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Abstract
The Sentry AUV represents a radical departure from conventional AUV design, par-
ticularly with respect to actuation. The vehicle's combined foil/thruster actuators

have the potential to produce a vehicle both maneuverable in the veritcal plane and
effcient in forward flight, well suited to survey work over rough topography. Capi-
talizing on this; however, requires an understanding of the vehicles dynamics.

In this work, we present the development and analysis of an analytic model of
the Sentry AUV Our goals were to develop a model suffciently accurate in terms of
the mission profile to identify critical vehicle behaviors influencing successful mission
completion. The analytical vehicle model was developed with structural accuracy
in mind, and under the requirement that it handle a large range of vertical plane
velocities,

Our primary methodology for analysis was through the design of a linear con-
troller, whose behavior was investigated in simulation and as implemented on a l-
scale physical modeL. Based on decoupled linearized models for near-horizontal flight
derived from the full non-linear model, classical linear controllers were designed and
validated by simulation and implementation on the physical modeL. Closed loop sim-

ulations conducted at high angle of attack verified the vehicle's predicted maneuver-
ability in the vertical plane, Ultimately we determined the vehicle's input structure
limited the achievable performance of a classical linear controller.

Thesis Supervisor: Dana R. Yoerger
Title: Associate Scientist, \iVROI
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Chapter i

Introduction

Over the last half decade, interest in autonomous underwater vehicles (AUVs) as

tools for oceanographic science has grown. The Woods Hole Oceanographic's (WHOI)

Autonomous Benthic Explorer (ABE) has been used with success to survey and collect

data from deep ocean rift and hydrothermal vent sites. The data provided by an AUV

for geological work represents a cost effective use of ship time. The data resolution is

unmatched because of the vehicle's proximity to the seafloor, and the surface ship is
free to perform other work while the AUV completes its survey. Ultimately, AUVs like

ABE may be left entirely unattended awaiting ocean events or conducting repeated
surveys.

ABE was originally designed to remain on the ocean floor for extended periods
of time, periodically leaving a fixed mooring to collect data over the same region of

the ocean. To date, ABE has not been used in that capacity, and has instead been
deployed in conjunction with remotely operated vehicles and manned submersibles,
generally surveying an area to locate features of interest before these other vehicles.

The time saved using ABE-generated maps to navigate along the seafloor results

in a much more productive use of remotely operated and manned assets. In response
to the pervasive use of ABE as a complementary vehicle, a new AUV, Sentry, has

been designed at WHOI, and is slated for sea trials in Spring 2003.

Sentry is radically different from all currently operational AUVs. It has been
designed to incorporate the features of ABE that have made it well suited to scientific

work, but its design is tailored to the particular mission that it wil carry out ¡26J.

Like ABE, Sentry wil be highly maneuverable; capable of purely vertical motion and
hover, and more hydrodynamically effcient than ABE. A larger battery capacity wil

allow longer mission times. Finally, experience with the ABE vehicle and particular
attention to maintenance and operational considerations in the design ensures a quick

15



deck turnaround to support daily operations.
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Figure 1-1 An artist's rendering of the Sentry vehicle. Both the fore and aft set
of foils (and attached thrusters) are capable of swivellng 2700 Sentry wil be both
maneuverable and effcient in the vertical plane.

The proposed design shown in Figure 1-1 represents a departure from other AUV

designs in three significant ways:

1. Unlike more standard AUV designs actuated by a single main propeller and aft

control foils, Sentry wil be maneuverable even at zero forward speed.

2 Sentry's swivellng thruster/foil actuators allow vehicle control uncompromised

by thruster performance degradation in crossfiows ¡22J.

16



3. Sentry's aerodynamically shaped monolithic hull wil provide the same degree
of static stability in pitch and roll as possessed by the ABE vehicle, but at lower

drag.

These design features represent hold considerable promise, but their realization wil
require a careful study of the proposed vehicle's dynamics and a control system design

motivated by an understanding of the opportunities and constraints imposed by the
vehicle dynamics. This analysis is the subject of this work.

The first part of this work (Chapters 3 & 4), is devoted to the development of
a six-degree of freedom vehicle dynamics modeL. The model developed herein is
based on theoretical and existing empirical hydrodynamics work. It is expected that
parameters within the model wil require tuning once the full scale vehicle is opera-
tional in Spring 2003; our focus herein is on model structure. A suffciently accurate
model structure and understanding of the resultant dynamics through analysis and
simulation enables intellgent model-based control design, and ensures that once the
full-scale vehicle becomes available, its dynamic behavior wil be understood.

In the second part (Chapters 5 & 6), we present an analysis of near equilibrium

flight conditions for nominally horizontal flight and a linear control design based upon

this simplified modeL. Simulation results are presented using the full non-linear six-
degree of freedom modeL. Results are also given from the implementation of this
control design on a l-scale physical model We close by considering the limitations

of linear control design in fully exploiting the capabilities of the Sentry vehicle and
suggest directions for further work.

17
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Chapter 2

The Sentry Autonomous
Underwater Vehicle

In this chapter we define the basic geometrical and mass properties of the Sentry

vehicle. The dimensions and mass properties given are based on preliminary design
data and may change as the vehicle nears completion.

2.1 Vehicle Geometry

A top and side view of the Sentry vehicle along with dimensions relevant to this work

are shown in Figures 2-1 and 2-2, respectively.

Values for the symbolic dimensions shown in the figures are given in Tables 2.1
and 2.2. Foil area is large relative to body size to damp vehicle pitch and rolL. The

leading edge slope of the foils is motivated by the requirement that the vehicle shed
lines from moorings passively. The large vertical foils protruding from the ends of
the aft horizontal foils shown in Figure 1-1 are not shown above. These foils wil
probably not be on the real vehicle and are not included in the analytical model
developed herein.

19
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Figure 2-1 Sentry: top view.
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Figure 2-2: Sentry: side view.
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Table 2.1. SentrLHull Geometric Parameters
Parameter Value nits Description

Lb 2.53 m vehicle length
Wb 0.81 m vehicle width
Hb 1.67 m vehicle height
aNz 0.83 m nose major axis in xy-plane
bNz 0.41 m nose minor axis in xy-plane
aNy 0.84 m nose major axis in yz-plane
bNy 0.41 m nose minor axis in yz-plane
rT 0.25 m rounded tail radius

Table 2.2: S Foil Geometric Parameters
arameter Value Units Description

Af 15 deg l-chord foil sweep angle
wf 1 14 m foil extent
Wr 0.53 m root extent

cf 0.71 m projected chord length

aff 0.70 m x-vector to fore foil axis
Oaf -1.12 m x- vector to aft foil axis
bt 0.81 m thruster moment arm

We wil find it useful in later sections to refer to the vehicle as composed of discrete

units: the vehicle hull, two sets of stationary foil roots, and two sets of control foils.

Each set of control foils is defined as consisting of the pair of rotating foils, the shaft

that connects them, and the two thrusters mounted on either foiL.

2.2 Vehicle Mass Properties

The vehicle center of mass (CG) and center of buoyancy (CB) are as shown in Figure 2-

2. The CB is located at the center of mass of a vehicle of identical geometric extent,

but of uniform density. This location of the CB assumes that that any water entrained

in the flooded hull of the vehicle acts as though it were rigidly attached to the rest of

the vehicle, a reasonable assumption for the vehicle when moving at cruising speed.
The vertical displacement between the CB and CG shown above is based on an
estimate of the vehicle's mass distribution.

All foil parameters are rough estimates based on incomplete design data.

21



Table 2.3: Sentry Hull/Roots Mass Properties
Parameter Value nits Description

i'Í 1.93 m3 body volume including entrained water
Bb 18,960 N body buoyancy force
mb 1,890 kg wet body mass

lVb 18,600 N wet body weight

XNCG -1.16 m x- vector from nose to CG
ZB 0.00 m z- vector to CB
Ze 0.20 m z- vector to CG

hxx 589 kg.m2 body moment of inertia
I 1,830 kg m2 body moment of inertiabyy

hzz 1,380 kg.m2 body moment of inertia
hxz 50 kg m2 body product of inertia

Parameter
V¡

B¡
m¡
Wb

I¡xx

I¡yy

I¡zz

Table 2.4: Sentry Foil Mass Properties
Value Units Description

1.9 m3 foil volume including entrained water
o N foil buoyancy force

20 kg wet foil mass
190 N wet foil weight
10 kg. m2 foil moment of inertia

100 kg m2 foil moment of inertia
100 kg. m2 foil moment of inertia

Table 2.5. Combined Mass Properties (Foils Flat)
Parameter Value nits Description

V 1.9 m3 vehicle volume
B 18,960 N vehicle buoyancy
m 1,930 kg wet vehicle mass
W 18,960 N wet vehicle weight
Ixx 790 kg. m2 vehicle moment of inertia
Iyy 1890 kg m2 vehicle moment of inertia
Izz 1610 kg. m2 vehicle moment of inertia
Ixz 50 kg. m2 vehicle product of inertia
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2.3 Mission Profile

The Sentry vehicle design is tailored to deep sea survey above topographically complex

terrain. A model of the vehicle needs only to be accurate within the operational

envelope defined by such missions.

Deep sea survey as performed by ABE l26, 27, 24, 23J consists of a descent
to a predetermined position on the sea floor followed by the execution of a series
of lawn mower-like tracklines at constant height above the seafloor (typically 5 m

to 100 m), and finally an ascent back to the surface for recovery. An example of

the tracklines followed by ABE during three July 2002 dives above the Explorer
Ridge (49°46' N, 130°16'. W) are shown in Figure 2-3 superimposed above the

bathymetric map generated using data collected during those dives. The bathymetry
shown in Figure 2-3 is characterized by steep ridges running NNW and rapid changes

of elevation as indicated by the depth scale on the right of the plot. This topography
is typical of the regions where Sentry wil operate. Thus the Sentry vehicle must be
maneuverable in the vertical plane to successfully maintain a prescribed height above

the bottom. As bottom-following bandwidth is crucial to the vehicle's performance,
our model wil wil need to be accurate over a wide range of vertical and horizontal
speeds.

The tracklines followed by ABE in the above example are identical in terms of
general shape to those the Sentry vehicle wil follow, although parameters such as

trackline spacing vary according to the desired data product. These tracklines are
straight, and deep-ocean near bottom currents are rare, thus limiting the lateral
bandwidth required to successfully follow them. For this reason the Sentry vehicle is

not equipped with lateral thrusters. Furthermore our model need only be accurate
to low heading rates.
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Chapter 3

Equations of Motion

In this chapter, we define the governing equations of motion for the Sentry AUV

Explicit expressions for the hydrodynamic forces incident on the vehicle are given in

Chapter 4.

3.1 Coordinate Frames

We approximate as inertial a frame fixed to the ocean surface. All vehicle motions

are described relative to this frame. We further define a body-fixed coordinate frame

fixed in the vehicle's body such that its origin is coincident with the vehicle's center

of buoyancy when the control foils are in their neutral position. In addition, we wil
find it useful to define a third set of coordinate frames, fixed rigidly to each rotating

pair of control foils. These frames are ilustrated in Figure 3-1. The coordinate
frame associated with the forward control foil is not shown. Coordinate directions
for the inertial and body-fixed reference frames are consistent with convention for
marine vehicles (5) The coordinate directions in the foil frames are chosen consistent
with our generalized strip-theory approach to the hydrodynamics of the control foils

(Section 4.2)

3.2 Kinematics

The motion of the body-fixed and foil-fixed coordinate frames are described relative

to the inertial frame. We denote the general state of motion of the body-fixed and
foil-fixed coordinate frames relative to the inertial frame by the following quantities:

25



y~X
Z

x

z

Figure 3-1: Sentry AUV Body-Fixed, Aft Foil, and Inertial Coordinate Frames

'li ¡X,y,zjT inertial position

'l2 ¡ø, fJ, 1/)T inertial orientation (Euler angles)
Vi ¡U,v,wjT body-fixed linear velocity

V2 ¡p,q,rjT body-fixed angular velocity

'Ti ¡X, Y, zjT external forces

'T2 ¡K, lvi, NjT external moments

4J! ¡øjf, øajjT foil angles

h ¡hfp, his, hap, hasjT thrust inputs

The above are consistent with Fossen's notation ¡5j with the exception of 4J! and h
which are particular to our vehicle.

Following the development found in Fossen (5), the translational velocity of the
vehicle expressed in the body-fixed frame is expressed as linear velocity in the inertial

frame through the transformation

i¡i = J i ('l2) Vi . (3.1)

where

( cos 1/ cos fJ

J i ('l2) = sin 1/ cos fJ

- sin fJ

- sin '1) + cos 1/ sin e sin ø

cos 1/ cos ø + sin '1) sin fJ sin ø

cos e sin ø

sin 1/ sin ø + cos 1/ sin e cos ø J

- cos 1/ sin ø + sin 1/ sin e cos ø

cos e cos ø

(3.2)
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The rotational velocity of the vehicle expressed in the body-fixed frame is ex-
pressed as rotational velocity in the inertial transformation through the transforma-
tion

'Ì2 = J2(1J2)V2 . (3.3)

where

( 1 sin ø tan e cos ø tan e J

J2(1J2) = 0 cosø -sinø
o sin ø/ cos e cos ø/ cos e

Note that J 2 above is singular for e = ::900 AUV Sentry is unlikely to ever pitch
anywhere near ::900 while underway, and for this reason we chose to define the trans-

formation matrices J 1 and J 2 in terms of familiar and widely used Euler angles,

although other, singularity-free, transformations do exist.

(3.4)

Translational velocity vectors and geometric vectors defined in the foil-fixed frames

are related to vectors defined in the body-fixed frame through the simple relation

br = R/r, (3.5)

where the preceding superscript denotes the frame of the vector argument (b: body;

f: foil). Again employing Euler angles, the rotation matrix Rf is given by

( 0 cos ø! - sin ø f J
Rf = -1 0 0

o sin Øf cos ø!

(3.6)

where the scalar angle Øf denotes either the forward foil angle øf!, or the aft foil angle

øa!, as appropriate. Note that although the foils are capable of 2700 rotation, Rf
remains defined for all foil angles by the particular orientation of the foil-fixed frame

relative to the foils' single axis of rotation. This choice of coordinate orientation is
consistent with that of Section 4.2, in which we derive a general equation for the lift

and drag of a body composed of aerodynamically shaped two-dimensional sections.
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3.3 Rigid Body Dynamics

The six degree of freedom equations of motion for a general rigid body in vector form

are ¡5J:

m ( ( å~o ) reI + w X Vo + W X TG + W X (w X TG)) to (3.7)

low + W X (low) + mTG X ( (å~o ) reI + W X vo) = mo, (3.8)

where 10 denotes the inertia tensor defined at the origin of the body-fixed coordinate
frame, and rc = ¡xc, Yc, zcjT the vector from the frame origin to the center of grav-

ity. Equation (3.7) represents the translational motion of the vehicle and (3.8) the
rotational motion. Applying the notation defined in Section 3.2 to these equations
and expanding yields:

m¡u - vr + wq - XC(q2 + r2) + yc(pq - r) + zc(pr + (q))J = X

m¡v - wp + ur - yc(r2 + p2) + zc(qr - p) + xc(qp + (r))J = Y

m¡w - uq + vp - ZC(p2 + q2) + :Lc(rp - g) + yc(-rq + (p))J =Z

Ixxp + (Izz - Iyy)qr - (r + pq)Ixz + (r2 - q2)iyz + (pr - g)Ixy

+m¡yc(UJ - uq + vp) - zc(v - wp + l¿r)J = K (3.9)
Iyyg + (Ixx - Izz)rp - (p + qr)Ixy + (p2 - r2)izx + (qp - r)Iyz

+m¡zc(u - vr + wq) - xc(w - uq + vp)J = /vI

Izzp + (Iyy - Ixx)pq - (g + rp)Iyz + (q2 - p2)ixy + (rq - p)Izx

+m¡xc(v - wp + ur) - yc(u - vr + wq)J = N .

Several simplifications are possible by judicious placement of the body-fixed co-

ordinate frame. By placing the body-fixed reference frame at the center of buoyancy
as defined in Section 3.1, and thus directly over the center of mass, Xc = Yc = o.
Further, the mass symmetry of the vehicle across the x - z plane implies the products

of inertia Ixy and Iyz are both equal to zero, and the general rigid body inertia tensor
reduces to:

¡i xx 0
10 = 0 Iyy

Ixz 0

I~z J

Izz

(3.10)
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Thus, for the Sentry AUV, the rigid body equations of motion reduce to:

mlu - vr + wq + zc(pr + (q))J = X

mlv - wp + ur + zc(qr - p)J = y

mlw - uq + vp - ZC(p2 + q2)J = z

Ixxp + (Izz - Iyy)qr - (r + pq)Ixz - mlzc(v - wp + ur)J = K

Iyyq + (Ixx - Izz)rp + (p2 - r2)izx + mlzc( u - vr + wq)J = M

Izzp + (Iyy - Ixx)pq + (rq - p)Izx = N

(3.11)

Equation (3.9) states the equations of motion for an ideal rigid body. For this equation

and its simplified version (3.11) to apply, we approximate the foils, body, and any

entrained water as a single rigid mass. Such approximations are consistent with

typical marine vehicle models.

In this case, such an approximation may not be appropriate because of the large
mass of the foils, and their large range of motion. In particular, the model does not
account for forces and torques on the vehicle body induced by the rotation of foils

relative to the vehicle body. Such a model could be constructed, but at the cost of the

added complexity of two additional degrees of freedom (one for the single rotational
degree of freedon of pair of foils)

Although such a model is tractable from a rigid body perspective (l2J,18J), only

extensive empirical work could yield a hydrodynamic model accurate enough to justify

the added complexity (cf. l12J). Furthermore, since our eventual goal is control
rather than modeling precision, it makes sense to leave the model in terms higher-
level control variables such as foil angles (øjf, Øaf) rather than the lower-level foil

torques that would be required should the model order be increased.

Finally, as the foils rotate, the nominally static inertia tensor 10 changes. It
would violate conservation of energy to include this effect without increasing the
model order, since such a model could add inertia arbitrarily and thereby increase
kinetic energy without penalty. However, multiple nominally static configurations of

the Sentry AUV are potentially of interest, and for this reason, Appendix A details
the calculation of the vehicle's effective inertia matrix for arbitrary foil configuration.

The rigid body dynamics of the vehicle can be expressed in compact matrix form

l5J as
MRBV + CRB(V)V = TRB (3.12)

where M RB is a positive definite matrix of inertial terms and C RB is a matrix of
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centripetal and Coriolis terms composed of vehicle velocities v and the elements of
MRB

CRB =

r7! ~ ~ -~za mga ~ J

o 0 mOO 0o -mZa 0 Ixx 0 -IxzmZa 0 0 0 Iyy 0o 0 0 -Ixz 0 Izz
¡ 0 0 0 -mw mZaT mu J

o 0 0 mv-mZaP -mu-mZaa 0
-:"0" :'" -'0":'0"'" '0:°" -I,,::L" ~:::q
-mw -mZaT mu+mzaa Ixzp-IzzT 0 Ixxp-IxzTmv -mu 0 Iyya -Ixxp+lxzT 0

(3.13a)MRB=

(3.13b)

The vector TRB in (3.12) represents all external forces.

