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ABSTRACT

Data demonstrating the presence and inducibility of the xenobiotic
monooxygenase system in fish embryos and larvae are described. The
ontogeny of benzo(a)pyrene monooxygenase (BPM) activity, and NADPH- and
NADH-cytochrome c reductase activities, were followed in microsomes

prepared from whole embryos of the estuarine killifish Fundulus
heteroclitus. BPM activity was detectable as early as 4 days from
fertilization, prior to the appearance of the liver rudiment, which
indicates a substantial role for the extrahepatic tissues in xenobiotic

metabolism in Fundulus embryos. At all stages assayed before hatching,
BPM activity was uniformly low, but within 24 hours of hatching there was

a lO-fold increase in specific activity. This increase was shown not to
be age-dependent but required hatching, and was not an art ifac t of the
presence of endogenous inhibitors in embryos.

Both NADPH- and NADH-cytochrome c reductase activities were
. measurable at all stages assayed. The developmental patterns of these
two reductases were distinct from each other and did not closely

correlate with that of BPM activity. However, the functional involvement
of the NADPH-cytochrome c reductase in monooxygenase activity was
indicated by the inhibition of BPM activity by cytochrome c. The
metabolism of benzo(a)pyrene by fractions prepared from whole Fundulus

emb ryos and eleutheroembryos appears to be catalyzed by a typical
cytochrome P-4S0 dependent monooxygenase. This activity is localized in
the microsomal fraction, requires 02, NADPH and native enzyme, and is
inhibited by CO. NADPH supports much higher activity than NADH.

BPM activity was detectable in the livers of Fundulus
eleutheroembryos, larvae and juveniles. The level of activity in
Fundulus eleutheroembryo livers was about 1/4 the average adult
activity. Specific activity rose continuously from the end of the
embryonic period into the juvenile period when adult levels were
ap proached.

BPM activity was also measurable in the livers of brook trout

(Salvelinus fontinalis) embryos and eleutheroembryos. The ontogenic
pa ttern contrasted with that seen in Fundulus. At 6 and 1 days before

hatching BPM specific activity in embryonic liver was close to the adult
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level. After hatching there was a 3-fold increase in activity, thus the
livers of eleutheroembryos were considerably more active in metabolizing
BP than those of adult brook trout.

BPM activity was inducible in Fundulus embryos by both Aroclor 1254
and No.2 Fuel oii. Embryos were competent to respond to induction as
early as 4 days from fertilization. In Fundulus eleutheroembryos,

Aroclor l254 induced BPM activity' in both the liver and extrahepatic
tissues. Aminopyrine N-demethylase activity was detectable in microsomes

prepared from whole eleutheroembryos, but was not induced by Aroclor
1254. Neither NADPH- nor NADH-cytochrome c reductase activities were
induced by Aroclor l254 before hatching, but after hatching both
activities were induced.

A striking developmental change in the sensitivty of the induction

response was observed in Fundulus. The tissue levels of PCBs necessary
to produce a maximal induction of BPM activity were at least 5 times

lower in post-hatching stages compared to prehatching stages. The
re lative insensitivi ty of the indue tion response prior to hatching may

serve to protect embryos from damage from activated metabolites during
organogenesis.

Aroclor l254 was also shown to induce BPM activity in brook trout
embryonic liver. The data obtained with both Fundulus and brook trout
indicate that levels of PCBs occurring in fish in contaminated

environments are likely to induce the monooxygenase system during
embryonic development.

Me tabolites of benzo( a) pyrene produced by microsomes prepared from
adult Fundulus liver, and untreated and PCB exposed eleutheroembryos were
analyzed by HPLC. Similar metabolite profiles were obtained in all
cases, with a high proportion of benzo-ring dihydrodiols. The
dihydrodiol peaks produced by e leutheroembryo microsomes were abolished

by TCPO, indicating the presence of epoxide hydrolase. These results
suggest that Fundulus embryos and eleutheroembryos can activate BP to the
highly mutagenic trans-7, 8-dihydrodio 1-9, lO-epoxides. Fish emb ryonic
monooxygenase activity may playa role in pollutant-induced lesions,

including teratogenic effects, by producing reactive and mutagenic
metabolites during organodifferentiation.

Thesis advisor: John J. Stegeman
Position: Associate Scientist
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The oceans are subject to a continuous input of organic chemical

po llutants eDuce and Duursma, 19 77; Goldberg, 1976; National Academy of

Sciences, 1975; Neff, 1979). Sources include the intentional dumping

of industrial wastes and municipal sewerage sludge, pollutant loads of

rivers, spillage during petroleum production and transport, terrestrial

runoff of agricultural chemicals, and dry and wet deposition of air

pollutants. Concern about the effects of this contamination of the

marine environment, and the pollution of freshwater systems, has led to

the study of the capacity of fish to chemically transform and detoxify

foreign compounds (xenobiotics). Part icular attention has focused on a

widely occurring system of enzymes known as the cytochrome P-450

dependent monooxygenases or mixed function oxidases. These enzymes

oxidatively metabolize a variety of lipophilic xenobiotics, including

pesticides, hydrocarbons and care inogens e reviewed by Lu ~ ~., 1976;

Sato and Omura, 1978). One of the most striking properties of the

cytochrome P-450 dependent monooxygenases is their versatility, as they

are active in metabolizing several different classes of organic

chemicals. The structurally diverse substrates of these enzymes share

the common property of lipid solubility.

Many of the reactions catalyzed by the cytochrome P-450 system

involve the introduction of hydroxyl groups into substrates, or the

exposure of func tional groups by oxidative dealky lation. These

reactions serve to put "handles" on hydrophobic molecules which can be

used for conjugation with polar cellular constituents such as

glucuronic acid or sulfate (Goldstein et al., 1974). This two step
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process greatly facilitates ,the elimination of lipophilic foreign

compounds, which might otherwise accumulate in tissues to very high

levels. The consequences of the metabolism of axe no biotic by

cytochrome P-450 will depend upon the structure of the compound. In

some cases metabolism may destroy the pharmacological activities of a

substance and result in overall detoxification (Conney, 1967).

However, certain substances which are relatively inert under

physiological conditions, are activated by cytochrome P-450 to highly

reactive metabolites that can produce necrotic lesions, mutations and

cancer (Gillette, 1974; Weisburger, 1978). Thus the cytochrome P-450

system can be involved in determining both the fate and effects of

xenobiotics in fish.

Generally, the early developmental stages of fish have been found

to be more sensitive to environmental stresses and pollution than

adults (Kuhnhold ~~., 1978; McKim, 1977; Rosenthal and Alderdice,

1976) . It should be noted that the rapidly proliferating tissues of

embryos may be particularly sensitive t~ damage from activated

metabolites generated by cytochrome P-450 (Harbison, 1978). Since the

cytochrome P-450 system can potentially playa critical role in

determining the susceptibility of fish embryos and larvae to the

toxicity of a wide range of pollutants, knowledge of the occurrence and

properties of these enzymes during the early development of fish is

important. The research described in thi~ thesis approaches this

problem, and is a study of the ontogeny of the cytochrome P-450

monooxygenase system in fish embryos and larvae. In the following
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sections of this chapter relevant literature is reviewed, and the

research problem is defined. In Chapters 2-5 experimental results are

presented. Each of these chapters is written as a unit resembling a

manuscript for publication, with methods, results and discussion

sections. A brief summary and discussion of results is presented in

Chapter 6.

MAMALIAN CYTOCHROME P-450 DEPENDENT MONOOXYGENASES

In mammals, the liver is the major site of foreign compound

metabolism (Goldstein et al., 1974). The hepatic cytochrome P-450

dependent monooxygenases are versatile enzymes that catalyze the

oxidation of a wide range of lipophilic foreign compounds, as well as

endogenous substances such as hormones and fatty acids (for reviews

see: Gillette ~ al., 1972; Lu et f!., 1976; Sato and Omura, 1978).

The reactions catalyzed include: aromatic and aliphatic hydroxylation,

N-, S-, and O-dealkylation, N-and S- oxidation, and dehalogenation.
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These reactions require NADPH and oxygen, and in many cases can

initially be considered hydroxylations. The following equation, in

which AH is the substrate, is generally used to describe the reactions

mediated by this system:

+ +
AH + NADPH + H + O2 -- AOH + NADP + H20

The liver cytochrome P-450 dependent monooxygenase system is

primari ly localized in the endoplasmic reticulum of hepatocytes, or the

microsomal fraction of tissue homogenates (DePierre and Dallner,

1975). The major protein components of this system are the

flavoprotein NADPH-cytochrome P-450 reductase, and the family of

hemeproteins known collectively as cytochrome P-450 (Lu and Levin,

1974a). These b-type cytochromes were given the designation P-450

because of their atypical spectral property of exhibiting a Soret band

around 450 nm in the reduced and carbon monoxide ligated state (Omura

and Sato, 1964). Cytochrome P-450 functions as the terminal oxygenase

and binds both substrates and oxygen (Cooper et al., 1965). Both the

specificity for different substrates and positional specificity for

oxygenation of a given substrate, are determined primarily by the

cytochrome components of the system (Lu and West, 1980). Multiple

forms of cytochrome P-450, with differing but overlapping substrate

specificities, have been purified from hepatic microsomes of rats,

rabbits, mice and guinea pigs (reviewed by: Johnson, 1979; Lu and

West, 1980). The extent of the diversity of cytochrome P-450 types
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within a given species has yet to be established. The term cytochrome

P-4S0 wiii be used here to indicate this whole class of proteins rather

than a single entity. Electrons, originating from NADPH, and donated

to cytochrome P-450 by the reductase, are used to activate molecular

oxygen, and ultimately to reduce one atom of oxygen to water while the

other ~tom is inserted into the substrate (Dus, 1976).

In addition to the above pathway from NADPH to cytochrome P-4S0,

hepatic microsomes contain an electron transport chain responsible for

the D. 9 desaturation of fatty acids (Schenkman et ~., 1976). The

components of this system and their interactions with cytochrome P-4SO

and NADPH-cytochrome P-4SO reductase are shown in Figure 1-1 (Lu et

~., 1976; Schenkman ~~., 1976). For NADH-dependent fatty acid

desaturation, elec trons from NADH are donated to the flavoprotein

NADH-cytochrome bS reductase, then to the hemeprotein cytochrome

bS' and finally to the cyanide sensitive factor, a nonheme iron

protein which serves as the desaturase. Fatty acid desaturation can

also be supported by NADPH, with NADPH-cytochrome P-450 reductase

transferring electrons to cytochrome b5. NADPH-cytochrome P-450

reductase can transfer electrons to a number of nonphysiological

electron acceptors, including cytochrome c (Sato and Omura, 1978).

