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ABSTRACT

DNA sequencing and phylogenetic analyses were conducted to investigate evolutionary
relationships between taxa within the metazoan clade Lophotrochozoa. Chapter i
presents an introduction to phylogenetics of the Metazoa and the clade Lophotrochozoa.
Chapter 2 analyzes higher level relationships between the major groups within the
phylum Mollusca using sequences of the nuclear ribosomal large-subunit RNA gene

(LSD rDNA). Results presented provide the first molecular evidence for a close
relationship between the Scaphopoda and Cephalopoda. Phylogenetic trees with this
topology were found to have likelihood scores significantly better than those for
phylogenies constrained to fit the Diasoma hypothesis grouping Scaphopoda and Bivalvia
as sister taxa. Chapter 3 utilizes LSU rDNA sequences to analyze relationships between
diverse phyla within the clade Lophotrochozoa. LSU rDNA sequences were found to
provide greater resolution than has been provided by previous analyses of the nuclear
small-subunit ribosomal RNA gene (SSU rDNA). Analysis ofLSU rDNA sequences
recovered the monophyly of several phyla, such as Mollusca and Anelida, whose
members are found to be paraphyletic using SSU rDNA sequences alone. Results also
suggest that the clade Platyzoa, including rotifers and platyhelminthes, may have arisen
within the Lophotrochozoa, rather than as a sister group to lophotrochozoans. Chapter 4
investigates the Hox gene complement of the bryozoan Bugula turrita. Six Hox genes
were recovered, including an ortholog ofthe posterior class gene Post2, which is a
synapomorphy for the Lophotrochozoa. The identification of a Post2 ortholog provides
evidence of a close relationship between the Bryozoa and other lophotrochozoan phyla.

Thesis Supervisor: Kenneth M. Halanych
Title: Assistant Scientist, Biological Oceanography, Woods Hole Oceanographic

Institution
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Chapter 1

Introduction to metazoan phylogenetics and the clade

Lophotrochozoa
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The work presented in this thesis explores the phylogenetic relationships between

major groups within the metazoan clade Lophotrochozoa. This clade, which

encompasses a many animal phyla, including bryozoans, brachiopods, annelids and

mollusks, was first identified from analyses of nuclear ribosomal small-subunit gene

(SSU rDNA) sequences (Halanych et aI., 1995). Although the clade has been supported

by additional markers, such as Hox genes (de Rosa et aI., 1999), resolution of

relationships among lophotrochozoan phyla remains uncertain. The Lophotrochozoa

encompasses a broad diversity of body plans, developmental modes and life histories. A

greater understanding of 
the evolutionary relationships amongst taxa within the clade is

crucial to understanding the origins of morphological and developmental novelties. The

work presented here builds upon the curent body of knowledge by employing sequence

data from the nuclear ribosomal large-subunit gene (LSU rDNA) and Hox genes to

explore the evolution of lophotrochozoans.

To appreciate the context in which this thesis has developed, it is valuable to

understand historical and current views of metazoan evolution. Traditionally, hypotheses

of metazoan evolution have been based upon researchers' knowledge of 
the animals

under study and their personal interpretation of similarities between them. The dominant

view has long been one of increasing complexity over the course of metazoan evolution

(e.g. Haeckel, 1874; Hyman, 1940) (Figure 1), where animals moved from a simple

organization with two cell layers (diplobastic) to a more advanced state with three cell

layers (triploblastic).
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Figure 1: Traditional view of metazoan phylogeny, based upon
interpretation of increasing morphological complexity. Tissue organization
or pattem of coelom fomation is listed for each group. Modified from
Halanych and Passainaneck (2001).
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Under this view, relationships among bilaterian triploblasts were defined based upon the

nature and origin their coelomic cavities, with organisms having more complex coeloms

being viewed as more derived. Platyhelminthes were descibed as acoelomate, and

therefore the most primitive ofbilaterian triploblasts. Several taxa, such as rotifers and

nematodes, have simple body cavities derived from the embryonic blactocoeL Such

animals have been described as pseudocoelomate, and grouped together by some authors

under the name Aschelminthes (e.g. Hyman, 1951).

Taxa with fully developed coeloms surrounded by mesodermal tissue were viewed as

the most advanced metazoans. Among such taxa a further distinction was drawn based

upon the mode of coelom formation. Deuterostomes were characterized by coelom

formation through invagination of the endoderm, termed enterocoely, while protostomes

formed coeloms by means of schizocoely, a splitting of mesodermal bands.

Other researchers have also posited the phylogenetic significance of featues such as

cleavage pattern during early development (e.g. Siewing, 1976; 1980), fate of 
the

blastopore in relation to the mouth and anus of the adult (Grobben, 1908), and larval type

(e.g. Jägersten, 1972; Nielsen, 1985). However, each of 
these hypotheses is limited by

the potential bias in the investigator's perspective on what small set characters are

phylogenetically important. The major problem with these approaches is that reliance on

a small number of features to infer evolutionary relationships limits the potential for

rigorous comparison of alternative hypotheses.

With the advent of cladistics, Wili Hennig (1966) provided the groundwork for a

systematic approach to analyzing the evolutionary relationships between metazoan phyla

that answers the limitation of traditional analyses. Cladistics bases determination of
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phylogenetic relationships upon the identification of synapomorphies, shared derived

characters present in related organisms and absent in unrelated organisms. Identification

of synapomorphies allows determination of monophyletic clades of organisms.

In recent, years cladistic methods have been employed to analyze several large

datasets of metazoan morphological and embryological datasets. Cladistic analyses by

Eemissee et aI., (1992) provided evidence contradicting the widely held Ariculata

hypothesis, which viewed annelids and arthropods as sharing a common segmented

ancestor. More recent analyses (e.g. Zrzavy et aI., 1998; Giribet et aI., 2000; Peterson

and Eemissee, 2001) have incorporated large datasets that include nearly all known

extant metazoan phyla. While there are many similarities in the results from each of

these studies, the position of some taxa, such as the lophophorate taxa (brachiopods,

phoronids, and bryozoans), varies depending upon what characters are chosen and how

they are coded. Recently, Jenner (2001) has urged caution in analysis of morphological

characters, as many studies have included characters from previous studies without

critical appraisal as to whether these characters are coded correctly.

Resurgent interest in the evolution of development during the last decade may

provide a valuable tool for identifying phylogenetic ally informative characters. More

detailed understanding of ontogenetic processes and the molecular mechanisms

underlying them has the potential to aid determination of homology between structures.

For example, recent evidence suggests that the molecular mechanisms underlying

formation of the blastopore are conserved across bilaterians (Arendt et aI., 2001). These

findings are important because comparisons of blastopore fate are predicated on a

presumption that all blastopores are homologous. Detailed studies of cell fate have also
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helped to establish the homology of cell lineages among taxa with spiral cleavage (Henr,

2002). Spiral cleavage may therefore have had a single origin during the course of

metazoan evolution. While utilizing such an approach may be produce phylogenetically

informative results, great care must be exercised, as homologous processes often do not

produce homologous structures (Abouheif et aI., 1997; Wray and Abouheif., 1998).

Recent advances in DNA sequencing techniques have provided the ability of use gene

sequences as an independent dataset for inferring evolutionary relationships among

metazoans. To date, many molecular phylogenetic analyses of the relationships between

metazoan phyla have relied upon sequence of the nuclear small-subunit ribosomal RNA

gene (SSU rDNA or 18S rDNA, e.g. Field et aI., 1988; Halanych et aI, 1995; Aguinaldo

et aI., 1997; Girbet et aI., 2000; Peterson and Eernissee, 2001). SSU rDNA has been

valuable because portions of the gene sequence appear to evolve quite slowly, creating

the potential for conservation of changes accrued during the diversification of metazoan

phyla. Such conserved changes would then allow insight into the relationships between

phyla. Analysis of SSU sequence has provided independent verification of many

hypotheses of metazoan evolution, including the monophyly of the Bilateria (Field et aI.,

1988), and the division of Bilateria into protostome and deuterostome lineages (Lake,

1990). However, SSU sequence has also revealed unexpected relationships.

One dramatic finding has been that the three lophophorate phyla (bryozoans,

brachiopods, and phoronids) are more closely related to protostome annelids and

mollusks, than they are to deuterostomes, as has traditionally been believed (Halanych et

aI., 1995; Table 2). Halanych et aI. (1995) named this new clade "Lophotrochozoa", for

the lophophore of bryozoans, brachiopods, and phoronids, and the trochophore type larva
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Figure 2' Current understanding of evolutionary relationships among metazoan phlya.
Members of the clade Lophotrochozoa are highlighted. Phyla with uncertain
phylogentic affnities in the tree are denoted with dashed branches. Relationships
presented in the tree are primarily derived from analyses of small-subunit ribosomal
rRNA gene (SSU rDNA) sequences. Modified from Halanych and Passamaneck

(2001).
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shared by annelids and mollusks. The results presented in this study also suggested that

Jophophorates might not comprise a monophyletic clade, as the bryozoan sequence

branched basally to that of the other lophotrochozoans. The relationships between

brachiopods, phoronids, annelids and mollusks were not resolved in this study.

Subsequent analysis of SSU sequence from additional taxa suggests that the clade

Lophotrochozoa encompasses a broad diversity of metazoan phyla, including

sipunculans, nemerteans, and entoprocts (e.g. Winepenninckx et aI., 1995; Mackey et

aI., 1996). Rotifers and platyhelminthes also appear to be closely related to

lophotrochozoans, either as members of the clade (as discussed in Chapter 3), or as

members of a sister group termed the Platyzoa (Giribet et aI., 2000). Despite the

diversity of the Lophotrochozoa, the relationships among the phyla withi the group have

not been extensively studied, and are not well understood. While SSU rDNA provided

the initial evidence for the clade Lophotrochozoa, it does not appear to be able to resolve

relationships among phyla within the clade.

Although the utilty of SSU rDNA for elucidating metazoan evolution has been

criticized (Abouheif et aI., 1998), simulation studies have suggested that additional

sequence with evolutionary properties like that of SSU rDNA for each taxon would be

suffcient to increase resolution (Halanych, 1998). Multiple copies of 
the SSU gene are

present in the genome of metazoans, however, their sequences remain homogeneous

through a process of concerted evolution (Hilis and Dixon, 1991). Other molecular

markers must therefore be explored to obtain additional sequence data for phylogenetic

reconstructions.
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The nuclear large-subunit ribosomal RNA gene (LSU rDNA) provides a potential

source of information for metazoan phylogenetics because it has properties similar to that

ofSSU rDNA (Hilis and Dixon, 1991). Both are part of the ribosomal DNA tandem

repeat, and like SSU rDNA, LSU rDNA displays rate heterogeneity among sites. Highly

conserved sites therefore allow for design of universal primers for amplification and

sequencing, while changes accumulated at less conserved sites may hold information

regarding the evolutionary relationships among taxa. Several recent studies have

evidenced the utility of LSU sequence for analyzing phylum level relationships within the

Metazoa, particularly when combined with SSU sequence (Medina et aI., 2001, Winchell

et aI., 2002; Mallatt and Winchell, 2002).

In the following chapters I present work done to assess the abilty of LSU rDNA and

Hox sequences to inform our understanding of lophotrochozoan phylogenetics. Chapter

2 focuses on higher-level relationships within the phylum Mollusca. The Mollusca

represents the most diverse oflophotrochozoan phyla, in terms of both morphology and

numbers of species. Despite this diversity, the relationships between the major groups of

mollusks has received relatively little attention from the standpoint of molecular

phylogenetics. Work presented here provides the first molecular evidence of a close

evolutionary relationships between scaphopods and cephalopods. This finding challenges

the widely held Diasoma hypothesis, which suggests scaphopods to be closely related to

bivalves. Chapter 2 also explores heterogeneity in the rate of LSU evolution between

molluscan taxa, and its potential impact of phylogenetic reconstruction.

Chapter 3 utilizes LSU sequence to investigate the relationships among

lophotrochozoan phyla. LSU sequence is found to improve resolution of phylum level

14



relationships from the standpoint that most phyla are recovered as monophyletic.

AlthQugh bootstrap branch support values are low, this finding is a dramatic advance over

analyses of SSU sequence alone, which generally fail to recover the monophyly of phyla

such as the Mollusca and Anelida. Results in Chapter 3 also suggest that rotifers and

platyhelminthes may have emerged as part of the lophotrochozoan radiation, rather than

diverging prior to it.

Chapter 4 of the thesis utilizes Hox gene sequences to explore the phylogenetic

affnities of the enigmatic phlyu Bryozoa. The Bryozoa are part of the

Lophotrochozoa, as it was originally defined. However, recent analyses of SSU

sequences have failed to recover a close relationship between bryozoans and other

lophotrochozoans, and have called the phylogenetic position of the Bryozoa into

question. Recent identification of Hox genes which appear to be present only in

lophotrochozoans presents the possibility that these genes may have utility as

synapomorphies for members of the clade (de Rosa et aI., 2001). In this chapter evidence

is presented for a bryozoan ortholog of one such gene, Post2, which is also present in

annelids, mollusks, brachiopods, nemerteans, and platyhelminthes. This finding provides

strong evidence of a close relationship between the Bryozoa and other lophotrochozoans.

The potential utility of Hox genes in elucidating metazoan phylogenetics in discussed

fuher in Halanych and Passamaneck (2001), which is included as an Appendix to this

thesis.
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Chapter 2

Investigation of Molluscan Phylogeny Using Large-Subunit and

Small-Subunit Nuclear rRNA Sequences, and Analysis of Rate

Variation Across Lineages.
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Abstract

The Mollusca represent one of the most morphologically diverse animal phyla,

prompting a variety of hypotheses on relationships between the major lineages within the

phylum based upon morphological, developmental, and paleontological data. Analyses

of small-ribosomal RNA (SSU rRNA) gene sequence have provided limited resolution of

higher-level relationships within the Mollusca. Recent analyses suggest large-subunit

(LSU) rRNA gene sequences are useful in resolving deep-level metazoan relationships,

particularly when combined with SSU sequence. To this end, LSU (~3.5kb in length)

and SSU (~2kb) sequences were collected for 33 taxa representing the major lineages

within the Mollusca to improve resolution of intraphyletic relationships. In contrast to

phylogenetic analyses base on SSU, the Polyplacophora, Gastropoda, and Cephalopoda

were each recovered as monophyletic clades with the LSU + SSU dataset. Analyses of

LSU sequences strongly contradict the widely accepted Diasoma hypotheses that bivalves

and scaphopods are closely related to one another. The data are consistent with recent

morphological analyses suggesting scaphopods are more closely related to gastropods

and cephalopods than to bivalves. While the Bivalvia were not recovered as

monophyletic clade in analyses of the SSU, LSU, or LSU + SSU, the Shimodaira-

Hasegawa test showed that likelihood scores for these results did not differ significantly

from topologies where the Bivalvia were monophyletic. Although the LSU and

combined LSU + SSU datasets appear to hold potential for resolving branching order

within the recognized molluscan classes, low bootstrap support was found for

relationships between the major lineages within the Mollusca. LSU + SSU sequences

also showed significant levels of rate heterogeneity between molluscan lineages. The

dataset also presents the first published DNA sequences from a neomeniomorph

17



aplacophoran, a group considered critical to our understanding of the origin and early

radiation of the Mollusca.
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Introduction

Recent phylogenetic research on major metazoan lineages has relied heavily on the

nuclear small subunit ribosomal rRNA gene (SSU rRNA or 18S), and prompted

reevaluation of traditional theories of animal evolution (e.g. Halanych et aI., 1995;

Agiunaldo et aI., 1997; Balavoine and Adoutte, 1998). Although rate variation between

sites within SSU rRNA has made the gene useful for resolving relationships between

organisms with varying degrees of relatedness, SSU rRNA alone has not been sufficient

to resolve some higher-level relationships among metazoans. For example, major

relationships within the Mollusca have proven difficult to resolve with SSU rRNA gene

data (Winnepenninckx et aI., 1996; Steiner and Hammer, 2000). Winnepenninckx et aI.,

(1996) suggested two hypotheses to account for this lack of resolution. Rates of evolution

within the gene may be inappropriate for the relationships being investigated, because

changes accumulated durig divergence of the molluscan classes have been subsequently

masked by multiple substitutions. Alternatively, the Mollusca may have diversified

rapidly, not allowing sufficient changes in SSU to permit accurate reconstruction of

major relationships.

Simulations by Halanych (1998) have suggested that in such cases where SSU rRNA

alone is inadequate to resolve relationships, additional sequence data with similar

properties may provide greater signal and thus greater resolving power. The large-

subunit (LSU) rRNA gene is linked to the SSU gene in a tandem repeat, having a shared

evolutionary history. Several recent studies (Medina et aI., 2001; Winchell et aI., 2002;

Mallatt and Winchell, 2002) have investigated the utility of LSU rRNA gene sequence

for resolving higher-level relationships within the Metazoa. Each of these studies has
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shown that combined datasets ofLSU and SSU may provide greater resolution of higher-

level relationships among metazoans than is achieved by analysis of SSU sequences

alone. The present study investigates the ability of a combined LSU + SSU dataset to

provide information regarding class level relationships within the Mollusca not available

from SSU sequence alone.

The Mollusca represent one of the most diverse metazoan phyla both in terms of

species number as well as in range of body plans. The diversity of the phylum is

represented by seven or eight extant clades, commonly recognized as "classes" The

Neomeniomorpha and Chaetodermomorpha (often referred to collectively as the

Aplacophora), along with the Polyplacophora, are believed to be basally divergent

lineages of the Mollusca (Wingstrand, 1985; Salvini-Plawen and Steiner, 1996). Together

the three groups are referred to as the Aculifera (Scheltema, 1993). The ConchiÍera,

comprised of the Monoplacophora, Bivalvia, Scaphopoda, Gastropoda, and Cephalopoda,

appear to have arisen from a univalved common ancestor (Wingstrand, 1985).