The above formulations of M RB and C RB represent the rigid body dynamics
for c/ff,af = O. Formulations of these matrices for arbitrary foil angle are given in

Appendix A. Note that C RB has been formulated to be skew-symmetric, a fact
potentially useful in control design (l20J,5J).

3.4 Complete Equations of Motion

The complete non-linear six-degree of freedom equations of motion expressed in the

body-fixed frame can be written in matrix form as ¡5J'

Mv + C(v)v + D(v, cPt)v + g('l) = b(cPt, h)

i¡ = Jv
(3.14)

where

M=MRB+MA
C=CRB+CA

D (v, cPt) = Ds.t. (v, cPt) + Db.t. + Dlin .

The component terms are described below.

The mass matrix M consists of the rigid body component MRB and an added
mass component MA. The centripetal and Coriolis force matrix C likewise consists
of the rigid body component C RB and an added mass component CA. Both matrices

of added mass terms are derived in Section 4.1.

The damping matrix D consists of hydrodynamic lift and drag terms. Specifically,

Ds.t. covers the contribution of quadratic lift, drag and cross flow drag terms derived
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from a strip-theory treatment of the vehicle's hydrodynamics (Section 4.2). Under

the assumption of foil/thruster independence (see Section 4.6), control foil lift and
drag terms are included in this matrix. Longitudinal body lift forces inadequately
estimated via strip-theory are added in a matrix of longitudinal body lift terms Db.t.

(Section 4.4). Finally, linear drag terms important at low speeds are added in Dlin
(Section 4.4.1).

The vector g(r¡) represents hydrostatic restoring forces (Section 4.5).
The thruster input vector b (cPt, h) describes the mapping of each thruster onto

the vehicle axes:

b(cPt,h) =

(hfp+h fs) cas,p ff +(hap+ha.,) cas ,paf
o

(h fp+h fs) sin,p ff+(hap+has) sin ,paf
bt ( (h fp -h fs) sin,p ff+(hap-has) sin ,paf )

-aff(h fp+h fs) sin 'Pff -Oaf (hap+has) sin ,paf

bt ((h fp-hfs) cas ,pff+(hap-has) cas cPaf )

(3.15)

The mapping is trigonometrically dependent on the control foil angles cPt.
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Chapter 4

Hydrodynamics

In this chapter we compute the hydrodynamic forces acting on the vehicle. The
forces applied to the vehicle by the surrounding fluid medium can be roughly broken

down into added mass, lift, drag, and hydrostatic forces. In all except the last,
exact expressions would require analytic solutions to the Navier-Stokes equations with

boundary conditions defined by the vehicle. In general this is intractable, and marine

vehicle modelers have typically relied on Taylor series approximations to estimate
hydrodynamic forces ((171) For example, the axial force X acting on a body moving

at constant velocity in a fluid medium is well approximated by the familiar expression

for quadratic drag:
1

X = -pCDAflulu = Xlulululu
2

This expression can be derived directly from dimensional analysis, or equivalently

from a Taylor series expansion of the hydrodynamic forces incident upon the vehicle

where only the most significant term has been kept. The subscript in the latter
expression is consistent with standard notation (11 J and denotes the partial derivative

of the axial hydrodynamic force X taken with respect to lulu:

âX
Xiulu = â(lulu)

The task of the modeler then becomes to analytically approximate or experimentally
determine all coeffcients of this form significant to the vehicle dynamics (d. (10, 61)

Usually, terms no greater than third order are required (1J, although herein we consider

only first and second order terms.

In this work, we follow this framework to model the added mass, linear drag, and

longitudinal body lift forces, but take a slightly different although related approach
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to model most of the quadratic lift and drag forces acting on the vehicle. Rather than

constant coeffcients, we generalize the notion of crossflow integrals (see for example

the vehicle models in ¡7J and ¡16J) to any body composed of aerodynamically shaped

2D sections oriented roughly into the oncoming flow. As these forces are necessarily
expressed in integral form, explicit Taylor series coeffcients cannot be derived.

This latter technique relies heavily on strip theory ¡see ¡14J for a general discussionJ.

Strip theory is predicated on the assumption that flow around a body of suffcient
length to width ratio can be approximated as two dimensional except at the ends. The

hydrodynamic forces on that body can then be approximated by integrating the force

each two-dimensional section would experience if subjected to purely two-dimensional

flow. We correct this approach for 3D effects by the appropriate choice of leading
coeffcients (cf. ¡13J).

The hydrostatic forces operating on the vehicle are straightforward, and discussed

in Section 4.5.

Finally, we present an argument based on a linearized analysis of the interaction

between the thrusters and the foils to justify the independent treatment of thrust
generated by the thrusters and foil lift.

Throughout this chapter, we wil draw on mostly empirical and some theoretical
results for the calculation of various leading coeffcients, primarily from Hoerner's

works ¡8, 9J, and those complied in ¡l1J. In most cases, the geometry of the vehicle

and foils given in Chapter 2 wil also be required to arrive at numerical coeffcient

values. Numerical coeffcient values are given at the end of each subsection.

4. i Added Mass
The term "added mass" refers to pressure induced forces and moments proportional to

the acceleration of the body¡5J. Under the assumption that the added mass coeffcients

are constant, the added mass forces and moments 'TA can be expressed in terms of

a symmetric positive definite added mass matrix M A, and a skew symmetric matrix

of centripetal and Coriolis added mass terms CA:

MAv+CA(V)V='TA. ( 4.1)

The matrix of centripetal and Coriolis terms C A is composed of the terms of MA

and the body-fixed velocities v Anyone formulation of C A is not unique, although

it is always possible to formulate C A such that it is skew-symmetric. See ¡5J for a
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theoretical derivation of this fact.

In the following sections we derive the specific form of M A and C A for the Sentry

AUV. We consider the added mass of the body separately from that of the foils, before

combining the results to reach an expression for the added mass forces incident on
the complete vehicle.

4.1.1 Body Added Mass

Due to the top-bottom and port-starboard geometric symmetry of the body, the body

added mass matrix reduces to:

XÙb 0 0 0 0 0

0 YUb 0 0 0 NÙb

0 0 ZWb 0 lvI. 0
M Ab = -

Wb
(4.2)

0 0 0 KPb 0 0

0 0 1vlwb 0 A1- 0ab

0 NÙb 0 0 0 Nib

The expressions required to compute each element of M Ab above are given in the

remainder of this section.

The axial added mass XÙb can be approximated as the lateral added mass of
a three-dimensional prolate ellpsoid with major semi-axis a equal to the vehicle's

vertical extent, and minor axis b equal to the vehicle's maximum width. Fossen (5J
gives the formula for the lateral added mass of a prolate ellpsoid as:

4 2 ßo
XUb = - -npab

3 2 - ßo (4.3)

where
ß -.i - l-e2 In Heo - e2 2e3 l-e' e=1-(b/a)2. ( 4.4)

To estimate the remaining added mass coeffcients in (4.2), we approximate the

body as composed of geometrically simplified two-dimensional sections and integrate

their two-dimensional added masses. Newman (14J gives the theoretical expressions
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for the added mass of a 2D ellipse with major axis a and minor axis b:

mii = 1f pb2

2m22 = 1fpa

1 (2 22
m66 = -7r P a - b) ,

8

The expressions for the added mass of a circle of radius a with fins of extent 2b are
also given in ¡14J:

mii = 1fp¡a2 + (b2 - a2)2/b2J

2m22 = 1fpa

m66 = 1fa4 (1f-i csc4 a (2a2 - a sin 4a + ~ sin2 2a) - 1f /2)

where sina = 2ab/(a2 + b2) and 1f/2 .: a': 1f.

Applying these expressions under the assumption that the body of the vehicle

can be approximated to be of ellptical cross-section throughout, and as ellptical
with protruding flat plates where the fixed foil roots protrude, the expressions for the

remaining added mass terms can be written as:

Y~b = 1fp r Hb(1:)2dx
JXb

Z. = ¡ ((~W~ ( ))2 + (OTVtot(X))2 - (!iVb(X))2)2) dWb 7r P 2 b X l W" ( ) 2 Xxb 2 tot X
1 J (1 4

K'iJ=S7rp xb 2Wtot) dx

M. = ¡ 2 (( ~ vi ( )) 2 + ((! Wtot (x) ) 2 - (! Wb (x) ) 2?) dab 7r P x 2 b X l TV (X)2 X~ 2 W
Nib = 1fp r x2 Hb(x)2dx

JXb

NVb = 1fp r xHb(x)2dx
JXb

M . = ¡ (( ~ T;r T ( )) 2 ( ( ! vVtot (x) ) 2 - (! lifb (x) ?) 2) dWb 7r P x 2 vv b X + l W ( )2 XXb 2 tot X

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

where the terms Hb(x), VTlb(x), and Wtot(x) represent the height, centerline width,

and width-including-roots of the body respectively.

The resultant numerical values for the added mass coeffcients are given in Ta-
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ble 4.1.

Table 4.1: Bod Added Mass Coeffcients
Parameter Value Units Description

XUb -366 kg axial added mass
YVb -4960 kg lateral added mass
ZWb -1520 kg vertical added mass
KPb -41.9 kg. m2 roll added mass
A1qb -690 kg m2 pitch added mass
NTb -2210 kg. m2 yaw added mass
AI. -168 kg m added mass cross termWb

NVb 816 kg m added mass cross term

4.1.2 Foil Added Mass

Each pair of rotating foils is symmetric across the plane defined by the foil chords,
symmetric across the plane perpendicular to the foil axis of rotation, and nearly
symmetric across the plane perpendicular to the foil chords and coincident with the
foil's rotational axis. Due to this symmetry, the mass matrix for either foil is diagonaL.

However, the small projected areas of each foil pair relative to the vehicle body onto

all planes except the that parallel to the foil chords suggest that added mass terms
associated with other planes can be neglected. Under this assumption, the added
mass matrix of each foil pair reduces to:

0 0 0 0 0 0

0 0 0 0 0 0

MA =- 0 0 ZWf 0 0 0
(4.12). f 0 0 0 0 0 0

0 0 0 0 Jvf. 0qf

0 0 0 0 0 0

where the above matrix represents the added mass in the foil frame, as defined in

Section 3.1.

Newman ¡14J gives the theoretical expressions for the added mass of a flat plate
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Ttble 4.2: Foil Added Ma,ps Co
V ue nits escription

ZWf -186 kg vertical added mass (foil frame)
Melf -111 kg. m2 pitch added mass (foil frame)

with lateral extent a:

mii = 0

2m22 = 7rpa

i 4
m66 = -7rpa

8

Approximating each foil pair as a series of flat strips aligned with the foil chords, the

expressions for the added mass coeffcients in (4.12) are:

1 L 2
ZWf = 47rP Lf(x) dx

. Xf

1 L 2 2Mqf = 47rP X Lf(x) dx
. Xf

(4.13)

(4.14)

where Lf(x) denotes the chord-wise cross-sectional length as a function of distance
x f along the foil axis.

The resultant numerical values for the foil added mass coeffcients are given in
Table 4.2

4.1.3 Combined Added Mass

The added mass matrix of the entire vehicle, composed of the body and two pairs of

foils, can be derived by considering the kinetic energy of the surrounding fluid:

1 T
T = -v MA(ai¡)v.

2 (4.15)

Here M A represents added mass matrix of the complete vehicle. As indicated, it is
dependent on foil angle. It would violate conservation of energy to employ a non-

constant added mass matrix dependent on foil angle without increasing the order of

the modeL. Therefore, M A ( ai ¡) above should be interpreted as an expression for the

constant added mass matrix of the complete vehicle for arbitrary, but fixed foil angles.
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It can be shown that the expression of M A (CPi) for arbitrary foil angle is given by:

MA = MAb + UJ¡MAffU¡¡ + U~¡MAafUa¡ (4.16)

where the transformation matrix U is given by:

U(ø¡) = ¡ R¡ 03x3 i -1 ¡ I3x3 -S(brio) i
03x3 R¡ 03X3 hX3

(4.17)

where R¡ denotes the rotation matrix between the foil and body frames as defined in

equation (3.6), and brio = ¡a¡, 0, oV denotes the vector from the origin of the body

frame to the origin of each foil frame. The derivation (4.17) is given in Appendix A.

For nominally horizontal flight the foils wil be nominally flat (cp i = 0) and the
combined added mass matrix reduces to:

Xù 0 0 0 0 0

0 y:. 0 0 0 N.v v

MA= 0 0 Zw 0 Mw 0

0 0 0 K. 0 0p

0 0 A1w 0 JvJ. 0q

0 Nv 0 0 0 N.T

where the individual terms of M A are:

(4.18)

Xù = XÙb

Yv = YVb

Zw = ZWb + ZWf

Kp = KPb + AIa¡

NIi¡ = Mi¡b + (ai + a~¡)ZWf

Nr = Nrb

l'vfw = l'lwb - (aff + Oa¡ )ZWf

Nv =Nvb

(4.19)

Numerical values for these coeffcients are given in Table 4.3.

The total forces and moments due to added mass incident on the complete vehicle
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Table 4.3: Combined Added Mass Coeffcients (1i¡= 0)
Parameter Value Units Description

Xu -366 kg combined axial added mass
Yv -4960 kg combined lateral added mass
Z'U -1520 kg combined vertical added mass
Kp -264 kgm2 combined roll added mass
Mq -1020 kgm2 combined pitch added mass
NT -2210 kgm2 combined yaw added mass
M'U -247 kgm combined added mass cross term
Nv 815 kgm combined added mass cross term

can be expressed in matrix form ¡5J as:

-MAv - CA(v)v = TA (4.20)

where the expression for C A is

roo 0 0
o 0 0 Zww+Mwao 0 0 -YvV-NvT

C A = 0 -Zww-!vI,¡,a YvV+N,;T 0
ZW:l+Mwa.O -Xúu Nvv+NrT.
-YvV-NvT ..:'(uu 0 -Mww-!YIqa

- Z,¡, w -!vI,u a
o

Xúu
-Ni,v-N"i'

o
Kpp

YvV+NvT J
-Xúu

MwW~Mi¡a
-Kpp

o

( 4.21)

The terms (Xu - Z'U) uw and - (Xù - Yv) uv in the expanded expression for T A

are known as Munk moments ¡21 J in the longitudinal and lateral planes respectively,

and express the pure moment that acts on a body at an angle of attack (or side slip)

in potential flow.

4.2 Strip-Theory Lift and Drag

The flow around the foils and roots wil be predominantly two-dimensional at small

angles of attack. The streamlined, foil-like shape of the main hull suggests that the
flow around it wil also be somewhat two-dimensional, although to a lesser extent.

Relying heavily on strip-theory, in this section we determine the quadratic lift and

crossflow drag forces incident on the vehicle. In this approach, the 2D lift and drag

forces and moments of individual hull and foil cross-sections are integrated to yield
total hydrodynamic forces and moments. The longitudinal crossflow drag of the hull,

lateral lift of the hull, and the lift and drag of the foils are all treated in this unified
context.
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The advantage of this approach is that different fluid velocities across different

portions of the vehicle are accounted for. The disadvantages of this approach are its
reliance on strip theory and that derived models contain integrals, slowing numerical

simulation.

The relevant aspect ratios of the hull, roots and control foils are given in Table 4.4.

Listed ratios for the foils are defined as average span divided by average chord b/e.
For the roots this value is multiplied by 2 to yield the effective aspect ratio due to

the presence of the hull. Our reliance on strip-theory to compute the lateral lift
forces of the hull is justifiably questionable given the relatively small length to height

ratio (L/H) of the main hulL. Where possible, we apply corrections for the three-

ARbx

ARbz

ARf
ARfT
ARaT

Table 4.4: Geometry Relevant to Strip-Theory
Description
hull height to length ratio
hull length to width ratio
control foil aspect ratio
effective forward root aspect ratio
effective aft root aspect ratio

0.7
4.3
1.5

H/L
L/W
bf /ef

bfr/efr
bar/ear

0.8
1.3

dimensional nature of the actual flow by the appropriate modification of leading

coeffcients.

The longitudinal lift of the hull, for which the relevant aspect ratio is too small
to apply this technique, is treated separately in Section 4.4.

4.2.1 Basic Results from Dimensional Analysis

From a basic dimensional analysis of lift and drag forces on a body moving through

a fluid (see for example Newman ¡14J), the lift and drag forces can be written:

L = ~pCda,Rn)AIVIV
2

D = ~pCD(a, Rn)AIVlv' .
2

( 4.22)

( 4.23)

Here, CL(a, Rn) denotes a non-dimensional lift coeffcient and CD(a, Rn) a non-
dimensional drag coeffcient. Both are dependent on the angle of attack of the body
a and on the Reynolds number RnL = pVL of the flow. The constant A denotes the

tL

characteristic area of the body, and V a characteristic velocity.
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Table 4.5: 2D Section Lift and Drag Leading Coeffcients
Coeffcient

!( Lbxy

KDbxy

K DObxy (Zb)

KDobyz (Xb)

K L jj,aj

KDjj,aj
KDOjj,aj(xf)

KLjr
KDjr

KDOjr(Xr)
KLar
!(Dar

KDoar(Xr)

Value
1.1
0.0

1.69
1.9

1.00
1.25

1.51
1.25

Description
hull lateral lift
hull lateral induced drag
hull parasitic drag (eq. (4.26))

hull crossfiow drag (eq. (4.27))
control foil lift
control foil drag at æ = 90°
control foil parasitic drag
forw. root lift
forw. drag at æ = 90°

forw. root parasitic drag
aft root lift
aft root drag at æ = 90°

aft root parasitic drag

4.2.2 Lift and Drag Coeffcient Approximation

The lift and drag coeffcients CL and CD of the previous section are in general complex

functions of their arguments; however, simplified analytic approximations are avail-
able for a number of practical situations, and a wealth of experimental data exists for

typical aerodynamic shapes (e.g. ¡8, 9, 111, and references therein)

The foil-like shapes considered in this section create lift at non-zero angle of attack

æ and are subject to drag induced by the production of lift ("induced drag"), due to

their finite aspect ratio and the production of vortices. In addition to induced drag,
a typically smaller component of the total drag, "parasitic drag" is due to viscous
boundary layer losses and roughly invariant over small angles of attack.

As indicated in equations (4.22) and (4.23), the lift and drag coeffcients are also
functions Rn. In terms of modeling accuracy, lift and drag forces are most important

at cruising speeds. For vehicle speeds between 0.75 m/s and 2.0 mis, ReL varies

between 1.3 x 106 and 3.6 x 106 for the hull; well into the turbulent flow regime.
Ignoring hull interaction, over this speed range the Reynolds numbers of the control
foils and roots are smaller: on the order of 0.3 x 106 :: Rne :: 0.8 x 106 referenced

to average foil chord. These values fall in the transitional region between laminar
and turbulent flow. Throughout the following analysis we assume fully developed

turbulent flow and ignore Rn-dependence.