This enzyme is routinely assayed by measuring cytochrome c reduction,

and is then referred to as NADPH-cytochrome c reductase. Early

evidence for the involvement of the NADPH-cytochrome c reductase in

microsomal monooxygenase activity, was the observation that in vitro

monooxygenase activity is strongly inhibited by cytochrome c (Gillette
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~ al., 1957; Philiips and Langdon, 1962). Apparently, cytochrome c

effectively competes with cytochrome P-450 for electrons from NADPH.

Microsomal NADH-cytochrome c reductase activity is mediated by both

NADH-cytochrome b5 reductase and cytochrome b5, as cytochrome b5

reductase cannot transfer electrons directly to cytochrome c (Schenkman

et al., 1976).

Electrons from NADH can reduce cytochrome P-450, with cytochrome

b5 and its reductase serving as electron transfer components (Omura

and Sato, 1964; Fujita and Peisach, 1977; Hrycay and Prough, 1974). An

NADH-dependent pathway of benzo(a)pyrene hydroxylation has been

reported which requires NADH-cytochrome b5 reductase, cytochrome

b5, phospholipid, and cytochrome P-450, but quantitatively, the NADH

dependent hydroxy lation of this substrate is probably of minor

significance (West and Lu, 1977). Since cytochrome b5 can be reduced

by elec trons from NADPH and can transfer electrons to cytochrome P-450,

it apparently can also playa role in NADPH-dependent cytochrome P-450

mediated reactions (Estabrook, 1971; Lu and Levin, 1974b). The

involvement of cytochrome b5 in the NADPH-dependent pathway seems to

depend on the type of substrate and the particular species of

cytochrome P-450 catalyzing the reaction; for many substrates,

cytoch rome b5 is not an obligatory component of this pathway (Jansson

and Schenkman, 1973; Lu and Levin, 1974b; Lu et al., 1974; Sugiyama et

21., 1979).

The microsomal cytochrome P-450 monooxygenase system is widely
,

distributed in extrahepatic tissues, including lung, kidney, skin
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and gonads (Sato and Omura, 1978). Generally, the cytochro~e P-450

levels and xenobiotic metabolizing capacities of extrahepatic tissues

are much lower than those of the liver, and substrate specificities are

found to vary from tissue to tissue probably due to qualitative

differences in the cytochrome components.

Induction of microsomal monooxygenases:

The microsomal monooxygenase system is inducible by both substrate s

and certain compounds which are not readily metabolized. Two major

classes of inducers have been recognized which are typified by the

barbiturate, phenobarbital (PB) ,and the polycyclic aromatic

hydrocarbon, 3-methy lcholanthrene (Conney, 1967). The terms PB-type

and 3-MC-type will be used here to indicate these two classes of

inducers. A number of drugs and pesticides, such as DDT and chlordane,

and certain halogenated biphenyl isomers behave as PB type inducers

(Conney, 1967; Goldstein et al., 1977). Among the 3-MC-class of
J

inducers are other polycyclic aromatic hydrocarbons, chlorinated

dibenzodioxin and dibenzofurans, and certain halogenated biphenyls

(Cooney, 1967; Poland and Glover, 1973; Goldstein et al., 1977).--
Apparently the synthetic steroid pregnenolone-16o(-carbonitrile and

isosafrole represent classes of inducers distinct from either PB or

3-MC (Lu ~ ~., 1972; Dickens et !l., 1978).

PB and 3-MC produce characteristic responses in the tissues of

treated animal s (Conney, 196 7). PB type inducers appear to be most

active in the iiver, while 3-MC type inducers are active in a number of
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extrahepatic tissues, as well as the liver (Alvares and Kappas, 1977;

Conney, 1967). PB stimulates the hepatic metabolism of a large number

of foreign compounds, including drugs, pesticides and carcinogens.

Associated with the enhanced xenobiotic metabolism is a dramatic

proliferation of the smooth endoplasmic reticulum (SER), and thus an

increase in the yield of microsomal protein per gram liver (Orrenius et

'~., 1965). PB also induces increases in the total content of hepatic

microsomal cytochrome P-4S0, NADPH-cytochrome c reductase activity,

cytochrome bS and NADH-cytochrome c reductase activity (Conney, 1967;

Orrenius et 21., 1965; de Barros et aL, 1978). In contrast to PB,

3-MC enhances the biotransformation of fewer substances, and treatment

with 3-MC often leads to a depression of the monooxygenase activities

which are not stimulated (Conney, 1967; Lu et al., 1976). 3-MC causes

only slight changes in the SER, and does not substantially affect the

levels of NADPH-cytochrome c reductase activity, but does induce an

increase in the total content of cytochrome P-450 (Alvares et 21.,

1967; Conney et ~., 1967; Kuntzman ~ ~., 1968; Parkinson et al.,

1980a; Thorgeirsson et al., 1979). Generally associated with the

induction of cytochrome P-450 by 3-MC is a blue shift of about 2 nm in

the absorption maximum of the CO difference spectrum of reduced hepatic

microsomes. Hepatic microsomes from PB treated animals do not show

such a spectral shift. The differential induction of monooxygenase

activities by the PB and 3-MC classes of inducers, and the differences

in the spectral properties of hepatic microsomes from animals treated

wi th these two types of inducers are due to the fac t that they induce

i
L
~:;"

~
Õ
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different forms of cytochrome P-450 (Botelho et !l., 1979; Haugen and

Coon, 1976; Lu and West, 1980). Induction has been shown to require de

nqvo synthesis of cytochrome P-450, rather than modification of

existing peptides or decreases in the rate of turnover (Haugen et ~.,

1976). The major forms of cytochrome P-450 induced by 3-MC in livers

of rats ánd rabbits absorb maximally at 447-448 nm in the CO-ligated

state; this accounts for the spectral shifts observed with microsomes

from treated animals (Haugen and Coon, 1976; Ryan ~ ~., 1979).

Because the cytochrome P-450 isozymes induced by 3-MC are spec trally

and catalytically distinct from those of control animals, they are

sometimes referred to as cytochrome P-448 or cytochrome Pl-450.

These designations are clearly inadequate, but a systematic

nomenclature for cytochrome P-450 isozymes has not been established.

The substrate specificities of the induced forms of hepatic

cytochrome P-450 vary between species, and different forms may be

induced at different stages of development in the same species (Norman

~ ~., 1978; Thorgeirsson ~ ~., 1979). Phenobarbital usually

induces the N-demethylation of certain drugs such as aminopyrine and

benzphetamine, while these activities are little affected by 3-MC type

inducers (Conney, 1967; Lu et !.., 1976; Alvares and Kappas, 1977). In

adult rats, guinea pigs and responsive strains of mice, the polycyclic

aromatic hydrocarbon, 3-MC, stimulates the metabolism of its own class

of compounds (Alvares and Levin, 1970; Nebert and Gelboin, 1969). The

model substrate for studying PAH metabolism is the carcinogenic

, hydrocarbon benzo( a) pyrene. The monooxygenase ac tivi ty associated with
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BP metabolism is known by various names, and will be referred to here

as benzo(a)pyrene monooxygenase (BPM). Phenobarbital also induces

hepatic BPM activity; the relative induction produced by PB and 3-MC

varies from species to species, and between inbred strains of the same

species (Alvares and Levin, 1970; Nebert and Gelboin, 1969).

In rats the major cytochrome P-450 isozyme induced by 3-MC is
,¡",41;~

greater than lOO times more active in metabolizing BP than the major

isozyme induced by PB (Ryan et ~., 1979). In rabbit liver the isozyme

of cytochrome P-450 most active in BP metabolism is also induced by the

3-MC-type inducers, but substantial induction of this isozyme occurs

only during the late fetal and neonatal periods (Norman et al., 1978).

In adult rabbits the major form of cytochrome P-450 induced by PB is

more active in metabolizing benzo(a)pyrene than the major 3-MC

inducible form (Coon and Vatsis, 1978). Various cytochrome P-450

isozymes not only differ in the rate at which they metabolize BP; they

also show differing regiospecificity (Deutsch et ~., 1978; Thakker et

al., 1977; Yang et ~., 1976). In other words they preferentially ~

oxygenate different sites on the molecule. Varying regiospecificity is

also observed with other substrates such as testosterone (Ryan et ~.,

1979; Thorgeirsson and Nebert, 1977). In the case of benzo(a)pyrene

the various metabolites produced by cytochrome P-450 may differ

substantially in their mutagenicity and carcinogenecity (Nebert and

Jensen, 1979). Thus qualitative and quantitative changes in cytochrome

P-450 isozymes associated with induction can substantially affect the

susceptibility of an animal to the deleterious properties of a
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toxicant. The role of cytochrome P-450 in chemical carcinogenesis and

toxicity will be discussed later.

Certain inhibitors of cytochrome P-450 dependent monooxygenase

activities are useful tools for characterizing the forms of cytochrome

P-450 present in intact microsomes. Two inhibitors which were used in

1
the work presented here are oC-napthoflavone (ANF) and SKF-525A .

These compounds differentially inhibit monooxygenase activities induced

by PB and 3-MC (Luet ~., 1972; Thorgeirsson ~ al., 1979; Goujon et

~., 1972; Wiebel ~ ~., 1971). In rats and responsive strains of

mice, hepatic microsomal BPM activity induced by 3-MC is very sensitive

to inhibition by ANF and little affected by SKF-525A. The opposite is

true in control or PB treated rats and mice, in which hepatic BPM

activity is more strongly inhibited by SKF-525A. In fact BPM activity

in microsomes from control animals is actually stimulated by certain

concentrations of ANF. The effects of these inhibitors on microsomal

monooxygenase activities can be diagnostic for changes in the

complement of cytochrome P-450 isozymes upon induction.

In tissues that respond to 3-MC type inducers, specific cytosolic

receptors are believed to playa role in the induction response,

analogous to the steroid receptors of steroidogenic tissues

(Carlstedt-Duke ~ al., 1980; Greenlee and Poland, 1979; Okey et aL.,

1979; Poland and Glover, 1975; Poland et ~., 1976). Evidence for the

1 SKF-525A is ß-diethy 1 aminoethy 1 dipheny 1 valerate.



Page 28.

existence of such receptors has been obtained using the extremely toxic

compound 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). TCDD is the most

potent known inducer of the 3-MC class, and is more than 30,000 times as

potent as 3-MC in inducing BPM activity (Poland and Glover, 1973).

