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ABSTRACT

Mean long-isobath drift of the order 5 cm/sec has been observed on
several continental shelves, e.g. in the Middle Atlantic Bight and in the
Wedde1ll Sea. A theoretical model is developed to explore the driving
mechanism of this mean circulation. In the model, the velocity field is
decomposed into a depth-independent bottom geostrophic component and a
thermohaline component relative to the bottom. The latter can be
calculated from the density field, and the former is described by a
parabolic equation which expresses the tendency to balance vorticity
between bottom stress curl and vortex stretching. The near-bottom flow

" field is studied both analytically and numerically under forcing by wind,

deep ocean flow, and long-isobath density differences.

Model solutions are derived for circulations over a shelf/slope
topography driven by wind stress, wind stress curl, and deep ocean
currents. The resulting flow patterns show strong dependence on the
topography. Over the continental slope, large bottom depth variation
suppresses the flow driven by local forcing and insulates the slope
region from circulations on the shelf and in the deep-ocean. Geochemical
observations on the continental shelf and slope support the argument that
the flow on the upper slope below the thermocline is weak.

Under the condition of a vertically homogeneous layer below the

 thermocline, near-bottom density advection is mainly caused by the bottom

geostrophic velocity field. Using the parabolic vorticity equation
together with a density equation, circulations driven by coastal buoyancy
£lux and surface cooling are investigated. In the mid-shelf region, away
from the coast and the shelf break, the density field is governed by
Burgers' equation, which shows longshore self-advection of density
perturbations and the formation of front with.strong density gradient in
the longshore direction. A dense water blob moves in the direction of
Kelvin wave propagation. The direction is reversed for the movement of a
light water blob. In the near-shore region, the light river water at the
bottom is also self-advected in the direction of Kelvin wave




propagation. For a heavy density anomaly at the coast, the initial
movement is offshore, and the accumulation of dense water in 'the
mid-shelf region leads to long-isobath propagation of density
perturbations, similar to the case of a dense water blob. This theory
sheds 1light on the bottom water movements in the Adriatic Sea, the
Antarctic Continent, and the Middle Atlantic Bight.

The model solutions are applied to the flow on the western North
Atlantic shelf. Southwestward flow is produced near the coast by the
self-advection of river water in winter and spring. The southwestward
long-isobath propagation of thermal fronts caused by winter cooling
contributes significantly to the mean circulation over the mid-shelf. It
is suggested that density-driven current is an important component of the
near-bottom mean circulation in the Middle Atlantic Bight in spring and
summer., :

Thesis Supervisor: Dr. Gabriel T. Csanady

Title: Senior Scientist
Woods Hole Oceanographic Institution
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CHAPTER 1
INTRODUCT ION

Circulation over the continental shelf is dominated by high frequency
oscilliations produced by tides and winds with periods shorter than the
synoptic time scale of a few days. However, when currents are averaged
over a month or a longer period, a consistent mean drift along isobaths |
is sometimes detected in the near-bottom circulation above the bottom
Ekman layer. In the Middle Atlantic Bight, a subsurface mean flow of the
order 5 cm/sec has been observed by moored instrument measurements |
(Beardsley et al., 1976). Over the Weddell Sea shelf in the Antarctic
Continent, the long-isobath drift is shown by a westward movement of the
dense.bottom water (Gill, 1973). In a semi-enclosed basin like the
northern Adriatic Sea in winter, the long-isobath density dispersion is
associated with a cyclonic circu]atfon gyre (Hendershott and Rizzoli,
1976).

Throughout this work, the term "mean circulation" is meant to
describe the pattern of currents averaged over a chosen period. By this

bdefinition, the "mean" flow does not have to be steady. It can be
non-periodic transient flow with a time scale longer than the period of
averaging. Mean circulation is important in the dispersion of water
properties, nutrients, and pollutants on the shelf. Without the mean
flow, the distribution of materials is determined by the short—period
chaotic first order flow, which acts as an effective eddy diffusion

process in both horizontal directions. However, advection by even a !
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moderately intense mean flow is generally more effective than eddy
diffusion in dispersing materials in the downstream direction. In
particular, the near-bottom mean flow is important to the distribution of
pollutants near a dump site and the movement of cdld bottom water from
the north, two phenomena which play key roles in benfhic ecology and
fisheries.

The objective of this study is to understand the driving mechanisms B
of mean circulation on the continental shelf. Bottom flow may be
generated in the ocean by wind and by the interaction between topography
and near-bottom density variations (Holland, 1973). Typically, the time
scale of wind is shorter than a month, and that of density forcing is
about a season. Therefore, it is possible to examine the wind-driven
she]f'circu]ation diagnostically with an assumed density structure.

Under density forcing, the density field itself is dynamically

important. The bottom velocity field must be found prognostically. In
this wdrk, a genaral prognostic model of shelf circulation with time
scale longer than a month is developed. This model is solved
diagnostically under forcing by wind over the shelf, the slope, and the
deep ocean regions. Analytical and numerical solutions of the prognostic
model are deriVed to understand the dynamics of density-driven flow.
These results on the flow forced by wind and density fields are then
compared with observed meén flow on the continental shelf to identify the
driving mechanisms.

1.1 A Prototype Shelf: the Middle Atlantic Bight

Compared to other shelves, the Middle Atlantic Bight is a relatively
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well explored region. An examination of the density structure and the
mean bottom flow in this region can provide insights into the dynamics of
shelf circulation in general. The hydrography over the continental shelf
in the Middie Atlantic Bight is characterized by seasonal variations. In
winter, the water column is vertically homogeneous with small horizontal
density differences over most of the shelf. A density front exists near
the shelf break with strong temperature and salinity gradients. Minimum.
bottom temperature occurs in late March each year. The salinity reaches
a maximum during late January to early February, and remains relatively
constant until the river runoff reduces the near-shore saTinity in
spring. In summer, a thermocline is present at the depth of 15 -~ 20 m,
and the bottom temperature is cold offshore beyond a line about 30 km
from fhe coast. The cold water below the thermocline is known as the
“cold pool" (Bigelow, 1933). : -

Comprehensive reviews of the circulation in the Middle Atlantic Bight
can be found in articles by Bumpus (1973), Beardsley et al. (1976), and
Beardsley and Boicourt (1981). Characteristics of the subsurface mean
flow in the Middle Atlantic Bight, averaged over a month or longer from
long-term current measurements, are summarized as follows:

(1) The lohgshore current has a southwestward component thoughout the
water column (Beardsley and Boicourt, 1981). The longshore mean velocity
is from 3 to 10 cm/sec. It increases noticeably with increasing distance
from the shore and decreases with increasing depth in the water column
(Beardsley et al., 1976).

(2) The cross—isobath bottom flow shows a divergence at about the
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60 m isobath. The flow is onshore in shallow water and offshore in deep
water (Bumpus, 1973).

(3) During infrequent periods of strong and persistent wind, a
component driven by wind is detectable in the monthly-mean current over
most of the Middle Atlantic Bight (Beardsley and Boicourt, 1981).

(4) In summer, the velocity of longshore current in the cold water
pool equa]s or exceeds the mean southwestward movemént of the surroundiné
wakmer water (Beardsley et al., 1976).

It is clear that the wind-driven flow dominates the mean circulation
under strong wind conditions. In less severe weather, the wind-driven
flow may still contribute to part of the mean flow. Becausé'of the
_existence of a line of divergence and the flow is stronger at the shelf
break.than in the near-shore region, the principal driving forces are
probably located on the outer shelf or on the slope:; Furthermore, the
flow inside the cold pool 1s'strongér than the surrounding flow.
Dynamically the cold pool may be more important than a simple trans]atiye
motion associated with a mean flow. This is an indication that the
density—driven flow plays an important role in the mean circulation.

1.2 Driving Mechanism: Earlier Theories

Suggested possible driving mechanisms of the mean circulation
include: (i) wind forcing, (ii) forcing from the influx of river water,
(iii1) forcing from the density variations caused by surface cooling, and
(iv) deep ocean forcing, represented by a sea level gradient on the
shelf. Earlier theoretical models of near-shore circulation were

generally two-dimensional, assuming uniformity in the longshore
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direction, including uniformity of pressure, i.e. absence of a longshore
pressure gradiént. Basically, these two—dimensional models originated
from that of Ekman (1905). A principal assumption was that the total
cross-shelf transport vanished in the coastal region. A longshore
interior flow had to exist in the downwind direction, génerating bottom
stress large enough to balance the offshore wind-driven surface Ekman
transport through an onshore bottom Ekman transport (Jeffreys, 1923).
However, the observed Tine of divergence over the outer shelf revealed
tﬁat the simple Ekman model could not be used to exp]ain the mean shelf
circulation, at least over the outer shelf.

Iselin (1955) suggested that the mean surface drift in the Middle
Atlantic Bight could be thermoha]jne flow associated with the offshore
densify gradient by the thermal wind relation. However, it is not clear
how that relationship should be applied in shallow water of variable
depth. Another idea was that the fTow was driven by a deep-ocean imposed
sea level elevation along the coast. Sverdrup et al. (1942) inferred the
existence of a massive cyclonic gyre between the Gulf Stream and the east
coast of North.America from the longshore rise of sea level between Cape
Hatteras and Nova Scotia, indicated by geodetic leveling. This cyclonic
gyre appeared as a southwestward drift in the Middle Atlantic Bight
region. However, this idea was in doubt, after the geodetic result was
disputed by Sturges (1968) and Montgomery (1969).

The paper by Stommel and Leetmaa (1972) was the first attempt to
construct a quantitative model for the winter mean shelf circulation in

the Middle Atlantic Bight. With the assumption that the cross-shelf
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trénsport vanished everywhere, the steady circulation under forcing by
longshore uniform wind stress and freshwater influx was solved over a
flat bottom shelf without coastal and seaward boundaries. It was
concluded that the flow driven by longshore wind stress would be opposite
to the observed mean drift. The effect of river efflux in this constant
depth model was much as described by Iselin (1955). However, the
magnitude of thermohaline component was found to be too weak to reverse |
thé wind;driven flow so that the density structure could not explain the
observed southwestward drift either. The discrepancy between the
predicted flow and the observed one lead Stommel and Leetmaa (1972) to
postulate the existence of a longshore pressure gradient of unspecified
physical origin. With. a properly chosen longshore pressure gradient, the
ObserQed flow could be simulated and the effects of bottom friction
assessed realistically. : -

Circulation over a sloping bottom was treated by Csanady (1976),
using a basically similar approach with some modifications. In this
que], the mean circulation was taken to be the résidue of chaotic
first-order flow events created by wind, tides, and river flow. It was
argued that the statistical effects of variable first-order events on the
mean flow could be pafameterized by linear internal and bottom friction
laws, and by an effective diffusivity for the salt transport determined
by first order flow events. A linear problem resulted, with circulation
viewed as a supérposition of components caused by wind stress, freshwater
inflow, and a longshore pressure gradient. The last one was of

unspecified physical origin as in Stommel and Leetmaa's (1972) model.
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With no other longshore nonuniformity allowed, the longshore thermohaline
component was again found from the thermal wind relation, modified by
friction, with vanishing bottom longshore velocity. From the vorticity
tendency balance, it was shown that the assumption of vanishing
cross—shore transport at all distances from the coast implied a constant
longshore pressure gradient. The magnitude of this gradient was viewed
as a parameter expressing the influence of the rest of the ocean on the |
shelf region considered, and was determined from the analysis of
observational evidence (Scott and Csanady, 1976). 'Key features of the
observations, such as the presence of a "line of divergence" in the
cross-shelf flow or the offshore increase in the magnitude of the
longshore velocity, were reproduced by his model.

Tﬁese ear]iér models provided some understanding of shelf dynamics,
at least in the sense of elucidating possible driving forces. They also
yielded useful parameters such as the frictional coefficient, the
effective vertical and horizontal eddy diffusiviiies. Direct wind
forcing and the cross-shelf density gradient were ruled out as the
proximate driving mechanisms of the mean drift. Furthermore, the unknown
"remote" driving force in the Middle Atlantic Bight, parameterized as a
longshore presSure gradient on the shelf, could be quantified from the
observed mean drift.

Similar two-dimensional models were used by Barcilon (1966) to model
the effect of river momentum flux and by Killworth (1973a) in studying
the bottom water formation in the Antarctic Continent. Killworth (1973a)

concluded that the offshore transport in his two—dimensional model was
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too small to account for the observed rate of bottom water formation.
Killworth (1974) also studied the Antarctic Bottom Water formation forced
by surface density flux in a two-layer model over a flat shelf. By
allowing horizontal density variation in each layer, he found that the
density increase was caused mainly by upwelling at the western side of
the Weddell Sea. Also, the observed east-west density gradient (Gill,
1973) could be simulated by the model. The northward flux was found to |
be too small to give the observed rate of bottom water.formation. It
also took a long time (about 30 years) for the density perturbations to
span the whole basin from the western boundary. Obviously, the shelf
topography and the longshore nonuniformity of the flow must play
essential roles in the shelf dynamics.

1.3 Mbde]s of Nonuniform Longshore Flow over Topography

The need for a local pressure gradient to drive-the mean flow is
actually a manifestation of the fact that some forcing effect on the
shelf, slope, or deep ocean‘was either not gonsidgred or not quantified
properly. For further understanding of the pressure field, it is
necessary to generalize the theoretical model.

Birchfield (1967) used a parabolic vorticity equation to study the
wind-driven circulation in a circular homogeneous lake with a parabb]ic
bottom profile. Solutions were obtained for the flow with finite coastal
wall and with vanishing coastal depth. The results showed that the flow

driven by wind stress was concentrated on the left- and the right-hand

sides of the lake. Long-isobath circulation was produced by wind stress

curl. A weak flow driven by the divergence of wind was found. The }
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coastal wall had only minor effect on the flow under wind stress

forcing. However, a counter current was detected in the flow driven by
wind stress curl, when the water depth shoaled to zero at the coast. The
same parabolic equation emerged in Birchfield's (1972) analysis of
wind-driven circulation in a homogeneous lake with arbitrary topography.
This equation, which governed the near-shore circulation, represented the
balance between vortex stretching and the curl of bottom stress.

Pedlosky (1974) studied the steady circulation over shelf-1like
topography, which was Timited by finite-depth boundary walls at coastal
and oceanic boundaries. A parabolic vorticity equation similar to that
of Birchfield (1972) was derived for a stratified fluid, governing the
flow in a coastal topographic boundary layer. Besides wind forcing, thg
flow driven by surface heat flux was studied through the use of a
linearized, steady density equatibn, in which the advection of the basic
vertical density stratification was balanced by horizontal diffusion. It
was shown that, because of the coastal constraint, a poleward
undercurrent in the upwelling region of the Oregon shelf could be
generated within the topographic boundary layer by wind stress, its curl,
or differences in surface heating.

Beardsley and Hart (1978) used a similar parabd]ic formulation in
their linear two;layer model to examine the river-induced steady flow
over a sloping bottom. The river effect was considered to be a source in
the surface Tayer and a sink in the bottom layer. The vorticity
generated by riyer stream flux was dissipated through the friction at the

interface and the bottom. A steady flow was found in the vicinity of the




-22-

~source region with a length scale of somegfens of ki]ometers;

In a series of papers by Csanady (1978, 1980, 1981), the.parabolic
formulation was used to investigate the driving forces of the mean shelf
circulation in the Middle Atlantic Bighf: It was found thaf a coastally
trapped pressure field could be set up by direct wind stress forcing. The
pressure field further offshore was affected by the wind stress curl.
Some observations on coastal sea level elevation Were presehted by
Csanady (1981) as evidence for the existence of such a pressure field.
Csanady (1978, 1981) also studied the pressure-gradient produced by river
outflow, which was modelled as a steady distribution of sea surface
elevation in the source region. A scuthwestward longshore flow on the
western North Atlantic shelf could be generated by a large river source
to thé north, e.g. the St. Lawrence River (Csanady, 1978, 1981). The |
influence from the deep ocean was parameterized by Csanady (1978) as a
longshore pressure gradient at the shelf break. It was found that this
parameterization could reproduce most of the known features of the
pressure field on the sheilf. ‘

The studies of Csanady (1978, 1980, 1981) give a fairly good
description of the pressure field set up by wind stress forcing inside a
coastal boundary layer about 30 km wide. An important consequence of the
parabolic equation was that forcing with Timited longshore extent could
influence the flow only in the "forward" direction, which was defined by
signs of the terms in the parabolic equation. In the outer shelf region,
Csanady's solutions suggest that flow was generated by forcing in the

backward portion of the she]f, such as river inflow, wind stress curl,
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and/or a deep ocean imposed pressure gradient at the shelf break.
However, the problem was not resolved in favor of any particular
forcing. The bottom topography in his models was a shelf with constant
slope of order 10"3 extending to very large distances from the

coast. The continental slope, with its one to two order of magnitude
greater depth variation than that of the shelf, may have a significant
dynamic influence on the circulation of the outer shelf. To understand"
the dynamics of the outer shelf circulation, it is necessary to
investigate these forcing mechanisms in detail, especially the
topographic effect on the flow. ‘

One could imagine that the existing theories of deep ocean gyres
would give some guidance as to what "deep ocean influence"” could be
expecfed on a shelf. However, models of deep ocean circulation with
western boundary topography do not give a clear and-definite conclusion
on how much of the deep ocean flow will intrude onto the shelf. Schulman
and Niiler's (1970) solution in a homogeneous ocean seemed to suggest the
presence of a pressure gradient on the shelf due to deep ocean
circulation. However, a similar model by Killworth (1973b) did not
reveal such an influence. Recent multi-layer numerical solutions of
Semtner and Mintz (1977) on the circulation in the western North Atlantic
Ocean showed that a pressure gradient existed on the shelf from Cape
Hatteras to Grand Bank. It was argued by Beardsley and Winant (1979)
that this might be taken as evidence of deep ocean influence. Csanady
(1979) calculated the steric set-up of sea level on the western margin of

the North Atlantic Ocean. No significant long-isobath sea level gradient
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over the slope region was found. To resolve the controversy over this
deep ocean forcing problem, a study of the near-bottom circulation in the
slope and rise regions is necessary.

One important mechanism, which was not studied in Csanady's models,
is the forcing from long-isobath density variations. Evidence of such
long-isobath density variations on the shelf has been found on several
Qccasions. In the calculation of sea level set-up along thg western
margin of the North Atlantic Ocean, Csanady (1979) found a sea level rise
on the Scotian shelf produced by thevdensity deficiency of the St.
Lawrence River outflow. On the shelves of Antarctic Continent, the
accumulation of high salinity water at the western side of the wedde11
Sea (Gi11, 1973) and the Rose Sea (Jacobs et al., 1970) produces strong
long-isobath salinity gradientr It is important to incorporate this
density effect into the parabolic formulation. Hendershott and Rizzoli
(1976) have shown by numerical model calculations that unsteady
lTong~isobath density advection is important dynamically. In order to
examine this question in greater generality, it is desirable to develop
analytical models of the interaction between longshore density variations
and bdttom topography.

Accordfng‘to Csanady's (1978, 1981) model, a "mound" of river water
in the north is able to drive a mean southward drift in the western North
Atlantic shelf. However, a quantitative relation between the sea level
distribution in the "mound" and the amount of river outflow was not
given. Beardsley and Hart's (1978) model provides a practical method to

relate these two quantities. An application of the latter model shows
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that the amount of river outflow is insufficient to drive the mean drift
in the Middle Atlantic Bight.
1.4 Summary

From the dynamic consideration in the earlier sections, it may be
concluded that to understand the driving mechanisms on the continental
shelf, it is essential to solve the folllowing problems:

(1) What is the pressure field over a realistic shelf/slope
topography under wind forcing?

(2) Does the deep ocean impose a pressure gradient on the slopes,
and if so, how?

(3) What is the role of the slope in "insuTating" this pressure
gradient from the shelf or “"transmitting" it to the shelf?

(4) What is the flow field generated by the density field, when the
latter is produced by cooling, river buoyancy flux, or other density
effects?

(5) How is the density field itself affected by the density-driven
flow?