Leading coeffcients relevant to lift and drag forces on the Sentry vehicle are de-
rived in the following three sections and summarized in Table 4.5
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Hull Lateral Lift and Drag Coeffcients

For the particular case of the Sentry AUV, we wil consider the lateral lift and drag
coeffcients of the main hull separately from the foils and stationary foil roots. This
treatment is motivated by the observation that the vehicle has no means of thrusting

laterally and as a result the main hull wil experience only small angles of side slip

when moving forward at speeds suffcient to produce significant lateral body lift.
Simple, accurate models for lift coeffcients are available for low aspect ratio wings
limited to small angle of attack, and for this reason we wil determine the lateral lift
and drag coeffcients of the main hull from a linear approximation of the form

CL = KLa , CD = KDo (4.24)

where KL and KDo are constant approximations of the slope of the lift and drag
coeffcient curves about a = O. Note that we approximate the drag coeffcient of the

body as independent of angle of attack.
Treating the main hull roughly as a small aspect ratio wing, the lift coeffcient is

theoretically ¡9J, pg. 17-2 (5):

K = ~ARLb;cy 2 bx ( 4.25)

The excessive thickness of the hull compared to fiat plate implies that (4.25) represents

an overestimate.

The 2D of hull cross-sections varies with thickness to chord ratio t / c. Employing

Hoerner's expression for the 2D drag of an airfoil section (¡8J, pg. 6-6 (6)),

lil!b (z ) Wb (z ) 4
KDobXY (z) = 2Cf(1 + 2 Lb(z) + 60 Lb(z) , ( 4.26)

where Cf is the skin friction coeffcient. Schoenherr's line predicts Cf = 0.0039 for
fully turbulent flow corresponding to Rn = 2.1 x 106

Hull Longitudinal Crossflow Drag Coeffcient

The 2D longitudinal crossflow drag coeffcient of an ellptical cross section is given by

Hoerner ¡8J, pg. 3-11 (21)

( Hb(X) (VVb(X))2)
KDObYZ(X) = Cfturb 4 + 2Wb(x) + 120 Hb(x) ( 4.27)

We again assume fully turbulent flow and choose Cfturb = 0.0039.
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Control Foil and Root Coeffcients

The control foils and particularly the stationary foil roots may be subjected to rela-
tively large angles of attack, and potentially even complete flow reversal depending on

the operating mode of the vehicle. This necessitates the use of a broader model for the

lift and drag coeffcients. For this latter case, Hoerner ¡9J suggests the approximation

CL = KL sin 0: cos 0:

CD = KD sin2 0:

( 4.28)

(4.29)

For the leading coeffcients KL and KD, Hoerner suggests values between 1.8 and 2.0.

Equations (4.28) and (4.29) fail to capture the complex lift and drag behavior
of foils near stalL. This shortcoming is partially mitigated by the hydrodynamic
characteristics of small aspect ratio (AR) foils such as those on Sentry which stall at
a much higher angle of attack than slender foils ¡4J; however, small AR foils exhibit

a steeper lift curve at high angles of attack (l9J,4J) in disagreement the decreasing
slope predicted in (4.28)

It is impossible to account for these structural inaccuracies by appropriate choice
of the leading coeffcients in (4.28) and (4.29). Instead, we choose the leading co-

effcients such that lift is predicted accurately at low angles of attack, and drag is
predicted accurately at high angles of attack. This choice is motivated by the au-

thor's experience with the physical model (Appendix B) which indicates the vehicle
roughly follows a trajectory tangent to the control foils when operating at speeds
significant enough to warrant consideration of quadratic lift and drag forces. To ad-
equately model such behavior we require an accurate model of foil lift for small to
medium angles of attack, and a model that accurately captures the increase in drag,
particularly from the foil roots, for large vertical velocity. Also, foil and root drag at
0: ~ 90° is important for pitch damping at low forward speed.

Empirical lift coeffcients for low aspect ratio foils of similar shape, as determined

by Whicker and Fehlner (1958) are summarized in ¡ 11 J. Linearly interpolating their

results for the aspect ratios of the control foils and roots provides the numerical values

for KL¡¡,a¡ and KLfr,(J listed in Table 4.5.

We wil approximate the profile drag of the control foils at 0: = 90° as that of a
rectangular plate of identical area. Hoerner ¡8J, pg. 4-23 (17), suggests a numerical

value of 1.9 for a plate in turbulent, free-stream flow. We wil use this value for
KD¡¡,a¡ .

The roots interact with the hull to a greater extent than the foils. Hoerner ¡8J,
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Figure 4-1: Aerodynamic Section Definition

pg. 8-3, provides an estimate of CD. = 1.25 for the coeffcient of drag of a plate
protruding from a streamlined body.

The parasitic component of drag for both the control foils and roots is small

compared to the drag of the hull and we ignore it; however, depending on design the
thruster nacelles may have a significant effect on control foil lift and drag. We have
not estimated this additional source of drag.

4.2.3 Differential Lift and Drag of an Aerodynamic Section

Assuming strip-theory applies, we can determine the lift and drag forces of any aero-

dynamically shaped body if we know its 2D lift and drag characteristics and the
geometry relating it to the motion an arbitrary body-fixed frame. In this section
we derive a general expression for the differential lift and drag of a two-dimensional
aerodynamic section oriented into the flow, but of arbitrary orientation relative to a
body-fixed reference frame. This technique wil allow us to consider the foils and the
body in a unified framework.

We define a local coordinate frame for a body composed of aerodynamic two-
dimensional sections as shown in Figure 4-1. In our convention, the xs-direction is
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perpendicular to plane of each cross-section and that the Ys-direction is parallel to

the nominal direction of motion.

In vector form, the quadratic lift and drag equations, (4.22) and (4.23), can be
written:

b 1 (b) T b b AdLs = -pCLb(xs) vP1 vP1 dxs L
2

b 1 (b) T b b AdDs = -pCDb(xs) VP1 vp1dxs d.
2

(4.30)

where bVP1 indicates in-plane section velocity, Z and d are the unit vectors parallel

and perpendicular to the flow respectively as shown in Figure 4-1. The quantity b(xs)

denotes the characteristic width of the section.

The lift and drag unit vectors can be expressed in terms of the in-plane section

velocity bVP1 as follows:
bb d = _ vP1

IIbvp111
(4.31)

Recognizing that

sz=sixsd
, (4.32)

the unit lift vector s Z becomes:

bZ = (R/i) x bd

b Z = S ( R/ i) b d

bZA S (R s~) bVP1
= - s i IIbvp111

( 4.33)

where Rs denotes the rotation matrix between section and body frames such that for
any vector c, be = Rs s c. In the above we have used Fossen's ¡5J notation S ( c) to
denote a skew symmetric matrix such that c x a _ S(c)a.

Using the coordinate frame convention shown in Figure 4-1, we can derive an
expression for bVP1 in terms of the body-fixed velocity bVb:

s psvP1 = VS1

bVS1 = Rs sVS1

b b S(b)bVS1 = Vb1 - Ts Vb2

bVP1 = Rs sVP1

( 4.34)

(4.35)

( 4.36)

( 4.37)
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where P is a rank-deficient projection matrix defined as:

p= (~ ~ n
( 4.38)

P projects the section velocity sVS1 onto the section plane. Note from the geometry

that
b ( ) b R s~rs Xs = ro + Xs s is . (4.39)

Using the above expressions,

b vP1 RsP Rs -1 (hX3 -S(brs(xs)) J bVb

RsGsbvb (4.40 )

where we have introduced the transformation matrix Gs to simplify notation.

Substituting (4.40) and the expressions for the lift and drag unit vectors (4.33)

and (4.32) into (4.30) gives an expression for differential lift and drag in terms of the

body-fixed velocity bVb, and lift and drag coeffcients CL and CD:

b 1 ) ( b)T b (s~) RsGsbvbdLs = -2PCLb(xs RsGs Vb RsGs VbS Rs i IIRsGsbvbl1 dxs

b 1 () ( b)T b RsGsbvbdDs = -2pCDb Xs RsGs Vb RsGs Vb IIRsGsbvbl1 dxs .
(4.41 )

Application to Sentry

The leading coeffcients CL and CD are stil arbitrary at this point. To determine
the differential lift and drag of a lateral section of the main hull, the constant leading
coeffcients given in Section 4.2.2 need only be substituted for CL and CD in equation

4.41 and Rs set such that the vehicle axes translate accordingly into our convention

for the section frame.

For the control foils and roots, the approximations for CL and CD given in Section

4.2.2 also enable 4.41 to be written entirely in terms of the body-fixed velocity bVb.

The computation is given below.

From Figure 4-1, the angle of attack a can be written in terms of the dot product

IIsvP111 cos a = sVP1 . Sys , (4.42)
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or equivalently,

II s V Pi II sin a = s V PI S k s (4.43 )

Substituting these expressions into (4.28) and (4.29) and ignoring dynamic Re-dependence,

C _ K (Svp1 S kS)(Svpl . s)s)L - L IIsVp1 112

C = K + K (Svp1' SkS)(Svpl . Sks)D Do D IIsvP1 II .
( 4.44)

(4.45)

Substituting the result of (4.34) for sVp1, and rearranging the dot products gives

(G b )TSkA. S"'T(G b )C L = I( L s Vb s J s s Vb
( GsbVb)TGsbVb

b T A AT b
C - Y K (Gs Vb) sk/ks (Gs Vb)D - \.Do + D (G b )TG b

s Vb s Vb

( 4.46)

(4.4 7)

Finally, substituting (4.46) and (4.47) into (4.41) and simplifying gives

( ) (((GsbVb)TSksS)l(GsbVb)) ( s'" ) bdLs = - KLb Xs IIGsbvbl1 S Rs is)RsGsdxs Vb

dDs = - KDob(xs) (1IGbvbIIRsGsdxs) bVb (4.48)

( ( b T A AT b) )
-K b() (GsVb) SkSks(GsVb) RGd' bD Xs IIGsbvbl1 s s ,xs Vb

Note that these expressions are singular for bVb = O. Physically, the angle of attack

a is undefined at zero velocity.

4.3 Quadratic Hydrodynamic Moments

Lift and drag induced pressure forces created by fluid flowing around a lifting body

can be taken to act at a point called the center of pressure (CP). Thus for body-fixed

reference frames whose origins do not coincide with the CP, lift and drag forces exert a

moment about the frame's origin. In general, the center of pressure moves somewhat

as angle of attack is increased; however, we wil assume a fixed CPo
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Table 4.6: Section CP Location (% Chord)
Sym Chord lOn

%Cb 0.25* hull *See below.
%cf 0.18 control foils
%cr 0.18 roots

4.3. i Center of Pressure Locations

We need only determine locations of centers of pressure for the 2D sections comprising

a body to compute sectional hydrodynamic moments. These locations are given as a
percentage of chord in Table 4.6 for the lateral hull, control foil, and root sections.

Hull Section CP Locations

In this section we have treated the lateral hydrodynamics of the hull as that of a
wing. The fullness of the hull and its small aspect ratio suggest that in reality it
wil behave to some degree like a conventional rotationally symmetric hull in that a
suction force wil be created by vortices shed from the aft portion ¡9, 21 J Furthermore,

we have already computed a lateral Munk moment associated with the hull's lateral
hydrodynamics in Section 4.1. The pure couple associated with a Munk moment
alters the location of the hull's CP from that of a 2D wing which theoretically does

not generate a pure couple.

We wil assume 2D sectional lift and drag forces act at the theoretical l-chord
center of pressure for a thin foiL. As we lack an estimate of the suction force mentioned

above, the lateral destabilizing moment of the hull wil be overestimated.

Control Foil and Root Section CP Locations

The values for %cf and %cr in Table 4.6 are derived from data for low aspect ratio
control surfaces presented in ¡ 11 J.

4.3.2 Differential Moment of an Aerodynamic Section

Referring to Figure 4-1, the in-plane differential moment generated by a differential

force dF p applied at the CP of a 2D section about the an arbitrary body-fixed origin

is given by

dMp = TCp x (dLp + dDp) (4.49)
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where b b + R ( s" + s )TCp = To s Xs is TCp. (4.50)

The in-plane section moment arm rcps is given by

sTCp. = ¡O, YCPs' OJT .
(4.51)

The sign and magnitude of YcP, wil change depending on the fluid direction over

the section. Assuming that the CP is located at an approximately constant percentage

of the chord away from the current leading edge regardless of direction of motion, and

denoting this percentage by (%c),

1 ( (1 - 2(%C)))
YCPs = '2 LIe + Lte + sgn( Vs)(Lle - Lte) 2 (4.52)

The distance from the section origin to the leading edge LIe and to the trailing edge
Lte are constant and defined relative to the nominal direction of motion. The in-
plane velocity Vs can be expressed in terms of the body-fixed velocity bVb by the

transformation
sA'Ts s"-TG bv s = J s V Pi = J s 8 Vb . ( 4.53)

4.3.3 Combined Lift and Drag

We are ultimately interested in the components of lift and drag forces in the principal

directions of the vehicle being modeled. Projecting the quadratic differential lift and

drag expressions of Section 4.2.3 and moment expressions of Section 4.3.2 onto each
axis of the vehicle and then integrating gives the desired result. For example,

x
1 VTXS ib (dLp + dDp) dx

1 bir (dMp) dxXs

( 4.54)

K ( 4.55)

where the integrals in each expression are over the appropriate section geometry.

These expressions can be assembled into the convenient form of a matrix of damp-

ing terms derived from strip-theory. The trailing factor of bVb from the quadratic
differential lift and drag expressions of the previous sections can be moved outside
of the integrand in each expression to yield 1 x 6 vectors of integrals. These vectors
can themselves be assembled into a positive definite 6 x 6 matrix of lift and damping
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terms:

Ts.t. = Ds.t.bVb = _ ( I". d¡ ('Vb) dx J bVb

IXs d6 (bVb) dx

Here each integrand di(bVb) is a 1 x 6 vector of quadratic lift and drag terms that when

multiplied by bVb yields the external forces acting on each axis of the vehicle. Note

that Ds.t is positive definite because it is composed purely of forces with non-zero
components opposing the direction of motion.

( 4.56)

4.3.4 Expanded Expressions for Quadratic Lift and Drag

For the Sentry AUV each vector integrand di in 4.56 is a function of the quadratic
lift and drag contributions from the hull, stationary roots, and foils. In matrix form,
the lift and drag forces on the vehicle derived from strip-theory can be expressed

component-wise as

Ds.t. = Db;cy + Dbyz + Dff(1iff) + Daf(1iaf) + Dfr + Dar ( 4.57)

The subscript bXY denotes hull lateral lift and drag. Subscript bYZ denotes longitudinal

cross flow drag. Subscripts ff,af denote control foil lift and drag and subscripts jr,W'

denote root lift and drag.

Explicit expressions for these matrices can be computed. The procedure for each

component of the vehicle is the same. The geometric rotation matrix, Rs along with
the geometric displacement vector brs are given by the geometry of the vehicle and

are used to evaluate Gs' The results are then substituted into the general lift, drag

and moment expressions developed in Sections 4.2.3 and 4.3.2. Finally, symmetry
considerations allow the removal of some terms from each integral. To ilustrate the

procedure is presented in detail for the lateral hull quadratic lift and drag. Explicit
expressions control foil and root lift and drag, and for longitudinal body crossflow

drag are not given in the interest of space.
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Example: Lateral Hull Lift and Drag

is:

The geometry relating hull sections in the xy-plane to the body-fixed coordinate frame

Rb.y= r~ ~ ~l br~y(z) = r ~ 1
( 4.58)

The differential quadratic lift and drag forces created by the hull in the xy-plane are
then

r - (zp - v)2 1

-~PKL,",bb'Y (zp - V~(Zq + u) dz

r u + zq 1

dDb.y = -~PKD""b""yJ(u + zq)' + (v - zp)' v ~ zp dz

dLbæy (4.59)

(4.60)

The differential moments generated by these forces are related to the body-fixed

coordinate frame by

TCPb3lY = (YCPbXY 0 z J T

and are given by

dMLb3ly

r z(-v + zp)(zq + u) 1
-1PKLbXybbXY -z( -v + Zp)2 dz

-YCPbxy(-V + zp)(zq + u)

r - (v - zp) 1

-1PKDOb'VybbXY z(zq + u) dz
YCPbxy(V - zp)

dMDb",y
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Noting that any integrand of odd order in z is zero by the top/bottom symmetry of

the body, the drag matrix associated with the xy-plane of the body is:

Dbæy = ~ p ¡ K Lbxy bbxy

L i I ¡ =i:~ ¡ ¡ J dz
o 2z2p 0 0 0 0

YCPb v 0 0 -YCPb z2q 0 0xy xy

(1 0 0 0 0 OJ

o 1 00001 TOO 0000
+ -p r IiDbx bbXYVCU+ zq)2 + (v - Zp)2 0 0.0 z2 0 0 dz.2 J z y 0 0 0 0 z2 0

o YCPbxy 0 0 0 0

(4.64)

The expressions for the di in equation (4.56) are simply the rows of the matrices

above.

4.4 Longitudinal Hull Lift Coeffcients

Five terms associated with longitudinal hull lift cannot be approximated using the
strip-theory based approach of the previous section. Of these, four are potentially
significant.

. Significant (associated with large horizontal velocity)

1. ZUWb' longitudinal hull lift

2. lvluwb longitudinal hull lift moment (portion not due to Munk moment)

3. Nurb: yaw damping due to forward velocity

. Significant (associated with large vertical velocity)

1. KWPb: roll damping due to vertical velocity

. Insignificant (associated with large vertical velocity)

1. XUWb: forward hull lift

2. A1uWb longitudinal hull lift moment (due to vertical velocity)

The latter two terms are small because the body geometry limits lift in the forward
direction generated from non-zero pitch when moving primarily vertically. The sig-
nificant terms above have been grouped according to the associated primary velocity.
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The first three are associated with primarily horizontal velocity, and as such can-

not be included in a unified model where vertical velocity may dominate horizontal

velocity. The opposite is true for KWPb'

We wil limit our attention to the first three terms. Although Sentry wil be
capable of purely vertical translation, it wil be at a significantly lower speed than its

maximum forward speed. Thus, quadratic terms like those above wil be small except

when moving horizontally at speed.

The very small width to height ratio of the vehicle's frontal profile would invalidate

any results derived from integration of the 2D hydrodynamic properties of longitu-

dinal sections cut parallel to the xz-plane. For this reason, we turn to empirical
results to estimate these coeffcients. Note that the first two coeffcients above have

corresponding terms due to foil lift which have been modeled using the strip theory
approach of the previous section; we seek only the contribution from the vehicle hull
here.