Specific, saturatable, high affinity binding sites for TCDD have been

detected in the hepatic cytosol of rats, rabbits, cotton rats (Sigmoden

hispedis) and responsive strains of mice (Kahl et ~., 1980; Poland et

al., 1976; Okey ~~., 1979). These binding sites apparently are

proteins, and are not detectable in strains of mice genetically

nonresponsive to 3-MC (Greenlee and Poland, 1979; Okey et ~., 1979). A

large number of substances have been tested for their capacity to compete

with TCDD for binding to the cytosolic receptors (Greenlee and Poland,

1979; Okey et al, 1979; Poland and Glover, 1977). Generally the affinity

of various substances for the receptors corre lates well with their

potency as 3-MC type inducers. Phenobarbital, pregnenolone-16-

~carbonitri le, and steroid hormones show no specific binding.

Generally, planar molecules are the most potent 3-MC type inducers;

apparently there are geometric constraints on the interaction of the

inducer and receptor molecules. Specific TCDD receptors have also been

detected in several extrahepatic tissues, but there is no strict

correlation between the levels of receptor and the levels of enzyme

activities induced (Carlstedt-Duke, 1979; Okey ~~., 1979). After

binding TCDD, the TCDD-receptor complexes have been shown to migrate to

the nucleus (Greenlee and Poland, 1979; Okey ~~., 1979). In vitro,

the TCDD-receptor complexes bind to DNA, while the empty receptors do not
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bind (Carlstedt-Duke et ~., 1980). Presumably upon binding inducer,

there is a conformational change in the receptor which results in its

nuclear translocation, and ultimately the derepression of genes coding

for induced proteins. At present there is no experimental evidence for a

receptor which binds phenobarbita 1.

Induction of the monooxygenase system by poLychlorinated biphenyls:

Polychlorinated biphenyls (PCBs) are industrial chemicals that are

ubiquitous and persistent environmental contaminants, and are also potent

inducers of xenobiotic monooxygenase activity (Risebrough et al., 1968;

Nisbet and Sarofim, 1972; Wassermann et ~., 1979; Alvares et ~.,

1973). Commercial PCB mixtures are complex assemblages of chlorinated

bipheny 1 congeners which act as "mixed inducers" in rats, having

properties of both the PB- and 3-MC-classes of inducers (Alvares ~ al.,

1973; Vainio, 1974). Commerc ial preparations with higher degrees of

chlorination have been found to be more potent inducers of monooxygenase

activity than those of lower chlorination (Bickers et ~., 1972; Chen and

DuBois, 1973). Aroclor 1254 is the trade name for a commercial PCB

,
mixture produced by the Monsanto Company which contains 54% chlorine by

weight, and is primarily composed of tetra-, penta-, and

hexachlorobiphenyls (Webb and McCall, 1972). Residues of PCBs in animal

tissues often resemble the composition of this PCB mixture or the related

Aroclor 1260, which contains 60% chlorine by weight (e.g. Norstrom et

~., 1978; Risebrough and deLappe, 1972; Zitko et ~., 1972). Aroc1or

1254 is of particular interest in the present context, because it was
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(1-2ppm) are not high enough to account for the potency of the Aroclors

as 3-MC type inducers. Recently Parkinson et ale (l980a and b) have

shown that several individual, highly purified PCB congeners can act as

mixed type inducers, producing effects in rat liver similar to the

coadminstration of PB and 3-MC. Some of these compounds are major

components of commerc ial PCB mixtures and presumably contribute to their

properties as 3-MC type inducers. These compounds are of particular

theoretical interest since they can presumably bind to both the putative

3-MC and PB induction receptors.

THE CYTOCHROME P-450 DEPENDENT MONOOXYGENASE SYSTEM IN FISH

The overall pathways of biotransformation of foreign compounds in

fish are like those in mammals (reviewed by Bend and James, 1978). More

specifically, the hepatic cytochrome p-450 monooxygenases of fish are

similar in many respects to the mammalian systems. These enzymes are

localized in the microsomal fraction of homogenates and require O2, and

generally NADPH for activity (Ahokas et ~., 1977a; Bend et ~., 1977;

Buhler and Rasmusson, 1968; Statham et ~., 1977; Stegeman ~~.,

1979). All of the electron transfer components known to playa

functional role in mammalian microsomal monooxygenase activity have been

detected in fish hepatic microsomes (e.g. Ahokas et ~., 1976; Bend and

James, 1978; Stegeman and Binder, 1979). Cytochrome P-450, NADPH

cytochrome P-450 reductase, and cytochrome b5 have been partially

purified from hepatic microsomes prepared from little skate, Raja

erinacea (Bend et ~., 1977; Philpot et a1., 1977). The absolute
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spectrum of the skate cytochrome was similar to that of mammalian

cytochrome P-450, and the cytochrome b5 preparation appeared spectrally

identical to the hemeprotein of mammalian hepatic microsomes. A

reconstituted system composed of skate NADPH-cytochrome P-450 reductase,

cytochrome P-450, and microsomal lipid was active in the O-deethylation

of 7-ethoxycoumarin. Thus the minimal components necessary for

NADPH-supported monooxygenase activity in this species of fish are the

same as in mammals (Lu and Levin, 1974a). Furthermore, monooxygenase

activity could be reconstituted with skate cytochrome P-450 and

NADPH-cytochrome P-450 reductase purified from rabbit, indicating the

similarity of piscine and mammalian cytochromes P-450 (Ball ~!l.,

1979). Studies of fish hepatic microsomes by electron paramagnetic

resonance spec troscopy, and by difference spec troscopy in the presence of

substrates and ligands of cytochrome P-4S0, have provided further

evidence of the similarity of the mammalian and piscine microsomal

cytochromes (Ahokas et ~., 1979; Chevion et al., 1977; Stegeman and

Chevion, 1980). Little is known about fish NADPH-cytochrome P-450

reductase per se, but microsomal NADPH-cytochrome c reductase has been

measured in several species, and presumably these activities are

catalyzed by the same enzyme (e.g., Ahokas, 1977a; Bend and James, 1978;

Foriin and Lidman, 1978; Lipsky et !l., 1978; Stegeman ~ !l., 1979;

Yarbrough and Chambers, 1977). With hepatic microsomes from the marine

teleost Stenotomus chrysops, the porgy or scup, the optima of pH and

ionic strength for NADPH-cytochrome c reductase activity are similar to

those seen in mammals (Stegeman ~ al., 1979). NADH-cytochrome c
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reductase activity is also measurable in fish hepatic microsomes

(Stegeman, 1979; Stegeman and Chevion, 1980; Stegeman ~ ~., 1979;

Yarbrough and Chambers, 1977). Generally, NADH has been found to support

fish microsomal monooxygenase activities at substantially lower rates

than NADPH (Buhler and Rasmusson, 1968; Stegeman ~ al., 1979). However,

with scup hepatic microsomes NADH supports aminopyrine demethylation to

at least the same extent as NADPH, suggesting a functional role of

cytochrome bS in the hepatic monooxygenase system of this species

(Stegeman et al., 1979).

Hepatic microsomes from fish catalyze a variety of monooxygenase

reactions with xenobiotic substrates, such as aldrin epoxidation, aniline

hydroxy lation, phenacetin O-dealky lation, aminopyrine N-demethy lation,

and parathion desulfuration and also hydroxylate steroid hormones,

important endogenous substrates (Buhler and Rasmusson, 1968; Burns, 1976;

Hanson ~ al., 1979; Iano ~~., 1976; Murphy, 1966). A number of

factors can potentially affect the levels of hepatic monooxygenase

activity in fish including diet, temperature, season, reproductive

status, and previous exposure to xenobiotic compounds (e.g., Bend and

James, 1978; Hanson et ~., 1980; Stegeman, 1979; Stegeman and Chevion,

1980; Stegeman et ~., 1978; Walton et al., 1978). One difference

between the piscine and mammalian enzymes is that the optimal

temperatures for in vitro monooxygenase activities are generally lower

for fish than mammals (e.g., Buhler and Rasmusson, 1968; Burns, 1976;

Dewaide and Henderson, 1968; Stegeman ~al., 1979). This is consistent

with the fact that fish are poikilotherms, and most of the species
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studied inhabit waters which are much cooler than mammalian physiological

temperatures. Generally, hepatic microsomes prepared from fish have a

lower capacity to catalyze monooxygenations under optimal conditions than

similar preparations from mammalian livers (reviewed in: Chambers and

Yarbrough, 1976; James and Bend, 1978). However, microsomal preparations

from untreated individuals of certain species of fish are considerably

more active in metabolizing benzo(a)pyrene than hepatic microsomes from

rodents (Ahokas, 1975; Pederson et al., 1974; Stegeman and Binder,

1979). Reasons why this may be the case will be discussed later.

Most work on the cytochrome P-450 monooxygenases of fish has focused

on the liver enzymes, because the highest levels of activity are usually

found in this organ, and it probably serves as the primary site of

xenobiotic metabolism. However, monooxygenase activity has been reported

in several extrahepatic tissues including blood, kidney, lens, gill,

alimentary tract, red muscle, testis, heart, spleen, and pancreas (Bend

~ ~., 1973; Buhler and Rasmusson, 1968; James et al., 1979; Payne and

Penrose, 1975; Pederson et ~., 1974; Stegeman et ~., 1979). With most

substrates the activities in the extrahepatic tissues are much lower than

in the liver, and usually the kidney is second to the liver in activity.

Interesting exceptions are two teleost fish, the sheepshead (Archosargus

probatocephalus) and black drum (Pogonias cromix), whose gill microsomal

benzphetamine N-demethylase activities approach the respective iiver

activities (James et al., 1979). With benzo(a)pyrene as a substrate,

gill microsomes from these fish are much less active than liver

microsomes. Another interesting case is scup, whose heart microsomes

i

Ii
ï!
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have a relatively high specific content of cytochrome P-450, second only

to the liver, ye.t have low monooxygenase activity with either aminopyrine

or benzo( a)pyrene (Stegeman, 1980; Stegeman et al., 1979). The

physiological functiop of this heart cytochrome P-450 is unknown.

While the extrahepatic monooxygenase may not be quantitatively as

important as the liver enzymes in the metabolism of xenobiotics, they may

playa critical role in target organ toxicity. The target organs of

xenobiotics requiring metabolic activation are not necessarily those most

active in xenobiotic metabolism. As an example, benzo( a)pyrene, which is

actively metabolized by mammalian liver, produces lung and skin tumors,

and is generally not a hepatocarcinogen in the species examined

(Thorgeirsson and Nebert, 1977).

