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Mean long-isobath drift of the order 5 cm/sec has been observed on
several continental shelves, e.g. in the Middle Atlantic Bight and in the
Weddell Sea. A theoretical model is developed to explore the driving
mechanism of this mean circulation. In the model, the velocity field is
decomposed into a depth-independent bottom geostroph i c component and a
thermohaline component relative to the bottom. The latter can be
calculated from the density field, and the former is described by a
parabolic equation which expresses the tendency-to balance vorticity
between bottom stress curl and vortex stretching. The near-bottom flow
field is studied both analytically and numerically under forcing by wind,
deep ocean flow, and long-isobath density differences.

Model solutions are derived for circulations over a shelf/slope
topography driven by wind stress, wind stress curl, and deep ocean
currents. The resu 1 t i ng flow patterns show strong dependence on the
topography. Over the cont i nenta 1 slope, 1 arge bottom depth vari at ion
suppresses the flow driven by local forcing and insulates the slope
region from circulations on the shelf and in the deep-ocean. Geochemical
observations on the continental shelf and slope support the argument that
the flow on the upper slope be 1 ow the thermoc 1 i ne is weak.

Under the condition of a vertically homogeneous layer below the
thermocline, near-bottòm density advection is mainly caused by the bottom
geostrophic velocity field. Using the parabolic vorticity equation
together with a density equation, circulations driven by coastal buoyancy
flux and surface cooling are investigated. In the mid-shelf region, away
from the coast and the shelf break, the density field is governed by
Burgers' equation,- which shows longshore self-advection of density
perturbations and the formation of front with. strong density gradient in
the longshore direction. A dense 

water blob moves in the direction of

Kelvin wave propagation. The direction is reversed for the movement of a
light water blob. In the near-shore region, the light river water at the
bottom is also self-advected in the direction of Kelvin wave

-
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propagation. For a heavy density anomaly at the coast, the initial
movement is offshore, and the accumulation of dense water in 'the
mid-shelf region leads to long-isobath propagation of density
perturbations, similar to the case of a dense water blob. This theory
sheds 1 i ght on the bottom water movements in the Adri at i c Sea, the
Antarctic Continent, and the Middle Atlantic Bight.

The model solutions are applied to the flow on the western North
Atlantic shelf. Southwestward flow is produced near the coast by the
self-advection of river water in winter and spring. The southwestward
long- isobath propagat i on of thermal fronts cau sed by wi nter cool i ng

contributes significantly to the mean circulation over the mid-shelf. It
is suggested that density-driven current is an important component of the
near-bottom mean circulation in the Middle Atlantic Bight in spring and
summer.

Thesis Supervisor: Dr. Gabriel T. Csanady

Title: Senior Scientist
Woods Hole Oceanographit Institution
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CHAPTER 1

INTRODUCTION

Circulation over the continental shelf is dominated by high frequency

oscillations produced by tides and winds with periods shorter than the

synoptic time scale of a few days. However, when currents are averaged

over a month or a longer period, a consistent mean drift along isobaths

is sometimes detected in the near-bottom ci rcul ati on above the bottom

Ekman layer. In the Middle Atlantic Bight, a subsurface mean flow of the

order 5 cm/sec has been observed by moored instrument measurements

(Beardsley et al., 1976). Over the Weddell Sea shelf in the Antarctic

Continent, the 1 ong-i sobath drift is shown by a westward movement of the

dense bottom water (Gill, 1973). In a semi-enclosed basin like the

northern Adriatic Sea in winter, the long-isobath density dispersion is

associated with a cyclonic circulation gyre (Hendershott and Rizzoli,

1976).

Throughout this work, the term "mean circulationll is meant to

describe the pattern of currents averaged over a chosen period. By this

definition, the IImeanll flow does not have to be steady. It can be

non-periodi~ transient flow with a time scale longer than the period of

averaging. Mean circulation is important in the dispersion of water

properties, nutrients, and. pollutants on the shelf. Without the mean

flow, the distribution of materials is determined by the short-period

chaotic first order flow, which acts as an effective eddy diffusion

process in both horizontal directions. However, advection by even a
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moderately intense mean flow is generally more effective than eddy

diffusion in dispersing materials in the downstream direction. In

particular, the near-bottom mean flow is important to the distribution of

poll utants near a dump site and the movement ofcdl d bottom ~ater from

the north, two phenomena which play key roles in benthic ecology and

fi sheri es.

The objective of this study is to understand the driving mechanisms

of mean circulation on the continental shelf. Bottom flow may be

generated in the ocean by wind and by the interaction between topography

and near-bottom density variations (Holland, 1973). Typically, the time

scale of wind is shorter than a month, and that of density forcing is

about a season. Therefore, it is possible to examine the wind-driven

shelf circulation diagnostically with an assumed density structure.

Under density forcing, the density field itself is dynamically

import~nt. The bottom velocíty field must be found prognostically. In

this work, a genaral prognostic model of shelf circulation with time

scale longer than a month is developed. This model is solved

diagnostically under forcing by wind over the shelf, the slope, and the

deep ocean regions. Analytical and numerical solutions of the prognostic

model are derived to understand the dynamics of density-driven flow.

These results on the flow forced by wind and density fields are then

compared with observed mean flow on the continental shelf to identify the

driving mechanisms.

1.1 A Prototype Shelf: the Middle Atlantic Bight

Compared to other shelves, the Middle Atlantic Bight is a relatively
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well explored region. An examination of the density structure and the

mean bottom flow in this region can provide insights into the dynamics of

shelf circulation in general. The hydrography over the continental shelf

in the Middle Atlantic Bight is characterized by seasonal variations. In

winter, the water col umn is verti cally homogeneous wi th small horizontal

density differences over most of the shelf. A density front exists near

the shel f break wi th strong temperature and sal inity gradients. Minimum

bottom temperature occurs in late March each year. The salinity reaches

a maximum during late January to early February, and remains relatively

constant unti 1 the river runoff reduces the near-shore sal inity in

spring. In summer, a thermocline is present at the depth of 15 - 20 m,

and the bottom temperature is cold offshore beyond a 1 i ne about 30 km

from the coast. The cold water below the thermocline is known as the

lie old poo 111 (B i ge low, 1933).

Comprehensive reviews of the circulation in the Middle Atlantic Bight

can be found in articles by Bumpus (1973), Beardsley et ale (1976), and

Beardsley and Boicourt (1981). Characteristics of the subsurface mean

flow in the Mi ddl e At 1 anti c Bi ght, averaged over a month or longer from

long-term current measurements, are summarized as follows:

(1) The longshore current has a southwestward component thoughout the

water column (Beardsley and Boicourt, 1981). The longshore mean velocity

is from 3 to 10 cm/sec. It increases noticeably with increasing distance

from the shore and decreases with increas ing depth in the water col umn

( Be a rd s 1 eye tal ., 19 76) .

(2) The cross-isobath bottom flow shows a divergence at abou't the
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60 m isobath. The flow is onshore in shallow water and offshore in deep

water (Bumpus, 1973).

(3) During infrequent periods of strong and persistent wind, a

component driven by wind is detectable in the monthly-mean current over

most of the Middle Atlantic Bight (Beardsley and Boicourt, 1981).

(4) In summer, the velocity of longshore current in the cold water

poo 1 equals or exceeds the mean southwestward movement of the s urroundi ng

warmer water (Beardsley et al., 1976).

It is clear that the wind-driven flow dominates the mean circulation

under strong wind conditions. In less severe weather, the wind-driven

flow may still contribute to part of the mean flow. Because of the

existence of aline of divergence and the flow is stronger at the shelf

break than in the near-shore region, the principal driving forces are

probably located on the outer shelf or on the slope; Furthermore, the

flow inside the cold pool is stronger than the surrounding flow.

~namically the cold pool may be more important than a simple translative

motion associated with a mean flow. This is an indication that the

density-driven flow plays an important role in the mean circulation.

1.2 Driving Mechanism: Earlier Theories

Suggested possible driving mechanisms of the mean circulation

include: (i) wind forcing, (ii) forcing from the influx of river water,

(iii) forcing from the density variations caused by surface cooling, and

(iv) deep ocean forcing, represented by a sea level gradient on the

shelf. Earlier theoretical models of near-shore circulation were

generally two-dimensional, assuming uniformity in the longshore
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direction, including uniformity of pressure, i.e. absence of a longshore

pressure gradient. Basically, these two-dimensional models originated

from that of Ekman (1905)~ A principal assumption was that the total

cross-shelf transport vanished in the coastal region. A longshore

interior flow had to exist in the downwind direction, generating bottom

stress 1 arge enough to bal ance the offshore wind-driven surface Ekman

transport through an onshore bottom Ekman transport (Jeffreys, 1923).

However, the observed 1 ine of divergence over the outer shelf re~ealed

that the simple Ekman model could not be used to explain the mean shelf

circulation, at least over the outer shelf.

Iselin (1955) suggested that the mean surface drift in the Middle

Atlantic Bight could be thermohaline flow associated with the offshore

density gradient by the thermal wind relation. However, it is not clear

how that relationship should be applied in shallow water of variable

depth. Another idea was that the flow was driven by a deep-ocean imposed

sea level elevation along the coast. Sverdrup et ale (1942) inferred the

existence of a massive cyclonic gyre between the Gulf Stream and the east

coas t of North Ameri ca from the longshore ri se of sea 1 eve 1 between Cape

Hatteras and Nova Scotia, indicated by geodetic leveling. This cyclonic

gyre appeared as a southwestward drift in the Middle Atlantic Bight

region. However, this idea was in doubt, after the geodetic result was

di sputed by Sturges (1968) and Montgomery (1969).

The paper by Stommel and Leetmaa (1972) was the first attempt to

construct a quantitative model for the winter mean shelf circulation in

the Middle Atlantic Bight. With the assumption that the cross-shelf
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transport vani shed everywhere, the steady ci rcul ati on under forcing by

longshore uniform wind stress and freshwater influx was solved over a

flat bottom shelf without coastal and seaward boundaries. It was

concluded that the flow driven by longshore wind stress would be opposite

to the observed mean drift. The effect of river efflux in this constant

depth model was much as described by Isel ih (1955). However, the

magnitude of thermohal ine component was found to be too weak to reverse

the wind-driven flow so that the density structure could not explain the

observed southwestward dri ft ei there The di screpancy between the

predicted flow and the observed one lead Stommel and Leetmaa (1972) to

postulate the existence of a longshore pressure gradient of unspecified

physical origin. With a properly chosen longshore pressure gradient, the

observed flow could be simulated and the effects of bottom friction

assessed realistically.

Circulation over a sloping bottom was treated by Csanady (1976),

using a basically similar approach with some modifications. In this

model, the mean circulation was taken to be the residue of chaotic

first-order flow events created by wind, tides, and river flow. It was

argued that the statistical effects of variable first-order events on the

mean flow could be parameterized by linear internal and bottom friction

laws, and by' an effective diffusivity for the salt transport determined

by first order flow events. A linear problem resulted, with circulation

viewed as a superpos i ti on Of components caused by wi nd stress, freshwater

inflow, and a longshore pressure gradient. The last one was of

unspecified physical' origin as in Stommel and Leetmaa1s (1972) model.
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With no other longshore nonuniformity allowed, the longshore thermohaline

component was again found from the thermal wind relation, modified by

friction, with vanishing bottom longshore velocity. From the vorticity

tendency balance, it was shown that the assumption of vanishing

cross-shore transport at all distances from the coast implied a constant

longshore pressure gradient. The magnitude of this gradient was viewed

as a parameter expressing the infl uence of the rest of the ocean on the

she 1 f regi on cons i dered, and was determi ned from the anal ys is of

observational evidence (Scott and Csanady, 1976). Key features of the

observations, such as the presence of a "line of divergence" in the

cross-shelf flow or the offshore increase in the magnitude of the

longshore velocity, were reproduced by his model.

These earlier models provided some understanding of shelf dynamics,

at least in the sense of elucidating possible driving forces. They also

yielded useful parameters such as the frictional coefficient, the

effective vertical and horizontal eddy diffusivities. Direct wind

forcing and the cross-shelf density gradient were ruled out as the

proximate driving mechanisms of the mean drift. Furthermore, the unknown

"remote" driving force in the Middle Atlantic Bight, parameterized as a

longshore pressure gradient ón the shelf, could be quantified from the

observed mean dri ft.

Si mi 1 ar two-d i mens i ona 1 models were used by Barci lon (1966) to model

the effect of river momentum flux and by Ki llworth (1973a) in studying

the bottom water formation in the Antarcti c Conti nent. Ki llworth (1973a)

concluded that the offshore transport in his two-dimensional model was
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too small to account for the observed rate of bottom water formation.

Killworth (1974) also studied the Antarctic Bottom Water formation forced

by surface density flux in a two-layer model over a flat shelf. By

allowing horizontal density variation in each layer, he found that the

density increase was caused mainly by upwelling at the western side of

the Weddell Sea. Also, the observed east-west density gradient (Gill,

1973) coul d be simul ated by the model. The northward fl ux was found to

be too small to give the observed rate of bottom water formation. It

also took a long time (about 30 years) for the density perturbations to

span the whole basin from the western boundary. Obviously, the shelf

topography and the longshore nonuniformity of the flow must play

essential roles in the shelf dynamics.

1.3 Models of Nonuni form Longshore Flow over Topography

The need for a 1 oca 1 pressure gradi ent to dri ve -the mean flow is

actually a manifestation of the fact that some forcing effect on the

shelf, slope, or deep ocean was either not consid~red or not quantified

properly. For further understanding of the pressure field, it is

necessary to generalize the theoretical model.

Birchfield (1967) used a parabolic vorticity equation to study the

wind-driven circulation in a"circular homogeneous lake with a parabolic

bottom profile. Solutions were obtained for the flow with finite coastal

wall and with vanishing coastal depth. The results showed that the flow

driven by wind stress was concentrated on the left- and the ri ght-hand

s ides of the 1 ake. Long-i sobath ci rcul ation was produced by wind stress

curl. A weak flow driven by the divergence of wind was found. The
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coastal wall had only minor effect on the flow under wind stress

forcing. However, a counter current was detected in the flow driven by

wind stress curl, when the water depth shoaled to zero at the coast. The

same parabolic equation emerged in Birchfield's (1972) analysis of

wind-driven circulation in a homogeneous lake with arbitrary topography.

This equation, which governed the near-shore circulation, represented the

balance between vortex stretching and the curl of bottom stress.

Pedlosky (1974) studied the steady circulation over shelf-like

topography, whi ch was 1 imited by fi ni te-depth boundary wall s at coast a 1

and oceanic boundaries. A parabolic vorticity equation similar to that

of Birchfield (1972) was derived for a stratified fluid, governing the

flow in a coastal topographic boundary layer. Besides wind forcing, the

flow driven by surface heat flux was studied through the use of a

linearized, steady density equation, in which the advection of the basic

vertical density stratification was balanced by horizontal diffusion. It

was shown that, because of the coastal constraint, a poleward

undercurrent in the upwelling region of the Oregon shelf could be

generated within the topographic boundary layer by wind stress, its curl,

or differences "in surface heating.

Beardsley and Hart (1978) used a similar parabolic formulation in

their linear two-layer model to examine the river-induced steady flow

over a sloping bottom. The river effect was considered to be a source in

the surface layer and a sink in the bottom layer. The vorticity

generated by river stream flux was dissipated through the friction at the

interface and the bottom. A steady flow was found in the vicinity of the
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source region with a length scale of some tens of kilometers.

In a series of papers by Csanady (1978, 1980, 1981), the parabol ic

formulation was used to investigate the driving forces of the mean shelf

circulation in the Middle Atlantic Bight. It was found that a coastally

trapped pressure field could be set up by direct wind stress forcing. The

pressure fi el d further offshore was affected by the wind stress curl.

Some observations on coastal sea level elevation were presented by

Csanady (1981) as evidence for the existence of such a pressure field.

Csanady (1978, 1981) also studied the pressure gradient produced by river

outflow, which was modelled as a steady distribution of sea surface

elevation in the source region. A southwestward longshore flow on the

western North Atlantic shelf could be generated by a large river source

to the north, e.g. the St. Lawrence River (Csanady, 1978, 1981). The

influence from the deep ocean was parameterized by Csanady (1978) as a

longshore pressure gradi ent at the shel f break. It was found that thi s

parameteri zati on coul d reproduce most of the known features of the

pressure fiel d on the shelf.

The studies of Csanady (1978, 1980, 1981) give a fairly good

description of the pressure field set up by wind stress forcing inside a

coastal boundary layer about 30 km wide. An important consequence of the

parabo 1 i c equati on was that forci ng wi th 1 imi ted longshore extent coul d

influence the flow only in the lIforward'1 direction, which was defined by

signs of the terms in the parabolic equation. In the outer shelf region,

Csanady's solutions suggest that flow was generated by forcing in the

backward portion of the shelf, such as river inflow, wind stress curl,
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and/or a deep ocean imposed pressure gradient at the shelf break.

However, the problem was not resolved in favor of any particular

forcing. The bottom topography in his models was a shelf with constant

s lope of order 10-3 extendi ng to very 1 arge di stances from the

coast. The continental slope, with its one to two order of magnitude

greater depth variation than that of the shelf, may have a significant

dynamic influence on the circulation of the outer shelf. To understand'

the dynamics of the outer shelf circulation, it is necessary to

investigate these forcing mechanisms in detail, especially the

topographic effect on the flow.

One could imagine that the existing theories of deep ocean gyres

would give some guidance as to what "deep ocean influence" could be

expected on a shelf. However, models of deep ocean circulation with

western boundary topography do not give a clear and-definite conclusion

on how much of the deep ocean flow will intrude onto the shelf. Schulman

and Niiler's (1970) solution in a homogeneous ocean seemed to suggest tne

presence of a pressure gradient on the shelf due to deep ocean

circulation. However, a similar model by Killworth (1973b) did not

reveal such an influence. Recent multi-layer numerical solutions of

Semtner and Mintz (1977) on the circulation in the western North Atlantic

Ocean showed that a pressure gradient existed on the shelf from Cape

Hatteras to Grand Bank. It was argued by Beardsley and Winant (1979)

that this might be taken as evidence of deep ocean influence. Csanady

(1979) calculated the steric set-up of sea level on the western margin of

the North Atlantic Ocean. No significant long-isobath sea level gradient
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over the slope region was found. To resolve the controversy over this

deep ocean forcing problem, a study of the near-bottom circulation in the

slope and rise regions is necessary.

One important mechanism, which was not studied in Csanady's models~

is the forcing from long-isobath density variations. Evidence of such

long-isobath density variations on the shelf has been found on several

occasions. In the calculation of sea level set-up along the western

margin of the North Atlantic Ocean, Csanady (1979) found a sea level rise

on the Scotian shelf produced by the density deficiency of the St.

Lawrence River outflow. On the shelves of Antarctic Continent, the

accumulation of high salinity water at the western side of the Weddell

Sea (Gill, 1973) and the Rose Sea (Jacobs et al., 1970) produces strong

1 ong-i sobath sa 1 i nity gradi ent. It is important to incorporate thi s

density effect into the parabolic formulation. Hendershott and Rizzoli

(1976) have shown by numerical model calculations that unsteady

long-isobath density advection is important dynamically. In order to

examine this question in greater generality, it is desirable to develop

analytical models of the interaction between longshore density variations

and bottom topography.

According to Csanady's (1978, 1981) model, a "mound" of river water

in the north is able to drive a mean southward drift in the western North

Atlantic shelf. However, a quantitative relation between the sea level

distribution in the "mound" and the amount of river outflow was not

given. Beardsley and Hart's (1978) model provides a practical method to

relate these two quantities. An application of the latter model shows



-25-

that the amount of river outflow is insufficient to drive the mean drift

in the Middle Atlantic Bight.

1. 4 Summary

From the dynamic consideration in the earlier sections, it may be

conc 1 uded that to understand the dri vi ng mechani sms on the conti nenta 1

shelf, it is essential to solve the folllowing problems:

(1) What is the pressure field over a realistic shelf/slope

topography under wi nd fore i ng?

(2) Does the deep ocean impose a pressure gradient on the slopes,

and if so, how?

(3) What is the role of the slope inl!insulating" this pressure

gradient from the shelf or "transmitting" it to the shelf~

(4) What is the flow field generated by the density field, when the

latter is produced by cooling, river buoyancy flux, or other density

effects!

(5) How is the density field itself affected by the density-driven

fl ow?

The principal aim of this work is to develop a prognostic model to

answer these questions. The theoretical model used is fairly general and

can be applied to different continental shelves. In Chapter 2, the model

used by Csanady (1978) is generalized to the case with density

stratification. To simplify the problem, the total velocity field is

decomposed into a depth-i ndependent bottom geostrophi c component and a

thermohaline component relative to the bottom. The resulting equations,

governi ng the bottom geostrophi c flow forced by 1 ong-i sobath bottom
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density variations and by wind, can be solved diagnostically with a known

bottom dens ity d i stri buti on. The thermoha 1 i ne component can be found

from the density distribution. The prognostic formulation is achieved by

the use of a density equation which includes the nonlinear advection and

the time-dependent terms. Under the assumption of vertical homogeneity

of the water column, the density equation is expressed in terms of bottom

geostrophic velocity. The time evolution of density field and flow under

forcing can then be followed.

