chemicals (9-15). Detailed study of cardiovascular embryotoxicity in zebrafish

(Danio rerio) has revealed additional impacts, including circulatory failure (22-24), loss

of erythrocytes (24), and reductions in hear size and cardiac contractile strength (31).

Similar phenotypes have been observed in embryos of birds (16-20) and rodents (21)

exposed to TCDD and related compounds.

The embryotoxic impacts of TCDD are primarly mediated by the aryl hydrocarbon

receptor (AH) (22,53-59), a basic-helix-loop-helix Per-ARN-Sim (bHLH-PAS)

protein that functions as a ligand-activated transcription factor with a broad affinity for

aromatic hydrocarbons (36). Toxicity-eliciting events downstream of AHR activation are

poorly understood, but several lines of evidence have suggested a possible role for

vascular endothelial growth factor (VEGF).

Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen

that is responsible for dictating formation and organization of new blood vessels, as well

as regulating permeability of vessels. Vascular endothelial cells are known to be

sensitive targets for enzyme induction, apoptosis, and morphological alteration caused by

TCDD (26-28). The phenotype of overexpression of VEGF in avian embryos shares

some features with TCDD toxicity, including increased vascular permeability and

widespread edema (210).

There are multiple avenues by which AHR might influence VEGF expression; the

most direct route would be cross-talk between AHR and hypoxia inducible factor 1 a

(HI-la). AHR and HI-la share a common dimerization parner, aryl hydrocarbon

receptor nuclear translocator (ARNT). ARN is absolutely necessary for both TCDD-

activated AHR signaling and HI-la dependent induction of VEGF (89, 211, Park, 1999
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#1706). HI-la-like factor (HLF) also interacts with ARNT to form a transcription

factor that regulates VEGF expression (212). It has been hypothesized that elevated

levels of active AHR might lead to competition for ARNT binding and disruption of

signaling pathways governed by factors with lesser ARN binding affinities.

Competition for ARNT binding has been demonstrated between HI-la and AHR in

vitro (213), but there is no compellng evidence of an effect on either signaling pathway

(90-92).

Two indirect pathways, involving cytokines or reactive oxygen species as

intermediates, provide alternative means for AHR modulation of VEGF expression.

VEGF is subject to induction by varous cytokines and growth factors, including

interleukin-lß, tumor necrosis factor-a and transformng growth factor-ßl (Neufeld et aI.

1999), all of which are up-regulated by TCDD exposure (214). VEGF expression and

transcript stabilty are also increased by reactive oxygen species, including superoxide

and hydrogen peroxide (215, 216). Accordingly, TCDD exposure causes AHR-

dependent reactive oxygen production and oxidative damage that has been associated

with toxic impacts (26,64,86,87, 163, 164).

Based on an abundance of potential mechanisms for regulation of VEGF by TCDD,

we undertook to determne whether TCDD exposure alters VEGF expression in zebrafish

embryos. Two RT-PCR methods were used to assess expression levels of ß-actin

(negative control), CYPlA (positive control), and VEGF in 12 hpf and 24 hpf embryos

following exposure to a toxic (-ED65 for cardiovascular impacts) dose of TCDD.

A.2 Methods

Embryos and RNA

Prior to 6 hours post fertilization (hpf), synchronous zebrafish (Danio rerio) embryos

were injected with triolein (vehicle) or 3pg TCDD, or left uninjected. Groups of at least

25 embryos were flash-frozen at either 12 hpf or 24 hpf, then held at -80°C (Table A.l).

Total RNA was isolated from whole embryos using LOlLL RNA STAT-60 per mg of

tissue, according to the manufacturer's suggested protocol. RNA was dissolved in
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DEPC-treated water and quantified by means of UV spectrophotometry (Shimadzu UV-

2401PC with UV Photometric software). The integrity of RNA was confirmed by

agarose gel electrophoresis.