Hoerner ¡9) provides empirical data for the lift and moment generated about a

series of rotationally symmetric body streamlined body shapes. Although the body of
our vehicle is not rotationally symmetric, we wil use these coeffcients to estimate the
longitudinal body lift force and moment generated at small angles of attack (i.e. u ~

Uo, w small) Hoerner provides the following coeffcients for a rotationally symmetric

body of similar cross-section.

CYß = 1.2 rad-1
dCy

where CYß = dß

dCNwhere C Nß = dß

(4.65)

CNß = -0.71 rad-1 ( 4.66)

Note that Hoerner gives his coeffcients in 0-1; the above values have been converted.

In Hoerner's notation, these coeffcients give the slope of the lateral force Y and yaw

moment N versus side-slip angle ß. We wil employ them to estimate the longitudinal

force Z and pitching moment lvI as follows:

-Z
Cy = 1 2d2

"2.pu

-l'1 midpt
CN =

~pu2LbVVb2
( 4.67)

Mmidpit represents the body lift moment measured at the lengthwise midpoint of the

body. The preceding negative signs in both expressions above result from the fact
that ZWb is stabilzing (positive in Hoerner's notation, negative in ours) and lVImidpt

is destabilizing (negative in Hoerner's notation, positive in ours because the z-axis
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points towards the sea-floor)

The side-slip angle ß becomes in our case, the angle of attack ex. For small angles

of attack, ex can be approximated as

ex = tan (:) ~ : . (4.68)
Thus, from 4.67,

d ( 1 2 T2 )
ZWb ~ - dw 2P1.l Hb Gyßex

Z - ZWbUWb - U

1 2
= --pud Gy,2 p (4.69)

(4.70)

and

d (1 2 2 )
A1midpt ~ - dw "2Pu LblVb GNp ex

1 2
= - 2puLbWb GNp

(4.71)

(4.72)

The subscript b is meant to identify these quantities as due to the hull of the vehicle

alone. The body lift moment 1I1midpt includes the contribution of the Munk moment

given by

NfMunk = -(Ziù - Xu)u . (4.73)

The longitudinal Munk moment is a pure moment dependent only upon the added
mass terms of the body. A numerical value was computed using strip theory in
Section 4.1 thus we can compute the point at which the body lift force ZWb acts on

the body:
M M unk - NimidptXmidpt = Z

Wb

(4.74)

where Xmidpt denotes the x-vector from the vehicle body midpoint to the point at

which the lift force acts. For the Sentry vehicle it is negative indicating the body
lift, due vortex shedding 19, 21 J, acts primarily along the rear half of the vehicle and

is thus stabilizing. The distance from the body-fixed reference frame to the body
midpoint is known, thus we can compute the component of body lift moment not due

to the Munk moment.
Ai _ -ZWb (Xc.)UWb - u

where Xc.l. denotes the x-vector to the longitudinal center of lift from the origin of

the body-fixed reference frame. Because Xc.l. .( 0 for the Sentry vehicle, the body lift

(4.75)
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Table 4.7. Lon 'tudinal Hull Lift Coeffcients
Parameter

ZUWb

MUWb

NUTb

rr1"Pb

Value
-391
-208

?
?

Units
kg/m
kg
kg
kg

Descript
longitudinal body lift force
longitudinal body lift moment
lateral rotational drag at speed
roll drag for high vertical velocitL

moment MUWb is stabilizing.

Note that the net effect, including contributions from the body lift moment, Munk

moment, and foil lift moments is slightly stabilizing for the Sentry vehicle. Thus we
would expect the vehicle to become more damped in pitch as vehicle speed increases

(see Chapter 5 for a complete discussion)
No reliable means was found to estimate NUTb, the increased damping in yaw

expected at significant forward speed.

Values for these coeffcients are given in Table 4.7

4.4. i Linear Damping

A second order Taylor expansion of hydrodynamic drag forces about zero velocity

results in linear terms and quadratic terms. At velocities suffciently far from zero,

drag (and lift) effects are well modeled by the quadratic terms discussed in detail
in the preceding sections. For a vehicle whose nominal operating condition includes

significant forward speed, these quadratic terms may be suffcient, however, since we

are potentially interested in the hover and low speed behavior of the Sentry AUV,

we must consider the linear terms as well. Indeed, if the drag forces were only

quadratic in nature, damping at low speeds would be insignificant and experience
clearly demonstrates the contrary.

It is tempting to regard the linear term of the Taylor series as a direct consequence

of purely viscous drag which does indeed have a linear characteristic at very low

Reynolds Numbers, Rn ~ 1. This linearity can be verified directly by dimensional
analysis under the assumption that at very low Rn, the inertia of the fluid, and thus its

density p, has no bearing on the forces within that fluid. In practice, the linear terms
of the Taylor Series instead represent a crude approximation to the Rn-dependence
of the fluid drag forces. As such, these terms must be determined experimentally.

Once estimates for these terms become available, they can be conveniently ex-

pressed as linear stability derivatives (e.g. Xu) and inserted into a constant matrix
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of linear damping terms D1in.

4.5 Hydrostatic Forces

For a properly trimmed, neutrally buoyant vehicle of wet weight VV, the hydrostatic

forces exert only pitch and roll righting moments. For the Sentry vehicle, the vector
of gravitational restoring forces g( 17) is given by

g( 17) =

o

o

o

ZBG cos 0 sin ØW

Z BG sin OW

o

(4.76)

where ZBG is defined in body-fixed coordinates as the vertical distance between the

center of buoyancy and the center of mass.
Note that the validity of this expression is not compromised by the additional

mass of entrained water typical of flooded AUV hulls. For symmetric AUV hulls, it is

typically trivial to locate the center of buoyancy by symmetry considerations alone,
although such a procedure is predicated on the assumption that entrained water acts

as though it were rigidly attached to the hulL. In contrast, the center of mass of a
flooded vehicle can be diffcult to determine directly because of the complexity of the

flooded space. For a neutrally buoyant and properly trimmed vehicle it is enough to

determine the CB/CG separation of the dry vehicle, where the CB is calculated as if

all components were composed purely of water, as this quantity wil not change upon
immersion. Specifically,

rGwet = rBwet + ZBGdryk ( 4.77)

which implies
ZBGwet = ZBGdry (4.78)

The potentially significant mass of the control foils raises the possibility that
gravitational restoring forces, and indeed the location of the center of mass of the
complete vehicle wil change with changing foil position. Although this effect cannot

be accounted for dynamically in the 6 degree-of-freedom model we are pursuing here,

the equations necessary to derive the gravitational force vector for arbitrary static
foil position are given in Appendix A. Fortunately, this effect is likely to be minimal
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or nonexistent since to eliminate static torque requirements, the center of mass of the
foils should be coincident with the foil axis.

4.6 Thruster and Control Foil Interaction

Throughout the preceding development, we have implicitly assumed that the thrusters

do not interact with the foils to alter the lift and drag forces that would be produced
in free stream flow. In fact, the both the lift and drag of the foils is influenced by the

additional velocity imparted to the fluid flowing over the foils by the thrusters.

The steady-state increased flow velocity parallel to the foil chord (perpendicular

to the surface described by the rotating props), produces two conflicting effects in

terms of the lift produced by the foils. The increased fluid velocity acts to increase
foil lift, but concurrently reduces the effective angle of attack of the foils, thus acting

to reducing lift. The parasitic drag of the foils is increased slightly because of the

increase in flow velocity, but this effect is minor.

We show that based on a steady state actuator disk analysis, these effects approx-

imately cancel out and can be safely ignored. No attempt has been made to consider

the rotational inertia imparted to the fluid by the rotating propellers, nor have we

considered dynamic effects.

We begin by briefly summarizing the derivation and results obtained by approxi-
mating a propeller in free flow as an actuator disk (e.g. ¡3J, pg. 200-203). The goal
of our analysis is to arrive at an expression for the approximate velocity of the fluid

across the propeller as a function of applied thrust and advance velocity.

By repeated application of mass conservation, conservation of linear momentum,

and the Bernoulli equation for incompressible flow it can be shown that

£ (y2 _ V2) = T2 w a A
V; = ~ (Yw + Ya)2

(4.79)

(4.80)

where T denotes the propeller thrust, Ap denotes the area described by the rotating
propeller (the actuator disk), and the fluid velocities are as labeled in Figure 4-2.

Solving (4.80) for Yw and substituting the result into (4.79) gives:

( 2 2 r2) 2T4Yp - 4Yp Ya + Ya - l'a = pA (4.81)
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Figure 4-2: Classical Actuator Disk Analysis, figure adapted
from Fay ¡3J.

Solving for -i; under the physical condition that Vp ? 0 gives the desired relation:

Va+ -iT2 + 2Ta pA
(4.82)ll -p - 2

To extend these results to the combined foil/thruster actuators on the Sentry
vehicle, we make the following assumptions:

1 The flow over the foils is two-dimensionaL.

2. The flow over the foils is uniform in velocity

3. The velocity of the fluid over the foils is equal to the steady-state fluid velocity

at the propeller Vp.

4. The foils wil operate at low angle of attack.

5. The actuator disk analysis above applies in a fluid velocity vector addition sense.

The first assumption is consistent with our treatment of the foils as two-dimensional

in the preceding sections. The second and third represent the worst case, in that the
lower fluid velocity ahead of the props should have a decreased effect on the lift of the

foils. The forth and fifth effectively assume that the actuator disk analysis applies,
even in the presence of small cross-flow velocities. That is, we assume (4.82) applies

to the fluid velocity vector components perpendicular to the plane of the propeller.
We apply this analysis only to small angles of attack as it is well documented (e.g.
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Figure 4-3: Thruster and Control Foil Interaction, fluid velocity vector definitions

¡22J) that thruster performance is severely degraded in significant cross-flows. This

latter fact does not compromise the utiity of our analysis since the Sentry vehicle

was specifically designed to avoid operating in configurations and speeds where the
thrusters would experience significant cross-flow.

Under these assumptions, we can view the effect of the thrusters on foil lift and
drag in terms of the vector addition of the free stream velocity if 00 and the thruster-

induced fluid velocity Vi, where

Vi = -(1/; - vSj¡ (4.83)

The resultant effective fluid velocity vector Vf determines both the resulting angle of

attack and fluid velocity across the foil (Figure 4-3.

Since ultimately we are concerned with the validity of our model from a control
design perspective, it makes sense to consider the effect of propeller/foil interaction
in terms of its effect on physical "lift gain." That is, we consider it in terms its effect

on the increase in lift incurred by a unit change of foil angle:

"lift gain" = :~ ' (4.84)

For small angles of attack, the dependence of the lift generated by a foil on angle of
attack Ct is well approximated by the linear relationship

1 .. 2
L = -plVfl AfKLCt

2 (4.85)

where Af is the planform area of the foil, and KL the slope of the lift coeffcient vs.
Ct curve at Ct = O. Based on Figure 4-3, both v~ and Ct are affected by the foil angle

60



cp ¡.

Taking the derivative of (4.85) with respect to foil angle yields the lift gain:

(jL 1 (" (jV¡ 2 (ja )
(jcp¡ = "2pA¡KL 2Y¡ t5cp¡ a + V¡ (jcp¡ .

( 4.86)

Expressions for V¡ and a are available from the geometry in Figure 4-3. For simplicity,

but without loss of generality, we consider the case V 00 = Uoi. It follows then that

.Va = - Y~ .31 = Uo cos cp¡ . ( 4.87)

By definition, Vi = - (Vp - Va) .3 ¡. Substituting in the result for Vp from 4.82

yields
-- 1 (
11=- 11-i 2 a 112 2T ) A.la+-lJ¡,

p p
( 4.88)

which upon substitution for Va and transformation into body frame coordinates yields:

__ 1 ( 2T) ( A A)
Vi ="2 Uo cos cp¡ -. U; cos2 cp¡ + pAp cos cp¡i + sin cp¡k (4.89)

Finally,

Vi =1100 + 1~

=1 -u, + ~ (u, cos.pi -

i
+ - t U a cos cp ¡ -

2

(4.90)

2T) A
U; cos2 cp¡ + -l cos cp¡ li

p p

2T A
U; cos2 cp¡ + -l 1 sin cp¡k

p p

(4.91)

After simplification, the magnitude squared is

-- 1 (
IV¡!2 ="2 4U; - 2U; cos2 cp¡ + 2Uo cos cp¡

2T 2T )
U;cos2cp¡ + - +-pAp pAp ( 4.92)

Referring back to Figure 4-3, the angle of attack a is

-11¡.3¡ Uo cos cp¡ +JU; cos2 cP¡ + :Ipcos a = __ = --IV¡I 2!V¡1
( 4.93)

From this point forward it is straightforward to compute the components of 4.85. No
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special insight is offered by these algebraically complex expressions and we omit them

here. Instead the results of this analysis are shown graphically in Figure 4-4.
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Figure 4-4: Normalized "lift gain" ftr as a function of nominal forward speed Uo for

representative thrust levels. To generate the plot, the lift L was normalized such that
L = GpAfKL) Ln' The propeller area used was Ap = 0.3 m2.

The solid curve in Figure 4-4 represents the lift gain at zero thrust as a function of
forward speed, and shows the behavior of the model as derived without consideration

of propeller /foil interaction. It is evident from the small deviations of the other curves

relative to the blue curve that the interaction between the foils and thrusters can be
ignored.
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Chapter 5

Simplified Models

In this chapter we consider the six degree-of-freedom linearized dynamics of the Sentry

AUV. The general linearization procedure is presented in the following section. The

explicit results for nominally horizontal flight are given to facilitate linear controller

design and for use as a simplified vehicle dynamics model for pre-mission simulations.

We also consider some of the complications arising from the non-linear mapping

of the inputs to the vehicle axes in the context of near vertical flight. Because the

thrusters are mounted on the vehicle's rotating control foils, foil lift and propeller

thrust map to the vehicle axes in a manner that is dependent upon foil angle.

5.1 General Linearization Procedure

The linearization procedure is straightforward and is outlined in the following section;

however as is shown, the non-linear mapping of the thruster and foil inputs compli-
cates the procedure for arbitrary nominal velocity. We consider only translational

equilibrium velocities in the vertical plane and nonzero equilibrium pitch, as all other
potential equilibrium conditions are irrelevant to the vehicle's mission profie (e.g.

non-zero roll), or do not affect the vehicle's dynamics (e.g. yaw 
angle).

The non-linear six-degree of freedom equations of motion expressed in the body-

fixed frame were derived in the preceding sections and can be written

Mv + C(v)v + D(v, cp¡)v + g(ri) = b(cp¡, h)

i¡ = Jv .
(5.1)

Defining f c Cv and fD Dv, the Taylor expansion of (5.1) to first order is
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then:

MtJv + S:: I tJv + S:: I tJv + ~g I tJr¡ =Vo vo,CPfo r¡ 710

(SiD I ~ I ) tJcp Sb I b,h (5.2)SCPj vo,CPfo + SCPj CPfo,ho j + Sh CPfo,ho

where tJc = c - Co for generic vector c, and where we have moved linear terms

associated with foil angles to the right side as inputs.

The linearized kinematics of the vehicle are similarly derived from their nonlinear

counterpart:

i¡ = J(r¡)v (5.3)

Linearizing as before,

S (J(r¡)v) A S (J(r¡)v)
i¡o + tJi¡ ~ J(r¡o)vo + Sv u.V + Sr¡

Vo,TJo

tJ r¡ . (5.4)
Vo,17o

From (5.3), we see that the constant terms on either side cancel, and we are left with

tJi¡ ~ J(r¡o)tJv + s~~r¡) votJr¡ (5.5)
710

By defining a new 12-element state vector x = (tJv, tJr¡ f and 6-element input
vector u = (tJcp f, tJh f, the linearized equations of motion can be written in the
familiar form x = Ax + Bu as follows:

. r -M-1(C + D) -M-1G J ¡ M-1B J (5.6)

x = J M(7J) I x + u .-- v 0 0
710

Note that in (5.1) we have assumed implicitly that the zero-order terms cancel:

C(vo)vo + D(vo, CPjJ + g(r¡o) = b(cpjo' ho) (5.7)

The solution to (5.7) for general vo, r¡o is algebraically complex. Limiting v 0, r¡o to

velocities and orientations of interest, specifically,

Vo = (Uo vVo 0 0 0 0 J T r¡o = (0 0 0 0 80 0 J T (5.8)
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reduces the complexity of (5.7) considerably, but we are still left with a system of
nonlinear equations for the equilibrium inputs, cPfo and ho' This complexity is a
result of the non-linear structure of the inputs (see 3.15). A solution to these nominal

inputs is necessary to verify the existence of an equilibrium point at the given nominal

velocities, without which a linearized analysis makes little sense. The foil angles and

thrusts must be chosen such that the resultant lift, drag and thrust vectors from the
foils exactly balance the hydrodynamic force and moment on the rest of the vehicle.

An explicit system of equations for cP fo and ho result from evaluating the non-
linear equations of motion (5.1) at v = va and 17 = 170' No general solution to this

algebraically complex system of equations is attempted here. However, the solution

for near-horizontal flight (u ~ Uo, w ~ 0) is intuitive and algebraically triviaL. The

derivation of the linearized equations of motion for this operating condition is the
subject of the next section.

5.2 Near Horizontal Flight

For near horizontal flight u ~ U 0 and all other velocities are considered to be small.

For effcient flight, the foils should be nominally flat, i.e. cPt ~ O. Thus, (5.7) reduces

to:
hfpo + hfso + hapo + haso

o

o

o

o

bt (hfpo - hfso + hapo - hasJ

Xo

o

o

o

o

o

(5.9)

where Xo represents the nominal vehicle drag at u ~ U o.

The last row of (5.9) requires hfpo + hapo = hfso + haso' To prevent roll excitation

upon deviation from cPt = 0 we set the nominal thrusts of each thruster-pair equal:

hfpo = hfso

hapo = haso .
(5.10)

Under these two conditions, we stil have the freedom to set the forward thruster-pair
to aft thruster-pair nominal thrust ratio such that the sum equals Xo' We define:

ß - hfpo + hfso
h - hapo + haso '
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which yields,

ßhXo
hi = 1 + ßh = 2hipo = 2hiso

h - Xo h 2ha - 1 + ßh = 2 apo = aso

(5.12)

As wil be shown, ßh affects control over vehicle pitch; moreso for large Xo'

Evaluating the terms of (5.1) and (5.4) under these conditions gives the following

expressions for the components of the linearized equations of motion about nominally

horizontal flight.