In Chapter 3, the long-isobath density gradient is neglected to

isolate the wind-driven circulation. The model is solved numerically for

the flow driven by wind stress and wind stress curl over various shelf

topographies. The purpose of this approach is to examine the effect of

bottom slope on the mean circulation pattern and to identify the

contribution of wind-driven flow under strong and persistent wind

conditions. The possible influence of deep ocean currents on the shelf

circulation is also analyzed. The insulating effect of the slope on the

deep ocean circulation gyres is examined.

To exp lore the contri but i on to the mean flow from the 1 ong-i sobath

density differences on the shelf and the upper slope, a model is

developed in Chapter 4 for the transient, though long time-scale flow

forced both by a coast a 1 buoyancy flux and by a surf ace density flux. In

the vertically homogeneous layer below the seasonal thermocline, it is

shown that the thermohal ine velocity does not contribute to the density

advection and that the bottom velocity component is crucial to the

advection process. The model is aimed at elucidating the generation of
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bottom velocity and the dispersion of density perturbations. Model

results are compared with the observed bottom water distributions over

various shelves.

In Chapter 5, contributions from various forcing components are

estimated, using the model results in the earlier chapters. The driving

mechanism of the mean southwestward drift in the Middle Atlantic Bight is

then discussed in relationship to the observational evidence.



CHAPTER 2

DYNAMIC EQUATIONS

In this chapter the dynamical equations are formulated, that will be

used in later chapters to study the mean circulation over the continental

margins. The study will be focused on forcing with periods longer than a

month, by wind, deep ocean pressure gradient, river buoyancy flux, and

surface cool ing.

2. 1 The Momentum Equation s

Consider the motion on a ß-plane along a straight and long coast in

the north-south direction. The coordinate system is chosen such that the

x-axi s points to the east, y to the north and z upward (Fi gure 2. 1). The

bottom depth is a function of x only and varies from nearly zero at the

coast to the depth of deep ocean. We will use variables without

superscripts to denote nondimensional quantities. The corresponding

dimensional ones are expressed by a superscript 11*'11. The sea surface is

assumed to be rigid and the density is a linear function of temperature

and salinity. The equations of motion are:

* * * * ,1 * 2 * 2 * a 2u*~ + u~ + v~ + w*!l - f*v* - - - ~ + A (LL + LL) + A -at* ax* ay* az* . - Po ax* H ax*2 ay*2 v az*2

(2.la)

* * * * 1 * 2 * 2 * a2v*.! + u~ + v~ + w~ + f*u* - - - ~ + A (~ +~) + A -
at* ax* ay*' az* ,- Po ay* H ax*2 ay*2 v az*2

(2.lb)
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w* w* a* * 1 * * 2* 2* 2*,L + u~ + v~ + w~ - - - .! - .. + A (~ +~) + A ~
at* ax* ay* az* - Po az* Po H ax*2 ay*2 v az*2

(2.1c)

a u* a v* a w*
ax * + ay * . + a z* = 0 (2.1d)

where u*, v* and w* are the velocity components in the x*, y* and z*

directions, respectively. p* is the pressure and p* is the density with

a mean value Po. f* = f + B*Y* is the Cori 01 is parameter.
o

AH and

AV are the hori zonta 1 and vert i ca 1 fri ct i ona 1 coeffi ci ents.- - -
We will nondimensionize (2.1) by length scale L, depth H, velocity U

and density variation ~P.
- -

An advection time scale L/U is used. The

nondimensional variables are defined as follows:

x* = Lx; y* = Ly; z* = Hz; t* = (L/Ü~t

-
u* = Uu; v* = Uv;

H -w*=::Uw
L

f* = f f; f = i + BY; B = ß* L/fo 0
p* = -Pogz* + pof 0 U L P

-
p* = Po + ~p P

L can be chosen as the width of topographic variations. H is the depth

-
at the shelf break. The velocity scale U depends on the forcing applied

and is different for each problem. The nondimensional equations are
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, E 2 2 E 2
(!! + iJ + ~ + ~) _ fv = _ 12 + H(a u + a u) + v a uE:R at ax ay az ax -i ~ "" 2--c. ax ay - azc. (2.2a)

E 2 2 E 2
(a v + a v + a v + a v) + f u = _ 12 + ..(.! +.!) +..:LE:R -at ~ax Yay W:az ay 2 2 2 2 2ax ay ,az ( 2. 2b)

2 a a a a a 2 EH a 2 2 Ev a2vD (2! + ~ + ~ + ~) = - Æ - ap + D (-i (-* +.!) + --JE:R at ax ay az azC. axc. ay2 2 ai
( 2. 2c )

.! + .! + aw = 0
ax ay az ( 2. 2d )

where

E:R = U/(f oL) Rossby Number,

-2EH = 2AH/(f oL ) Hori zonta 1 EkmaQ Number

EV = 2A I(f ¡:2)v 0 Vert i ca 1 Ekman Number

D = H/L Aspect Ratio

2 - -
fR = f 0 L/(gtip/Po) Interna 1 Froude Number

a = D/(fRE:R) The Relative Importance of Density

Stratifi cati on.

. au* *
At the sea surface, z*= 0, the boundary conditions are Av az* = ~x/Po

A au: = t* / p , where -r* and 'Cy* are the x- and y-components of windv az yo' x
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stress with magnitude T. In nondimensional form, they are

Ev au

"2 -a = iotx
at z = 0 (2.3)

Ev av

T az = tory

where íro = r/(pofo U H) determines the relative importance of wind stress

to the fl ow.

At the ocean bottom, we can use the boundary layer analysis to solve

the Ekman layer problem on a slope (e.g. Pedlosky, 1979, Section 4.9).

However, the applicability of this analysi~ is ambiguous, when the water

shoal s to Ekman depth near the coast. An alternate simpler approach is

to parameterize the bottom friction via a linear drag law. Let r be the

proportional constant, the bottom stress can be written as

A a u* = ru*
v az*

at z* = -h* (x*)
av*Av az* = rv*

In nondimensional form, they are

E
v au

T az = €u

Ev av

T az = €v

at z = -h ( x ) (2.4)

where € = r/(f H).
o

Equat ion (2.4) is phys i ca lly more real i st i c, when the water depth is

of the same order as Ekman depth. It has been used frequently in shelf
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circulation problems (e.g. Csanady, 1976, 1978). Scott and Csanady

(1976) found r to be 0.1 cm/sec from the data taken off the Long Island

coast. It is probably on the high side. The recently accepted values

are between 0.05 cm/sec to 0.1 cm/sec (Winant and Beardsley, 1979;

Pettigrew, 1981). Equation (2.4) is equivalent to the bottom Ekman layer

, solution, if the geostrophic approximation on the bottom velocity is

made. The correspondence between them is £ = E~/2/2. The values for £

and Ev corresponding to r = 0.05 cm/sec and H = 100 mare 0.05 and 0.01,

respectively. The equivalent Av is found to be 50 cm2/sec, which

agrees with the values in common use for Av. Table 2.1 lists the values

of nondimensional parameters pertaining to the western North Atlantic

shel f.

, TABLE 2.1

Scaling Parameters and Nondimensional Numbers Independent of Forcing

..
Horizontal Length 100 kmL

,.
H Depth at Shelf Break 100 m

D Aspect Rati 0 10-3

f 0 Mean Coriolis Parameter 10-4 sec-1

AH Horizontal Eddy Vi scos ity 106 cm2/sec

EH Hori zonta 1 Ekman Number 2 x 10-4

r Fri cti ana 1 Coeffi cient 0.05 cm/sec

£ Nondimensional Frictional Coeffi ci ent 0.05
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Using Equations (2.3) and (2.4), we can integrate (2.2a) and (2.2b)

from the bottom of the ocean to the surface. These equations lead to

Jo~ u co 0 0'1 2Ef( (4~ rU. ~ +v ~ +w;i)J~-J tv eli:: -5 :: d~t ~ J (:x~ t ~i)d*tç rx - L ~~ (2. 5a)-~ -L, -i. -I, CJo 0 02. 'Z
f((J( ~ +u dV + y "d\r tw ~ )d7:.lJf~ ch: - J f-~'lJH ;H f (:)(~ + ~d~)J~+rø"1- E u¡ (2. 5b)O\, "'X '911 õ~ L L- i, (/ -~ -'I -'1

where uh and vh are the velocity components at the bottom.

Mean longshore velocity over a period longer than one month is about

5 cm/sec on the continental shelf. In this ca~e, the Rossby number is

0.005) which is an order of magnitude smaller than e:. EH is much

smaller than e: (Table 2.1). We expect that the lateral friction and

nonlinear advection terms in (2.5) are negligible.. We will show in the

next section that the cross-shelf momentum balance is approximately

geostrophic to the leading order both in the interior region and in~ide

the boundary layer, and the term e:uh in (2.5a) is small to the order

e:. Therefore, we replace vh by its geostrophic counterpart and

negl ect the e:uh term. These assumpt ions have been shown to be

approximately true by the near-shore current measurements south of Long

Island (Pettigrew, 1981).

Typically, D (( 1 on the shelf. Equation (2.2c) is, in a good

approximation, the same as the hydrostatic equation. The

depth-i ntegrated cont i nui ty equat ion is the conservat i on of total

transport. With the above approximations, (2.5a, b) and (2.2c, d) become
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.

10 .- fV = - .! dz + t i:-h ax 0 x (2.6a)

fU = - J 0 .! dz + L 't - £vb-h ay 0 y (2.6b)

o = - .! - apaz ( 2. 6c )

.! + !Y = 0
ax ay ( 2 . 6d )

where the capi ta 1 1 etters U and V represent the components of total

transport in the x and y directions. The boundary condition at the coast

is the no normal flow condi ti on, i.e.:

U = 0 at x = 0 (2.7)

The other boundary conditions will depend on each problem considered.

For localized forcing, we expect the disturbances to die out far away

from the forcing region. For deep-ocean/shelf interaction, we need a

boundary condition at the seaward boundary of the shelf.

2.2 Decomposition of Velocity Field

Because of the large variations in bottom topography on the shelf,

the usual decomposition of'velocity components into normal modes is not

possible. In this section, an alternate way of decomposition is used,

and the equations are thus simplified. Conventionally, the geostrophic

velocity is separated into a barotropic mode which contains all the
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horizontal transports, and several baroclinic modes which have zero net

transports. Throughout this work, they are defined differently.

The decomposition is achieved through the hydrostatic relation

(2. 6c). The pressure at a depth z can be found' from the surface pressure

and the internal density distribution by integrating (2.6c):

, 10p = p + a p dzs z (2.8)

The x-derivative of p is

~~- =
~x

o 0 i()1's + O"j ?Jt Jè = ()~ + crJ ~p á~)- crJ lf dè
~x i ax ~)( -i, ~x -A ~)( (2.9)

Because i ~ equals the'y-geostrophic velocity, (2.9) suggests that it can

be written in terms of two components. The bottom geostrophic velocity

vb is given by
..

i aps 1 °av = - ( - + a .. dz )b fax -h ax (2.10)

which is the geostrophic velocity evaluated at the bottom and is

depth-independent. The thermohaline velocity Vc is the geostrophic

velocity evaluated with the bottom as a reference:

Vc = - E.l z!E dz (2.11)
f -h ax

Obviously, Vc satisfies the thermal wind relation. Similar equations

for x-bottom geostrophic velocity are
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i aps J °au = - - ( - + a ¿ dz )b f ay -h ay (2. 12)

Lz
a apUc = f ay dz

-h
(2.13)

The transports associated with these components are given by

Vb = hVb (2.14)

10 10 aV = v dz = !! z ¿ dzc -h c f -h ax (2. 15)

Ub = hUb (2.16)

u =.j 0 u dz = -f a 1 0 z !e dzc -h c -h ay, (2. 17)

Equations (2.10) and (2.12) can be used to eliminate ps. The

resulting equation is

a aPb
:x( fUb ) + ãY( fVb ) = - aa(x) aY (2. 18)

where a(x) is the bottom slope and Pb is the density at z = -h(x).

In general, when ßVb l 0, or when the constant density 1 ines at the

bottom cross isobaths, the bottom geostrophic velocity is divergent.

Equation (2.6d) can be used to eliminate U and V from (2.6a) and (2.6b),

resulting in the relation
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~1. f i
e. ~ - d. UJ; + f h 'i, = 'E F

f
'- (j ¡Dê ìif d-a

f -l. ~)(
(2.19)

where the definitions of ub and vb have been used, and F is given by

F = f2 ( ~ (!:) - 1. ( ~') Jax f )~ f
The coastal boundary condition (2.7) can be written in terms of ub and

vb as

'1 0
ap 'r

&Vb = fhub - a -h Zay dz + Lo ty at x = 0 ( 2. 20 )

Equations (2.18) to (2.20), with other appropriate boundary

conditions, can be solved for ub and vb diagnostically. The

thermohaline components are readily found from the density distribution"

and the velocity field is obtained. . In the next section, a density

equation is derived in terms of ub and vb. It is possible to solve

the problem prognostically. We will discuss the characteristics of

Equations (2.18) and (2.19) in the rest of this section. The order of

magnitude of the flow contributed by the wind and density forcing

components wi 11 be estimated.

Over the continental shelves, ß is small. Equations (2.18) and

(2.19) can be combined into a single equation for ub. It is

-i

C. ~ ul. + -fcX~-ax1. ~ d
= - E(j.l(cX~)

f~)( ~,
T'o ~ F-
f )'( (2.21)

Here f may be chosen to be +1 to represent the Northern Hemi sphere.
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Equation (2.21) is interpreted as a heat equation with -y as the

time-l ike coordinate. Assuming that the forcing is zero in the region

y ~ Yo' then both ub and vb vanish there. At the coast, a topographic

boundary layer of width (€Ly/ao)1/2 exists, where Ly is a

nöndimensional longshore length scale and ao is the mean slope in the

nondimensional coordinate system. We will use the superscripts "I" and

"B" to represent the interior and boundary layer solutions respectively.

The interior solution is found by letting £ = 0 in (2.19). We have

i 'to Fub = - -- (2.22)

From (2.18), v~ is expressed as

~'1 - J~(F
Vi = - 0( i: ( Pa: - fl: ) + t'o ¡x - ) d&t, " ot d

o

(2.23)

where v~ = 0 at y = Yo has been used and Pb(x, Yo) is the bottom

density at y = Yo. Let v~ = vb - v~ and ug = ub - u~.

The equations in terms of boundary layer variables derived from (2.18)

and (2.19) are:

BaVb B
£ ~ - a ub = 0 (€) (2.24)

a uB a vBb b-+-=0ax ay (2.25)

From (2.25)., we can express ug and vg by a stream functi on øB such
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that

uB _ _ 21Bb - ay (2.26)

B 21Bvb = ax ( 2.27)

To the leading order, Equation (2.24) can be rewritten as

a2øB aøBe- +a-=Oax 2 ay (2.28 )

If the water depth is zero at the coast, the leading order balance in

(2.20) is

aøB
e - =

ax
i

1:0 7: y - e vb ,at x = 0 (2.29)

For simplicity, we assume that a is of order one and the forcing is

over a unit longshore distance. Equations (2.22) and (2.23) show that

the interior flow driven by wind stress curl is of the order ~o in

both the x and y directions. The interior density-driven flow is of

different characteristics from the wind-driven one. The magnitude of the

interior flow produced by an order one density disturbance is estimated

to be a from (2.23). However, the cross-shelf interior flow, given by

(2.19), is at most of the order e. In both wind- and density-driven

cases, the bottom friction terms are of the order e in the interior

region. Inside the coastal boundary layer, (2.28) demonstrates
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that the cross-shelf 1engtn scale is £1/2 for a unit longshore forcing

scale. The order of magnitude for the flow in a boundary layer can be,

estimated from (2.29). For the flow forced by a longshore wind stress,

øB is of the order i-o£ -1/2. Th~ correspondi ng u~ and v~ are

of magnitudes 1ro£-1/2 and ¡ro/£ respectively. In the density-driven

case, (2.29) shows that øB is of the order G£1/2 with a boundary layer flow

of the order G£1/2 and G in the x and y directions respectively.

Therefore, the coastal boundary layers in the density-driven circulation

are less important than in the wind-driven case. The above estimation of

the order of magnitude clearly shows that the relation

£ug ~~ ~ ~~ v~ is always satisfied if £ ~~ 1. Therefore, the use of

the quasi-geostrophic approximation and the neglect of £uh term in

deriving equations (2.6a,b) from (2.5a,b) are justified.

2.3 Di scuss ion

The decomposition of velocity field into a bottom velocity and a

thermohaline velocity is not new. A similar decomposition was used by

Fofonoff (1962) and 1 ater by several others in di agnosti c ocean

circulation models (e.g. Sarkisyan, 1977). There is a crucial difference

between Fofonoff' s de compos i ti on and the presenten one. Fofonoff' s

express i on for the IIbarotropi c II transport is the same as (2. 14). ' However,

the IIbarocl inicll component is different from that given by (2.15) because

of his neglect of the specific volume anomaly at the bottom. With the no-

tation of Section 2.2, Fofonoff's IIbaroclinicll transport may be written as

-fO" :x SOt fdi :: ~ 5° ~!f da - ~ o(~-£¡ f -h ax f ~
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No such approximation is made in (2.11). The difference is presumably

unimportant in the deep ocean circulation, because the ,horizontal density

variation is nearly zero at the bottom. When the shelf circulation is

concerned, horizontal density differences at the bottom become so

important that they are the main driving force of the depth-independent

component of the flow. Unlike Fofonoff's decomposition, the presented

one is more general and val i d even when the bottom reaches the 1 eve 1 wi th

large horizontal density variations. Pedlosky (1974) also applied this

decomposition implicitly. The topographic boundary layer in Section 2.2

is the same as that in his model. Equation (2.23) is similar to his

solution for the interior velocity at the bottom, which includes the

effect of longshore bottom density vari ations. In a homogeneous fl ui d,

Equation (2.28) is equivalent to the one in Csanady's (1978) arrested

topographic wave model, where the thermohal ine component vanishes.

The idea of decomposition was also used by Csanady (1979) in studying

the steric set-up along the continental margins of the western North

Atlantic Ocean. Csanady (1979) expressed the sea level elevation by a

contour integral on the density field. The integral can be interpreted

as the sum of two constituents: (1) the integral of the bottom velocity

outside the coastal boundary layer, defined by (2.23), along an

integration path at the ocean bottom from a reference isobath (4000 m in

his calculation) to the location where the sea level is to be calculated;

(2) the integral of the thermohaline velocity at the sea surface, given

by (2.11) with z = 0, along an integration path in the water column from

the bottom to the surface. This representation of sea level elevation is
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possible if the bottom geostrophic velocity is nondivergent. However,

when the bottom density varies along i sobaths, Equation (2.18) shows that

the bottom geostrophic velocity becomes divergent and Csanady.s method of

integration can not be used.

Equations (2.18) and (2.19) thus provide a general method for the

diagnostic calculation of ocean circulation with the presence of density

vari ati ons at the bottom. In a speci a 1 case of no 1 ong-i sobath density

differences, Csanady's (1979) method suggests the integration of (2.11)

and (2.24) from a deep reference level to the surface for calculating the

dynamic height along the continental margins. This dynamic height

calculation provides a theoretical base for the classical method used by

Montgomery (1941) and readily has practical applications.

2.4 The Dens ity Equati on

Horizontal density advection will be taken into -account in a

simplified way because, in its general form, the three-dimensional

density equation is intractable. The problem is simpler when the water

column is nearly homogeneous vertically. Under this condition, the

density equation may be depth-integrated and the dependence on the

z-coordinate is eliminated. It is possible to extend this

depth-integration to the vertically stratified case, if the horizontal

density gradient is approximately independent of depth. The density

equation in the dimensional form is

* ll êJt*' *
~ + It* )t t \)l_ t \lli.!
'dt* a~ a-a"" ~i?

~1.i* 7J'Lt¥r l¡'lt,,
= K.Lx" t . t~) +1( JilZ.

(2.30 )
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where KH and Kv are the horizontal and vertical diffusion coefficients.

Other variables are the same as those in the earlier sections.