Although the Aculifera are widely agreed to have diverged prior to the diversification

of the Conchifera, relationships between the basal molluscs have been variously

interpreted. Based upon morphological data, the Chaetodermomorpha (=Caudofoveata)

have been described as the earliest diverging lineage within the Mollusca (Salvini-

Plawen, 1972; 1980; 1985) (Figure 3A). Cladistic analyses of morphological datasets

have evidenced the Neomeniomorpha (=Solenogastres) as the most basal of extant

lineages (Salvini-Plawen and Steiner, 1996; Haszprunar, 2000) (Figure 3B). Under either

scenario the Aplacophora and Aculifera are viewed as paraphyletic grades, with the

Polyplacophora branching as the sister group to the Conch if era to form the Testaria
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(Salvini-Plawen, 1972; 1980). Alternative interpretations of morphological and

developmental characters have maintained the monophyly of the Aculifera, with the

Neomeniomorpha and Chaetodermomorpha as members of a monophyletic Aplacophora

forming the sister group to the Polyplacophora (Scheltema, 1993; 1996; Ivanov, 1996)

(Figure 3C).

The Conchifera has been divided into two major clades, the Diasoma containing the

Bivalvia and Scaphopoda, and the Cyrosoma (sensu lato) including the Monoplacophora,

Gastropoda, and Cephalopoda (Figure 3D). This widely accepted view (e.g. Brusca and

Brusca, 1992; Meglitsch and Schram, 1991) is based primarily on paleontological

evidence (Runnegar and Pojeta, 1974). The term Cyrosoma is used herein to refer only

to the Gastropoda and Cephalopoda, due to the likely paraphyly of the Monoplacophora

(sensu Wingstrand, 1985). The Diasoma hypothesis, based upon inferred common

origins of bivalves and scaphopods has come into question. Waller (1998) has proposed

close relationship between the Scaphopoda and Cephalopoda based upon inferred

developmental commonalities (Figure 3E). A cladistic analysis by Haszprunar (2000)

also contradicts the Diasoma hypothesis, finding the Scaphopoda to be the sister group to

the Cyrtosoma (Figue 3F).

To gain further understanding of molluscan diversification, we have sequenced LSU

and SSU genes for all extant major lineages of the Mollusca, except monoplacophorans.

Herein we evaluate the phylogenetic signal present in these rRNA genes, and their utility

in resolving higher level molluscan relationships. Analyses found short internal branch

lengths and variability in branching order among the major molluscan lineages. High

levels of rate heterogeneity were also found between taxa sampled. However,
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reconstructions grouping scaphopods with cephalopods were found to have likelihood

. scores significantly better than those for reconstructions constrained to fit the Diasoma +

Cyrosoma hypothesis of conchiferan evolution.
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Figure 3 Hypothesis of molluscan class relationships. (A)-(C) Hypotheses of basal
molluscan relationships. (A) Basal position of Chaetodermomorpha (Salvini-Plawen,
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Materials and Methods

Taxon sampling

Molluscan taxa were chosen from available material to provide the broadest

representation of extant lineages. Genomic DNA was isolated from 32 mollusk and 1

outgroup taxa (Table 1) using the DNeasy Tissue Kit (Qiagen), with an additional two

sequences obtained from GenBank. Monica Medina kindly provided tissue and LSU

rDNA sequence for Dialula sp. Akiko Okusu kindly provided samples of Cryptoplax

japonica, Dentalium octangulatum, Ischnochiton comptus, and Nordotis discus. Janet

Voight kiiidly provided samples of Arboliopsis sp., Benthoctopus yaquinae, Graneledone

pacifca, Histioteuthis sp., and Vampyroteuthis infernalis from the collection of the Field

Museum of Natural History. DNA extractions of molluscan samples were taken from

mantle or muscle tissue, with the exception of Chaetoderma sp. and Helicoradomenia sp.

where, due to size, whole animals were used. DNA extraction for the outgroup taxon

Cerebratulus lacteus was taken from sperm. Outgroups were chosen based on knowledge

of lophotrochozoan phylogeny (e.g. de Rosa et aI., 1999; Giribet et aI., 2001, Peterson

and Eemisse, 200 I) and the presence of low nucleotide substituion rates.

SSU sequence for Crassostrea gigas available from GenBank was combined with

LSU sequence from C. virginica collected for this study. A 381 nucleotide fragment of

C. virginica SSU (accession number L78851) was 98% similar to that of C. gigas,

suggesting minimal difference in the complete sequence of the gene from the two species.
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Table i: Taxa sampled for SSU and LSU rDNA sequences

Accession numbers

Species Collection location LSU SSU

Mollusca

Aplacophora
Helicoradomenia acredema 18°N - East Pacific Rise A Y1454098 A Y1453778

Chaetoderma sp. Tjämö, Sweden A Y145397" A Yl45369a

Bivalvia
Arctica islandica Maine A Y145390a AIU93555
Argopecten irradians Cape Cod, MA A Y14539l L11265

Crassostrea virginica North Falmouth, MA AY145400a AB064942

Geukensia demissa North Falmouth, MA AY145405a L33450

Nuculuna pernula Tjämö MBL, Sweden AY1454198 AY145385a

Phaxas pel/ucidus Tjämö MBL, Sweden AY1454208 A Y1453868

Placopecten magel/anicus ? AF342798 X53899

Solemya velum Cape Cod, MA AY14542l AF120524

Yoldia limulata Cape Cod, MA AY145424a AF120528

Cephalopoda

Arbaliopsis sp. FMNH 962-69b AY145389a A Y145364a

Benthoctopus yaquinae FMNH 2781l9b AY145393a AY145394a AY1453668

Graneledone pacifca FMNH 278306b AY145407a A Y145376a

Histioteuthis sp. FMNH 962-69b AY1454ioa A Y145378a

Loligo paeli Woods Hole, MA A Y1454l5a, A Y1454l6a A Y145383a

Nautilus pompilius MBL, Woods Hole, USA AY1454178 A Y145384a

Vampyroteuthis infernalis FMNH 286569b A Y145422", A Y145423a A Y145387a

Gastropoda
Arion silvaticus Sandwich, MA A Y145392a A Y145365a

Boonea seminuda Woods Hole, MA A Y145395a A Y145367a

Deroceras reticulatum Connecticut A Y145404a A Yl45373a

Diaulula sandiegensis California A Y144352" A Y1453748

Gibbula magnus Vigo Harbor, Spain AY145406a A Y1453758

Haminoea solitaria West Falmouth, MA A Y145408a AF249221

Ilyanassa obsoleta North Falmouth, MA AY14541l A Y1453798

Lepetodrilus elevatus 9°N - East Pacific Rise AY1454l3a AY14538l
Nordotis discus Japan AY1454l8a AF082177

Polyplacophora

Chaetopleura apiculata North Falmouth, MA A Y145398a A Yl45370a

Cryptoplax japonica Japan A Y145402" AYl4537l

Ischnochiton comptus Japan A Y1454L2' A Yl45380a

Leptochiton acel/us Kristineberg MRS, Sweden A Y1454l4a A Y145382'

Scaphopoda
Antalis entalis Tjämö MBL, Sweden A Y145388a A Y145363a

Dentalium octangulatum Japan A Y145403a A Y145372a

25



Nemertea

Cerebratulus lacteus
Brachiopoda

Terebratalia transversa

Woods Hole, MA A Yl45396a A Yl45368a

? Ul2650 AF342802

a Sequences collected for this study
b Voucher numbers ofField Museum of Natural History samples provided by Janet Voight.
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Data Collection

All oligonucleotide priers used in this study are listed in Table 2. LSU fragments

were amplified using the primers F63.2 and R3264.2 and SSU fragments were amplified

using the primers 18e and 18p. Molluscan specific priers were designed to avoid

contamination of extraneous_genomic DNA in Helicoradomenia sp. and Chaetoderma sp.

extractions. For these species, the SSU region was amplified as two overlapping

fragments, using the primer pairs 18e and Mollusc18Rl, and Mollusc18Fl and 18p. LSU

was amplified in these species using F63.2 and Mollusc28R2, which amplified all but

--00 bases at the 3' end of the gene.

Both genes were isolated using a long PCR protocol to facilitate amplification of

nearly complete gene fragments. PCR reactions contained 151ll3.3x rTth buffer, 2.5111

10 11M primer, 5111 2mM dNTPS, 004 III rTth (pE Applied Biosystems), 1111 Vent

polymerase (New England BioLabs) (diluted 1:100 in a buffer composed of50%

glycerol, 20mM HEPES, 10mM KCL, ImM DTT, O.lmM NazEDTA, 0.0025% Tween-

20, and 0.0025% NP-40), with genomic DNA and water to a final volume of 45111.

Following a 5 minute denaturation, 5111 of 25mM Mg(OAc)z was added to each reaction.

PCR involved 30 cycles of denaturation at 94°C for 30 sec, annealing at 45-55°C for 1

min, and extension at 65°C for 12 min LSU or 8 min for SSu. A final extension was

carried out at noc for 10 min. PCR products were cleaned with QIAquick PCR

Purification Kit (Qiagen) and incubated at 70°C for 10 minutes in the presence of Taq

polymerase (Promega) and Oo4mM dA TP to create adenine overhangs. PCR fragments

were cleaned a second time with the QIAquick PCR Purification Kit and cloned using the

pGEM-T Vector System (Promega).
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Table 2: Primers used for PCR amplification and sequencing

Primer Reference
PCR amplification
LSU

F63.2
R3264.2
Mollusc28R2

SSU
18e
18p

Mollusc18Fl
Mollusc18Rl

Sequencing
LSU
28ee
28ff
28gg
28nn
28FI-2
28F2-2
28F4
28F5
28R2
28V
28X
28 MT4.1
28R3
28R4

SSU
18h
18L
IBM
18MO

180
18Q
18QO

18R
18F3

Vector
M13f
M13r

Sequence 5';: 3'

Medina (personal communication) ACCCGCTGAA YTT AAGCA TAT
Medina (personal communication) TWCYRMCTT AGAGGCGTTCAG
Present study GCGAGGTTTCCGTCCTCGC

Hilis & Dixon, 1991

Halanych et aI., 1998
Present study
Present study

CTGGTTGA TCCTGCCAGT
T AA TGA TCCTTCCGCAGGTTCACCT
TTTAGCCACRCGAGA WTGA
GTTA TTGCTCA WTCTCGYG

Hilis & Dixon, 1991

Hills & Dixon, 1991

Hilis & Dixon, 1991

Present study
Present study
Present study
Present study
Present study
Present study
Hilis & Dixon, 1991

Hillis & Dixon, 1991
Present study

Present study
Present study

A TCCGCTAAGGAGTGTGT AACAACTCACC
GGTGAGTTGTTACACACTCCTT AGCGG
GACGAGGCA TTTGGCT ACCTT AAG
GGAACCAGCT ACTAGA TGGTTCG
GYWGGGACCCGAAGATGGTGAAC
GCAGAACTGGCGCTGAGGGA TGAAC
CGCAGCAGGTCTCCAAGGTGMACAGCCTC
CAAGTACCGTGAGGGAAAGTTG
GAGGCTGTKCACCTTGGAGACCTGCTGCG
AAGGTAGCCAA TGYCTCGTCATC
GTGAATTCTGCTTCACAA TGA T AGGAAGAGCC
TCCTTGGTCCGTGTTTCAAGACG
GA TGACGAGGCA TTTGGCT ACC
GAGCCAA TCCTTA TCCCAAAGTTACGGA TC

Hilis & Dixon, 1991

Halanych et aI., 1998
Halanych et aI., 1998
Halanych et aI., 1998
Halanych et aI., 1998
Ha1anych et aI., 1998
Halanych et aI., 1998
Present study
Present study

AGGGTTCGA TTCCGGAGAGGGAGC
GAA TTACCGCGGCTGCTGGCACC
GAACCCAAAGACTTTGGTTTC
GAAACCAAAGTCTTTGGGTTC
GGAA TRA TGGAA T AGGACC
TGTCTGGTT AA TTCCGA TAAC
GTTATCGGAATTAACCAGACA
GTCCCCTTCCGTCAA TTYCTTTAAG
CGAAGACGA TCAGA TACCG

GT AACGACGGCCAGT
CAGGAAACAGCT A TGAC
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Sequencing was conducted with BigDye Terminator v2.0 Sequencing Reaction

chemjstr (Applied Biosystems), using the primers listed in Table 2. Sequencing

reactions were purified using Centri-Sep (Princeton Separations) purification colums.

Sequencing reactions were analyzed using an ABI 377 automated sequencer (Applied

Biosystems) using 48cm plates and 4.75% Long Ranger (FML BioProducts)

polyacrylamide gels. For each taxon, each gene was sequenced in both directions.

Phylogenetic analyses

Sequences were aligned by the profie alignment function of ClustalW (Thompson et

aI., 1994), using previously aligned sequences from the Ribosomal Database Project II

(Maidak et aI., 2001) as guides. Alignents were checked manually with MacClade 4

(Maddison and Maddison, 2000), and regions that could not be unambiguously aligned

were excluded.

In order to better understand the relative contribution of each rDNA gene, analyses

were carred out on SSU data alone, the LSU data alone, and the combined LSU + SSU

data. To evaluate consistency in results between phylogenetic reconstruction methods,

minimum evolution (ME), maximum parsimony (MP), and maximum likelihood (ML)

analyses were conducted using PAUP* version 4.0 blO (Swofford, 2002). Appropriate

models for maximum likelihood analyses were determined using the hierarchical

likelihood ratio test (LRT) implemented in Modeltest (Posada and Crandall, 1998).

Support in the datasets for previously published hypotheses of relationships between

molluscan clades was evaluated by explicit hypothesis testing. Unresolved trees

conforming to a priori hypotheses were used to constrain maximum likelihood heuristic

searches with TBR. Resultant trees were compared with unconstrained maximum
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likelihood trees using the Shimodaira-Hasegawa test (Shimodaira and Hasegawa, 2000)

implemented in PAUP*4.0blO.
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Results

Alignment anq Base Composition

Total lengths of the alignents, number of unambiguously aligned characters

included in analyses, number of variable characters, and number of parsimony

informative characters for the SSU, LSU and LSU + SSU data are shown in Table 3.

Stationarity of base frequencies is an assumption of parsimony and likelihood based

methods of phylogenetic reconstrction (Swofford et aI., 1996). Therefore, the relative

nucleotide composition of the datasets was evaluated using the "basefreqs" command in

PAUP The LSU + SSU dataset shows high proportions of A and G among most of the

sampled taxa (Table 4). This pattern is reflected in the dataset for each gene when

analyzed separately (not shown). Five of the cephalopods sampled (Arboliopsis,

Benthoctopus, Graneledone, Loligo, and Vampyroteuthis) differed from this pattern,

having high levels of G and low levels of T. Inclusion of these taxa results in significant

(P.(.( 0.0001) rejection of c2 test of 
homogeneity of base frequencies across taxa, as

implemented in PAUP*4.0blO. This result is exhibited in both the SSU and LSU

datasets, suggesting the variation in nucleotide usage is lineage specific, rather than gene
,

specific. Such a pattern might be expected in genes which are linked and share

evolutionary history. However, Winchell et aI. (2002) found LSU sequences displayed

differences in base proportions across deuterostome lineages, while SSU sequences did

not. Exclusion of the nucleotide biased cephalopods from the datasets results in

acceptance of stationarity of base frequencies under the c2 test (P = 0.7704) in the LSU +

SSU dataset (Table 4), as well as in the SSU and LSU datasets individually (not shown).
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Table 3: Total, Included, Variable, and Parsimony Informative characters for alignmentsofSSU,
LSU, and combined LSU + SSU datasets

SSU

LSU

LSU + SSU

Total

2605

4076

6681

Included

1603

2615
4218

Variable

651

1054

1705

Informative

399

517

916

Table 4: Average base frequencies in the combined LSU + SSU dataset with c2 tests of stationarity
for complete and trimmed dataset

Data set with all taxa

A

Mean 0.2606
c2 = 350.866 (d.f.=102), P = 0.00000000

C

0.2276

G

0.2899

T

0.2219

Arboliopsis, Benthoctopus, Graneledone, Loligo, and Vampyroteuthis alone

A

Mean 0.2329
c2 = 0.377 (d.f.=12), P = 0.99999995

C

0.2629

G

0.3147

T

0.1896

Data set without Arboliopsis, Benthoctopus, Graneledone, Loligo, and VampyroteuthisA C G T
Mean 0.2729 0.2223 0.2808 0.2240
c2 = 76.977 (d.f.=87), P = 0.77037135
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Datasets including sequences for all cephalopods sampled were initially analyzed

with minimum evolution (ME) (Figure 4) using LogDet-Paralinear distances (Lake,

1994; Lockhart et aI., 1994), which is less biased by variability in base frequencies across

taxa than are parsimony (Lockhart et aI., 1994) and likelihood (Swofford et aI., 1996)

based methods. Monophyly of the Cephalopoda was strongly supported (bootstrap

support = 100%) by ME analysis of the LSU + SSU dataset (Figure 4), as well by the

individual SSU and LSU datasets (not shown). Nautilus and Histioteuthis, having base

frequencies consistent with other mollusks sampled, were retained as representatives of

the Cephalopoda for parsimony and likelihood analyses. Therefore, subsequent

discussion wil assume that nucleotide biased cephalopod lineages were not included in

the analyses unless otherwise stated.