Responses of fish to inducers of cytochrome P-450:

Experimental exposure of fish to petroleum hydrocarbons,

polyhalogenated biphenyls or polycyclic aromatic hydrocarbons has been

shown to induce increased levels of hepatic monooxygenase activities in

several different species (e.g., Bend ~ al., 1973; Gruger, 1976; James

and Bend, 1978; Lidman et al., 1976; Payne and Penrose, 1975; Pederson et

al., 1976). In some cases induction has also been observed in

extrahepatic tissues such as gill, kidney and ovary (James and Bend,

1980; Payne and Penrose, 1975; Pohl et al., 1975). The response of fish

to inducers can be affected by a number of factors including age, sex,

route of administration, and temperature (Hansson et ~., 1980; James and

Bend, 1980; Stegeman, 1979).
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A major difference between fish and mammals is that several species

of fish have been found not to respond to PB type inducers such as

phenobarbital, DDT, 2,21,4,41-tetrachlorobiphenyl, and

2,2' ,4,41 ,5,5I-hexabromobiphenyl (Addison et al., 1977; Balk ~!!.,

1980; Bend et ~., 1973; Forlin, 1980; Elcombe and Lech, 19798; Hannson

~ al., 1980; James and Bend, 1978). Burns (1976) reported that

phenylbutazone, an inducer of the PB-type, induced dieldrin epoxidase

activity in liver of the killifish Fundulus heteroclitus. However, the

levels of cytochrome P-450 in the control animals in this study were much

lower than normally seen in this species, and were very low even when

compared to other untreated animals described in the same report. The

leve ls of cytoch rome P-450 in the "induced" fish were also low; thus the

results of this study must be considered equivocal. Forlin and Lidman

(1978) reported that 2,21,4,41 ,5,5I-hexachlorobiphenyl (HCB) induced a

2-fold increase in hepatic p-nitroanisole O-demethylase activity in

rainbow trout. Highly purified 2,21,4,41 ,5,5I_HCß has been shown to be a

Pß-type inducer in rats (Goldstein et ~., 1978; Parkinson et ~.,

1980). However, Goldstein ~!!. (1978) also reported that a 99% pure

commercial preparation of 2,21,4,41 ,S,51-HCB was contaminated with 44 ppm

of chlorinated dibenzofurans, some of which are extremely potent inducers

of the 3-MC type (Poland et ~., 1976). Because of this contamination,

the commercial HCB behaved as a mixed type inducer. Forlin and Lidman

did not indicate the purity of their HCB, and quite possibly the response

they observed in trout was due to similar contamination. The report of

Goldstein ~~. (1978) indicates that individual chlorinated biphenyl



Page 37.

isomers used for induction studies must be rigorously purified, and that

commerc ial preparations intended to be used as gas chromatography

standards are not adequate for this purpose. Thus, there are no

convincing reports in the literature of the response of fish to PB-type

inducers.

Inducers of the 3-MC type are quite active in fish as indicated by

the responses elicited by 3-MC itself, related polycyclic aromatic

hydrocarbons, chlorinated biphenyl isomers and TCDD (e.g., Elcombe et

!l., 1979b; James and Bend, 1978; Pohl ~ !l., 1975; Stegeman, 1979).

Commerc ial PCBs, which are complex mixtures known to contain congeners

which are PB, 3-MC or mixed type inducers, generally produce a response

in fish similar to pure compounds of the 3-MC type (Elcombe et ~. ,

1979b; James and Bend, 1978; Hinton ~ al; 1978). Rainbow trout (Salmo

gairdnerU 'have been shown to respond to the nove 1 inducer isosafro le,
i

but the response was like that to TCDD (Elcombe et! al., 1980). Hannson

~ ale (1980) found that pregnenolone-16-o(-carbonitrile (PCN) did not

affect hepatic levels of cytochrome P-450 Or steroid hydroxylase activity

in rainbow trout. Similarly, Forlin (1980) reported that injection of

rainbow trout with PCN did not affect the levels of hepatic BPM activity

or p-nitroanisole O-demethylase activity, but did significantly alter the

apparent Km for p-nitroanisole. This result suggests that PCN may have

produced a change in the complement of cytochrome P-450 isozymes present

in the livers of treated fish, and thus this species may be competent to

respond to this class of inducers.

The responses of different species of fish to 3-MC type inducers are

varied. In some species a response similar to that of rats has been seen
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with an induction of BP monooxygenase activity or other cytochrome P-448

associated monooxygenases, an increase in the content of cytochrome

P-450, and a blue shift in its À in the reduced CO bound state
max

(James and Bend, 1980; Stegeman, 1981b). With species such as sheepshead

and scup, variable results have been reported, with increases in

cytochrome P-450 and spectral shifts observed in only certain

experiments, although in all cases monooxygenase activities were induced

(Chevion ~ al., 1977; James et ~., 1977; James and Bend, 1980; Stegeman

and Woodin, 1980). Rainbow trout are somewhat different, in that PCBs

and polycyclic aromatic hydrocarbons induce increases in a number of

hepatic monooxygenase activities as well as significant increases in

cytochrome P-450, but there is no spectral shift in the ,l ofmax

cytochrome P-450 (Elcombe et ~., 1979a; Gerhart and Carlson, 1978;

Lidman ~~., 1976). However, Elcombe and Lech (1979a) have observed an

association between induction of hepatic microsomal monooxygenase

activity in trout, and the appearance of a new protein band of 57,000

molecular weight using SDS-polyacry lamide ge 1 elec trophoresis. The band

stains for heme and may be a nove 1 form of cytochrome P-450.

Treatment of little skate with l,2,3,4-dibenzanthracene (DBA) induced

hepatic BPM activity 35-fold, with no apparent changes in cytochrome

P-450 (Bend et ~., 1976). However, the BPM activity in control

microsomes was stimulated by 10-4M o(-napthoflavone (ANF), while the

activity in microsomes from untreated animals was strongly inhibited by

this concentration of ANF, suggesting thè induction of a different form

of cytochrome P-450. This was verified by the partial purification of
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cytochrome P-45~ from control and DBA treated little skate (Ball ~ !l. ,

1979). The control cytochrome P-450 has a A x at 450nm, and is, ma
relatively inefficient in metabolizing BP. DBA induces a form of

cytochrome P-450 that is very active in BP metabolism, sensitive to

inhibition by ANF, and with a A at 448nm, much like the cytochromemax

P-448 induced in rats by 3-MC. The spectral shift is masked by the

induction of another cytochrome P-450 species with a À max at 451nm.

Similar effects in other species might explain induction of monooxygenase

activities without increases in cytochrome P-450, or without spectral

shifts.

In rodents, administration of 3-MC has little effect on hepatic

microsomal NADPH-cytochrome c reductase, while monooxygenase activities

associated with cytochrome P-448 are induced, such as BPM (Parkinson et

.!., 1980a; Lu et .!., 1976). Inducers of the 3-MC-class produce little

change in the N-demethy lation of aminopyrine and benzphetamine.

Increases in these demethylase activities and NADPH-cytochrome c

reduc tase are part of the charac teri st ic re sponse to phenobarbital. As

ment ioned above, a numbe r of spec ie s of fish have been shown not to

re spond toPB and re lated inducers. Howeve r , some re sponses of fish to

inducers resemble those elicited by PB in mammals. Benzo( a)pyrene has

been shown to induce hepatic NADPH-cytochrome c reductase in Fundulus,

although aminopyrine demethylase (APD) activity was unchanged (Stegeman,

1979). Similarly, Hinton et ale (1978) found that 3-MC more than doubled

hepatic NADPH-cytochrome c reductase activity in rainbow trout, although

Forlin and Lidman (1978) observed that a commercial PCB mixture (Clophen
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A-SO) had no significant effect on this activity in the same species.

Exposure of channel catfish, Ie talurus punc tat 
us , to PCBs and mullet,

Mugil cephalus, to crude oii have been reported to induce hepatic

NADPH-cytochrome c reductase activity (Lipsky and Klaunig, 1978;

Yarbrough and Chambers, 1977). Additionally, PCBs have been reported to

induce aminopyrine N-demethylase in channel catfish and mullet, Chelon

labrosus (Hill and Camp, 1976; Hinton et ~., 1978; Narbonne and Gallis,

1979). Whether these species can respond to PB-type inducers has not

been examined. In contrast to the above results, James and Bend (1980)

found that treatment of sheepshead, stingray (Dasyatis sabina), and

southern flounder (Paralichthyes lethostigma) with 3-MC did not affect

hepatic NADPH-cytochrome c reductase activity. It should be evident that

the induction responses in fish are varied, and differ in certain ways

from those seen in mammals.

Induction in the environment:

Corre lations have been observed between exposure of fish to

environmental pollution and the levels of hepatic miCrosomal

monooxygenase activity (Burns, 1976; Dunn, 1979; Kurelec et al., 1977;

PaynE!, 1976; Stegeman, 1978). Apparently these enzymes are induced in

fish inhabiting heavily polluted environments, but it should be noted

that exposure to various pollutants does not necessarily lead to

induction. Ahokas et!!. (976) observed that fish inhabiting a grossly

polluted lake had decreased levels of hepatic monooxygenase activity,

possibly as a result of toxic injury.
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Generally hepatic BP monooxygenase activity induced in fish by

experimental exposure to xenobiotics is sensitive to inhibition by

c(-napthoflavone (Elcombe and Lech, 1979a; James and Bend, 1978; Stegeman,

1979; Stegeman, 1980). Among different species, and in some cases among

individuals of the same species, considerable variability is seen in the

sensitivity of constitutive BPM activity to ANF. In the case of iittle

skate, Bend et §.. (1978) reported that all untreated individuals

examined had hepatic BPM activity that was stimulated by ANF. These same

investigators found that hepatic BPM in some sheepshead and the majority

of winter flounder (Pseudopleuronectes americanus) examined were

inhibited by AAF, suggesting that some members of these species have

monooxygenase systems that are induced. Scup and European lake trout,

Salmo trutta lacustrus, ~re interesting because the BPM activity in all

individuals sampled is strongly inhibited by ANF (Ahokas ~~., 1977a;

Stegeman and Binder, 1979). Additionally, hepatic microsomes from these

species are much more active than those from untreated rats or mice in

metabolizing benzo( a)pyrene, al though the levels of cytoch rome P-450 are

lower than in rodents. Possibly these species of fish- are particularly

~ensitive to ~mbiént levels of ubiquitous pollutants, such as PC~s, and

the monooxygenase systems of all individuals are induced. Alternately

the' constitutive cytochromes of these species may resemble rat, cytochrome

P-448. BPM activity in untreated brook trout and rainbow trout is also
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sensitive to ANF inhibition, even when constitutive activities are very

low (Elcombe and Lech, 1979a; Stegeman and Chevion, 1980). These

observations lend support to the notion that the constitntive cytochromes

of some species of fish may be iike cytochrome P-448. However the

induction of very low levels of a cytochrome active in BP metabolism and

sensitive to ANF could also explain these results. Whether some species
'j

of fish are sensitive enough to be induced by ambient levels of
. :"r

ubiquitous contaminants, e~en in relatively clean environments, is an

interesting question deserving of further investigation.