The ratio of the vertical advection term to the longshore advection

term is estimated by approximating w* and v* with Ub*a* and vb*, where

a* is the actual bottom slope. The result is

1 w. êJtil Id~.;~
*

I vft~ Iê) ~:ø

lJ

1l lI l'lt Iof Ub ~?.."'
lr *' I !. * Jb rõ. (2.31)

)

In the density-driven case, (2.18) and (2.19) show that ub*/vb* - £

outside the topographic boundary layer. The vertical advection is

negl igible, if

I ~~ ~: i ~.c t /~: I (2.32)

For a density difference of 0.3 x 10-3 gm/cm3 in a longshore distance of

-3 ap* -7 4100 km, '£ = 0.05 and a* = 10 , we require az* ~~ 6 x 10 gm/cm or a

density difference of 6 x 10-3 gm/cm3 in 100 m of water. Inside the

topographic boundary layer, ub*/vb* - £1/2. Equation (2.32) is

satisfied, if åp* ~~ 3 x 10-4 gm/cm3 in a water depth of 20 m.

Subsequently, we will neglect the vertical advection term when

considering the density-driven flow over the continental shelf in winter.

At the surface, the density flux condition is given by

~ tif Q iik'v - =-
øt'

at z* = a (2.33)
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where Q* is the surface densty fl ux caused by atmospheri c i nfl uences

(heating, cooling, evaporation, etc.). The bottom condition is the one

with no normal diffusion flux:

k !!J J ~ It + /( ~'* :: 0H øXIl dx'i \I ~2~ at z* = -h*(x*) (2. 34)

At the coast, the river outflow is modelled as a density sink of strength

R*:

fo *K !. J ~ '* :: Rltii_" i)x'" at x* = 0 (2.35)

For other hori zonta 1 boundari es, we requ i re p* = 0 away from the dens i ty

sinks or sources. Equation (2.30) is integrated from the bottom to the

surface. Making use of (2.33) and (2.34), we have -

o ¡o *' 0 it fO f't if '*
~*L r*Jl + (u.tif.+v*ÆlJJ2.*':: klf~~r :;J~*+kli:'1*_JI ~frJ? + Q (2.36)"If..J: _"if 0 -h" q ~

Equation (2.36) is the conservation of density in a vertical column. The

nondimensional form of (2.36) is

o 0 p JO " f
~ J f d l + Ie ii: + v !f ) J~ ;: y 1. ø P Ji + l l J .! c1 ~ t Q 0 Q.~t_~ -h x ~~ ~~" ~x ~_'" ~i (2.37)

where y = KH/(€RfOL2) is the nondimensional diffusivity, and

Q = Q/(f €RHA;) is the nondimensional surface density flux. The coastalo 0 -
boundary condition for a river density flux with scale R is given by
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ø

Y5 !f ~~ = R.D R
~ )€

-h

at x = 0 (2.38)

where Ro = R/(ERfoHL8;) is the nondimensional coastal buoyancy flux.

Simplification of (2.29) is made by assuming :~ and :; independent of

depth. We also require that the vertical stratification varies in a time

much longer than the advection time. The density advection term becomes

o

J ( u!f + v Ì) f' ) d è = L1?! ., V ~r~x ) 1 ~x ~ 1
-h

( 2.39)

where U and V are the total transports given by (2.6a) and (2.6b). Only

the transports associated 'with the bottom geostrophic velocity and the

bottom frictional velocity can effectively advect the density field under

the assumption of vertical homogeneity of the horizontal density

gradient, since

U -at + V ~ =C~)( C. ~ ~ ~(r0t. õf dz) ~ !(JOi ?If'di ) !!.f _~ ~"I ~x. -t f _~'~" ) d
_ 5!h1.('!~ ~'!)
- f )~ ~x è)X ~ d

:: 0

It follows that (2.37) can be rewritten as

h ~ t( h'i -£') ) ~ t (h 'í + L"b )~ = y- ~ (h~) + y~; (l~ )-jQ.Q

where pis the mean density in a water column. Under wi nter verti ca 11 y
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homogeneous condition, p and p are the same as Pb. We have

~~ (' )~tb I rJth )t/)Pb) ) ~~h-+ t\L(b-(Vb - +(l\'i+~I.D)-='t- i\~ +Y'-(~-~)lQoQ~t ~X ~i )If 0)( ~a ~ia (2.40)
Equation (2.40) and the momentum equations (2.18) and (2.19) form a

complete set. In the following chapters they will be applted to the mean

shelf circulation under various forcing conditions.
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Figure 2.1 Schematic diagram showing the coordinate system.
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CHAPTER 3

THE EFFECT OF STEEP SLOPE ON THE BOTTOM PRESSURE FIELD

The formul ati on in the previous chapter shows that bottom geostrophi c

flow can be generated on continental shelves by wind and long-isobath

density variations. In this chapter, we will neglect the long-isobath

density variations and concentrate on the analysis of the wind-driven

flow. The flow forced by wind stress at the coast and by wind stress

curl on the outer shelf and slope will be considered with emphasis on the

topographic effects. We will also examine the possible influence of a

deep-ocean circulation gyre on the shelf circulation.

3.1 Formulation of the Problem

Because of the 1 arge offshore topograph i c vari ati ons at conti nenta 1

margins, the forced bottom geostrophi c flow at varicrus offshore locati ons

should be different. In order to study the effect of topography on the

mean circulation, the bottom topography is idealized as a long and

straight coast with bottom depth as a function of the offshore

coordinate. The steepness of bottom slope is preserved by choosing a

cross-shelf bottom topography representing that in the Middle Atlantic

Bight. Figure 3.1 is a plot"of the topography which will be used in the

subsequent numerical computations. In this figure the depth and the

offshore distance are nondimensionalized by scales of 100 m and 100 km

respecti vel y.

The nondimensional equations derived in Chapter 2 will be used here.

The coordinates are the same as those in Figure 2.1, with x in the
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offshore direction and y in the longshore direction. Without the

1 ong-i sobath dens i ty v ari ati ons, Equati on (2.18) shows that the bottom

geostrophic velocity is nondivergent and can be written in terms of a

stream function ø, which is also a measure of bottom pressure:

1 aøub = - f" -a (3.1a)

vb =
1 aø
f"ãX (3. 1b)

In a homogeneous fluid, ø equals g times sea surface elevation.

Substituting (3.1a, b) for ub and vb in (2.19), the vorticity
~

equat i on govern i ng the mot i on becomes r

ãcP )i.~ , ~+ jO ~t
- fol i" = E -~ + ß" - + f 0' ~ ~ d~ - La Fq' è)x I~)( _~ fi" (3.2)

where a(x) = dh/dx is the bottom slope and F =f2(~~(~y) - ~~(f)J is

f times the curl of wind stress. Equation (3.2) is a parabolic equation,

in which the signal propagates to the -y (+y) direction in the Northern

(Southern) Hemisphere. In this chapter, we will discuss the case in the

Northern Hemisphere (f = +1), and specify -y as the forward direction.

Suppose that the forcing acts only in the region y ~ O. The boundary

condition at y = 0 is then similar to an initial condition and can be

specified as ø = O. Since the second derivative in y has been neglected,

boundary conditions are not needed at the forward side (y ~ 0). The

boundary condition at the coast is obtained by substituting (3.1) into

(2.20). The resulting equation is
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E ~ + h ~ =-!: -c - cr f~ ~ d2~x 711 0 d -~''1 at x = 0 (3.3)

where ry is the longshore wind stress. For wind forcing over the

shelf and the upper slope, the motion away from the forcing region is

small and we have

ø = 0 at x ~ 00 (3.4)

This seaward boundary condition in the case of deep ocean forcing will be

discussed in Section 3.4.

Following Csanady (1978), one may interpret (3.2) as a heat equation,

in which ø is "temperature" and -y is "time". Furthermore, £ is the

thermal conductivity and af is the heat capacity whtch is variable for
o

non-constant slope. Two other terms, ßhaØlax and -roF+ßirJ -i?! oIë ,
r _~ ~)(

correspond to the heat advection and the heat source terms respectively.

Using this formulation, the effects of coastal wall and steep bottom

slope on the mean circulation will be studied in the following sections.

3.2 Local Wi nd Forc i ng

Equation (3.2) with the boundary conditions (3.3) and (3.4) are used

to estimate the order of magnitude of the flow driven by wind stress ànd

its curl over the shelf and the upper slope. The shelf topography in

Fi gure 3. ii s approxi mated by a 1 i nearl y decreas i ng bottom wi th slope

ao joined by a much steeper slope of constant magnitude ai at the

shelf break (x = xb). We assume a1 ~~ ao. Over the shelf and
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upper slope, the terms containing ß are small, being proportional to the

depth, and will be neglected.

3.2.1 Longshore Wind Stress Forcing

Assume that the longshore wind stress is uniform from y = -L to
y

y = O. The wind stress curl term in (3.2) vanishes, and the flow is

driven by the forcing term in the coastal boundary condition (3.3). We

resca 1 e y by Ly such that y = -Ly n. Equati on (3.2) suggests an

offshore length scale ô = (eLy/ao)1/2 near the coast. Let x = ôr.

In terms of r and n, (3.2) and (3.3) become

d~ _ d~CP- -'
~7 ).51-
~ - À dcP = (.! )~(r. r: _ cïfOë -rf Jt.)òš ~1 0(& £. Ò 1 _~ ~'J, 0

,~ (3.5)

at x = 0 (3.6)

where À = ho(eaOLy)-1/2 and ho is the bottom depth at the coast.

Equation (3.5) shows that the width of the coastal boundary layer develops

as n1/2 in the +n direction. In the case of vanishing bottom depth at

the coast, the order of magni tude of ø is

ø - 0(Lö(eao/Ly)-1/2J (3.7a)

The correspondi ng offshore and longshore components of vel oci ty are

ub - 0(To(eaOLy)-1/2J (3. 7b)

and
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Vb - O(~/£) (3. 7c)

Typical values under a 1 dyne/cm2 longshore stress forcing over 100 km

of the coast are listed in Table 3.1, where the length scale and other

parameters in Table 2.1 are used.

Table 3.1

Scales and Nondimensional Parameters in the Wind-Driven Case

..
Length scale, L

1 dyne/crr2

100 km

100 m

10-7 dyne/ cm3

10-:4 sec-1

Wind stress, ~

-
Depth, H

Wind stress curl

Cori 01 i s parameter, f 0

Frictional coefficient, € 0.05-
Velocity scale, U 1 cm/sec

In the general case h 0 t O.

coas t depends on the parameter À.

The effect of bottom depth at the

For À ~~ 1, the term ÀaØ/an in (3.6)

is negligible to the order À compared to the term aø/aJ. The solution is

therefore not affected by the choice of ho' except in the region very

close to the shore. If À )) 1, the dominant balance in (3.6) is

dP- À ~ ::
L't Ýz fO ';f )

(- ,) (ro L'1 - CT '?- ()h.~ol ~ -~ ?Iip 0 at x = 0 (3.8)
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which simply states the compensation of offshore surface Ekman transport

by the geostrophic onshore flow. Equation (3,.8) is equivalent to the

coastal boundary condition in Pedlosky's (1974) model. For a = 0, ø is

of the order (Ly/ao/dl/2À-1to' which is-i/À times smaller than

that with À = O. We can write À in the form

À = ho(£aOLy)-1/2 = (ho/ao)/(£Ly/ao)1/2 (3.9)

which is the ratio of the distance between the coastal wall and the apex

of the wedge-shaped bottom, to the width of boundary 1 ayer. A deep

coastal wall will effectively excluda the near-shore circulation and will

not change the dynamics of interior flow significantly.

Equation (3.3) is the general boundary condition for coastal

circulation problems. It is equivalent to a radiation condition in the

heat conduction analogy. This relation is useful because a coastal wall.

can always be used to exclude the near-shore portion of the shelf when

the flow in the interior region is concerned. On the other hand, if the

near-shore circulation is of interest, (3.3) can be simplified to a flux

condition for zero bottom depth at the coast. One application will be

described in the next chapter, where we deal with the density diffusion

at the coast. A coastal wall can be used to exclude the singularity in

the density equation when h = O.

3.2.2 Wind Stress Curl Forcing

Unlike the longshore wind stress forcing which drives a flow inside a

coastal boundary layer, wind stress curl is an interior forcing effect
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and the resulting flow has a much larger offshore extent than in the

previous case of longshore stress forcing. We assume that the longshore

wind stress vanishes at the coast and the surface wind stress curl is

non-zero over the shelf and slope from -Ly to 0 in the y direction.

Using the same independent variable n as in the previous section, we have

õ~~ e. Loa õi.cp -r~ L 'J= -- - F o ~ x ~ xb (3.lOa)
~ 1

0'1) ) xL. .0( 0

")~,
=

£. Lia ò'L7, To L'a F xb ~ x ( 3.10b)- - -
~ 1

oi i ~x~ 0(,

, !

where Øo and Ø1 are the stream functions in the shelf and the slope

regions respectively. For ho = 0, the boundary cond it i on at x = 0 becomes

an insulating one:

è~t)
(l X

:: 0 at x = 0 (3.11)

At x = xb' we require the continuity of ø and Vb:

Øo = ø 1 ( 3. 12a)

~CPo è f,-::-dX òX (3. i2b)

We also assume that Ø1 vanishes on the seaward boundary and the initial

conditions are Øo = 0 and Øi = 0 at y = o.

To understand the dynamics of the flow under wind stress curl
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forcing, Equation (3.2) can be integrated with ß = 0 over an area enclosed

by y = 0, y = Yo ;( 0, x = 0, and x = 00. It becomes

cx 0 I) 00 1.4- J() rO r: J
S~dX5 ~tdd=-rId~j ~X~dXT t"br d~ ~dL~(~)_~d~l;)o ~Ð ~l) 0 o~o

Using the boundary condition at y = 0, it is easy to show, with

integration by parts, that the term on the left-hand side of the above

equation is the total longshore transport across y = Yo. The first term

on the right-hand side vanishes, because aØlax = 0 at x = 0 and x =00.

The 1 ast term is the 1 ine integral of wind stress vector along the

boundary of integration region. The resulting equation is

00

"d~j. h Vb (~",~,,) d)( -

o

To f
f' ,

'ê . ds ',. 'V

Therefore, the total Ekman transport out of the section of the shelf

between y = 0 and y = Yo is compensated by a geostroph i c longshore

transport across y = Yo.

The flow pattern can be examined by boundary 1 ayer analysis. For the

shelf and slope region outside boundary layers (cf. below), the dominant

balance in (3.10a, b) gives a Sverdrup flow across isobaths. It is

r
Ò ~o _ To L "'- _dF
~ 1 - ~o

o ~ x ~ xb ( 3. 13a)

")l,:i = _, ToL", Lò1 - tf rol \

xb ~ x ( 3. 13b)
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where the superscript 11111 i,ndicates interior solutions. n = 0 is

equivalent to an eastern boundary in Stommel.s (1948) model. Therefore,

Øo = Øi = O. Equations (3.13a, b) can be integrated from n = 0 in the

forward direction of the parabolic equation. We have

, 1
~ i = T~'a J F J~

b olo 0 o ~ x ~ xb ( 3. 1 4a )

~~ =
I

rD L ~ J 7 F J 7

eX i 0

Xb ~ x ( 3. 1 4b )

The interior response on the slope is then ao/a1 times smaller than that

on the shelf. Typically, ao/a1 = 1/50. We expect that the change in sea

surface elevation caused by wind forcing is weak on the slope. The

offshore velocity is found from (3.13a, b):

u i: =
b

To F
010

o ~ x ~ xb (3.14c)

i
lAb =

(0 F
ol \

Xb £ x (3.14d)

The longshore velocity is

I s~ d (F
Vb := -Co L~ 0 ~ 010 ') ~ 1 o ~ x ~ Xb (3.14e)

i S7.d (F
Vb :: "(0 L d 0 ~ d:) q 7 Xb £ x ( 3. 14f )

In the wind stress curl forcing case, the longshore and the offshore flow
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are of comparable strength in the forcing region. The maximum longshore

flow is weaker by a factor €Ly/ao than that under longshore stress

forcing. Table 3.1 also lists these flow parameters for 1 dyne/cm2

variation in ,offshore wind stress over a longshore distance of 100 km.

In the region y ( -Ly' the onshore interior bottom flow in (3.14c, d)

is identically zero, and the bottom pressure is caused by the forward

influence of the pressure field in the forcing region. In the heat

conduction analogy, the pressure field is created by an initial

IItemperaturell distribution at y :: -Ly' which is given by evaluating

(3.14a, b) at n :: 1. For a steep slope with å (( 1, the initial

distribution of bottom pressure decays slowly, and the longshore velocity

is about the same as that inside the forcing region.

Besides the coastal boundary layers discus?ed. in the previous

section, boundary layers also exist at the shelf break, where an abrupt

change of bottom slope occur. These boundary 1 ayers are requi red to

satisfy the conditions (3.12a, b). Since the boundary layer width is

inversely proportional to a1/2, the boundary layer on the slope is

(ao/a1)1/2 times narrower than that on the shelf. According to (3.12b),

ø1 must be (ao/a1)1/2 times smaller than øo. For a very steep

continental slope, the effective boundary condition for the flow on the

shelf is then

Øo :: 0 at x :: xb (3. 15)

The error in using (3.15) is of the order (ao/a1)1/2. The heat
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conduction analog to the continental slope is a material of very large

heat capacity, while the shelf is of small heat capacity. As far as

shelf circulation is concerned, the slope is effectively a constant

temperature boundary.

If the forcing is limited on the slope, 00 is, at most, of the

same order as 01. To satisfy (3.12b), the much 1 arger 1 ength scale

on the shelf requires

~ = 0 at x = xb (3.16)
òX

Equation (3.16) is the same as the coastal boundary condition in the case

of a vanishing coastal wall (Equation (3.11)J. Therefore, the

circulation on the slope is not altered whether the èontinental slope

shoals to zero depth at the coast or joins a gentle shelf at the shelf

break. In the heat conduct i on analogy, the boundary of a materi a 1 wi th

large heat capacity located in an environment of small heat capacity can

be considered as insulating, since only a relatively small amount of heat

will leak out. Equation (3.16) also shows that the bottom pressure is

nearly constant across the boundary layer on the slope. If there is a

longshore pressure gradient over the slope, it will fall onto the

she 1 f Is lope boundary. Therefore, the use of alongshore pressure

gradient as boundary condition at the shelf break to parameterize the

deep ocean influence, e.g. in Csanady's (1978) model, is justified.

In summary, the discussion in this section deduces some

characteristics of the steady circulation over the shelf and slope. In
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dealing with the circulation on the shelf, the continental slope acts as

a boundary, where the bottom pressure is prescribed. This bottom

pressure is more or less constant across the slope region. In

particular, with vanishing forcing on the slope, it is expressed by

(3.15). For circulation over the slope, the shelf is a boundary with

vanishing normal pressure gradient given by (3.16). These inferences are

useful in studying the circulation over continental margins.

In order to apply these inferences, some cautious notes must be

made. Equations (3.15) and (3.16) are valid only to the leading order.

Therefore, (3.16) does not imply aøo/ax = 0, because aøo/ax is one

order of magnitude smaller than aøi/ax. It is also incorrect to derive

Øi = 0 from (3.15) for the flow on the slope. The boundary conditions

would be over~specified, if øi,= 0 and aøo/~x - O,were used.

3.3 Numerical Solutions

Equation (3.2) is solved numerically over topography simulating the

Middle Atlantic Bight, which is characterized by a two-order of magnitude

variation in the bottom slope (Figure 3.1). The shelf and slope regions

are infinitely long in the ydirection with isobaths parallel to the

coast. We will assume that the wind forcing is limited from -L to 0
y

in the y direction, which is represented by a half-period sine wave with

a peak value of ~/2 so that a unit mean wind stress is obtained in the

forcing region. We will chose cr = 0 in this section. Because the

forcing can influence the forward portion of the shelf only, an initial

condition ø = 0 is used at y = O. Equation (3.3) is the boundary

condition at the coast. The boundary condition (3.4) is applied at the
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2000 m isobath. To simplify the interpretation, ø will be considered as

the nondimensional sea surface elevation. The dimensional scales in

Table 3.1 are used.

The computati on starts from y = 0 and progresses in the -y

direction. For each value of y, Equation (3.2) is solved by the Euler

modified scheme to have second order accuracy in both x and y coordinates

(e.g. Roache, 1976). As discussed earlier, the forward boundary

condition is not needed. The important parameters are the magnitude of

forcing, the boundary layer width ô (ô = (€Ly/ao)1/2J, and À given

by (3.9). In the actual computation, we will fix ô and vary the shelf

width, W, which is defined as the distance from the coast to the 200 m

isobath. Solutions for longshore wind stress forcing and wind stress

curl forcing are studied separately in order to isolate their

influences. Because the equations are linear in the wind-driven cases,

the general forcing problem in principle can be solved by adding the

solutions for forcing at each coast section.