Relative Rates

Variation in relative rates of nucleotide substitution across taxa and its potential

impact on phylogenetic reconstructions are well-documented issues with rDNA genes

(e.g. Stiler and Hall, 1999; Philippe et aI., 2000; Peterson and Eernisse, 2001). To help

identify taxa with relatively elevated rates of nucleotide substitution, we conducted

relative rates tests of all pairwise comparisons of the ingroup taxa to the reference

outgroup taxa using the HYPHY program (Muse and Kosakovsky Pond, 2002) with a

Tamura-Nei (1993) modeL. A Tamura-Nei model was the best fit to the data as

determined in Modeltest. The analysis found for 432 of the 528 (82%) ingroup

comparisons showed significant rate variation (P.c 0.05; including all cephalopod taxa)

for at least one of the two outgroups. Additionally, 70% (371/528) ofthe comparisons
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82
GASTROPODA

100 Dialula

100

Gibbula

lIyanassa

Arctica

Phaxas
Helicoradomenia

Solemya

Argopecten

Placopecten

Geukensia

Crassostrea
Núculana

BIVALVIA

NEOMENIOMORPHA

BIVALVIA

91

100 Yoldia

Chaetopleura

Ischnochiton

Cryptoplax

99 Leptochiton

Cerebratulus

Terebratalia

0.05 substitutions/site

POL YPLACOPHORA

Figure 4: ME tree of the combined LSU+SSU dataset, including all seven cephalopods,
calculated using LogDet-Paralinear distances. Bootstrap values from 1000 replicates
are shown for nodes with support values of -(50%.

34



C
ep

ha
lo

po
da

I 
, S

c"
ph

,
I

B
iv

al
vi

a
I

G
as

tr
op

od
a

I
A

pl
ac

.
Pp

i
la

c.

,~

I

,~ c
!l

.
£

c
..

.
I!

,~
~

..
"

ê
~

~
.~

l
~

£
.!

§
~

~
.~

1

"
~

~
~

~
e

..
~

I!
:¡

~
:g

~
.!

..
t

l
'*

~
c

c
..

.!
~

§
~

~
0

.!
~

i;
~

~

i
g

.!
"

.
.!

0
)2

£
~

0
'S

t§
~

Š
E

"
Q

-§
~

,S
..

~
0

c
c

gi
E

c
~

"
1l

.!
~

~
l

'"
E

c
~

..
"

~
c

-e
..

I!
:f

~
c

..
I!

"
..

g
,~

o!
..

..
~

..
t

0
!:

~
it

c5
:l

~
8

8
'"

O
J

(!
.-

'"
ci

'"
'"

()
(!

õ:
'"

c:
(!

è
.-

()
.!

A
rb

ol
io

ps
is

(
0
 
B
e
n
t
h
o
c
t
o
p
u
s

&
.
 
G
r
a
n
e
f
e
d
o
n
e

0 -æ
 
H
i
s
t
i
o
t
e
u
f
h
i
5

.c g
.
 
L
o
l
i
g
o

(
)
 
N
a
u
f
i
u
s

V
am

pv
ro

te
ut

hi
5

~
 
I
A
n
l
i
l
i
s

e
n
 
D
e
n
f
a
l
i
u
m

A
rc

tic
a

i.!
ij

°

A
rg

op
ec

te
n

I 0
.0

0 
,J

O
 0

.0
 0

,0
0 

00
0 

0,
00

 .J
 I

C
ra

ss
os

tr
ea

0
,
0
0
 
0
,
0
0
 
0
,
0
0
 
0
0
0
 
0
.
0
0
 
0
,
0
0
 
0
.
U
4

I
I
 
G
o
u
k
e
n
s
i
.

00
0 

0,
00

 0
.0

0 
00

0 
0,

00
 0

,0
0 

0,
00

~
 
N
u
c
u
l
a
n
a

0
.
0
0
 
0
,
0
0
 
0
.
0
0
 
0
.
0
0
 
0
,
0
0
 
0
,
0
0
 
°

ã
i
 
P
h
a
x
a
s

0
.
0
0
 
0
,
0
0
 
0
.
0
0
 
0
,
0
0
 
0
,
0
0
 
0
,
0
0
 
.
0
.
0
0

I
I P

la
co

pe
cl

en

0.
00

0.
00

00
o 

O
C

0"
0

v. V
i

So
le

m
ya

0.
00

0,
00

0,
00

Y
ol

di
s

lip

C

A
ri

on

B
oo

ne
a

o
 
0
0
 
0
,
0
0
 
0
.
0
0

0"
0

ci
 r

:O
0,

26

D
er

oc
er

as
I: 

0.
00

 0
,0

0 
0,

00
O
.
X
I
 
0
_
'
0

0
,
0
0
 
0
,
0
0
 
0
,
3
2

0,
26

0,
10

O
,O

U

i
 
I
O
i
a
u
l
u
l
.

I
?
 
0
0
 
0
.
0
0

0
.
0
0
 
0
.
0
0

0
,
0
0
 
0
,
0
0

0,
32

L
.
.
!
Ô
 
,
i
j
H
~it

O
r.

~
 
G
i
b
b
u
f
a

0,
00

0.
00

1
,
0
0
 
O
.
v
O

'J
iJ

17

"
,
I
t
'
~
'
;
~
~
~
'
i
"
 
0

c
3
 
H
a
m
i
n
o
e
a

..0
0 

0.
0 

O
M

 0
,0

0 
0,

00
 0

,0
0

0,
52

ill
llè

m
"ó

10
l1

 0
,4

4
0,

17

fl
ya

na
ss

a
° 

'
0
,
0
0
 
0
,
:
_

JO
_
I
.
 
°

L
ep

ol
od

ri
lu

s
i 0

,0
0

0
.
0
0
 
0
.
0
0
 
0
0
0

0,
(

"
00

0
N

or
do

fi
s

a
.
 
C
h
a
e
t
o
d
e
n
n
a

'õ
0
:
 
H
e
l
i
c
o
r
a
d
o
m
e
n
i
a

tÕ

u
 
C
h
a
e
t
o
p
l
e
u
r
a

tr
i

0,
00

~
 
C
r
y
p
t
o
p
l
a
x

0
,
0
0
 
0
,
0
0

0.
00

-
5
 
I
s
c
h
n
o
c
h
i
t
o
n

0
.
0
0
 
0
,
0
0

0.
00

),
00

 0
.0

0'
 0

,0
0

03
a.

',0
0

0"
0

0,
00

00
0,

00
),

00
L

ep
l

-
Fi

gu
re

 5
: R

el
at

iv
e 

ra
te

s 
fo

r 
pa

ir
w

is
e 

co
m

pa
ri

so
ns

 o
f 

co
m

bi
ne

d 
L

SD
 +

 S
SU

 s
eq

ue
nc

es
, u

si
ng

 T
er

eb
ra

ta
lia

 a
s 

th
e

ou
tg

ro
up

.
N

um
be

r 
in

 e
ac

h 
ce

ll 
is

 th
e 

p-
va

lu
e 

fo
r 

a 
gi

ve
n 

co
m

pa
ri

so
n.

Sh
ad

ed
 c

el
ls

 d
en

ot
e 

ta
xo

n 
pa

ir
s 

w
ith

 a
si

gn
if

ic
an

t d
if

fe
re

nc
e 

in
 s

ub
st

itu
tio

n 
ra

te
s 

(P
 ~

 0
.0

5)
.



showed significant variation for both outgroups. As an example of the results, Figure 5

shows the relative rat~s test result when the brachiopod, Terebratalia, was used as

outgroup. Clearly, rate variation across taxa is a serious concern for these data. However,

exclusion of all the taxa that showed significantly elevated rates of nucleotide substitution

would eliminate representation from several mollusk clades (e.g. cephalopods,

chaetoderms, and scaphopods), rendering the dataset useless for trying to gain a deeper

understanding about mollusk phylogeny.

Phylogenetic Reconstruction

The reconstructed topologies for the SSU dataset alone are shown in Figues 6 and 7,

the LSU dataset alone in Figures 8 and 9, and the LSU + SSU dataset in Figures 10 and

II. For each dataset, MP (A) and ML (B) are presented with the parameter and search

details in the figure legends. Because available evidence suggests the phylogenetic signal

in the SSU alone is limited for mollusks (e.g., Winepenninckx et aI., 1996; Steiner and

Hammer, 2000), and in an effort to maximize the amount of available data, the discussion

herein wil emphasize the LSU + SSU data.

Several features are immediately obvious on inspection of the resultant trees: internal

branch-lengths are short, bootstrap support tends to be higher near the tips of the tree, the

exact topology is dependent upon the reconstruction method, and variation in nucleotide

substitution rates is notable. Despite these pitfalls, the data still represent the most

comprehensive molecular perspective of mollusk phylogeny to date and provide insight

on several long-standing hypotheses about molluscan evolution.

Consistent with expectations, many of the traditionally recognized molluscan

"classes" were found to be monophyletic in the best trees recovered under all or most
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reconstruction conditions (e.g. Gastropoda, Cephalopods, Polyplacophora, and

Scaphopods; admittedly the taxon sampliIlg for some of these groups is limited). The

representatives of the Cephalopoda and Scaphopoda were found to cluster together in all

analyses, although this clade often included Chaetoderma branching with the

Cephalopoda (Figures 6, 7, 10, and 11). The Aculifera , Conchifera, and Bivalvia were

not recovered as monophyletic clades under any analysis. The Polyplacophora usually

clustered with bivalves (e.g. Figures 8-11) contrary to both the Aculifera and Conchifera

hypotheses. In the case of the Bivalvia, Arctica, and Phaxas consistently branched closest

to one another but separate from the other bivalves. Interestingly, Arctica and Phaxas

also have higher rates of nucleotide substitution than other bivalves.

To assess the impact of the relatively quickly evolving cephalopod sequences, ML

analysis of the LSU + SSU dataset was conducted with Nautilus and Histioteuthis

excluded. Branching order among the Polyplacophora + Bivalvia + Gastropoda was not

affected, however representatives of the Scaphopoda, Neomeniomorpha, and

Chaetodermomorpha branch most closely with outgroup taxa (not shown). Exclusion of

outgroup taxa from the LSU + SSU dataset produced similar topologies, with the
~.

exception that Helicoradomenia branches with the Polyplacophora (not shown).
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100 Antíls

I SCAPHOPODA59 Dentalium

Chaetoderma I CHAETODERMOMORPHA
Nautilus

I CEPHALOPODAHistioteuthis

100 Arctica

Phaxas BIVALVIA

Crassostrea
Arion

81
Deroceras
Boonea

84
Haminoea

69 Dialula GASTROPODA

100 Gibbula
55

I/yanassa

100 Lepetodrilus

Nordotis

Argopecten

Placopecten
Geukensia
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Nuculana BIVALVIA

Yoldia
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Chaetopleura
100 Cryptoplax

Leptochiton POL YPLACOPHORA

Ischnochiton

Helicoradomenia I NEOMENIOMORPHA
Cerebratulus
Terebratalia
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Hypothesis testing

Even when internal branch lengths are short and bootstrap support for nodes is low,

sufficient phylogenetic signal may stil exist in the dataset to allow competing hypotheses

to be evaluated. To this end, the Shimodaira-Hasegawa (SH) test was used to assess

support for alternative hypotheses of molluscan evolution. SH tests did not reject any

alternative a priori hypotheses regarding the basal radiation of the Mollusca (Table 5).

Within the Conchifera, the hypothesis of the Diasoma (Bivalvia + Scaphopoda)

(Runnegar and Pojeta, 1974) is rejected by the LSU data. The hypothesis of the Diasoma

and Cyrtosoma (Gastropoda + Cephalopoda) as sister groups is also rejected by analyses

of both the LSU and LSU + SSU datasets. The optimal LSU tree also differs

significantly from one where Bivalvia branches basally among the Conchifera, with

Scaphopoda more closely related to the Cyrtosoma. The LSU + SSU ML tree also

differed significantly from a tree constrained to fit the tradition division of the Conchifera

into Diasoma and Cyrosoma clades. Trees constrained such that the Bivalvia formed a

monophyletic clade did not differ significantly from unconstrained results for the three

datasets (Table 5).

The SH test was used to evaluate consistency between trees recovered for the three

SSU, LSU, and LSU + SSU datasets under ML analyses. Likelihood scores for the LSD

and SSU ML trees differed significantly, when tested under the respective datasets and

associated models (Table 5). However, LSU + SSU likelihood scores did not differ

significantly from those of either the SSU or LSU ML trees.
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Table "5: Shimodaira-lIase~awa test of support for alternative a priori hypotheses, P values
SSU LSU LSU+SSU

Molluscan relationships:

Molluscan monophyly 1.000 1.000 1.000

Basal molluscan relationships:

Aculifera (Aplacophora + Polyplacophora) 0.107 0.112 0.190

Testaria (Chaetodermomorpha basal) 0.088 0.090 0.180

Testaria (Neomeniomorpha basal) 0.072 0.069 0.151

Conchiferan relationships

Bivalve monophyly 0.254 0.251 0.366

Diasoma (Bivalvia + Scaphopoda) 0.084 0.021 * 0.109

(Bivalvia + Scaphopoda) + (Gastropoda + Cephalopoda) 0.090 0.009* 0.047*

(((Gastopoda + Cephalopoda) + Scaphopoda) + Bivalvia) 0.107 0.029* 0.096

(((Scaphopoda+ Cephalopoda) + Gastropoda) + Bivalvia) 0.108 0.073 0.188

ML unconstrained analyses

SSU ML tree 1.000 0.000* 0.068

LSD ML tree 0.000* 1.000 0.224

LSU + SSU ML tree 0.291 0.076 1.000

* P -( 0.05 - Hypotheses in bold are rejected under the given dataset.
Note. - Analyses carred out using the dataset listed at the top of each column, using the appropriate
likelihood model as calculated with Modeltest.
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Discussion

The LSU + SSU data provid~d high bootstrap support for some relationships within

the major molluscan clades, but showed limited ability to confidently recover

relationships between these clades. Recent studies employing LSU + SSU datasets to

investigate metazoan phylogenetics,(Medina et aI., 2001, Winchell et aI., 2002; Mallatt

and Winchell, 2002), have suggested the utility of LSU, particularly when combined with

SSU, in elucidating major events in metazoan diversification. In each of these cases

findings from the LSU + SSU data generally agreed with those from SSU alone, with

LSU + SSU providing greater bootstrap support. In the case of the Mollusca however,.

we find the SSU trees to be significantly different from the LSU and LSU + SSU trees

(Table 5).

In assessing relationships among the major molluscan groups, we observed a high

level of variability in the resultant topologies. Variability in branching order among the

major molluscan groups may be a function of I) high levels of rate heterogeneity between

lineages represented in the dataset, and/or 2) a rapid radiation of the major molluscan

groups. A majority of the pairise relationships between LSU + SSU sequences showed

significant rate differences regardless of outgroup choice. For example, within the

Bivalia, Arctica and Phaxas display unstable placement in the trees and have substitution

rates significantly different from those of other bivalves sampled. Such rate

heterogeneity has previously been found for SSU sequences from bivalves (Steiner and

Müller, 1996; Steiner and Hammer, 2000) and is suggested to explain problems

recovering the monophyly of the Bivalvia. Our findings show significant rate variation

across the major molluscan lineages, as well within the recognized classes. The potential
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for rate heterogeneity between lineages to produce artifacts is well known, particularly

the case bflong-branoh attraction (Felsenstein, 1978).

Lack of the resolution in the relationships between the major lineages ofthe Mollusca

may also be interpreted as evidence of a rapid radiation. Most of the major clades in the

Mollusca first appear in the fossil record during the Cambrian (Runegar and Pojeta,

1985), which has been viewed as a period of diversification and cladogenesis thoughout

the Metazoa (Valentine, 1994). Under such a scenario the amount of change

accumulated in rRNA gene sequences may have been insufficient to allow reliable

reconstruction of the radiation and/or changes may have accumulated mainly at rapidly

evolving sites in the gene and been subsequently masked by additional substitutions.

Rate heterogeneity may be a general characteristic of molluscan genomic evolution,

rather than a phenomenon specific to the rRNA genes sequenced here. Studies of

mitochondral gene order show numerous transpositions and inversions of protein coding

and tRNA genes between bivalves, gastropods, and cephalopods (Wilding et aI., 1999;

Kurabayashi and Ueshima, 2000; Tomita et aI., 2002). Within mollusks, and within some

clades of mollusks, such as gastropods (Kurabayashi and Ueshima, 2000), greater

variation in mitochondrial gene rearrangements has been observed than between the

polyplacophoran Katharina tunicata and the brachiopod Terebratulina retusa

(Stechmann and Schlegel, 1999). In some cases these rearangements appear to have

occurred between closely related species over relatively short time scales (Rawlings et

aI., 2001). Rate heterogeneity in gene sequence evolution wil need to be a careful

consideration for future studies of molecular phylogenetics within the Mollusca.
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Despite variability between reconstructions, several relationships between the major

lineages of the Mollusca were consi~tently found in the analyses. A close relationship

between the Scaphopoda and Cephalopoda was recovered in nearly all reconstructions,

with likelihood scores under the LSU and LSU + SSU datasets being significantly better

than those for placing the Diasoma, grouping the Bivalvia + Scaphopoda, as sister group

to the Cyrtosoma, containing Gastropoda and Cephalopoda. These findings suggest a

reassessment of the view that scaphopods and bivalves are closely related to one another,

as in the Diasoma hypothesis (Runnegar and Pojeta, 1974). Although these results may

be questioned because of the high substitution rates within the cephalopod sequences

sampled, they are supported by recent analyses of molluscan morphological characters.