Competive RT-PCR

Competitor template construction

Heterologous competitor DNA templates were constructed using the Pan Vera

Competitive DNA Construction Kit (PanVera Corporation, Madison WI), which provides

a ÀDNA template that can be used to construct competitors of any size up to 600bp. PCR

primers were designed to amplify unique fragments of the ÀDNA template. The

corresponding gene-specific primer sequence (i.e. sense or anti-sense for a given target)

was then appended to the 5' end of each primer. These composite primers were used to

synthesize heterologous DNA competitors - 10% shorter than gene-specific PCR

products. Composite primers for a VEGF competitor amplified a 328 bp fragment of

the ÀDNA template (bold indicates gene-specific primer sequences; see below):

5' - ctcgcggctctcctccatctgtgtgaagac gac gc gaaattcagc - 3'

5' - cttctgcctttggcctgcattcggaaaccagttcttgttgttcg - 3'

Primer sequences used to obtain the ß-actin competitor were:

5' - cgacccagacatcagggagtgtgtgaagacgacgcgaaattcagc - 3'

5' - gtccagggccacatagcacagacgccgcgaccaggagaacg - 3'

To 25i,d 2X Premix Solution (panVera Corporation, Madison WI) were added

primers (lOpmol each) and dHzO to a final reaction volume of 50i.l. An initial 5-minute

denaturation step at 94°C preceeded 30 cycles of 30 seconds at 94°C, 30 seconds at 60°C,

then 45 seconds at 72°C. This was followed by a final 7-minute extension step at 72°C.

PCR products were purified according to manufacturer's specifications using

SUPRECTM_02 (Pan Vera Corporation, Madison WI). Purified PCR products were

analyzed in agarose gel (2% in ix T AE buffer). Competitor DNA templates of the

desired sizes were cut from the gel and extracted from agarose using GENECLEANCI LLI
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Kit (BIO 101, Vista CA). JM109 cells were transfected with recombinant pGEM-T Easy

vectors containing the appropriate competitor DNA fragment (Promega Corporation,

Madison WI). Mini-preps of plasmid DNA (Qiagen Spin Prep Mini-Preps) were

quantified by UV spectrophotometr and gel electrophoresis and used in competitive

PCR reactions.

Reverse Transcription

Reverse transcription reactions (50 J.l) consisted of 50 ng total RNA, MuL V Reverse

Transcriptase (2.5U/J.L), random hexameric primers (2.5J.M), dNTPs (lmM), 5mM

MgCh, ix PCR Buffer II, and Rnase Inhibitor (1 U/J.l) (all reagents by Perkin Elmer

Applied Biosystems). To allow complete priming, reactions were incubated at 25°C for

10 minutes. Reverse transcription was cared out for 15 minutes at 42°C. Reactions

were then heated to 99°C for 5 minutes, and finally, cooled to 5°C for 5 minutes. cDNA

was stored overnight at 4°C, then at -20°C until use.

Competitive PCR

PCR was cared out using reagents from Perkin Elmer Applied Biosystems (Foster

City CA). 50J.l reaction volumes contained AmpliTaq Gold DNA Polymerase (1 U),

2.5mM MgCh, ix PCR Gold Buffer, cDNA from lOng (ß-Actin) or 100ng (all others)

total RNA, 0.2J.M primers (sequences and product sizes can be found in Table 1), and

appropriate competitor template. PCR conditions were as described for the construction

of competitor DNA templates.

peR quantifcation

Aliquots of PCR reactions were subjected to polyacrylamide gel electrophoresis in

6% TBE gels (NOVEX). PCR products were detected by staining with ethidium bromide

(lJ.glml in Ix TBE). Gels were digitally photographed and negative images were

subjected to spot densitometry analysis (ChemImager). Ethidium bromide fluorescence

intensity for each band was plotted against the known competitor concentration, and best-

fit trend lines were determned for competitor and target template individually. The
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absolute quantity of target template was calculated as the intersection of the two lines

(e.g., Figure A.l).

A.3 Results

Standard RT-PCR

Initially, expression of ß-actin, VEGF, and CYPIA was examned using standard RT-

PCR methods; reaction conditions were identical to those described for competitive PCR.