The principal aim of this work is to develop a prognostic model to
answer these questions. The theoretical model used is fairly general and
can be applied to different continental shelves. In Chapter 2, the model
used by Csanady (1978) is generalized to the case with density
stratification. To simplify the problem, the total velocity field is
decomposed into a depth-independent bottom geostrophic component and a
thermohaline component relative to the bottom. The resulting equations,

governing the bottom geostrophic flow forced by long-isobath bottom
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density variations and by wind, can be solved diagnostically with a known
bottom density distribution. The thermohaline component can be found
from the density distribution. The prognostic formulation is achieved by
the use of a density equation which includes the nonlinear advection and
the time—dependent terms. Under the assumption of vertical homogeneity
of the water column, the density equation is expressed in terms of bottom
geostrophic velocity. The time evolution of density field and flow under
forcing can then be followed.

In Chapter 3, the long-isobath density gradient is neglected to
isolate the wind-driven circu]atiqn. The model is solved numerically for
the flow driven by wind stress and wind stress curl over various shelf
topographies. The purpose of this approach is to examine the effect of
bottom slope on the mean circu)ation pattern and to identify the
contribution of wind-driven flow under strong and persistent wind
conditions. The possible influence of deep ocean currents on the shelf
circulation is also analyzed. The insulating effect of the slope on the
deep ocean circulation gyres is examined.

To explore the contribution to the mean flow from the long-isobath
density differences on the shelf and the upper slope, a model is
developed ih Chapter 4 for the transient, though long time-scale flow
forced both by a coastal buoyancy flux and by a surface density flux. In
the vertically homogeneous layer below the seasonal thermocline, it is

shown that the thermohaline velocity does not contribute to the density

advection and that the bottom velocity component is crucial to the

advection process. The model is aimed at elucidating the generation of
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bottom velocity and the dispersion of density perturbations. Model
results are compared with the observed bottom water distributions over
various shelves.

In Chapter 5, contributions from various forcing components are
estimated, using the model results in the earlier chapters. The driving
mechanism of the mean southwestward drift in the Middle Atlantic Bight is

then discussed in fe]ationship to the observational evidence .



CHAPTER 2
DYNAMIC EQUATIONS

In this chapter the dynamical equations are formulated, that will be
used in later chapters to study the mean circulation over the continental
margins. The study will be focused on forcing with periods longer than a
month, by wind, deep ocean pressure gradient, river buoyancy flux, and |
surface cooling.

2.1 The Momentum Equations

Consider the motion on a g-plane along a straight and long coast in
the north—south direction. The coordinate system is chosen such that the
x-axis points to the east, y to the north and z upward (Fiéure 2.1). The
bottoh depth is a function of x only and varies from nearly zero at the
coast to the depth of deep ocean. We will use variables without
superscripts to denote nondimensionél quantities. The corresponding
dimensional ones are expressed by a superscript "*". The sea surface is
assumed to be rigid and the density is a linear function of temperature

and salinity. The equations of motion are:

2 2
au* au* au* au* e 1 ap* 3 u* _ 3 u¥ 3 _u*
+ yx + vk W - frv* = - — + A ( + ) + A
* * * * * .
at ax ay az* . Py X HY %8 ay*z v az*z
(2.1a)
2 4 * 2
AVX L kAVE o kBVE L adVE FRuk = - 1_3p* o 4 RVE 3 VE g B v*
* * * * * H 2 2 2
at ax ay 3z . 0y Y ax* ay* Voax




: 2 2 2 .
awx . L owx awx aw* 1_ap* gp* 3wk 3 w¥ o w*
LALLM BNTE LALIEE Ve L B | i . - + A + ) + A
at* ax* y* az* Py 32 o, H gkl ay*Z Vool
(2.1¢c)
* *
qu* , avx , awr _ (2.1d)

aX*  ay*. az*

where u*, v* and w* are the velocity components in the x*, y* and z*
directions, respectively. p* is the pressure and p* is the density with
a mean value Po* f* = fo + g*y* jis the Coriolis parameter. AH and
Ay are the horizontal and vertical frictional coefficients.

We will nondimensionize (2.1) by length sca]e.t: deptﬁ ?L ve]ocity'ﬁ

and density variation ap. An advection time scale L/U is used. The

nondimensional variables are defined as follows:

u* = Uu, V¥ = Uv; w* =-§ Uw
L
- = * |
f*=ff; f=1%sy; 8=0s%L/f
p* = —p_gz* + pofo UL p

L can be chosen as the width of topographic variations. H is the depth
at the shelf break. The velocity scale 3'depends on the forcing applied

and is different for each problem. The nondimensional equations are



where

At the sea surface, z*= 0, the boundary conditions are A

au*
A —
v az*

eq = ﬁ/(foE)

Ey = 2A /(%)
- 2Av/(foﬁ2)
D = H/L

f = fo" Lilgsale,) :

o = D/(fReR)

E, .2 2 E, .2
u au Uy _ oy _ _ 8P Hou ,auy ., vau
x " Vay * Waz) — v X +'?_(a 2t 2 YT (2.2a)
X ay 8z
2 2 E .2
v v v _ %, Hav _sv, . vayv
x * 2y twgg) *fu=- ay i . 2) YT (2.2b)
y .z
E 2 2 E, .2
aw W 3 ap 2 H av_ 3wV vVav
W=+ S+ ) = - -op + D" [ ( +5) + 5 —]
ax ay ) 3z 2 axz ayz‘ 2,2
(2.2¢c)
au , av . aw
x Ty Tz =0 (2.24)

Rossby Number
Horizontal Ekman Number

Vertical Ekman Number

Aspect Ratio

Internal Froude Number

The Relative Importance of Density
Stratification.

au* *
v az¥x © ~Cx/"o

=t;/po, wher'_é 'r§ and 'c;;‘are the x- and y-components of wind




-31-

stress with magnitudezf. In nondimensional form, they are

E
V au
7 az = Colx
at z =0 (2.3)
E
vV oav
7 ez Tb?y

~r

where T =%/(pof0 U H) determines the relative importance of wind stress
to the flow. ‘

At the ocean bottom, we can use the boundary layer analysis to solve
the Ekman layer problem on a slope (é.g. Pedlosky, 1979, Section 4.9).
However, the applicability of this analysis is ambiguous, when the water
shoals to Ekman depth near the coast. An alternate simpler approach is
to parameterize the bottom friction via a Tinear drag law. Let r be the

proportional constant, the bottom stress can be written as

*
A %:r‘u*

v
at z* = -h* (x*)
*
Av'gg; = rv*
In nondimensional form, they are
Ev u_
7 %z ¢
£ at z = -h(x) (2.4)
VAV Ly
7 %z ¢

~r

where ¢ = r/(fO H).
Equation (2.4) is physically more realistic, when the water depth is

of the same order as Ekman depth. It has been used frequently in shelf
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circulation problems (e.g. Csanady, 1976, 1978). Scott and Csanady
(1976) found r to be 0.1 cm/sec from the data taken off the Long Island
coast. It is probably on the high side. The recently accepted values
are between 0.05 cm/sec to 0.1 cm/sec (Winant and Beardsley, 1979;
Pettigrew, 1981). Equation (2.4) is equivalent to the bottom Ekman layer
- solution, if the geostrophic approximation on the bottom velocity is
made. The correspondence between them is ¢ = E$/2/2. The values fof e
and Ev corresponding to r = 0.05 cm/sec and ‘H = 100 m are 0.05 and 0.01,
respectively. The equivalent Av is found to be 50 cm2/sec, which

agrees with the values in common use for A,. Tabie 2.1 lfsts the values
~ of nondimensional parameters pertaining to the western North Atlantic

shelf.

" TABLE 2.1 i

Scaling Parameters and Nohdimensiona] Numbers Independent of Forcing

U " Horizontal Length v 100 km

H Depth at Shelf Break 100 m

D Aspect Ratio 10~3

LA Mean Coriolis Parameter . 10_4 sec™
AH Horizontal Eddy Viscosity 106 cm2/sec
Ey Horizontal Ekman Number 2 x 1074

r Frictional Coefficient 0.05 cm/sec

e Nondimensional Frictional Coefficient 0.05
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Using Equations (2.3) and (2.4), we can integrate (2.2a) and (2.2b)

from the bottom of the ocean to the surface. These equations lead to

U 2w,y (3%, B (G 2u, 2N
gJ( rus +v9+w s j,c de= f —dz “j(fo 3)‘{*”39“5“5(2.5@

-

j(at‘“““” oy W)Jﬁﬁuﬂ*?“] W"'”EJ( W)J;m-(g &t (2.5b)

where uh‘and V|, are the velocity components at the bottom.

Mean longshore velocity over a period longer than one month is about
5 cm/sec on the continental shelf. In this case, the Rossby number is
0.005, which is an order of magnitude smaller than €. EH is much
smaller than e (Table 2.1). We expect that the lateral friction and
nonlinear advection terms in (2.5) are negTigip]e, We will show in the
next section that the cross-shelf momentum balance is approximately
geostrophic to the leading order both in the interior region and inside
the boundary layer, and the term el in (2.5a) is small to the order
e. Therefore, we replace Vi by its geostrophic counterpart and
neglect the elp term. These assumptions have been shown to be
approximately true by the near-shore current measurements south of Long
Island (Pettigrew, 1981).

Typically, D-<< 1 on the shelf. Equation (2.2c) is, in a good
approximation, the same as the hydrostatic equation.. The
depth-integrated continuity equation is the conservation of total

transport. With the above approximations, (2.5a, b) and (2.2c, d) become
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0
-fV=-jh%§dz+"co?:x (2.6a)
0 ]
fU = _I_h 3137 dz + T T, - evy (2.6b)
0=-%_o | | (2.6¢)
“al , aV
% ay =0 | (2.6d)

where the capital letters U and V represent the cbmponents of total
transport in the x and y directions. The boundary condition at the coast

is the no normal flow condition, i.e::
U=0 at x =0 : y (2.7)

The other boundary conditions will depend on each problem considered.
For localized forcing, we expect the disturbances to die out far away
from the forcing region. For deep-ocean/shelf inferaction, we need a
rboundary condition at the seaward boundary of the shelf.

2.2‘Decomposition of Velocity Field

Because of the large variations in bottom topography on the shelf,
the usual decomposition of velocity components into normal modes is not
possible. In this section, an alternate way of decomposition is used,
and the equations are thus simplified. Conventionally, the geostrophic

velocity is separated into a barotropic mode which contains all the
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horizontal transports, and several baroclinic modes which have zero net
transports. Throughout this work, they are defined differently.

The decomposition is achieved through the hydrostatic relation
(2.6c). The pressure at a depth z can be found from the surface pressure

and the internal density distribution by integrating (2.6c):

o | .
p=ps+of o dz | (2.8)
4

The x-derivative of p is

?P _ 2% %ap - - RigW) 2.9
-a—;__a_}i-;-u'_{s;dz f di) -{a (2.9)

Because %~%§ equals the y-geostrophic velocity, (2.9) suggests that it can
be written in terms of two components. The bottom geostrophic velocity

Vi is given by

v =1 (=S + 0-3—"dz) ' (2.10)
b =F ‘ax %, ax A .

which is the geostrophic velocity evaluated at the bottom and is
depth-independent. The thermohaline velocity Ve is the geostrophic

velocity evaluated with the bottom as a reference:

v =-2 30 4, (2.11)

Obviously, Ve satisfies the thermal wind relation. Similar equations

for x-bottom geostrophic velocity are
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Equations (2.10) and (2.12) can be used to eliminate pg. The

resulting equation is

2 (fy ) +2( fv ) = - oa(x) b
3x b’ ay b’ oe ay

where «(x) is the bottom slope and pp is the density at z = -h(x).
In general, when BVp # 0, or when the constant density lines at the

bottom cross isobaths, the bottom geostrophic velocity is divergent.

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

Equation (2.6d) can be used to eliminate U and V from (2.6a) and (2.6b),

resulting in the relation
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Y _ - Tor _ AT(% 2P |
[ Fouy +phy, = 1:_;: 6—-/42 2 43 (2.19)

where the definitions of ug and Vp have been used, and F is given by

The coastal boundary condition (2.7) can be written in terms of ub and

Vp as
. Oap
eV, = fhub - °~}ih zsy-dz + ’Co Zy : at x =0 (2720)

‘Equations (2.18) to (2.20), with other appropriate boundary
conditions, can be solved for Up, and Vh diagnostically. The
thermohaline components are readily found from the density distribution, .
and the velocity field is obtainéd.4 In the next seétion, a density
equation is derived in terms of u, and Vie It is possible to solve
the problem prognostically. We will discuss the characteristics of
Equations (2.18) and (2.19) in the rest of this section. The order of
magnitude of the flow contributed by the wind and density forcing
components will be estimatedr

Over the continental shelves, g is small. Equations (2.18) and

(2.19) can be combined into a single equation for Upe It is

Vi, 2 _ e 2 T 3F
¢ s + fuo 9 7 ox z?) T “& (2.21)

Here f may be chosen to be +1 to represent the Northern Hemisphere.




Equation (2.21) is interpreted as a heat equation with -y as the
time-1ike coordinate. Assuming that the forcing is zero in the region
Y > VYo then both up and vV vanish there. At the coast, a topographic
'boundary layer of width (eLy/ao)]/z exists, where Ly is a

nondimensional longshore length scale and «_. is the mean slope in the

0
nondimensional coordinate system. We will use the superscripts "I" and
“B" to represent the interior and boundary layer solutions respectively.

The interior solution is found by letting ¢ = 0 in (2.19). We have

uy = | | (2.22)

From (2.18), vg is expressed as

- ¢
V‘:-_-..oacr(ﬂ,-ﬂ,)+r°j§;<(§)d3 :
Y

(2.23)

where vé =0aty = Yo has been used and Bb(x, yo) is the bottom
density at y = Yor Let VE =‘vb - vé and ug = Uy - ué.
The equations in terms of boundary layer variables derived from (2.18)

and (2.19) are:

B
Vv
b B
€ 5%~ @ Uy = 0(e) (2.24)
3UE 3VE
2+ 2 _ .
" v 0 (2.25)

From (2.25), we can express uE and VE by a stream function ¢B such
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that
B
B_ a8 -
Up = =3y (2.26)
B
B _ 8¢
S Vp = ey | (2.27)

To the leading order, Equation (2.24) can be rewritten as

2.8 B ,
) g _
s—a;?'*'aw-—o v A | (2.28)

If the water depth is zero at the coast, the leading order balance in

(2.20) is
2 g8 I | . ’
€ ox = 'l'o'ty - € Vg | .at X = 0 (2.29)

For simplicity, we assume that o is of order one and the forcing is
over a‘unit longshore distance. Equations (2.22) and (2.23) show that
the interior flow driven by wind stress curl is of the order 7% in
both the x and y directions. The interior density-driven flow is of
different characteristics from the wind-driven one. The magnitude of the
interior flow produced by an order one density disturpance is estimated
to be o from (2.23). However, the cross-shelf interior flow, given by
(2.19), is at most of the order e¢. In both wind- and density-driven
cases, the bottom friction terms are of the order ¢ in the interior

region. Inside the coastal boundary layer, (2.28) demonstrates
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that the cross-shelf length scale is e1/2 for a unit longshore forcing
scale. The order of magnitude for the flow in a boundary layer can be
estimated from (2.29). For the flow forced by a longshore wind stress,

8 is of the order 258—1/2. The corresponding ug and VE are

-1/2

of magnitudes TBE and Tble respectively. In the density-driven

case, (2.29) shows that dB is of the order oel/Z with a boundary layer flow

of the order 051/2

and ¢ in the x and y directions respectively.
Therefore, the coastal boundary layers in the density-driven circulation
are less important than in the wind-driven case. The above estimation of
the order of magnitude clearly shows that the relation

eug << 25 << VE is always satisfied if ¢ << 1. Therefore, the use of
the quasi-geostrophic approximation and the neglect of euh term in
derivfng equations (2.6a,b) from (2.5a,b) are justified.

2.3 Discussion : -

The decomposition of velocity ffe]d into a bottom velocity and a
thermohaline velocity is not new. A similar decomposition was used by
Fofonoff (1962) and later by several others in diagnostic ocean
circulation models (e.g. Sarkisyan, 1977). There is a crucial difference
between Fofonoff's decomposition and the presented one. Fofonoff's
expression for'the "barotropic" transport is the same as (2.14). ' However,
the "baroclinic" component is different from that given by (2.15) because

of his neglect of the specific volume anomaly at the bottom. With the no-

tation of Section 2.2, Fofonoff's "baroclinic" transport may be written as

v (° o (% s
-_f_;;jzfdz = ;C-L‘Z;;dz - ‘%‘o(,"‘n
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No such approximation is made in (2.11). The difference is presumab]y
unimﬂortant in the deep ocean circulation, because the horizontal density
variation is nearly zero at the bottom. When the shelf circulation is
concerned, horizontal density differencég at the bottom become so
important that they are the main driving force of the depth-independent
component of the flow. Unlike Fofonoff's decomposition, the presented
one is more general and valid even when the bottom reaches the level with
large horizontal density variations. Péd]osky (1974) also applied. this
decomposition implicitly. The topographic bouﬁdary layer in Section 2.2
is the same as that in his model. Equation‘(2.23) is similar to his
solution for the interior velocity at the bottom, which includes the
effect of longshore bottom density variations. In a homogeneous fluid,
Equat%on (2.28) is equivalent to the one in Csanady's (1978) arrested
topographic wave model, where the thermohaline component vanishes.

The idea of decomposition was also used by Csanady (1979) in studying
the steric set-up along the continental marginé of the western North
Atlantic Ocean. Csanady (1979) expressed the sea level elevation by a
contour integral on the density field. The integral can be interpreted
as the sum of two constituents: (1) the integral of the bottom velocity
outside the coastal boundary layer, defined by (2.23), along an
iﬁtegration path at the ocean bottom from a reference isobath (4000 m in
his calculation) to the location where the sea level is to be calculated; .
(2) the integral of the thermohaline velocity at the sea surface, given
-by (2.11) with z = 0, along an integration path in the wéter Eo]umn from ‘

the bottom to the surface. This representation of sea level elevation is
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possible if the bottom geostrophic velocity is nondivergent. However,
when the bottom density varies along isobaths, Equation (2.18) shows that
the bottom geostrophic velocity becomes divergent and Csanady's method of
integration can not be used.

Equations (2.18) and (2.19) thus provide a general method for the
diagnostic calculation of ocean éircu]ation with the presence of density
variafions at the bottom. In a special case of no long-isobath density
differences, Csanady's (1979) method suggests the integration of (2.11)
and (2.24) from a deep reference level to the surface for calculating the
dynamic height along the continental margins. Thfs dynamfc height
calculation provides a theoretical base for the classical method used by
Montgomery (1941) and readily has practical applications.

2.4 The Density Equation

Horizontal density advection-will be taken into -account in a
simplified way because, in its generél form, the three-diménsiona]
density equation is intractable. The problem is simpler when the water
column is nearly homogeneous vertically. Under this condition, the
density equation may be depth-integrated and the dependence on the
z-coordinate is eliminated. It is possible to extend this
depth—integration to the vertically stratified case, if the horizontal
density gradient is approximately independent of depth. The density
equation in the dimensional form is
.37,#

3? f xbf ~IL .
;—C- + l& ax,‘ + '\)'*3'2)f +w 32’ l((a 33*’.)1‘-’(‘/ J-Z-*" (2.30)
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where KH and’Kv are the horizontal and vertical diffusion coefficients.
Other variables are the same as those in the earlier sections.
The ratio of the vertical advection term to the 1ongshore advection

term is estimated by approximating w* and v* with Ub*a* and vb , where

a* is the actual bottom slope. The result is

¥
’W*:S* T i
T * * (2.31)
]w_;g_’[ v, I?,%*/ | a

In the density-driven case, (2.18) and (2.19) shoW that Up*/vp* ~ ¢
outside the topographic boundary layer. The vertical advection is

negligible, if

%*

¥ 2p I _ll?;f
”( «< 3 >«a* (2.32)
For a density difference of 0.3 x 10—3 gm/cm3 in a longshore distance of

100 km, « = 0.05 and o* = 10—3, we require : << 6 x 10 -7 gm/cm4 or a
density difference of 6 x 10~ -3 gm/cm in 100 m of water. Inside the
topographic boundary 1layer, “b*/vb* ~ 51/2. Equation (2.32) is
satisfied, if ap* << 3 x 1074 gm/cm3 in a water depth of 20 m.
Subéequent]y, we will neglect the vertical advection term when

considering the density-driven flow over the continental shelf in winter.