Waller (1998) has suggested the Bivalvia diverged prior to the common ancestor of the

Gastropoda, Scaphopoda, and Cephalopoda, with scaphopods and cephalopods being

most closely related to one another. Alternatively, cladistic analysis by Haszprunar

(2000) also support the monophyly of Gastropoda + Scaphopoda + Cephalopoda, with

the scaphopods as sistergroup to the Gastropoda + Cephalopoda.

The polyplacophorans and aplacophorans are widely viewed as being the most

basal molluscan lineages, although the relationship between these groups has been

variously interpreted (Salvini-Plawen, 1972; 1980; Salvini-Plawen and Steiner, 1996;

Scheltema, 1993). In the results presented here, a basal position for the Polyplacophora

was recovered only under MP analyses of the SSU and LSU datasets. In ML and MP

analyses of the LSU+SSU dataset, and ML analysis of the LSU dataset, reconstructions

placed the polyplacophorans close to bivalves. While likelihood scores for ML trees did

not differ significantly from those of trees where the Polyplacophora branches basally to
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the Conchifera, the results presented here bear fuher investigation. Corroboration of

this relationship wíth other molecular markers would require a reinterpretation ~f

morphological evolution in the Mollusca (e.g. the homology of sclerites in

polyplacophorans and aplacophorans). The close relationship recovered for LSU

sequences of Helicoradomenia and Chaetoderma suggests the monophyly of

Aplacophora, though this rinding is not recovered with the SSU or LSU + SSU data. The

branching of Chaetoderma with scaphopods and cephalopods under analyses of the SSU

and SSU + LSU datasets deserves further scrutiny given the accelerated rates of evolution

in these lineages. Aplacophorans have previously been suggested to be secondarily

simplified through a process of pro genesis (Scheltema, 1993). Yochelson (1978)

likewise suggested aplacophorans to be derived, rather than direct descendents of

primitive molluscs.

This study represents the most comprehensive molecular sampling of the Mollusca to

date, including taxa from all the major molluscan lineages except the monoplacophorans.

Given the short length of deep internal and the instability of nodes connecting the major

lineages, it is expected that additional taxon sampling of ribosomal genes wil provided

limited additional resolution. Investigations of protein coding genes and genomic

organization may provide valuable future directions improving our understanding of

molluscan relationships.
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Chapter 3

Assessing Lophotrochozoan phylogeny with combined LSU and SSU

ribosomal RNA gene sequences
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Abstract

The clade Lophotrochozoa, which includes mollusks, annelids, brachiopods,

flatworms and their allies, encompasses the greatest body plan diversity of the three

major bilaterian lineages. Lophotrochozoan interphyletic relationships are not well

understood in part because analyses on the topic have been limited to morphology and/or

small ribosomal subunit (SSU) data. To further elucidate the clade's phylogenetic

history, we have analyzed DNA sequences ofthe large-subunit ribosomal RNA (LSU)

gene from a diversity of lophotrochozoans. Unlike SSU data alone, the LSU and

combined LSU + SSU datasets recover the monophyly of most recognized

lophotrochozoan phyla, a prerequisite of evaluating interphyletic relationships. The data

show Bryozoa diverged prior to the diversification of other lophotrochozoans, suggesting

a crytic early evolution of the lineage leading to bryozoans. Lophophorata, an exclusive

Bryozoa/rachiopoda/horonida clade, is significantly rejected as is a

Bryozoa/Entoprocta clade. Contrary to previous reports, Platyzoa (including

platyhelminthes, rotifers, and acanthocephalans) appears to be derived within

lophotrochoazoans rather than a sister group to the Lophotrochozoa. In the LSU and LSU

+ SSU data, entoprocts and cycliophorans form a clade sister to Platyzoa. The

monophyly of taxa possessing "trochophore" larvae was not recovered.
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Introduction

The Lophotrochozoa encompasses the greatest body-plan diversity of the three major

Bilaterian clades, however, relationships within the clade are poorly resolved hindering

our understanding of metazoan evolution. The clade, initially identified with small

nuclear ribosomal subunit (SSU) sequences (Halanych et aI., 1995), comprises all

descendents of the common ancestor of the lophophorates (Brachiopoda, Phoronida and

Bryozoa), mollusks and annelids. Subsequent studies (e.g., Mackey et aI., 1996;

Balavoine, 1997; De Rosa et aI., 1999; Mallatt and Winchell, 2002; Peterson and

Eemisse, 2001) have supported the clade and included additional protostomes (e.g.,

platyhelminthes, sipunculans, nemerteans, and entoprocts). The present study aimed to

more thoroughly resolve lophotrochozoan phylogeny providing a comparative

framework.

Previous studies of lophotrochozoan relationships have relied heavily on SSU data,

morphological cladistic analyses, or a combination of the two (e.g., Eemisse, 1997;

Zrzavry et aI., 1998; Giribet et aI., 2000). Unfortnately, SSU data do not even cluster

taxa into well-reoognized monophyletic unit!; (e.g., Mollusca, Nemertea, Brachiopoda).

Utilizing morphological characters to recover relationships between phyla is inherently

problematic. Organisms were separated into distinct "phyla" primarily because features

grouping organisms together were lacking. More importantly, choice and definition of

morphological characters that are applicable across phyla can be subjective (Jenner,

2001). For example, both spiral cleavage pattern and trochophore larvae are stil used as

important phylogenetic characters, yet they have subjective definitions that group
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different taxa. Nonetheless, some p~ogress has been made in understanding

lophotrochozoan relationships.

Herein, we build on previous data by examining combined SSU and large nuclear

ribosomal subunit (LSD) data to address three hypothesized lophotrochozoan taxa that

shape our overall understanding of the group's evolution: Lophophorata, Platyzoa, and

Trochozoa. Hyman (1959) grouped the bryozoans, brachiopods, and phoronids together

as the "Lophophorata" based on inferred homology of the cilated feeding structure.

Although the monophyly of this group has not been demonstrated and evidence suggests

that not all "lophophores" are homologous (Halanych, 1996; Nielsen, 2001), the

"Lophophorata" has been perpetuated in invertebrate textbooks and is commonly

accepted. Molecular sequences support protostome affinities (Field et aI., 1988;

Halanych et aI., 1995; Schtemann and Schlegel, 1998; de Rosa et aI., 1999), but the exact

placement of Bryozoa (a.k.a., Ectoprocta) has been contentious. To date, molecular

analyses of bryozoan affinities have relied upon SSU sequences, which do not recover

bryozoan monophyly and place them as basal members of the Lophotrochozoa (e.g.,

Halanych et aI., 1995; Giribet et aI., 2000; Peterson and Eemisse, 20OJ). Nielsen (1985)

has suggested bryozoans to be most closely related to entoprocts, but this has not been

evidenced by molecular data.

Platyzoa was originally diagnosed as cilated non-segmented acoelomates or

pseudocoelomates lacking a vascular system (i.e., Platyhelminthes, Rotifera,

Acanthocephala, Gastrotricha, and Ganthostomulida, Cavalier-Smith, 1998). Although

traditionally viewed as basal lineages within Bilateria, interpretations of platyhelminth
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and rotifer cleveage as spiral or "modified spiral" suggest an evolutionary relationship

with spiralian lophotrochozoans such as mollusks, annelids, echiurans, sipunculans, and

entoprocts (Boyer et al1998; Gilbert 1989). Recent analyses of SSU sequences and

combined SSU + morphological datasets have suggested Platyzoa represents a sister

clade to the Lophotrochozoa (Girbet et aI., 2000), or a grade which diversified basal to

the last common ancestor of the Lophotrochozoa (Peterson and Eemisse, 2001). Our

understanding ofPlatyzoa has been altered by recent analyses that place the acoelomorph

playheIminthes outside Platyzoa at the base of Bilateria (Ruiz- Trilo et aI., 2002).

Although Cycliophora were initially hypothesized to have evolutionary affinities to the

Entoprocta (Funch and Krstensen, 1995; 1997), SSU analyses (Winnepenninckx et aI.,

1998) suggest a close relationship with the Syndermata (acanthocephalans and rotifers,

Ahrlichs, 1995; Garey et aI., 1996). Lastly, the hypothesized grouping Nemertea and

Platyhelminthes (a.k.a. Parenchyma; Nielsen, 2001), based up simplicity of body

organization, is of interest with respect to the Platyzoa concept.

The term "Trochozoa" refers to taxa that have a certain tye of ciliated larvae, a

trochophore. The term was originally applied specifically to annelids (Hatschek, 1878),

but it has been loosely applied to several other protostome lineages causing confusion in

the literature. Recognizing this problem, Peterson and Eemisse (2001) use several

different terms to define nested clades with trochophore or trochophore-like larvae. The

Neotrochozoa (i.e., annelids including echiurids, mollusks, and sipunculans) is the most

restrictive clade recognized, whereas the Eutrochozoa (Nemertea & Neotrochozoa) and

Trochozoa (Entoprocta & Eutrochozoa) are more inclusive. Whether these form natural
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(i.e., monophyletic) units, influences our understanding of 1) the early history of larval

forms and 2) the evolutionary plasticity of characters considered important to phylogeny

(e.g., metatroch and apical tuft).

Deciphering the relationships within the Lophotrochozoa requires critical evaluation

of phylogenetic hypotheses such as the Lophophorata, Platyzoa, and Trochozoa, among

others. However, recovering the monophyly of individual lophotrochozoan phyla is

prerequisite to evaluating interphyletic relationships - on this point SSU data have failed.

Previous simulation study (Halanych, 1998) and recent phylogenetic analyses (Medina et

aI., 2001; Mallatt and Winchell, 2002; Winchell et aI., 2002) suggested that combined

LSU + SSU data offer more resolution than SSU data alone. To this end, we examined

approximately 5Kb of nuclear rRNA gene sequence for 36 lophotrochozoan taxa.

Compared to SSU data, both LSU + SSU data and LSU data alone more consistently

recover recognized phyla as monophyletic, allowing us to begin elucidating interphyetic

relationships. The Lophophorata is significantly rejected, but data are more equivocal on

"Trochozoa" hypotheses. The monophyly of the Platyzoa is not rejected, but LSU + SSU

data suggest this clade is derived within the Lophotrochozoa rather than a basal sister,,~

lineage. This placement has profound repercussions for our interpretation of metazoan

morphological evolution.
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Materials and Methods

Taxon sampling

Thirt-six taxa were chosen to provide broad representation of extant

lophotrochozoan lineages (Table 6). Two deuterostomes and three ecdysozoans with low

rates of nucleotide substitution were chosen as outgroups (de Rosa et aI., 1999; Giribet et

aI., 2000; Peterson and Eernisse 2001; Mallatt and Winchell, 2002). LSU data were

collected from 20 taxa. SSU data were also collected for taxa not in GenBank.

Data Collection

Genomic DNA was isolated using the DNeasy Tissue Kit (Qiagen). Primer

sequences utilized for PCR and sequencing are provided in Chapter 2. Both genes were

amplified using a long PCR protocol. PCR reactions contained 15/l1 3.3x rTth buffer,

2.5/l1 10 /lM primer, S/LL 2mM dNTPS, 0.4 /ll rTth (PE Applied Biosystems), l/ll Vent

polymerase (New England BioLabs) (diluted 1:100 in a buffer composed of 50%

glycerol, 20mM HEPES, 10mM KCL, ImM DTT, 0.1mM NaiEDTA, 0.0025% Tween-

20, and 0.0025% NP-40), with genomic DNA and water to a final volume of 45/l1.

Following a 5 minute denatu~tion, 5/l1 of25mM Mg(OAc)i was added to each reaction.

PCR involved 30 cycles of denaturation at 94°C for 30 sec, annealing at 45-55°C for I

min, and extension at 65°C for 12 min LSU or 8 min for SSU. A final extension was

carred out at noc for 10 min. PCR products were cleaned with QIAquick PCR

Purification Kit (Qiagen) and incubated 10 minutes at 70°C with Taq polymerase

(Promega) and O.4mM dATP to create adenine overhangs. Fragments were cleaned a

second time and cloned using the pGEM-T Vector System (Promega).
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Sequencing used BigDye Terminator v2.0 Sequencing Reaction chemistr (Applied

Biosystems) on an ABI 377 automated sequencer (Applied Biosystems). For each taxon,

each gene was sequenced in both directions.

Phylogenetic analyses

Sequences were aligned by the profie alignent function of ClustalW (Thompson et

aI., 1994), using existing alignents from the Ribosomal Database Project II (Maidak et

aI., 2001) as guides. Alignents were checked manually with MacClade 4 (Maddison

and Maddison, 2000), and regions of questionable alignent were excluded.

To better understand relative contributions of each rDNA gene, analyses were carred

out on SSU data alone, LSU data alone, and combined LSU + SSU data. Due to the need

for brevity, we mainly focus on the combined analyses. Maximum likelihood (ML)

analyses were conducted in PAUP* version 4.0 blO (Swofford, 2002), with appropriate

models determined by Modeltest (Posada and Crandall, 1998). Details of phylogenetic

reconstrctions are given in the figure legends. Support for previously published

lophotrochozoan hypotheses was evaluated using the Shimodaira-Hasegawa (1999) test

implemented in PAUP*4.0blO.
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Table 6. Species and GenBank accession numbers

Species LSU SSU
Mollusca

Arion silvaticus A Y145392 A YL45365
Chaetopluera aplicata A YL45398 A Y145370
Ilyanassa obsoleta AY145511 AY145379
Leptochiton acellus AY145414 AYl45382
Nucalana pernula AYl45419 A Y145385
PIa co pecten magellanicus AF342798 X53899

N emertea
Amphiporus sp. AF342786 AFl19077
Cerebratulus lacteus A Y145396 AY145368
Oerstedia dorsalis A Y210465* AY210448*
Tubulanus annulatus A Y210473* AY210452*

Sipuncula
Apionsoma misaldanum A Y210454* A Y21 0440*
Phascolion strombi AY210468* A Y210449*
Phascolopsis gouldžž AF342795 AF342796

Bryozoa
Alcyonidium diaphanum AY21045* 

Alcyonidium gelatinosum X91403
Bugula turrita AY210457* AY210443*
Crisia sp. A Y210458* AY210443*

Entoprocta
Barentsia gracžlis A Y210456* AY2 I 0442* 

Brachiopoda
Glottidia pyramidata A Y21 0459* U12647
Laqueus californianus A Y21 0460* U08323
Neocrania anomola A Y210463* U08328
Terebratalia transversa ".AF342802 AF025945

Phoronida
Phoronis vanvouverensis AF342797 A Y21 0450*

Echiura
A rhynchite pugettensis AY210455* AY21044 1 

* 

Urechis caupo AF342804 AF342805
Anelida
Eisenia fetida AF212166 X79872
Nereis succžnea A Y210464* A Y2 I 0447* 

Proceraea cornuta AF212165 AF212179
Rifia pachyptila AY210470* AFl68745

Platyhelminthes
Dugesia tigrina U78718 AF013157
Sytlochus zebra AF342800 AF342801
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Acanthocephala
Oligacanthorhynchus tortuosa A Y21 0466* AF0648 1 7 

Oncicola sp. AY210467* AF0648 1 8 

Rotifera
Phi/odona roseola A Y2 10469* AF154567
Sinantherina socialis A Y2L 0471 * AY210451*

Cycliophora
Symbion sp. (from Homarus AY210472*

americanus)
Symbion pandora Y14811

Myzostomida
Myzostoma polycyclus A Y210462* A Y210446*

Ecdysozoa
Limulus polyphemus AF212167 U91490
Misumenops asperatus A Y210461 * A Y210445*

Halicryptus spinulosus AF342789 AF342790
Deuterostomia

Antedon serrata D14357
Florometra serratissima AF212168

. ,;.

Ptychodera llava AF278681 AF278681 
','

* New sequences
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Results

The number of aligned, unambiguously aligned, variable, and informative characters

for each dataset are given in Table 7. ML trees for the LSD + SSU, LSU and SSU

datasets are presented in Figures 12-14, respectively. Phylogenetic reconstructions from

the LSU and LSU + SSU datasets recover the monophyly of the nearly all

lophotrochozoan phyla. Although the bootstrap support for these nodes is weak, this

result is a substantial improvement over the situation with SSU data alone (compare

Figures 12 and 14). This boost in signal is clearly due to the LSU data, which recovered a

tree (Figure 13) much more consistent with our current understanding of animal

relationships than the SSU topology. SSU reconstructions have also been maligned

because of the potential for long-branch attraction (e.g., Maley and Marshall, 1998).

Interestingly, all the long branches clump together in the SSU tree, but not in the LSU or

LSU + SSU tree suggesting that rate effects may be less severe in these datasets. Table

8 gives the results of the Shimodaira-Hasegawa tests for LSU + SSU data, LSU, and SSU

data sets. The most striking result, and consistent with the recovered tree topologies, the

monophyly of the Lophophorata was not suppored in either the LSU or LSU + SSU

datasets (Table 8). In all analyses, Bryozoa consistently fell out basal to other

lophotrochozoans, including brachiopods and phoronids. The resultant non-monophyly of

Brachiopoda in the LSU + SSU analysis bears further investigation. Additionally, the

hypothesis that Bryozoa is sister to Entoprocta was rejected for both the LSU and LSU +

SSU data sets. Neither result appeared to be affected by the presence of Myzostoma

60



within the Bryozoa, as bryozoan monophyly was not significantly rejected under either

data set.