ß-actin was used as a control for technical varation; fluorescence intensities for VEGF

and CYPIA PCR products visualized by gel electrophoresis were normalized to ß-actin

intensities. These data indicated no change in either VEGF or CYP1A expression at 12

hpf, but suggested TCDD-specific induction of both genes at 24 hpf (Figure A.2). This

trend was not statistically significant (two-factor ANOV A, p-values ~0.05), and was only

apparent after normalization to ß-actin. These observations suggested that varation in ß-

actin measurements was a significant confounding factor in these analyses.

Competive RT-PCR

Two competitive RT-PCR experiments were conducted. In the first, we evaluated

message levels for ß-actin and VEGF in RNA from 12 hpf and 24 hpf control, triolein-

treated, and TCDD-injected embryos. There was insufficient RNA from 12 hpf triolein-

injected embryos for another replicate. Thus, in the second experiment, ß-actin, VEOF

and CYPIA levels were measured in all RNA samples except that from 12 hpf triolein-

treated embryos

Mean ß-actin expression levels did not differ significantly between any of the

treatment groups at either 12 hpf or 24 hpf (two-factor ANOV A, p-values ~0.05).

However, there was a trend toward reduced ß-actin levels in the 24 hpf triolein-treated

embryos (Figure A.3). As this trend was observed in both PCR replicates, it seemed

unlikely that this was an arifact of human error, such as pipetting in accuracy. This

observation brought into question the validity of normalizing VEGF and CYPIA data to
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ß-actin measurements. Both raw data and normalized values are presented, and lead to

the same conclusions.

At 12 hpf, CYP1A levels were insufficient to allow precise quantification using

current PCR conditions. However, PCRs with lxio5 copies of CYPIA competitor

yielded target and competitor product bands of approximately equal strength (data not

shown), indicating approximately 1000 copies CYPlNng RNA at 12 hpf, regardless of

TCDD treatment. Basal CYPIA expression at 24 hpf was much greater than at 12 hpf,

but stil .clxio5 copies/ng RNA in both control samples. Both raw and ß-actin

normalized data unequivocally indicate that CYPlA expression at 24 hpf was

significantly induced by TCDD (single-factor ANOV A, p-value .c0.05). Raw data

indicated -llO-fold increase in CYPlA mRNA copy number (Figure A.4), while

normalized data suggested more moderate induction of -45-fold (Figure A.5).

Basal VEOF expression levels more than doubled from an average of 8.6xio4

copies/ng RNA at 12hpf to 2.4xio5copies/ng RNA at 24hpf (two-factor ANOV A, p-value

.c0.05); this increase in constitutive expression was also reflected in ß-actin normalized

data (Figure A.5). Neither raw data (Figure A.4) nor normalized values (Figure A.S)

indicated any significant effect of TCDD treatment on VEGF expression levels (two-

factor ANOV A, p-values ::0.05).

A.4 Discussion

Ultimately, normalization to ß-actin seemed to be the most appropriate way of

handling all RT-PCR data. Each gene showed a trend toward lower copy numbers in the

24 hpf triolein sample, suggesting some fundamental difference in this RNA preparation.

Perhaps this sample was contamnated by genomic DNA, resulting in an underestimation

of actual total RNA used in each reaction.

Furthermore, normalized values for CYP1A induction at 24 hpf closely accord with

other reports of CYPIA induction in zebrafish embryos. Microaray analysis of 72 hpf

embryos exposed to -2pg TCDD indicated 29-fold induction, whereas real-time RT-PCR

analyses at the same dose level indicated 60-90-fold induction (Chapter 3). In another
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case, ~20-fold induction of CYPIA was observed at several times following exposure of

embryos to 1.5nM TCDD in egg water, a concentration that should produce embryo

burdens approximately twice current levels (42).