At the surface, the density flux condition is given by

* *
K\,?f = Q Catzx =0 (2.33)
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where Q* is the surface densty flux caused by atmospheric influences
(heating, cooling, evaporation, etc.). The bottom condition is the one

with no normal diffusion flux:

* *
2 2
Ky --C él" + Ky 35- =0 at z* = -h*(x*) (2.34)

At the coast, the river outflow is modelled as a density sink of strength

R*:

at x* = 0 (2.35)

wl_n
A

JEL

For other horizontal boundaries, we require p*

0 away from the density
sinks or sources. Equation (2.30) is integrated from the bottom to the

surface. Making use of (2.33) and (2.34), we have -

2 2"
ffdz-r+f(u I '+V* r) dz* = “3)(4[ 9?:12 +kh‘a_j"_{, 'an + Q (2.36)

Equation (2.36) is the conservation of density in a vertical column. The

nondimensional form of (2.36) is

(]
kli dF P 2 3fol Qo
3 ff’dﬁf(” +v })Jz-.Y,,J‘ d2 +Y ;7};7 2 +%QA (2.37)

-—

where y = K /(s f [2) is the nondimensiona] diffusivity, and
Q = Q/( HAp) is the nondimensional surface density flux. The coastal

boundary condition for a river density flux with scale R is given by
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j S_C R, R at x = 0 | | (2.38)
l\ -
where R = ﬁ/(eRfoﬁfA;) is the nondimensional coastal buoyancy flux.
Simplification of (2.29) is made by assuming %% and gi-independent of
depth. We also require that the vertical stratificatidn varies in a time

much Tonger than the advection time. The density advection term becomes

J(u—+v—z)dz =yd rvX | (2.39)

where U and V are the total transports given by (2.6a) and (2.6b). Only
the transports associated with the bottom geostrophic velocity and fhe
bottom frictional velocity can effectively advect the density field under
the assumptibn of vertical homogeneity of the horizonté] density
gradient, since

DF

0,y P
U +V ¥4

< bx Cay

i

| a 2f a T
._.;-( E-a—v-d -;(- ;j JZ)
P

2 2P 2P 2P
"\(3'53,}“5;“)

n
O g
QAL

It follows that (2.37) can be rewritten as

0 3 _ N of
ki{ thu~€ 370+ Chy gy =¥ (hs)+ Y;U\ )+Q,Q

where ¢ is the mean density in a water co]umn.' Under winter vertically .
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homogeneous condition, p and p are the same as e, We have

W o, ) 3& o

2h i hu-ev )8 L hv+eu Moy,

) (huy, b) 5= +( WY+ b) U\ Va(l\ Y+Q,Q 2. 40)
Equation (2.40) and the momentum equations (2.18) and (2.19) form a
complete set. In the following chapters they will be applied to the mean

shelf circulation under various forcing conditions.
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Figure 2.1 Schematic diagram showing the coordinate system.




-48-

ﬁOOm

—-00¢

- 0Cl1

|
002

_ I
061 olo)}

(wy) FONVLSIT

(W) Hld G



CHAPTER 3
THE EFFECT OF STEEP SLOPE ON THE BOTTOM PRESSURE FIELD

The formulation in the previous chapter shows that bottom geostrophic
flow can be generated on continental shelves by wind and long-isobath
density variations. In this chapter, we will neglect the long-isobath
density variations and concentrate on the analysis of the wind-driven
flow. The flow forced by wind stress at the coast and by wind stress
curl on the outer shelf and slope will be considered with emphasis on the
topographic effects. We will also examine the poésib]e influence of a

deep-ocean circulation gyre on the shelf circulation.

3.1 Formulation of the Problem

Bécause of the large offshore topographic variations at continental
margins, the forced bottom geostrophic flow at various offshore ]ocations
should be different. In order to stﬁdy the effect of topography on the
mean circulation, the bottom topograﬁhy is idealized as a long and
straight coast with bottom depth as a function of the offshore
coordinate. The steepness of bottom slope is preserved by choosing a
cross-shelf bottom topography representing that in the Middle Atlantic
Bight. Figure 3.1 is a plot of the topography which will be used in the
subsequent numerical computations. In this figure the depth and the
offshore distance are nondimensionalized by sca]eé of 100 m and 100 km
respectively.

The nondimensional equations derived in Chapter 2 will be used here.

The coordinates are the same as those in Figure 2.1, with x in the
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offshore direction and y in the longshore direction. Without the
long-isobath density variations, Equation (2.18) shows that the bottom
geostrophic velocity is nondivergent and can be written in terms of a

stream function ¢, which is also a measure of bottom pressure:

1 3¢

Ub = —?—3—)7 (3.1&)
1 3¢

Vb = ?K (3.1b)

In a homogeneous fTuid, ® equals g times sea surface elevation.
Substituting (3.1a, b) for Uy and vy in (2.19), the vorticity
equation governing the motion becomes

)4’ +/e fz-—dz-roF (3.2)

—-Fo( 53- €
where o(x) = dh/dx is the bottom slope and F = fz[)x(t)) )] is -
f times the curl of wind stress. Equation (3.2) is a parabo]1c equation,
in which the signal propagates to the -y (*y) direction in the Northern
(Southern) Hemisphere. In this chapter, we will discuss the case in the
Northern Hemisphere (f = +l), and specify -y as the forward direction.
Suppose that the forcing acts only in the region y < 0. The boundary

condition at y = 0 is then similar to an initial condition and can be

specified as ¢ = 0. Since the second derivative in y has been neglected,
boundary conditions are not needed at the forward side (y < 0). The
boundary condition at the coast is obtained by substituting (3.1) into

(2.20). The resulting equation is



0
2¢ 2 _ _ 2f tx=0 3.3
e+ h2 cng-of 2 at x (3.3)

where Z& is the longshore wind stress. For wind forcing over the
shelf and the upper slope, the motion away from the forcing region is

small and we have
6 =0 at x = oo (3.4)

This seaward boundary condition in the case of deép ocean'forcing will be
discussed in Section 3.4.

Following Csanady (1978), one may interpret (3.2) as a heat equation,
in which ¢ is "temperature" and -y is "time". Furthermore, e is the
thermal conductivity and of is the heat capacity which is variable for
non-constant slope. Two other terms., ghag/sx and —ZBF-I-FO'-‘.{C:ZZ_)':AE .
correspond to the heat advection and the heat source terms respectively.
Using this formulation, the effects of coastal wall and steep bottom
slope on the mean circulation will be studied in the following sections.

3.2 Local Wind Forcing

Equation (3.2) with the boundary conditfons (3.3) and (3.4) are used
to estimate the order of magnitude of the flow driven by wind stress and |
its curl over the shelf and the upper slope. The shelf topography in
Figure 3.1 is approxihated by a linearly decreasing bottom with slope
a, joined by a much steeper slope of constant magnitude ap at the

shelf break (x = xb); We assume o >> a Over the shelf and

On
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upper slope, the terms containing 8 are small, being proportfonal to the
depth, and will be neglected.

3.2.1 Longshore Wind Stress Forcing

Assume that the Tongshore wind streé% is uniform from y‘= -Ly to
y = 0. The'wind stress curl term in (3.2) vanishes, and the flow is
driven by the fdrcing term in the coastal boundary condition (3.3). We
‘rescale y by Ly such that y = -Lyn. Equation (3.2) suggests an
offshore length scale & = (eLy/uo)llz near the coast. Let x = s¥.

In terms of § and n, (3.2) and (3.3) become

24 _ ¢ .
27 vgt i (3-5)

)

20 2¢ Ly 4 °

.—_~A-_=(——)( -0 Zfdﬁ = .

TR Er N L3 :{ ! at x=0 (3.6)
. o

where A = ho(eaoLy)-llz-and h, is the bottom depth at the coast.

Equation (3.5) shows that the width of the coaéta] boundary layer develops

as nll2 in the +n direction. In the case of vanishing bottom depth at

the coast, the order of magnitude of ¢ is
~ -1/2
¢ ~ O[T, (eay /L, ) 7H2] (3.7a)
The corresponding offshore and longshore components of velocity are

up - O[Tb(eaoLy)-l/ZJ (3.7b)

and
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Vp ~ O('L(';/e) _ v (3.7¢)

Typical values under a 1 dyne/cm2 longshore stress forcing over 100 km
of the coast are listed in Table 3.1, where the length scale and other

parameters in Table 2.1 are used.

Table 3.1

Scales and Nondimensional Parameters in the Wind-Driven Case

Wind stress, T 1 dyne/cm?
Length sca]e,'f_ 100 km

Depth, H 100 m

wind stress curl 10~/ dyne/cm3
Coriolis parameter, fo 1074 sec—1
Frictional coefficient, ¢ | 0.05
Velocity scale, IT 1 cm/sec

In the general case h0 # 0. The effect of bqttom depth at the
coast depends on the parameter a. For a << 1, the term Aag/an in (3.6)
is negligible to the order A compared to the term a¢/8¥. The solution is
therefore not affected by the choice of ho, except in the region very

close to the shore. If A >> 1, the dominant balance in (3.6) is

Ly 4 °
- K.%i; = (zi.)"-(n.c.}_o;{?ggd?_) at x =0 (3.8)
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which simply states the compensation of offshore surface Ekman transport
by the geostrophic onshore flow. Equation (3.8) is equivalent to the
coastal boundary condition in Ped]osky's (1974) model. For o =0, ¢ is

)1/2

of the order (Ly/ao/e Ty» which is 1/A times smaller. than

that with » = 0. We can write a in the form

L2 2 (hglag)I(ely lag) | - (3.9)

o(eaoLy)
which is the ratio of the distance between the coastal wall and the apex
of the wedge—shaped bottom, to the width of boundéry layer. A deep
coastal wall will effectively exclude the near-shore circulation and will
not change the dynamics of interior flow significantly.

Eduation (3.3) is the general boundary condition for coastal
circulation problems. It is equiva]ent to a radiation condition in the
heat conduction analogy. This relation is useful because a coastal wall.
can always be used to exclude the near-shore pbrtion of the shelf when :
the flow in the interior region is concerned. On the other hand, if the
near-shore circulation is of interest, (3.3) can be simpTified to a flux
condition for zero bottom depth at the coast. One application will be
described in the next chapter, where we deal with the density diffusion
at the coast. A coastal wall can be used to exclude the singularity in
the density equation when h = 0.

3.2.2 Wind Stress Curl Forcing

Unlike the longshore wind stress forcing which drives a flow inside a

coastal boundary layer, wind stress curl 1is an interior forcing effect
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and the resulting flow has a much larger offshore extent than in the
previous case of longshore stress forcing. We assume that the longshore
wind stress vanishes at the coast and the surface wind stress curl is

non-zero over the shelf and slope from -L to O in the y direction.

y
Using the same independent variable n as in the previous section, we have

29 _ tly 2 Toly -
3'! = -——(;;- ;-;(-L - -T.r; F 0 <X X< Xb (3.10&)
EE, - i___"_‘_“a ?_ﬁl _ Go L‘a = Xp < X (3.10b)

o(l AIX® oty -

o/
—

where ¢0 and ¢1 are the stream functions in the shelf and the slope
regions respectively. For ho = 0, the boundary condition at x = O becomes

an insulating one:

]
.._.d>° =0 at x =0 (3.11)
2 X

At x = Xy, we require the continuity of ¢ and Vh?

b, = 61 (3.12a)
3(3" = Ef' ~ (3.12b)
IX IX -

We also assume that ¢1 vanishes on the seaward boundary and the initial
conditions are ¢, = 0 and ¢;=0aty=0.

To understand the dynamics of the flow under wind stress curl
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forcing, Equation (3.2) can be integrated with g = 0 over an area enclosed

by y=0, y= Yq < 0, x =0, and x =00 . It becomes
4 wd - a e (4 2G)-2(3]
ja" XJ ' "-' (3 X‘f‘ -Co‘F 9 ; Y+

Using the boundary condition at y = 0, it is easy to show, with
integration by parfs, that the term on the left-hand side of the above
equation is the total longshore transport across y = Yo The first term
on the right-hand side vanishes, because 3g¢/ax = 0 at x = 0 and x =00 .
The last term is the line integral of wind stress vector along the

boundary of integration region. The resulting equation is

Ry en)dx = T § x.ds
o ' f 9

Therefore, the total Ekman transport out of the section of the shelf
between y = 0 and y = Yo is compensated by a geostrophic longshore
transport across y = Yo

The flow pattern can be examined by boundary layer analysis. For the

shelf and slope region outside boundary layers (cf. below), the dominant

balance in (3.10a, b) gives a Sverdrup flow across-isobaths. It is

2" L

o _ —CO g )

?;a = ::; E 0<x< X (3.13a)
X

)d)l - ~'T°L'? E Xp <X (3.13b)
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where the superscript "I" indicates interior solutions. n = 0 is
equivalent to an eastern boundary in Stommel's (1948) model. Therefore,
By = ¢; = 0. Equations (3.13a, b) can be integrated from n = 0 in the

forward direction of the parabolic equation. We have

: A
1 Tly(Fa
<t>b = = So . 0 <x<x | (3.14a)
¢I _ t‘i»j?F 47 Xp < X (3.14b)
| A

The interior response on the slope is then ,ao/al times smaller than that
on the shelf. Typically, or.o/al = 1/50. We expect that the change in sea
surface elevation caused by wind forcing is weak on the slope. The

offshore velocity is found fr‘om (3.13a, b):

I TF
U, = _;—o 0 <x<xy (3.14c¢)
l,{bI = GF Xp & X (3.14d)
<>l\
The longshore velocity is
T ’ 1
9 (F
%:TDLQ_L%Z(;[V)""I 0 < x < xy (3.14e)
1
L 3 (F X, < X 3.14f
Vk.:tol“ai'é?(?,)d'? b < (3.14f)

In the wind stress curl forcing case, the longshore and the offshore flow
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are of comparable strength in the forcing region. The maximum longshore
flow is weaker by a factor eLy/ao than that under longshore stress
forcing. Table 3.1 also lists these flow parameters for 1 dyne/cm2
variation in .offshore wind stress over a longshore distance of 100 km.

In the region y < —Ly, the onshore interior bottom flow in (3.1l4c, d)
is identically zero, and the bottom pressure is caused by the forward
influence of the pfessure field in the forcing region. In the heat
conduction analogy, the pressure field is created by an initial
"temperature" distribution at y = —Ly, which is given by evaluating
(3.14a, b) at n = 1. For a steep slope with s << 1, the initial
distribution of bottom pressure decays slowly, énd the Tongshore velocity
is about the same as that inside the forcing region.

Besides the coastal boundary layers discussed in the previous
section, boundary layers also exist at the shelf break, where an abrupt
change of bottom slope occur. These boundary layers are required to
satisfy the conditions (3.12a, b). Since the boundary layer width is

inversely proportional to al/Z

>l/2

, the boundary layer on the slope is
(ao/al times narrower than that on the shelf. According to (3.12b),
¢, must be (aO/al)l/Z times smaller than ¢,. For a very steep

continental slope, the effective boundary condition for the flow on the

shelf is then

6 =0 at x = x (3.15)

1/2

The error in using (3.15) is of the order (ao/al) / . The heat
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conduction analog to the continental slope is a material of very large
hegt capacity, while the shelf is of small heat capacity. As far as
shelf circulation is concerned, the slope is effectively a constant
temperature boundary.

If the forcing is limited on the slope, ¢_ is, at most, of the

0
same order as ¢q. To satisfy (3.12b), the much Targer length scale
on the shelf requires

2% 2 0 at x = x‘b (3.16)

20X

Equation (3.16) is the same as the coastal boundary condition in the case
of a vanishing coastal wall [Equation (3.11)]. Therefore, the
circulation on the slope is not altered whether the continental slope
shoals to zero depth at the coast or joins a gentle shelf at the shelf
break. In the heat conduction analogy, the boundary of a material with
large heat capacity located in an environment of small heat capacity can
be considered as insulating, since only a relatively small amount of heat
will leak out. Equation (3.16) also shows that the bottom pressure is
nearly constant across the boundary layer on the slope. If there is a
longshore bressure gradient over the slope, it will fall onto the
shelf /slope boundary. Therefore, the use of a longshore pressure
gradient as boundary condition at the shelf break to parameterize the
deep ocean influence, e.g. in Csanady's (1978) model, is justified.

In summary, the discussion in this section deduces some

characteristics of the steady circulation over the shelf and slope. In
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dealing with the circulation on the shelf, the continental slope acts as
a boundary, where the bottom pressure is prescribed. This bottom
pressure is more or less constant across the slope region. In
particular, with vanishing forcing on the slope, it is expressed by
(3.15). For circulation over the slope, the shelf is a boundary with
vanishing normal pressure gradient given by (3.16). These inferences are
useful in studying the circulation over continental margins.

In order to apply these inferences, some cautious notes must be
made. Equations (3.15) and (3.16) are valid only to the leading order.
Therefore, (3.16) does not imply ag /ax = 0, because ap,/ax is one
order of magnitude smaller than a¢1/ax. It is aﬁso incorrect to derive
¢l = 0 from (3.15) for the flow on the slope. The boundary conditions
would be over;specified, if ¢1‘= 0 and 34 /3x = O were used.

3.3 Numerical Soiutions

Equation (3.2) is solved numerically over topography simulating the
Middle Atlantic Bight, which is characterized by a two-order of magnitude
variation in the bottom slope (Figure 3.1). The shelf and slope regions
are infinitely long in the y direction with isobaths parallel to the
coast.. We will assume that the wind forcing is lTimited from —Ly to 0
in the y direction, which is represented by a ha]preriod sine wave with
a peak value of /2 so that a unit mean wind stress is.obtained in the
forcing region. We will chose ¢ = 0 in this section. Because the
forcing can influence the forward portion of the shelf only, an initial
condition ¢ = 0 is used at y = 0. Equation (3.3) is the boundary

condition at the coast. The boundary condition (3.4) is applied at the
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2000 m isobath. To simplify the interpretation, ¢ will be considered as
the nondimensional sea surface elevation. The dimensional scales in
Table 3.1 are used.

The computation starts from y = 0 and progresses in the -y
directiqn. For each value of y, Equation (3.2) is solved by the Euler
modified scheme to have second order accuracy in both x and y coordinates
(e.g. Roache, 1976). As discussed earliier, the forward boundary
condition is not needed. The important parameters are the magnitude of
forcing, the boundary layer width av[d = (sLy/aO)l/Z], and A given
by (3.9). In the actual computation, we will fix § and vary the shelf
width, W, which is defined as the distance from the coast to the 200 m
isobath. Solutions for Tongshore wind stress forcing and wind stress
curl forcing are studied separately in order to isolate their
influences. Because the equations are linear in the wind-driven cases,
the general forcing problem in principle can be solved by adding the
solutions for forcing at each coast section.