In both the LSU and LSU + SSU analyses a clade was recovered which included the

Entoprocta, Cycliopohora, Platyhelminthes, Syndermata (Rotifera + Acanthocephala),

and Nemertea. Within this clade the Entoprocta + Cycliophora appear as each others

closest relatives and form a sister group to the Platyzoa. Although the nemertean

Tubulanus branches within the Brachiopoda in the LSU tree, the Nemertea are recovered

as monophyletic in the LSD + SSU analysis. An SH test found the LSU + SSU analysis

uniting Platyhelminthes + Syndermata had a likelihood score significantly better than that

of a tree where the Platyhelminthes and Nemertea are sister taxa.

The data are more equivocal about the reality of various "trochozoan" hypotheses.

LSU data place sipunculans as the sister to annelids, which includes echiurds and

siboglinids (a.k.a. pogonophorans). However, the placement of mollusks relative to this

clade stil is not clear.

61



70

: 1 DCL Oligacanthorhynchus I
~ Oncicola

/ Philodina
Sinantherina

Dugesia
Stylochus

93 ",

75

Acanthocephela

Rotifera

Platyhelminthes

;,
Entoprocta

Symbion Cycliophora
Barentsia

58

91

100

Amphiporus
Oerstedia

Cerebratulus
Tubulanus

100 Laqueus
Terebratalia

100 Arhynchite
Urechis

Nereis
Proceraea

Eisenia
Riftia

Crania
10

100

Arion
lIyanassa

Nuculana
Placopecten

Chaetopleura
Leptochiton

Phoronis
Glottidia

100 Phascolopsis

Nemertea

Brachiopoda

Echiura

Annelida

Brachiopoda

Mollusca

Phoronida
Brachiopoda

Sipuncula

Bryozoa

Myzostomida
Bryozoa

Ecdysozoa

Deuterostoma

Figure 9: ML tree for the combined LSU + SSU dataset. 100 hueristic replicates were performed using
the Symmertcal Model (Zhaikikh 1994) with equal base frequencies and estimation of gama
parameter shape distrbution (0 = 0.5750) and proporton of invariant sites (I = 0.3234). ML bootstrap
(100 replicates) values are shown above nodes with values:; 50%

Phascolion
Apionsoma~ ;;

K#

#,

Bugula
Crisia

Myzostomium
Alcyonidium

100 Limulus
Misumenops

Halicryptus
Florometra+Antedon

Ptchodera
0.05 substitutions/site

62



1 ~ Oligacanthorhynchus

~ Oncicola
,~ Philodina
Sinantherina

Dugesia~,
Stylochus

Barentsia
Symbion

Amphiporus
Oerstedia

Cerebratulus
Chaetopleura

Leptochiton
Placopecten

Nuculana
Arion

llyanassa
Tubulanus

Laqueus
Terebratalia

Crania
Glottidia
Phoronis

Arhynchite
Urechis
Eisenia

Nereis
Proceraea

Riftia
100 Phascolopsis

Phascolion
Apionsoma

Limulus
Misomenops

100

78 100
93

94

Halicryptus

~ Bugula
Crisia

Myzostoma~,
Alcyonidium

Florometra
Pfychodera

0.01 substitutions/site

I Acanthocephela

I Rotifera

I Platyhelminthes
I Entoprocta
I Cycliophora

I Nemertea

Mollusca

I Nemertea

Brachiopoda

Phoronida

Echiura

Annelida

I Sipuncula

I Ecdysozoa

I Bryozoa
I Myzostomida
I Bryozoa

I Deuterostoma

Figure 10: ML tree for the LSD dataset. 100 huenslic replicates were penonned using the Traition
Model with equa base frequencies and estimation of gama paraeter shape distnbution (G = 0.5229)
and proporton of invanant sites (I = 0.3228). ML bootstrp (100 replicates) values are shown above
nodes with values:; 50%

63



Arhynchite
Urechis
Barentsia

98 Arion
I/yanassa

Phoronis
Chaetopleura

Leptochiton

100 Laqueus
Terebratalia

Cerebratulus
Nereis

Eisenia
Crania

100 Phascolopsis
Phascolion

Apionsoma

100

Nuculana
Riftia

Placopecten
Gloffidia
100 Amphiporus

Oerstedia
Crisia

Proceraea
" Dugesia

,~ Oligacanthorhynchus
-- Oncicola96 Philodina

Sinantherina
59 Symbion

Myzostoma
Stylochus

Alcyonidium

;.

/ 1001 ..g" Bugula
Tubulanus

Limulus
Misomenops

Halicrptus
99 Ante don

Ptchodera
0.05 substitutions/site

Echiura

Entoprocta

Mollusca

Phoronida

Mollusca

Brachiopoda

Nemertea

Annelida

Brachiopoda

Sipuncula

Mollusca
Annelida
Mollusca
Brachiopoda

Nemertea

Bryozoa
Annelida
Platyhelminthes

Acanthocephala

Rotifera

Cycliophora
Myzostomida

Platyhelminthes

Bryozoa

Nemertea

Ecdysozoa

Deuterostoma

Figure 11: ML tree for the SSU datasel. 100 hueristic replicates were performed wing the Tamura-Nei

(Tamura and Nei 1993) model with equal base frequencies and estimation of gamma parameter shape
distrbution (G = 0.6199) and proporton of invariant sites (I = 0.3112). ML bootstrp (100 replicates)
values are shown above nodes with values / 50%.

64



Table 7: Total, unambigouosly aligned, variable and parsimony
informative characters

Total Unambiguous Variable Informative

SSU 2048 1508 783 499

LSU 4611 2370 1183 804

LSU+SSU 6659 3878 1966 1303

Table 8: Shimodaira-Hasegawa test results

SSU LSU LSU +SSU

Lophophorata monophyly 0.128 0.005* 0.041 *

Bryozoa + Entoprocta monophyly 0.173 0.013* 0.017*

Bryozoa monophyly 0.312 0.052 0.275

Platzoa sister group of Trochozoa 0.212 0.059 0.133

Parenchyma monophyly 0.050 0.362 0.011 *

Neotrochozoa monophyly 0.164 0.443 0.269

Eutrochozoa monophyly 0.056 0.220 0.165

Trochozoa monophyly 0.066 0.114 0.269

* P -: 0.05 - Hypotheses in bold are rejected under the given dataset.

Note. - Analyses carred out using the dataset listed at the top of each
column, using the appropriate likelihood model as calculated with
Model test.
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Discussion

The LSU data greatly improve the phylogenetic signal recovered for lophotrochozoan

interphyletic relationships over SSU data alone. LSU sequences recover monophyly of

nearly all recognized phyla sampled, including mollusks and annelids which have

consistently appeared as polyphyletic in studies using SSU alone (e.g. Giribet et aI.,

2000; Eernisse, 1997; Peterson and Eemisse, 2001). This increase in resolution provides

a tool by which we can begin to decipher deep-level relationships within

Lophotrochozoa.

This study provides the most conclusive evidence to date that Lophophorata is not

monophyletic. While the position of the Bryozoa differs between the LSU and LSU +

SSU trees, both reconstrctions place bryozoans basal to other lophotrochozoans.

Alternative hypotheses regarding the origin of the Bryozoa are not supported by ML

reconstrctions and SH tests of the LSU and LSU + SSU datasets. The "Lophophorata"

hypothesis which unites bryozoans with brachiopods and phoronids (Hyman, 1959), is

rejected under SH tests of both the LSU and LSU + SSU datastets. Likewise, grouping

of the Bryozoa and Entoprocta as sister taxa (Nielsen, 2001) is not supported. These

results confirm previous arguments (Halanych, 1996; Nielsen, 1987 - among others) that

the similarities in feeding mechanics, ciliation patterns, and gross morphology in

bryozoans, brachiopods, phoronids, and other tentacular suspension feeders (e.g.

pterobranch hemichordates) are the product of convergent evolution rather than common

ancestry. This recognition renders the term "lophophorates" descriptive of function

rather than history.
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Moreover, given the results herein, Bryozoa diverged by at least the early Cambrian

period. Such an early divergence is at odds with the fossil record, as the Bryozoa have

not been found from before the Ordovician, despite being well preserved in later

sediments (Lehmann and Hilermer, 1983). Apparently, Bryozoa went through an

extended period of crytic evolution, unrecorded in the fossil record. A late evolution of

a calcified skeleton is one possible explanation for this discontinuity between the

molecular data and the fossil record.

Analyses of both the LSU and LSU + SSU datasets supports the monophyly of the

Platyzoa, and places the group well within the Lophotrochozoa. Despite the placement of

the Nemertea near the Platyhelminthes, the rejection of the Parenchyma hypothesis under

the SH test of the LSU + SSU dataset strengthens support for the monophyly of the

Platyzoa. SSU datasets have found the Platyzoa to branch basally to the Lophotrochozoa

(Giribet et aI., 2000; Peterson and Eernisse, 2001) supporting, in a general sense, that

bilaterians evolved from simple to complex. In contrast, LSU and LSU + SSU data

suggest that the morphology ofPlatyzoans represent secondary simplification of body

form. Drawing onTecent studies that show plàtyhelminthes are polyphyletic (with

acoelmorphs as basal bilaterians), we favor that both possibilities ofbilaterian evolution

are correct. However in the specific case of platyzoans, it wil be critical to sample

gnathostomulids and gastrotrichs to test Cavalier-Smith's (1998) ideas. Although a basal

divergence is not rejected by the SH test of the LSU or LSU + SSU trees, the placement

of the Platyzoa as a derived clade within the Lophotrochozoa provides a markedly

different interpretation ofbilaterian evolution which warrants further investigation.
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One putative member of the Platyzoa whose evolutionary affinities are drawn into

question is the cycliophoran Symbion. Analyses of SSU data, including those presented

here, have suggested that cycliophorans are closely related to rotifers and

acanthocephelans. In contrast, the recovery of Cycliophora and Entoprocta as sister taxa

in the LSU and LSU + SSU analyses is consistent with the evolutionary relationship

hypothesized when this enigmatic taxon was first described (Funch and Kristensen, 1995;

1997), as well as with the results of morphological cladistic analysis (Zrzavy et aI., 1998).

The recovered LSD and LSU + SSU topologies suggest that trochozoans represent an

evolutionary grade rather than a distinct clade, although hypotheses supporting the

monophyly oftrochozoan taxa are not rejected under SH tests. If the trochophore larva is

a plesiomorphy of the Lophotrochozoa (excepting the Bryozoa) it appears to have been

lost or highly modified in some descendent lineages, such as phoronids, brachiopods, and

platyzoans. The sister relationship of the Anelida and Sipuncula in the LSU tree

supports the presence of the trochophore in the common ancestor of these two groups. A

close relationship between annelids and sipunculans has also been suggested based upon

similarities in mitochondral gene arangement (Boore and Staton, 2002).

LSU sequence data presented here provide improved resolution of lophotrochozoan

relationships. Unlike SSU data, LSU and LSU + SSU sequences recover the monophyly

of most recognized lophotrochozoan phyla, a prerequisite to evaluating interphyletic

relationships. Several findings have important implications for our understanding of

developmental and morphological evolution. In particular, the finding of a derived

Platyzoa closely related to entoprocts provides support for secondary simplification of the
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gro,!p, perhaps due to a neotonic origin. Increased attention on the evolutionary origin of

the Bryozoa wil also be of particular interest given their possible early divergence during

protostome diversification.
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Chapter 4

A Survey of Hox genes in the bryozoan Bugula turrita
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Abstract

The present study surveys the complement of Hox genes present in the genome of the

bryozoan Bugula turrita. Although the clade Lophotrochozoa was defined as including

bryozoans, recent studies have not reliably recovered the position of the Bryozoa among

metazoans. Hox genes sequences have the potential to provide an additional set of

evidence for the phylogenetic position of bryozoans. Hox genes appear to have

undergone independent duplication events in each of the three major bilaterian clades:

lophotrochozoans, ecdysozoans, and deuterosotmes. Two Hox gene paralogs, Postl and

Post2, appear to have arisen subsequent to the divergence of 
the Lophotrochozoa and can

therefore serve as a synapomorphy for members of the clade. Six Hox genes were

identified from Bugula turrita, including an ortholog of Post2. The identification of a

bryozoan Post2 ortholog provides novel evidence for a close evolutionary relationships

between bryozoans and other lophotrochozoans.
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Introduction

The Bryozoa remain among the most enigmatic of metazoan phyla with respect to

their phylogenetic position (Girbet 2002). Bryozoans have traditionally been viewed as

closely related to brachiopods and phoronids. Together these three groups are referred to

as lophophorates, based upon the inferred homology of their ciliated tentacular feeding

structures (Hyman, 1959; Wilmer, 1990). Inference of the phylogenetic position of

lophophorates based upon morphological and embryological characters has been

complicated by the fact that they display a mosaic of archetyal protostome and

deuterostome conditions. Differing interpretations of developmental and morphological

traits has lead to the assignent oflophophorates as protostomes (Gutmann et aI., 1978),

deuterostomes (Zimmer, 1973), intermediates between the two groups (Salvini-Plawen,

1982; Seiwing, 1976), or an independent radiation (Wilmer, 1990).

However, detailed structual and functional analyses of bryozoan tentacles suggest

that they are not homologous to the lophophores of phoronids and brachiopods (Nielsen

and Riisgard, 1998), as widely believed (e.g. Brusca and Brusca, 1990; Wilmer, 1990;

Knoll and Carroll, 1999). As the lophophore is the primary feature uniting bryozoans

with brachiopods and phoronids, failure to establish the homology of this structure

undermines the validity of the Lophophorata hypothesis (Halanych, 1996; de Rosa et aI.,

2001). Nielsen has suggested that bryozoans may be most closely related to entoprocts,

on the basis of developmental similarities between the two groups (Nielsen, 1971; 2001).

Several recent studies have utilized cladistic methods to reconstruct metazoan

phylogenies from explicit matrices of morphological and developmental character states
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(e.g. ZTzavy et aI., 1998; Peterson and Eemissee, 2001). The placement of bryozoans

within these studies varies based the characters chosen and the way these characters were

chosen (Jenner, 2001). Zrzavy et aI. (1998) coded bryozoans as possessing a lophophore,

and recovered the bryozoans as an outgroup to Phoronida + Brachiopoda +

Deuterostomia. In a recent study, Peterson and Eernissee (2001) did not code bryozoans

as having a lophophore, and found bryozoans to be closely related to spiralian

protostomes such as mollusks and annelids and entoprocts.

With the advent of molecular phylogenetics there arose the potential for an

independent set of characters for analyzing the relationship between bryozoans and other

metazoan phyla. Using small-subunit ribosomal gene (SSU rDNA) sequence, Halanych

et aI., (1995) found, bryozoans, brachiopods and phoronids to be more closely related to

the protostome annelids and mollusks than to deuterostomes. Based upon these results,

the clade Lophotrochozoa was defined as "the last common ancestor of the three

traditional lophophorate taxa, the mollusks, and the annelids, and all of the descendents

of that common ancestor." Halanych et aI., (1995) did not recover lophophorates as

monophyletic, instead finding that the bryozoan sequence branched basally to the other

lophotrochozoans sequenced. Although this study utlilized only a single bryozoan,

analysis of SSU sequnces from additional bryozoan species has also failed to recover

lophophorate monophyly (Giribet et aI., 2001).

Subsequent sampling has suggested that the Lophotrochozoa encompasses a broad

assemblage of invertebrates, such as nemerteans, sipunculans, and entoprocts (e.g.

Mackey et aI., 1996). Platyhelminthes and rotifers may also be members of the clade, or
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closely related sister taxa (Giribet et aI., 2000; Chapter 3). Despite broad sampling of

SSU rDNA sequences from metazoan taxa, relatively few representatives of the Bryozoa

have been sequenced and included in subsequent analysis. Additionally, most bryozoan

SSU rDNA sequences that have been sampled appear to have relatively high substitution

rates. This raises the concern that placement of bryozoan sequences in phylogenetic

reconstructions may be impacted by artifacts such as long-branch attraction (Felsenstein,

1978).

As discussed in Chapter 3, sampling of SSU and large-subunit (LSU) rDNA

sequences from three bryozoans allowed rejection of the two most prominent hypotheses

of bryozoan relationships, uniting bryozoans with brachiopods + phoronids or with

entoprocts. However the placement of bryozoans among bilaterian phyla was variable

depending upon the dataset used and which taxa were included. It would therefore be

advantageous to have additional sequence data to evaluate the relationship between

bryozoans and other metazoans, in particular lophotrochozoans.

Hox genes appear to provide a valuable set of evidence regarding the relationships

between the major clades ofbilaterian metazoans (de Rosa et aI., 1999; Halanych and

Passamaneck, 200 i, Balavoine et aI., 2002). Hox genes are well known for their

organization in a linked cluster along the chromosome, in most bilaterians that have been

investigated. The genes within the cluster arose from serial duplications that created

paralogs (Holland, 1999; Lundin, 1999). Several of these genes appear to have arisen

prior to the divergence of the three major bilaterian clades (Finnert and Martindale,

1998). The anterior class genes labial(lab)l/Hoxl and proboscopedia(pb)/Hox2, Hox3,
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.and the medial class genes Deformed(Dfd)/Hox4 and Sex combs reduced(Scr)/Hox5 all

appear to have direct orthologs present in lophotrochozoans, ecdysozoans and

deuterostomes. In contrast, posterior class genes, and perhaps some medial genes appear

to have undergone independent duplications over the course ofbilaterian diversification.