Evidence for multiple forms of cytochrome P-450 in fish:

Over the past few years considerable evidence has been obtained

indicating the presence of multiple forms of cytochrome P-450 in fish.

Much of this evidence has already been described (references cited

above). Substantial inductions of monooxygenase activity without

increases in the total content of cytochrome P-450, or with changes in

) and sensitivity to AN,F, all suggest changes in the isozymes of
/ \ max

cytochrome P-4s0 present. Differential sensitivity of monooxygenase

activity to ANF among different individuals of the same species also is

evidence for multiple forms of this heme protein. The induction of

specific monooxygenase activities such as BPM with little change in other

activities, such as benzphetamine N-demethylase, indicate changes in the

catalytic entities present before and after induction. The appearance of

a novel heme-staining band in the electrophoretic pattern of microsomes

from induced compared to that from control rainbow trout, suggests the

synthesis of a new form of cytochrome P-4s0. Perhaps the clearest
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evidence is the, resolution of different forms of cytoch rome p-4s0 from

':'1;~

little skate, with differing substrate specificities, spectral properties

and sensitivities to ANF. Whether these proteins are the products of

different genes, or the result of post-translational modification is not

known.

Additional evidence for multiple forms of cytochrome P-450 in fish,

not previously mentioned, includes the fact that the absorption maximum

of hepatic cytochrome P-4s0 in spawning winter flounder males is at 448

nm, while that of the gravid females is at 450 nm (Stegeman et aL,

1978). During the rest of the year, the À max of the male cytochrome

is at 450 nm. James and Bend (l980) observed that in 3-MC treated

sheepshead, the time course of change in ßPM activity was distinct from

that of total cytochrome P-450 and two other monooxygenase activities.

Administration of 3-MC induced an increase in the specific content of

cytochrome P-4s0, and a blue shift in its À ; however BPM activitymax

rose before the increase in cytochrome or spectral shift were evident.

The other monooxygenase activities measured more closely followed changes

in cytochrome content. These results suggest that 3-MC may induce more

than one form of cytochrome P-4s0 in sheepshead, possibly including a

minor form very active in BP metabolism. Based on the sum of evidence

described above,and the more rigorous evidence obtained with mammalian

species, it seems safe to conclude that multiple forms of cytochrome

P-4s0 do exist within individuals of various species of fish.
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DEVELOPMENTAL CHANGES IN THE CYTOCHROME P-4s0 MONO OXYGENASE SYSTEM
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of other components of microsomal electron transport (e.g. Atlas ~ ~.,

1977; Basu et al., 1971; Guenthner and Nebert, 1978; Kahl et !!., 1980).

Within a species distinct developmental patterns of monooxygenase

activity have been observed for different substrates and for positional

spècificity with the same substrate (e.g. Atlas et al., 1977; Basu et

!!., 1971; Gram et al., 1969; Kahl et .!., 1980; McCormack et al., 1979;

Norman ~ al., 1978). The following results from Atlas et ale (1977) are

presented as an example. In rabbit livermicrosomes,

2-acetylaminofluorene N-hydroxylase activity rises steadily from birth

and reaches a plateau after 25 days, at a specific activity approximately

five times higher than in the near term fetus. The total content of

cytochrome P-450 in hepatic microsomes shows a similar pattern of

development. Biphenyl 4-hydroxylase activity increases from birth to a

peak at SO days, at a specific activity more than 30 times higher than in

the near term fetus. In contrast, biphenyl 2-hydroxylase activity

changes little postnatally and becomes undetectable by 16 days post

partum~ When liver microsomes from rabbits of different ages were

analyzed by SDS-polyacrylamide gel electrophoresis, correlations were

observed between the intensity of certain protein staining bands, within

the molecular weight range of cytochrome P-450, and the various

monooxygenase activities. These results strongly suggest ontogenic

changes in the compliment of liver cytochrome P-4s0 isozymes.

The postnatal period is characterized not only by changes in the

levels of the various components of the monooxygenase system, but also

dramatic changes in the hepatic endoplasmic reticulum (e.g. Dallner ~
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~., 1966a; Chedid and Nair, 1974). A close association has been

observed between hepatocyte ultrastructure and developmental changes in

monooxygenase activity (e.g. Dallner et ~., 1966b; Ecobichon et al.,

1978; Kuenzig .et al., 1974; Short!:!.., 1976). In fetal hepatocytes of

nonprimate mammals, the endoplasmic reticulum (ER) is sparse in the early

stages of liver development, and gradually becomes more prominent as

parturition is approached. Before parturition the ER is predominantly of

the rough type (RER), whereas the smooth ER (SER) does not increase

substantially until after birth. Low levels of monooxygenase activity

become detectable during the deve lopment of the RER prenatally and

increase in parallel with the proliferation of the SER postnatally.

Deve lopmental changes in the physical propert ies of the ER have also

been observed. In rats, Kapitulnik et ale (1979) reported that the

fluidity of hepatic microsomal membranes was 2-fold higher on the first

day after birth, compared with the last day of fetal life. This change

in membrane fluidity was attributed to an increase in the ratio of

membrane phospholipid to cholesterol. Fuer (1978) reported a trend

towards increasing unsaturation in the fatty acyl groups of rat hepatic

microsomal phospholipids, with development after birth. Such a change in

membrane fatty acids would also be expected to increase fluidity.

Changes in membrane fluidity might affect the functional associations of

the components of the monooxygenase system, and may be partially

responsible for increases in activity after birth.

The majori ty of deve lopmental studies on the cytoch rome P-4s0 system

have been concerned with the enzymes of the liver, and relatively little
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work has been done with the extrahepatic tissues. Generally the levels

of extrahepatic monooxygenase activities are lower in fetuses and

neonates than in adults (Berry ~ al., 1977; Fouts and Devereux, 1972;

Kahl et ~., 1980; Tredger et al., 1980; Short and Davis, 1970).

However, the extrahepatic tissues may playa quantitatively more

important role in xenobiotic metabolism in the fetus than during later

stages of development. Berry ~~. (l97n reported that in untreated

fetal rats, the specific activities of BPM in lung, kidney and iiver

homogenates were comparable, while in adult rats the liver was 3 times as

active as the kidney, and l3 times as active as the lung in metabolizing

BP. In the human fetus BPM specific activity is highest in the adrenals,

and considerable activi ty is also present in other extrahepatic tissues

(Juchau et ~., 1972; Rifkind et ~., 1979). Since the adrenals are

re lative ly large during fetal deve 10pment, they may playa significant

role in xenobiotic metabolism (Short et al., 1976).

Apparent ly the only nonmammalian species in which the ontogeny of the

microsomal monooxygenase system has been examined is the chicken

(Drummond et ~., 1972; Powis et al., 1976; Rifkind et !!., 1979). At

comparable stages of development, chick embryo livers are much more

active in metabolizing xenobiotics than mammalian fetal livers (Rifkind

~ ~., 1979). Powis et~. (1976) examined changes in the oxidative

metabolism of aminopyrine, aniline and napthalene by chicken iiver

microsomes from 1 day before hatching unti 1 7 days after. Monooxygenase

activities with each of these substrates showed the same developmental

pattern. Prior to hatching activities were about 50% of the adult
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values; within one day of hatching they peaked at 3-fold higher levels,

then gradually fell off to the adult levels within 7 days. Cytochrome

P-4s0, cytochrome bS' and NAOPH-cytochrome c reductase activity changed

re latively little over the period examined. The liver monooxygenase

activities more closely correlated with NADPH cytochrome P-4S0 reductase

activity, which also peaked at one day after hatching. This suggests

that around the time of hatching, monooxygenase activity in chicken liver

is limited by the functional association of cytochrome P-4s0 and

reductase, rather than the actual levels of these proteins.

Regulation of the perinatal development of the cytochrome P-4s0 system:

The factors regulating the postnatal increases in the components of

the monooxygenase system and monooxygenase activities in mammals have not

been clearly established. Negishi and Kreibich (1978) reported

electrophoretic and immunochemical evidence that the increase in

cytochrome P-4s0 content in rat liver after birth results from de ~

synthesis of the hemeprotein, rather than activation of a pool of

apoprotein by insertion of heme. Manchester and Neims (1977) followed

changes in hepatic monooxygenases in guinea pigs delivered naturally and

5 days before term by Caesarian section. Within 72 hours after birth, in

both premature and full-term guinea pigs, the monooxygenase activities

examined increased 3-fold. Similarly, Leakey and Fouts ( 1979) showed

that premature delivery of rats produced a precocious surge in the leve 1

of hepatic cytochrome P-450. These results indicate that physiological

changes associated with the event of birth trigger the increase in
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cytochrome P-4s0 and associated monooxygenase activities.

The deve lopmentalchanges in a number of enzymes have been shown to

be under hormonal control, especially during the perinatal period

(Greengard, 1971; Oliver, 1974). Wilson (1970) has proposed that growth

hormone (GH) is a physiological repressor of hepatic monooxygenase

ac tivi ty in the rat fetus. Serum leve ls of growth hormone are high in

the fetus and fall rapidly after birth, and there is a strong correlation

between the levels of circulating GH and the levels of hepatic cytochrome

P-4s0 and xenobiotic metabolism (Wilson and Frohman, 1974). Furthermore,

injection of growth hormone was found to slow the postnatal maturation of

hepatic monooxygenase activity in male rats, and to diminish the hepatic

xenobiotic metabolizing capacity of adult males (Wilson, 1970). However,

GH does not affect hepatic monooxygenase activity in adult female rats,

and its inhibitory effects on the postnatal deve lopment of monooxygenase

activity in males only become evident beyond 20 days from birth (Wilson,

1970; Leakey et al., 1979). Kramer et ale (1978) reported the results of

experiments with gonadectomized and hormone treated rats, which indicate

that the effects of GH on the monooxygenase system are due in part to an

antagonism of the effects of androgens. In adult rats there 
are sex

differences in cytochrome P-450 dependent monooxygenase activities that

are controlled by gonadal steroids (Kato, 1974). Hepatic microsomes from

males are more active than those of females in metabolizing a variety of

substrates. Sex related differences in xenobiotic metabolism become

apparent around the time of puberty, beginning about 3 weeks from birth

(MacLeod et !.., 1972). The fact that GH does not affect the
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monooxygenase system of female rats, and tha~ its effects on males are

not apparent until puberty (20 days from birth) are further evidence that

it acts as an antagonist of androgens. Whether GH is a prenatal

repressor of the cytochrome P-4s0 system in both male and female fetuses

is uncertain.