3.3.1 Longshore Wind Stress Forcing

Table 3.2 summarizes the numerical solutions under longshore wind
stress forcing. The sea surface elevation in Case I is produced by a
positive longshore stress over the portion of shelf fromy = -2.5 to
y = 0. The shelf is so wide that the coastal disturbances do not reach
the shelf break. Figure 3.2 shows the distribution of sea surface
elevation in this case. A parabolic boundary layer is present at the
coast. The sea surface elevation decreases fromy = 0 toy = -2.5. It

then rises slowly in the region y < -2.5 The bottom velocity is not
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Table 3.2

Summary of Numerical Solutions Under Longshore Wind Stress Forcing

Nondimensional | Case

Quantities* _ I AT _IIT
Shelf width, W, (100 km) 1.6 0.85 0.85
Water depth at the coast, hys (100 m) 0 0.75 0
Forcing range, Ly (100 km) 2.5 2.5 2.5
Mean wind stress (1 dyne/cm?) 014  0.14 0.14
§ /W 0.2 0.4 0.4

A ‘ o o . . 21 0
Maximum ¢ (1 cm) ' ~1.28 -0.49 -1.39
Maximum up (1 cm/sec) -0.99 -0.33 ~-1.14
Max imum vy (1 cm/sec) 4.43 1.45 4,43
Total transport (105 m3/sec) ' 0.35 0.36 0.36

* The dimensional scales are given in parenthesis.

shown, but it can be found easily from the gradient oflsea surface
elevation. Inside the forcing region, the offshore surface Ekman
transport is compensated by a bottom geostrophic flow from the forward
side of the forcing region. The strongest longshore flow occurs at the

coast in the forcing region and migrates offshore in the region
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y < =-2.5. This longshore flow reaches a much longer distance than the
wind stress itself. Although the strength of longshore velocity
decreases on the shelf forward to the forcing region in the longshore
direction, the total longshore transport across the shelf, calculated
from the Tongshore velocity, is nearly constant in the region y < -2.5.
In the case with a negative longshore stress, the flow behavior should be
the same but the direction of flow is reversed.

The effect of a finite coagta1 bottom depth is examined in Case II,
where a coastal wall is placed at x = 0.75. It is shown in Figure 3.3
that the surface elevation in the region x > 0.75 is similar to that with
zero depth at the coast, except that the coastal wall cuts off the flow
shoreward of it. In Case III, the longshore wind stress acts on a shelf
where the boundary layer reaches the shelf bre@k. The contour plot of
bottom pressure is shown in Figure 3.4. According to this plot, the sea
surface elevation field is qualitatively similiar to that in Figure 3.2,
but the steep slope topography now plays a role in limiting the flow on
the shelf. Longshore flow is present at the shelf break because of the
constraint of a steep continental slope. These qualitative behavior is
generally in agreement with those discussed in Section 3.2.1.

Quantifative effects of a coastal wall and a steep continental slope
under longshore wind stress forcing can be found in Table 3.2.. Since the
maximum sea level change occurs at the coast, a coastal wall effectively
reduces the maximum responses of the sea surface elevation and the
magnitude of longshore velocity. The effect of a steep continental slope

is not significant for the flow driven by Tongshore wind stress. The
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total longshore transport is not influenced by either a coastal wall or a
steep continental slope.

3.3.2 Wind Stress Curl Forcing

Figure 3.5 shows the sea surface elevation under forcing by a
positive wind stress curl over the portion of the shelf between y = 0 and
y = -2.5 (Case IV). The shelf is wider than the coastal boundary layer.
In the forcing regibn, the sea surface is depressed in the -y direction
by the curl of wind stress. Forward to the forcing region in the
longshore direction, the sea surface remains nearly the same. A steep
continental slope plays an important role under wind stress curl
forcing. The change in sea surface elevation ié greatly reduced over the
slope. The associated bottom velocity field can be seen in Figures 3.6
and 3.7. In Figure 3.6, the onshore flow in -2.5 < y < 0 is clearly
associated with the Sverdrup tranéport. Forward to the forcing region
(y < =2.5) the cross-shelf flow is weak. Longshore bottom flow shows a
positive maximum at the shelf break (Figure 3.7). This longshore flow
persists to a great longshore distance forward to the forcing region. At
the coast, a weak counter flow in the forcing region is present. The
longshore transport is mainly contributed by the strong longshore flow
over the outer shelf (Figure 3.8). The total 1ong$hore transport
integrated acrosé the shelf is found to remain constant in the region
y < =2.5.

When the wind stress curl is positive, it produces an upward vertical
velocity at the base of the surface Ekman layer. This vertical transport

is supported by the interior geostrophic onshore transport outside the
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horizontal boundary layers. As the shelf break is approached, the strong
bottom slope prevents the onshore geostrophic velocity from becoming too
large. The transport then comes from the bottom Ekman Tayer and a
positive longshore flow is generated. For a negative wind stress curl,
the pattern is the same but ¢ changes sign and the flow direction is
reversed.

The effect of a coastal wall is studied in Case V. Thé_sea surface
elevation and the maximum onshore velocity are about half of those in
Case IV, and the maximum longshore flow is only slightly reduced (Table
3.3). Over a narrow shelf (Case VI), the sea surface elevation, the
onshore flow, and the Tongshore velocity are only slightly samller then
the relative values in Case IV (Table 3.3).

The circulation driven by wind st;ess curl has characteristics
different from those of a longshore wind stress driven flow. The latter
is a boundary 1ayerlf1ow and is less influenced by the pressence of a
steep slope. However, the velocity distribution under wind stress curl
forcing is mainly determined by the bottom topography with strongest flow
at the shelf break. The region of steep continental slope serves as a
buffer zone to the wind-driven shelf circulation. The steep bottom slope
not only reduces the flow response to forcing but also prevents the
circulation on the shelf from Teaking onto the continental slope. With
the exception of the area close to the shelf break, the deeper part of
the slope is quite free from the wind effect.

3.4 The Insulating Effect of a Steep Slope on a Western Boundary Current

3.4.1 Introduction
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The analyses in the earlier sections show that the slope region is
not affected significantly either by the flow on the shelf or by the wind
forcing over the slope. However, deep ocean "baroclinic" and
"barotropic" currents may drive the circulation over the continental

slope, especially on the western side of the ocean. To understand fully

Table 3.3

Summary of Numerical Solutions Under Wind Stress Curl Forcing

Nondimensional ' Case
Quantities* LIV v VI
Shelf width, W, (100 km) ‘ '1.6‘ , 0.85 0.85
Water depth at the coast, h,, (100 m) 0 0.75 0
Forcing range, Ly (100 km) 2.5 2.5 2.5

Mean wind stress curl

(1077 dyne/cm?) 0.4 0.4 0.4
s/W : 0.2 0.4 0.4

A 0 2 0
Maximum ¢ (1 cm) ~1.45  0.646  -1.08
Maximum uy (1 cm)sec) -0.96 -0.45 -0.74
Maximum v (1 cm/sec) 1.70 1.54 1.66
Total transport (lO5 m3/sec) 1.80 1.05 1.05

* The dimensional scales are given in parenthesis.
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the shelf/deep-ocean interaction, it is necessary to solve a nonlinear
general circulation problem on the western side of the ocean with
considerations of stratification and large bottom topographic variations,
which is at present out of the question. However, as far as the shelf
circu]ation is concerned, the detailed structure of western boundary
current is not of interest to us. Some parameterization of the deep
ocean flow hopefully will provide a qualitative descriptioh of the deep
ocean influence. |

The chart of mean wind stress curl over the North Atlantic Ocean
(Leetmaa and Bunker, 1978) shows a line of zero wind stress curl
generally following the path of the Gulf Stream. The curl is positive
north of this zero contour line and negative south of it. It is of the
order 1078 cm/secz. Simple barotropic ocean models (e.g. Stommel, 1948)
predict an anticyclonic gyre in the south and a cyclonic one in the
north. The flow is intensified at the western boundary with the
strongest current at the latitude of maximum wind stress curl. This
pattern is altered by the presence of bottom topography at the western
side of the ocean.

Schulman and Niiler (1970) solved numerically the linear equations of
wind—driveh circulation in a homogeneous ocean with topography running in
the north-south direction at the western boundary of the ocean. Linear
bottom friction as that in Stommel's (1948) model was used. In their
solutions, the western boundary current flowed along constant f/h
qontours, and deep ocean gyres were distorted southward at the western

boundary. The northern gyre was the one which contributed to the
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near-bottom flow on the continental slope and rise off the Middle
Atlantic Bight. A Jongshore pressure gradient imposed by deep ocean
circulation at the shelf break was shown in their results. They also
inferred the -asymptotic behavior of the flow on a very narrow continental
slope. It was found that the Tong-isobath flow over the continental
slope was proportional to the water depth.

Killworth (1973b) studied the linear equations governing the
circulation of a homogeneous ocean with the presence of a much steeper
continental slope at the western boundary than that in the Schulman and
Niiler's (1970) model. It was argued that the lateral viscosity
dominated the vertical viscosity in the bottom Ekman layer over the
continental slope. This assumption lead to a bottom frictional
coefficient proportjona] to thg bottom slope. With the aid of boundary
layer analysis, Killworth found that most of the linear western boundary
current was located at the foot of the slope. The steep slope
effectively isolated the shelf circulation from deep ocean flow. The
conclusion drawn from his study is qualitatively different from that of
Schulman and Niiler (1970).

Schulman and Niiler's (1970) model, though much simplified, is likely
to give a qualitatively accurate description of the barotropic western
boundary undercurrent below the main thermocline north_of the Gulf
Stream. Nevertheless, there is a possibility that the gentle bottom
slope used in their numerical computation causes a pressure gradient
from deep ocean circulation being imposed on the shelf. In their

asymptotic limit of a narrow slope-region, the flow decreases smoothly
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with bottom depth from the slope/rise junction to the shelf break. This
is true only when the slope is much narrower than the boundary layer
thickness. However, the thickness of boundary layers is generally of the
same order of magnitude as the width of the continental slope or less.
The limiting case in Schulman and Niiler's (1970) analysis can not be
applied to the realistic topogaphy. The insulating effect of Killworth's
(1973b) model is probably overemphasized on the continentai slope,
because of the assumed dependeﬁce of frictional coefficient on the bottom
stope. This assumption conflicts with the generally accepted linear or
guadratic bottom friction laws.

Circulation with stratification and bottom topography in the western
North Atlantic Ocean was solved numerically by Semtner and Mintz (1977).
Since they used a basin size about one third of the actual width of the
North Atlantic Ocean, a Targe wind stress (3 dynes/cmz) was needed to
reproduce the observed Gulf Stream transport. In their model, the shelf
flow north of Cape Hatteras seemed to be influenced by the cyclonic deep
ocean gyre to the north. Their result was used by Beardsley and Winant
(1979) to support the idea of a deep ocean imposed pressure gradient at
the éhe]f break.

Beforeba definite conclusion on the slope/deep-ocean fnteraction can
be made, several points need be clarified. Although the chéice of a
larger wind stress by Semtner and Mintz (1977) is valid in the deep ocean
region, the effect of wind stress forcing on the shelf circulation is
Qverestimated. Also, the cooling/heating is stronger on the shelf and

upper slope than in the deep ocean because of the shallower depth. It is
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not clear whether the pressure gradient on the shelf 1is derived from the
deep ocean circulation or simply due to the response to local forcing.
Furthermore, in Semtner and Mintz's (1977) results, the shelf flow
contains a thermohaline component, which is caused by the local density
field. It seems that the pressure gradient on the shelf in their model
is not necessarily forced by the deep ocean circulation.

In view of the controversial speculations on the effect of a slope,
it is important to analyze the conditions under which the deep ocean may
drive the mean shelf circulation. In the following section, a
quantitative analytical approach valid for steep topography is
developed. We will study the case in which the density variations
associated with the "baroclinic" current do not reach the bottom of
continental slope, e.g. in the Slope Water region north of Cape Hatteras
in the western North Atlantic Ocean. This approach should place the
problem in a clearer focus than the numerical model of Semtner and Mintz
(1977) or the boundary layer analysis of Killworth (1973b). A simple
Stommel-type deep ocean model (Stommel, 1948) is used to parameterize the
deep ocean influence as a boundary forcing on the near-bottom flow over
topographic variations. This parameterization of deep ocean influence,
however, is likely to be valid independently of the deep ocean model
used. The effect of near-bottom density variations will be studied in
the next chapter.

3.4.2 Model of Slope/Deep-Ocean Interaction

Consider an ocean with topography, which is uniform in the

north-south direction. The coordinate system is defined so that x points
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to the east and y to the north. The basin extends from x = 0 to Xe

in the east-west direction and infinitely long in the y direction. The
bottom depth is nearly constant with a mean depth hy over most of the
ocean. Inside a narrow band at the western side of the ocean, a
éhe]f/slope topography as shown in Figure 3.1 is present. It joins
smoothly to the deep ocean bottom. Variations in bottom density along
isobaths are neglected. We will keep the g terms in Equatipn (3.2) and
use a constant Coriolis parameter when it is not differentiated_(f =1,

nondimensionally). The vorticity equation governing the motion is

29 2¢ 3 _ g (%2 .
Ea—-x’_-l-ol aa +(}>L\5—$—T0F ‘Bo.ikzax dz (3-2)

where the bottom pressure perturbation, ¢, is fe]ated to the bottom

geostrophic velocity by

Uy = — ?Li | (3.1a")
°9
v = ﬁ (3.1b")
b 2

The terms'on the left-hand side of (3.2') represent curl of bottom |
stresé, vertex stretching, and g8 times the transport associated with the
bottom geostrophic velocity. On the right-hand side of (3.2'), the terms
are wind stress curl and -8 times the thermohaline transport definded by
Equation (2.15). Under the assumption of vanishing long-isobath bottom

density variations, only if g8 is non-vanishing, can the bottom flow be
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driven by the density field. On the continental shelf, the B terms are
small because of shallow water depth. The local forcing is mainly caused
by wind. In the Tower slope and deep ocean regions, the g terms can be
important.

In the region Xq £ X < Xgo where the bottom depth variation

is small, the vorticity tendency balance in (3.2') is reduced to

2 . 0
Ez_s_i +FL°’%§ = GF -{50‘;[&2 :7(:0!2 X > X4 (3.17)

Outside the western boundary layer, the bottom friction term is

negligible. Equation (3.17) expresses a Sverdrdp relation, in which the
transports of bottom geostrophic velocity and thermohaline velocity are
balanced by the curl of wind stress. The first term on the left-hand
side of (3.17) is important only inside the western boundary layer. At

the eastern boundary of the ocean (x = x the condition ¢ = 0 must be

o)
satisfied. We will integrate (3.17) from xq to Xge The integration

Teads to:
2¢ _ o € 4y =
&;;J,cf;_ ﬂhyto}:a[x-}- Aiddxjk o2 ¢° (3.18)

where &, = e/(Bhd) is the width of Stommel's (1948) western boundary
layer in a flat bottom ocean. —hd¢0 is the "barotropic" transport
integrated across the latitude circle, or the difference between the total
Sverdrup transport produced by the wind stress curl and the thermohaline

transport. The latter occurs mainly above the main thermocline. If the
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bottom pressure at the eastern boundary is zero, ¢o may also be
interpreted as the bottom pressure distribution at x = &d. The solution
for x < x4 must satisfy (3.18) at x = x4 through the continuity of ¢

and ad/sx. The boundary condition for the flow on the slope becomes
afb
d I ¢ CIS at x = x4y (3.19)

and the deep ocean circulation is decoupled from the problem. The
validity of (3.19) does not depend oh the exact Tocation of X4s once

Xq is outside the region of large topographic variations. Also, it does
not depend on the particular model used for deep ocean flow, since only
¢0 and the parameter 84 are involved.

In the region x < Xy we ngg]ect the wind stress curl forcing in
order to isolate the influence from deep ocean. Equation (3.2) becomes
K VL gh 2%

2 2X

4 = —/Wf % f dz (3.20)

The boundary condition at the coast with hO =10 is

E?i):o at x = 0 (3.21)
oX

=0 at y=0 (3.22)
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may be specified, if the deep ocean pressure field vanishes at y > 0.
Equations (3.19) to (3.22) can be solved by assuming a bottom pressure
distribution ¢0 at x = X4 and a density distribution in the region

X < Xge Two .driving forces are present in this formulation: ¢0, which
is a parameterization of the deep ocean effect; and an interior forcing
term in (3.20) caused by local thermohaline flow.

3.4.3 Flow Driven by a Longshore Thermohaline Current over the Slope

It has been shown in Section 3.2.2 that the pressure field set up by
forcing in the slope region will appear as a longshore pressure
distribution at the shelf break. Letting do = 0, we may examine the
effect of a thermohaline current on the pressure.fie]d over the slope.
The flow behavior is the same as that under wind stress curl forcing. We
will examine the response of the flow in the interior region of the slope
away from boundary layers.

From (3.20), the interior vorticity tendency balance becomes

:—-/50'} olz ——-(g\/
In dimensional form, the long-isobath pressure gradient is

X £, %
L QA
For a mean current of the order 10 cm/sec extending to 100 m depth, the

longshore sea surface gradient over a bottom slope of 10~2 is

10_9. With such a longshore gradient imposed at the shelf break,
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Csanady's (1978) model gives a longshore bottdm flow of 0.2 cm/sec, which
is too small to have significant contribution to the mean flow. Only’
when the Gulf Stream meanders onto the slope region with a mean
thevrmoha]ine velocity of 10 cm/sec extending to 500 m, can a bottom
velocity of 1 cm/sec be produced on the shelf.

3.4.4 Forcing from Deep Ocean Currents

In this section, the right-hand side of (3.20) is set to be zero to
study the effect of deep ocean currents. The forcing on the flow in the
slope region comes from the boundary‘ condition (3.19). Let a, be the

typical nondimensional slope and L the Tongshore dimension of deep

y
ocean gyre. A topographic boundary layer is present over the continental
slope with width s = (t-:L_y/mO)l/2 as discussed in Section 3.2. Using

the variables % = (xd - x)/8 and n = -y/Ly, (3.20) leads to

L =0 0 < x <x4 (3.23)

The boundary condition (3.19) becomes

0§
i'zj—:;i + Ct: = (i)o at x = x4 (3.24)

If 6,/ >> 1, the dominant balance in (3.24) is

ijm
b

5~

l

= C}) at x = x4 (3.25)
[+

o/
—

and ¢ is of the order §/64 << 1 in the region x < x4. In this case,
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only a small portion of the deep ocean bottom pressure field will reach
the region of large topographic variations. Therefore, even the boundary
layer is of the width of the slope, the sea surface elevation at the
shelf break is still G/Gd times smaller than the deep ocean value. To
the deep ocean flow, it is equivalent to have ¢ = 0 condition at the
western boundary and a strong western boundary current is present as in
Stommel's (1948) model. For a gentle topography G/Gd >> 1, (3.24)
becomes ¢ = ¢0, and the deep ocean bottom pressure distribution extends
entirely over the slope as if no boundary were present between them.

To estimate the magnitude of ¢0, we need to know the total Sverdrﬁp
transport and the thermohaline transport in the bcean. The uncertainty
in the wind stress curl calculation prohibits an accurate estimation of
the Sverdrup transport. Leetmga et al. (1977) compared the transport
calculated from the wind stress curl with the thermohaline transport.
They found these two values were equal in the southern gyre within an
uncertainty of * 10 Sverdrup in the deep water between 1000 and 3000
decibars. Using 10 Sverdrup as the upper limit for the barotropic
transport in the northern gyre between 1000 and 3000 decibars, the
barotropic transport will produce a sea surface rise of 5 cm across the
basin along a latitude circle. With a north-south scale of 1000 km in
wind stress, the sea surface gradient is 5 X 1078 outside the western
boundary layer. If the width of the long-isobath flow on the continental
rise and slope off Cape Code observed by Luyten (1977) and Schmitz (1974)
is used as the wjdth of western boundary layer, 84 will be about 100 km.

For e = 0.05, L, = 10 and ay = 50, -which correspond to a longshore

Y
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scale of 1000 km in the y direction and a bottom slope of 5 x 10"2, we
have ¢ = 0.1 or 10 km dimensionally. The sea surface gradient over the
slope is at most 5 x 10_9. Even if this gradient is totally imposed onto
the shelf break, it is unable to make a significant contribution to the
shelf circulation.

Equations (3.19) to (3.22) have been solved numerically using the
topography shown in Figure 3.1: A longshore forcing range of 1000 km is
used. The parameters ¢ and g8 are 0.05 and 0.0l respectively. Figure 3.9
is a map of the bottom pressure disfribution. The long-isobath velocity
is shown in Figure 3.10. Obviously, a realistic continental slope
effectively prevents the deep ocean circulation from influencing the
hear—bottom flow on the shelf. This illustrates in detail the conclusion
already reached in Section 3.2‘from a general analysis of the vorticity
tendency balance.