Identification of paralog groups which are restricted to a clade can therefore serve as a

synapomorphy for that clade (Telford, 2000b).

de Rosa et aI. (1999) identified 5 Hox genes (the medial class genes Lox5, Lox2,

Lox4, and the posterior class genes Postl, and Post2) in brachiopods, annelids and

mollusks which they suggested did not have clear orthologs among Hox genes from

either ecdysozoans or deuterostomes. If these genes are inferred to have arisen

subsequent to the divergence of Lophotrochozoa from Ecysozoa and Deuterostomia, then

they genes would represent synapomorphies for lophotrochozoans. Although some of

these genes may have orthologs among ecdysozoans (Telford 2000a, 2000b), each

appears to have peptide motifs present only among lophotrochozoans.

Identification of lophotochozoan specific Hox genes of Hox gene peptide motifs from

bryozoans would provide strong evidence for a close relatil1nship between bryozoans and

other lophotrochozoans. The current study utilized degenerate primer PCR surveys to

screen for Hox genes in the bryozoan Bugula turrita. Regions flanking the homeodomain

of several genes of interest were also amplified using ligation mediated PCR (Balavoine,

1996). Orthologs of two lophotrochozoan Hox genes, Lox5 and Post2, were identified

from Bugula turrita, supporting the hypothesis of a close relationship between bryozoans
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and other lophotrochozoans. Attempts were also made to establish chromosomal linkage

of Bugula turrita Hox genes by means of Southern blotting.
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Methods _

Genomic DNA

Colonies of Bugula turrita were collected from docks in Eel Pond, Woods Hole,

Massachusetts. Colonies were held in filtered seawater overnight to allow clearance of

gut contents prior to extraction of genomic DNA. Colony fragments were sorted under

light microscopy to avoid contamination by epibionts such as nematodes and caprelld

amphipods. Genomic DNA was extracted using the DNEasy Tissue Kit (QIAGEN),

following manufacturers protocols.

Homeodomain amplifcation

Homeodomains were amplified using the forward primer HoxlF-ELEKEF

(GCTCTAGARYTNGARARGARTT) (Balavoine and Telford, 1995) and the reverse

primer Hox2R- WFQNR (CGGGA TCCCKNCKRTYTYGRAACCA) (Balavoine,

1996). The forward primer PostF RKY-PostF (MGIAARARMGIARCCNTA)

and the reverse primer WFQNRK-HoxR (YTTCATICKICKRTTYTGRACCA)

were used to screen for posterior class genes. Polymerase chain reaction was conducted

using Taq polymerase (Promega) using a "touchdown" approach. peR conditions

involved an initial denatuation (94°C, 2 min) then 30 touchdown amplification cycles

(94°C, 30sec; 55°C (minus 0.5°C/cycle) 45 sec; n°C) followed by a final extension

(nOC, 5 min). PCR products were cloned using pGEM- T Vector System (Promega).

Clones were purified using Qiaprep (QIAGEN) minprep kit and sequenced on an ABI

377 automated sequencer (Applied Biosystems), using Big Dye Terminator Sequencing

Reaction chemistry (Applied Biosystems).
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Identifcation of full homeodomains and flanking regions

Sequences of complete homeodomains and flanking regions were obtained using the

ligation mediated PCR technique (LM-peR), as described by Balavoine (1996). Semi-

nested LM-PCR was conducted using specific primers designed from homeodomain

fragments identified during degenerate screens. Gene specific primers used for semi-

nested LM-PCR are listed in Table 9.

Phylogenetic analysis

Amino acid sequences for Hox gene homeodomains and flanking regions were

aligned by eye using MacClade 4.0 (Maddison and Maddison 2000). Bayesian likelihood

analyses were conducted using MrBayes version 2.0 (Huelsenbeck and Ronquist, 200 i),

with a JTT model of amino acid replacement (Jones et aI., 1992). 1,000,000 replicates

were conducted of four chains. Trees were retained every 100 replicates, and analysis

was conducted with a burnin of 200,000 replicates. Minimum evolution and parsimony

analyses were conducted using PAUP* version 4.0 blO (Swofford 2002). For minimum

evolution analyses distance measure were based upon mean pairwise character

differences. i ,000 replicate heuristic searches were performed. Minimum evolution

bootstrap analysis employed 1,000 replicates, with 10 heuristic search replicates per

bootstrap replicate. Parsimony analysis was conducted with 1,000 replicate heuristic

searches. Parsimony bootstrap analysis employed 1,000 replicates, with 10 heuristic

search replicates per bootstrap replicate. For all minumum evolution and parsimony

analysis the maximum number of rearrangements was limited to 10,000,000 per replicate

due to computational limitations.
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Southern mapping -

Attempts were made to establish chromosomal linkage and gene order of Bugula

turrita Hox genes using Southern hybridization. PCR fragments covering the

homeodomain and flanking regions of Btu-Dfda (1093 nucleotides), Btu-Dfdb ( 750

nucleotides), Btu-Lox5 (566 nucleotides), and Btu-Post2 (1050 nuc1eotides) were used as

template for the production of single-stranded digoxigenin-labeled probes by asymetrc

PCR. Primers used for amplification of PCR fragments and probes are listed in Table 10.

Probes were labeled with digoxigenin (DIG) using the PCR DIG Probe Synthesis Kit

(Roche Diagnostics Corporation). Probe efficacy was tested by hybridization to

membranes with serial dilutions of probe PCR template. Southern hybridization

experients were conducted using 10ug of genomic DNA digested using one of the

following restriction enzymes: Pac I, Pst I, Sph 1. Genomic DNA digests were separated

using pulse field gel electrophoresis. Separated digests were transferred to membranes

and screened using gene specific probes.
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Table 1: Gene specific primers used for semi-nested ligation-mediated peR

Gene Direction Primer name Sequence (5' ;: 3')

BtDfda Foiward BtDfdaFl TAGA TA TTT AACAAGACGGAGA

BtDfda F oiward BtDfdaF2 CGGAGAAGAATAGAAATTGCTCAC

BtDfda Reverse BtDfdaRl GTCTTTCTGAGAGA TCGAGAGTG

BtDfda Reverse BtDfdaR2 A TCGAGAGTGTGAGCAA TTTC

BtDfdb F oiward BtDfdbFl CACTA TAACAGA TA TTTGACTCG

BtDfdb Foiward BtDfdbF2 CGAAGAAGACGT A TCGAA T AGCC

BtDfdb Reverse BtDfdbRl CTG TCT TYC ACT GAG TGT CAG G

BtDfdb Reverse BtDfdbR2 GTGTCAGGGT A TGGGCTA TTTCG

BtLox5 F oiward BtLox5Fl CAGA TA TYTAACAAGACGGCG

BtLox5 Foiward BtLox5F2 GCGTAGAATAGAATTGCTC
BtLox5 Reverse BtLox5Rl GGCGCTCCGTTAACCGAG
BtLox5 Reverse BtLox5R2 ACCGAGAGTA TGAGCAA TTC

BtPost2 F oiward BtPost2Fl T ACACACGCT ACCAACRA TGG

BtPost2 F oiward BtPost2F2 GGAACAGAGTTCA TAACAA TTC
BtPost2 Reverse BtPost2RI CTTTAACTTGCCGTTCGGTCAGTC

BtPost2 Reverse BtPost2R2 GTCTTAGTCTGCAGGAGATTTCCC

Table 2: Gene specific primers used for DIG probe construction

Gene Direction Pnmer name Sequence (5';: 3')

BtDfda Foiward BtDfdaF3* CCTGGGCCACCCCAACT ACTAA TGAAGCAGC

BtDfda Reverse BtDfdaR3 CCAGCACCTAAA TGCACAAGT ACA TTGG

BtDfdb Foiward BtDfdbF3* A TGAAACA TCGA TTGCTT A TTAGGG

BtDfdb Reverse BtDfdbR3 CCACA TAA T A TT ACA TGAAGTAGGACAAC

BtLox5 Foiward BtLox5F3* GAA TTGAA TGTTCTT AGTAA TGTTGCC

BtLox5 Reverse BtLox5R3 CCAGTCAGTTTGGCAA TA TTGTTCTC

BtPost2 Foiward BtPost2F4* CCTGCACA TGT A TTTGACCA TT AG

BtPost2 Reverse BtPost2R3 CCTCCGTGA TGA T AAGGT AAAGCAAC

* Primers used for asymmertic amplification of single-stranded probes
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Results

Identifcation ofBugula Hox genes

Six unique Hox genes were cloned from Bugula turrita. Orthology of isolated genes

to Hox genes in other metazoans was initially determined by comparison of inferred

amino acid sequence ofhomeodomains. Initial assignment of orthology was based upon

identification of peptide residues that appear to be conserved among members of specific

paralog groups (de Rosa et aI., 1999) (Figure 15). Based upon these comparisons, the

Hox genes isolated from Bugula turrita represent members of the proboscepedia (Pb),

Hox3, Deformed (Dfd) (2 copies were identified), Lox5, and Post2 paralog groups.

Bugula turrita Hox genes were designated with the prefix "Btu-", and were named Btu-

pb, Btu-Hox3, Btu-Dfda, Btu-Dfdb, Btu-Lox5, and Btu-Post2 respectively.

Sequence of the complete homeodomain and flanking regions was obtained for Btu-

Dfda, Btu-Dfdb, Btu-Lox5, and Btu-Post2 using ligation mediated PCR (Balavoine,

1996). For Btu-Dfda 752 nucleotides 5' of 
the homeodomain and 160 nucleotides 3' of

the homeodomain were sequenced; for Btu-Dfdb, 74 nucleotides 5'and 489 nucleotides

3'; for Btu-Lox5, 366 nucleotides 5'and 20 nucleotides 3'; for-Btu-Post2, 767 nucleotide8,

5'and 88 nucleotides 3'.
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Figure 15: Alignment ofHox gene homeodomains and flanking regions. Dashes represent identity
with the Droshiphila melanogastet Antp homeodomain alignment shown at the top of the alignment.
Conserved peptide motif LPNTK in the C terminal flanking region of Dfd orthologs and the
conserved peptide motif KL TPG in the C terminal flanking region of Lox5 orthologs are highlighted.

Species names are abbreviated as follows: Btu - Bugula turrita; Esc - Euprymna seolopes; Lan-
Lingula anatina; Lsa - Lineus sanguineus; Nvi - Nereis virens; Alo - Arehegozetes longisetosus; Fca

- Folsomia candida; Mta - Milnesium tardigradum; Dme - Drosophila melanogaster; Bfl-
Branehiostoma floridae.
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Phylngenetic analysis

Results from phylogenetic analyses of Hox gene homeodomain sequences are

presented in Figure 13. Although the relationships among many Hox genes was not well

resolved, the positions of Bugula Lox5 and Post2 orthologs are worth noting. A

monophyletic grouping of Btu-Lox5 with Lox5 orthologs from the annelid Nereis and the

brachiopod Laqueus received moderate support in both Bayesian likelihood and distance

based analyses. A monophyletic clade of Post2 orthologs, including Btu-Post2 was

strongly supported under both likelihood and distance criteria.

Flanking regions

Medial class genes (e.g. Dfd and Lox5) show high levels of similarity in

Homeodomain sequence, with each each paralog group displaying only a few unique

peptide residues. This complicates assignment of orthology, as the unique peptide

residues shared among putative orthologous genes cannot be unequivocally distinguished

as homologous rather than homoplasious. In these cases, assignment of gene orthology

was bolstered by identification of conserved peptide motifs in the regions flanking the

homeodomain. Across the Bilateria Dfd/Hox4 orthologs possess an "LPNTK" motif C

terminal to the homeodomain. This peptide motif was also identified in the 3' flankng

region of Btu-Dfda (Figure 12). At the same positions Btu-Dfdb contained the motif

"LSSSK" However, Btu-Dfda and Btuc.Dfdb shared a motif "PEI" in the flankng region,

not observed in other Hox genes sampled. The peptide motifKLTG was identified C

terminal to the homeodomain of Btu-Lox5. This region appears to be to the homologous

to the KL TGP motif in the Lox5 gene from other lophotrochozoans
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Figue 16: phylogenetic reconstruction ofHox gene relation~hips. Bugula turrita Hox

genes are highlighted. Tree shown is from Bayesian likelihood analysis using MrBayes:

half compatibility concensus from 1,000,000 replicates, burnin of 200,000 replicates.

Percent support values above branches are from Bayesian likelihood, parsimony

bootstrap (1000 replicates), and minimum evolution bootstrap (1000 replicates),

respectively.
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Discussion

The results presented here evidence that members ofthe anterior, Hox 3, medial, and

posterior Hox gene classes are present in the genome of the bryozoan Bugula turrita

(Figure 15). The identification of Lox5 and Post2 orthologs are of particular interest,

given their potential to inform us regarding the phylogenetic affinities of the Bryozoa.

Lox5 was first identified in the leech Helobdella robusta (Kourakis et aI., i 997).

Subsequent identification of Lox5 orthologs in a brachiopod, a polychaete and a

nemertean prompted suggestion that Lox5 might represent a synapomorphy for the

Lophotrochozoa, based not only similarty in homeodomain sequence, but also on the

presence of a conserved peptide motif "KL TGP" C termnal of the homeodomain (de

Rosa et aI., 1999).

Telford (2000a; 2000b) has presented evidence that Lox5 did not arise through a

duplication event within the lophotrochozoan lineage, but is an ortholog of ecysozoanftz

genes, and perhaps also the deuterostome Hox6 genes. Given this, it is equally

parsimonious to assume that the amino acid sequence any of these three genes may

represent the ancestoral condition within bilaterians. The Lox5 sequence may be

primitive, rather than derived, and organisms possessing Lox5are not necessarily

members of the lophotrochozoan clade (Telford, 2000b).

However, this analysis is based only upon analysis of the homeodomain, without

reference to the sequence of flanking regions. As discussed above, Lox5 genes are

characterized not only by similarities in homeodomain sequence, but also by the presence

of the "KLTGP" peptide motif. This motif has not been identified in genes other than
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Lox5, and may therefore represent a synapomorphy for lophotrochozoans. Alternatively,

the "KLTGP" motif may have been present in Lox5/fz ortholog of the last common

ancestor of protostomes, requiring a loss in ecdysozoans, or in the Lox5/fz/Hox6 ortholog

of the last common ancestor of bilaterians, requirig losses in both deuterostomes and

ecdysozoans. Either scenario is less parsimonious than a single acquisition of the motif

subsequent to the divergence of lophotrpochozoan and ecdysozoan lineages.

The identification of a Post2 ortholog in Bugula turrita provides strong evidence for a

close relationship between bryozoans and other lophotrochozoans. The monophyly of

Post2 genes, including Btu-Post2, was recovered under all phylogenetic reconstruction

criteria employed (Figue 16). Following Telford's (2000b) guideline for using

paralogous genes as outgroups to root analyses, Post2 is supported as having a derived

condition relative to other posterior class Hox genes. Post2 appears to have originated

subsequent to the divergence of lophotrochozoans and ecdysozoans, and therefore

represents a synapomorphy for the Lophotrochozoa. Btu-Post2 thus provides evidence

for the phylogenetic affnity between bryozoans and other lophotrochozoans.

In total, representatives of five Hox paralog groups were identified from Bugula

turrita. Some Hox genes identified from other lophotrochozoans were not recovered

from Bugula, including orthologs of lab/Hoxl, Scr/Hox5, Antp/HBl, Lox2, Lox4, and

Postl (Figure 17). This discrepancy maybe due to 1) an absence of these genes from the

Bugula turrita genome, or 2) artifacts of the PCR based samplying method employed.

First, copies of these genes may not be present in the Bugula genome. This could be

due to the fact that some genes had not arisen via tandem duplication prior to the diverge
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of the bryozoan lineage from other lophotrochozoans. Some of the genes listed above

(i.e. lab/Hoxl, Scr/Hox5) have clear orthologs in all three major bilaterian clades, and

thus clearly were present in the last common ancestor of lophotrochozoans. The origin of

the other genes listed is less clear. HBI genes identified from severallophotrochozoans

appear to be orthologs of Antp, and thus would also have been present in the

lophotrochozoan stem lineage. Likewise, the phylogenetic affnities between Lox2 and

Lox4 in lophotrochozoans and Ubx and Abd-A in ecdysozoans suggests at least a single

ancestor, if not both genes, arose prior to the divergence of lophotrochozoans and

ecdysozoan lineages. Postl may have arisen from a duplication within

lophotrochozoans, however the relationship between Postl and other posterior class Hox

genes is not clearly resolved in the results presented here. Weak support for a clade

including Postl and Abd-B orthologs suggests Postl may have been present in the

lophotrochozoan stem lineage. Given that most of the paralog groups listed above were

likely present in the last common ancestors of Lophotrochozoa, some may have been lost

within the bryozoan lineage, and thus would not be present in Bugula turrita.

Alternatively, the limited number of Hox genes recovered from Bugula turrita may

be due to the use ofPCR amplification with degenerate primers to screen for Hox genes.

The full complement ofHox genes present in the Bugula turrita genome may not have

been found due to bias in PCR amplification reactions. Despite the fact that primers were

designed to target regions coding for highly conserved peptide motifs there may be

variation between genes in codon usage or the amino acid sequence encoded for at these

sites. Such variation may affect the efficacy of the PCR primers used, and lead to bias in
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the resultant pool of amplicons. With the advent of genomic techniques, screening of

genomic libraries and sequencing of clones containing Hox genes may provide a valuable

tool for studying the evolution ofHox genes. Such an approach would provide

information on the conservation of a linked Hox cluster andcgene order. If linkage of

Hox genes is conserved, sequencing of the complete cluster would allow identification of

Hox genes not recovered using degenerate PCR screens.
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Chapter 5

Conclusions
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Thesis results and their signifcance

The work presented in this thesis focuses on the relationships between major groups

of animals within the clade Lophotrochozoa. A summary of the results from this thesis is

presented as an updated tree of metazoan relationships in Figure 18. Several aspects of

this tree represent advances in our understanding of lophotrochozoan evolution, as

compared with the state of knowledge prior to this work (Figure 2).