3.3.1 Longshore Wind Stress Forcing

Table 3.2 summarizes the numerical solutions under longshore wind

stress forcing. The sea surface elevation in Case I is produced by a

positive longshore stress over the portion of shelf from y = -2.5 to

y = O. The shelf is so wide that the coastal disturbances do not reach

the shelf break. Fi gure 3.2 shows the d i stri but i on of sea surf ace

elevation in this case. A parabolic boundary layer is present at the

coast. The sea surf ace e 1 evat i on decreases from y = 0 to Y = -2.5. It

then rises slowly in the region y (-2.5 The bottom velocity is not
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Table 3.2

Summary of Numerical Solutions Under Longshore Wind Stress Forcing

Nondimensional

Quant it i es*

Shelf width, W, (100 km)

Water depth at the coast, ho' (100 m)

Forcing range, Ly (100 km)

Mean wind stress (1 dyne/cm2)

ô/W

À

Max imum r/ (1 em)

Maximum ub (1 em/see)

Maximum vb (1 cm/sec)

Total transport (105 m3/sec)

I

1. 6

o

2.5

0..14

0.2

o '

-1. 28

-0 . 99

4.43

0.35

Case

II

0.85

0.75

2.5

0.14

0.4

2.1

-0.49

-0.33

1. 45

0.36

* The dimensional scales are given in parenthesis.

III

0.85

o

2.5

0.14

0.4

o

-1.39

-1. 14

4.43

0.36

shown, but it can be found easily from the gradient of sea surface

elevation. Inside the forcing region, the offshore surface Ekman

transport is compensated by a bottom geostrophi c flow from the forward

side of the forcing region. The strongest longshore flow occurs at the

coast in the forcing region and migrates offshore in the region
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y ~ -2.5. This longshore flow reaches a much longer distance than the

wind stress itself. Although the strength of longshore velocity

decreases on the shelf forward to the forcing region in the longshore

direction, the total longshore transport across the shelf, calculated

from the longshore velocity, is nearly constant in the region y ~ -2.5.

In the case with a negative longshore stress, the flow behavior should be

the same but the direction of flow is reversed.

The effect of a finite coastal bottom depth is examined in Case II,

where a coastal wall is placed at x = 0.75. It is shown in Figure 3.3

that the surface elevation in the region x ) 0.75 is similar to that with

zero depth at the coast, except that the coastal wall cuts off the flow

shoreward of it. In Case III, the longshore wind stress acts on a shelf

where the boundary layer reaches the shelf break. The contour plot of

bottom pressure is shown in Figure 3.4. According to this plot, the sea

surface elevation field is qualitatively similiar to that in Figure 3.2,

but the steep slope topography now plays a role in limiting the flow on

the shelf. Longshore flow is present at the shelf break because of the

constraint of a steep continental slope. These qualitative behavior is

generally in agreement wi th those discussed inSect ion 3.2.1.

Quantitative effects of a coastal wall and a steep continental slope

under longshore wind stress forcing can be found in Table 3.2. Since the

maximum sea level change occurs at the coast, a coastal wall effectively

reduces the maximum responses of the sea surface elevation and the

magnitude of longshore velocity. The effect of a steep continental slope

is not significant for the flow driven by longshore wind stress. The
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total longshore transport is not influenced by either a coastal wall or a

steep conti nenta 1 slope.

3.3.2 Wind Stress Curl Forcing

Figure 3.5 shows the sea surface elevation under forcing by a

positive wind stress curl over the portion of the shelf between y = 0 and

y = -2.5 (Case iV). The shelf is wider than the coastal boundary layer.

In the forcing region, the sea surface is depressed in the -y direction

by the curl of wind stress. Forward to the forcing region in the

longshore direction, the sea surface remains nearly the same. A steep

cont i nenta 1 slope plays an important role under wi nd stress curl

forcing. The change in sea surface elevati,on is greatly reduced over the

slope. The associated bottom velocity field can be seen in Figures 3.6

and 3.7. In Figure 3.6, the onshore flow in -2.5,( y ( 0 is clearly

associated with the Sverdrup transport. Forward to the forcing region

(y ( -2.5) the cross-shelf flow is weak. Longshore bottom flow shows a

positive maximum at the shelf break (Figure 3.7). This longshore flow

persists to a great longshore distance forward to the forcing region. At

the coast, a weak counter flow in the forcing region is present. The

longshore transport is mai n ly contri buted by the strong longshore flow

over the outer shelf (Figure 3.8). The total longshore transport

integrated across the shelf is found to remain constant in the region

y ( -2.5.

When the wind stress curl is positive, it produces an upward vertical

velocity at the base of the surface Ekman layer. This vertical transport

is supported by the i nteri or geostroph i c onshore transport outs i de the
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horizontal boundary layers. As the shelf break is approached, the strong

bottom slope prevents the onshore geostrophic velocity from becoming too

1 arge. The transport then comes from the bottom Ekman 1 ayer and a

positive longshore flow is generated. For a negative wind stress curl,

the pattern is the same but ø changes sign and the flow direction is

reversed.

The effect of a coastal wall is studied in Case V. The sea surface

elevation and the maximum onshore velocity are about half of those in

Case iv, and the maximum longshore flow is only slightly reduced (Table

3.3). Over a narrow shelf (Case Vi), the sea surface elevation, the

onshore flow, and the longshore velocity are only slightly samller then

the relative values in Case iv (Table 3.3).

The circulation driven by wind stress curl_has characteristics

different from those of a longshore wind stress driven flow. The latter

is a boundary layer flow and is less influenced by the pressence of a

steep slope. However, the velocity distribution under wind stress curl

forcing is mainly determined by the bottom topography with strongest flow

at the shelf break. The region of steep continental slope serves as a

buffer zone to the wind-driven shelf circulation. The steep bottom slope

not only reduces the flow response to forcing but also prevents the

circulation on the shelf from leaking onto the continental slope. With

the exception of the area close to the shelf break, the deeper part of

the slope is quite free from the wind effect.

3.4 The Insulating Effect of a Steep Slope on a Western Boundary Current

3.4.1 Introduct i on
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The analyses in the earlier sections show that the slope region is

not affected significantly either by the flow on the shelf or by the wind

forcing over the slope. However, deep ocean IIbaroclinicll and

IIbarotropicllcurrents may drive the circulation over the continental

slope, especially on the western side of the ocean. To understand fully

Tab 1 e 3. 3

Summary of Numerical Solutions Under Wind Stress Curl Forcing

Nond imens i ona 1

Quantities* . I V

Shelf width, W, (100 km) '1. 6

Water depth at the coast, ho' (100 m)

Forcing range, Ly (100 km)

Mean wind stress curl

o

2.5

(10-7 dyne/cm2)

ô /W

0.4

0.2

o

- 1. 45

-0 . 96

1. 70

À

Maximum ø (1 cm)

Maximum ub (1 cm/sec)

Maximum vb (1 cm/sec)

Total transport (105 m3/sec) 1. 80

* The dimensional scales are given in parenthesis.

Case

V

0.85

0.75

2.5

0.4

0.4

2

~. 646

-0.45

1. 54

1. 05

VI

0.85

o

2.5

0.4

0.4

o

- 1. 08

-0.74

1. 66

1.05
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the shelf/deep-ocean interaction, it is necessary to solve a nonlinear

general circulation problem on the western side of the ocean with

considerations of stratification and large bottom topographic variations,

which is at present out of the question. However, as far as the shelf

circulation is concerned, the detailed structure of western boundary

current is not of interest to us. Some parameterization of the deep

ocean flow hopefully will provide a qualitative description of the deep

ocean influence.

The chart of mean wind stress curl over the North Atlantic Ocean

(Leetmaa and Bunker, 1978) shows a 1 i ne of zero wind stress curl

generally following the path of the Gulf Stream. The curl is positive

north of this zero contour line and negative south of it. It is of the

order 10-8 cm/sec2. Simple barotropic ocean mQdels (e.g. Stommel, 1948)

predict an anticyclonic gyre in the south and a cyclonic one in the

north. The flow is i ntens ifi ed at the western boundary with the

strongest current at the latitude of maximum wind stress curl. Thi s

pattern is altered by the presence of bottom topography at the western

side of the ocean.

Schulman and Niiler (1970) solved numerically the linear equations of

wind-driven circulation in a homogeneous ocean with topography running in

the north-south direct i on at the western boundary of the ocean. Linear

bottom friction as that in Stommel' s (1948) model was used. In their

sol ut ions, the western boundary current flowed along constant f /h

contours, and deep ocean gyres were distorted southward at the western

boundary. The northern gyre was the one which contributed to the



-68-

near-bottom flow on the continental slope and rise off the Middle

Atlantic Bight. A longshore pressure gradient imposed by deep ocean

circulation at the shelf break was shown in their results. They also

inferred the asymptotic behavior of the flow on a very narrow continental

slope. It was found that the long-isobath flow over the continental

slope was proport i ona 1 to the water depth.

Killworth (1973b) studied the linear equations governing the

circulation of a homogeneous ocean with the presence of a much steeper

continental slope at the western boundary than that in the Schulman and

Niiler1s (1970) model. It was argued that the lateral viscosity

dominated the vertical viscosity in the bottom Ekman layer over the

continental slope. This assumption lead to a bottom frictional

coefficient proportional to the bottom slope. With the aid of boundary

layer analysis, Killworth found that most of the linear western boundary

current was located at the foot of the slope. The steep slope

effectively isolated the shelf circulation from deep ocean flow. The

conclusion drawn from his study is qualitatively different from that of

Schulman and Niiler (1970).

Schulman and Niiler's (1970) model, though much simplified, is likely

to give a qualitatively accurate description of the barotropic western

boundary undercurrent below the main thermocline north of the Gulf

Stream. Nevertheless, there is a possibility that the gentle bottom

slope used in their numerical computation causes a pressure gradient

from deep ocean ~irculation being imposed on the shelf. In their

asymptotic limit of a narrow slope,region, the flow decreases smoothly
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with bottom depth from the slope/rise junction to the shelf break. This

is true only when the slope is much narrower than the boundary layer

thickness. However, the thickness of boundary layers is generally of the

same order of magnitude as the width of the continental slope or less.

The limiting case in Schulman and Niiler's (1970) analysis can not be

applied to the realistic topogaphy. The insulating effect of Killworth1s

(1973b) model is probably overemphasized on the continental slope,

because of the assumed dependence of frictional coefficient on the bottom

slope. This assumption conflicts with the generally accepted linear or

quadratic bottom friction laws.

Circulation with stratification and bottom topography in the western

North Atlantic Ocean was solved numerically by Semtner and Mintz (1977).

Since they used a basin size about one third of the actual width of the

North Atlantic Ocean, a large wind stress (3 dynes/cm2) was needed to

reproduce the observed Gu 1 f Stream transport. In the i r mode 1, the she 1 f

flow north of Cape Hatteras seemed to be influenced by the cyclonic deep

ocean gyre to the north. Their result was used by Beardsley and Winant
.

(1979) to support the idea of a deep ocean imposed pressure gradient at

the shelf break.

Before a definite conclusion on the slope/deep-ocean interaction can

be made, several points need be clarified. Although the choice of a

larger wind stress by Semtner and Mintz (1977) is valid in the deep ocean

region, the effect of wind stress forcing on the shelf circulation is

overestimated. Also, the cooling/heating is stronger on the shelf and

upper slope than in the deep ocean because of the shallower depth. It is
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not clear whether the pressure gradient on the shelf is derived from the

deep ocean circulation or simply due to the response to local forcing.

Furthermore, in Semtner and Mintz's (1977) results, the shelf flow

contains a thermohaline component, which is caused by the local density

field. It seems that the pressure gradient on the shelf in their model

is not necessarily forced by the deep ocean circulation.

In view of the controversial speculations on the effect of a slope,

it is important to analyze the conditions under which the deep ocean may

drive the mean shelf circulation. In the following section, a

quantitative analytical approach valid for steep topography is

developed. We will study the case in which the density variations

associ ated with the "barocl inic" current do not reach the bottom of

continental slope, e.g. in the Slope Water region,north of Cape Hatteras

in the western North Atlantic Ocean. This approach should place the

problem in a clearer focus than the numerical model of Semtner and Mintz

(1977) or the boundary layer analysis of Killworth (1973b). A simple

Stomme l-type deep ocean model (Stomme 1, 1948) is used to parameteri ze the

deep ocean influence as a boundary forcing on the near-bottom flow over

topographic variations. This parameterization of deep ocean influence,

however, is likely to be valid independently of the deep ocean model

used. The effect of near-bottom density variations will be studied in

the next chapter.

3.4.2 Mode 1 of Slope/Deep-Ocean Interact i on

Consider an ocean with topography, which is uniform in the

north-south direction. The coordinate system is defined so that x points
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to the east and y to the north. The bas i n extends from x = 0 to xe

in the east-west direction and infinitely long in the y direction. The

bottom dep-th is nearly constant with a mean depth hd over most of the

ocean. Inside a narrow band at the western side of the' ocean, a

shelf/slope topography as shown in Figure 3.1 is present. It joins

smoothly to the deep ocean bottom. Variations in bottom density along

isobaths are neglected. We will keep the ß terms in Equation (3.2) and

use a constant Cori 01 i s parameter when it is not differenti ated (f = 1,

nondimensionally). The vorticity equation governing the motion is

~J. ~.l ,.1 ' jO 'dP
E ~ + çJ ~ + P- ~ ~ :: to F - ß (j ~ ç cJ~dX7. ~Ö r ~X r _~ 0". (3.21 )

where the bottom pressure perturbation, ~, is related to the bottom

geostrophic velocity by

Ub::-Ô~
g Ö

(3.1a' )

11
- ~

ô)(
(3.1bl)

The terms on the 1 eft-hand side of (3.2') represent curl of bottom

stress, vertex stretching, and ß times the transport associated with the

bottom geostrophic velocity. On the right-hand side of (3.21), the terms

are wind stress curl and -ß times the thermohaline transport definded by

Equation (2.15). Under the assumption of vanishing long-isobath bottom

density variations, only if ß is non-vanishing, can the bottom flow be
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driven by the density field. On the continental shelf, the ß terms are

small because of shallow water depth. The local forcing is mainly caused

by wind. In the lower slope and deep ocean regions, the ß terms can be

import ant.

In the region xd ~ x ~ xe' where the bottom depth variation

is small, the vorticity tendency balance in (3.2') is reduced to

d"l~ J, õ~ _ ., tO fO ()t ,
f - f ß d - - Lo r - f: (J è - (; 2~,,). I dX I òX" -~ x ~ xd (3.17)

Outside the western boundary layer, the bottom friction term is

negligible. Equation (3.17) expresses a Sverdrup relation, in which the

transports of bottom geostrophic velocity and thermohaline velocity are

balanced by the curl of wind stress. The f'irst t~rm on the left-hand

side of (3.17) is important only inside the western bou~dary layer. At

the eastern boundary of the ocean (x = xe) the condition ø = 0 must be

satisfied. We will integrate (3.17) from xd to xe. The integration

leads to:

d~ I Xe sXe jO tJf ,l~ _ + rh = - -r L: FdX'+!! dx ~:; oii- :: ~'d "dX 't fJ i, 0 h oX 0/- d ~ d xd -~ (3.18)

where ôd = e/(ßhd) is the width of Stommel's (1948) western boundary

layer in a flat bottom ocean. -hdøo is the "barotropic" transport

integrated across the latitude circle, or the difference between the total

Sverdrup transport produced by the wind stress curl and the thermohaline

transport. The latter occurs mainly above the main thermocline. If the
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bottom pressure at the eastern boundary is zero, 00 may also be

interpreted as the bottom pressure distribution at x = ~d. The solution

for x ~ xd must satisfy (3.18) at x = xd through the continuity of ø

and aø/ax. The boundary condition for the flow on the slope becomes

~õcP + A A.
d òX 't - ~o at x = xd (3.19)

and the deep ocean circulation is decoupled from the problem. The

validity of (3.19) does not depend on the exact location of xd' once

xd is outside the region of 1 arge topographic vari ations. Al so, it does

not depend on the particular model used for deep ocean flow, since only

00 and the parameter ôd are involved.

In the region x ~ xd' we n~glect the wind stress curl forcing in

order to isolate the influence from deep ocean. Equation (3.2) becomes

c Õ 1. ~ + 0/ Õ ~ -+ B 1, 0 P :: _ ß (jJ 0 2 () t cl èc. dX'\ ~'J r òX r _'" ~K ( 3. 20 )

The boundary condition at the coast with h = 10 is
o

£ ~ :: 0
òX

at x = 0 (3.21)

Th e i nit i a 1 con d i t ion

° = 0 at y=O (3.22)
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may be specified, if the deep ocean pressure field vanishes at y ~ o.

Equations (3.19) to (3.22) can be solved by assuming a bottom pressure

distribution 00 at x = xd and a density distribution in the region

x .. xd. Two driving forces are present in this formulation: 00' which

is a parameterization of the deep ocean effect; and an interior forcing

term in (3.20) caused by local thermohaline flow.

3.4.3 Flow Driven by a Longshore Thermohaline Current over the Slope

It has been shown in Section 3.2.2 that the pressure field set up by

forcing in the slope region will appear as a longshore pressure

distribution at the shelf break. Letting 00 = O~ we may examine the

effect of a thermohaline current on the pressure field over the 'slope.

The flow behavior is the same as that under wind stress curl forcing. We

will examine the response of the flow in the interior region of the slope

away from boundary 1 ayers.

From (3.20), the interior vorticity tendency balance becomes

01 óf =: _ P. q-S°-r õf d-l :: _~ ~()l1 ( dXo ~~
In dimensional form, the long-isobath pressure gradient is

d~*-- -
èÖ..

~ * Vc.*

ol* Õ

For a mean current of the order 10 cm/sec extending to 100 m depth~ the

longshore sea surface gradient over a bottom slope of 10-2 is

10-9. With such alongshore gradient imposed at the shelf break,
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Csanady1s (1978) model gives a longshore bottom flow of 0.2 cm/sec, which

is too small to have significant contribution to the mean flow. Only'

when the Gulf Stream meanders onto the slope region with a mean

thermohaline velocity of 10 cm/sec extending to 500 m, can a bottom

velocity of 1 em/see be produced on the shelf.

3.4.4 Forcing from Deep Ocean Currents

In this section, the right-hand side of (3.20) is set to be zero to

study the effect of deep ocean currents. The forcing on the flow in the

slope region comes from the boundary condition (3.19). Let ao be the

typical nondimensional slope and Ly the longshore dimension of deep

ocean gyre. A topographic boundary layer is present over the continental

slope with width Ô = (€Ly/ao)1/2 as discussed in Section 3.2. Using

the variables :5= (xd - x)/ô a~d n = -y/Ly' (3~20) leads to

Ò L.cp oJ d ~ ~ (It (ff

ò "5 i. - 0(0' "47 - ~d ~) ~ = 0 o ~ x ~xd (3.23)

The boundary condition (3.19) becomes

~ ~~ + ~ - ,.~ ò7 't ~o at x = xd (3.24)

If ôd/ô )) 1, the dominant balance in (3.24) is

~d ô~ ..
-r 01 - 'to at x = Xd (3.25)

and ø is of the order ô/ôd (( 1 in the region x ~ xd. In this case,



-76-

only a small portion of the deep ocean bottom pressure field will reach

the region of large topographic variations. Therefore, even the boundary

layer is of the width of the slope, the sea surface elevation at the

shelf break is still 6/6d times smaller than the deep ocean value. To

the deep ocean flow, it is equivalent to have ø = 0 condition at the

western boundary and a strong western boundary current is present as in

Stommel's (1948) model. For a gentle topography 6/6d ~~ 1, (3.24)

becomes ø = Øo' and the deep ocean bottom pressure distribution extends

entirely over the slope as if no boundary were present between them.

To estimate the magnitude of Øo' we need to know the total Sverdrup

transport and the thermoha 1 i ne transport in the ocean. The uncertainty

in the wind stress curl calculation prohibits an accurate estimation of

the Sverdrup transport. Leetmaa et al. (1977)_co~pared the transport

calculated from the wind stress curl with the thermohaline transport.

They found these two values were equal in the southern gyre within an

uncertai nty of ~ 10 Sverdrup in the deep water between 1000 and 3000

decibars. Using 10 Sverdrup as the upper limit for the barotropic

transport in the northern gyre between 1000 and 3000 deci bars, the

barotropi c transport wi 11 produce a sea surface ri se of 5 cm across the

basin along a latitude circle. With a north-south scale of 1000 km in

wind stress, the sea surface gradient is 5 x 10-8 outside the western

boundary layer. If the width of the long-isobath flow on the continental

rise and slope off Cape Code observed by Luyten (1977) and Schmitz (1974)

is used as the width of western boundary layer, ôd will be about 100 km.

For E = 0.05, Ly = 10 and ao = 50, ,which correspond to a longshore
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scale of 1000 km in the y direction and a bottom slope of 5 x 10-2, we

have ô :: 0.1 or 10 km dimensionally. The sea surface gradient over the

slope is at most 5 x 10-9. Even if this gradient is totally imposed onto

the shelf break, it is unable to make a significant contribution to the

shelf circulation.