3.5 Applications of the Slope Model

The characteristics of the mean circulation on the continental slope
may be used to interpret some geochemical observations. Biscaye et al.
(1978) studied the near-bottom distribution of ;uspended particles and
excess radon-222 on the continental shelf and slope off New York Bight.
They found thét the concentration of suspended particles generally showed
a seaward decrease across the shelf. Héwever, beyond the shelf break,
there was a zone aproximately parallel to the isobaths, in which the
concentration of suspended particles went through a minimum and rose

again in the deep water. The center of this minimum concentration of

suspended particles was somewhere betweem the 1500 m and the 2000 m
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isobaths. The distribution of near-bottom excess radon was similar to
that of suspended particles. It also showed a zone of minimum
concentration which coincided with that of suspended particles. Biscaye
et al. (1978) found that the zone of minimum concentration of near-bottom
excess radon and suspended particles was not correlated with either the
bottom sediment distribution or the concentration in the surface layer.
Two uncompatible explanations were suggested by them. One was that the
near-bottom water over the slope was so quiescent that the excess radon,
being produced within the sediments and diffused across the
sediment-water interface, was not mixed vertically more than a meter or
so above the bottom. The other explanation waé fhat the near-bottom flow
over the slope was so active that the water mixed with the mid-depth
water from the ocean interior, which would be ]ow,in suspended particles
and contain no excess radon. Such mixing had to be strong enough to
dilute the flux of excess radon from the sediment, however, the mixing
should not stir up the bottom sediments.

The model solutions in this chapter readily give an explanation to
the distributions of suspended particles and excess radon. We have shown
that the slope region is not disturbed by either the wind from.the
surface or the circulation on the shelf. The deep ocean circulation is
also prevented fkom reaching the slope region. This argument is
applicable to low frequency flow. In the higher frequéncy band,
near-bottom current measurements of Luyten (1977) and Schmitz (1974)
showed that therg was no increase in kinetic energy form the continental

rise to the slope region. It is unlikely that there is any mechanism
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which will increase the near-bottom mixing on the slope. It may be
concluded that the upper shelf region below the thermocline is so
quiescent that the excess radon produced in the sediments is not mixed
into the water column and no disturbing mechanism is avaliable to
resuspend the bottom sediment as observed by Biscaye et al. (1978).
3.6 Summary

In this chapter, we have discussed the model responses pf the flow on
the continental shelf and slope under forcing by longshore wind stress,
wind stress curl, and deep ocean currents. The flow driven by the
longshore wind stress is mainly inside a coastal boundary layer as in
Csanady's (1978) model. OQutside this boundary layer, the flow is driven
by the curl of wind stress. This flow is strongly influenced by the
bottom topography. The continental slope has two effects: it reduces the
flow response to wind stress curl forcing over the steep slope, and it
prevents both the deep ocean circulation and the shelf circulation from
leaking onto the slope. An examination of the influences of thermohaline
flow over the slope and the near-bottom deep ocean circulation show that,
without the forcing caused by long-isobath bottom density variations,
these two sources are unable to contribute significantly to the flow on
the upper slope below the thermocline. The model results reveé] that,
except for a possible deep ocean imposed thermohaline ve]ocity'component,
the upper slope below the thermocline is quiescent. These results can be
used to explain some geochemical observations on the continental shelf

also.
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Figure 3.1 Bottom profile used in numerical computations. The distance
and the depth are scaled by 100 km and 100 m respectively.
The shelf shown is a "wide" shelf.
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Figure 3.2 Distribution of bottom pressure ¢ over a "wide" shelf, forced
by a positive longshore stress fromy = -2.5 to y = 0 (Case
I). The nondimensional contour interval is 0.1.
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Figure 3.3 Distribution of bottom pressure ¢ forced by a positive
longshore stress fromy = -2.5 to y = 0 with a coastal wall

placed at x = 0.75 (Case II). The nondimensional contour
interval is 0.1. '
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Figure 3.4 Distribution of bottom pressure ¢ over a "narrow" shelf,
forced by a positive lTongshore stress fromy = -2.5 toy =0
(Case III). The nondimensional contour interval is 0.1.
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Figure 3.5 Distribution df bottom pressure ¢ forced by a positive wind
stress curl fromy = -2.5 to y = 0, which is uniform in x
(Case IV). The nondimensional contour interval is 0.1.
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Figure 3.6 x-component bottom geostrophic velocity distribution
calculated from the bottom pressure field in Figure 3.5.
Dashed lines represent negative values.
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Figure 3.7 y-component bdttom geostrophic velocity distribution
calculated from the bottom pressure field in Figure 3.5.
Dashed lines represent negative values.
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Figure 3.8 Transport of longshore bottom velocity shown in Figure 3.7.
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Figure 3.9 Bottom pressufe field produced by deep ocean forcing with
e = 0.05 and 8 = 0.01.
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Figure 3.10 Long-isobath bottom velocity calculated from the pressure
field in Figure 3.9.
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CHAPTER 4

DENSITY-DRIVEN FLOW AND THE DISPERSION OF DENSITY PERTURBATIONS

4.1 Introduction

In a rotating homogeneous fluid the vorticity constraint of bottom
topography effectively prevents cross-isobath geostrophic flow. If the .
bottom density field varies only in the cross}isobath directidn, one
particular solution of Equations (2.18) and (2.19) is the zero bottom
geostrophic velocity. The result is thermoha]ine-circu1ation with
geostrophic velocity calculated with the bottom on fhe reference level.
In this situation the vorticity is not affected by topographic
variations. However, when a bottom density gradient exists along
isobathé, simple sea level adjustment to the density field is not
possible. The geostrophic velocity relative to the bottom, calculated
from the density field, becomes divergent. This divergence leads to
vorticity changes and the generation of 1ong—isobath bottom flow.

There are several places in the world ocean, where surface cooling or
evaporation is so strong that the water column becomes unstable and dense
water is formed by this atmospheric effect, e.g. in the Antarctic
Continent, the Norwegian Sea, and the Mediterranean Sea. Dense water is
also found in the outflow waters from these regions (see Warren, 1981,
for a review). Furthermore, the dense water may reach the ocean bottom
in areas with shallow water depths, and a dynamic interaction between
long-isobath density variations and bottom topography may take place.

The most prominent example is the production of dense saline Antarctic
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Bottom Water on the Antarctic continental shelves by the salt fe]ease
during ice formation (Gi1l, 1973). Over mid-latitude shelves, the dense
water caused by winter cooling may reach the bottom also. Examples can
be found in the northern Adriatic Sea (Henaershott and Rizzoli, 1976),
the Middle Atlantic Bight (Bigelow, 1933), and the Gulf of Maine, where
the Gulf of Maine Intermediate Water is formed (Brown and Beardsley,
1978). Another source of possible interactidn between density and
topography is the river efflux under weakly stratified conditions.
Unlike the case in which dense water sinks to the-bottom; the ]ith water
remains on the bottom because of the mixing under afmospheric cooling and
tidal action near the coast. .

| The mere long-isobath bottom flow generation process is not the whole
story..-Observations show that the Gulf of Maine Intermediate Water
reaches the New England shelf in summer (Hopkins and Garfié]d, 1979).
The Antarctic Botfom Water also flows along the Weddell Sea shelf break
westward to the northern tip of the Antarctic Pehinsu]a (Forster and
Carmack, 1976). Apparently, bottom flow advects the density field, and
the resu]ting density structure, in turn, produces new long-isobath
bottom flow. The dynamics of this "self-advective" interaction can be
understood only if both density advection and topography are taken into
account. However, this leads to a very complex problem.

Numerous attemps have been made to model the mean shelf circulation

including density effects. The complexity of the problem has
necessitated various simplifications. Basically, there are three ]

categories of model assumptions. In the first category, bottom ’
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topography is neglected, e.g. Stommel and Leetmaa's (1972) model on the
eastern North American shelf and Killworth's (1974) model on the
Antarctic shelves. The second categqry models take into account both
topography and stratification but not tﬁé effect of density advection.

~ The model of Pedlosky (1974) belongs to this one, as do many “"diagnostic"
numerical models. The major shortcoming of these models is the neglect
6f the important dynamics of density advection which causes the density
perturbation to propagate away from the source region. Hendershott and
Rizzoli (1976) included all the essential dynaﬁic factors in their
numerical calculations. Their model belongs to the third category, in
which stratification,'topography, and density advection are all
considered. In this chapter, the dynamics of density-driven flow is
further investigated both analytically and numerically using simple
models of the third category.

We will apply the equations derived in Chapter 2 to the general
problem of interaction between steep bottom s]bpe and density variations
caused by both surface density flux and buoyancy sourcesbat the coast.
The evolution of the flow driven by horizontal density differences will
be predicted by the model. The case to be studied is whén the horizontal
density variations reach the bottom and the constant density lines at the
bottom do not coincide with isobaths. If surface heating or river
discharge merely produces a uniform layer of light water at the surface,
the density field will have no dynamic significance to the bottom flow.
So is the case when the bottom density is constant along isobaths. These

two situations have been discussed earlier in Chapter 3.




4.2 Formulation of the Problem

" 4.2.1 The Velocity Field

We consider the density—driven.flow on a shelf with a Tong and
straight coast, where bottom depth depends on the offshore coordinate
only. The coordinate system is the same as that in Figure 2.1. For
density-driven flow, tﬁe velocity sca1e is chosen according to the
density variations so that o is unit and 15 is zero. The s—ef%ect is
- neglected and the nondimensional Coriolis parameter f is +1 or -1
depending on the hemisphere where the shelf is located. Therefore, 1/f
determines the direction of the time-like coordinéte in tHe heat

conduction analogy. The governing equations (2.18) and (2.19) become

?L..Ef + -_a_v_-b = = g-( 3.&.’ (4.1a)
? 2 £ 'auo\_
Y , .
_— — 4+ U, = O 4,1b
E.BX f L ( )

where o is the bottom slope in nondimensioﬁa] coordinates.

When the long-isobath bottom density variations are not negligible,
(4.1a) shows that the bottom velocity becomes divergent and a.stream
function can not be defined. However, it is possible to decompose the
bottom velocity into one divergent component Vg and two nondivergent
ones, v_ and u_:

e e

Vp = Vg * Vg | ' (4.2a)
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o o (4.2b) -

and vy is defined by
Bﬁ,
°d

Over an infinitively long shelf with horizontal isopycnals in the

undisturbed region, V4 can be chosen as

y=-Flh-Ael= -2 (4.3)

where Bb(x) is the bottom density at infinity. V4 then vanishes
at infinity with localized disturbances. For simplicity, we will

~ consider 5 (x) to be identically zero. This situation occurs on the
shelf when a homogeneous bottom layer is presentAbe1ow the seasonal

thermocline. The nondivergent velocities are expressed by a stream

function 4@,

ue':-'

w\q)
o

(4.4a)

©-

|

i
g = 2

~ (4.4b) -

X

With application of (4.2) to (4.4), (4.1b) may be rewritten as
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_)_if’ 44?? ALY (4.5)

4,2.2 Case of Vertically Homogeneous Water Column

We will model the winter condition on the continental shelf, when the
water column is nearly vertically homogeneous. Using (4.3) and (4.4),

Equation (2.40) can be expressed in terms of Vqs @, and o'. We have

»p 2’ 2 _ X 3,12 Y oY
SE-'-L(QS; +Uq*‘3’-——ga—)-((t\g£)+¥35b+ Q, h (4.6)
where
2¢ € (2¢
d .
an L ob € Efl
Va = ( ax T i) h 2y '

are the sum of the bottom geosfrophic velocity and the dépth-averaged
bottom frictional velocity. To avoid the singularity at h = 0, we apply
a coastal wall of depth h0 at x = a. The coastal boundary conditions

from (2.20) and (2.38) become

(4.7a)

I
]

2 2¢ £ 1, K o'
E'gf‘f"po?? _Ff g at x

and

X‘}‘ ?F R, R at x (4.7b)

X

n
]

where R0 = ﬁ](engﬁfkgﬁ and R is the nondimensional buoyancy flux.

We assume that the denéity disturbance is limited in space so that the




_105_
other boundary conditions are
$=0; vy=0; andp' =0 at x »o0and y —>tvo (4.8)

Equations (4.5) and (4.6), with the boundary conditions (4.7) and (4.8),
may be used to model the flow driven by surface density flux or a river
buoyancy sdurce. |

In the mid-shelf region over a wide shelf, the velocity and density
fields are not affected by boundary layers. Initfal]y, the horizontal
density field has the same length scale as that of fhe surface density
flux, which is of the order of hundreds of kilometers. We scale the
density field according to the size of atmospheric disturbances. For an
order oﬁe longshore density perturbation and an order 6ne bottbm slope,
V4 being given by (4.3) is also of order one. From (4.5), the stream
function ¢ of the nondivergent velocity is of the order ¢ in the interior
region, and the flow is dominated by the direct density—driven combonent
Vq. For y << 1, the order one interior balance in the denéity'
equation (4.6) is between the time dependent term and the longshore

advection term. The leading order balance in (4.6) is

!/
X
>t —Ffay"o | (4.9)

where (4.3) has been used for V4- Equation (4.9) is a nonlinear
first order partial differential equation, which is the same equation

governing the shock wave propagation (e.g. Whitham, 1974). The density




-107-

diffusion in the y direction. is important in the shock region.
- Therefore, we will retain the y-diffusion term and write the governing
equation away from coastal and shelf edge boundary layers as
LI f' 2! Yi)-o' (4.10)
2t 3 za‘ :
which is Burgeré' equation after a coordinate transformation (Whitham,
1974). Equation (4.10) will be discussed in detail in the next section.
In the vorticity equation (4.5), the same topographic boundary layers
of Section 3.2 exist near the coast and at the shelf break. Stroqg
- density gradients are also present at both the shelf break and the
coast. We will call these regions of strong density gradient "density
boundary layers" to distinguish them from the topographic boundary layers
of the bottom pressure field. The near-shore flow is -complicated by both
topographic and density boundafy layeré. When the density field at the
coast Qaries in the longshore direction and the coastal depth is finite
(hO # 0), there is a thermohaline transport normal to the coast. A
topographic boundary layer is needed to satisfy the no normal flow
condition (4.7a). Letting the longshore length scale of the density
variation be Ly éver a shelf of constant slope @y, the topographic
boundary layer is of the width & = (el Expressing (4.5) in
terms of topographic boundary layer variables §= x/6 and n = —y/Ly, we

have

(4.11)
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i

The boundary condition (4.7a) may be rewritten as

f_‘é __‘_Fba'zf - S, ’ A: Qf' : ’
°F o5 27 Tf XYY (4.12)

The relative importance of the two terms on the right-hand side of
(4.12) may be decided by an order of magnitude estimation. Because p'
and 3p'/an are order one by the present scaling, the terms Sayo' /T
and hg/(ZGao)ap'/an on the right-hand side of (4.12) are of the order
§a,y and hg/(aao) respectively. The ratio of the latter to the former
is (hO/aO)Z/sz. Therefore, if the coastal wall is inside the
topographic boundary Tlayer (hO/ao <<°8), the first term, Gaop'/f,
dominates.

In the atmospheric cooling case, the forcing scale along the x axis
is approximately the shelf width. The stream function ¢ is of the order
§ at most by the use of-(4.1i) and (4.12), and an order one longshore
nondivergent velocity cancels the divergent 1ohgshore velocity at the

coast. For a coastal buoyancy flux, a density boundary layer width
8p = vhy/R,

can be found from the density boundary condition (4.7b). The forcing
term on the right-hand side of (4.11) is then of the order (aoa/f)slsR.
The salinity gradient caused by freshwater runoff is generally limited to
; narrow near-shore band inside the topographic boundary layer.

Therefore, 6/6R >> 1 and forcing on the right-hand side of (4.11)
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dominates those on the right-hand side of (4.12). Although the forcing

- term is significant only inside a density boundary layer, the flow field
extends to a wider topographic boundary 1ayer. Outside the topographic
layer, the flow is weak. A similar situation occurs at the shelf break.
The influence of the shelf break front on the mean flow is limited to the
vicinity of the front. We will suppbse that fhe flow over the mid-shelf
-is not greatly affected by these boundéry 1ayers.

The density boundary condition (4.7b) shows that large density
perturbations are produced when h0 is small. However, the above
analysis demonstrates that the main fo}cing on the vorticity equapion
- comes from the term on the right-hand side of (4.11), which is
independent of h,. Consequently, the artificial coastal wall is not
critical for the solutions, and the singularity in the density equation
has only local effect. o -

4.3 Dispersion of an Initial Dénsity Perturbation along Isobaths

Equation (4.10) shows that the density field over the mid-shelf is
charaéterized by a shock wave-1like propagatioh of the density
perturbation along isobaths. Simplé analytical solutions of (4.10) may
be used to describe the development of density field from an initial
“density distribufion. The examples given in this section refer to the
case of a shelf in the Northern Hemisphere. In the Southern Hemisphere,
the propagation direction is reversed.

Let the initial density perturbation along a particular isobath be

o' = F(y) . att=0 (4.13) ‘\
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which may be produced, e.g. by a sudden overturning of the water column.

Let the perturbation be limited in the y- direction in such a way that:
Fly) > 0 as y —> +00 o (4.14)

For a shelf with constant slope a,, we will replace y by

n = —fY/ao. Equation (4.10) is then reduced to

' ! 2.7
ﬁ-{-fl_:}%’.:)/%—;;_‘

.1
ot (4.18)

where v = Y/ag. This is Burgers' equation (Whitham, 1974).
I]]uminating results follow from the Known ané]ytica] solutions of
(4.15).

The characteristics of the flow depend on the sign of F(y). F(y) >0
corresponds to an excess of density, and F(y) < 0, a deficiency of

density. Assume an initial delta function densify perturbation
F(n) = As(n) A>0 (4.16)

The solution of (4.15) is given by

“ o ) e'?%yut)
f’(7'.t) = __3{ (e—’ 7 L zt (4.17)
t ﬁ+(e—:)] 63'45
=

where u = A/2v (Whitham, 1974). Two parameter ranges of u in (4.17) are

of interest. For u << 1, the denominator in (4.17) is J= + 0{(u) and
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!
ft)= —_ e (4.18)

This is the solution of the heat equation for an initial delta function

distribution of temperature. Indeed in this approximation

/ /
2 2L
37 277-
and
’ 'b?. /
2Ly 2L
At 37’"

which is precisely the heat equation. Thewdensfty disturbance diffuses
evenly in both +n and -n direction away from the source. The other
parameter range u >> 1 is of greater interest. We write o = n/(2At)1/2.
For n > 0, the asymptotic expansibn of the integral in (4.17) is

fav "S ZA e‘/‘sz( ) .
€ 3 o~ T - ———' - B>
0 2056 7./«9 )

To the leading order, (4.17) becomes

i

M
f \[_— Mo+ gXe Mol

?-J_G

or

f’: A ° T y 0= 1 . p->00  (4.19)
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In the 1imit u >> 1, the term ZGJFK'exp[u(ez—l)] is much greater than
Equation (4.19) is

1 for e > 1, and is much smaller than 1 for 8 < 1.

(4.20)

further approximated by
in0<n< (2at)l/2

p' (n:t) = n/t
=0 otherwise.
A density front is formed at

This solution is of a saw-tooth shape.
172 to zero across the front.

n = (2At)1/2 apg o jumps from (2A/t)
The width of the front can be estimated by using a Tayor expansion of
. We have

let 8 =1 - 6', where &' << 1

Equation (4.19) at e = 1

(1-8")
t+2 ((-8"){Tim éwej

/ —

S

It

The width of the density front is given by &' = 1/4/u, or vtl/z/(ZA)l/2 in
1/2

n coordinate. Figqure 4.1 is a sketch of p'(ZA/t)‘l/2 as a function of
- (aat)l/2,

n(2at)"1/2,
_1/2, the maximum

The position of the density front is determined by n
follows that the front moves in the +n direction with a speed (A/2t)

Since the dependent variable in Figure 4.1 is p'(2At)
1/2, independent of .

magnitude of density perturbation decreases as t~




-113-

However, the total density perturbation along an isobath is conserved.