The utilization of large-subunit ribosomal RNA gene (LSU rDNA) sequence in

chapters 2 and 3 of this thesis provides insight into the relationships between

lophotrochozoan phyla, as well as within the Mollusca. In Chapter 2 LSU rDNA was

sequenced from a broad sampling of mollusks. Analyses of these sequences have

provided the first molecular evidence for a close relationship between scaphopods and

cephalopods. Shimodaira-Hasegawa tests of alternative hypotheses call into question the

traditional Diasoma hypothesis, which suggests scaphopods and bivalves are closely

related to one another.

The rejection of Diasoma hypothesis is not unexpected, as recent work on shell.~ i
ontogeny and expression of the gene engrailed does not have a bilobed shell during larval

development (Wanniger and Haszprunar, 2001). This contradicts the Diasoma

hypothesis, which was based upon a bilobed shell as a synapomorphy uniting scaphopods

and bivalves (Runnegar and Pojeta, 1974). The presence of potential morphological and

developmental synapomorphies joining scaaphopods and cephalopods is not yet apparent.

Although Waller suggested a close relationship between scaphopod and bivalves based
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Figure 18: Updated view of metazoan phylogenetics, incorporating relationships among
lophotrochozoan phyla identified in the current work.
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upon inferred ancestoral similarities, such characters have been criticized, and excluded

form a recent cladistic analysis of the Mollusca (Haszprunar, 2000).

Chapter 3 evaluated the ability of LSU rDNA sequences to provide a more detailed

understanding of the evolutionary relationships among lophotrochozoan phyla. Results

presented suggest that rotifers and platyhelminthes may branch within the

Lophotrochozoa, rather than forming a sister clade. This finding raises intrguing

questions regarding the pattern of developmental evolution among metazoans, given

earlier work suggesting rotifers and platyhelminthes to have derived from an entoproct-

like larva. Although not sampled in the current study, loxosomid entoprocts are of

particular interest. Hyman (1951) discussed similarities between the larvae of loxosomid

entoprocts and rotifer trochi, including the morphology of the gut, protonephrdia and

eyes. If the relationship between Entoprocta and Platyzoa presented in Chapter 3 is

corroborated using other markers, it would suggest that the Platyzoa may well have had a

neotonic origin. Future comparative studies of embryological cell fate and morphological

ultractructue may provide valuable insight into potential morphological homologies

between thešè taxa.

The phylogenetic position of the Bryozoa was of particular interest, given previous

work suggesting that they might branch basally to other lophotrochozoans. Analyses of

LSU rDNA sequences, presented in Chapter 3, challenge the two dominant evolutionary

hypotheses regarding bryozoans, either that they are closely related to brachiopods and

phoronids, together forming the Lophophorata, or that they are sister to the spiralian

entoprocts. However, identification of a Post2 class Hox gene from the bryozoan Bugula

94



turrita, as described in Chapter 4, provides strong evidence for a close relationship

between bryozoans and other lophotrochozoans, upholding the phylogenetic validity of

the clade as it was initially defined. These finding are consistent with recent work

questioning the homology of the bryozoan tentacles to the lophophore of brachiopods and

phoronids (Nielsen and Riisgård, 1998). It is therefore suggested that, to avoid the

suggestion of homology, the term "lophophore" be reserved only for the tentacular

feeding structure of phronids and brachiopods, and not that of bryozoans.

While the monophyly of the Lophotrochozoa (sensu stricto) is supported by analyses

of combined analyses of LSU+SSU rDNA, as well as the presence of the synapomorphic

Post2 Hox gene, the author considers the position of the Bryozoa within the

Lophotrochozoa an open question. Results from the combined LSU+SSU rDNA analysis

suggest that the Bryozoa may have diverged basally to the common ancestor of other

lophotrochozoan lineages. This would suggest that bryozoans emerged much earlier than

their first appearance in the fossil record during the Ordovician (Lehmann and Hilerman,

1983). This could be due to a period of crytic evolution prior to the acquisition of a

calcified skeleton and/or a colonial life-history. A small unitary and uncalcified

bryozoan may have been as yet overlooked in the fossil record from Cambrian deposits.

However, the rDNA results are confounded by long branch-lengths, which may well

produce artifactual results. As yet, relatively few bryozoans have been sampled for

higher-level phylogenetic analyses. The problem oflong branch-lengths has previously

been overcome in other taxa (e.g. nematodes; Aquinaldo et aI., 1997) by employing broad

taxanomic sampling to identify species with slower substitution rates.
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.Future directions

It is evident in the updated tree presented in Figure 18 that many evolutionary

relationships within the Lophotrochozoa remain uncertain. Although LSU sequence has

provided an advance over previous studies using SSU data alone, in that the tree is

consistent with morphological data supporting the monophyly of phyla, questions remain.

Interphyletic branch lengths in the LSU tree are low, resulting in low bootstrap support

for the recovered topology. While hypothesis testing allowed rejection of some

competing hypotheses, many alternative trees had likelihood scores that did not differ

significantly from that of the optimal tree recovered under an unconstrained analysis.

Because of these short branch lengths at the base of the tree it is not expected that

sampling ofLSU sequences from additional taxa wil appreciable improve our

understanding of the lophotrochozoan radiation.

Resources would be better focused on identifying and sampling additional molecular

markers that can be analyzed independently or in conjunction with rDNA data to improve

resolution among lophotrochozoan phyla. A number of potential candidates already have

been the focus of lifited sampling and warrant further investigation. Mitochondrial

genomes appear to provide a valuable source of phylogenetic information regarding

distantly related taxa (Boore and Brown, 1998), and may prove a useful tool for

investigating lophotrochozoan evolution. Already, studies have provided evidence

regarding lophotrochozoan relationships based not only upon phylogenetic analyses of

primary sequences data (e.g. Boore and Brown, 2000; Tomita et aI., 2002), but also on

the basis of similarity in gene arrangement along the mitochondrial genome (e.g.
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Stechmann and Schlegel, 1999). Investigation of mitochondrial genomes from

bryozoans, entoprocts and platyzoans will be of particular interest.

Protein coding genes in the nuclear genome represent a large, and as yet poorly

sampled, pool of potential molecular markers for phylogenetic reconstruction. Several

genes have already demonstrated utilty in analyses of metazoan phylogenetics, including

intermediate filament proteins (Erber et aI., 1998), elongation factor 2 (Regier and

Schultz, 2001), and myosin heavy chain tye II (Ruiz-Trillo et aI., 2002). A broader

taxanomic sampling of these genes may provide a valuable avenue for futue research.

To date, investigations of higher-level metazoan phylogenetics have been limited by a

lack of genes identified as having substitution rates suitable for reconstruction of phylum-

level relationships and the challenge of designing primers, which are functional across a

broad range of distantly related taxa. The genes as listed above may provide a fritful

avenue of research in the short-term. With the increasing availability of high throughput

sequencing a focus on genome-wide sureys may provide a valuable approach. Genome

surveys would allow identification of genes that might otherwise not be easily amplified

using degenerate primers, as well as enabling discovery of novel genes that may provide

phylogenetic information. Further information may also be present regions of conserved

genomic organization, as with mitochondrial genomes. Careful selection of organisms of

genomic investigations wil be cruciaL. Ideally, they wil have relatively low substitution

rates across their genome, maximizing conservation of phylogenetic ally informative

sequence.
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Molecules and morphology

One aspect of this thesis, and phylogenetics in general, that bears further discussion is

the relative merits of molecular and morphological datasets. While the focus of the

present work is an investigation of molecular sequences, however, this is not meant to

discount the potential importance of morphological and embryological characters.

However, one advantage of molecular studies is that they provide an independent source

of data that have the potential to identify cases of convergent morphologies which might

otherwise be considered homologous (e.g. Wray, 1996).

In analyses of lophotrochozoan rDNA genes in Chapter 3 it was stated that the LSU

data were superior to the SSU data in that they recovered the monophyly of many taxa

considered to belong to the same phyla. The reasoning presented may seem somewhat

circular, with LSU being preferred as it more closely fits a priori hypotheses. It is the

author's opinion that the greatest confidence in phylogenetic relationships arises when

independent datasets produce concordant results. The fact that the LSU results are more

consistent with morphological hypothesis than are SSU analyses represents just such a

case.

One are of potential conflct between molecular and morphological characters among

lophotrochozoans is the evolution of cleavage pattern. Many lophotrochozoans are

characterized by a pattern of spiral cleavage that appears to be homologous (Valentine,

1997; Henry, 2002). Based upon morphological analyses Peterson and Eernissee (2001)

have suggested that the Spiralia represent a monophyletic clade within the

Lophotrochozoa. However, results presented in Chapter 3 suggest that brachiopods and
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phoronids may branch among spiralian taxa such as annelids and mollusks. Peterson and

Eernissee (2001) regard the possibility that radial cleavage in brachiopods and phoronids

is secondarily derived from a spiral ancestor, rather than homologous to radial cleavage

in non-lophotrochozoans "dubious" Given the variation in cleavage patterns among

spiralians, including the effect of high yolk content on cleavage pattern in taxa such as

cephalopods, it does not seem implausible to the author that a radial cleavage pattern

could have been derived from an ancestor with spiral cleavage. Additional molecular

phylogenetic evidence regarding the evolutionary relationship between spiralians and

brachiopods and phoronids may provide valuable insight into the evolution of cleavage

pattern.

Final thoughts

The results presented here provide new insights into our understanding of metazoan

evolution. However, many questions remain regarding the evolution of the

Lophotrochozoa remain. It is hoped that the current work wil motivate future

investigations to refine our understanding of the evolutionary patterns which underlie the

diversification of this fascinating group of organisms.
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Appendix

A brief review of metazoan phylogeny and future prospects in
Box-research

Reprinted with permission from Integrative and Comparative Biology

(formerly American Zoologist)
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A Brief Review of Metazoan Phylogeny and Future Prospects
in Hox-Research1

KENNETH M. HALANYCH2 AND YALE PASSAMANECK3

Woods Hole Oceanographic Institution, Biology Department MS 33. Woods Hole, Massachusetts 02543

SYNOPSIS. Underlying any analysis on the evolution of development is a phylo-
genetic framework, whether explicitly stated or implied. As such, differing views
on phylogenetic relationships lead to variable interpretations of how developmental
mechanisms have changed through time. Over the past decade, many long-standing
hypotheses about animal evolution have been questioned causing substantial chang-
es in the assumed phylogenetic framework underlyig comparative developmental
studies. Current hypotheses about early metazoan history suggest that three, not
two, major lineages of bilateral animals originated in the Precambrian: the Deu-
terostomes (e.g., seastars, acorn worms, and vertebrates), the Ecdysozoans (e.g.,
nematodes and arthropods), and the Lophotrochozoans (e.g., annelids, mollusks,
and lophophorates). Although information in Hox-genes bears directly on our un-
derstanding of early metazoan evolution and the formation of body plans, research
effort has been focused primarily on two taxa, insects and vertebrates. By sampling
a greater diversity of metazoan taxa and taking advantage of biotechnological

advances in genomics, we wil not only learn more about metazoan phylogeny, but
wil also gain valuable insight as to the key evolutionary forces that established

and maintained metazoan bauplans.

Approximately 35 fundamentally differ-
ent body plans (or "phyla") are recognized
among extant metaoans. Understanding
how, when, and why metazoan body plans
diversified have been longstanding and
challenging questions for biologists. "Evo-
Devo" research (or research on the evolu-
tion of developmental mechanisms) seeks

to integrate our understanding of evolution-
ary history with the observed variation in
developmental patterns and mechanisms to
help answer some of these questions. Be-
cause of their role in regionalization and

fate specification along the anteroposterior
axis (Akam, 1995) and their ability to cause
homeotic mutations (Lawrence, 1992;
Gehring, 1994), Hox genes have been a
central focus of developmental research ex-
amining patterns of body plan formation

(e.g., Akam, 1995; Carroll, 1994, 1995; Da-
vidson et at., 1995; Degnan and Morse,
1993; Holland, 1998). These genes are he-

1 From the Symposium HOX Clusters and the Evo-
lution of Morphology presented at the Annual Meeting
of the Society for Integrative and Comparative Biolo-
gy, 4-8 January 2000 at Atlanta, Georgia,

2 E-mail: khalanych0ìwhoi.edu
.E-mail: yale0ìwhoi.edu

lix-turn-helix transcription factors that act
on downstream gene cascades. They are
linked in a cluster(s) along chromosomes
and are arranged and expressed in a colin-
ear fashion. Generally, genes that are the
most similar are next to each other. The

Hox gene cluster has been examined (to
some extent) in a wide range of metazoans
(from sponges to arthropods to vertebrates;
e.g., Kaufman et at., 1990; Akam et al.,
1994; Degnan et al., 1995; Holland and
Garcia-Fernandez, 1996; Popadic et at.,
1998). Within non-chordate metazoans, a
single Hox cluster is known to range in size
from the 3 gene 12 Kb cluster in cnidarians
(Finnerty and Martindale, 2001) to the 10
gene . 500 Kb cluster in the sea urchin
Strongylocentrotus purpuratus (Martinez et
al., 1999). In comparison, the Hox cluster
in C. elegans appears highly modified, as it
contains only 6 Hox genes with an inver-
sion, and D. melanogaster's cluster contains
a large intergenic region (de Rosa et al.,
1999).

The purpose of this communication is to
provide a phylogenetic context to develop-

mental patterns observed across major
metazoan lineages, and to highlight, from
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thé evolutionary. perspective, future direc-
tions of evo-devo study. To this end, we
wil first review the current understanding

of metazoan phylogeny helping to clarify
the comparative framework for studies
across major metazoan lineages. Then, the
sampling of Hox-related genes wil be dis-
cussed in relation to this framework. In par-
ticular, of the three great bilaterian clades,
Lophotrochozoans encompass the greatest
diversity of metazoan body plans, but have
received the least research effort focused on
developmental issues. We argue that model
systems should be developed in annelids
and/or mollusks to develop a more accurate

understanding of the evolution of body
plans.

METAOZOAN PHYLOGENY

The first formal phylogeny of the Meta-
zoa, and the origin of the term "phyloge-
ny" itself, was published by Haeckel in
1866. Subsequent phylogenetic hypotheses

were also based on the comparative mor-

phological and developmental work of in-
vertebrate biologists. In particular, Libbie
Hyman's (1940-1967) infuence on meta-
zoan systematics cannot be understated.
Phylogenetic hypotheses in many modern
Invertebrate texts (e.g., Brusca and Brusca,
1990; Meglitsch and Schram, 1991) clearly
echo ideas from her 1940 diagram (her Fig.
5, Vol. 1, p. 38). Interestingly, on the same
pages as her "hypothetical diagram of the
relationships of the phyla," Hyman states
that she wil "attempt to arrange the phyla

in general according to their grade of con-
struction while at the same time avoiding
the separation of alled phyla" (p. 39). It is
ironic that this researcher, who laid an im-
portant corner stone of invertebrate phylog-
eny, emphasized "grade(s) of construction"
(or complexity) over evolutionary history.
However, in her defense, Hyman stated her
diagram was meant to be a convenient tool
and not a rigorous phylogenetic hypothesis.

This emphasis on complexity has lead to
delineations within the metazoans based on
mesodermal features. The presence/absence
of mesoderm is used to distinguish between
diploblasts and triploblasts. How the me-
soderm is arranged internally to form body
cavities or coeloms (i.e., acoel, pseudocoel,

schizocoel and enterocoel) was used to di-
vide triploblasts into major lineages (acoels,
aschelminths, protostomes and deutero-
stomes, respectively). Thus, as Figure 1
portrays, metazoan phylogeny has classi-
cally been thought to progress from less
complex to more complex (body) forms.
However, traditional assumptions that com-
plexity has increased over the course of
metazoan evolution (sensu Hyman, 1940)
have recently been called into question

(McShea, 1996, 1998). (Wilmer (1990)
provides a good review of hypotheses based
on complexity.)

Following Hyman, the advent of SEM
and TEM provided a suite of ultrastructural
characters that were utilzed in comparative
studies. By hypothesizing homology be-
tween ultrastructural features from different
taxa, workers were able to glean a novel

understanding of metazoan relationships
(e.g., Barnes, 1985; Nielsen, 1985, 1987).
Ultrastructural information also lead to re-
visions in our understanding about the evo-
lutionary plasticity of morphology. For ex-
ample, Ruppert (1991) draws on data from
microscopy studies and asserts that body
cavity types are more evolutionarily labile
than previously believed.