~ mOO 0 mZe

-!., J

~O 0 0 0 0 0 Jo m 0 -mZe 0 o 0 0 0 0 mUo
MRB= o 0 m 0 0 _ 0 0 0 0 -mUo 0o -mZe 0 1:" x 0 CRB - 0000 0 -rnzeUo

rnzG 0 0 0 Iyy 0000 0 0o 0 0 -Ixz 0 Izz 0000 0 0
(5.13a)

( Xu 0 0 0 0 0 J

o Yù 0 0 0 Nù
o 0 Z-i 0 M-i 0MA = - 0 0 0 Kp 0 0
o 0 M-i 0 Me¡ 0
o Nù 0 0 0 NT

CA=

(0 0 0 0 0 0 J

o 0 0 0 0 -XúUoo 0 0 0 XúUo 0o 0 0 0 0 0
o "0 (Z-i-Xú)Uo 0 lvf,i;Uo 0
o (Xú-Yù)Uo 0 0 0 -NùUo

(5.13b)

D=-
( J~~ ~v ~ ~ ~ ~ J

o 0 Zw 0 Zq 0
o 0 0 Kp 0 0
o 0 Mw 0 Mq 0
o Nv 0 0 0 NT

~OOO 0 0 OJ000 0 0 0000 0 0 0G = 000 (Ze-ZB)W 0 0
000 0 (Ze-ZB)W 0000 0 0 0

(5.13c)

~l 1 1 IJ
o 0 0 0BOO 0 0h= 0 0 0 0
o 0 0 0
bh -bh bh -bh ( 0 0 J

o 0
B_2 if~h Xo+zø If 2 l+~h XO+ZØaff - 0 0

-2alf l~~hO Xo+Mø If -2llif 1+1ß,üXo+Møaf
(5.13d)

J(T/o) = 16x6
cSJ(T/) I Va _ ¡03X3

cST/ TJo 03X3

o 0 0 J
o 0 Uo
o -Uo 0

0.3x3
(5.13e)
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The hydrodynamic lift and drag derivatives above are:

Xo = ~p IUOI UO ¡ KDbxybbxydz + p iuoi Uo iff,af'ir,ar KDos bsdxs

Xu = XUlin - p iuoi ¡ KDbxybbxydz - p IUoil KDosbsdxsz x ff,af,fr,ar
Yv = YVlin - ~pUo ¡ KLbxybbxydz - ~p IUol ¡ KDbxybbxydz

Zw = ZWlin + ZUWbUO - ~p IUoil (KLs + KDoJ bsdxs
x ff,af,fr,w'1 r 1 1

Zq = 2P j" (KLs + KDoJ bsaffdxs + 2P (KLs + KDoJ bsOn¡dx.sx ff.fr Xaf,ar
Z1iff,af = ~P IUol Uo 1 KLsbsdx.s

x ff,af

Kp = KPlin - ~pUo ¡ KLbxybbxyZ2dz - ~P IUol ¡ KDbXybbxyZ2dz

- ~P IUoil (KLs + KDoJ bsx;dxs
x ff,af,fr,w'

Jilq = Mq1in - P IUol ¡ KDbxybbxyZ2dz

- ~P IUoil (a¡¡(aff + ycpJ(KLs + KDoJ) bsdxs2 x ff,fr1 r '
- 2P IUol J", (On¡(Oa¡ + YCpJ(I\Ls + KDoJ) b.sdx.s. Xaf,(U'

Jilw = lvluwbUo + ~P 1Uoil (aff + ycpJ(KLs + KDoJb.sdx.s
x ff ,¡,.

+ ~P IUoil (On¡ + ycpJ(KLs + KDoJb.sdxs
Xaf,ar

lvI1iff,af = -~P IUol Uo 1 ((as + ycpJKLs + YCPsKDoJbsdx.s
x ff,af

NT = NTlin + NuTbUo - P IUoil KDosbsx;dxs
x f.f,af,fr,ar

1 ¡N = - - U K K b ' dzv 2 Paz ( Lbxy + DbxJ bxy YCPbxy

(5.14)

where the multiple integral subscripts indicate integration along the x-axes of all the
indicated vehicle components.

Assuming Uo ? 0, ignoring linear drag terms significant only at low speed, and
factoring out Uo and ßh from the expressions above where possible, we can make
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the static dependence of the linearized equations of motion on nominal speed and ßh
explicit. Substituting the terms of (5.13) into (5.6) yields the linearized equations of

motion about nominally horizontal flight in standard form x = Ax + Bu where

A=

aii UO

o
a31 Uo

o
a51Uo

o
1
o
o
o
o
o

B=

o a13Uo 0 a15Uo 0 000 0 -m15ZGBVV 0
a22Uo 0 a24Uo 0 a26Uo 000 -m24ZGBW 0 0
o a33Uo 0 a35Uo 0 0 0 0 0 -m35ZGB W 0

a42Uo 0 a44Uo 0 a46Uo 0 0 0 -m44ZGB vV 0 0
o a53Uo 0 a55Uo 0 000 0 -m55ZGBW 0

a62 Uo 0 a64 Uo 0 a66Uo 0 0 0 -m64ZGB lV 0 0o 0 0 0 0 000 0 0 01 0 0 0 0 0 0 0 0 0 -Uoo 1 0 0 0 0 0 0 0 Uo 0o 0 1 0 0 000 0 0 0o 0 0 1 0 000 0 0 0o 0 0 0 1 000 0 0 0
-lh u2¡ 1 h U2¡1+ßh ii + 0 ii 1+ßh 12+ 0 12 mii mii mii mii

o 0 m26bt -m26bt m26bt -m26bt
1~~h h31+U;!.1 1+1ßh h32+U;!.2 m31 m31 m31 m31

o 0 m46bt -m46bt m46bt -m46bt
1~~h h51 +U; ¡51 1+1ßh h52+U; fs2 m51 m51 m51 m51

o 0 m66bt -m66bt m66bt -m66bto 0 0 0 0 0o 0 0 0 0 0o 0 0 0 0 0o 0 0 0 0 0o 0 0 0 0 0o 0 0 0 0 0

(5.15)

(5.16)

In the matrices above, mij represent the individual terms of the inverse matrix
M-1. The remaining aij, fij and hij represent coeffcients derived from vehicle
mass/lift/drag properties, foil lift, and thruster properties respectively. Note the lin-
ear dependence on Uo of the terms within A, with the exception of the terms related
to the metacentric restoring moment whose effect is invariant with speed. In contrast,

the terms within B related to foil angle show a quadratic dependence on speed. The
thruster terms on the right of the B matrix in the sway, roll, and yaw axes all cancel

out if each port and starboard thruster pair are set to equal.
Numerical values for the constant coeffcients in A and B were computed from

vehicle parameter values and are given below in Tables 5.1 and 5.2.

5.2.1 Decoupled Models

The structure of the linearized system matrix A in (5.15) suggests that the system
can be decoupled into two non-interacting subsystems:

1 u,w,q,x,z,e

2 v,p,r,y,cP,'l

This decomposition is further supported by the structure of the B matrix under the

logical assumption that any thrust control action in the first subsystem is implemented
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Table 5.1: Near Horizontal Flight: Combined and Mass Coeffcients- -Coeffcient Value ent ue
aii -2.67e-02 mii 4.44e-04
aI3 -3.76e-02 mI3 5.24e-06
aI5 5.94e-02 mI5 -5.70e-05
a22 -4. 73e-0 1 m22 1. 47 e-04
a24 -6.37e-02 m24 5.58e-05
a26 -4.32e-01 m26 3.22e-05
a3I -3.15e-04 m3I 5.24e-06
a33 -5.0ge-01 m33 2.92e-04
a35 5.66e-01 m35 -3.13e-05
a42 -2.35e-0l m42 5.58e-05
a44 - 1.1 2e+00 m44 9. 7ge-04
a46 1.61e-01 m46 2.44e-05
a5I 3.42e-03 m5I -5.70e-05
a53 2.25e-01 m53 -3.13e-05
a55 -3.55e-0l m55 3.40e-04
a62 -1.18e+00 m62 3.22e-05
a64 -2 78e-02 m64 2.44e-05
a66 -9.43e-01 m66 2.46e-04

Table 5.2: Near Horizontal Flight: Foil and Thruster- Coeffcients

Coeffcient Value C t alue
1ii 1.97e-02 hii 2.71e-03
.f12 -2.45e-02 hI2 -3.53e-03
hi 1. 

34e-0l h3i 1.8ge-02
h2 1 10e-01 h32 1.54e-02
151 -1. 

18e-0l h51 -1.62e-02
.f52 1.46e-01 h52 2.11e-02

69



using balanced thrust (i.e. hip = his, hap = has), and any thrust control action in the
second is implemented using differential thrust (i.e. hip = -his; hap = -has). The

symmetry of the latter four columns of B then ensures thrust inputs from control
action in either subsystem wil not interfere with the other. The foil inputs affect
only the first subsystem as is evident from the first two columns of B.
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Based on the coeffcient values given in Tables 5.1 and 5.2, and following the

approach in Healey (ìld Lienard ¡7J, we further propose to separate subsystems (1)
and (2) into two pairs of lightly interacting subsystems:

1 speed: u

2. pitch-depth: 'W, q, z, e

3. heading: v, r, 'I

4. roll: p, ø

We have ignored the states x and y since the Sentry vehicle is not directly actuated

in sway, and its horizontal position wil be controlled indirectly through heading and
speed.

The speed state u is coupled to the pitch-depth states 'W, q, z, e primarily through

pitch e and pitch rate q, thus the decoupling suggested above is only valid under the

assumption that the pitch and pitch rate wil remain small. The static stability of the
vehicle combined with the mission requirement that pitch rate remain small justify
these assumptions, assuming that the latter can be satisfied by an acceptable control
design. Aggressive control (i.e. large foil angles) wil violate this assumption.

The coeffcient values coupling the roll states p and ø to the rest of subsystem (2)

are at least an order of magnitude smaller than coeffcients internal to subsystem (2).
The converse is not true: the states in subsystem (3) exert some influence over the

roll states; however the static stability of the vehicle combined with a low heading

control bandwidth requirement suggest the roll states can be safely ignored in control

design and left passive.

Under these assumptions, linear control design can be pursued independently on

the three subsystems (1), (2), and (3) given by:

lJJ

u = aii Uou + mii (hip + his + hap + has)

La33Vo a35Vo 0 -rn35zGBlilJ (wJ il~~hh31+V;;hl 1+1ßh.h32+V;;/32J

a53Vo a55Vo 0 -rn55zGB HI q + -gh +V2 i --h +v2/52 (ff J1 0 0 Vo Z I+ßh 51 0 51 I+ßh 52 0 :ai0100 e 0 0o 0
( 7j$. J (a22Vo a26Vo 0 J (V J (rn26bh -rn26bh rn26bh -rn26bh J ¡ ~iP i

= 0,62 Vo 0,66 Vo 0 ;;. + rn66bh -rn66bh rn66bh -rn66bh hiso 1 0 'f 0 0 0 0 aphas

(5.17)

(5.18)

(5.19)

The roll states are left passive.
It is important to note that several second order, but potentially significant forms

of input coupling are not evident in the linearized version of the input matrix B above.
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Specifically, reduction in forward thrust, decreased control over yaw, decreased foil
control over pitch and coupling into the roll axis caused by non-zero foil angles are
not represented. These are significant effects at high foil angles, and controller design

based on these linearized models must take these effects into account. The coupling
evident between axes in B is due only to the inverse inertia matrix M-1; non-diagonal

elements are due to the large CB/CG separation of the vehicle.

5.3 Nonlinearity Considerations

The linearized models presented in the previous section are all predicated on the
assumption that the foils provide linearly increasing control effort as foil angle is
increased. In this section we consider conditions for which this assumption proves

invalid. Specifically, we discuss nonlinearity due to physical flow separation, and
nonlinearity due to vehicle geometry. Particularly the latter phenomenon becomes
problematic for flight at high angles of attack ex.

5.3. i Flow Separation: Foil Stall

Our foil linearity assumption is physically invalid at high foil angles of attack because

of flow separation and the resultant loss of lift. This condition is referred to as
"stalL" However, the foils are large enough relative to body size and mass that,
assuming concerted foil motion (i.e. cPff ~ cPa!) and suffciently slow foil rotation, the

angles of attack on each foil wil remain small as the vehicle alters course due to the
applied foil lift. Large foil angles imply large vertical velocity, but are not likely to
violate the assumption of a linear lift slope.

Of course, under such conditions the hydrodynamics of the body change consid-

erably. At suffcient angle of attack, the roots wil stall, and vehicle drag in the

direction of motion wil increase markedly. The drag of the body also increases as
angle of attack increases. Increased drag in turn affects vehicle speed and damping in

all axes. The structure of the system matrix A remains invariant, but the magnitude
of its components change.

5.3.2 Input Mapping Nonlinearity

Of far greater importance to vehicle control is the deviation from our linear near-
horizontal flight model caused by the change in input mappings as the foil angles
increase. The effect is intuitive: at cP! = 900, and for nearly vertical vehicle motion,
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a change in foil angle produces force only in the x-direction. Similarly, a change in
thrust no longer directly affects the x-axis, and is instead mapped into the z and
pitch axes of the vehicle.

It is instructive to investigate these phenomena algebraically. Under the assump-

tion of a linear lift slope it is straightforward to show that the torque in pitch generated

by the foils is given by:

TO = aff (Lo (atan (:) - cPff) cos (atan (:)) (u2 + w2) J

+ aaf (Lo (atan (:) - cPaf) cos (atan (:)) (u2 + w2) J . (5.20)

The constant Lo scales the lift generated per unit æ appropriately.

In Chapter 6 we define a proportionality constant if = t; :: 0 between the

forward and aft foil angles that effectively recasts pitch control in terms of a single
input variable cPafe that controls the differential foil angle (see (6.7)). In terms of cPafe'

equation (5.20) becomes

TO = aff (Lo (atan (:) - lacPafe) cos (atan (:)) (u2 + w2) J

+ Oaf (Lo (atan (:) - cPafe) cos (atan (:)) (u2 + w2) J (5.21)

We then define the physical control gain

Ó~::e = Lo cos ( atan (:)) (u2 + w2) (afflf + Oaf)
(5.22)

The arctangent in the expression above is simply the vehicle angle of attack, thus the

foil-to-pitch control gain can be expressed compactly as a linear function of vehicle
angle of attack æ alone:

ÓTo

T- = C1 cosæcPafe

where C1 represents a leading coeffcient dependent upon vehicle speed. It is then
immediate that changes in foil angle near cPf = 90° wil not affect vehicle pitch.

Conversely, at cP f = 0° the foils exhibit a maximum in physical control over vehicle
pitch.

At the same time, it is direct from the structure of the nonlinear input matrix

(3.15) that thruster control over pitch increases to a maximum at cPf = 90°

(5.23)

ÓTo .
óho = C2sincPf.

(5.24 )
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where the forward/aft differential thrust he is defined as:

he = hip + his - (hap + has) . (5.25)

A similar argument can be applied to the thrusters with respect to control over

vehicle yaw. Again proceeding directly from the nonlinear input matrix (3.15),

i5T'I

i5h1j = C3 cos ø¡ (5.26)

where the lateral differential thrust h'l is defined as:

h'l = h fp - h fs + hap - has (5.27)

Unlike for the longitudinal axis where thrust control over longitudinal dynamics
increases as foil control decreases, the yaw dynamics of the vehicle are dependent
entirely upon the thrusters, thus for ø¡ = 90° the vehicle is not directly actuated in

yaw.
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Chapter 6

Controller Design

In this chapter we consider the design and analysis of a linear controller based on
the linearized equations of motion for near-horizontal flight developed in Section 5.2.

Various forms of linear control have been applied to many AUVs because of the
simplicity and robustness of the resulting controller in addition to the wide variety of

analysis techniques available to aid in the design process (e.g. ¡5, 151).

We apply the decoupled control design paradigm suggested by ¡5), to the near-
horizontal flight linearized model to which it is shown to be well suited. Simulation

results on the full nonlinear model, as well as experimental results from an imple-
mentation of the resulting controller on a 1/ 4-scale physical model (Appendix Bare
presented. The linear controller designed herein performs surprisingly well, even well

outside ofthe range it was designed for, although control over pitch and yaw is severely

degraded for large foil angles. Ultimately, however, the mapping non-linearity of the

inputs (Section 5.3) restricts the linear controller from taking full advantage of the
dynamic range made available by Sentry's unique design

These shortcomings motivate a nonlinear controller, of which many forms have
been applied to underwater robotic systems (cf. ¡28, 5, 7, 261), although typically

with the goal of compensating for the non-linearity and uncertainty inherent in the
hydrodynamics, rather than non-linearity in the input, which is of greater importance

for Sentry. We close by briefly considering a potential route towards a controller

capable of taking advantage of Sentry's dynamic range, but leave its completion to

future work.
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6.1 Control Objective

Simply stated, the objective of controller design for the Sentry vehicle is to control the

vehicle such that it can fulfill its mission: the execution a series of straight tracklines

at a constant height above the seafloor. Maintenance of a constant altitude above

the seafloor is crucial to ensure optimal sensor resolution and data quality. This
requirement stands as the most important goal of the control system. The mid-ocean

spreading centers where Sentry wil conduct most of its survey work are characterized

by very rough topography necessitating a depth control algorithm with high spatial
bandwidth. That is, the vehicle should be able to track the rough contours of the
bottom at a horizontal speed suffcient to ensure the survey area is covered before

battery depletion.

In this work, we do not delve into the design of the bottom following algorithm,

and instead assume that the desired altitude has been determined and translated into
a desired depth. We further assume the desired depth trajectory is similar to that
generated by ABE's threshold based bottom-following algorithm ¡25J and consists of

constant desired depth segments with smoothed ramp transitions between them.

The mission requirement that the vehicle follow straight tracklines across the ocean

floor is met with a simple heading servo, although more complex schemes are required

in the presence of significant currents. In the following design, we leave forward speed

control open loop.

6.2 Decoupled Control Design

In this section we describe the design of a linear control system for nominally hori-

zontal flight. The controller is designed using the linear decoupled model developed
in Section 5.2 and given in equations (5.17)-(5.19). The decoupled system consists of

three lightly interacting subsystems:

1. speed: u

2. pitch-depth: w, q, z, ()

3. heading: v, 'T, 1/

The roll axis (p, tj) is left passive.
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6.2.1 Speed Control

The decoupled speed system is described by

u = anUou + mn (hfp + hfs + hap + has) (6.1)

Rather than seek to control the speed via feedback, we apply a simple open loop

thrust command that balances forward drag such that the vehicle maintains u ~ Uo'

hfp = hfs = hap = has = -anU; (6.2)

This approach limits the degree to which vehicle speed, which is of lesser importance

from a mission perspective, wil interfere with pitch-depth control.

6.2.2 Pitch-Depth Control

The decoupled pitch-depth system is described by

L0J (a33UOa35UoO-m35ZGBWJ (wJ (1~~hh31+U;h1 H!-ßhh32+U;f32J

q = a53Uo a55Uo 0 -in55ZGB iv q + -gh +u2f -lh +u2f52
-' 1 0 0 Uo Z 1+ßh 51 0 51 1+ßh 52 0B 0100 e 0 0o 0 ( :~ J . (6.3)

Effective depth regulation requires an understanding of the coupled pitch-depth

dynamics of the vehicle. We begin by considering the open loop stabilty of the
system.