This is easily seen by integrating (4.15) from n = —¢0 to *oo:
2 ™ 00
= ] /
7
_?_S J:'d,z - - _'f- + v f, = 0D
3t 2 >
Zoa 7 -vo 'Z nz-00

where o' = 0 and 3p'/on = 0 at n = *oo have been used. The evolution of
the density structdre of a heavy water blob described by (4.19) is
sketched schematically in Figure 4.2. It is obvious that the heavy water
perturbation moves along isobaths in the direction of Kelvin wave
propagation.

The characteristics of the solution for an {nit1a1 density deficiency

are different from those of (4.20). Let
F(n) = -As(n) A>0O at t =0

The asymptotic behavior is

I

p(n) ~.n/t Gin —(ean)t 2 ¢ <o

=0 otherwise

which is the same as the solution for a positive initial perturbation,
except that the direction Qf propagation is reversed. The longshore
density dispersion for a negative perturbation is also shown in Figure
4.2.

In the oceanic bottom water formation, the density distribution is
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seldom a delta function. Nevertheless, certain properties of the
solution (4.17), e.g. the, speed of front propagation and the conservation
of total density perturbation, are independent of the diffusion -
coefficient. For a general density distribution with u >> 1, they can be

inferred from the first order equation by neglecting the diffusion term:

! '
2f 1 °f
S—-E + F Y =0 ' . (4.21)

For an initial perturbation F(n), the solution of (4.21) is
o' = F(n - p't) (4.22)

o' is constant along characteristic curves, which are straight lines with
slope o' on fhe n-t plane. The front forms when two characteristic
curves 1nter§ept. The propagation speed of the density front, c¢', which
is different from the slope of characteristic curves, can be found by
transformation to a coordinate system moving with the front. Letting

n' =n-c¢c't,t' =t, and G = p'2/2, (4.21) becomes

— —

! . {
f _ 2 424 _ g (4.23)
atl 3’(, 271

In (4.23), 3p'/at' is of order one in the coordinate system moving with
the front. But sp'/an' is much greater than one. Assuming that the

front is at n' = 0, we integrate (4.23) across the front from O- to O+
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~c'[P'(ot) ~Po ]+ GloY = G(o) =0

Therefore, ¢' is given by

: Cz(0+)-‘67(°.) / !, -
= = = L[p(hy pito7] (4.24)
P'to*) - fto)

If ¢ is the propagation speed in the y-coordinate, it may be written as
L 7 - -+ -
C =~ — Z—jg’[f(o*ﬂf’(o )J:-le:_\g(OHVd(o)] (4.25)

Equation (4.25) shows that the front propagation speed is the average of

V4 across the front.

We define the total long-isobath kinetic energy per unit depth as

2
0 4
Xo

| o dy = ! :Zd
x4 ?*;gzajzf 1
Zpo
To examine the decay of kinetic energy, Equation (4.15) is multiplied by
p' and integrated from'y = —-0g to *®@. Using the boundary conditions

o' = 0 and ap'/an = 0 at infinity, we have

1l

2 (LR, oy [Ty
2V a2 2] (55 )

—00

The front région with strong density gradient is mainly responsible for

the dissipation. The width of the front has been estimated earlier in
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this section as v/(ZA/t)I/Z. Therefore, ap/an = 2A/(vt) and

Q s 3
B I 2 o(b L;a 2A /Z
o) idy= - (T
oo 2
The kinetic energy of density perturbation decays as t'3/2. The

decéy js fast if the perturbation is strong or the bottom slope is large.
We will estimafe physical quantities of the flow field from the above
results. The most significant quantity is the propagation speed of a
density front. Suppose that at t = 0, the perturbation in density is
concentrated at y = O with total density excess of 0.2 x 10% gm/cm2 along
an isobath. u is 12.5 if K, = 4 x 10% cm®/sec and the bottom slope is
10—3. Equation (4.20) shows that the maximum density inside fhe saw-tooth

3 gm/cm3 over a

shape perturbation will have a value of 0.28 x_107
Tongshore distance of 140 km afte} 47 days. The front propagation speed

is 1.7 cm/sec. After 6 months, the maximum density will be 0.14 x 1073

gm/cm3

and the density perturbation spreads over a longshore distance of
277 km. The front propagation speed has decreased to 0.87 cm/sec.

In the case of flow driven by density flux at the coast, the flow
behavior depends on the characteristics of the topographic and density

boundary ltayers. To demonstrate this situation for a shelf with constant

slope ag, we eliminate uy from (4.1a, b). The resulting equation is

.._Fo(?.l_ff - Eﬁb +o(1 Df’
6 24 Ix* ° a?

(4.26)

The boundary condition is Vp = 0 at x = 0. In the Northern Hemisphere,
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the bottom velocity field in the topographic boundary layer spreads in
the -y direction independent of the sign of o', because of the parabolic
nature of (4.26). However, the flow direction is determined by the
density perturbation. We will call -y the forward direction as before

and assume that the longshore density perturbation is limited between

y=0and y = —Ly. For a buoyancy flux (p' < 0), 3p'/ay is positive at
y = 0 and negative at y = -Ly. In terms of the heat conduction analogy,
there is a "heat" source at y = 0 and a "heat" sink at y = -L . The

y
longshore velocity develops from zero at y = 0 to a positive value at

Yy = —Ly. In the region y < —Ly, the Tongshore flow becomes negative
near the coast. This negative longshore flow extends outward in the -y
direction in a parabolic boundary layer.

Because vy = 0aty=0, there is no density advection backward
across the liney = 0. Aty = —Ly, the Tongshore flow goes from zero at
the coast to a negative value in the near-shore region. This flow will
advect the negative density perturbation forward beyond the y = —Ly
line. Therefore, longshore dispersion of near-shore light water in the -y
direction will develop with time.

For a positive density perturbation, the flow direction is reversed.
We have Vp = 0 at y = 0 as before. However, Vi is now positive at
y = —Ly near the coast. It prevents the longshore density advection to
the region y < —Ly. The initial spreading of dense water is offshore.
When there is significant dense water in the interior region, the

self-advection process discussed earlier comes into play. These

qualitative differences in flow responses to coastal buoyancy flux and
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density flux will be examined numerically in the next section.

4.4 Numerical Solutions

In this section, Equations (4.3), (4.5), and (4.6) are solved
numefica]]y for flow forced by a coastal buoyancy source and surface
density flux over a limited area. The topography used in the computation
is uniform in y and has a shelf width of 160 km (Figure 3.1). A vertical
wall is placed in fhe near-shore region with boundary conditions given by
(4.7a, b). Since the forcing term in (4.6) is inversely proportional to
the water depth h, the density perturbation is small for large h. The
seaward boundary conditions in (4.8) are applied to some deep water
locations or outside the region of densitywpertﬁrbations on the shelf.
The analyses in the previous section show that the solutions are
characterized by density dispersion in the forward direction. Therefore,
the flow and the density perturbaiion vanish at the backward boundary.

To avoid the unrealistic boundary layers at the forward boundary, we
approximate the boundary conditions in (4.8) by the computational ones,
ap'/ay = ad/ay = 0, for technical convenience (Roache, 1976).

The computation starts with o' = 0 and ¢ = O when the forcing is
applied at t = 0. At each time step, the density equation is solved by
an implicit scheme (Roache, 1976), and the velocity field is calculated
in the same way as in Section 3.3. One iteration is u;ed at each time
step to estimate the advection velocity. The computation proceeds for a
dimensional time period of about six months.

4,4.1 The Density and Velocity Scales

Because of the nonlinearity of -the problem, the resulting density
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perturbations are not linearly related to the magnitudes of forcing. It
is necessary to deal with each case with different density flux
separately. Since the choices of density and velocity scales are
arbitrary, we will use the scales which provide computational convience.
For density-driven flow, the ve]otity is scaled by the magnitude of
density perturbation. Therefore, the parameter o, which is the relative
contrfbution of the density-driven component to the total velocity, is
chosen to be 1. We will use the definitions in Chapter 2 for
nondimensional parameters, and "~" represents scales of variables as used
earlier. In terms of dimensional constants, the choice of o = 1 gives a

diffusivity
vy = pOfOKH/(gHA"\;} . (4027)

The nondimensional coastal buoyancy flux and surface density flux with

g =1 are
Ry = pof R/ (gHDaG?) (4.28)
. ~ ~r ~2
Qy = oo 0L/ (gHDAT?) (4.29)

In the river buoyancy flux case, the density field is determined by
both near-shore advection and diffusion. A river stream flux of 1000
m?/sec is about that of the Hudson estuary in the Middle Atlantic Bight.

Assume that this flux spreads over 100 km of coastline to avoid large
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density gradient at the coast. The flux per unit coastline is then 100
cmzlsec, which is about the average flux in the Middle Atlantic Bight.
Using a value of 0.025 gm/cm3 as the density contrast between the river
water and the shelf water, we have R = 2.5 gm/sec/cm. A density scale of
0.001 gm/cm3 will give Ry = 0.025. The velocity scale is then
derived from the density scale by using the relation o = 1. Table 4.1
Tists the parameteks related to a forcing magnitude of R = 2.5 gm/sec/cm.
Typical winter heat loss in the Middle Atlantic Bight is 250
Watts/mz. With a heat capacity of 1°C/cal and a thermal expansion
coefficient of 10™% cm3/°C for sea water at 5°C, this heat loss
corresponds to a density flux of 6 x 10~/ gm/sec)cmz into the water.
To find a density scale from this forcing magnitude, we assume that the
density advection 1; not significant until at t = 0(1). A convenient
scale Ap is obtained by using Q0 =1 in (4.29). We have
°

A jL12

= (o,f,Q/9)"" /D (4.30)
The nondimensional parameters and scales derived from this density flux
are Tisted in Table 4.2 .

4.4,2 Coastal Density Flux Forcing

In the numerical computation for the flow driven by coastal density
flux, a coastal wall is placed at x = 0.2 in the topography of Figure
3.1. The water depth is 25 m at the coast. The seaward boundary is at

x = 1.45 with a depth of 130 m. The river flux is located from y = -1 to

0. The characteristics of the flow and density fields are demonstrated
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by the solution with RO/Y = 2.5 and y = 0.025. These parameters
correspond to the dimensional quantities specified in Table 4.1. The
nondimensional forcing function R is 1 fromy = -1.0 to y = 0 and zero
otherwise. Figure 4.3 shows the development of density field as a
function of time. At t = 1, the advection of density is not significant
and the contour lines are only slightly distorted from a simple diffusion
¢1oud. The advection to the -y direction becomes obvious at t = 5. The
density deficiencies are Timited inside a coastal density boundary layer,
and spreads toward the -y direction. In the region y > 0, the density
diffusion dominates, and the dispersion of density perturbation is

small. For t > 5, the feature is similar to that at t = 5 with the
density perturbation propagating further to the -y direction. The mean
propagation speed of the densiﬁy perturbation in this figure is about 0.3
in nondimensional unit or 2.6 km/dayvdimensiona11y.

The mechanism of this density advection can be examined from the
bottom geostrophic velocity distributions in Figure 4.3. At t = 1, the
bottom geostrophic velocity is not quite established. Consequently, the
density advection is weak. Significant bottom geostrophic velocity is
present at t > 5. For y > 0, there is a weak onshore flow which
compensates'the of fshore thermohaline transport caused by a longshore
density gradient at the coast [Equation (4.7a)]. In the region
-1 < y < 0, the velocity field is dominated by the divergent velocity
component associated with the large near-shore density deficiency
[Equation (4.3)]. This divergent velocity is longshore and positive. In

the region y < -1.0, a topographic boundary layer is produced by the




-122-

TABLE 4.1
Scales and Nondimensional Parameters for Flow

Driven by Coastal Buoyancy Flux

Symbol Numerical values
R 2.5 gm/sec/cm

R0 0.025

AS 10-3 gm/cm3

fo = FoC1(ga370,) 0.1

ER = D/fR 0.0l

U= eRféf x 10 cm/sec

T .0 : 10%sec (11.6 days)
Ky | o T 108 cm?/sec

v | 0.01
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TABLE 4.2
Scales and Nondimensional Parameters for Flow

Driven by Surface Density Flux

Symbo] Numerical values

q 6 x 1077 gm/cmzlsec
8% = (o4f 0/9) 1210 0.2 x 1073 gm/cm’

fo = F20/(g05/0,) 0.41

R = D/fR 0.0024

U = engt | 7 2.4 cm/sec

T-00 4 x 107 sec (47 days)

» 0.04
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coastal longshore density gradient near y = -1. This boundary layer
develops in the -y direction and is similar to the one under Tongshore
wind stress forcing (Chapter 3). The flow inside the boundaky layer is
longshore to the -y direction, and is responsible for the longshore
advection of density deficiencies.

The evolution of the density minimum at y = -1.0 as a function of
time is plotted in Figure 4.4. There is a rapid initial density decrease
after the coastal buoyancy flux is applied. At t = 2, a quasi-steady
state is reached. In this quasi-steady state, the magnitude of the
density minimum does not change significantly, and the buoyancy influx is
balanced by the longshore advection. It is c]eér that the minimum
density per unit forcing strength depends only weakly on v.

The Tongshore density advection is further_ demonstrated in Figure
4.5, where the density distributibn at x = 0.3 is plotted as a function
of y for Ro/y = 2.5. At y = 0, the density deficiency diffuses away
from the source. However, at y = -1, the development of density field is
by advection. At t = 1, the density deficiency is advected only slightly
beyond y = -1 in the -y direction. Significant advection occurs at
t = 5, and the light river water reaches y = -3. This qualitative
difference for the density distributions in the forward and backward
directions is also clear at t = 10.

To find the parameter dependence of this self-advection process, the
coastal longshore density distribution at t = 10 is plotted in Figure 4.6
with fixed R /y = 2.5 for y = 0.05 (Ro = 0.125) and y = 0.025

(RO = 0.0625). In dimensional terms, it is equivalent to fixing R*/KH
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and changing KH. In the region y > -1.0, where the density diffusion
process dominates, the density distribution depends on the magnitude of
v. However, in the density advection region (y < -1.0), the differences
in density stcucture for various y are small. The characteristics of the
flow are also examined in Figure 4.6 for different y with Ro equal to
0.0625. The distributions for y = 0.025 and 0.05 are quite different.
The ]étter shows a much stronger advection than the former. It seems
that the characteristics of 1ocgshore density advection depend on the
magnitude of R, /v.

The dependence of density field on the magnitude of forcing is shown
in Figure 4.7, where y = 0.025 and RO/y varies. Dimensionally, it is
equivalent to varying R* for the same KH. The density distribution
at x =3, scaled by Roly, is p]ctted as a function of longshore
distance for t = 10. The distribution of density produced by diffusion
alone is also shown in this figure. It is clear that the density
advection is stronger for larger Ro'

Although density fronts are not present in the coastal boundary
layers, the self-advection process is still significant. The numerical
results shown above suggest that the parameter RO/Y determines the
strength of self-advection, similar to the dependence of shock-wave like
characteristics on u in Burgers' equation. It is possible to find the
relation between Ro/Y and u. In Burgers' equation, u is proportional
to the ratio of total density perturbation to the diffusivity. For the
river outflow problem with a lTongshore width of LR, we can use the

rate of total buoyancy flux, ROLR, as the magnitude of density
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perturbation. We have
u = R Loa2/(2y)
0-R%/\ Y

Therefore, Ro/Y is a measure of the importance of advection in a flow
driven by a coastal buoyancy source with fixed LR'

The density distribution and the flow field also depend on the sign
of R. A negative R corresponds to a density source at the coast (a
"sinking" plume). Figure 4.8 shows the development of the density and
flow fields with R = -1 between y = -1 and y = 0. The values of R,
and y are the same as those used in Figure 4.8. This case is
qua]itativeiy different from the one with a positive R. C(Close to y = 0,
the bottom flow is weak and the density field is dominated by the
diffusion process as in the buoyancy flux case. However, in the region
y < -1, the Tongshore velocity near the coast is positive, which prevents
the density excess from being advected into the region y < -1. Offshore
advection of heavy water into the interior region can be seen at t = 5.
At t = 10, there is a significant amount of dense water outside the
coastal boundary layer. It is clear that the flow in the interior region
is governed by the dispersion of dense water along isobaths as discussed
in Section 4.2 (Figure 4.8d). The resulting density field is much the
same as the flow forced by surface cooling over the outer shelf, which
will be studied in the next section. Figure 4.9 is a contour plot of the
isopycnals on the y-t plane. It clearly shows the propagation of dense

water to the -y direction in the interior region.
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4.4.3 Flow Forced by Surface Density Flux

To demonstrate the evolution of the density and flow fields produced
by surface density flux, numerical solutions have been obtained for a
flux which is present fromt = 0 to t = T. The surface density flux is

uniform in the cross-shelf direction. It has the form:
w/2 Sin(ny/Ly) —Ly <y <0
0 otherwise

The density flux at the coast is zero in this caﬁe. The corresponding
dimensional quantities can be found in Table 4.2. Figure 4.10 shows the
development of density field with T = 2, Ly'= 1 and y = 0.05. These
parameters correspond to cooling over a 100 km -longshore distance for 3
months. The parameter u, which determines the behavior of Burgers'
equation, is 20 in this case. One expects that density fronts will
form. At t = 1, the density field can be approximated by the local

response to cooling (Figure 4.10a). The dominant balance is

ap/at = Q/h (4.31)

The contour lines are slightly distorted to the -y direction and a
density front with strong longshore gradient begins to form. The density
front is clearly shown at t = 2 and the advection of density perturbation

is apparent (Figure 4.10b). After-the forcing stops at t = 2, the front
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continues to propagate in the -y direction (Figure 4.10c). At this
stage, the movement can be inferred from Burgers' equation (4.15). The
magnitude of density perturbation decreases because of the Tongshore
spreading and diffusion.

The Tongshore bottom geostrophic velocity produced by the density
field is ﬁ]otted in Figure 4.11. When forcing is present (t < 2), a
negative longshore flow is devg]oped in the forcing region. This is the
divergent component of bottom velocity given by (4.3). The maximum
velocity on the shelf is 2.0 (Figureb4.llb). Strong Tongshore flow
exists at the shelf break, since the steep bottom slope is very effective
in generating bottom flow as shown by (4.3). Near the coast, a
topographic boundary layer with positive longshore velocity develops in
the -y direction. After the forcing terminates, the longshore velocity
associated with the density distribution decays. The maximun velocity is
located at the shelf break. The x-component of bottom geostrophic
velocity is weak except inside a topographic boundary layer near the
coast as shown in Figure 4.12a. The flow is onshore with a magnitude of
0.7. By the time t = 5, it decreases to less than 0.1.

The formation and propagation of density fronts in the -y direction
is demonstratéd in Figure 4.13, where the density is plotted along the
x = 1 isobath. At t = 1, the distribution is due to the direct response
to cooling. Advection is weak at this time. As the density continues to
increase, advection becomes more important and the excess density is
advected away from the forcing region in the -y direction. At 1 < t < 2,

there is a balance between the density input and the horizontal
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advection, and a quasi-steady value for the maximum density is reached.
During this period, the mean front propagation speed calculated from
(4.24) is about 1, which agrees with the mean speed estimated from the
locations of maximum density in Figure 4.13. After the forcing stops at
t = 2, the forward face of the front continues to propagate, and the
density at the trailing part decreases. A saw-tooth shape distribution
is formed as demonétrated by the solution of Burgers' equation given by
(4.20).

The Tongshore dispersion of density perturbation is clearly
demonstrated in Figure 4.14, where constant density lines are shown on
the y-t plane. In this case, y = 0.1 and coo]iﬁg is applied fromt = 0
to 2 over a longshore range between y = ~1.0 to 0. In the cooling stage,
0<t< 2, the densjty maximum.propagates in the -y direction with a
nearly constant speed. After theAcooling ends at t = 2, the propagation
speed of the location of density maximum becomes faster initially and
slows down after t = 3. At t = 5, the propagation is so slow that the
density maximum is nearly stationary. It is easy to understand why this
happens. The longshore advection tends to move the front forward.
However, the strong longshore diffusion in the front region erodes the
front and moves the location of the density maximum backward. If a
balance between these two tendencies is achieved, the Tocation of the
density maximum will be stationary.