Leakey and Fouts (1979) have shown that adrenalectomy of prematurely

delivered rats blocks the early increase in cytochrome P-4s0, indicating

the role of adrenal hormones in this process. Administration of

glucocorticoids to neonatal rats produces a precocious stimulation of the

development of cytochrome P-450 and associated monooxygenase activities

that is not blocked by growth hormone (Leakey et !.., 1979; Leakey and

Fouts, 1979; Mukhtar et al., 1974). Glucocorticoids have little effect

on the monooxygenase system of adult rats, indicating that their effec t

o.n neonates is not simply a xenobiotic type induction (Leakey and Fouts,

1979). However, the administration of glucocorticoids to pregnant rats

does not stimulate an early increase in fetal hepatic cytochrome P-450,

although the hormones can be detected in the fetal plasma and liver

(Leakey and Fouts, 1978; 1979). Thus competence to respond to

glucocorticoids does not appear until after birth, and changes in the

levels of these hormones are probably not the physiological trigger which

results in postnatal increase in hepatic cytochrome p-4s0. Once

competence to respond to glucocorticoids appears, the content of

cytochrome P-450 may increase under their influence. The "trigger"

mechanism has yet to be established. The genetic regulation of the

development of mammalian cytochrome P-450 is likely to be complex, as
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multiple forms may have distinct developmental patterns that are tissue

specific.

Chick embryos are a useful model system for studying the regulation

of the cytoch rome P-450 system during development, because they are free

of maternal inf luences. Wishart and Dutton (1975) showed that grafting

chicken pituitary tissue on the chorioallontoic membrane of chick embryos

precociously stimulated aniline hydroxylase activity in the embryonic

liver. Later work indicated that the factor released from the grafted

pituitaries was probably adrenocort icotrophic hormone (ACTH), as ACTH and

glucocorticoids stimulated precocious development of aniline hydroxylase,

whi le a number of other hormonal substances were inac tive (Leakey and

Dutton, 197s; Leakey and Wishart, 1976). Chick embryos differ from rat

fetuses in that they are competent to respond to glucocort icoid

sti~ulation of monooxygenase activity. In chicken, ACTH is released upon

the onset of hatching, and thus may mediate the post hatching surge in

monooxygenase activity through its effects on the adrenals and

circulating levels of glucocorticoids (Leakey and Dutton, 1975).

Transplacental induction of monooxygenase activity:

Treatment of pregnant animals with 3-MC-type inducers has been shown

to produce large increases in hepatic monooxygenase activities in fetuses

of rat, rabbit, hamsters and responsive strains of mice (e.g. Alvares and

Kappas, 197s; Atlas et al., 1977; Cresteil et .!., 1979; Gielen et ~.,

1972; Guenthner and Mannering, 1977a; Guenthner and Nebert, 1978; Lucier

~ .!., 197s; Nebert and Gelboin, 1969; Welch et al., 1972). These
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inducers also stimulate monooxygenase activity in fetal extrahepatic

t issues such as lung, kidney, small lrifestine, and sp leen (At las !! ~. ,

1977; Berry ~ ~., 1977; Nebert and Gelboin, 1969). Induction of fetal

liver monooxygenase activities by 3-MC type inducers is generally

accompanied by elevated levels of cytochrome P-450 and a blue shift in

the CO difference spectrum as seen in adult animals. While the

constitutive levels of fetal monooxygenase activities generally are very

low, induced activities can exceed those of untreated adults. For

example, Berry et ale (l977) reported that in fetal rats TCDD induced BPM

activity about 60-fold in the liver and about 22-fold in the kidney. The

induced levels of activity in both these fetal tissues were about 4-fold

higher than the activities of the respective tissues of control pregnant

rats. These results indicate that the low levels of monooxygenase

activities in fetal tissues are not the result of a lack of competence to

respond to induction.

In the majori ty of transplacental induction studies with 3-MC-type

inducers, induction of monooxygenase activity has only been demonstrated

during the last third of gestation. However some studies have examined

the induction of monooxygenase activity in fetuses during earlier

development. Welch!! ale (1972) reported that in rats, which have a

gestation period of about 22 days, BPM activity was not detectable in

fetal liver on gestation day 15 but was inducible by 3~MC at that time.

The majority of inbred strains of mice can respond to 3-MC type inducers,

but a number of strains have been found to be genetically nonresponsive

(Nebert ~ al., 1975). Gielen et !!. (l972) have shown that in



Page 53.

responsive strains of mice, which have a gestation period of about 2l

days, hepatic BP monooxygenase activity is inducible by 3-MC on gestation

day 12. Apparently, induction of monooxygenase activity by 3-MC type

inducers has not been directly demonstrated in ma~als during earlier

periods of emb ryonic development.

On the basis of an increased incidence of sister chromatid exchanges

(SCE)2 in embryos of responsive strains of mice cultured in the

presence of benzo(a)pyrene, Galloway ~ al. (1980) have concluded that

mouse embryos are competent to respond to inducers of cytochrome P-4s0 on

day 7 1/2 of gestation. No increase in SCE was observed in the embryos

of nonresponsive strains of mice cultured in the presence of BP.

However, an increase in SCE in embryos of nonresponsive strains was

produced by the inclusion of rat liver enzymes in the culture medium,

thus indicating that the nonresponsive strains of mice do not have some

defect which prevents the formation of SCE. Using the same system,

preliminary data was obtained, suggesting that mouse embryos as early as

the third day of gestation have inducible BPM activity3. This indirect

approach to examining induction competence during embryonic development

was required because monooxygenase activity is not directly measurable in

the embryos. These data do not conclusively demonstrate induction but do

indic.ate that the responsive strain embryos have the capacity to activate

2. Damage to DNA results in exchanges between sister chromatids during
DNA synthesis. BP requires metabolic activation to produce such
effects.

3. The third day of gestation is before implantation and mouse embryos
are in the blastula stage. Day 7 1/2 of gestation is characterized
by the appearance of the somites; the major organ systems have yet to
form (Rugh, 1974).
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BP.

Kahl .~ ale (1980) studied the Ot,Lugeny of hepatic cytosolic TCDD

receptors in rats, rabbits, mice and cotton rat. Although the detailed

developmental patterns vary between species, TCDD binding sites become

detectable in liver cytosol during the second half of gestation, reach a

peak of concentration between the neonatal and weanling periods, and are

considerably decreased in adults. Carlsted t-Duke et ale (1979) observed--
a similar postnatal developmental pattern for TCDD receptors in rat liver

cytosol. The ontogeny of receptor concentration roughly parallels

developmental changes in maximum inducible monooxygenase activity

(Carlstedt-Duke et al., 1979; Kahl ~ ~., 1980).

Re lative ly few transplacental induction studies have been done with

phenobarbital and the results have been variable. Induction of

monooxygenase activity in fetal liver by maternal pretreatment with PB

has been reported in rat, rabbit t guinea pig and hamster (Alvares and

Kappas, 1975; Kuenzig et al., 1974;Nebert and Gelboin, 1969; Rane et

al., 1973). However, Welch ~ ale (1972) and Guenthner and Mannering

(1977a) found that fetal rat liver was refractive to induction by PB.

Cresteil et ~. (l979) attributed an increase in the specific content of

cytochrome P-450 in fetal rat hepatic microsomes following PB treatment,

to a decrease in the amount of bound ribosomes, rather than a net

synthesis of cytochrome P-4s0. PB apparently stimulated the conversion

of rough ER to smooth ER, without affecting cytochrome P-4s0. The

results of this study cast some doubt on earlier reports of induction of

fetal livermonooxygenase activity by PB. However, while other studies
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only reported mQderate increases in fetal monooxygenase activities after

PB treatment, Nebert and Gelboin (1969) observed that pretreatment of

pregnant hamsters with PB resulted in a 21-fold induction of BPM activity

in fetal liver. Such an extensive induction is not likely to be

artifactual. PB is clearly active in inducing hepatic monooxygenase

activities and cytochrome P-4s0 in various species shortly after

parturition (Alvares and Kappas, 1975; Cresteil et ~., 1979; Guenthner

and Mannering, 1977a; Hart et .!., 1962; Schwab ~ al., 1980). Results

of various studies are in agreement concerning the transplacental effects

of PB on fetal hepatic NADPH-cytochrome c reductase and NADPH-cytochrome

P-4s0 reductase activities. PB apparently has little effect on either of

these activities in fetal liver until near parturition, while both

activities are inducible by PB in neonates and adults (Cresteil ~ al.,

1979; Guenthner and Mannering, 1977a; Kuenzig ~.!., 1974; Rane et .!.,

1973) .

Chick embryonic livers are competent to respond to inducers of

cytochrome P-450. Rifkind et ale (1979) examined the response of chick

embryos toß -naphthoflavone. This 3-MC-type inducer was injected into

yolk sacs at 4 days before hatching. Within 24 hours of injection,

hepatic BPM activity was induced 6-fold, ethoxycoumarin O-deethylase was

induced 2-fold, and the total content of cytoch rome p-450 was induced

about 2.s-fold. Associated with the induction of cytochrome P-450 was a

2 nm blue shift in the characteristic A of this microsomalmax

cytochrome. Various chlorinated dibenzodioxins, dibenzofurans, and

bipheny 1 congeners are also active in inducing cytochrome P-448 and BPM
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activity in chick embryonic liver (Poland and Glover, 1977 and 1973).

Chick embryonic 1 ivers may also be competent to respond to PB-type

inducers, as Rifkind ~!l. (1973) reported that PB produced a modest

induction of cytochrome P-450 and aminopyrine demethylase activity 3 days

before hatching.