Physically, the shape of the streamlined body and foils induce two opposing mo-

ments of hydrodynamic origin. The Munk moment, whose appearance is predicted
for inviscid flow, is destabilizing. Body and foil lift also contribute to the net hydro-

dynamic moment incident on the vehicle. Lift from the forward control foil and root
induces a destabilizing moment, while lift from the aft control foil and root induces a

stabilizing moment. Body lift acts aft of the vehicle center of mass (see Section 4.4)
and is therefore stabilizing. These moments sum to produce a small net stabilizing

moment whose magnitude increases with vehicle speed.

The hydrodynamic stabilizing moment is supplemented at low speeds by a hydro-

static restoring moment. The hydrostatic restoring moment is substantial due to the
vehicle's large CB/CG separation, but its magnitude is invariant with speed.

The combined effect produces a vehicle increasingly stable in pitch as speed in-
creases.

Because there are two inputs into this system, we have considerable flexibility in
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Figure 6-1. Eigenvalues of the open loop pitch-depth system as a function of nominal
forward speed Uo' The dashed line represents the real parts of a pair of poles with
nonzero imaginary parts. Note that the vehicle response is oscilatory over the entire
speed range shown. The eigenvalues tend to the origin because low-speed linear drag
terms, for which we have no estimate, have not been included.

determining the closed loop dynamics of the system. Intuitively, there are two basic
means by which to effect a depth change:

1. Induce a non-zero pitch and wait for body lift and forward velocity to result in

a depth change.

2. Change depth directly, without inducing pitch, by creating foil lift at both the
fore and aft of the vehicle.

The first strategy is the means by which airplanes, submarines, and standard cigar-
shaped AUVs change depth. Their control surfaces are too small to create suffcient
vertical force for a direct depth change. Sentry's foils are large compared to the body

and can be used directly. However, changing depth while maintaining approximately

zero pitch may be less effcient than strategy (1) because of the increased drag of the
vehicle at non-zero angles of attack.
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The primary difference between (1) and (2) above is the relationship between the

forward and aft foil control signals. Strategy (1) calls for either opposing foil angles,

or no forward foil motion at alL. Strategy (2) requires approximately equal foil angles

for both the fore and aft foils. To investigate these two strategies we propose a change

of input variables:

CPff = CPffz + CPffe

CPaf = CPafz + CPafe

(6.4)

(6.5)

and define the two ratios:

ßf = CPffz
CPafz

CPffe"if = -
CPafe

(6.6)

The original inputs can be recovered by the transformation

r cP ff i r ß f "if i r CPafz i

l CPaf L 1 1 L CPafe
(6.7)

The transformed inputs CPafz' CPafe can be thought of as roughly independent inputs

into the z-axis and pitch-axis respectively. Thus, "if :: 0 controls the differential gain

between the two foils. The sign of ß f determines whether the foils move together or
opposite one another to effect a change in depth and its magnitude determines their
ratio.

With this transformation of inputs, the input matrix B becomes

(b31ßf+b32 b31/f+b32 J
Bu = b51ßf+b52 b51/f+b52 (Øafz Jo 0 Øafeo 0 (6.8)

where the expressions for bij are dependent upon U; and are evident directly from

(6.3) It is then immediate that setting

-b52ßf=-b51

-b32"if = -
b31

(6.9)

(6.10)

eliminates the direct coupling of CPafz into the e-axis and of CPafe into the z-axis. The

axes are stil coupled through the dynamics of the vehicle. As there is no reason to
allow pitch control action to directly affect depth, we chose to set "if as above in
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(6.10) The choice of ßi is less obvious and depends on which depth change strategy
is preferred.

Setting ì I = b~~2 as suggested above yields

¡ b3iß f+b32 0 J
Bu = b5iß g+b52 -bg~ib~2 +b52 ( ::~; J . (6.11)

The transfer function between cP iiz and the depth z is then

z(s)

CPalz ( s )

n2s2 + niS + no

Is/-AI (6.12)

where

n2 = Ci

ni = - (Cia55Uo + c2Uo - C2a35Uo)

no = - (Cia5.3U; - C2a33U; - Cim55ZeVV + C2m35ZeW)

and

Ci = b3ißi + b32 C2 = b5ißi + b52

The ratio ßi affects only the denominator of 6.12, but it determines both its sign
and zero locations. Both these factors ultimately determine the vehicle response to a

change in CPalz (see Figure 6-2).
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Figure 6-2: Vehicle Response (Linear Model) vs. ßf at Uo = 1 m/s. The lowest two

plots were produced at unrealistic ßf.
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The corresponding zero locations as a function of ß ¡ at Uo = 1 m/ s are shown in

Figure 6-3. As is evident from the figures, the vehicle behaves in markedly different
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Figure 6-3: Real part of the open loop zeros as a function of ß¡. To the right of the
dashed line, the sign of the transfer function is positive; to the left it is negative.
This line defines the division between depth change via strategy (1) (left of line) and
strategy (2) (right of line).

ways over the range of practical ß¡. Note in particular the sign change at ß¡ = -0.3
corresponding to a single zero at the origin. For ß¡ ~ -0.3, the vehicle changes

depth via strategy (1). For ß¡ ? -0.3, it changes depth via strategy (2). For

small excursions in ß¡ around this value, the system exhibits marked non-minimum

phase behavior. As ß ¡ decreases, this behavior becomes less pronounced as the zeros

become increasingly large. A reduction in order occurs at ß¡ = -lb3?, corresponding
33

to no direct coupling from the inputs to the z-axis. The bifurcation at slightly lesser
ß¡ effects the vehicle dynamics imperceptibly, as the zeros are too large compared to
the dominant poles.
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As ß i increases above -0.3, a bifurcation is evident, beyond which the vehicle

behaves in a modified non-minimum phase manner until the zeros cross into the
left-half plane. Further increase in ßi improves vehicle climb rate.

The pitch response of the vehicle is also of considerable importance and its char-
acteristics likewise change as a function of ß i, Figure 6-4 shows the value of the single
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Figure 6-4: Zero of the open loop pitch-axis transfer function as a function of ßi The
dashed line corresponds to a sign change. To the right of this line, the sign of the
transfer function is positive; to the left it is negative. Operation to the right of this
line would result in more favorable steady state pitch; however, the magnitude of ßi
required implies unrealistic control foil angles.

zero of the transfer function between rPalz and vehicle pitch:

8(s)

rPal,( s)

C2S2 + (Cia53Uo - C2a33Uo) s

Is1 - AI
(6.13)

where Ci, C2, and Is1 - AI are as in equation (6.12) Note that the denominator
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is first order in the equation above as s factors and cancels with the single pole at
the origin. As is evident from the figure, a reduction of order occurs at ß! = -i~~2

corresponding to no direct connection between øa!z and vehicle pitch. Values of ß!
above this point result in non-minimum phase behavior.

For -0.3 :S ß! :S 3.2, only the pitch transfer function has a leading negative

sign, implying the vehicle changes depth while pitched away from the direction of
vertical motion. Physically this is the result of insuffcient hydrodynamic stability to

overcome the moment created by lift generated at the aft control foil (The moment
created by the aft control foil overpowers that of the forward control foil because of

its larger moment arm).

Below ß! = -0.3, the depth transfer function also becomes negative, and the

vehicle pitches into the direction of vertical motion. The achievable steady state
pitch; however, is limited at normal operating speed by the static stability of the
vehicle, and thus the achievable climb rate is also limited.

Above ß! = 3.2, the pitch transfer function changes sign, and the vehicle again
pitches into the direction of vertical motion. However, such a large ß! implies large
foil angles thus violating our assumption of linearity and likely resulting in either
physical stall or imposed saturation of the foils. Furthermore, the pitch response of
the vehicle is undesirably oscilatory at large ß!.

From the preceding analysis and Figure 6-2, ß! must be below -0.3 to effect a
depth change via strategy (1)' However, the small steady state pitch achievable for

realistic foil angles implies a limited climb rate and oscilatory pitch response. Thus,
it is apparent that the Sentry vehicle is best suited to changing depth via strategy

(2).

Physically, this results from the vehicle's large CB/CG separation, and relatively
short body compared to foil size. The high degree of static stability requires a large
control effort to alter pitch significantly, thus mitigating the effect of forward speed
combined with steady pitch to alter depth. Concurrently, the short body length

limits body lift generated from any nonzero pitch. Finally, the large foil areas mean
that large forces are produced purely vertically, which, for insuffcient vehicle pitch,

dominate the body lift and pitched speed contribution to vertical velocity.

Unfortunately, the pitch response of the vehicle for reasonable ß! is fairly uni-
formly oscilatory. It is at a minimum for ß! = -ibn corresponding to no direct

21

connection between øa!z and vehicle pitch. As the nonminimum phase behavior for

ß! larger than this value is undesirable, we chose a conservatively lower value. From

this point forward, we assume ß! = 1.2.
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A more hydrodynamically stable vehicle would exhibit a more damped pitch re-
sponse, as well as improved effciency in a shallow climb.

We now move to the design of the closed depth regulator. We have seen that
a minimal pitch response can be achieved open loop during a depth change by an
appropriate choice of ßf. For this reason we seek only to damp the pitch rate. Low
pitch rates are important from a mission perspective. We choose

c/afe = -kDeq . (6.14)

where kDe 2 O.

For the depth control law we chose a traditional proportional-integral-derivative

(PID) controller:

c/afz = kpz (Zd - z) - kDz W + k1z ¡t (Zd - z) dT (6.15)

where the integral term should be limited to an imposed saturation value. Integral

action has been added to assure bounded steady state error for ramp inputs of the
type employed in ABE's bottom following algorithm. Because the foils are subject
to the mapping non-linearity, imposed saturation limits, and stall, the integral term
must be limited to avoid instabilities associated with integral windup.

The closed loop system is then

1l= La33ua-dßf3kDZ a35Ua-d'lf3kDe -dßf3kpz -m35zGW-dßf3klz J

a35Ua-dß f5kDz a55Ua-d'lf5kDe -dßf5kpz -m55ZaW -dß f5kfz1 0 0 -Ua 0o 1 0 0 0o 0 1 0 0
L dß f3kpz dß f3kfz J

dß f5kpz dß f5klz+ 0 0o 0o 0

L J, LJ
(6.16)

(Jt ;~dT J

where

dcpfi = (1 ~hßh hil + filU;) c/f + 1: ßh hi2 + fi2U;

for i = 1.3,51, c/f = 1.ßf, 'lf 1 .
(6.17)

The gains, kpz' kDz k1z and kDe should be chosen to satisfy the bandwidth require-

ments of the depth servo while taking care to avoid signals large enough to violate

linearity.
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6.2.3 Heading Control

The decoupled heading system is described by

(~J (a22Uo a26Uo oJ i~J (m26bh -m26bh m26bh -m26bhJ
r: = a62Uo a66Uo ° 1j + m66bh -m66bh m66bh -m66bh1j 0108 000 0

¡hfPJ
hfs
hap
has

(6.18)

As with the pitch-depth system of the previous section, the open-loop stability
of the heading system is dependent upon forward speed Uo, becoming increasingly

unstable as Uo increases. To see this, consider the characteristic equation of the

system matrix in (6.18):

Is1 - A7l1 = S2 - (a66 + a22) Uos + (a22a66 - a26a62) U; . (6.19)

Assuming Uo ? 0 a necessary and suffcient condition for system stability is given by

a22 + a66 -( 0 (6.20)

(6.21)a22 a66 - a26 a62 ? 0

The first condition for stability is always met, for any vehicle design. The second
depends closely on the magnitude and sign of Nv ¡21 J, and is not satisfied in this case.

Although Uo does not render the vehicle stable or unstable, it is apparent from 6.19

that the vehicle wil become less stable as speed increases.

Open loop instability in yaw is an undesirable system trait for the Sentry ve-
hicle because stabilizing the vehicle wil require constant control effort. Instability
may be desired in systems that must be highly maneuverable; however, Sentry's mis-

sion profile calls for a series of long straight tracklines and thus a minimal heading
bandwidth.

Heading instability does not effect the structure of the heading control system
design that follows; however, it does necessitate suffcient gain to overcome the innate

instability of the vehicle when operating at maximum speed.

Vehicle heading wil be controlled by differential thrust and we introduce the
change of input variables:

h1j = (hjp + hap) - (hjs + has) (6.22)
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The individual commanded thrusts can be recovered as follows:

1
hjp = hap = 4h'l

1
hjs = has = -4h'l

(6.23)

( 6.24)

where we have split the control effort equally among all four thrusters.

With this transformation of the inputs, the input matrix B'l becomes:

( m26bh J
B1lJu = m6gbh h'l. (6.25)

The transfer function between the transformed input h1lJ and heading is then:

1/(S)
h'l(s)

bhm66S + bh (a62m26 - anm66) Uo

S (S2 - (a22 + a66) Uo + (a26a66 - a26a62) U;)
(6.26)

Note that m26bh is positive, but very small and thus this transfer function is minimum

phase for all Uo' Unlike vehicles with a rudder that typically exhibit non-minimum
phase behavior, no lateral force is produced by the thrusters when effecting a heading

change, thus the only coupling into the sway axis is through Ixz Despite Sentry's rel-

atively large CB/CG separation compared to other AUVs, Ixz is stil small compared
to the diagonal terms of 10

Based on the above analysis of the open loop dynamics, we propose a simple

proportional-derivative (PD) heading controller of the form

h'l = kp~. (1/d - 1/) - kD,. r ( 6.27)

The yaw rate 'l and heading 1/ are readily available from the vehicle heading rate gyro

and compass respectively. Integral action can be added to compensate for steady
disturbances if necessary.

The closed loop dynamics is then

( 1! J r a22Uo a26uo-kd.r m26bh -kp,p m26bh J (V J r kp,p m26bh J~ = L a6~uo a66uO-kidr m66bh -kp,p ;;66bh ø + L kpil ~~6bh 1/d

(6.28)

where gains kp,p and kDr must be chosen large enough to overcome the open loop

instability of the vehicle.
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6.3 Controller Evaluation: Simulation and Exper-

imental Results

In this section we present an analysis of controller performance from simulations

conducted using the nonlinear vehicle model developed in Chapters 3 through 4,

and from controller implementation on a ¡-scale physical model of the vehicle (see
Appendix B. The validity of this analysis is dependent upon the fidelity of both
models. Since the derived parameters of the analytical model are likely to require

adjustment once the full-scale vehicle becomes available, we focus here on behavioral

trends which depend more on model structure than parameter values and control
gains. Likewise, the lower Reynolds number and influence of the physical model's

tether necessitate a qualitative interpretation of experimental results.

We begin by verifying the controller at the designed operating condition, both
in simulation and using the physical modeL. That is, we define a smoothed ramped

transition between two steady desired depths such that the linear vehicle model used

in control design remains approximately valid. With the appropriate choices of control

gains, the controller performs well both in simulation and implemented on the physical

modeL.

The operating range over which the vehicle can be considered to behave in a
linear fashion is qualitatively smalL. The hydrodynamics and rigid body dynamics
of the vehicle are nonlinear, as are its inputs which vary nonlinearly with foil angle.

Controller behavior in regimes where these nonlinearities are significant is interesting

both in highlighting the shortcomings of the controller and pointing the way for future

control development.

We wil investigate two nonlinear effects: speed dependent performance and high
angle-of-attack flight. Both these effects have been noted in previous chapters, par-
ticularly Chapter 5, and we wil rely on that analysis to explain simulated vehicle

behavior. Sensor limitations did not allow the investigation of these phenomena on
the physical modeL.

6.3.1 Controller Performance at Nominal Operating Condi-

tions

We begin by verifying controller performance at the designed operating condition:
near constant forward speed u ~ 1 mis, small foil angles, and small vertical velocity.

To fulfill its mission, the vehicle must be able to handle considerably steeper

88



climbs than those considered here, but steeper slopes imply significant nonlinearities
unaccounted for in the linear control design. These nonlinearities and our controller's

performance under their influence are treated later in this chapter.

Simulation Results

The simulated vehicle response shown in Figure 6-5 is to a ramp-smoothed transition

between desired depths. The slope of the ramp was chosen to be shallow at 5° (vs.

time) to ensure the preceding conditions of approximate linearity were met.
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Figure 6-5: Vehicle Response to a Ramp-Smoothed Transition in Desired Depths.

The plots in Figure 6-5 were generated with control gains set to kpz = 1.0, kDz =

1.0, k1z = 0.01, and kDe = 10. The depth change is achieved successfully with a
maximum error of 0.37 m. During the ramp portion of the depth change, forward
speed is reduced due to increased vehicle drag and decreased thrust in the forward

direction. The foil angles remain small. 18° and 15° max for the fore and aft foils
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respectively.

The pitch response is well damped for this type of desired trajectory. A slight
negative pitch accompanies the upward climb due to the larger moment arm of the
aft foil relative to the forward foiL.

The reduced forward speed of the vehicle means that the climb when viewed versus

horizontal position rather than time becomes a slightly steeper ramp, ascending at
7.4°.

Experimental Results

We implemented the linear depth controller on the l-scale physical model and demon-

strated its performance running at 10 Hzin the flume facility at WHOI.

The vehicle was commanded to follow a repeating set ramp-smoothed 0.25 m depth

changes while repeatedly running the length of the flume (rv 12 m usual length). The
model was controlled yaw by the author using a joystick and turned around in place at

either end of each traverse without disengaging the depth controller. The commanded

ramp slope was set to 50 mm/s. During traverses, vehicle speed was roughly constant

at 0.4 m/s. This speed corresponds to a spatial climb angle of 7°.

The results for controller gains set to kpz = 1.0, k10 = 0.1, and kDe = 1 are shown

in Figure 6-6. The figure indicates the controller performs adequately. Grey shaded
areas indicate turns, defined by a high sustained yaw rate (lowest plot) Foil control

over depth deteriorates during turns when the forward speed drops to near zero. The
shallow depth of the flume rv 1 m precluded an investigation as to whether the lag
evident during climbs could be reduced by an increase in k1z'

90



0

iO.2 J.i
g- 0.4
"0

400

400

50 100 150 350 400

50 100 150
.-
200

time (sl
250 300 350 400-40

o

Figure 6-6: Controller Performance as Implemented on the Physical ModeL. The
shaded grey areas indicate 1800tums in place.

91



Vehicle pitch versus time shown in the second plot does not show a strong corre-
lation between pitch angle and vehicle angle of attack as predicted. This may be due

to the forces generated at the stern of the vehicle while dragging the tether.

Pitch rate derivative gains ranging 0 :: kDe :: 2 were applied with inconclusive

results; however, it was evident that pitch was well damped during traverses in com-

parison to during turns without significant forward speed. For kDe 2: 3 the vehicle

became unstable in pitch as a result of un modeled dynamics associated with rota-
tional foil accelerations and velocities. The magnitude of these forces and moments
generated are disproportionatly large for the physical model due to the large relative
size and weight of the thruster housings.

Note that the physical model does not provide a depth rate w measurement.

Depth rate damping was not implemented for these demonstrations.

6.3.2 Speed Dependence

In this section, we investigate the effect of increased vehicle speed on pitch and depth

response by analyzing simulated vehicle response to a step in desired depth. We show

the closed-loop depth behavior becomes increasingly stiff as speed increases.