All RT-PCR data lead to the same conclusion regarding vascular endothelial growth

factor expression, namely that it is not significantly impacted by exposure to toxic doses

of TCDD. In light of more recent advances in understanding of TCDD toxicity, this is

not surprising. At the time this work was conceived, it was generally thought that

cardiovascular impacts late in development were the result subtle disruptions in early

patterning events. However, it is now clear that the window of susceptibility for

cardiovascular toxicity actually falls between 48 and 72 hpf (24). Thus, an early change

in expression would not necessarly have implicated VEOF in TCDD toxicity. Likewise,

the observed lack of change does not rule out the possibility of involvement of VEGF in

TCDD toxicity.

The relationship between TCDD exposure and VEOF expression appears to be

complex, depending heavily on cell type and dose leveL. VEGF expression was induced

in human hepatoma cells (93), but not in murine liver, spleen or thymus (95). In yet

another study, TCDD suppressed VEGF expression in one lung epithelial cell line, but

did not affect expression in another (94). As embryonic development, itself, comprises a

complex and unique cellular environment it would be interesting to know if VEGF

expression is altered later in development. Unfortunately, VEGF was not well

represented on zebrafish cardiovascular cDNA arays used to examne TCDD-influenced

gene expression at 72 hpf (Chapters 2 & 3). However, other work to clarfy the response

of VEGF to embryonic TCDD exposure may already by underway (S. Biliard, pers.

comm. ).
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Table A.I Number of embryos and total tissue weight in flash-frozen samples from

which total RNA was isolated.
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12hpf 24hpfTREATMENT # Embryos Weight (mg) # Embryos Weight (mg)
Uninjected 67 70.5 55 50.7
Triolein 28 38.8 29 25.8
3pg TCDD 44 52.6 41 38.1
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Figure A.I Example of competitive RT-PCR data, showing linear best-fit trendlines and

equations used to calculate absolute copy number for target sequences. Densitometry

results for VEGF target sequence are indicated by squares, results for competitor

sequence by diamonds.
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Figure A.2 Relative expression levels of vascular endothelial growth factor (striped) and

cytochrome P450 lA (solid) in control and TCDD-injected zebrafish embryos. Data

from duplicate RT -PCR experiments were normalized to ß-actin. Mean values are shown

with error bars representing one standard deviation.
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Figure A.3 Absolute ß-actin mRNA expression levels, as measured in two replicates of

competitive RT-PCR.
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Figure A.4 Absolute quantitation by of VEGF and CYPlA mRNA levels in control and

TCDD-injected zebrafish embryos. VEGF data are mean values of two competitive RT-

PCR replicates; error bars represent one standard deviation. CYPIA values were derived

from a single experiment.
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Figure A.5 Mean VEGF and CYPIA mRNA levels expressed as a proportion of ß-actin

values.
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APPENDIX B.

Preliminary evaluation of cross-species hybridization efficiency
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B.t Introduction

Although stil very young, the field of toxicogenomics is already makng great strides

in the areas of elucidating molecular mechanisms of toxicity and defining chemical-

specific expression profies (99, 100). Ultimately, the goal of much of this work is the

development of diagnostic and predictive biomarkers for pre-clinical, clinical, and

environmental applications (101-103). DNA microarays are the primary tool being used

in such work.

However, the large body of DNA sequence data needed to support micfOaray design

severely limits the number of species for which microarays are available. Fundulus

heteroclitus, the mummchog or saltmarsh killfish, is a small marne fish that has been

used extensively in both developmental biology and ecotoxicology. The F. heteroclitus

genome is poorly characterized; less than 50 genes have been cloned and a genome

project has only recently been undertaken. The situation is similar (or worse) for many

environmentally and economically important fish species (e.g. Salmo salmieri,

Oncorhynchus mykiss). Small-scale custom macfOarays have been used to investigate

gene expression in certain environmental settings (113). However, high-density arays

for Fundulus and other environmentally important species are several years away, at best.