Equations (3.19) to (3.22) have been solved numerically using the

topography shown ,in Figure 3.1. A longshore forcing range of 1000 km is

used. The parameters € and ß are 0.05 and 0.01 respectively. Figure 3.9

is a map of the bottom pressure distribution. The long-isobath velocity

is shown in Figure 3.10. Obviously, a realistic continental slope

effectively prevents the deep ocean circulation from influencing the

near-bottom flow on the shelf. This illustrates in detail the conclusion

already reached in Section 3.2 from a general ~nalysis of the vorticity

tendency bal ance.

3.5 Applications of the Slope Model

The characteristics of the mean circulation on the continental slope

may be used to interpret some geochemical observations. Biscaye et ale

(1978) studied the near-bottom distribution of suspended particles and

excess radon-222 on the continental shelf and slope off New York Bight.

They found that the concentration of suspended particles generally showed

a seaward decrease across the shelf. However, beyond the shelf break,

there was a zone aproximately parallel to the isobaths, in which the

concentration of suspended particles went through a minimum and rose

again in the deep water. The center of this minimum concentration of

suspended particles was somewhere betweem the 1500 m and the 2000 m
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isobaths. The distribution of near-bottom excess radon was similar to

that of suspended particles. It also showed a zone of minimum

concentration which coincided with that of suspended particles. Biscaye

et ale (1978) found that the zone of minimum concentration of near-bottom

excess radon and suspended particles was not correlated with either the

bottom sediment distribution or the concentration in the surface layer.

Two uncompat i b 1 e exp 1 anat ions were suggested by them. One was that the

near-bottom water over the slope was so quiescent that the excess radon,

being produced within the sediments and diffused across the

sediment-water interface, was not mixed vertically more than a meter or

so above the bottom. The other explanation was that the near-bottom flow

over the slope was so active that the water mixed with the mid-depth

water from the ocean interior, which would be low, in suspended particles

and contain no excess radon. Such mixing had to be strong enough to

dilute the flux of excess radon from the sediment, however, the mixing

should not stir up the bottom sediments.

The model solutions in this chapter readily give an explanation to

the distributions of suspended particles and excess radon. We have shown

that the slope region is not disturbed by either the wind from the

surface or the circulation on the shelf. The deep ocean circulation is

also prevented from reaching the slope region. This argument is

applicable to low frequency flow. In the higher frequency band,

near-bottom current measurements of Luyten (1977) and Schmitz (1974)

showed that there was no increase in kinetic energy form the continental

rise to the slope region. It is unlikely that there is any mechanism
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which will increase the near-bottom mixing on the slope. It may be

concluded that the upper shelf region below the thermocline is so

qui escent that the excess radon produced in the sediments is not mixed

into the water column and no disturbing mechanism is avaliable to

resuspend the bottom sediment as observed by Biscaye et ale (1978).

3.6 Summary

In thi s chapter, we have discussed the mode 1 responses of the flow on

the continental shelf and slope under forcing by longshore wind stress,

wind stress curl, and deep ocean currents. The flow driven by the

longshore wind stress is mainly inside a coastal boundary layer as in

Csanady's (1978) model. Outside this boundary layer, the flow is driven

by the curl of wind stress. This flow is strongly influenced by the

bottom topography. The continental slope has two effects: it reduces the

flow response to wind stress curl forcing over the steep slope, and it

prevents both the deep ocean circulation and the shelf circulation from

leaking onto the slope. An examination of the influences of thermohaline

flow over the slope and the near-bottom deep ocean circulation show that,

without the forcing caused by long-isobath bottom density variations,

these two sources are unable to contribute significantly to the flow on

the upper slope below the thermocline. The model results reveal that,

except for a possible deep ocean imposed thermohaline velocity component,

the upper slope below the thermocline is quiescent. These results can be

used to explain some geochemical observations on the continental shelf

a 1 so .
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Figure 3.1 Bottom profile used in numerical computations. The distance
and the depth are scaled by 100 km and 100 m respecti ve ly.
The shelf shown is a "widell shelf.
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Figure 3.2 Distribution of bottom pressure ø over a "wide" shelf, forced
by a positive longshore stress from y = -2.5 to y = 0 (Case
I). The nondimensional contour interval is 0.1.
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Figure 3.3 Distribution of bottom pressure ø forced by a positive
longshore stress from y = -2.5 to y = 0 with a coastal wall
placed at x = 0.75 (Case II). The nondimensional contour
interval is 0.1.
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Figure 3.4 Distribution of bottom pressure ø over a "narrow" shelf,
forced by a pos iti ve longshore stress from y = -2.5 to y = 0
(Case III). The nondimensional contour interval is 0.1.
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Figure 3.5 Distribution of bottom pressure ø forced by a positive wind
stress curl from y = -2.5 to Y = 0, which is uniform in x

(Case iV). The nondimensional contour interval is 0.1.
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Figure 3.6 x-component bottom geostrophic velocity distribution
calculated from the bottom pressure field in Figure 3.5.
Dashed 1 ines represent negative values.
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Figure 3.7 y-component bottom geostrophic velocity distribution
calculated from the bottom pressure field in Figure 3.5.
Dashed lines represent negative values.
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Figure 3.8 Transport of longshore bottom velocity shown in Figure 3.7.
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Figure 3.9 Bottom pressure field produced by deep ocean forcing with
€ ~ 0.05 and ß = 0.01.
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Figure 3.10 Long-isobath bottom velocity calculated from the pressure
fie 1 din Fig u re 3. 9.
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CHAPTER 4

DENSITY-DRIVEN FLOW AND THE DISPERSION OF DENSITY P~RTURBATIONS

4.1 Introducti on

In a rotating homogeneous fl ui d the vorti ci ty constraint of bottom

topography effectivel y prevents cross-isobath geostrophi c flow. If the,

bottom density field varies only in the cross-isobath direction, one

particular solution of Equations (2.18) and (2.19) is the zero bottom

geostrophic velocity. The result is thermohaline circulation with

geostrophic velocity calculated with the bottom on the refer~nce level.

In this situation the vorticity is not ~ffected by topographic

variations. However, when a bottom density gradient exists along

isobaths, simple sea level adjustment to the density field is not

possible. The'geostrophic velocity relative to the bottom, calculated

from the density field, becomes divergent. This divergence leads to

vorti city changes and the g~nerati on of 1 ong-i sobath bottom flow.

There are several places in the world ocean, where surface cooling or

evaporation is so strong that the water column becomes unstable and dense

water is formed by this atmospheric effect, e.g. in the Antarctic

Continent, the Norwegian Sea, and the Mediterranean Sea. Dense water is

also found in the outflow waters from these regions (see Warren, 1981,

for a review). Furthermore, the dense wat~r may reach the ocean bottom

in areas with shallow water depths, and a dynamic interaction between

long-isobath density variations and bottom topography may take place.

The most prominent example is the production of dense saline Antarctic
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Bottom Water on the Antarcti c continental shelves by the 'Sal t release

during ice formation (Gill, 1973). Over mid-latitude she,lves, the dense

water caused by winter cooling may reach the bottom also. Examples can

be found in the northern Adriatic Sea (Hendershott and Rizzol i, 1976),

the Middle Atlantic Bight (Bigelow, 1933), and the Gulf of Maine, where

the Gulf of Maine Intermediate Water is formed (Brown and Beardsley,

1978). Another source of possible interaction between density and

topography is the river efflux under weakly stratified conditions.

Unlike the case in which dense water sinks to the bottom, the light water

remains on the bottom because of the mixing under atmospheric cool ing and

tidal action near the coast.

The mere 1 ong-i sobath bottom flow generation process is not the whol e

story. Observations show that the Gul f of Maine Intermediate Water

reaches the New England shelf in summer (Hopkins and Garfield, 1979).

The Antarctic Bottom Water also flows along the Weddell Sea shelf break

westward to the northern tip of the Antarctic Peninsula (Forster and

Carmack, 1976). Apparently, bottom flow advects the density field, and

the resulting density structure, in turn, produces new long-isobath

bottom flow. The dynamics of this "self-advective" interaction can be

understood only if both density advection and topography are taken into

account. However, th i s 1 eads to a very complex prob 1 em.

Numerous attemps have been made to model the mean shelf circulation

including density effects. The complexity of the problem has

necessitated various simplifications. Basically, there are three

categories of model assumptions. In the first category, bottom
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topography is neglected, e.g. Stommel and Leetmaa1s (1972) model on the

eastern North American shelf and Ki llworthl s (1974) model on the

Antarcti c she 1 ves. The second category mode 1 stake into account both

topography and stratification but not the effect of density advection.

The model of Pedlosky (1974) belongs to this one, as do many "diagnostic"

numerical models. The major shortcoming of these models is the neglect

of the important dynamics of density advection which causes the density

perturbation to propagate away from the source region. Hendershott and

Rizzoli (1976) included all the essential dynamic factors in their

numerical calculations. Their model belongs to the third category, in

which stratification, topography, and density advection are all

considered. In this chapter, the dynamics of density-driven flow is

further investigated both analytically and numerically using simple

models of the third category.

We will apply the equations derived in Chapter 2 to the general

problem of interaction between steep bottom slope and density variations

caused by both surface density flux and buoyancy sources at the coast.

The evolution of the flow driven by horizontal density differences will

be predicted by the model. The case to be studied is when the horizontal

density variations reach the bottom and the constant density 1 ines at the

bottom do not coincide with isobaths. If surface heating or river

discharge merely produces a uniform layer of 1 i ght water at the surface,

the density field will have no dynamic significance to the bottom flow.

So is the case when the bottom density is constant along isobaths. These

two s ituati ons have been di scussed earl ier in Chapter 3.
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4.2 Formulation of the Problem

4.2.1 The Velocity Field

We consider the density-driven flow on a shelf with a long and

strai ght coast, where bottom depth depends on the offshore coordinate

only. The coordinate system is the same as that in Figure 2.1. For

density-driven flow, the velocity scale is chosen according to the

density variations so that a is unit and 1: is zero. The ß-effect is
o

neglected and the nondimensional Coriolis parameter f is +1 or -1

depending on the hemisphere where the shelf is located. Therefore, l/f

determines the direction of the time-like coordinate in the heat
,

conduction analogy. The governing equations (2.18) and (2.19) become

d ub +
~x

~v; =
~ :t

01 ) t.- -
.. ô d-

(4.1a)

c()~ rc. - 1"0( IÅL _ 0
'aX

( 4. 1b)

where a is the bottom slope in nondimensional coordinates.

When the long-isobath bottom density variations are not negligible,

(4.1a) shows that the bottom velocity becomes divergent and a stream

function can not be defined. However, it is possible to decompose the

bottom velocity into one divergent component vd and two nondivergent

ones, ve and ue:

vb = vd + ve (4. 2a)
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Ub - u- e (4. 2b)

and v d is defi ned by

è~-=
è) ä'

0( õ t.--
.f ôd

Over an infinitively long shelf with horizontal isopycnals in the

undi sturbed regi on, vd can be chosen as

~ = r (tb - ~ ex) J = - ~ l i (4.3)

where Pb(x) is the bottom density at infinity. vd then vanishes

at infinity wi th local ized disturbances. For simpl i city, we wi 11

consider Pb(x) to be identically zero. This situation occurs on the

shelf when a homogeneous bo'ttom layer is present below the seasonal

thermocl ine. The nondivergent velocities are expressed by a stream

functi on ø,

Lle = ~tp-
~(

~
"l ,

= -~x

(4.4a)

( 4. 4b)

With application of (4.2) to (4.4), (4.1b) may be rewritten as
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€ôi-cp + tel õr¡ = ~ 2 (d.t')

7J x., 7J if f ~x (4.5)

4.2.2 Case of Vertically Homogeneous Water Column

We will model the winter condition on the continental shelf, when the

water column is nearly vertically homogeneous. Using (4~3) and (4.4),

Equation (2.40) can be expressed in terms of vd, ø, and pl. We have

, I ,~+ù~ v~=
~t a. ())( + ~ l èr

v- , -i , Q.
.. 1. ( k ~ ) + 'f ~ + Go Ti- ax~)c ~a~ '1 (4.6)

, where

UI1= - ~ - L ( ()cp 1" V )
c,'a h. ()X d

and

v: = ( õtP + Vj ) _ i. ~a. ~x ~ ~~
are the sum of the bottom geostrophic velocity and the depth-averaged

bottom frictional velocity. To avoid the singularity at h = 0, we apply

a coastal wall of depth ho at x = a. The coastal boundary conditions

from (2.20) and (2.38) become

E ~ + f/l ~ = ~f' ~2.qr'()X o"?'¡ f -+2.~d' at x = a (4.7 a)

and
i

t ~ õt - Ro R
~ ~X

at x = a (4. 7b)

-l '" l' ,.
where Ro = R/(£RfoHLàP) and R is the nondimensional buoyancy flux.

We assume that the density disturbance is 1 imited in space so that the
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other boundary conditions are

ø = 0; vb = 0; and pi = 0 at x ~oo and y ~:f co ( 4. 8)

Equations (4.5) and (4.6), with the boundary conditions (4.7) and (4.8),

may be used to model the flow driven by surface density flux or a river

buoyancy source.

In the mid-shelf region over a wide shelf, the velocity and density

fields are not affected by boundary layers. Initially, the horizontal

density field has the same length scale as that of the surface density

flux, which is of the order of hundredS' of kilometers. We scale the

density field according to the size of atmospheric disturbances. For an

order one longshore density perturbation and an order one bottom slope,

vd being given'by (4.3) is also of order one. From (4.5), the stream

function ø of the nondivergent velocity is of the order € in the interior

region, and the flow is dominated by the direct density-driven component

vd. For y (( 1, the order one interior balance in the density.

equation (4.6) is between the time dependent term and the longshore

advection term. The leading order balance in (4.6) is

õt'
;)i;

I01 r' 7J l

f ~ - 0 (4.9)

where (4.3) has been used for vd. Equation (4.9) is a nonlinear

first order partial differential equation, which is the same equation

governing the shock wave propagàtion (e.g. Whitham, 1974). The density
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diffusion in the y direction is important in the shock region.

Therefore, we will retain the y-diffusion term and write the governing

equation away from coastal and shelf edge boundary layers as

,
~t-
~t

,01 t' ~ _
f aÔ '( õ 1./'~ ~ 2- (4. 10)

whi ch is Burgers' equati on after a coordinate transformati on (Whi tham,

1974). Equation (4.10) will be discussed in detail in the next section.

In the vorticity equation (4.5), the same topographic boundary layers

of Secti on 3.2 exi st near the coast and at the shel f break. Strong
,

density gradients are also present at both the shelf break and the

coast. We will call these regions of strong density gradient "density

boundary layers" to distinguish them from the topographic boundary layers

of the bottom pressure field. The near-shore flow is -complicated by both

topographic and density boundary layers. When the density field at the

coast varies in the longshore direction and the coastal depth is finite

(ho ~ 0), there is a thermohaline transport normal to the coast. A

topographic boundary layer is needed to satisfy the no normal flow

condition (4.7a). Letting the longshore length scale of the density

variation be Ly over a shelf of constant slope ao' the topographic

boundary 1 ayer is of the width ö = (€Ly/ao)1/2. Expressing (4.5) in

terms of topographic boundary layer variables J= x/ö and 11 = -y/Ly' we

have

"? 1. cp

~ Sa.
t !1;)7

(2. ,
c(t1 li ô t:: --
f ~)C (4.11)
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The boundary condition (4.7a) may be rewritten as

.d~ _ ß 7tf
õ~ olo c; "17

-- ) 0(0 i-lf
hoi.-

i. ~ ~o

ôf'-
~7

(4.12)

The relative importance of the two terms on the right-hand side of

(4.12) may be decided by an order of magnitude estimation. Because p'

and api/an are order one by the present scal ing, the terms ôaop' /f

and h~/(2ôao)ap'/an on the right-hand side of (4.12) are of the order

ôao and h~/ (ôao) respectively. The rati 0 of the 1 atter to the former

is (ho/ao)2/ô2. Therefore, if the coastal wall is inside the

topographic boundary layer (ho/ao ~~cô), the first term, ôaop'/f,

dominates.

In the atmospheric cooling case, the forcing scale along the x axis

is approximately the shelf width. The stream function ø is of the order

ô at most by the use of, (4.11) and (4.12), and an order one longshore

nondivergent velocity cancels the divergent longshore velocity at the

coast. For a coastal buoy.ancy fl ux, a density boundary 1 ayer width

ôR - yho/Ro

can be found from the density boundary condition (4.7b). The forcing

term on the right-hand side of (4.11) is then of the order (aoô/f)ô/ôR.

The salinity gradient caused by freshwater runoff is generally limited to

a narrow near-shore band inside the topographic boundary layer.

Therefore, ô/ôR )) 1 and forcing on the right-hand side of (4.11)
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dominates those on the right~hand side of (4.12). Although the forcing

term is significant only inside a density boundary layer, the flow field

extends to a wider topographic boundary layer. Outside the topographic

layer, the flow is weak. A similar situation occurs at the shelf break.

The i nfl uence of the shel f break front on the mean flow is 1 imi ted to the

vicinity of the front. We will suppose that the flow over the mid-shelf

is not greatly affected by these boundary 1 ayers.

The density boundary condition (4.7b) shows that large density

perturbations are produced when ho is small. However, the above

analysis demonstrates that the main forcing on the vorticity equation
.

comes from the term on the right-hand side of (4.11), which is

independent of hoe Consequently, the artificial coastal wall is not

critical for the solutions, and the singularity in the density equation

h as on 1 y 1 oca 1 effect.

4.3 Dispersion of an Initial Density Perturbation along Isobaths

Equation (4.10) shows that the density field over the mid-shelf is

characterized by a shock wave-l ike propagation of the density

perturbation along isobaths. Simple analytical solutions of (4.10) may

be used to describe the development of density field from añ initial

density distribution. The examples given in this section refer to the

case of a shelf in the Northern Hemisphere. In the Southern Hemisphere,

the propagation direction is reversed.

Let the initial density perturbation along a particular isobath be

p' = F (y ) at t = 0 (4.13)
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which may be produced, e.g. by a sudden overturning of the water column.

Let the perturbation be 1 imited in the y- direction in sU,ch a way that:

F(y) ~ 0 as y ~ :t 00 (4.14)"

For a shelf with constant slope ao' we will replace y by

n = -fy/ao. Equation (4.10) is then reduced to

òy' t'- + t' ~~t. (j 7
"('2f'_ v-
-a77- (4.15)

where v = y/a~. This is Burgers' equa'hion (Whitham, 1974).

ILL uminat ing resul ts foll ow from the known analytical sol uti ons of

(4.15).

The characteristics of the flow depend on the sign of F(y). F(y) ~ a

corresponds to an excess of density, and F(y) ~ 0, a deficiency of

density. Assume an initial delta function density perturbation

F ( n) = A6 ( T1) A ~ a (4.16)

The solution of (4.15) is given by

,u -7fi'lll t)
,'l71't) = r¡ (e -I) e - ~ (4.17)

~¡- .¡.¡ ( el' -I) J; e ~ j J
"-9..1;

where p = A/2v (Whitham, 1974). Two parameter ranges of p in (4.17) are

of interest. For p ~~ 1, the denominator in (4.17) is ~ + O(p) and
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i Af(1,t) ~:- e
.. 4- rr iJ 1;

'l-L
.lv-t

(4.18)

This is the solution of the heat equation for an initial delta function

distribution of temperature. Indeed in this approximation

Ij I õf ((
"J 7

"ã'f'
õ 72.

and
, 2. ,~f õ j- "" JI -

~t - ~7"L

which is preci sely the heat equation. The .density di sturbance diffuses

evenly in both +n and -n direction away from the source. The other

parameter range ~ )) 1 is of greater inter~st. We write e = n/(2At)1/2.

For n ) 0, the asymptotic expansion of the integral in (4.17) is

OI : 2.

J e- S 01 3
J) 13

-i
-/f!

"V -r ( J - -i + .. -)i.J) e ~e:i ) ~ )) 1

To the leading order, (4.17) becomes

f/~Æ
~ _~eZ.
e e
Jr -t eß e.-~ et. I

2. J) (1

or

f'~J2.A e
t 1-t2.eJ-i eftig"-U )

e= ~ ,;0
hAt

) ~ -7 OQ (4.19)
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In the limit)1 )) 1, the term 2eJiexp()1(e2-1)J is much greater than

1 for e ) 1, and is much smaller than 1 for -8 ~ 1. Equation (4.19) is

further approx imated by

pi (n,t) ~ nIt in 0 ~ n ~ (2At)1/2 ( 4. 20 )

~ 0 otherwi se.