The characteristics of density field can be found by examining
solutions with different nondimensional diffusivities. The density

distribution along the x = 1 isobath for y = 0.1 is plotted in Figure
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4.15. During the forcing period, the propagation speed of the front is
approximately equal to the one with y = 0.05 in Figure 4.13. However, in
the free propagation stage (t > 2), the front is dissipated faster than
that in Figure 4.13. At t = 4, the front is almost stationary as shown
in Figure 4,14,

With Tonger forcing duration, the maximum density remains the same
(Figure 4.16). Since the propagation speed depends on the magnitude of
perturbation, it is unchanged during cooling. Once the cooling ends, the
one with shorter cooling duration will decay faster. The longshore range
of cooling has a stronger effect on the density and velocity fields than
the duration of cooling. Figure 4.17 shows the longshore density
distributioh for Ly =2 and T = 2. The maximum density in this case
is larger than that with Ly = ;. Therefore, the front in Figuré 4.17
has a faster propagation speed.

4.4.4 Discussion

Before a comparison with observation is made, we must briefly discuss
the applicability of the model under various circumstances. During the
winter months in the Middle Atlantic Bight, dense water formed at the
surface sinks rapidly to the bottom and the resulting vertical density
distribution is nearly uniform. During this period, the Tow salinity
water from the river inflow is also mixed to the bottom. This is the
situation which is most 1ikely to be described by the model. In summer,
a strong thermocline is formed at a depth of about 15 - 20 m. The
horizontal density gradient in the surface layer is small. In the lower

layer, the water is not affected significantly by heating and the
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assumption of vertical homogeneity is still approximately true. However,
the strong pycnocline prevents the river water from reaching the bottom,
and the river water spreads at the surface to a long distance offshore.
The idealizations used above do not apply to the case of river forcing
under vertical stratification.

Equations (2.18) and (2.19), which determine the bottom geostrophic
velocity, are derivéd under a general stratified condition. They are not
affected by the presence of a seasonal thermocline at the mid-depth. The

nondimensional density equation is given by

of ap’ o 2 2P 2,y 2T
3'1—;quw.‘w*‘)a_iHUL*W'\{‘)STaerF&'YW+Y§5*+ ey
where the subscripts b, "c“,_and "f" represent the bottom geostrophic
component, the thermohaline compohent, and the frictional component of
velocity field respectively. Considering a strong seasonal thermocline
at the mid-depth and a homogeneous water column in the vertical direction

below the thermocline, we have

?
_.—f;:,o
2%

in the lower layer. Below the thermocline, the thermohaline velocities

U, and v, are given by (2.11) and (2.13):
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!
v, = - 2 20 (24 1)

f %
In this case, the density advection caused by the thermohaline velocity
is identically zero in the lower layer. Above the bottom frictional
layer, Ug and Ve are negligible. The balance between the rate of
density change and the horizontal advection by the bottom geostrophic
velocity still holds below the seasonal thermocline. It is.]ikely that
the propagation of density perturbation in the lower layer is not
affected. Besides giving a descriptﬁon of the density-driven flow in
winter and earlier spring, the model also gives some clues on the water
movement below the seasonal thermocline in summer.

We havevtreated the river effect as a density flux distributed along
a larger piece of the coast. This is certainly not valid at the mouth of
the estuary. However, the intent is to model the circulation over length
scales of the order of shelf width and larger. The detailed density
structure near the source should have no influence on the dynamics of
shelf-wide circulation. The same boundary condition was used by
" Hendershott and Rizzoli (1976).

4.5 Evidence of Bottom Water Movement on Continental Shelves

Although detai]ed comparison between model results and observations
is not possible, some model predictions on bottom water movement on
continental shelves can be used to explain the observed bottom density
field. We will discuss in this section some observational evidence in
the Adriatic Sea, the Antarctic Continent, and the Middle Atlantic Bight.

4.5,1 Winter Circulation in the Adriatic Sea
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Circulation in the Adriatic Sea in the winter of 1965-1966 was
studied by Hendershott and Rizzoli (1976). A cold air mass outbreak from
eastern Europe reached the Adriatic Sea on January 6, 1966, and resulted
in intense cooling, which lasted for about 20 days. From the
meteorological data, Hendershott and Rizzoli (1976) estimated a surface
density flux of 1.5 x 10™® gm/cm®/sec during this period. Their density
sections of Februafy 1966 showed that the water was vertically homogeneous
and a density increas of 0.5-1.0 x 1073 gm/cm3 from the November value
was observed.

The most significant features during this coo]ingAperiod were the
formation of a cyclonic gyre in the northern Adrfatic Sea and the
advection of density field by this gyre. A "tail" of dense water could
be seen in their p1qt of the hprizonta] density distribution in February
'1966. This dense water extended southward to Jabuka Pit atong the bottom
topography on the western side of the basin. Along the Italian coast, a
band of low salinity water from the Po River was also observed. These
features were demonstrated in a numerical model by Hendershott and
Rizzoli (1976) as being caused by forcing from surface density input and
coastal buoyancy flux. The long-isobath dispersion of density
perturbations and the formation of a cyclonic gyre were shown in their
results.

The theory formulated in this chapter can explain both the numerical
and the observational results. We will first calculate the value of n
defined in Section 4.3, Because of the complex bottom topography and the

geometry of the basin, we will use-an average bottom slope of 10"3. For




-134-

a density perturbation of 0.5 x 1073 gm/cm3 over a long-isobath

distance of 100 km, u is 15. Therefore, the cooling event in the
Adriatic Sea in earlier 1966 was dominated by the self-advection process
discussed earlier in this chapter. Comparison can be made between the
predicted and observed propagation speeds of the "tail" of dense water.
In the observed horizontal density distribution, the "tail" reached
Jabuka Pit in early February. If we assume that the dense water covered
a distance of 200 km from its ﬁain lTocation in the north to Jabuka Pit
during this cooling period, the mean'propagation speed would be 6.6
km/day. A rough estimate of the propagation speed from the numerical
solution of Hendershott and Rizzoli is about 200 km in 40 days, or 5
km/day. Thése values can be compared with the theoretical one given by‘
(4.16). Using a density difference of 1.0 x 19‘3 gm/cm3 and a méan
bottom slope of 10—3, the front propagation speed is 4.3 km/day.
Considering the difficulty in determining the initial Tocation of dense
water in the data, this value is not significantly different from the
observed one.

In analyzing their results, Hendershott and Rizzoli (1976)
demonstrated diagnostically that the flow pattern could be explained by
the density distri?ution at each time step. The present theory shows
that density fronts are formed and propagaté out of the formation region
as shock-wave 1ike structures. This prognostic interpretation gives some
insight into the dynamics of winter circulation in the Adriatic Sea.

4.5.2 Bottom Water Movement in the Antarctic Continent

Another area where the bottom water movement has been observed is the
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Weddell Sea in the Antarctic Continent. Gil1 (1973) suggested that the
~ dense water was formed by salt release during freezing of the surface
water. He also observed.that the horizontal salinity gradient could
become Targe in the Weddell Sea. The dense water flowed westward on the
shelf after sinking to the bottom. A westward increase of salinity of
0.4 o/oo was observed (Gill, 1973). This westward movement of bottom
water was also shown in the map of bottom potential temperature
distribution given by Foster and Carmark (1976). Dense water
accumulation on the western side of the Ross Sea was observed by Jacobs
et al. (1970). Current measurements by Foldvik and.Kvinge (1974),

~ indicated a strong westward flow (= 7 cm/sec) at the shelf break in the
Wedde]]_Sea.

The present theory gives a simple explanation to the formation of
strong horizontal density gradient and the westward movement of bottom
water. Because of the deficieﬁcy of data, a detailed comparison with
observations can not be made. However, the atmospheric influence over
the Antarctic Continent should be more effecfive in producing bottom
" water than in the Adriatic Sea. The westward long-isobath propagation of
density fronts caused by nonlinear advection is likely to be the dominant
~process on the shelves of the Antarctic Continent.

4,5.3 Cold Water.Poo1 in the Middle Atlantic Bight

In the Middle Atlantic Bight, bottom water movement is present in the
cold water pool and the outflow of Gulf of Maine Intermediate Water in
spring and summer. For a cooling rate of -250 Watts/m2 i the

coldest periodvof December and January (Beardsley and Boicourt, 1981),
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the density accumulation in the watér column will be 2.4'gm/crﬁ2 after 47
days (Table 4.2). The density perturbation is then 0.48 x 10-3 gm/cm® in
50 m of water. The parameter u, which determines the behavior of
Burgers' equatioh, is 25 for a longshore c;oling range of 100 km, so
density fronts are expected to form under winter cooling.

Hopkins and Garfield (1979) demonstrated that the Gulf of Maine
Intermediate Water could be identified in spring in the Midd]é Atlantic
Bight during the cold years of 1964-1966. This feature can be explained
by the model on the outflow of coastal heavy densfty anomaly (Section
4.4.2). Dense water produced in winter flows out of the Gulf of Maine
from the Great South Channel and the Northeast Channel in spring. The
accumulation of dense water .on the shelf eventually lead to the formation
and proﬁagation of density fronts.

Recent observations on the cold pool (Houghton et al., 1981) give
supporting evidence on the bottom water movement in the Middle Atlantic
Bight in spring and summer. Houghton et al. (1981) analyzed the
distribution of minimum temperature water in the Middle Atlantic Bight in
1979. The southwestward propagation of cold bottom water and the
existance of strong longshore density gradients were clearly shown by the
contour lines of minimum temperature distribution in a map with longshore
distance and time as axes. One feature of this illustration was that the
location of temperature minimum moved southwestward with variable speed.

Long-isobath density fronts can also be observed in the bottom
temperature maps of Bigelow (1933). Figures 4.18a—, reproduced from ‘

Bigelow (1933), illustraste the development of long-isobath temperature ’
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gradients. The successive passage of density fronts can be inferred from
- monthly variations of bottom temperature at a fixed cross-shelf section
along 71°W. Figure 4.19 is reproduced from Chamber]in (1978) and Crist
and Chamberlin (1979), which shows the monthly progress of bottom
temperature for the years 1974 to 1976. In 1974, bottom water Qith
temperature less than 5° C was present through late February. After a
short warm period, a parcel of cold water moved in and stayed for a .
month. Then the third cold water parcel arrived in Apfi]. There was a
Aquiet period in early May. The last cold parcel arrived in late May with
temperature about 2° C higher than the earlier ones; The péttern§ for
- 1975 and 1976 were similar except that the earlier events were not
distinguishable. The Tast warm évent‘occurred in all three years,
a]thougﬁ the arrival time was different in each year, mid-May in 1974 and
1976, and mid-July in 1975. Figure 4.20 is the distribution of bottom
temperature on the south side of Georgés Bank in May 1979 plotted from
the data of EG & G (1979). A band of cold bottom water with temperature
less than 7°C was present from the Northeast Channel to Nantucket. It is
reasonable to suppose that the 1ast}event was produced by the water
flowing out of the Northeast Channel.

The cold water movement in the Middle Atlantic Bight is generally
considered to be caused by advection, independently of the density
field. However, linear translative ﬁotion produced by Tongshore mean
flow can not explain the formation of strong density gradients in the
longshore direction. Figure 18a shows that the density was homogeneous

in the longshore direction in February 1929. In April, a strong
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longshore density gradient was present off Chesapeake Bay, With a
temperature difference of 3°C in 100 km (Figure 18b). Another front
appeared off Delaware coast in July 1929 (Figure 18c). Current
observations (Beardsley et al., 1976) sﬁbw that the current in that
region is generally southward and stronger than the current furthér
north. There is no convergence in the longshore current to form strong
longshore density gradients. The heating from the atmosphere is of a
much larger length scale and cannot be the cause of these gradients.
Because longshore density fronts can be observéd thoughout spring and
summer, it is unlikely that the slope water will broduce such a
consistent feature at different locations over a period of several months.

Figure 4.19 suggests that fronts propagate southwestward along the
coast'instead of being formed locally. The associated strong density
gradient is maintained throughout summer without being diffused away. It
is not likely that the density front would survive strong tides and other
high frequency disturbances on the south side 6f Georges Bank, were it
carried southwestward by mean flow independent of the dénsity field. The
explanation for the persistence of density gradients has to involve the
self-advection of density field, i.e. the.propagation of shock-wave like
density fronts. The nonlinear advection process in the present model

shows that a density front may intensify under certain circumstances.

Another feature of the model is that the propagation speed need not
to be the same as the flow velocity, and may not be constant through
spring and summer. Figure 4.14 agrees with the distribution of

temperature minimum observed by Houghton et al. (1981). In July and
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August, the nearly stationary locafion of the observed longshore
- temperature minimum in the south can be predicted by the model. Houghton
et al. (1981) also mentioned a strong longshore temperature gradient at
the Hudson Canyon with a much slower propagation speed. One explanation
could be the interruption of longshore bottom velocity by the canyon
topography. The self-advection process will resume"only after enough
cold water has diffused across the canyon. This would explain the slower
propagation speed of the temperature front than the speed measured by
current meters. |
4.6 Summary

In this chapter, we have investigated the density-driven flow over
topography. It is found that the interaction between the long-isobath
bottom density difference and the bottom topography is dynamically
important. Away from coastal boundary layers, a near-bottom dense water
blob will move in the direction of Ke]Vin wave propagation. For a light
water blob, the direction of propagation is reversed. Strong density
fronts may appear in the forward face of the'density perturbation. This
is the same process as the shock waQe formation in Burgers' equation.

Self-advection can also be produced by river discharge at the coast
under winder conditions. The Tight water will move inside a coastal
boundary layer along the coast in the direction of Kelvin wave
propagation. For dense water discharge, the movement of density
perturbation is no longer along the coast. The density perturbation
moves offshore initially and then propagates as a dense water blob in the
mid-shelf region. |

This model can be used to explain the bottom water movement in the
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Adriatic Sea, the Antarctic Continent, and the Middle Atlantic Bight.
The predictions of the model agree qualitatively with the observed bottom
water movements. The model also gives correctly the speed of}fkont

propagation.
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Figure 4.1 Schematic diagram demonstrating the solution of Burgers®
equation. The density distribution at t = 0 is a delta
function located at y = O.
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Figure 4.2 Schematic diagram showing solutions of Burgers' equation at
different values of time with an initial (t = 0) delta
function disturbance located at y = 0. A positive
disturbance is shown by solid 1ines, and a negative one by
dashed lines.
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Figure 4.3a Distributions of density (left) and bottom velocity (right)
at t = 1 produced by buoyancy flux located at -1 <y < O.

The parameters are Ry/y = 2.5 and y = 0.025. The density
field is contoured with an interval of 0.25.
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Fi gure 4.3b Distributions of density (left) and bottom velocity (right)
at t = 5 produced by buoyancy flux located at -1 <y < 0.
The parameters are Ry/y = 2.5 and y = 0.025. The density
field is contoured with an interval of 0.25.
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Figure 4.3c Distributions of density (left) and bottom velocity (rignt)
at t = 10 produced by buoyancy flux Tocated at -1 <y < O.
The parameters are Ry/y = 2.5 and y = 0.025. The density
field is contoured with an interval of 0.25.
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| Figure 4.4 Evolution of the density distribution at y = -1 as a
function of time. '
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Figure 4.5 Longshore density distribution along the x = 0.3 isobath at
different values of time.
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Figure 4.6 Longshore density distribution along the x = 0.3 isobath at
t =10 for different values of y
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'Figure 4.7 longshore density distribution along the x

t = 10 for different values of Ry/y with v
density is scaled by Ry/y.

0.3 isobath at
0.025. The
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Figure 4.8a Distributions of density (left) and bottom velocity (right)
at t = 1 with forcing from a coastal density source locasted
at -1 <y <0.
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'_Fi gure 4.8b Distributions of density (left) and bottom velocity (right)
at t = 5 with forcing from a coastal density source located
at -1 <y < 0.
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Figure 4.8c Distributions of density (left) and bottom velocity (right)
' at t = 10 with forcing from a coastal density source located
at -1 <y < 0.
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Figure 4.8d Distributions of density (left) and bottom velocity (right)
at t = 15 with forcing from a coastal density source located
at -1 <y < 0.
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Figure 4.9 Contour plot of longshore density distribution along the
X =°'2.5 isobath on the y-t plane. The forcing is a coastal
density source at -1.0 <y < 0. Dashed 1ine shows the
location of density maximum along the isobath.



0.0 ~

_20 -

-168-

10



-169-

Figure 4.10a Contour plot of density field at t = 1 produced by surface

cooling. The forcing is applied at -1.0 <y < O fromt = 0
tot =2 .
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Figure 4.10b Contour plot of density field at t = 2 produced by surface
cooling. The forcing is applied at -1.0 <y < 0 fromt =0
tot =2. .
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- Figure 4.10c Contour plot of density field at t = 5 produced by surface

cooling. The forcing is applied at -1.0 <y < O fromt = 0
tot = 2.
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Figure 4.11a Magnitude of the longshore bottom velocity at t = 1,
corresponding to the density field in Figure 4.10a.
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Figure 4.11b Magnitude of the longshore bottom velocity at t = 2,
~ corresponding to the density field in Figure 4.10b.
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Figure 4.11c Magnitude of the 1ongshor‘:e bottom velocity at t = 5,
corresponding to the density field in Figure 4.10c.
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| Figure 4.12a Magnitude of the offshore bottom velocity at t = 1,
corresponding to the density field in Figure 4.10a.
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ngure 4,12b Magmtude of the offshore bottom ve]oc1ty at t = 2
corresponding to the density field in Figure 4.10b.
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Figure 4.12¢ Magnitude of the offshore bottom velocity at t = 5,
corresponding to the density field in Figure 4.10c.
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1.0 isobath for

Figure 4.13 Distribution of density aﬁong the x =
=1, and vy = 0.05.

coaling with parameters T = 2, Ly
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Figure 4.14  Contour plot of longshore density distribution along the
x = 1.0 isobath on the y-t plane. Surface cooling is
applied between y = -1 and 0 fromt = 0 to 2. The
parameter y is 0.1. Dashed 1ine shows the location of
temperature minimum along this isobath.
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Figure 4.15 Longhsore density distribution along the x = 1.0 isobath
for. cooling with parameters T = 2, Ly =1, and vy = 0.1.
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| Figure 4.16 Longhsore density distributfon along the x = 1.0 isobath
for cooling with parameters T = 3, Ly =1, and y = 0.065.
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Figure 4.17 Longhsore density distribution along the x = 1.0 isobath
for. cooling with parameters T = 2, Ly =2, and y = 0.05.
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Fi gure 4.18a Distribution of bottom temperature in the Middle Atlantic
Bight in February 1929 (from Bigelow, 1933).
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Figure 4.18b Distribution of bottom te;nper‘ature in the Middle Atlantic
Bight in April 1929 (from Bigelow, 1933).
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Figure 4.18c Distribution of bottom temperature in the Middle At]ant1c
Bight in July 1929 (from Bigelow, 1933).



76°

-202-~

74° 72°  T1° T70°

JULY 1929
BOTTOM
TEMPERATURE

42°

40°

38°



-203-

Figure 4.19 Evolution of bottom tempe}ature between the coast and the

shelf break along 71°W, from Chamberlin (1978) and Crist
and Chamberlin (1979).
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~Figure 4.20 Distribution of bottom temperature on Georges Bank in May
1979. Data from EG & G (1979).
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CHAPTER 5
MEAN CIRCULATION ON THE WESTERN NORTH ATLANTIC SHELF

Mean southwestward flow of the order 5 cm/sec has been observed both
in the Middle Atlantic Bight (Beardsley and Boicourt,‘1981) and on the
south side of Georges Bank (Butman et al., 1981). It isl]ike]y that this
mean drift is a consistent feature from Northeast Channel to Cape
Hatteras; In Chapter 1, we summarized some properties of this mean flow
and reviewed possible driving forces. It has beeﬁ shown in Section 3.4
that deep ocean "barotropic" and "baroc]inic"’currehts are not very
effective in generating mean flow on the shelf. Therefore, the unknown
pressure gradient of earlier models (e.g. Csanady, 1976) is probably a
representation of forcing acting som%where over the shelf. In this
chapter we will compare the model pr;dictions in Chapters 3 and 4 with
the observed mean flow in the Middle Atlantic Bight to examine whether it
is necessary to invoke an unknown pressure gradiént to drive the
southwestward flow.