Figure 6-7 shows the vehicle pitch and depth response to a 1 m step change in
desired depth as a function of time for three different nominal forward speeds covering

the vehicle's operating envelope. The controller gains selected were: kpz = 1.0;

kDz = 1.0; k1z = 0.01; kDe. Note that the control foils were not modeled as rate-
limited for these simulations. The vehicle depth response shows the controller works

adequately at speeds away from its 1 m/s design speed. However, from Figure 6-7 it

is evident that as vehicle speed increases, vehicle depth response becomes becomes
increasingly stiffer. Vehicle pitch response becomes more damped with increasing
speed, although the initial excursion grows. The forth plot in the figure shows the

foil effort required decreases with increasing speed after the initial response which is

equal due to the proportional term of the depth controller.

Physically, the increasing stiffness, reduced control effort, and improved pitch

damping result from increased foil lift at higher fluid velocity. Recall from Section 5.2

that the linearized model predicted a quadratic increase in foil control gain, while

predicting the vehicle dynamics would be only linearly dependent on speed. The
larger nominal thrust required at higher nominal velocities also increases the effective

foil gain, markedly at large foil angles, but only linearly at small foil angles. Thus,
increased vehicle speed effectively increases control gain, although at the cost of higher
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Figure 6-7' Vehicle pitch and depth response to a 1 m step change in desired depth
for Uo = 0.5 mis, 1.0 mis, and 2.0 m/s. The second plot of depth vs. horizontal
distance x has been shifted such that the change in commanded depth appears to
occur at the same spatial location for comparison.

nominal thruster settings.

For all speeds simulated, the pitch response of the vehicle is undesirably oscillatory.

Physically, this is the result of the severe negative acceleration caused by the increased

drag of the foils reacting to the step depth error. The momentum of the vehicle's

center of mass reacts to drag force applied at the vehicle centerline by swinging

upwards, which sets up a slowly decaying oscilation. The decay is considerably
longer at slow speeds where the effect of the pitch damper is mitigated.

To reduce the magnitude of the pitch oscilations, one possibility would be to in-

crease the pitch damping gain k De; however, this comes at the cost of excessively large

foil angles and all the ensuing saturation problems. Indeed, for the plots shown in

Figure 6-7, kDe was set deliberately low to avoid wild foil angle fluctuations. Rather,
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the oscilatory pitch response should be viewed as an argument against the appropri-

ateness of step changes in desired depth as inputs. All but the smallest steps (relative
to kpz) wil result in large foil angles, severe reductions in speed due to increased drag,

and the ensuing oscilations in pitch. Step inputs are, however, useful to ilustrate
vehicle behaviors.

Finally, note that when viewed versus horizontal distance travelled rather than
time, the vehicle reaches near steady state in approximately the same horizontal

distance, although the low-speed response is stil considerably more oscilatory.

For these simulations, only a three degree-of-freedom model (x,z,e) was used.

6.3.3 Controller Performance at High Angles of Attack

The linear controller performs reasonably at high angles of attack where the linearized

vehicle model used to develop it no longer applies; however, control over pitch and

yaw are compromised. Pitch damping is reduced, although the system remains stable
in pitch. In the presence of a yaw disturbance, the inherent instability of the vehicle
in yaw ensures the controller wil faiL.

Although the depth controller proposed no longer has a physical basis, the con-
troller reacts reasonably to large errors in depth so long as the foil angles are clipped

to ::900. That is, the proportional and integral terms work to point the foils towards

the desired depth which works because the vehicle travels more or less parallel to its

foils. At higher velocities, this is a consequence foils' large size relative to the foiL.
At lower velocities, this stil holds true because the thrusters are mounted on the
rotating control foils.

The pitch damper and yaw controller do not work well at high angles of attack.
As discussed in Section 5.3, a change in foil angle no longer effects pitch, and likewise

differential thrust couples into roll rather than yaw.

To ilustrate controller behavior at high angles of attack, the vehicle was simulated

following an increasingly steep set of ramped pulses while under the influence of

sinusoidal disturbance torques in pitch and yaw. Figure 6-8 shows the vehicle response

for a pitch disturbance of magnitude 2 N. m and frequency 0.18 Hz. Note that 0.18 Hz

is the vehicle's natural pitching frequency (in the linear approximation) Figure 6-9
shows the detrimental effect of the yaw controller at high angles of attack for a yaw
disturbance of magnitude 0.1 N . m and frequency 0.01 Hz. All plots were generated

using controller gains kpz = 1, kDz = 10, k1z = 0.01, kDo = 10, kpil = 1000, and
kDij = 10. A very stiff proportional term in the yaw controller was required to
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stabilize the vehicle laterally.
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Figure 6-8: Simulated Vehicle Response with Pitch Disturbance.

Figure 6-8 demonstrates the vehicle successfully tracks spatial slopes approaching

90° by saturating the control foils. These conditions are well outside the linear range
used to design the controller.

Depth controller performance, even in the absence of pitch and yaw disturbances,

is not ideaL. Steeper ramps could be followed by increasing thrust at high angle of
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Figure 6-9: Simulated Vehicle Response with Yaw Disturbance.

attack to compensate for the increased drag. The depth controller as designed only

maps to the foils, and works at high foil angles serendipitously rather than by design

since foil lift no longer acts in the vertical axis.

This change of input mappings severly degrades pitch damping and yaw control.
This is evident from the lower plot in Figure 6-8 which shows a marked increase in
forced pitch rate oscilations for high vehicle angle of attack, or equivalently for large
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foil angles.

Similarly, Figure 6-9 shows an increase in yaw oscilations and roll disturbances
during climbs requiring large foil angles. Furthermore, for steep enough climbs of
suffcient duration the yaw controller interferes with the depth controller to the extent

that the vehicle no longer tracks desired depth. The lateral instability of the vehicle

ensures that any small disturbance in yaw becomes larger, and the resulting response

in differential thrust sets up a slow oscilation in roll which in turn transforms the
differential thrust into lateral force. The drag of the vehicle's tail transforms this
lateral force into the spin shown at the right end of the bottom plot. The vehicle

continues to rise during this spin, but at a severly reduced rate.

At high angle of attack, active thruster control could be implemented to damp
pitch. For high ex, the foil-based pitch damper no longer has any effect. Yaw control

is more troublesome in the sense that not only is there no replacement for differential

thrust control over yaw, but as the foil angles increase, differential thrust couples
instead into vehicle roll, which from a mission perspective is as detrimental as pitch

disturbances.

The fact that effective yaw control is limited to small foil angles makes lateral

stability crucial to performance. Had the forcing in yaw been of greater magnitude,
the vehicle would have become unstable at smaller foil angles. Enough vertical foil
area should be added to the rear of the vehicle to ensure lateral stability. Even so, for
near-vertical flight yaw must either be left uncontrolled, or the vehicle must switch
to an alternate foil configuration to maintain control over yaw.

The physical model has been used by the author in its present form and in an
earlier form by Serfas l19J to explore various foils-fixed configurations for maneuvering

at low speed such as that shown in Figure 6-10. All such configurations sacrifice

control over one or more axes. Pitch control is sacrificed for the configuration shown

in the figure; however, the vehicle's substantial metacentric restoring moment makes

this configuration viable.

6.4 Non-Linear Approaches

Based on the previous section, we conclude that the partial failure of the classical
linear controller proposed is a result of the vehicle's inherent input mapping non-

linearity. This non-linearity is a consequence of the combined foil/thruster actuator
idea, and although it ultimately limits the effectiveness of classical control techniques,

it is also enables a highly maneuverable and effcient vehicle. Furthermore, the analy-
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Figure 6-10: A Foils-Fixed Configuration Suitable for Low Speed Maneuvering.

sis in Section 5.3 suggests the non-linearity can be compensated for by appropriately
modulating control over each vehicle axis between the foils and thrusters depend-
ing on gross foil angle. Intuitively, as foil angle becomes large, pitch damping and
depth control should be assigned to the thrusters, and the thrusters should no longer

attempt to control yaw.

To aid the development of such a controller, we define the following control vari-

ables:

Zetrl =kpz (Zd - z) - kDz W + klz 1 (Zd - z) dt

Betri = - kDea

'Øetrl =kp1j ('Ød - 'Ø) - kD1jr

(6.29)

(6.30)

(6.31)

which are simply the control laws developed previously, but without specified input
mappings.

We have seen that the control law for Øafz, equation (6.15), commands the foils

reasonably, even well outside the linear range it was designed for, if its output is
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clipped to ::90°. We apply clipping, but otherwise leave this control law intact:

CPafz = Zctrl , -90° ~ CPafz ~ 90° . (6.32)

The analysis in Section 5.3 shows that input mappings are trigonometrically mod-

ulated between vehicle axes. Thus it is natural to choose trigonometric functions for

control modulation. The gross foil angle is regulated by CPafz above, making it the
natural choice for the modulating variable.

Beginning with foil pitch damping CPafe' we propose the modulated control law:

CPafe = cos (CPafJ Bctrl (6.33)

The corresponding thrust-based pitch damper is then

ho = sin (CPafJ Bctrl (6.34 )

where the individual thrusts satisfy

ho = hfp + hfs - (hap + has) (6.35)

Thrust control over depth can be implemented as

hz = sin (CPafz) Zctrl (6.36)

where the individual thrusts satisfy

hz = h fp + h fs + hap + has . ( 6.37)

Finally, differential thrust control over yaw is detrimental at high foil angles and

must be reduced:

h'l = cos (CPafz) 'Øctrl .

The individual thrusts are as defined in equation (6.22).

(6.38)

The transformed input variables CPafz and CPafe map to the foil angles CPff and CPaf

as before (equation (6.7)). The individual thrust commands are composed of the
summed contributions of each controller above, and the open loop nominal thrust
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given in equation (6.1). Explicitly, the thrust commands are given by:

- aii U; 1 1 1

-aiiU; 1 1 -1
h1j . (6.39)h= + he + hz +

-aii U; -1 1 1

-aii U; -1 1 -1

Initial results using this form of control show promise; however, no investigation

of the optimality of the modulation functions proposed has been carried out, nor has
a systematic exploration of system stability been attempted.
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Chapter 7

Conclusions

In this work, we presented the development and analysis of an analytic model of the

Sentry AUV. Our primary methodology for analysis was through the design of a linear

controller, whose behavior was investigated in simulation and as implemented on a

l-scale physical modeL.

The Sentry AUV represents a radical departure from conventional AUV design,

particularly with respect to actuation. The vehicle's combined foil/thruster actuators

have the potential to produce a both maneuverable and effcient vehicle well suited

to survey work over rough topography. Capitalizing on this; however, requires an
understanding of the vehicles dynamics. Thus, our modeling goals were to develop

a model suffciently accurate in terms of the mission profie, and to identify critical
vehicle behaviors influencing successful completion of its mission.

The analytical vehicle model was developed with structural accuracy in mind, and

under the requirement that it handle a large range of vertical plane velocities. Our

basic approach was to model the vehicle as having constant inertial and added mass
characteristics, but varying lift and drag characteristics dependent upon control foil
angle. To this end we presented a technique for the computation of quadratic lift and
drag forces generated by a 2D section, and applied it to the derivation of a matrix
of integral expressions for the quadratic lift and drag of the vehicle. This technique
allowed us to account for differing fluid velocities across each section of the hull and
foils in computing the resultant lift and drag forces. Where possible, we compensated

for the true 3D nature of the flow around the vehicle with appropriate choices of

leading coeffcients. For hydrodynamic forces that could not be estimated in this

way, we relied on empirical results.

The non-linear analytical model developed was linearized about near-horizontal
flight conditions to enable a linear analysis of vehicle flght characteristics. For near-
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horizontal flight, the model was shown to decouple into three lightly interacting sub-

systems.

Based on analysis of the pitch-depth subsystem, the vehicle was shown to be more

suited to direct depth change than indirect depth change via non-zero pitch. More-

over, the pitch response of the vehicle was shown to be minimized by the appropriate

choice of the aft foil angle to forward foil angle ratio, but well damped in any case for

smooth desired trajectories. As forward speed decreases, pitch became less damped.

Vehicle pitch response during a depth change remains non-ideal in one respect.
For the control foil angle ratio selected, steady state pitch during a shallow climb

opposes climb angle. The result is increased drag and reduced effciency during a
shallow climb. The basic reason for this behavior is the larger moment arm of the aft

control foil compared to the forward foiL. Fortunately, the large hydrostatic restoring

moment of the vehicle limits the steady-state pitch to an acceptably small angle.

Analysis of the lateral subsystem indicated undesirable yaw instability, detrimen-
tal to control at high angle of attack. As noted in Section 4.3.1, our model over-

estimates the magnitude of the lateral destabilizing moment, rendering our analysis

qualitative. An improved model of lateral hull hydrodynamics would allow a quanti-

tative evaluation.

Based on these decoupled linearized models, classical linear controllers were de-

signed and validated by simulation and implementation on the physical modeL. In

simulation, the closed-loop system was shown to become more stiff and more damped

with increasing speed due to the quadratic dependence of lift generated by the foils on

speed. Closed loop simulations conducted at high angle of attack verified the vehicle's

predicted maneuverability in the vertical plane. Ultimately we determined the vehi-
cle's trigonometric input structure limited the achievable performance of a classical
linear controller, but also suggested a route towards a more capable controller.

7.1 Further Work

The remainder of this chapter is devoted to recommendations for further modeling

work and validation and to recommended directions for controller development.

7.1.1 Model Verification

Parameter errors are inevitable in the derived analytical modeL. One particular area of

concern is the lateral hull hydrodynamics which are deficient for lack of an estimate of
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the expected stabilizing suction forces created along the aft portion of the hull. Once
the full scale vehicle becomes available, efforts should be made to identify parametric

inaccuracies in our modeL. The bifurcations identified while considering different

modes of depth control could prove useful in adjusting model parameters.
Validating the structure of the full non-linear model is a more diffcult task, ne-

cessitating the study of vehicle motions at high angles of attack.

A steady-state analysis of propeller and foil interaction was used to justify the
assumption that the foils and thrusters could be treated independently in terms of

their hydrodynamics. The validity of that analysis should be explored experimentally.

7.1.2 Control Design

Further control design must compensate for the non-linear mapping between inputs
and vehicle axes. The trigonometric modulation scheme suggested in Section 6.4

should be pursued vvith particular attention paid to control over yaw at high angles
of attack. Without additional actuation, at least one foil must be at ø f .( 90° to
maintain a direct input into the yaw axis. Regardless, at larger control foil angles
input coupling into roll becomes significant. Specifying a nominal control foil angle

as opposed to relying on the serendipitous behavior of the linear controller in this
respect may provide more intellgent control over foil angle during steep climbs.
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Appendix A

Expressions for Arbitrary Control
Foil Angles

The following provides derivations of vehicle inertial, added mass, and gravitational

quantities for arbitrary, but static control foil angles. Insofar as allowing these expres-

sions to be dynamically dependent on control foil angle would violate conservation
of energy, these expressions are provided for the study of nominally static vehicle
configurations other than cPf = O.

A.I Rigid Body Inertia

The iiiertial characteristics of the complete vehicle change to for changing control
foil angles. The degree to which they change is dependent on the mass and inertial
characteristics of the foils, in particular on any displacement between each foil axis
and its center of gravity f r G ff,af and on the inertia tensor associated with each foil
f ¡Of'

The vector to the center of mass of a body is defined as

rG - ~ 1 prdVm v (A.1)

where the integral is over the vehicle volume 11 and vehicle density p varies with r
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In terms of the body and control foils,

1rG(QJ/) = + 2mb mf
1

mb + 2mf

r r PbbrbdV + r p/ridVJ

lJ Vb J vff,af

(mbbrGb + mf (brIG) I Jff,af

(A.2)

where
b _b RirIG - r/o + I rGi . (A.3)

In vector integral form, the inertia tensor of a body about the origin of a body-

fixed frame is

10 = - ¡, (rT rhx3 - rrT) pdV .

Furthermore, by the parallel axis theorem

(A.4)

10 = Ic - m (rGrGT - rGT rGI3x3) , (A.5)

where Ic denotes the moment of inertia of a body about its center of mass.

Using these expressions, the inertia tensor of each control foil can be expressed as

fi - fi (i i TiT i I )Cff,al - 01 + mf rGi rGi - rGi rGi 3x3bi - R fi R (b b T b Tb I )0ff,al - I c¡ I - mf rIG rIG - rIG rIG 3x3
(A.6)

(A.7)

Thus for the complete vehicle,

Io(QJ/) = blOb +bioii +bioai' (A.8)

The dependence on QJi of the above is implicit in the expressions for Rff and Raf

given in equation (3.6).

A.2 Combined Added Mass

The added mass matrix of the entire vehicle, composed of the body and two pairs of

foils, can be derived by considering the kinetic energy of the surrounding fluid:

1 T
T = -v MA(QJ/)v.

2 (A.9)

As indicated, the added mass of the complete vehicle MA is dependent on foil angle.
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The foil velocity f vi can be expressed in the body frame as:

¡b b b i
b _ Vbi + Vb2 x r 10vi - b

Vb2
(A.10)

Furthermore,

b ¡ Rf 03x3 i fvi = vi .
03X3 Rf

with (A.10), the kinetic energy of the surrounding fluid can be

(A.l1)

Combining (A.l1)
written

T = ~ WVb T MAbbVb + bVbTUT MA¡UbvbJ (A.12)

where

U(Ø/) = ¡ Ri 03X3 i -1 ¡ hX3 -S(brio) i
03x3 Ri 03X3 hX3

(A.13)

From (A.12), the added mass matrix for the complete vehicle is then

MA = MAb + UT MA¡U (A.14)

A.3 Gravitational Restoring Moment

As mentioned in the text (Section 4.5), the gravitational restoring moment is invariant

with control foil angle for foil centers of mass and centers of buoyancy located on
axis. This condition is desirable to avoid steady state non-zero trim and to reduce
the required control torques.

Should this condition not be met in the final design, the vector of gravitational
restoring torques becomes

g( r¡) =

o

o

o

(zG - ZB) TV cos e sin cP

(zG - ZB) TV sin e + (xG - XB) TV cos e cos cP

- (xG - X B) w cos e sin cP

(A.15)

where XG, XB, ZG, and ZB are given by the components of rG( Ø/) and rB( Ø/) The
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expression for rG is derived above in Section A.1. A parallel derivation yields

rB(cpi) = B 12B (BbbrBb + Bf (brio + R/rB,) I J.b + f ff,af
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Appendix B

Physical Model

This appendix describes the l-scale physical model of the Sentry vehicle used to
investigate the vehicle design and validate controller concepts.

B.1 Similitude

Geometric similitude between the physical model and the full-scale vehicle is satisfied

except for the tether, thruster nacelles, and exposed cabling of the physical modeL.

The tether constitutes the single most important difference between the dynamics of

the physical model and the full-scale vehicle.