The introduction of cladistics methods
(Hennig, 1966), nucletoide sequencing, and
computers provided powerful new tools,
and marked the beginning of a new era of
more rigorous phylogenetic investigation.
Figure 2 shows a revised view of evolu-
tionary relationships among major groups
of metazoans. Sponges and diploblasts (cni-
darians and ctenophures) are basal to the
triploblastic metazoans (e.g., Eernisse et aI.,
1992; Eernisse, 1997; Aguinaldo et aI.,
1997; Aguinaldo and Lake, 1998; Winni-
penninckx et aI., 1998b; Kim et at., 1999).
When taken together, the two triploblast
"superclades" Ecdysozoa (Aguinaldo et
aI., 1997) and Lophotrochozoa (Halanych

et aI., 1995) are usually referred to as the

Protostomia (e.g., Aguinaldo and Lake,
1998). The Deuterostomia consists of only
three recognized "phyla" (chordates, hemi-

chordates and echinoderms). Most major
rearrangements in our understanding of
metazoan phylogeny were initially based on
18S rDNA data. Criticisms of this particular
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FIG. 1. Traditional concept of the evolution of complexity. Metazoan classification and assumptions about

phylogeny have been largely shaped by this hypothesized progression from "simple" to "complex" which is
formulated mainly on mesodermal patterns. Examples of taa typically associated with each category are shown.
Current understanding of metazoan phylogeny suggests the triploblast categories are environmental, not phylo-
genetic, in nature.

marker (Plullipe et ai., 1994; Maley and
Marshall, 1997; Abouief et aI., 1998) have
largely been muted as independent data
have confirmed the 18S based findings. In
paricular, phylogenetic inference based on
Hox gene orthologs (de Rosa et aI., 1999)
and mitochondrial gene rearrangement data

(e.g., Boore and Brown, 1998; Boore, 1999;
Stechmann and ScWegel, 1999) support the
Ecdysozoan and Lophotrochozoan super-
clades.

Based on 18S rDNA data, Aguinaldo et
ai. (i 997) were the first to hypothesize that
the pseudocoelomate nematodes are closely
related to the arthropod in a monophyletic
clade termed the Ecdysozoa. The name Ec-
dysozoa means "molting animal," in ref-

erence to the fact that all the organsms
Aquinaldo et aI. (1997) identified as being
within the clade undergo ecdysis. Further
support for the ecdysozoan hypothesis has
been provided by the identification of
clade-specific Hox paralog groups (de Rosa
et ai., 1999), and recent evidence of a char-
acteristic triplicate repeat in the b- Thymo-
sin homologues of arhropods and nema-
toc!es (Manuel et ai., 2000).

Other organisms placed in the Ecdysozoa
include kinorhynchs, priapulids, nemato-
morphs, onychophorans and tardigrades
(Aguinaldo et ai., 1997). Because chaeto-
gnaths appear to be allied to nematodes

(Halanych, 1996), they are also presumably
ecdysozoans. Although ecdysis has not
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FIG. 2. Current understanding of metazoan phylogeny. Drawing on information from several different sources
(e.g., Eernisse et al., 1992; Halanych et al., 1995; Aguinaldo et al., 1997; Eernisse, 1997; de Rosa et al., 1999;
see text for additional references), this topology represents a consensus ilustrating the relationships between
major metazoan taxa. Many lesser-known "phyla" (e.g., gastrotrichs, acanthocephalans, placozoans, nemato-
morphs, etc,) were not included for simplicity or because their phylogenetic affinities are not clear. Taxa in
which the Hox cluster has been completely sequenced are boxed. The echinoderm and cnidanan projects are
currently underway. A genome project has just been initiate'ä for a flatworm, but since it is not clear when the
Hox cluster wil be sequenced, it is not boxed here. Also echiurids and pogonophorans are within the annelids

(shown separate for simplicity). See text for details.

been reported in chaetognaths, its occur-
rence in all other members of the Ecdyso-
zoa suggests that this feature was present in
the last common ancestor of the clade
(Aguinaldo et at., 1997), and predicts that
conserved ecdysis mechanisms may be
found. Further investigation is necessary to
determine whether the cuticle and process
of ecdysis are in fact homologous across the
Ecdysozoa.

The Ecdysozoa hypothesis has important
ramifications, as it means two model organ-

isms (Drosophila and Caenorhabditis) are
more closely related than previously be-
lieved. The traditional view of metazoan
evolution, which placed the less complex
pseudocoelomate nematodes basal to the
protostome/deuterostome split, suggested
that developmental features common to
Caenorhabditis and Drosophila were likely
present in the common coelomate ancestor
allowing extrapolation to other coelomates

(most notably Homo sapiens). However,
commonalities between these model organ-
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isms must now be interprçted with more
caution as they may have arisen following
the divergence of the Ecdysozoa.

Analysis of 18S rDNA sequences has
also led to the grouping of the lophophor-

ates (brachiopods, bryozoans, and phoron-
ids) with annelids and molluscs in a clade
termed the Lophotrochozoa (Halanych et
aI., 1995). Earlier analyses (Field et ai.,
1988; Ghiselin, 1988; Lake, 1990) employ-
ing only a single partial brachiopod se-

quence also hinted at this association. The
phylogenetic position of lophophorates has
been a matter of some debate, with differ-
ing interpretations of developmental and
morphological traits leading to their assign-
ment as protostomes (Gutmann et ai.,
1978), deuterostomes (Zimmer, 1973), in-
termediates between the two groups (Sal-
vini-Plawen, 1982; Siewing, 1976, 1980),

or an independent radiation (Willmer,
i 990). However, their placement as derived
protostomes reveals that embryological fea-
tures (blastopore fate, type of eucoelom for-
mation, cleavage patterns, larval type) are
more evolutionarily labile than traditionally
believed (Halanych et aI., 1995; Valentine,
1997; also see Halanych, 1996).

The lophotrochozoan clade (defined as
all the descendents of the last common an-
cestor of lophophorates, mollusks, and an-
nelids) is more inclusive than originally
suspected. (It should be noted that the terms
Eutrochozoa (sensu Gheslin, 1988) and
Spiralia, sensu stricto, are less inclusive

than Lophotrochozoa, and the terms should
not be confused.) Sipunculids have been as-
sociated with both mollusks (Scheltema,
1993) and annelids (Boore and Staton,
2001), and echiurids and pogonophorans
appear to be annelids (McHugh, 1997; Hal-
anych et aI., 1998). Mackey et al.'s (1996)
report suggests that the pseudocoelomate

entoprocts are lophotrochozoans. The ne-
merteans are also members of the clade,
given associations in 18S rDNA topologies
(Turbeville et aI., 1992). Hox evidence has
also placed dicyemid mesozoans (Kobay-
ashi et ai., i 999) in the clade. Molecular
studies have also provided evidence for the
inclusion of platyhelminthes within the Lo-
photrochozoa. The platyhelminth flatworms
were traditionally considered to be basal tri-

ploblasts because they had no coelom (Hy-
man, 1951; reviewed in Willmer, 1990).
Analysis of both 18 rDNA and Hox genes
(Balavoine and Telford, 1995; Balavoine,
1997) suggest that some platyhelminthes
are members of the Lophotrochozoan clade
which have undergone secondary simplifi-
cation (Balavoine, 1998). Recent analysis
has also suggested that platyhelminthes
may be polyphyletic and that the acoels
may be basal bilaterians (Carranza et aI.,
1997; Ruiz-Trillo et ai., 1999; see also Eer-
nisse, 1997), but it is likely that the acoel
finding is an artifact of long-branch attrac-

tion (hinted at in Campos et aI., 1998, Ber-
ney et ai., 2000). Lastly, Garey and
Schmidt-Rhaesa (1998) have proposed that
a clade consisting of platyhelminthes, gna-

thostomulids, rotifers, and acanthocepha-
lans (and probably cycliophorans-Wnne-
penninckx et aI., 1998a) is sister to the Lo-
photrochozoa. Although based on their rel-
ative position to bryozoans (which has yet
to be determined), these taxa might be with-
in the Lophotrochozoa. In comparison, Eer-
nisse (1997) finds many of these groups, as
well as gastrotrichs, are placed as basal bi-

laterians. Clearly, the status of several tra-
ditional "aschelminthes" groups awaits fur-
ther confrmation.

de Rosa et aL. (1999) have found that all
presumptive Lophotrochozoans surveyed

(annelids, molluscs, brachiopods, platyhel-
minthes, and nemerteans) possess a set of
medial and posterior Hox genes not present
in either Ecdysozoans or Deuterostomes.

The homeodomains of these Hox genes
(Lox5, Lox2, Lox4, Postl, and Post2) pos-
sess diagnostic peptide motifs which have
been conserved throughout the members of
the clade. Comparatively ecdysozoans con-
tain 2 diagnostic Hox genes (Ubx and Abd-
B). However, Telford (2000) argues that
others have over interpreted the diagnostic
"signatures" of some Hox genes, and that
unique amino acid motifs should be treated
as unpolarized characters, rather than syn-
apomorphies, when an outgroup is lacking.
Such diagnostic features provide a powerful
tool for examination of taxonomic inclusion
of these major clades.

In contrast to the Lophotrochozoans, the
deuterostomes have been shrinking. Into the
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early 1990s most researchers and evidence
suggested that the deuterostomes were com-
posed of chordates, hemichordates, echi-

noderms, chaetognaths, and lophophorates
(although most placed the lophophorates as
basal to the true deuterostomes; Willmer,

1990). The placement of the lophophorates
has already been discussed above. Chaeto-

gnaths, commonly called arrow worms,
were considered deuterostomes based on
their tripartite coelom and the retention of
the blastopore to form the anus. However,

two independent 18S rDNA studies (Tel-
ford and Holland, 1993; Wada and Satoh,

1994) showed that chaetognaths were not
closely related to other deuterostome taa
suggesting that coelomic patterns and blas-
topore fate are not representative of the re~

lationships of major metazoan lineages
(Halanych, 1996). Nielsen's (1995) hypoth-
esis of deuterostome affinities for the cteno-
phores is inconsistent with available data

(Eernisse et aI., 1992; Schram, 1991; Eer-
nisse, 1997; Kim et al., 1997; Winnepen-

ninckx et aI., 1998b).
Of the three recognized deuterstome phy-

la, echinoderms and hemichordates appear
to be the most closely related (Turbeville et
al., 1994; Cameron et aI., 2000). Metschni-
koff (1881) termed an echinoderm-hemi-
chordate group the Ambulacraria drawing
attention to similar features in the larvae

(Halanych, 1995). Swalla and her collegues
(2000) have recently examined chordate or-
igins. Their report that urochordates are

comprised of 4 discrete lineages holds in-
teresting implications for understanding the
evolution of tadpole morphology and chor-
date life history.

SURVEYING THE Hox CLUSTER

Two aspect of Hox genes have peaked
the interest of phylogeneticists. First, their
conservative nature holds information on

phylogenetic relationships among major
metazoan groups. Although earlier workers
alluded to this potential (Ruddle et aI.,
1994; Dick, 1997), it was not until more

recently that researchers began to exploit
this information (e.g., Balavoine and Tel-
ford, 1995; Balavoine, 1997; Grenier et al.,
1997; de Rosa et al., 1999; Anderson et aI.,
1999; Kobyashi et al., 1999). Secondly,

since the discovery that Hox genes cause
homeotic mutations, there has been a hope
that Hox genes may provide information on
how and why metazoan body plans diver-
sify. Earlier work (e.g., Lawrence, 1992;
Gehring, 1994) focused on homeotic mu-
tations and mainly compared wildtype to
mutated individuals. With the development
of molecular and phylogenetic methods,
comparative studies were undertaken com-
paring Hox expression across lineages in a
phylogenetic framework. Unfortunately,
most of this comparative work has focused
on a selective group of taxa (e.g., verte-
brates-HoIland and Garcia-Fernandez,
1996, and arthropods, esp. insects-Carroll,
1994, 1995; Akam et aI., 1994; Akam,
1995, 1998).

In Figure 2, the taxa for which the Hox
cluster has been sequenced are boxed. Be-
cause of genome projects, the cluster infor-
mation will be available for Drosophila,

Caenorhabditis and several chordates. Cur-
rent work on the Hox clusters of the cni-
darian Nematostella vectensis (Finnetry and
Martindale, 1997, 2001) and the sea urchin
Strongylocentrotus purpuratus (Martinez et

aI., 1999) should also soon be available.
Therefore, physical maps and cis-acting
regulatory elements that are in close prox-
imity to the cluster wil be known for rep-
resentatives of the Ecdysozoa, Deutero-

stomes, and Diploblasts.
With little doubt the study of develop-

mental mechanisms has received far less at-
tention in Lophotrochozoans than in Ecdy-
sozoans and Deuterostomes. Most Lopho-
trochozoan Hòx studies have been limited
to PCR surveys for genes (e.g., Webster and
Mansour, 1992; Dick and Buss, 1994; Ba-

lavoine and Telford, 1995; Irvine et al.,
1997; Kmita-Cunisse et aI., 1998; de Rosa
et al., 1999) and, to the best of the our

knowledge and with the exception of leech-
es, few studies have actually examined Hox
gene expression patterns in lophotrocho-
zoans (e.g., flatworms-Bayascas et al.,
1997; polychaete-INine and Martindale,
2000). Note studies by Bayascas et al.
(1998) and Degnan and Morse (1993) of
RNA transcription levels in flatworms and
gastropods, respectively, did not examine
the patterns of expression in the organism.
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FIG. 3. Compilation of published Lophotrochozoan Hox gene sequences in GenBank as of February 2001.
Boxes representing each sequence are aligned under their orthology group. Each sequence is coded according
to whether regions flanking the homeodomain are known and whether assignment of orthology is confdent.
Numbers of homeodomain sequences published, but of unknown orthology, are also listed. though not repre-
sented graphically.

Some information has been gathered on the
expression of transcription factors associ-
ated with segmentation and regeneration in
oligochaete annelids (Bely and Wray,
2000). Shankland's group has done excel-
lent work on exploring leech development
(e.g., Nardell-Haeflinger and Shankland,
1992; NardelIi-Haeflinger et aZ., 1994;

Kourakis et aZ., 1997; Shankland and
Bruce, 1998), but Irvine and Martindale

(2000) point out some of the shortcomings
of leeches as a model for other Lophotro-
chozoans (including direct development
and "missing" Hox orthologs). Our knowl-
edge on the mechanics of how Hox genes
aid pattern formation of Lophotrochozoan
organisms is in its infancy.

Of interest, NIH and the World Health
Organization (WHO) have recently begun

genome projects on Schistosoma japonica.
and S. mansoni. Although Schistosoma Hox
genes have been the focus of previous re-
search (Webster and Mansour, 1992), it is
not clear if Schistosoma wil be represen-
tative of the Lophotrochozoa. Currently,

platyhelminth evolution is in question; the
monophyly, origins, and phylogeny of the
group are hotly debated (Balavoine and Tel-
ford, 1995 Balavoine, 1997; Campos eta!.,
1998; Carranza et aZ., 1996, 1997; Ruiz-
Trilo et aZ., 1999; Berney et a!., 2000).

Figure 3 summarizes all available infor-
mation (i.e., sequences in GenBank as of
February 2001) for Hox genes in Lophotro-
chozoans. Although the information is pre-
sented in a manner similar to standard Hox
cluster illustrations for Drosophila or chor-
dates, no gene mapping information exists
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for lophotrochozoan Hox clusters. -Further-
more, the presence of genes was determined
by either PCR screening with degenerate
homeobox primers or by screening cDNA
libraries. Thus, the spatial arrangement of
the genes is merely speculation inferred
from other organisms. The information in
Figure 3 suggests that the ancestral lopho-
trochozoan Hox cluster probably consisted
of at least 8-10 genes (de Rosa et a/., 1999;
Irvine and Martindale, 2000). The poly-

chaete Nereis virens, perhaps the most thor-
oughly surveyed Lophotrochozoan, con-
tains at least 1 1 Hox genes. Although we
know some of the genes in the cluster, we
do not know their arrangement, cis-acting
regulatory elements, and if additional genes
and/or clusters are present.

Gellon and McGinnis (1998) reviewed
Hox transcription mechanisms and conclud-
ed that "evolutionary variation of Hox cis-
regulatory elements has played a major role
in the emergence of novel body plans." For
example, fly Hox genes share few regula-
tory regions in comparison to the mouse,

where sharing of regulatory elements could
help explain conservation of the cluster. Be-
cause the unsampled lophotrochozoan taxa
have the most diversity in terms of body
plans, the group will provide a powerful

test of Gellon and McGinnis's hypothesis

about the role of regulatory elements in

body-plan diversiÆcation.

FurURE REEARCH

In order to gain a more complete under-
standing of the evolution of the Hox cluster,
future research must begin to employ ge-
nomic approaches and must incorporate a
greater diversity of organisms. Most Hox
genes have been identified using either
PCR-based surveys or cDNA library
screens coupled with comparisons of se-
quence similarity. Thus, little positional in-
formation or information on cis-acting reg-
ulatory elements is retrieved. Biotechnolog-
ical advances have now made sequencing
the entire Hox cluster possible even for
smaller laboratories (as opposed to major
genome centers), and developments in mi-
croarray technology will facilitate exami-
nation of timing and levels of expression

for several genes simultaneously (initially

this. will only be feasible in model organ-
isms). The combination of sequencing and
microarray technology will open up a new
realm of experimental studies that not only
explore the evolution of the open-reading

frame, but the evolution of the entire gene
system (ORF, regulatory element, recogni-
tion sites, pleiotropic effects, etc.).

Lastly, to understand the evolution of the
cluster and how it has shaped body plan
evolution, more studies comparing Hox
data across taxa must be undertaken. The
comparative framework for such studies is
phylogeny. However, at present most Hox
studies focus on a single species with evo-
lutionary considerations relegated to com-
parisons to previously published reports. A
more desirable and objective approach is to
examine multiple species in a single study
and then use explicit methods to test alter-
native hypotheses (e.g., likelihood tests,
Huelsenbeck and Rannala, 1997). Such an
approach would also provide a context for
determining which hypotheses are signifi-
cantly better than alternatives. As men-
tioned above, phylogentic representation of
Hox genes has been biased with Lophotro-
chozoans receiving little attention despite
having the greatest diversity of recognized
body plans. The use of explicit methods for
evolutionary comparisons forces us to con-
sider the most appropriate taxa, not just
which taxa were most convenient, for the
question being addressed.
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