This solution is of a saw-tooth shape. A density front is formed at

( )1/2. 1/2n = 2At and pi Jumps from (2A/t) to zero across the front.
The width of the front can be estimated by using a Tayor expansion of

Equation (4.19) at e = 1. Let e = 1 - el, where el ~~ 1. We have

I -f ~Ji ( 1- e')
r i + 2 ( i - e' ) ¡ T~

4)A &/e J
For )1)) 1

( fSAf~ -
- "l1T/ i

I

- If,M e

e

The width of the density front is given byel = 1/4/)1, or vt1/2/(2A)1/2 in

n coordinate. Figure 4.1 is a sketch of pi (2A/t)-1/2 as a function of

n(2At)-1/2.

The position of the density front is determined by n = (2At)1/2. It

follows that the front moves in the +n direction with a speed (A/2t)1/2.

Since the dependent variable in Figure 4.1 is pi (2At)-1/2, the maximum

magnitude of density perturbation decreases as t-1/2, independent of y.
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However, the total density perturbation along an isobath is conserved.

This is easily seen by integrating (4.15) from n = -00 to +00:

ti /- OQ
d~ J j" d1 = - ~ I -¡-00 7=-DO

00

rJl' I1/ = 0
~7 1=-DO

where pi = 0 and ap' Ian = 0 at n = ~oo have been used. The evolution of

the density structure of a heavy water blob descri bed by (4.19) is

sketched schematically in Figure 4.2. It is obvious that the heavy water

perturbation moves along isobaths in the direction of Kelvin wave

propagat ion.

The characteristics of the solution for an initial density deficiency

are different from those of (4.20). Let

F(n) = -Aó(n) A ) 0 at t = 0

The asymptotic behavior is

p( n) :: -nIt

:: 0

i n - ( 2A t ) 1/2 .( n .( 0

otherwi se

which is the same as the solution for a positive initial perturbation,

except that the direction of propagation is reversed. The longshore

density dispersion for a negative perturbation is also shown in Figure

4.2.

I nth e 0 c e ani c bot t om w ate r form at ion, the den sit Y d i s t rib uti 0 n i s
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seldom a delta function. Nevertheless, certain properties of the

solution (4.17), e.g. th~ speed of front propagation and the conservation

of tota 1 dens i ty perturbat i on, are independent of the d iffus ion

coefficient. For a general density distribution with ~ )) 1, they can be

inferred from the first order equation by neglecting the diffusion term:

idt
vt

i è r'T l 77 o (4.21)

For an initial perturbation F(~), the solution of (4.21) is

pi = F(~ - pit) (4.22)

pi is constant along characteristic curves, wh~ch are straight lines with

slope pi on the ~-t plane. The front forms when two characteristic

curves intercept. The propagation speed of the density front, cl, which

is different from the slope of characteristic curves, can be found by

transformation to a coordinate system moving with the front. Letting

~i = ~ - clt, tl = t, and G = pI2/2, (4.21) becomes

i
dr

~t
dr'c' _ T
"a 7'

li
d l'

o (4.23)

In (4.23), apl/atl is of order one in the coordinate system moving with

the front. But ap' /a~1 is much greater than one. Assuming that the

front is at ~ i = 0, we integrate (4.23) acros s the front from 0- to 0+
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-c/tY/(Or) -f'(o-)J-+ 9(0+)- 0(0-) "' 0

Therefore, c' is given by

I ..
c.

~ (ri ) - c, (()-) "--
l'(r/J - t'(õ)

~ (f'(c/J-¡ f'(O-)J (4.24)

If c is the propagation speed in the y-coordinate, it may be written as

C :: - 2~ (t'n/ )-t r'(O-)J ~ d (Vj (()+)+ li (O-)J (4.25)

Equat i on (4.25) shows that the front propagat i on speed is the average of

v d across the front.

We define the total long-isobath kinetic energy per unit depth as

()

J -i~i-c1d

L t( i.
- eXl) L r J. f i cl l'

f'Z oj Z L- !)
- 00

To examine the decay of kinetic energy, Equation (4.15) is multiplied by

P i and integrated from y = - OQ to +00. Us i ng the boundary cond it ions

pI = 0 and api/an = 0 at infinity, we have

() 2. 00 r( i.
'à r t i )/5 (Ô ) d
ót J i l d ( == - i -l) d 7 7

-00

The front region with strong density gradient is mainly responsible for

the dissipation. The width of the front has been estimated earlier in
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this section as v/(2A/t)1/2. Therefore, ap/an ~ 2A/(vt) and

ú( if ~~
d ( I 2 J _ eXb Lö(2.A)Z
àtJ 2:~otd - - 2f2. t

- Do

The kinetic energy of density perturbation decays as t-3/2. The

decay is fast if the perturbation is strong or the bottom slope is large.

We will estimate physical quantities of the flow field from the above

results. The most significant quantity is the propagation speed of a

density front. Suppose that at t = 0, the perturbation in density is

concentrated at y = 0 with total density excess of 0.2 x 104 gm/cm2 along

an isobath. ~ is 12.5 if KH = 4 x 106 em2/sec and the bottom slope is

10-3. Equation (4.20) shows that the maximum density inside the saw-tooth

shape perturbation will have a value of 0.28 x_10~3 gm/cm3 over a

longshore distance of 140 km after 47 days. The front propagation speed

is 1.7 em/sec. After 6 months, the maximum density will be 0.14 x 10-3

gm/em3 and the density perturbation spreads over a longshore distance of

277 km. The front propagat i on speed has decreased to 0.87 em/sec.

In the ease of flow driven by density flux at the eoast, the flow

behavi or depend s on the eharacteri st i c s of the topographi c and dens ity

boundary layers. To demonstrate this situation for a shelf with constant

slope no' we eliminate ub from (4.1a, b). The resulting equation is

f "dV¡,- rÁ -o Õ Ó

-i
() iJb

- E
o x'1

'-
+ 0(0

dr'
ò if (4.26)

The boundary condition is vb = a at x = O. In the Northern Hemisphere,
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the bottom velocity field in the topographic boundary layer spreads in

the -y direction independent of the sign of pi, because of the parabolic

nature of (4.26). However, the flow direction is determined by the

density perturbation. We will call -y the forward direction as before

and assume that the longshore density perturbation is limited between

y = 0 and y = -Ly. For a buoyancy flux (pi ~ 0), ap'/ay is positive at

y = 0 and negative at y = -Ly.. In terms of the heat conduction analogy,

there is a IIheat" source at y = 0 and a IIheatl s ink at y = -Ly., The

longshore velocity develops from zero at y = 0 to a positive value at

y = -Ly. In the region y ~ -Ly' the longshore flow becomes negative

near the coast. This negative longshore flow extends outward in the -y

direction in a parabolic boundary layer.

Because vb = 0 at y = 0, t~ere is no density advection backward

across the line y = O. At Y = -Ly' the longshore flow goes from zero at

the coast to a negative value in the near-shore region. This flow will

advect the negative density perturbation forward beyond the y = -L
Y

line. Therefore, longshore dispersion of near-shore light water in the -y

direction will develop with time.

For a positive density perturbation, the flow direction is reversed.

We have vb = 0 at y = 0 as before. However, vb is now pos it i ve at

y = -Ly near the coast. It prevents the longshore density advection to,

the region y (-Ly. The initial spreading of dense water is offshore.

When there is significant dense water in the interior region, the

self-advection process discussed earlier comes into play. These

qualitative differences in flow responses to coastal buoyancy flux and
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density flux will be examined numerically in the next section.

4.4 Numerical Solutions

In this section, Equations (4.3), (4.5), and (4.6) are solved

numerically for flow forced by a coastal buoyancy source and surface

density flux over a 1 imited area. The topography used in the computation

is uniform in y and has a shelf width of 160 km (Figure 3.1). A vertical

wall is placed in the near-shore region with boundary conditions given by

(4.7a, b). Since the forcing term in (4.6) is inversely proportional to

the water depth h, the density perturbation is small for large h. The

seaward boundary conditions in (4.8) are applied to some deep water

1 ocati ons or outside the regi on of density 'perturbati ons on the shelf.

The analyses in the previ ous section show that the sol ut ions are

characterized by density dispersion in the forwar9 direction. Therefore,

the flow and the density perturbation vanish at the backward boundary.

To avoid the unrealistic boundary layers at the forward boundary, we

approx imate the boundary condit ions in (4.8) by the computat iona lones,

ap'/ay = aø/ay = 0, for technical convenience (Roache, 1976).

The computation starts with pi = 0 and ø = 0 when the forcing is

applied at t = O. At each time step, the density equation is solved by

an implicit scheme (Roache, 1976), and the velocity field is calculated

in the same way as in Section 3.3. One iteration is used at each time

step to estimate the advection velocity. The computation proceeds for a

dimensional time period of about six months.

4.4.1 The Density and Velocity Scales

Because of the nonlinearity of,the problem, the resulting density
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perturbations are not 1 inearly rel ated to the magnitudes of forci ng. It

is necessary to deal with each case with different density fl~x

separately. Since the choices of density and velocity scales are

arbitrary, we wi 11 use the scales which provide computational convience.

For density-driven flow, the velocity is scaled by the magnitude of

density perturbation. Therefore, the parameter 0, which is the relative

contribution of the density-driven component to the total velocity, is

chosen to be 1. We will use the definitions in Chapter 2 for

nondimensional parameters, and II_II represents scales of variables as used

earlier. In terms of dimensional constants, the choice of 0 = 1 gives a

diffusivity

y = pof oKH/(gH~Pî (4.27)

The nondimensional coastal buoyancy flux and surface density flux with

o = 1 are

.v 'V "'2
Ro = pofoR/(gHD~p) (4.28)

"' "" "" "'2
Qo = pofoQL/(gHD~p) (4.29)

In the river buoyancy flux case, the density field is determined by

both near-shore advection and diffusion. A river stream flux of 1000

m3/sec is about that of the Hudson estuary in the Middle Atlantic Bight.

Assume that this flux spreads over 100 km of coastline to avoid large
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density gradient at the coast. The flux per unit coastline is then 100

cm2/sec, which is about the average flux in the Middle Atlantic Bight.

Using a value of 0.025 gm/cm3 as the density contrast between the river

'"
water and the shelf water, we have R = 2.5 gm/sec/cm. A density scale of

0.001 gm/cm3 will give Ro = 0.025. The velocity scale is then

derived from the density scale by using the relation cr = 1. Table 4.1

..
lists the parameters related to a forcing magnitude of R = 2.5 gm/sec/cm.

Typical winter heat loss in the Middle Atlantic Bight is 250

Watts/m2. With a heat capacity of l°C/cal and a thermal expansion

coefficient of 10-4 cm3/°e for sea water at 5°C, this heat loss

corresponds to a density flux of 6 x 10-7 gm/sec/cm2 into the water.

To find a density scale from this forcing magnitude, we assume that the

density advection is not significant until ~t t =,0(1). A convenient

scale ~p is obtained by using Qo = 1 in (4.29). We have

~p = (pofoQ/g)1/2/D (4.30)
The nondimens i ona 1 parameters and scales deri ved from thi s dens ity flux

are listed in Table 4.2 .

4 . 4. 2 eo a s tal De n sit Y Flu x Fore i n g

In the numerical computation for the flow driven by coastal density

flux, a coastal wall is placed at x = 0.2 in the topography of Figure

3.1. The water depth is 25 m at the coast. The seaward boundary is at

x = 1.45 with a ~epth of 130 m. The river flux is located from y = -1 to

O. The characteristics of the flow and density fields are demonstrated
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by the solution with Ro/y = 2.5 and y = 0.025. These parameters

correspond to the dimensional quantities specified in Table 4.1. The

nondimensional forcing function R is 1 from y = -1.0 to y = 0 and zero

otherwise. Figure 4.3 shows the development of density field as a

function of time. At t = 1, the advection of density is not significant

and the contour lines are only slightly distorted from a simple diffusion

cloud. The advection to the -y direction becomes obvious at t = 5. The

density deficiencies are limited inside a coastal density boundary layer,

and spreads toward the -y direction. In the region y ~ 0, the density

diffusion dominates, and the dispersion of density perturbation is

sma 11. For t ~ 5, the feature is s imi 1 ar to that at t = 5 with the

dens ity perturbat i on propagat i ng further to the -y direct i on. The mean

propagation speed of the density perturbation ln this figure is about 0.3

in nondimensional unit or 2.6 km/day dimensionally.

The mechanism of this density advection can be examined from the

bottom geostrophic velocity distributions in Figure 4.3. At t = 1, the

bottom geostrophic velocity is not quite established. Consequently, the

density advection is weak. Significant bottom geostrophicvelocity is

present at t ~ 5. For y ~ 0, there is a weak onshore flow which

compensates the offshore thermohal ine transport caused by a longshore

density gradient at the coast (Equation (4.7a)). In the region

-1 ~ y ~ 0, the velocity field is dominated by the divergent velocity

component associ ated with the 1 arge near-s hore dens i ty defi ci ency

(Equation (4.3)). This divergent velocity is longshore and positive. In

the, regi on y ( -1.0, a topographi c boundary 1 ayer is produced by the
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TABLE 4.1

Sea 1 es and Nondimens i ona 1 Parameters for Flow

Driven by Coastal Buoyancy Flux

Symbo 1 Numerica 1 values

,.
R

R
o

2.5 gm/sec/cm

t.p

0.025

10-3 gm/cm3

0.1

0.01

2.. ( '"fR = f oL/ gt.p/po)

ER = D/fR

U = ER f or
,. "'..
T = L /U

KH

10 em/ sec

106sec (11.6 days)

i06 cm2/ see

y 0.01
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TABLE 4.2

Scales and Nondimensional Parameters for Flow

Driven by Surface Density Flux

""
Q

ßP= (pofoQ/g)1/2/D
2'" ,.fR = foL/(gßpIPo)

e:R = D/fR

Numerical values

6 x 10-7 gm/cm2/sec

0.2 x 10-3 gm/cm3

0.41

0.0024

Symbo 1

,. ..
U = e:R f oL

T = L/U

y

2.4 cml sec

4 x 107 sec (47 days)

0.04
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coastal longshore density gradient near y = -1. This boundary layer

develops in the -y direction and is similar to the one under longshore

wind stress forcing (Chapter 3). The flow inside the boundary layer is

longshore to the -y direction, and is responsible for the longshore

advection of density deficiencies.

The evolution of the density minimum at y = -1.0 as a function of

time is plotted in Figure 4.4. There is a rapid initial density decrease

after the coast a 1 buoyancy flux is app 1 i ed. At t = 2, a quas i-steady

state is reached. In this quasi-steady state, the magnitude of the

density minimum does not change significantly, and the buoyancy influx is

balanced by the longshore advection. It is clear that the minimum

density per unit forcing strength depends only weakly on y.

The longshore density advection is further demonstrated in Figure

4.5, where the density distribution at x = 0.3 is plotted as a function

of y for Ro/Y = 2.5. At Y = 0, the density deficiency diffuses away

from the source. However, at y = -1, the development of density field is

by advection. At t = 1, the density deficiency is advected only slightly

beyond y = -1 in the -y direction. Significant advection occurs at

t = 5, and the light river water reaches y = -3. This qualitative

difference for the density distributions in the forward and backward

directions is also clear at t = 10.

To find the parameter dependence of this self-advection process, the

coastal longshore density distribution at t = 10 is plotted in Figure 4.6

with fixed Ro/y ~ 2.5 for y = 0.05 (Ro 0.125) and y = 0.025

(Ro = 0.0625). In dimensional terms, it is equivalent to fixing R*/KH
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and changing KH. In the region y ~ -1.0, where the density diffusion

process dominates, the density distribution depends on the magnitude of

y. However, in the density advection region (y ~ -1.0), the differences

in density structure for various yare small. The characteristics of the

flow are also examined in Figure 4.6 for different y with R equal to
o

0.0625. The distributions for y = 0.025 and 0.05 are quite different.

The 1 atter shows a much stronger advection than the former. It seems

that the characteristics of longshore density advection depend on the

magnitude of Ro/Y.

The dependence of density field on the magnitude of forcing is shown

in Figure 4.7, where y = 0.025 and Ro/y varies. Dimensionally, it is

equivalent to varying R* for the same KH. The density distribution

at x =3, scaled by Ro/Y' is pl?tted as a function of longshore

distance for t = 10. The distribution of density produced by diffusion

alone is also shown in this figure. It is clear that the density

advection is stronger for larger Ro.

Although density fronts are not present in the coastal boundary

layers, the self-advection process is still significant. The numerical

results shown above suggest that the parameter R /y determines the
o

strength of self-advection, similar to the dependence of shock-wave like

characteristics on ~ in Burgers' equation. It is possible to find the

relation between Ro/Y and~. In Burgers' equation, ~ is proportional

to the ratio of total density perturbation to the diffusivity. For the

river outflow problem with a longshore width of LR, we can use the

rate of total buoyancy flux, RoLR, as the magnitude of density
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perturbat i on. We have

2II = RoLRiio/(2y)

Therefore, Ro/Y is a measure of the importance of advection in a flow

driven by a coastal buoyancy source with fixed LR.

The density distribution and the flow field also depend on the sign

of R. A negative R corresponds to a density source at the coast (a

IIsinkingll plume). Figure 4.8 shows the development of the density and

flow fields with R = -1 between y = -1 and y = O. The values of Ro

and yare the same as those used in Fi gure 4.8. Thi s case is

qualitatively different from the one with a positive R. Close to y = 0,

the bottom flow is weak and the density field is dominated by the

diffusion process as in the buoyancy flux case. However, in the region

y ( -1, the longshore velocity near the coast is positive, which prevents

the density excess from being advected into the region y (-1. Offshore

advection of heavy water into the interior region can be seen at t = 5.

At t = 10, there is a significant amount of dense water outside the

coastal boundary layer. It is clear that the flow in the interior region

is governed by the dispersion of dense water along isobaths as discussed

in Section 4.2 (Figure 4.8d). The resulting density field is much the

same as the flow forced by surface cooling over the outer shelf, which

wi 11 be stud i ed in the next sect ion. Fi gure 4.9 is a contour plot of the

isopycnals on the y-t plane. It clearly shows the propagation of dense

water to the -y direction in the interior region.
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4.4.3 Flow Forced by Surface Density Flux

To demonstrate the evolution of the density and flow fields produced

by surface density flux, numerical solutions have been obtained for a

flux which is present from t = 0 to t = T. The surface density flux is

uniform in the cross-shelf direction. It has the form:

Q(y) = t :/2 sin( .y/Ly)

-Ly ~y ~O

otherwi se

The density flux at the coast is zero in this case. The corresponding

dimensional quantities can be found in Table 4.2. Figure 4.10 shows the

development of density field with T = 2, Ly' = l and y = 0.05. These

parameters correspond to cooling over a 100 km longshore distance for 3

months. The parameter ~, whi ch determi nes the behavi or of Burgers i

equation, is 20 in this case. One expects that density fronts will

form. At t = 1, the density field can be approximated by the local

response to cooling (Figure 4.10a). The dominant balance is

aplat = Q/h (4.31)
The contour lines are slightly distorted to the -y direction and a

density front with strong longshore gradient begins to form. The density

front is clearly shown at t = 2 and the advection of density perturbation

is apparent (Figure 4.1Gb). After,the forcing stops at t = 2, the front
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continues to propagate in the -y direction (Figure 4.10c). At this

stage, the movement can be inferred from Burgers' equation (4.15). The

magnitude of density perturbation decreases because of the longshore

spreadi ng and d iffus ion.

The longshore bottom geostroph i c velocity produced by the density

field is plotted in Figure 4.11. When forcing is present (t ~ 2), a

negative longshore flow is developed in the forcing region. This is the

divergent component of bottom velocity given by (4.3). The maximum

velocity on the shelf is 2.0 (Figure 4.11b). Strong longshore flow

exists at the shelf break, since the steep bottom slope is very effective

in generating bottom flow as shown by (4.3). Near the coast, a

topographic boundary layer with positive longshore velocity develops in

the -y direction. After the forcing terminate?, the longshore velocity

associated with the density distribution decays. The maximun velocity is

located at the shelf break. The x-component of bottom geostrophic

velocity is weak except inside a topographic boundary layer near the

coast as shown in Fi gure 4.12a. The flow is onshore with a magnitude of

0.7. By the time t = 5, it decreases to less than 0.1.

The formation and propagation of density fronts in the -y direction

is demonstrated in Figure 4.13, where the density is plotted along the

x = 1 isobath. At t = 1, the distribution is due to the direct response

to cooling. Advection is weak at this time. As the density continues to

increase, advection becomes more important and the excess density is

advected away from the f orc i ng reg i on in the -y direct i on. At 1 ( t ( 2,

there is a balance between the density input and the horizontal
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advection, and a quasi-steady value for the maximum density is reached.

During this period, the mean front propagation speed calculated from

(4.24) is about 1, which agrees with the mean speed estimated from the

locations of maximum density in Figure 4.13. After the forcing stops at

t = 2, the forward face of the front continues to propagate, and the

dens ity at the trai 1 i ng part decreases. A saw-tooth shape di stri but i on

is formed as demonstrated by the solution of Burgers' equation given by

(4.20).