There is evidence that microarays constructed with material specific to one species

can be used to assay gene expression in closely related species (217, 218). Thus, it was

of interest to determne whether zebrafish microarays (Chapter 2) might be used to study

gene expression in other fish species. To this end, we prepared labeled cDNA from both

zebrafish and F. heteroclitus hear RNA, and compared the strength and patterns of

hybridization to zebrafish cDNA microarays. Preliminar analyses indicate that, with

further optimization, cross-species hyridization may be an extremely informative tool.

B.2 Methods

mRA from Fundulus heteroclitus adult hear tissue (Sibel Karchner) and total RNA

from zebrafish adult hear tissue was used to generate amno-allyl post-labeled cDNA,

according to previously described protocols (Chapter 3). Single-color hybridizations to
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AHOOl arays were performed at 55°C, with all other conditions as previously described

(Chapter 3).

B.3 Results

Side-by-side visual inspection of same-species and cross-species hybridizations

revealed obvious similarties in patterns of relative signal strength among features (Figure

B.l). To quantify this relationship, feature intensities from 3787 features on Cy3

hybridizations were compared directly (Figure B.2). In the vast majority of cases, same-

species hybridization produced higher fluorescence intensity. Several hundred features

with cross-species fluorescence intensities 2:2-fold higher than same-species intensities

were separated from the main body of data. Each group showed moderate levels of

correlation between same-species and cross-species fluorescence intensities (R2 = 0.59

and 0.75).

B.4 Discussion

These results suggest that, while less efficient than same-species hybridization, cross-

species hybridization to zebrafish micro arays may be used to detect gene expression in

fish species for which DNA arays are not available. A general correlation between

same-species and inter-species hybridization results was readily apparent upon inspection

of either hybridization images or resulting numerical data. Similarly, results of

hybridization of pig RNA to human microaray tracked closely with results from human-

human hybridizations (218).

Neither this preliminary work nor published investigations of inter-species

hybridization has adequately addressed the potential for non-specific hybridization. In

the current case, significant outliers and only moderate support for a regression trendline

fitted to the main body of data both suggest an unexplained source of varation affecting

some subset of Fundulus genes. A high level of varation in cross-species results for 6%

of arayed human genes also suggested gene-specific arifacts (218). Such varance

might be reduced by increasing the stringency of cross-species hybridizations; further

work is needed to determine an ideal hybridization temperature for use of Fundulus
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heteroclitus samples with zebrafish arays. However, it is also possible that a large

portion of varability is due to actual biological differences (i.e., differences in basal

levels of expression of certain genes). Thus, it would be interesting to assay non-specific

hybridization using individual Fundulus gene transcripts. Such work has yielded

important information about specificity of arayed cDNA probes (138), and might

contribute to the development of general guidelines for conditions of cross-species

hybridization.
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Figure B.l Representative quadrants from zebrafish (which arays) hybridized with

cDNA from zebrafish hear tissue (left panel) or from Fundulus heteroclitus hear tissue

(right panel).
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Figure B.2 Correlation between Cy3 feature intensities generated by hybridization of

AHOOI arays with either zebrafish or Fundulus heteroclitus adult hear cDNA. 3787

features with intensities of at least 100 rfu on both hybridizations were compared.

Features with cross-species fluorescence intensities at least 2-fold higher than same-

species values were analyzed separately (grey squares).
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APPENDIX C.

The role of cytochrome P450 lA in TeDD embryotoxicity:

preliminary results
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c.! Introduction

Several lines of evidence have implicated cytochrome P450 lA (CYPIA) in the

mechanism of TCDD toxicity. Induction of CYPlA enzymes by aromatic hydrocarbons

was first reported more than thirty years ago (60, 61), and has since been shown to be

strictly AHR-dependent (62,63) CYPlA induction co-localizes with target regions for

TCDD toxicity, such as vascular endothelium, and follows similar dose-response curves

as toxic end-points (26,27,68,69). Finally, blocking CYPIA enzymatic activity protects

zebrafish embryos against circulatory dysfunction (22). However, direct and conclusive

proof of a role for CYPIA in processes of TCDD toxicity have been elusive.