Just as the constitutive forms of cytochrome P-450 present during the

course of development may vary, distinc t forms of cytochrome P-4s0 may be

induced in various tissues at different stages of development. Atlas et

ale (1977) followed the developmental patterns of a number of

monooxygenase activities in the livers of control and 3-MC treated

rabbits from the late fetal period until adulthood, and correlated

changes in activity with changes in intensity of protein staining bands

on SDS-polyacrylamide gels. Some of the observations on control animals

were described above. BPM activity was found to be inducible in rabbit

liver by 3-MC only from the late fetal and neonatal periods. The induced

ac tivi ty was associated with a polypeptide of 57,000 molecular weight and

was sensitive to inhibition by o(-naphthoflavone. Developmental changes

in response to 3-MC were shown to be tissue dependent, as BPM activity

was inducible in kidney at all ages. The induction of

2-acetylaminofluorene N-hydroxylase activity was associated with a band

of 54,000 molecular weight and was inducible beginning LO days from

parturition through adulthood.

More definitive evidence for temporal control of inducible fonns of

cytochrome P-4S0 have been reported by Normn ~ at. (1978). They

purified the major form of cytochrome P-4s0 induced by TCDD in neonatal
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rabbit. Like Atlas et ~., they found this cytochrome to have a

molecular weight of 57,000, to be sensitive to inhibition by ANF, and to

be very active in BP metabolism in a reconstituted system with reductase

and phospholipid. On the basis of peptide fingerprinting and

immunochemical analysis, this protein was found to be distinct from the

major form of cytochrome P-4s0 induced by TCDD in adult rabbit liver. In

contrast to 3-MC, TCDD was also found to induce a small amount of the

"neonatal" form of cytochrome P-450 in adult liver. Schwab et ale (l980)--
have purified the major form of cytochrome P-450 induced in neonatal

rabbit liver by PB, and have shown on the basis of immunochemical

characterization, peptide mapping, and kinetic properties, that it is the

same as the major form of cytoch rome P-450 induced by PB in adult liver.

Thus, in contrast to 3-MC and TCDD, PB induces the same form of

cytochrome P-4s0 in neonatal and adult rabbits.

Negishi and Nebert (1979) and Guenthner and Nebert (1978) have

reported electrophoretic and immunochemical evidence indicating that TCDD

induces two different forms of cytochrome P-4s0 in fetuses of both rats

and mice. Apparent ly, the form of cytochrome P-4s0 most ac tive in BP

metabolism is inducible a few days earlier than the other form of

cytochrome P-4s0, which is active in the hydroxylation of acetanilide.

Both forms of cytochrome P-4s0 remain inducible in rodent liver during

later deve lopment.

I
i

, I
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BIOACTIVATION BY THE CYTOCHROME P-4s0 SYSTEM

The role of the cytochrome P-4s0 monooxygenase system in mediating

the cytotoxicity, carcinogenicity and mutagenicity of certain classes of

compounds in mammals is well established (reviews: Gillette ~ al.,

1974; Thorgeirsson and Nebert, 1977; Weisburger, 1978). Metabolism by

cytochrome P-4s0 can convert relatively inert substances into reactive

electrophiles, which can combine with nucleophilic sites on cellular

macromolecules leading to tissue damage, mutations, and in some cases

neoplastic disease. Presumably similar mechanisms operate in lower

vertebrates; a number 
of studies have shown that fish are susceptible to

chemical carcinogenesis (e.g., Grieco ~ al., 1978; Hendricks ~ aL.,

1980; Pliss and Khudoley, 1975; Sinnhuber ~ al., 1968). A point worth

emphasizing is that early developmental stages may be particularly

sensitive to damage from activated metabolites, because cells undergoing

division generally a,re more sensitive to such damage than nondividing

cells (Harbison, 1978). A number of studies have shown that fetuses and

neonates are more susceptible to chemical carcinogenesis than weanlings

or adults (reviewed by: Schoental, 1974). Possibly many of the cancers

occurring in later life are initiated during early development.

Additionally, early developmental stages are uniquely sensitive to

teratogenic effects. While there are likely to be many different

mechanisms of teratogenesis, cytochrome P-450 appears to playa role in

the activation of certain proteratogens (Fantel!,, 1979; Kitchin et !..,

1981; Martz et al., 1977; Shum et al., 1979).-- --
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The susceptibility of a tissue to the toxicity of a compound

requiring metabolic activation by cytochrome P-4s0 is likely to depend,

in part, on the temporary steady state levels of activated metabolites

(Thorgeirsson and Nebert, 1977). This in turn will depend on the

catalytic properties and levels of cytochrome P-450 isozymes present, as

well as the activities of other enzymes and nonenzymatic factors involved

in either activation or detoxification. Any factor which affects the

balance between production and detoxification of activated metabolites

will influence the likelihood that critical lesions will be produced.

Thus, the qualitative and quantitative changes in the cytochrome P-450

system, which occur during the course of development, or after induction,

may significantly affect the sensitivity of individuals to the toxicity

of a given substance.

Several polycyclic aromatic hydrocarbons are procarc inogens that are

activated by the cytochrome P-4s0 system; of these benzo(a)pyrene

probably has been most extensive ly studied (Thorgeirsson and Nebert,

1977; Weisburger, 1978). BP is a widespread environmental contaminant

that is found in coastal marine sediments and animals, possibly as a

result of the aerial fallout of combustion products (Laflamme and Hites,

1978; Pancirov and Brown, 1977; Neff, 1979). BP is of particular

interest in the present context, because it was used as a model

monooxygenase substrate in the research described in this thesis.

Metabolism of BP by the cytochrome P-4s0 system yields a variety of

hydroxylated products and quinones, shown in Figure 1-2. The relative

proportions of various metabolites vary with species, tissue and

¡
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Figure 1-2. PATHWAYS OF BENZO(A)PYRENE METABOLISM (After Yang !! ~. ,
1978) .
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pretreatment of :animals (Berry £! ~., 1977; Selkirk et ~., 1976; Yang

~ ,!., 1979). Arene oxides, activated molecules that react with

cellular nucleophiles in vitro, have been implicated as metabolic

intermediates in the formation of most of these products (Jerina and

Daly, 1974). Arene oxides isomerize spontaneously to yield phenols, and

can be inactivated by hydration to dihydrodiols by the microsomal enzyme,

epoxide hydrolase, or by addition of glutathione, catalyzed by the

cytosolic glutathione transferases (Yang ~ ,!., 1978). While many of

the metabolites of BP are toxic and mutagenic, the diastereomeric

7,8-dihydrodiol-9,10-epoxides are among the most potent mutagens known

(Newbold and Brookes, 1976; Wislocki et ~., 1976). These are the

metabolites of BP responsible for most of the binding to nucleic acids in

vivo, and are likely to be the ultimate carcinogenic forms of BP

(Kapitulnik et ,!., 1978; King et aL, 1976; Weinstein et ~., 1976).

The formation of the 7,8-dihydrodiol, the precursor of the extremely

reactive diol epoxides, requires epoxide hydrolase. Thus this enzyme,

which is normally involved in the inactivation of reactive electrophilic

metabolites, catalyzes one of the steps leading to proximate carcinogenic

form of BP.

The mammalian liver cytochrome P-450 isozymes induced by PB and 3-MC

show different positional and stereospecificity in metabolizing BP

(Holder et ~., 1974; Pezzuto ~ al., 1978; Rasmussen and Wang, 1974;

Yang et ~., 1975; Yang et ~., 1978). The major isozymes induced by

3-MC in rats and rabbits produce more benzo-ring metabolites than the

isozymes induced by PB. The benzo-ring metabolites include the highly

mutagenic 7, 8-d ihydrodiol-9, 10-epoxides; thus changes in metabolite
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profiles upon induction by 3-MC type inducers may be associated with an

increased risk of BP initiated cancer (Thorgeirsson and Nebert, 1977).

The pathways of BP metabolism in fish appear to be quite similar to

those in mammals (reviewed by Stegeman, 1981b). Liver preparations from

a number of different species of fish have been shown to metabolize BP to

a spectrum of diols, quinones and phenols like those produced by

mammalian cytochromes P-450, but there is considerable species

variability in the relative proportions of different metabolites (Ahokas

et !l., 1979; Bend ~ ~., 1979; Stegeman, 1981; Varanasi et ~., 1980).

Epoxide hydrolase and glutathioneS-transferase activities with

benzo( a)pyrene 4,s-oxide have been shown to be present in the livers and

extrahepatic tissues of a number of different species of fish (James et

!l., 1979). It is of interest to note that hepatic microsomes or

postmitochondrial supernatants (PMS) from several different teleost

species, produce profiles of BP metabolites like those of liver

micro somes from 3-MC induced mammals, with a high proport ion of

metabolism on the benzo-ring (Ahokas et al., 1979; Stegeman, 1981;

Varanasi and Gmur, 1980). These results are consistent with the

ci-napthoflavone inhibition data presented above, suggesting that the

cytochrome P-4s0 systems of certain species of fish have been induced by

ambient levels of environmental contaminants, or that their constitutive

cytochromes are like rat cytochrome P-448.

The activation of BP can be studied in vitro using mutation assays

with bacterial or eukaryotic cells, and by measuring covalent binding of

BP metabolites to DNA (Yang ~ al., 1979). Hepatic microsomes from
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several species of fish have been shown to metabolize BP to products that

are mutagenic to bacteria (Ahokas et al., 1977; Hintonet ~., 1978;

Kurelec et al., 1979; Payne et al., 1979; Stegeman et al., 1978). In-- -- --
fact, hepatic microsomes from untreated European lake trout, scup and

winter flounder activate BP to about the same extent as hepatic

micro somes from PCB-induced rats. Similarly fish liver microsomes or PMS

can activate BP to products that covalently bind to DNA (Ahokas etal.,

1979; Varanasietal., 1980; Varanasi and Gmur, 1980). There is

considerable species variability in the degree of activation of BP. For

example, Ahokas ~ ,alo (979) observed that hepatic microsomes from

European lake trout catalyzed more than 30 times as much covalent binding

of BP to DNA as similar preparations from roach, Rutilus rutilis.

Induction of the monooxygenase activity in fish results in changes in BP

metabolite prof iles, but no consistent pattern of change is apparent

among different species (Bend et ~., 1979; Stegeman, 1981b; Varanasi and

Gmur, 1980). In some species, but not all, induction results in greatly

enhanced capacity to activate BP (Kurelec et al, 1977; Varanasi and Gmur,

1980; Varanasi et al., 1980). Quite possibly, species differences in the

capacity to activate environmental carcinogens may result in differences

in their sensitivity to carcinogenesis.

THE RESEARCH PROBLEM AND EXPERIMENTAL APPROACH

The cytochrome P-4s0 dependent monooxygenases may play an important

role in determining the fate and effects of organic pollutants in fish.
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Fish probably are most sensitive to toxic injury during embryonic and

larval deve lopment, yet the occurrence and propert ies of the

monooxygenase systems during these periods are entirely unknown. The

research described in this thesis was undertaken to answer the following

questions:

1) Do fish embryos have the capacity to catalyze xenobiotic

monooxygenase reactions, and if so, how does this

capacity change during the course of deve lopment?