The longshore dispersion of density perturbation is clearly

demonstrated in Figure 4.14, where constant density lines are shown on

the y-t plane. In this case, y = 0.1 and cooling is applied from t = 0

to 2 over a longshore range between y = -1.0 to O. In the cooling stage,

o -( t -( 2, the dens ity max imum propagates ïn tne -:y direction with a

nearly constant speed. After the cooling ends at t = 2, the propagation

speed of the location of density maximum becomes faster initially and

slows down after t = 3. At t = 5, the propagation is so slow that the

density maximum is nearly stationary. It is easy to understand why this

happens. The longshore advection tends to move the front forward.

However, the strong longshore d iffus i on in the front regi on erodes the

front and moves the location of the density maximum backward. If a

balance between these two tendencies is achieved, the location of the

dens ity maximum wi 11 be stat i onary.

The characteristics of density field can be found by examining

solutions with different nondimensional diffusivities. The density

distribution along the x = 1 isobath for y = 0.1 is plotted in Figure
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4.15. During the forcing period, the propagation speed of the front is

approximately equal to the one with y = 0.05 in Figure 4.13. However, in

the free propagation stage (t ) 2), the front is dissipated faster than

that in Fi gure 4.13. At t = 4, the front is almost stat i onary as shown

in Figure 4.14.

With longer forcing duration, the maximum density remains the same

(Figure 4.16). Since the propagation speed depends on the magnitude of

perturbation, it is unchanged during cooling. Once the cooling ends, the

one with shorter cool ing duration wi 11 decay faster. The longshore range

of cool ing has a stronger effect on the density and velocity fields than

the duration of cooling. Figure 4.17 shows the longshore density

distribution for Ly = 2 and T = 2. The maximum density in this case

is 1 arger than that with L = 1. Therefore, the front in Fi gure 4.17Y ,
has a faster propagation speed.

4.4.4 Di scuss i on

Before a comparison with observation is made, we must briefly discuss

the app 1 i cabi 1 ity of the mode 1 under vari ous circumstances. During the

winter months in the Middle Atlantic Bight, dense water formed at the

surface sinks rapidly to the bottom and the resulting vertical density

distribution is nearly uniform. During this period, the low salinity

water from the river inflow is also mixed to the bottom. This is the

situation which is most likely to be described by the model. In summer,

a strong thermocline is formed at a depth of about 15 - 20 m. The

horizontal density gradient in the surface layer is small. In the lower

layer, the water is not affected significantly by heating and the
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assumption of vertical homogeneity is sti 11 approximately true. However,

the strong pycnoc 1 i ne prevents the ri ver water from reachi ng the bottom,

and the river water spreads at the surface to a long distance offshore.

The idealizations used above do not apply to the case of river forcing

u n d e r vert i c a 1 s t rat i fie at ion.

Equations (2.18) and (2.19), which determine the bottom geostrophic

velocity, are derived under a general stratified condition. They are not

affected by the presence of a seasonal thermocline at the mid-depth. The

nondimensional density equation is given by

i of' êJr'"dr' "I,' ,/ i (/1'ôf t( ~bT\., +u.c.)- +(trb-+V;+\ff)~ +W~ = y ~ + '( J + '6-
Qt ~.. ax ~ 0(J d": dXL Ò'õ2- ôl'L

where the subscripts IIbll, lie 
II , and IIfll repr'esent the bottom geostrophic

component, the thermohal ine component, and the frictional component of

velocity field respectively. Considering a strong seasonal thermocline

at the mid-depth and a homogeneous water column in the vertical direction

below the thermocline, we have

lt :: 0

d t.

in the lower layer. Below the thermocline, the thermohaline velocities

Uc and Vc are given by (2.11) and (2.13):

Uc =
I() !1 (i+~)

f õ~
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,
v: :: _ \I êJt (~+ ~ ).c f ~x

In this case, the density advection caused by the thermohaline velocity

is identically zero in the lower layer. Above the bottom frictional

layer, uf and vf are negligible. The balance between the rate of

dens ity change and the hori zonta 1 advection by the bottom geostrophi c

velocity still holds below the seasonal thermocline. It is likely that

the propagation of density perturbation in the lower layer is not

affected. Besides giving a description of the density-driven flow in

winter and earlier spring, the model also gives some clues on the water

movement below the seasonal thermocline in summer.

We have treated the river effect as a density flux distributed along

a larger piece of the coast. This is certainly not valid at the mouth of

the estuary. However, the intent is to model the circulation over length

scales of the order of shelf width and larger. The detailed density

structure near the source should have no influence on the dynamics of

shelf-wide circulation. The same boundary condition was used by

Hendershott and Rizzol i (1976).

4.5 Evidence of Bottom Water Movement on Continental Shelves

Although detailed comparison between model results and observations

is not possible, some model predictions on bottom water movement on

continental shelves can be used to explain the observed bottom density

field. We will discuss in this section some observational evidence in

the Adriatic Sea, the Antarctic Continent, and the Middle Atlantic Bight.

4.5.1 Winter Circulation in the Adriatic Sea
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Ci rcu 1 at i on in the Adri at i c Sea in the wi nter of 1965-1966 was

studied by Hendershott and Rizzoli (1976). A cold air mass outbreak from

eastern Europe reached the Adriatic Sea on January 6, 1966, and resulted

in intense cooling, which lasted for about 20 days. From the

meteorological data, Hendershott and Rizzoli (1976) estimated a surfaçe

density flux of 1.5 x 10-6 gm/cm2/sec during this period. Their density

sections of February 1966 showed that the water was vertically homogeneous

and a density increas of 0.5-1.0 x 10-3 gm/cm3 from the November value

was observed.

The most significant features during this cooling period were the

formation of a cyclonic gyre in the northern Adriatic Sea and the

advection of density field by this gyre. A "tail" of dense water could

be seen in their plot of the horizontal den'sity distribution in February, ,
1966. Th i s dense water extended southward to Jabuka Pi tal ong the bottom

topography on the western side of the basin. Along the Italian coast, a

band of low salinity water from the Po River was also observed. These

features were demonstrated in a numerical model by Hendershott and

Rizzoli (1976) as being caused by forcing from surface density input and

coastal buoyancy flux. The long-isobath dispersion of density

perturbations and the formation of a cyclonic gyre were shown in their

re s u 1t s .

The theory formulated in this chapter can explain both the numerical

and the observational results. We will first calculate the value of ~

defi ned inSect ion 4.3. Because of the comp 1 ex bottom topography and the

geometry of the basin, we will use,an average bottom slope of 10-3. For
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a density perturbati on of 0.5 x 10-3 gm/cm3 over a 1 ong-i sobath

distance of 100 km, ~ is 15. Therefore, the cooling event in the

Adriatic Sea in earlier 1966 was dominated by the self-advection process

discussed earlier in this chapter. Comparison can be made between the

predicted and observed propagation speeds of the IItailll of dense water.

In the observed horizontal density distribution, the IItailll reached

Jabuka Pit in early February. If we assume that the dense water covered

a distance of 200 km from its main location in the north to Jabuka Pit

during this cooling period, the mean propagation speed would be 6.6

km/day. A rough est imate of the propagat i on speed from the numeri ca 1

solution of Hendershott and Rizzoli is about 200 km in 40 days, or 5

km/day. These values can be compared with the theoretical one given by

(4.16). Using a density difference of 1.0 x 1~-3 gm/cm3 and a mean

bottom slope of 10-3, the front propagation speed is 4.3 km/day.

Considering the difficulty in determining the initial location of dense

water in the data, this value is not significantly different from the

observed one.

In analyzing their results, Hendershott and Rizzoli (1976)

demonstrated diagnostically that the flow pattern could be explained by

the density distribution at each time step. The present theory shows

that density fronts are formed and propagate out of the formation region

as shock-wave like structures. This prognostic interpretation gives some

insight into the dynamics of winter circulation in the Adriatic Sea.

4.5.2 Bottom Water Movement in the Antarctic Continent

Another area where the bottom water movement has been observed is the
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Weddell Sea in the Antarctic Continent. Gill (1973) suggested that the

dense water was formed by salt release during freezing of the surface

water. He also observed that the horizontal sal inity gradient could

become 1 arge in the Weddell Sea. The dense water flowed westward on the

shelf after sinking to the bottom. A westward increase of sal inity of

0.4 0/00 was observed (Gi 11, 1973). This westward movement of bottom

water ~as also shown in the map of bottom potential temperature

distribution given by Foster and Carmark (1976). Dense water

accumulation on the western side of the Ross Sea was observed by Jacobs

et ale (1970). Current measurements by Foldvik and Kvinge (1974) ,

indicated a strong westward flow (= 7 cm/sec) at the shelf break in the

Weddell Sea.

The present theory gives a simple explanation to the formation of

strong horizontal density gradient and the westward mòvement of bottom

water. Because of the deficiency of data, a detailed comparison with

observati ons can not be made. However, the atmospheri c infl uence over

the Antarctic Continent should be more effective in producing bottom

water than in the Adriatic Sea. The westward long-isobath propagation of

density fronts caused by nonl inear advection is 1 ikely to be the dominant

process on the shelves of the Antarctic Continent.

4.5.3 Cold Water Pool in the Middle Atlantic Bight

In the Middle Atlantic Bight, bottom water movement is present in the

cold water pool and the outflow of Gulf of Maine Intermediate Water in

spring and summer. For a cooling rate of -250 Watts/m2 in the

coldest period of December and January (Beardsley and Boicourt, 1981),
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the density accumulation in the water column, will be 2.4 'gm/cm2 after 47

days (Table 4.2). The density perturbation is then 0.48 ,x 10-3 gm/cm3 in

50 m of water. The parameter ~, whi ch determines the behavi or of

Burgers' equation, is 25 for alongshore cool ing range of 100 km, so

dens ity fronts are expected to form under winter cool ing.

Hopkins and Garfield (1979) demonstrated that the Gulf of Maine

Intermediate Water could be identified in spring in the Middle Atlantic

Bight during the cold years of 1964-1966. This feature can be explained

by the model on the outflow of coastal heavy density anomaly (Section

4.4.2). Dense water produced in winter flows out of the Gulf of Maine

from the Great South Channel and the Northeast Channel in spring. The

accumul ation of dense water on the shel f eventually 1 ead to the formation

and propagation of density fronts.

Recent observations on the cold pool (Houghton et al., 1981) give

supporting evidence on the bottom water movement in the Middle Atlantic

Bight in spring and summer: Houghton et ale (1981) analyzed the

distribution of minimum temperature water in the Middle Atlantic Bight in

1979. The southwestward propagation of cold bottom water and the

existance of strong longshore density gradients were clearly shown by the

contour 1 ines of minimum temperature distribution in a map with longshore

distance and time as axes. One feature of this illustration was that the

location of temperature minimum moved southwestward with v ari ab 1 e speed.

Long-isobath density fronts can also be observed in the bottom

temperature maps of Bi ge low (1933). Fi gures 4. 18a-c, reproduced from

Bigelow (1933), illustraste the development of long-isobath temperature
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gradients. The successive passage of density fronts can be inferred from

monthly variations of bottom temperature at a fixed cross-shelf section

along nOw. Figure- 4.19 is reproduced from Chamberlin (1978) and Crist

and Chamberlin (1979), which shows the monthly progress of bottom

temperature for the years 1974 to 1976. In 1974, bottom water wi th

°
temperature 1 ess than 5 C was present through 1 ate February. After a

short warm period, a parcel of col d water moved in and stayed for a

month. Then the third cold water parcel arrived in April. There was a

quiet period in early May. The last cold parcel arrived in late May with

temperature about 2° C higher than the earlier ones. The patterns for
.

1975 and 1976 were similar except that the earlier events were not

distinguishable. The last warm event occurred in all three years,

although the arrival time was different in each year, mid-May in 1974 and

1976, and mid-July in 1975. Figure 4.20 is the distrtbution of bottom

temperature on the south side of Georges Bank in May 1979 plotted from

the data of EG & G (1979). A band of cold bottom water with temperature

less than 7°C was present from the Northeast Channel to Nantucket. It is

reasonable to suppose that the 1 ast event was produced by the water

flowing out of the Northeast Channel.

The cold water movement in'the Middle Atlantic Bight is generally

cons i dered to be caused by advecti on, independentl y of the dens ity

field. However, linear translative motion produced by longshore mean

flow can not explain the formation of strong density gradients in the

longshore direction. Figure 18a shows that the density was homogeneous

in the longshore direction in February 1929. In April, a strong
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longshore density gradient was present off Chesapeake Bay, with a

temperature difference of 3°C in 100 km (Fi gure l8b). Another front

appeared off Delaware coast in July 1929 (Figure 18c). Current

observations (Beardsley et al., 1976) show that the current in that

region is generally southward and stronger than the current further

north. There is no convergence in the longshore current to form strong

longshore density gradients. The heating from the atmosphere is of a

much 1 arger 1 ength scale and cannot be the cause of these gradi ents.

Because longshore density fronts can be observed thoughout spring and

summer, it is unlikely that the slope water will produce such a

consistent feature at different locatrions over a period of several months.

Figure 4.19 suggests that fronts propagate southwestward along the

coast instead of being formed locally. The associated strong density

gradient is maintained throughout summer without being diffused away. It

is not likely that the density front would survive strong tides and other

high frequency disturbances on the south side of Georges Bank, were it

carried southwestward by mean flow independent of the density field. The

explanation for the persistence of density gradients has to involve the

self-advection of density field, i.e. the propagation of shock-wave like

density fronts. The nonlinear advection process in the present model

shows that a density front may intensify under certain circumstances.

Another feature of the model is that the propagati on speed need not

to be the same as the flow velocity, and may not be constant through

spring and summer. Figure 4.14 agrees with the distribution of

temperature minimum observed by Houghton et ale (1981). In July and
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August, the nearly stationary location of the observed longshore

temperature minimum in the south can be predicted by the model. Houghton

et al. (1981) also mentioned a strong longshore temperature gradient at

the Hudson Canyon with a much s lower propagation speed. One expl anation

could be the interruption of longshore bottom velocity by the canyon

topography. The sel f-advecti on process will resume on 1 y after enough

cold water has diffused across the canyon. This would explain the slower

propagation speed of the temperature front than the speed measured by

curren t meters.

4.6 Summary

In this chapter, we have investigated the density-driven flow over

topography. It is found that the interaction between the long-isobath

bottom density difference and the bottom topography is dynamically

important. Away from coastal boundary 1 ayers, a near~ottom dense water

blob will move in the direction of Kelvin wave propagation. For a light

water blob, the direction of propagation is reversed. Strong density

fronts may appear in the forward face of the density perturbation. This

is the same process as the shock wave formation in Burgers i equation.

Self-advection can also be produced by river discharge at the coast

under winder conditions. The íight water will move inside a coastal

boundary 1 ayer along the coast in the direction of Kelvin wave

propagati on. For dense water discharge, the movement of density

perturbation is no longer along the coast. The density perturbation

moves offshore initially and then propagates as a dense water blob in the

mid-shelf region.

This model can be used to explain the bottom water movement in the
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Adriatic Sea, the Antarctic Continent, and the Middle Atlantic Bight.

The predictions of the model agree qual itatively with the observed bottom

water movements. The model also gives correctly the speed of front

propagation.
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Figure 4.1 Schematic diagram demonstrating the solution of Burgers'
equation. The density distribution at t = 0 is a delta
function located at y = o.
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Fi gure 4.2 Schematic diagram showing solutions of Burgers' equation at
different values of time with an initial (t = 0) delta
function disturbance located at y = O. A positive
disturbance is shown by sol i d 1 ines, and a negative one by
dashed 1 ines.
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Figure 4.3a Distributions of density (left) and bottom velocity (right)
at t = 1 produced by buoyancy flux located at -1 ~ y ~ o.
The parameters are Rol y = 2.5 and y = 0.025. The density
field is contoured with an interval of 0.25.
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Figure 4.3b Distributions of density (left) and bottom velocity (right)

at t = 5 produced by buoyancy flux located at -1 ~ y ~ o.
The parameters are Ro/y = 2.5 and y = 0.025. The density
field is contoured with an interval of 0.25.
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Fi gure 4.3c Distributions of density (left) and bottom velocity (right)

at t = 10 produced by buoyancy fl ux located at -1 ~ y ~ o.
The parameters are RQ/y = 2.5 and Y = 0.025. The density
field is contoured with an interval of 0.25.
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Figure 4.4 Evolution of the density distribution at y = -1 as a
functi on of time.
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Fi gure 4.5 Longshore density distribution along the x = 0.3 isobath at
different values of time.
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Fi gure 4.6 Longshore density distribution along the x = 0.3 isobath at
t = .10 for di fferent val ues of y
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Figure 4.7 Longshore density distribution along the x = 0.3 isobath at
t = 10 for different values of Ro/y with y = 0.025. The
density is scaled by Ro/y.
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Figure 4.8a Distributions of density (left) and bottom velocity (right)

at t = 1 with forcing from a coastal density source locasted
at -1 ~ y ~ o.
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Figure 4.8b Distributions of density (left) and bottom velocity (right)
at t = 5 with forcing from a coastal density source located
at -1 ~ y ~ o.
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Figure 4.8c Distributions of density (left) and bottom velocity (right)
at t = 10 with forcing from a coastal density source located
at -1 ~ y ~ o.
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Figure 4.8d Distributions of density (left) and bottom velocity (right)
at t = 15 with forcing from a coastal density source located
at -1 ~ y ~ o.
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Figure 4.9 Contour plot of longshore density distribution along the
x = '2.5 isobath on the y-t plane. The forcing is a coastal
density source at -1.0 ~ y ~ O. Dashed 1 ine shows the
location of density maximum along the isobath.
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Figure 4.10a Contour plot of density field at t = 1 produced by surface

cool ing~ The forcing is appl ied at -1.0 ( y ( 0 from t = 0
to t = 2.
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Fi gure 4. lOb Contour plot of density field at t = 2 produced by surface
cool ing. The forcing is appl ied at -1.0 ~ y ~ 0 from t = 0
to t = 2.
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Fi gure 4. lOc Contour plot of density field at t = 5 produced by surface
cool ing. The forcing is appl ied at -1.0 ( y ( 0 from t = 0
to t = 2.
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Figure 4.11a Magnitude of the longshore bottom velocity at t = 1,
corresponding to the density field in Figure 4.10a.
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Fi gure 4.11b Magni tude of the longshore bottom vel oci ty at t = 2,
corresponding to the den s i ty fi el din Fi gure 4. lOb.
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~

Fi gure 4.11c Magni tude of the longshore bottom vel oci ty at t = 5,
cor-responding to the density field in Figure 4.10c.
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Figure 4.12a Magnitude of the offshore bottom velocity at t = 1,
correspondin~ to the dens i ty fi el din Fi gure 4.10a.
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Figure 4.12b Magnitude of the offshore bottom velocity at t = 2,
cor-responding to the density field in Figure 4.10b.
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Figure 4.12c Magnitude of the offshore bottom velocity at t = 5,
corresponding to the density field in Figure 4.10c.
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.
Figure 4.13 Distribution of density along the x = 1.0 isobath for

coal ing with parameters T = 2, Ly = 1, and y = 0.05.
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Figure 4.14 Contour plot of longshore density distribution along the
x = 1.0 isobath on the y-t plane. Surface cooling is
appl ied between y = -1 and 0 from t = 0 to 2. The
parameter y is 0.1. Dashed line shows the location of
temperature minimum along this isobath.
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Figure 4.15 Longhsore density distribution along the x = 1.0 isobath
for. cool ing with parameters T = 2, Ly = 1, and y = 0.1.
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Figure 4.16 Longhsore density distribution along the x = 1.0 isobath
for cool ing with parameters T = 3, Ly = 1, and y = 0.05.
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Figure 4.17 Longhsore density distribution along the x = 1.0 isobath
for. cool ing with parameters T = 2, Ly = 2, and y = O. 05.
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Figure 4.18a Distribution of bottom temperature in the Middle Atlantic
Bight in February 1929 (from Bigelow, 1933).
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Figure 4.18b Distribution of bottom temperature in the Middle Atlantic

Bight in April 1929 (from Bigelow, 1933).
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Figure 4.18c Distribution of bottom temperature in the Middle Atlantic

Bight in July 1929 (from Bigelow, 1933).



76°

"

-202-

74° 72° 71° 70°

. .-.

-:'
','

; "'" -.. .

JULY 1929
BOTTOM
TEMPERATURE

. .