The hydrodynamic behavior of the physical model relative to the full-scale vehicle

depends on both the Reynolds number Rni = 7 and Froude number Fri = :k

The Reynolds number determines the nature of the fluid flow around the vehicle

(laminar or turbulent) and influences lift and drag forces, while the Froude number
is important because of the large hydrostatic restoring moment of the vehicle. The
Reynolds number scales linearly with velocity, implying the physical model would have

to move at 4 m/ sec to match the Reynolds number of the full-scale vehicle cruising

at 1 m/s. As the physical model is capable of at most 0.75 m/ sec, viscous fluid forces

wil influence the fluid forces acting on the physical model to a greater extent than for

the full-scale vehicle. The influence of the hydrostatic restoring moment is dependent

on CB/CG separation. In terms of Froude scaling, this implies a required CG/CB

separation of

J U model
Z - ZGBmodel - GBveh U

veh
(B.1)

for the physical modeL. For a physical model speed of 0.5 m/s and full-scale cruising

speed of 1 mis, the required CB/CG separation for Froude scaling would place the
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CG of the model at 0.14 m from the midplane. The actual CB/CG separation of the
model could not be increased beyond 5.5 m.

Given these discrepancies between the physical model and the full-scale vehicle,

results from the model must be regarded as qualitative.

B.2 Design

The original version of the physical model was built by Serfass l19J; however it
lacked anyon-board sensors and the thrusters and foils were controlled by an op-

erator using simple on/off switches. To facilitate closed-loop operation, the origi-
nal foil actuators were replaced with waterproofed proportional hobby-grade servos,
four hobby-grade speed controls were added for proportional thruster control, and
on-board depth/attitude sensors were added along with the necessary electronics to
interface serially to a PC. The original model was also retrofitted with a redesigned

tether and thruster housings.

~

¥J

l .. it'

.

,/I
.,

~.,
A-~ .

-4 d-

11

..
_.

Figure B- i l-Scale Physical Model of Sentry
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The hull and foils are laminated pine sealed with epoxy. The lower hull has space
for a 15 lb. lead weight along with holes .forward and aft for the lead shot used to

trim the modeL. All other model components are mounted on the removable midplane

shown in Figure B-2.

Foil Servos

/..lether

, / .\.

~j,'"

I-
'.

"-

#' ~-
E ies

( p i

Figure B-2: Physical Model: Midplane

The foil actuators are Tower Hobbies TS-80 hobby-grade servos with internal

closed-loop position control and maximum output torques of 343 oz-in at 6 V These

are connected to the control foil shafts by toothed belts. The thruster speed con-
trollers are 15 Vmaximum hobby-grade Tekin Rebel PWM reversible electronic speed

controls. Standard R/C hobby control signals for the servos and speed controls are
provided by an 8-bit serial interface board available from Scott Edwards Electronics,

Inc.

The foil servos and thruster speed controls are stand-alone devices and as such
provide no direct feedback. The foil servos were calibrated such that 8-bit commands

covered their angular position range (? 270°). Except at the limits of their range,
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the servos exhibited a linear relation between input command and output angle. No
attempt was made to characterize the speed controls.

The foil servos were sealed by coating all seams with epoxy after replacing the
stock shaft seal with an appropriately sized o-ring. To prevent leakage under pressure,

the internal cavities of the servos are connected by tubing to two redundant air filled

compensators.

The electronics housing (Figure B-3) contains four speed controls, serial interface

board, depth sensor, and a Cross Bow Instruments 3-axis rate gyro, 3-axis accelerom-

eter, and 2-axis inclinometer. The depth sensor is comprised of an DIP packaged
SenSym absolute reference analog pressure sensor vented to the exterior of the hous-
ing, along with the necessary amplification circuitry and an A/D converter from DGH

Corporation. The vehicle communicates with an exterior PC via four separate serial

SSC Pressure Sensor

.
Thruster Controllers (2 of 4)

A/

~

~.Tether I/O

Figure B-3: Physical Model: Electronics Housing

lines in the tether.

The PC model interface enables joystick control of all vehicle actuators, closed loop

depth control, and wil also run command records directly from file. Input from an

eight-axis joystick is mixed according to the values specified in the fields shown in the

center panel of Figure B-4. This enables arbitrary mapping of the joystick axes to the

112



ABE2
Joytick JI.:

i. "'.. V.hid.:i "'.. '"
i "".. l\ø.:
4. "'.. 1hF ~
5. "'.. 1hF
6. "'..
7. "".. 1hA
a "".. ,.,

1 ho
OioabJ"- I

Sylem S.lIngs:
fOl. Fai

J.. Pa 6
""F..

O"P Pa J

OoeH..",. 50
r-~- i~

(..1

Joytick JI.:

1)

:i ~
"1 11

Z..A. ~S--i~

Fk..."". jiF: Fai:~__~=-:_ ,

- ! ~~::n':~P ri 1 r- -I

I Fk,.

Il\FaiR-ds 10 12

J.. Co
¡o

I AA=~_~"'"'' i

Joytick Data
"'ol"

n.,c'" j.

S.n.orlSl.. I' S¡;
i Díal~ .h; ~
1 Controll.r. ~

' Sho -Dialog:

Figure B-4: Physical Model: Interface

model's actuators. Commands from any other sources (closed-loop controllers; open-

loop command records) are summed with joystick commands, clipped if necessary,

and sent to the vehicle. Output commands are displayed on the graphic at the right
of Figure B-4. All commands and sensor data are logged.
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Appendix C

Simulation Code

The following is MATLAB code used to calculate vehicle state derivatives from current

state and inputs including a vector of disturbance forces. The equations of motion are

implemented in matrix form. Integration of the 2D hydrodynamic forces and moments

approximated using strip-theory is accomplished employing the vector expressions
given in equations (4.41), (4.48) and (4.49). This code forms the core of a vehicle

simulator implemented in MATLAB's Simulink environment.

Vehicle parameters are passed in a structure S containing the output of a separate

vehicle parameters fie sentry m that computes the required quantities based on

vehicle geometry and mass characteristics. In addition to regular coeffcients, this file

generates the vectors of coeffcients and geometric parameters required to compute

2D sectional hydrodynamic forces. In the interests of space, we have not included
'. code from sentry m.

't(

function (nut, etatJ = sentry (S, nu, eta2, u, W)

% (nut, etatJ = SENTRY (S, nu, eta2, u, W) calculates the 6DOF body
% accelerations and inertial frame velocities using vehicle
% equations of motion.
%

%

%

%

%

%

%

%

%

%

%

Vehicle parameters are passed via the structure S generated by

, sentry _params . m' .

Equations of motion are implemented as

nut = inv(M(u1))*((h(u)+W) - C(nu,u1)*nu - D(nu,u1)*nu - G(eta2))

~

where input vector tau is defined:

u1 = (phiff phiafJ.'% the foil angl~s
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% u2 = (hfp hfs haf hasJ. '% the thruster inputs
%

% The vector h is a nonlinear combination of the terms of tau and
% includes only the vectored thrust input. Foil lift is calculated
% within D(nu,tau1). W is a vector of disturbance forces.

% Precalculate commonly used expressions

cff = cos(u(1)); % cos(phiff)

sff = sin(u(1)); % sin(phiff)

caf = cos (u(2)); % cos (phiaf)

saf = sin(u(2)); % sin(phiaf)

cp = cos (eta2 (1)) ; % cos (phi)

sp = sin (eta2 (1)) ; % sin (phi) 

ct = cos (eta2 (2)) ; % cos (theta)

st = sin (eta2 (2)) ; % sin (theta)
tt = tan(eta2 (2)) ; % tan(theta)
cy = cos (eta2 (3)) , % cos (psi)

sy = sin(eta2 (3)) ; % sin(psi)

% extract variables

hfp = u(3); hfs = u(4); hap = u(5); has = u(6),

u = nu(1); v = nu(2), w = nu(3); p = nu(4); q = nu(5); r = nu(6),

% rigid body mass matrix

MRB = (S. mOO 0 8. m*8. zG 0;
o 8 m 0 -8. m*8 . zG 0 8. m*8 . xG ;
o 0 8. m 0 -8. m*8 . xG 0;

o -8 m*8 zG 0 8. Ixx 0 -8. Ixz;
S . m*S . zG 0 -8 m*8 xG 0 8 Iyy 0;
o 8. m*8 . xG 0 -8. Ixz 0 S. IzzJ ;

% added mass matrix

MA = - (8 . Xut 0 8 Zut 0 8 Mut 0;
OS. Yvt 0 0 0 S. Nvt ;
S Zut 0 8 Zwt 0 8 Mwt 0;

o 0 0 S. Kpt 0 8. Npt ;
SMut 0 8 Mwt 0 8 Mqt 0;
OS. Nvt 0 S. Npt 0 8. NrtJ ;

% combined mass matrix

M = MRB + MA;

% rigid body centripetal and coriolis matrix

CRB = (0 0 0 0 S. m*w-8. m*S xG*q -8 m*v+8. m*8. zG*p-8 . m*8 . xG*r;

116



o 0 0 -S .m*w+S m*S xG*q 0 S m*u+S .m*S. zG*q; ...

o 0 0 S. m*v-S . m*S . zG*p+S . m*S xG*r -S m*u-S. m*S . zG*q 0; .,.

OS. m*w-S m*S xG*q -S m*v+S m*S. zG*p-S . m*S . xG*r ; .
o -S. m*S. xG*v-S . Ixz*p+S. Izz*r S. m*S . zG*u-S m*S. xG*w-S . Iyy*q;

-S . m*w+S m*S. xG*q 0 S m*u+S m*S. zG*q; ...

S m*S. xG*v+S . Ixz*p-S . Izz*r 0 S. m*S . zG*v+S Ixx*p-S. Ixz*r ; ..,

S. m*v-S . m*S . zG*p+S m*S xG*r -S. m*u-S . m*S. zG*q 0,
-S m*S zG*u+S. m*S . xG*w+S . Iyy*q -S. m*S zG*v-S Ixx*p+S. Ixz*r OJ;

% added mass centripetal and coriolis matrix

CA = (0 0 0 0 -S. Zut*u-S Zwt*w-S Mwt*q S. Yvt*v+S . Nvt*r;
o 0 0 S. Zut*u+S. Zwt*w+S. Mwt*q 0 -S Xut*u-S Zut*w-S Mut*q;
o 0 0 -S. Yvt*v-S Nvt*r S Xut*u+S. Zut*w+S . Mut*q 0;

o -S Zut*u-S Zwt*w-S. Mwt*q S. Yvt*v+S . Nvt*r , .
o -S. Mwt*v-S. Npt*p-S. Nrt*r S. Nvt*w+S. Mqt*q; ...

S. Zut*u+S Zwt*w+S Mwt*q 0 -S. Xut*u-S. Zut*w-S. Mut*q,
S Mwt*v+S. Npt*p+S . Nrt*r 0 -S. Mut*v-S Kpt*p-S. Npt*r;

-S. Yvt*v-S. Nvt*r S Xut*u+S. Zut*w+S. Mut*q 0;

-S Nvt*w-S. Mqt*q S. Mut*v+S. Kpt*p+S Npt*r OJ,

% combined added mass and coriolis matrix

C = CRB + CA;

% Generate DCnu, u1)
% forward foil

Rff = (0 cff -sff; -1 0 0; 0 sff cffJ, % phi = phiff; theta = 0; psi = -pi/2;

Dff = LSQD360CS.rho,nu,S rffo,Rff,S.xf,S.res,S.Llefx,

S Ltefx, S. KLff , S. KDff , S KDoff, S CPf);
% aft foil

Raf = (0 caf -saf; -1 0 0; 0 saf cafJ; % phi = phiaf; theta = 0; psi = -pi/2;
Daf = LSQD360CS.rho,nu,S.rafo,Raf,S xf,S res,S.Llefx,

S Ltefx,S KLaf ,S.KDaf ,S.KDoaf ,S.CPf);

% forward root

Rr = (0 1 0; -1 0 0; 0 0 1J; % phi = 0; theta = 0, psi = -pi/2;
Dfr = LSQD360CS rho,nu,S.rffo,Rr,S xfr,S.res,S Llefrx,

S . L tefrx , S . KLfr , S . KDfr , S . KDofr , S . CPr) ,
% aft root

Dar = LSQD360CS.rho,nu,S rafo,Rr,S xar,S.res,S.Llearx,

S. Ltearx,S. KLar,S. KDar,S KDoar,S CPr);
% xz planar body lift and drag

Rbxy = (0 1 0, 0 0 1, 1 0 OJ; % phi = -pi/2; theta = -pi/2; psi = 0;
Dbxy = LSQDlinCS.rho,nu,O,Rbxy,S zb,S res,S.Lbnz,

S Lbtz,S KLbxy,S KDobxy,S.CPbxy);

% yz planar body lift and drag

Rbyz = (1 0 0; 0 0 -1; 0 1 OJ, % phi = pi/2; theta = 0; psi = 0;
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Dbyz = LSQDlin(S.rho,nu,O,Rbyz,S.xb,S.res,S Hbx/2,

-S. Hbx/2, S. KLbyz, S KDobyz, s. CPbyz) ;
% linear body drag

Dlin = zeros (6) , % no estimate available
% body lift cross terms

Dxb = - (0 0 0 0 0 0, 0 0 0 0 0 0, 0 0 S. Zuwb*u 0 0 0; ..

o 0 0 S. Kwpb*w 0 0; 0 0 S. Muwb*u 0 0 0; 0 0 0 0 0 S Nurb*uJ;

D = Dff + Daf + Dfr + Dar + Dbxy + Dbyz + Dlin + Dxb;

% Generate G(eta2)

G = (0,
0,
0;
(S zG-S zB) *S W*ct*sp; '"
(S. zG-S. zB) *S. W*st + (S. xG-S. xB) *S. W*ct*cp;
- (S xG-S. xB) *S W*ct*sp J;

% Generate h(u)

h = ( (hfp+hfs) *cff + (hap+has) *caf;

0;
(hfp+hfs) *sff + (hap+has) *saf;

S. bt* ((hfp-hfs) *sff + (hap-has) *saf) ,
-S. aff* (hfp+hfs) *sff - S. aaf* (hap+has) *saf; ... % aaf ( 0

s. bt* ((hfp-hfs) *cff + (hap-has) *caf) J;

% Transformation matrix to inertial velocities

J = ( cy*ct -sy*cp+cy*st*sp sy*sp+cy*cp*st 0 0 0;

sy*ct cy*cp+sp*st*sy -cy*sp+st*sy*cp 0 0 0,

-st ct*sp ct*cp 0 0 0, .
o 0 0 1 sp*tt cp*tt; ...
o 0 0 0 cp -sp;

o 0 0 0 sp/ct cp/ctJ;

nut = inv (M) * ((h+W) - C*nu - D*nu - G); % W disturbance forces/moments
etat = J*nu;

% --- -- - - - - ---- --- --- - - - - - -- - ------ - -- -- --- - - -- -- -- - - -------- --- -------
% SUBFUNCTIONS

% --- -- - --- - ---- ---- - - - -- --- - ----- - - --- - ---- -- - ---- ---- - --- --- - --- -----

function (DJ = LSQD360(rho,nu,ro,R,xs,dxs,yle,yte,KL,KD,KDo,CP)

% Lifting Surface Quadratic Drag, 0 ( alpha ( 2*pi

chord = yle - yte; % leading edge - trailing edge

P = (0 0 0; 0 1 0; 0 0 1J, % always the same projection by convention

118



x = 0; Y = 0; Z = 0; K = 0; M = 0, N = 0;

for i = 1:length(xs)

r = ro + R* (xs (i) 0 OJ.';

G1 = P*R '*(eye(3,3) -skew(r)J;

snup1 = G1*nu; % local planar velocity

H1 = R*G 1 ;
% note: bnup1 = H1*nu;

if norm(snup1, 2) == 0

% initialize forces

in foil frame

dX = (0 0 0 0 0 OJ;

dK = (0 0 0 0 0 OJ;

else
% sectional lift and drag

bdLp = -0. 5*rho*KL*chord (i) *
((snup1. '* (0 0 1J.' * (0 1 OJ *snup1) /

norm(snup1,2))*skew(R*(1 0 OJ ')*H1*dxs;
bdDp = -0.5*rho*KDo(i)*chord(i)*norm(snup1,2)*H1*dxs +

-0. 5*rho*KD*chord (i) *
((snup1. '* (0 0 1J ) * (0 0 1J *snup1) /norm(snup1, 2)) *H1*dxs,

% total sectional planar force

bdFp = bdLp + bdDp,

% determine center of planar force (CP) in body coordinates

syCPs = 0.5* (yle (i) + yte (i) + ..

sign((O 1 OJ*snup1)*(yle(i)-yte(i))*((1-2*CP)/2));

brCPs = r + R* (0 syCPs OJ ';

% total resultant moment

bdTp = skew(brCPs)*bdFp;

% component forces from planar lift/drag, 6 DaF

dX = (1 0 OJ *bdFp;

d Y = (0 1 OJ * bdFp ,

dZ = (0 0 1J *bdFp;

dK = (1 0 OJ * bd Tp ;

dM = (0 1 OJ * bd Tp ;
dN = (0 0 1J*bdTp;

end
% integrate

X = X+dX; Y = Y+dY; Z = Z+dZ, K = K+dK; M = M+dM, N = N+dN;

end
D = - (X; Y; Z; K; M, N, J, % 6x6

% local planar velocity in body frame

% this is required to avoid the angle of

% attack singularity at zero velocity

dY = (0 0 0 0 0 OJ; dZ = (0 0 0 0 0 OJ,

dM = (0 0 0 0 0 OJ, dN = (0 0 0 0 0 OJ;

function (DJ = LSQDlin(rho,nu,ro,R,xs,dxs,yle,yte,KL,KDo,CP)

% Lifting Surface Quadratic Drag, linear CL

chord = yle - yte; % leading edge - trailing edge
P = (0 0 0, 0 1 0; 0 0 1J, % always the same projection by convention

F = 0; T = 0;; % initialize forces
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for i = 1: length(xs)

r = ro + R* (xs (i) 0 OJ.';

G1 = P*R. '*(eye(3,3) -skew(r)J,

snup1 = G1*nu, % local planar velocity in foil frame

H1 = R*G1;

% note bnup1 = H1*nu; % local planar velocity in body frame
% sectional lift and drag:

bdLp = -0.5*rho*KL*chord(i)*((0 0 1J*snup1)*skew(R*(1 0 OJ ')*H1*dxs;

bdDp = -0. 5*rho*KDo (i) *chord(i) *norm(snup1, 2) *H1*dxs;
% total sectional planar force

bdFp = bdLp + bdDp,

% determine center of planar force (CP) in body coordinates

syCPs = 0.5*(yle(i) + yte(i) + sign((O 1 OJ*snup1)* ...

(yle (i) -yte (i)) * ((1-2*CP) /2)) ;

brCPs = r + R* (0 syCPs OJ ';

% total resultant moment

bdTp = skew(brCPs) *bdFp;

% integrate

F = F + bdFp; % rectangular rule summation

T = T + bdTp; % rectangular rule summation

end
D = - (F; TJ; % 6x6
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