Wind forcing includes 1ongshofe wind stress, offshore wind stress,
wind stress curl and the divergence of wind. The formulation in Section
2.2 shows that flow is -generated mainly by longshore wind stress and wind
stress curl. A similar conclusion was reached by Birchfield (1967).
Therefore, we will concentrate the study on the last two types of wind
forcing. For the dénsity driven-flow, effects of river buoyancy flux,
inflow of dense water, and surface cooling will be examined, using the

numerical solutions in Chapter 4.
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5.1 Wind-Driven Mean Circulation

Seasonal mean wind stress over the western North Atlantic shelf
averaged in one-degree squares over 32 years was computed by Saunders
(1977). 1In winter, the wind stress is mostly offshore from Chesapeake
Bay to the Gulf of Maine with magnitude from 0.75 dyne/cmzAneap shore to
1.0 dyne/cm? at the shelf break. The longshore component is small.
.Between Cape Hatteras and Chesapeake Bay, there is a small southward
Tongshore component (< 0.5 dyne/cm?) caused by a change in the orientation
of the coast. North of the Gulf of Maine, the magnitude of wind stress
increases and the direction is toward the northeastlin the Tongshqre
- direction. The longshore component is +0.5 dyne/cm2 on the Scotian shelf
and +1-Q dyne/cm? south of Newfoundland. In spring and fall, the wind
direction is much the same, but the magnitude of wind stress is smaller.
Again, the longshore component in the Middle Atlantic ‘Bight is negligible.
Along the Scotian shelf and Nveound]ahd it is 0.1 and *0.5 dyne/cm2
respectively. The summer wind stress is quite different: about +0.1
dyne/cm? in the longshore direction from Cape Hatteras to
Newfoundland. These features are also demonstrated by the monthly mean
wind stress compiled by Beardsley and Boicourt (1981) from time series
‘obsefvations madé at sevefa] fixed locations in the Middle Atlantic Bight
from late 1974 to early 1977. Saunders'(1977) mean wind stress data are
used below.

The wind stress curl in this region can be inferred from the vertical
velocity at the base of a hypothetical oceanic Ekman layer computed by

Leetmaa and Bunker (1978). The computed distribution of annual mean
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vertical velocity shows two maxima at the eastern boundary of North
Anerica. One is to the east of Newfoundland with a wind stress curl of
2 x 108 ch/secz. The other has a value of +1.5 x 1078 cm/sec? off
Georges Bank. These two maxima vary seasonally. The northern one ranges
from 1078 cm/sec? in summer and fall to +4 x 1078 cm/sec? in winter.

The southern one ranges from +5 x 10~ cm/sec2 in summer to +2 x 10~8
cm/sec? in winter. The positive wind stress curl maximum in the north
drives a subpolar oceanic gyre that has a maximum transport of 40
Sverdrups (Leetmaa and Bunker, 1978). The $outhérn maximum is close to
the continent and is located to the north of the latitude where the Gulf
Stream meanders away from the coast. The southern one comes from winter
storms which are'formed near Cape Hatteras and move to the northeast in
the Middle Atlantic Bight (Mooers et al., 1976). This maximum in wind
stress curl has direct influence on the winter circulation in the Middle
Atlantic Bight.

Those values of wind stress curl are very 1ike1y underestimated. In
Leetmaa and Bunker's (1978) calculation, the strong winter cyclones,
which are important sources of wind stress curl, could be smoothed out by
averaging over 2° by 5° grids . Nevertheless, using above values of wind
stress curl, it is possible to make an order of magnitude estimate of the
wind-driven flow on the shelf.

Using Equations (3.7a—), the magnitude of the flow driven by
longshore wind stress can be calculated using values listed in Table
3.2. In winter, the wind stress in the Middle Atlantic Bight is mainly

in the offshore direction. It also has significant divergence because of
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the offshore increase in the magnitude of wind stress. However, these
two factors are not effective in driving the mean flow. Over the Scotian‘
shelf in winter, there is a longshore stress to the northest with a
magnitude of 0.5 dyne/cm? gyer a Tongshore range of 500 km. The
boundary layer width is calculated to be 45 km at the southwest side of
the Scotian shelf, where the sea surface depression reéches a maximum of
6.5 cm. The maximum longshore velocity is 15.8 cm/sec. A total
Tongshore transport of 1.8 x 10° p3/sec, flowing from the south

side of Georges Bank onto the Scotian shelf, can be generated by the wind
stress. Forward influence of this flow may extend to Georgés Bank and

- the Middle Atlantic Bight.

In summer, the wind stress is weak, and its directioﬁ is toward the
northeaét over the shelf between Cape Hatteras and Nova Scotia. For a
wind stress of 0.1 dyne/cm? gyer a 1000 km longshore distance, the
boundary layer thickness is 64 km in the southern part of the Middle
Atlantic Bight, which is about the width of the shelf. The maximum
longshore flow is to the northeast with a magnitude of 3.2 cm/sec. The
maximum depression of sea surface is 1.8 cm. The total transport is also
to the northeast with a magnitude of 0.5 x 10° p3/sec. The flow is -
weaker in the set-up regions df the Scotian shelf and Georges Bank.

Beardsley et al. (1976) obtained a transport of 8000 km3/year
(2.5 x 10° m3/sec) from observations made in the Middle Atlantic Bight.
The transport is nearly constant from Cape Cod to Cape Hatteras. The
magnitude of transport calculated from the model is comparable to the

observed magnitude in Winter, although the direction is reversed. The
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flow driven by mean wind stress is significant in contributing to the
mean flow, especially in the near-shore region. In summer, the wind
stress induced flow is small except perhaps at the southern part of the
Middle Atlantic Bight. -

The strength of flow under forcing by wind stress curl can be
calculated from Table 3.3, using the asymptotic relations (3.14) for
different Tongshore ranges of wind forcing. Because the Tongshore
transport is concentrated at the shelf break (Figure 3.8), it is
ambiguous to define an offshore limit in ca]cu]afing the transport on the
shelf. Therefore, only the magnitude of velocity wf]] be used for
comparsion. The curl of wind stress is stronger in winter than in other
seasons. For a wind stress curl of 2 x 10-8 cm/sec2 acting over
a 1000 km longshore distance from Georges Bank to Newfoundland, the
maximum sea surface depression is 2.9 cm with an onshore flow of 0.5
cm/sec. The maximum longshore velocity is 3.4 cm/sec to the northeast.
This value again has a comparable strength but ié opposite in direction
to the mean flow on the outer shelf. Its forward influence may reach the
Middle Atlantic Bight. In summer; the flow produced by wind stress curl
is much weaker.

The values given above demonstrate that the flow driven by wind
stress curl is important to the mean shelf circulation. Besides the flow
strength, the circulation generated by the curl of wind stress have some
properties, which are significant to the mean circulation. Under
Tongshore stress forcing, both sea level and longshore velocity decrease ‘

rapidly away from the shore. On the other hand, the flow generated by ‘
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wind stress curl i§ mainly in the outer shelf region, being stronger at
- the shelf break. This difference is significant oVer a wide continental
shelf such as the Middie Atlantic Bight.

This property is important, when complex coastal geometry exists,
e.g. the Laurentian Channel and the Gulf of Maine. Because the flow
under wind stress forcing is strongest near shore, topographic features
.and the orientation of coastline will effectively interrupt the forward
influence of the flow. Under wind stress curl forcing, longshore flow is
generétéd by cross-isobath vortex étretching on the outer shelf, where
topography is more uniform than that at the coast. .The flow on the shelf
- may reach a longer distance in the forward direction than the flow forced
by longshore wind stress. |

A]tﬁough flow driven by wind cannot be the cause of the mean
southwestward drift in the Middle Atlantic Bight, it can be observed
under strong and persistent wind condifions. The anomalous flow during
the spring and summer of 1976 and the winter of 1976-1977 in the Middle
Atlantic Bight were related to the strong and persistent wind conditions
by Beardsley and Boicourt (1981). The observed strong wind-induced flow
on the outer shelf is 1ikely to be drivén by the wind stress curl.
However; more obéervationa] evidence is needed to understand the
importance of wind stress curl in the shelf circulation.

5.2 Dispersion of River Water

The stream flux from rivers in the Middle Atlantic Bight has been
summarized by Beardsley and Boicourt (1981). The largest one is the

Chesapeake Bay estuary; which has a stream flux of 2000 m3/sec. The
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outflows of the Hudson River and the Connecticut River are of the order

of 1000 m3/sec.A These values are comparable to the example given in

Table 4.1. We will use the numerical solution in Section 4.4}2’to
estimate the physical quantities associateﬁ with the river flow.
According to the numerical soTution, the river water from the Hudson
River and the Conneticut River may move along the coast of New York and
New Jersey. The water from the Chesapeake Béy may abpear near the coast
south of it. The speed of fresh water movement south of New York derived
from Figure 4.5 is about 3.5 cm/sec or 2.6 km/day; The maximum longshore
velocity inside the plume reéches 6 cm/sec (Figure 4.3). The river plume
may move 400 km to the southwest in 5 months.

The Targest river system on the eastern seaboard of North America is
the St.'Lawrence River. The stream flux is of the order 10,000 m3/sec,
which is about ten times greater than_that of the Hudson estuary (Sutcliffe
et al., 1976). To estimate its effect on the she]f_circu]atibn, we will
use the solution derived in Section 4.4.2 with pfoper scaling of the
density field. The numerical solution shows that Roly is an important
parameter in determining the density distribution. For a large river flux,
we increase the density scale accordingly so that Ro/y remains constant.
This new density scale will give a larger velocity scale than the one
Tisted in Table 4.1, while the nondimensional solution is not
significantly affected. If all the water from the St. Lawrence River is
completely mixed to the bottom, the propagation speed of river
disturbations would be ten times larger than the one listed in Table 4.1,

or about 35 cm/sec. However, for such a large river system, most of the
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river water will flow out on.the surface layer without reaching the
bottom, and the velocity of southward 1ongshore movement of river water
will be greatly reduced.

Downstream influence of the St. Lawrence River discharge was studied

by Sutcliffe et al. (1976). The southward propagation of river water

along the coast was clearly demonstrated by their correlation analyses of

temperature and salinity distribution in both surface and subsurface
layers. According to their calculation, the river water reached Boston,
which is 2300 km downstream, in 9 months. The mean propagation speed is
7 km/day (8.1 cm/sec). A quarter of the total river flux from thg St.
- Lawrence River has to be mixed to the bottom to give a self-advection
speed of this magnitude. Southwestward river dispérsion was also
observed in the Middie Atlantic Bight.' Based on Bigelow's (1933) data,
the southwestward increase in salinity betweén the shore and the 40 m
isobath was shown by Ketchum and Keen (1955). They>pointed'out that this
increase was mainly caused by the subsurface salinity distribution.
These results agree with the density distribution predicted from our
numerical solutions. |

The model of river inflow in Chapter 4 explains.the density
distribtuion as Well as the mean drift without postulating another
external cause for the mean drift. The explanation of mean drift by the
self-advection of density field is simple and certéin]y dynamically
sound. The density forcing from a river inflow could be the main driven
mechanism in the near-shore region on the wester North Atlantic shelf. -

5.3 The Movement of Winter Water in the Middle Atlantic Bight
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The Gulf of Maine and the Middle Atlantic Bight are both subjected to
strong cooling in winter. 1In the early cooling season, the effect is
restricted to the surface layer and the bottom density change_is smail.
After the water is well mixed, the surface—density flux is distributed
uniformly throughout the water column. The seasonal heat flux in the
Middie Atlantic Bight has been described by Bunker (1976). Cooling
starts in October, reaches a maximum rate of -250 WattS/m2 in‘December
and decreases to nearly zero by March. The mean heat loss during this period
is -125 Watts/m2. The mean coolng rate in the Guif of Maiﬁe from
December 1964 to March 1965 was estimated by Hopkiné and Garfield (1979)
to be -135 Watts/mz. These two figures are reasonably close.

We have shown in Section 4.5.3 that the winter density flux in the
Middle At]antic Bight is large enough for density fronts to form under
winter cooling. The numerical solution in Section 4.4.3 can be used to
examine the properties of the flow and density fields. Figure 4.10 shows
that the fastest longshore propagation of density perturbations occurs at
about x = 1.0,.where the water depth is 67 m. For a longshore cooling
range of 100 km, Figure 4.14 shows that the location of minimum longshore
temperature moves with a mean speed of 0.62 (1.5 cm/sec) for the first 3
months after the cooling ends. The maximum density value is about
0.4 x 1073 gn/em, which gives a maximum velocity of 4.8 cm/sec
for the water parcel behind the front by Equation (4.3). The flow
response depends strongly on the longshore range of cooling (Figure

4.17). If the cooling is over a longshore range of 200 km, the maximum

flow may reach 7 cm/sec, and the density front propagates at a speed of
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3.6 cm/sec.

In February, the uniform temperature distribution along isobaths in
Figure 18a indicates that local cooling extends over the whole Middle
Atlantic Bight. The velocity of the flow produced by cooling would be
high enough to account for the observed near-bottom mean flow of 5 cm/sec
in winter and early spring in the northern part and in summer in the
southern part of the Middle Atlantic Bight. Tﬁe other contribution of
density-driven flow comes from the outflow of the Gulf of Maine
Intermediate Water. An accurate calculation of the density flux from the
Gulf of Maine is not possible; nevertheless, we wili make an ordeﬁ of
- magnitude estimation. Hopkins and Garfield (1979) calculated the water
mass budget in the Gulf of Maine and concluded that a volumn about 5100
km3/yr (1.6 x 10° m3/sec) of Gulf of Maine Intermediate Water would
export from the Great South Channel and the Northeast -Channel. Using a
‘thermal expansion coefficient of 10-4 §m3/°C, and a temperature
difference of 2°C between this water mass and the water outside the gulf
in late spring, an equivalent density flux of 3.2 x 107 gm/sec is
obtained. Assuming that this flux spreads over a coastline of 100 km,
the resulting density flux is of the same order as that in Table 4.1.

The numerical soiutibn in Section 4.4.2 for heavy density flux from the

coast can be used to estimated fhe corresponding physical quantities.

Figure 4.9 shows that the cold water front moves southwestward‘with a

speed of 1 cm/sec, which is much slower that in the cooling case. The

maximum flow behind the front can reach as high as 10 cm/sec after 5 ]

months (Figure 4.8d). This value is comparable to the velocity observed
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on the south side of Georges Bank and south of New England in spring and
summer.

Because of the agreement between the predicted cold water movement
and the observations, we can describe the évo]ution of density field in
the Middle Atlantic Bight based on the theory of density-driven flow in
the previous chapter. Annual temperature variations:in the area south of
Long Island, observed repeatedly for three years by Ketchum and Corwin‘
(1964), give a fairly good representation of the watef structure in the
Middle Atlantic Bight. The cooling starts in 1afe October and early
November each year. The water becomes vertically hbmogeneous from
December to April or May. The vernal warming in spring and summer
affects the nearshore water as well as the water in the surface layer.
The botfom water in the mid-shelf region remains cold throughout the
year. It is represented by a temperature minimum in the T-S diagram and
constitutes the "cold pool" observed by Bigelow (1933). The cold pool is
limited inshore by warm low salinity water and offshore by the shelf
break front. In the longshore direction, it has been observed as far
south as Cape Hatteras in August (Ford et al., 1952).

This cold water mass in spring and summer may have several
constituents, depending on the time and location of observations, and the
condition of previous winter. The first constituent is the water cooled
in winter in the Middle Atlantic Bight and onvthe south side of Georges_
Bank. The second one is the cold water flowing out of the Gulf of Maine
through the Great South Channel. This is the Gulf of Maine Intermediate

Water, possibly modified slightly by river inflow. The last one is the
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outflow of the Gulf of Maine Intermediate Water through the Northeast
Channel.

The observed Tocal winter water is characterized by a tight curve in
the T-S diagram. One example was given by Beardsley and Flagg (1977).
It is the result of the overtufning of entire water column caused by
strong surface cooling. The water temperature is quite uniform along
isobaths (Figure 4.18a). Long-isobath flow is generated by the
interaction between density perturbation and bottom topography and has é
speed comparable to the observed one during this period. The local
winter water is advected southward by such a density—dependént f]qw. The
- spring heating starts in March and warms up the near-shore water as well
as the water at the southern portion of the Middlie Atlantic Bight. The
arriva]iof cold water from the northern portion of the Middle Atlantic
Bight then creates a strong longshore temperature gradient off the
Chesapeake Bay area through nonlinear édvection (Figure 4.18b). South of
New England, the local winter water is replaced by successive cold water
pools in March-April, which leave the source region, e.g. thé Nantucket
Shoals, Georges Bank, or the Gulf of Maine, as a result of previous cold
outbreaks in January and February (Figure 4.19).

During cold Years, the Gulf of Maine Intermediate Water flows out of
the gulf through the Great South Channel (Bigelow, 1915; Hopkins and
Garfield, 1979). Hopkins and Garfield (1979) traced the direct outflow
of the Gulf of Maine Intermediate Water through the Great South Channel
to the shelf south of New England. They found that the Intermediate

Water, which was defined by a temperature range of 2.2-4.2°C and a
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salinity range of 31.97-32.91 o/oo, flowed through the Great Sbuth
Channel in the late winter and early spring of 1965 and arrived at the .
shelf south of Long Island in May. This process can be viewed“as a
density flux from the Great South Channé],—fo110wed by a long-isobath
dense water movement. By September, it disappeared presumably due to the
decay of density fronts and the subsequent mixing with the surrouding
water masses. v |

Hopkins and Garfield (1979) also showed that the Gulf of Maine
Intermediate Water may leave the Gulf of Maine thbugh the Northeast
Channel. It is shown in Figure 4.20 as the bottom water with a
temperature minimum of 7°C. This waten‘spreads uniformly in a narrow
band along isobaths from the Northeast Channel to the shelf south of Cape
Cod. Tﬁe Gulf of Maine origin of this water mass is suggested by a
tongue of cold'water at the northeast corner of Georges Bank. The
southwestward movement of. this water mass is shown in the progressive
diagram of EG & G (1979), which gives a near-bottom mean flow of about 4 _
km/day along the 80 m isobath from March to August 1979. This outflow of
cold water can also be interpreted as the dense water from coastal
denéity flux and the subsequent long-isobath propagation of density
perturbations.

In summary, one concludes that the density—driven flow can interpret
both qualitatively and quantitatively the bottom temperature distribution
in the Middle Atlantic Bight. Obviously, the propagation of thermal
fronts is an important phenomenon on the outer shelf region from winter

to late summer. The long-isobath flow associated with the density
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perturbation of cold water mass must contribute significantly to the mean
circulation on the continental shelf from Georges Bank to Cape Hatteras.
5.4 Conclusion

The different driving forces mentioned earlier in this chapter
contribute significantly to the Middle Atlantic Bight mean circulation.
In the near-shore zone, the Tongshore wind stress drives a flow to the
northeast in wintef. Southwestward flow of light river water occurs in
winter and spring inside a coastal boundary layer. This longshore
movement of river water is a self-advective process independent of the
mean flow on the outer shelf. '

Over the outer shelf in winter, the flow driyen by the mean wind
stress curl has comparable speed but is opposite in direction to the
observed mean flow. Under strgng and persistept wind conditions, this
flow may stand out in the month1y.mean velocity. On the other hand, the
winter cooling in the Middle Atlantic Bight and south of Georges Bank
produces longshore flow as strong as the observed mean southwestward flow
from Georges Bank to Cape Hatteras. The export of the Gulf of Maine
Intermediate Water though the Great South Channel and the Northeast
Channel is in the form of propagating density fronts. It is concluded
that density-driven currents adequately account for the southwestward
movement of the cold winter water in the Middle At]antjc Bight from
winter to Tate summer without invoking any other external causes. The
southwestward flow associated with the cold water passage may account for

a significant amount of the mean southwestward drift during this period.
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