42°'

40°

38°



Fi gure 4.19
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.
Evol ution of bottom temperature between the coast and the
shelf break along 71°W, from Chamberlin (1978) and Crist
and Chamberlin (1979).
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, Fi gure 4.20 Di stributi on of bottom temperature on Georges Bank in May

1979. Data from EG & G (1979).
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CHAPTER 5

MEAN CIRCULATION ON THE WESTERN NORTH ATLANTIC SHELF

Mean southwestward flow of the order 5 cm/sec has been observed both

in the Middle Atlantic Bight (Beardsley and Boicourt, 1981) and on the

south side of Georges Bank (Butman et al., 1981). It is likely that this

mean drift is a consistent feature from Northeast Channel to Cape

Hatteras. In Chapter 1, we summarized some properties of this mean flow

and reviewed possible driving forces. It has been shown in Section 3.4

that deep ocean IIbarotropiclI and Ilbaroclinicll currents are not very

effective in generating mean flow on th~ shelf. Therefora, the unknown

pressure gradient of earlier models (e.g. Csanady, 1976) is probably a

representation of forcing acting som~here over the shelf. In th i s

chapter we wiii compare the model predictions in Chapters 3 and 4 with

the observed mean flow in the Middle Atlantic Bight to examine whether it

is necessary to invoke an unknown pressure gradient to drive the

southwestward flow.

Wi nd forci ng i ncl udes longshore wind stress, offshore wind stress,

wind stress curl and the divergence of wind. The formulation in Section

2.2 shows that flow is generated mainly by longshore wind stress and wind

stress curl. A similar conclusion was reached by Birchfield (1967).

Therefore, we wi 11 concentrate the study on the 1 ast two types of wind

forcing. For the density driven-flow, effects of river buoyancy flux,

inflow of dense water, and surface cooling will be examined, using the

numerical solutions in Chapter 4.

. ,



-208-

5.1 Wind-Driven Mean Circulation

Seasonal mean wind s tress over the western North At 1 anti c shel f

averaged in one-degree squares over 32 years was computed by Saunders

(1977) . In winter, the wind stress is mostl y offshore from Chesapeake

Bay to the Gulf of Maine with magnitude from 0.75 dyne/cm2 near shore to

1.0 dyne/cm2 at the shelf break. The longshore component is small.

Between Cape Hatteras and Chesapeake Bay, there is a small southward

longshore component (~ 0.5 dyne/cm2) caused by a change in the orientation

of the coast. North of the Gul f of Maine, the magni tude of wind stress

increases and the direction is toward the northeast in the longshore
,

direction. The longshore component is +0.5 dyne/cm2 on the Scotian shelf

and +1.0 dyne/cm2 .south of Newfoundl and. In spring and fall, the wind

direction is much the same, but the magnitude of wind stress is smaller.

Again, the longshore component in the Middle Atlantic-Bight is negligible.

Along the Scotian shelf and Newfoundland it is +0.1 and +0.5 dyne/cm2

respectively. The summer wind stress is quite different: about +0.1

dyne/cm2 in the longshore direction from Cape Hatteras to

Newfoundl and. These features are also demonstrated by the month 1 y mean

wind stress compiled by Beardsley and Boicourt (1981) from time series

observations made at several fixed locations in the Middle Atlantic Bight

from 1 ate 1974 to early 1977. Saunders' (1977) mean wind stress data are

used below.

The wind stress curl in this region can be inferred from the vertical

velocity at the base of a hypothetical oceanic Ekman layer computed by

Leetmaa and Bunker (1978). The computed distribution of annual mean
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vertical velocity shows two maxima at the eastern boundary of North

Anerica. One is to the east of Newfoundland with a wind ,stress curl of

2 x 10-8 cm/sec2. The other has a value of +1.5 x 10-8 cm/sec2 off

Georges Bank. These two maxima vary seasonally. The northern one ranges

from 10-8 cm/sec2 in,summer and fall to +4 x 10-8 cm/~ec2 in winter.

The southern one ranges from +5 x 10-9 cml sec2 in summer to +2 x 10-8

cm/sec2 in winter. The positive wind stress curl maximum in the north

drives a subpol ar oceani c gyre that has a maximum transport of 40

Sverdrups (Leetmaa and Bunker, 1978). The southern maximum is close to

the continent and is located to the north of the latitude where the Gulf

Stream meanders away from the coast. Fhe southern one comes from winter

storms whi ch are 'formed near Cape Hatteras and move to the northeast in

the Middle Atlantic Bight (Mooers et al., 1976). This maximum in wind

stress curl has direct influence on the winter circulation in the Middle

At 1 an tic B i gh t .

Those values of wind stress curl are very 1 ikely underestimated. In

Leetmaa and Bunker's (1978) calculation, the strong winter cyclones,

which are important sources of wind stress curl, could be smoothed out by

averaging over 2° by 5° grids. Nevertheless, using above values of wind

stress curl, it is possible to make an order of magnitude estimate of the

wind-driven flow on the shelf.

Using Equations (3.7a-c), the magnitude of the flow driven by

longshore wind stress can be calculated using values listed in Table

3.2. In winter, the wind stress in the Middle Atlantic Bight is mainly

in the offshore direction. It also has significant divergence because of
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the offshore increase in the magnitude of wind stress. However, these

two factors are not effective in driving the mean flow. Over the Scotian

shelf in winter, there is a longshore stress to the northest with a

magn itude of 0.5 dyne/cm2 over alongshore range of 500 km. The

boundary layer width is calculated to be 45 km at the southwest side of

the Scoti an shel f, where the sea surface depression reaches a m~ximum of

6.5 cm. The maximum longshore velocity is 15.8 cm/sec. A total

longshore transport of 1.8 x 105 m3/sec, flowing from the south

side of Georges Bank onto the Scotian shel f, can be generated by the wind

stress. Forward i nfl uence of th i s flow may extend to Georges Bank and

the Middle Atlantic Bight.

In summer, the wind stress is weak, and its direction is toward the

northeast over the shelf between Cape Hatteras and Nova Scotia. For a

wind stress of 0.1 dyne/cm2 over a 1000 km longshore distance, the

boundary layer thickness is 64 km in the southern part of the Middle

Atlantic Bight, which is about the width of the shelf. The maximum

longshore flow is to the northeast with a magnitude of 3.2 cm/sec. The

maximum depression of sea surface is 1.8 cm. The total transport is also

to the northeast with a magnitude of 0.5 x 105 m3/sec. The flow is .

weaker in the set-up regions of the Scotian shelf and Georges Bank.

Beards 1 ey et a 1. (1976) obtained a transport of 8000 km3/year

(2.5 x 105 m3/sec) from observations made in the Middle Atlantic Bight.

The transport is nearly constant from Cape Cod to Cape Hatteras. The

magnitude of transport calculated from the model is comparable to the

observed magnitude in winter, although the direction is reversed. The
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flow driven by mean wind stress is significant in contributing to the

mean flow, especially in the near-shore region. In summer, the wind

stress induced flow is small except perhaps at the southern part of the

Middle Atlantic Bight.

The strength of flow under forcing by wind stress curl can be

calculated from Table 3.3, using the asymptotic relations (3.14) for

different longshore ranges of wind forcing. Because the longshore

transport is concentrated at the shelf break (Figure 3.8), it is

ambiguous to define an offshore limit in calculating the transport on the

shelf. Therefore, only the magnitude of velocity will be used for

comparsion. The curl of wind stress i~ stronger in winter than in other

seasons. For a wind stress curl of 2 x 10-8 cm/sec2 acting over

a 1000 km longshore distance from Georges Bank to Newfoundland, the

maximum sea surface depression is 2.9 cm with an onshore flow of 0.5

em/sec. The maximum longshore velocity is 3.4 cm/sec to the northeast.

This value again has a comparable strength but is opposite in direction

to the mean flow on the outer shelf. Its forward influence may reach the

Middle Atlantic Bight. In summer, the flow produced by wind stress curl

is much weaker.

The values given above demonstrate that the flow driven by wind

stress curl is important to the mean shelf circulation. Besides the flow

strength, the circulation generated by the curl of wind stress have some

properties, which are significant to the mean circulation. Under

longshore stress forci ng, both sea 1 evel and longshore vel oci ty decrease

rapidly away from the shore. On the other hand, the flow generated by
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wind stress curl is mainly in the outer shelf region, being stronger at

the shelf break. This difference is significant over a wide continental

shelf such as the Middle Atlantic Bight.

This property is important, when complex coastal geometry exists,

e.g. the Laurentian Channel and the Gulf of Maine. Because the flow

under wind stress forcing is strongest near shore, topographic features

and the orientation of coastline will effectively interrupt the forward

influence of the flow. Under wind stress curl forcing, longshore flow is

generated by cross-isobath vortex stretching on the outer shelf, where

topography is more uniform than that at the coast. The flow on the shelf

may reach a longer distance in the forward direction than the flow forced

by longshore wind stress.

Al though flow driven by wind cannot be the cause of the mean

southwestward drift in the Middle Atlantic Bight, it can be observed

under strong and persistent wind conditions. The anomalous flow during

the spring and summer of 1976 and the winter of 1976-1977 in the Middle

Atlantic Bight were related to the strong and persistent wind conditions

by Beardsley and Boicourt (1981). The observed strong wind-induced flow

on the outer shelf is 1 ikely to be driven by the wind stress curl.

However, more observati ona 1 eví dence is needed to understand the

importance of wind stress curl in the shelf circulation.

5.2 Dispersion of River Water

The stream flux from rivers in the Middle Atlantic Bight has been

summarized by Beardsley and Boicourt (1981). The largest one is the

Chesapeake Bay estuary, which has a stream flux of 2000 m3/sec. The
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outflows of the Hudson Ri ver and the Connecti cut River are of the order

of 1000 m3/sec. These values are comparable to the example given in

Table 4.1. We will use the numerical solution in Section 4.4.2 to

estimate the physical quantities associated with the river flow.

According to the numerical solution, the river water from the Hudson

Ri ver and the Conneti cut Ri ver may move along the coast of New York and

New Jersey. The water from the Chesapeake Bay may appear near the coast

south of it. The speed of fresh water movement south of New York derived

from Figure 4.5 is ab,out 3.5 cm/sec or 2.6 km/day. The maximum longshore

velocity inside the plume reaches 6 cm/sec (Figure 4.3). The river plume

may move 400 km to the southwest in 5 months.

The 1 argest river system on the eastern seaboard of North America is

the St. Lawrence River. The stream flux is of the order 10,000 m3/sec,

which is about'ten times greater than that of the Hudson estuary (Sutcliffe

et al., 1976). To estimate its effect on the shelf circulation, we will

use the solution derived in Section 4.4.2 with proper scaling of the

density field. The numerical solution shows that Ro/Y is an important

parameter in determining the density distribution. For a large river flux,

we increase the density scale accordingly so that Ro/Y remains constant.

This new density scale will give a larger velocity scale than the one

listed in Table 4.1, while the nondimensional solution is not

significantly affected. If all the water from the St. Lawrence River is

completely mixed to the bottom, the propagation speed of river

disturbations would be ten times larger than the one listed in Table 4.1,

or about 35 cm/sec. However, for such a 1 arge river system, most of the
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river water will flow out on the surface layer without reaching the

bottom, and the vel oci ty of southward longshore movement of river water

wi 11 be greatl y reduced.

Downstream i nfl uence of the St. Lawrence Ri ver di scharge was studied

by Sutcliffe et ale (1976). The southward propagation of river water

along the coast was clearly demonstrated by their correlation analyses of

temperature and sal inity distribution in both surface and subsurface

layers. According to their calculation, the river water reached Boston,

which is 2300 km downstream, in 9 months. The mean propagation speed is

7 km/day (8.1 cm/sec). A quarter of the total river flux from the St.
~,

Lawrence River has to be mi xed to the bottom to give a sel f-advecti on

speed of this magnitude. Southwestward river dispersion was also

observed in the Middle Atlantic Bight. Based on Bigelow.s (1933) data,

the southwestward increase in sal inity between the share and the 40 m

isobath was shown by Ketchum and Keen (1955). They pointed out that thi s

increase was mainly caused by the subsurface salinity distribution.

These results agree with the density distribution predicted from our

n umeri cal sol uti ons.

The model of river inflow in Chapter 4 explains~the density

distribtuion as well as the meãn drift without postulating another

external cause for the mean drift. The expl anation of mean drift by the

self-advection of density field is simple and certainly dynamically

sound. The density forcing from a river inflow could be the main driven

mechanism in the near-shore region on the wester North Atlantic shelf.

5.3 The Movement of Winter Water in the Middle Atlantic Bight
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The Gulf of Maine and the Middle Atlantic Bight are both subjected to

strong cool ing in winter. In the early cool ing season, the effect is

restricted to the surface 1 ayer and the bottom density change ;s small.

After the water is well mixed, the surface density flux is distributed

uniformly throughout the water column. The seasonal heat flux in the

Middle Atlantic Bight has been described by Bunker (1976). Cooling

starts in October, reaches a maximum rate of -250 Watts/m2 in December

and decreases to nearly zero by March. The mean heat loss during this period

is -125 Watts/m2. The mean coolng rate in the Gulf of Maine from

December 1964 to March 1965 was estimated by Hopkins and Garfield (1979)

to be -135 Watts/m2. These two figureS' are reasonably close.

We have shown in Section 4.5.3 that the winter density flux in the

Middle Atlantic Bight is large enough for density fronts to form under

winter cooling~ The numerical solution in Section 4.4.3 can be used to

examine the properties of the flow and density fields. Figure 4.10 shows

that the fastest longshore propagation of ~ensity perturbations occurs at

about x = 1.0, where the water depth is 67 m. For a longshore coqling

range of 100 km, Figure 4.14 shows that the location of minimum longshore

temperature moves with a mean speed of 0.62 (1.5 cm/sec) for the first 3

months after the cooling ends. The maximum density value is about

0.4 x 10-3 gm/cm3, which gives a maximum velocity of 4.8 cm/sec

for the water parcel behind the front by Equation (4.3). The flow

response depends strongly on the longshore range of cooling (Figure

4.17). If the cool ing is over a longshore range of 200 km, the maximum

flow may reach 7 cm/sec, and the density front propagates at a speed of
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3.6 em/sec.

In February, the uniform temperature distribution along isobaths in

Figure 18a indicates that local cooling extends over the whole Middle

Atlantic Bight. The velocity of the flow produced by cooling would be

hi gh enough to account for the observed near-bottom mean flow of 5 cm/sec

in winter and early spring in the northern part and in summer in the

southern part of the Middle Atlantic Bight. The other contribution of

density-driven flow comes from the outflow of the Gulf of Maine

Intermediate Water. An accurate calculation of the density flux from the

Gulf of Maine is not possible; nevertheless, we will make an order of
.

magnitude estimation. Hopkins and Garfield (1979) calculated the water

mass budget in the Gu 1 f of Ma i ne and conc 1 uded th at a vol umn about 5100

km3/yr (1.6 x 105 m3/sec) of Gulf of Maine Intermediate Water would

export from the Great South Channel and the Northeast -Channel. Using a

thermal expansion coefficient of 10-4 cm3/oC, and a temperature

difference of 2°C between this water mass and the water outside the gulf

in late spring, an equivalent density flux of 3.2 x 107 gm/sec is

obtained. Assuming that this flux spreads over a coastl ine of 100 km,

the resulting density flux is of the same order as that in Table 4.1.

The numerical solution in Sectíon 4.4.2 for heavy density flux from the

coast can be used to estimated the corresponding physical quantities.

Fi gure 4.9 shows that the col d water front moves southwestward wi th a

speed of 1 cm/sec, which is much slower that in the cool ing case. The

maximum flow behind the front can reach as high as 10 cm/sec after 5

months (Figure 4.8d). This value is comparable to the velocity observed



-217-

on the south side of Georges Bank and south of New England in spring and

summer.

Because of the agreement between the predi cted col d water movement

and the observations, we can describe the evolution of density field in

the Middle Atlantic Bight based on the theory of density-driven flow in

the previous chapter. Annual temperature variations. in the area south of

Long Is 1 and, observed repeatedly for three ye~rs by Ketchum and Corwin

(1964), give a fairly good representation of the water structure in the

Middle Atlantic Bight. The cooling starts in late October and early

November each year. The water becomes vertically homogeneous from

December to April or May. The vernal ~arming in spring and summer

affects the nearshore water as well as the water in the surface layer.

The bottom water in the mid-shelf region remains cold throughout the

year. It is rèpresented by a temperature minimum in the T-S diagram and

constitutes the IIcold poolll observed by Bigelow (1933). The cold pool is

1 imi ted inshore by warm low sal inity water and offshore by the shel f

break front. In the longshore direction, it has been observed as far

south as Cape Hatteras in August (Ford et al., 1952).

This cold water mass in spring and summer may have several

constituents, depending on the time and location of observations, and the

condition of previous winter. The first constituent is the water cooled

in winter in the Mi ddl e Atl anti c Bi ght and on the south side of Georges

Bank. The second one is the cold water flowing out of the Gulf of Maine

through the Great South Channel. This is the Gulf of Maine Intermediate

Water, possibly modified slightly by river inflow. The last one is the
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outflow of the Gul f of Maine Intermedi ate Water through the Northeast

Channel.

The observed local winter water is characterized by a tight curve in

the T-S diagram. One example was given by Beardsley and Flagg (1977).

It is the result of the overturning of entire water column caused by

strong surface Cooling. The water temperature is quite uniform along

isobaths (Figure 4.18a). Long-isobath flow is generated by the

interacti on between density perturbati on and bottom topography and has a

speed comparable to the observed one during this period. The local

winter water is advected, southward by such a density-dependent flow. The

spring heating starts in March and warms up the near-shore water as well

as the water at the southern portion of the Middle Atlantic Bight. The

arrival of cold water from the northern portion of the Middle Atlantic

Bi ght then creates a strong longshore temperature gradient off the

Chesapeake Bay area through nonlinear advection (Figure 4.18b). South of

New England, the local winter water is replaced by successive cold water

pools in March-April, which leave the source region, e.g. the Nantucket

Shoals, Georges Bank, or the Gulf of Maine, as a result of previous cold

outbreaks in January and February (Figure 4.19).

During cold years, the Gulf of Maine Intermediate Water flows out of

the gulf through the Great South Channel (Bigelow, 1915; Hopkins and

Garfield, 1979). Hopkins and Garfield (1979) traced the direct outflow

of the Gu 1 f of Maine Intermedi ate Water through the Great South Channel

to the shel f south of New Engl and. They found that the Intermediate

Water, which was defined by a temperature range of 2.2-4.2°C and a
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salinity range of 31.97-32.91 0100, flowed through the Great South

Channel in the 1 ate winter and early spring of 1965 and arrived at the

shelf south of Long Island in May. This process can be viewed as a

density flux from the Great South Channel, followed by a long-isobath

dense water movement. By September, it disappeared presumably due to the

decay of density fronts and the subsequent mixing with the surrouding

water masses.

Hopkins and Garfield (1979) also showed that the Gulf of Maine

Intermediate Water may 1 eave the Gul f of Maine though the Northeast

Channel. It is shown in Fi gure 4.20 as the bottom water with a

temperature minimum of 7°C. This waterQ spreads uniformly in a narrow

band along isobaths from the Northeast Channel to the shelf south of Cape

Cod. The Gulf of Maine origin of this water mass is suggested by a

tongue of col d 'water at the northeast corner of Georges Bank. The

southwestward movement of, this water mass is shown in the progressive

di agram of EG & G (1979), which gives a near-bottom mean flow of about 4

km/day along the 80 m isobath from March to August 1979. This outflow of

cold water can also be interpreted as the dense water from coastal

density flux and the subsequent long-isobath propagation of density

perturbati ons.

In summary, one concludes that the density-driven flow can interpret

both qualitatively and quantitatively the bottom temperature distribution

in the Middle Atlantic Bight. Obviously, the propagation of thermal

fronts is an important phenomenon on the outer shelf region from winter

to late summer. The long-isobath flow associated with the density
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perturbation of cold water mass must contribute significantly to the mean

circulation on the continental shelf from Georges Bank to Cape Hatteras.

5.4 Conclusion

The different driving forces mentioned earlier in this chapter

contribute significantly to the Middle Atlantic Bight mean circulation.

In the near-shore zone, the longshore wind stress drives a flow to the

northeast in wi nter. Southwestward flow of 1 i ght ri ver water occurs in

winter and spring inside a coastal boundary layer. This longshore

movement of river water is a self-advective process independent of the

mean flow on the outer shelf.

Over the outer shelf in winter, the flow driven by the mean wind

stress curl has comparable speed but is opposite in direction to the

observed mean flow. Under strong and persi~tent wind conditions, this

flow may stand out in the monthly mean velocity. On the other hand, the

winter cooling in the Middle Atlantic Bight and south of Georges Bank

produces longshore flow as strong as the observed mean southwestward flow

from Georges Bank to Cape Hatteras. The export of the Gulf of Maine

Intermed i ate Water though the Great South Channel and the Northeast

Channel is in the form of propagating density fronts. It is concluded

that dens i ty-dri ven current s adequately account for the southwestward

movement of the cold winter water in the Middle Atlantic Bight from

winter to late summer without invoking any other external causes. The

southwestward flow associated with the cold water passage may account for

a significant amount of the mean southwestward drift during this period.
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