Morpholino technology provides a rapid method for functional knock-down of

specific protein expression in zebrafish. We have attempted to use morpholinos to knock

down CYPIA expression and induction by TCDD. However, this effort has been

confounded by the sporadic appearance of what is most likely an arifactual phenotype.

As a result, focus has shifted to the analysis of CYPIA morphant embryos being

generated by Dr. Hiroki Teraoka's laboratory.

C.2 Methods

Gene-specific morpholinos and a fluorescein-tagged standard control morpholino

were obtained from GeneTools, LLC. One morpholino, referred to simply as ATG, was

designed to span the translational star site of CYPIA:

5' - GGAAGAATAGTCAGAGCCATTGCTG - 3'

Another morpholino (I2) targeted the splice acceptor site at the boundary of intron 2 and

exon 2:

5' - TAACCCACCCACCTTATCGAACGTA - 3'

A four-base mismatch, called 12ueg, served as a specific negative control:

5' - T AtCCCtCCCACCTT A TgGAAgGT A

Two commercial preparations each of 12 and I2ueg, one incorporating a fluoroscein tag

and one without, were used interchangeably in experimental work.
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Stock solutions of 1 mM morpholino in Ix Danieau's were stored at 4°C and used to

generate 50-500 IlM working solutions. Morpholinos or buffer alone were injected into

the cells of 1- to 4-cell zebrafish embryos. When using fluoroscein-tagged morpholinos,

embryos were selected for evenly distributed high-level fluorescence at 18-24 hpf.

C.3 Results

The I2 morpholino produced a range of deletions in the 3' portion of intron 2;

truncated transcripts were detected by RT-PCR, cloned and sequenced (data not shown).

The primary lesion was a 30 bp deletion (811-841 bp), presumably resulting in an in-

frame deletion of amno acids 271-280. No such lesions were detected in CYPlA

transcripts from embryos injected with I2neg morpholino.

Experiments involving the ATG-targeted morpholino revealed an abnormal

phenotype consisting of reduced cranial size, skeletal malformations (i.e., twisted tail),

and disruption of peripheral circulation (Fïgure C.1). Both I2 and, to a lesser degree,

I2neg morpholinos produced an indistinguishable phenotype (Figure C.l). Over the

course of five additional experiments, occurrence of this phenotype was sporadic and did

not appear to bear any relationship to the source (i.e., different preparations) or

concentration of morpholino used. However, this phenotype was never observed in

embryos injected with either Ix Danieau's buffer or GeneTools' standard control (data

not shown).

C.4 Discussion

The fact that two morpholinos targeting disparate regions of the CYPlA gene

produced the same abnormal phenotype, while buffer and standard control morpholino

did not, would tend to suggest that this is a specific effect. However, observations of the

same phenotype in embryos injected with the specific negative control morpholino, I2neg,

suggest otherwise. It is clear that I2neg has no effect on CYP1A transcript processing, and

thus, probably does not interfere with functional protein expression. Thus, the observed

phenotype cannot be the result of specific knock-down of CYPIA.
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One possible alternative is that these morpholinos are interacting with another

undefined cytochrome P450 gene. At this time, relatively little is known about CYP

famly genes in zebrafish. It would be extremely interesting to identify genes that, based

on sequence similarty, might be interacting with the morpholinos used here.

Members of Dr. Hiroki Teraoka's laboratory have recently published their findings

that a different CYPIA morpholino protects against TCDD circulatory impacts without

causing any confounding effects (54). In order to address the initial question of interest,

we have begun to work with Dr. Teraoka to characterize gene expression in untreated and

TCDD-exposed CYPlA morphant embryos using AH002AI arays.
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Figure C.1 CYPIA morphant phenotype, as observed at 50 hpf. This phenotype was

produced sporadically by morpholinos targeted against either the boundary of intron 2

and exon 2 (a), or the translational star site (b).
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(a) 500llM I2
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(b) 500llM ATG
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