2) When do the components of the microsomal elec tron transport

system become detectable, and how do their levels change

during the course of development?

3) Can fish embryos respond to inducers of cytochrome

P-450? If so, how does their response change during the

course of deve lopment, and can environmentally realistic

levels of inducers produce a response?

Setting out to answer these questions involved a number of practical

considerations including the selection of experimental species,

monooxygenase substrates and inducers. The estuarine ki llifish Fundulus

heteroclitus and brook trout Salvelinus fontinalis were selected for this

study primari ly because their embryos are convenient experimental

material, and because considerable background information exists on the

monooxygenase systems of the adults of these species (Addison et al.,

1978; Stegeman, 1981; Stegeman, 1978; Stegeman and Chevion, 1980).

A necessary prerequisite for a study of this kind is the capacity to

measure monooxygenase activities with great sensitivity, since only small

..
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amounts of tissue are available, and activities are likely to be low.

When this research was undertaken, the necessary methods were not

available, and considerable effort was spent modifying existing

procedures for use on an ultramicro-scale. That work is not described in

the thesis.

The two substrates Selected for this study were benzo(a)pyrene and

the analgesic drug, aminopyrine (AP); both of these compounds are model

substrates of cytochrome P-450. Radiometric assays for these two

substrates have been described in the literature (DePierre, 1977; Poland

and Nebert, 1974). Modification of these assays for use on an

ultramicro-scale resulted in about 40-fold increases in sensitivity.

Aminopyrine is N-demethylated by cytochrome P-450 as shown in Figure

1-3. The aminopyrine N-demethylase assay measures the production of

formaldehyde. The radiometric benzo(a)pyrene monooxygenase assay

measures all of the known oxygenated metabolites of ßP.

Polychlorinated biphenyls were selected as model inducing substances

for most of the work presented here because they are environmentally

relevant chemicals whose inducing properties have been extensively

examined. Aroclor 1254 was specifically selected because it is about

equipotent as both a PB and 3-MC type inducer (Goldstein ~ ~., 1977).

l4
( C)-labelled PCBs of similar isomerAlso a Commerc ial preparation of

composition is available. This material allowed the simple and sensitive

quantitation of PCB uptake by embryos.

A point worth emphasizing is that the cytochrome P-450 system is

ac tive in metabolizing a great variety of xenobiotics, and is induced by
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a similarly large number of compounds. While any given study may examine

the metabolism of a limited range of substrates, or a response to certain

inducers, the results are likely to apply to a whole range of foreign

compounds.

AN IMPORTANT NOTE ON NOMENCLATURE

The developmental terminology of Balon (1975) will be used in this

thesis. According to Balon (1975), the embryonic period of fish

development extends from fertilization unti 1 feeding begins. In other

words, the embryonic period is characterized by "endogenous nutrition

from the yolk." The embryonic period is arbitrarily divided into three

phases: cleavage, embryonic, and eleutheroembryonic. The latter two are

of interest here. The embryonic phase extends from the end of cleavage

until hatching, and is characterized by active organogenesis. The

eleutheroembryonic phase extends from hatching until feeding begins,

marking the transition to the period of larval development. In this

thesis, the term "embryo" will refer to all prehatching developmental

stages examined; the term "eleutheroembryo" will refer to the hatched

embryo. Other workers have referred to eleutheroembryos as yolk sac

larvae, sac fry or pro larvae.

Another term which will be used throughout the thesis without further

definition is "chorion." The chorion is the shell surrounding the fish

embryo, and is composed largely of fibrous protein (Kaighn, 1964). In

most of the work described in this thesis chorions were removed from
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embryos before they were fractionated or assayed for PCB content. In the

early experiments described in Chapter 2 embryos were homogenized whole

with chorions intact. "Age" will be measured from the time of

fertilization. It is important that the reader become familiar with the

terms defined here, because they are used throughout the thesis, and are

necessary for an understanding of the material presented.
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CHAPTE R 2

INDUCTION OF BENZO(A)PYRENE MONOOXYGENASE ACTIVITY IN EMBRYOS AND

ELEUTHEROEMBRYOS OF THE ESTUARINE KILLIFISH, FUNDULUS HETEROCLITUS

The data presented in this chapter were the first observations on the

presence and inducibility of xenobiotic monooxygenase activity in fish

embryos and eleutheroembryos (Binder and Stegeman, 1980). A separate

presentation of these early findings allows a logical development of

experimental results, and serves to indicate the rationale for some of

the later work. Also, methodological improvements were made during the

course of this research, so the results presented here are not directly

comparable to subsequent data.

MATERIALS AND METHODS

Methods are described only when they differ from those used later.

Assay procedures will be described in detail in Chapter 3. All chemicals

and supplies were as described in Chapters 3 and 4, and No. 2 fuel oii

was an American Petroleum Institute reference standard. Ripe fish were

collected at Herring Brook (H.B.) and Wild Harbor (W.H.) marshes (N.

Falmouth, MA) during the spawning season of Fundulus in the spring and
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summer of 1978. Fertilization was accomplished in the laboratory by

stripping eggs from ripe females and fertilizing with minced testis. The

embryos described in Table 2-1 were from H.B. and those described in

Table 2-II from W .H.; adults were from H. B. After determining the

developmental stage according to Armstrong and Child (1965), eggs were

washed twice with filtered seawater, and twice with 0.1 M Tris-HCL pH

7.4, 0.25 M sucrose, then homogenized whole with chorions intact in this

buffer, (20% w/v) using a Potter-Elvehjem tissue grinder. The

homogenates were fractioned by centrifugation: 5 min. at l20 x g, 10

min. at lO,OOO x g (lOK), and 90 min. at 40,000 x g (40K). The first

fraction containing much large debris was discarded, and the lOK and 40K

pellets were resuspended in 0.1 M Tris-HClpH 7.0 (0.5-3.0 pl/embryo).

This fractionation procedure roughly corresponds to one that yields

mitochondrial (lOK) and microsomal (40K) fractions from adult fish liver

(Stegeman ~ ~., 1979). Eleutheroembryos were dissected and the livers,

carefully separated from gall bladders, were assayed as dilute whole

homogenates in the embryo homogenization buffer. The remaining

eleutheroembryo carcasses were fractionated and assayed like the embryos.

Benzo(a)pyrene monooxygenase was assayed by the sensitive radiometric

procedure of Van Cantfort et~. (1977) modified for use on an

ul tramicro-scale. The reaction mixture was reduced to 25 pl and

consisted of 0.1 M Tris-HCl pH 7.0, 0.40 ro NADPH, 0.060 ro

(3H)-benzo(a)pyrène (about 300 pCi/umole), 2 mg/ml bovine serum albumin

(BSA) , and from 5 to 170 pg of embryonic protein depending on the

fraction assayed. Blanks consisted of the complete reaction mixture
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wi thout NADPH. The reaction was initiated by adding BP in 1 ~l of

o
acetone, incubated at 25 for 30 minutes, stopped with 50 pl of 0.15

M KOH in 85% dimethyl sulfoxide, then extracted three times with 0.375

ml of hexane. Polar metabolites were quantitiated by counting 30 pl of

the aqueous phase acidified with 10 ~l of 0.6 N HC1, in 3 ml of

scintillation cocktail. The liquid scintillation couting efficiency

was determined by internal standardization. Under these conditions the

reaction with adult Fundulus microsomes was linear for 35 minutes.

BPMactivity was considered detectable when the mean dpm of

complete reaction mixtures differed from the mean of the blanks at the

o.o~ level of significance by the Student t-test. Based on the average

variance of 10 triplicate blanks, it is estimated that for the power of

the t-test to be 0.95 with P ~ 0.05, the sample assayed must have the

capacity to produce 2.0 picomoles of polar metabolites during the

incubation (Winer, 1971). The limits of detection indicated in the

tables were calculated by dividing this value by the number of embryos

per reaction mixture and the incubation time.

RESULTS AND DISCUSSION

BPM activity was not reproducibly detectable in untreated embryos

assayed at stages from zygote to short ly before hatching. As shown in

Table 2-1, exposure to the PCB mixture Aroclor l254 or to No.2 fuel

oil over the course of development resulted in an induction of BPM
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Table 2-1. Benzo(a)pyrene monooxygenase activity in the 10,000 x g
fraction of homogenates of Fundulus heteroclitus embryos exposed to
Aroclor 1254 and No.2 fuel oii.*

Treatment
Ac tivi ty

(Femtomole/min/ emb ryo)**

DMSO control N.D. +

20 ppb Aroclor 1254 N.D.

100 ppb Aroc lor 1254 30 + 3

200 ppb Aroclor 1254 62 + 7

1000 ppb No. 2 fuel oil 39 + 8

*Eggs stripped from 11 females were pooled and fertilized with minced

testes from 4 males. For each treatment approximately 90 embryos were
placed in a glass dish with 50 ml of 0.22 P filtered seawater and
incubated at 200. The exposure was initiated 8.5 hours after
fertilization by the addition of the inducing substance dissolved in SO
pl of dimethy lsulfoxide (DMSO). DMSO alone was added to the control
embryos. Water was changed and additional inducer was added 6 times
before assay at day l2(stages 33-34). ppb = pg/liter.

**femtomole = 10-15 mole, mean of three replicates = SD.

+N.D. = not detectable. Limit of detection: II femtomole/min/embryo.
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activity in embryos near hatching (stages 33-34)1. The induction of

BPM by Aroclor 1254 was dose dependent. The induced activity appeared in

the 10K fraction while no activity was detectable in the 40K fraction.

In a separate experiment, Fundulus embryos exposed to 200 ppb Aroclor

1254 were assayed at stages 32-33 and shortly after hatching (stages

34-35). As before, there was no detectable BPM activity in the control

eggs (Table 2-11) and substantial activity was present in the lOK

fraction of embryos treated with Aroclor 1254. BPM activity was higher

in the 10K fraction of these embryos than in those in Table 2-1 exposed

to 200 ppb Aroclor 1254 and activity was also detectable in the 40K

fraction, perhaps because there were four more water changes with

addition of inducer in this experiment.

Unlike control embryos, control eleutheroembryos had detectable BPM

activity in all ,fractions assayed. Comparing the total activity in the

two groups of eleutheroembryos reveals that Aroclor stimulated a greater

than three-fold induction of BPM activity. Induction in eleutheroembryos

apparently occurred to a greater extent in the extrahepatic tissues

compared to liver, as liver aCcounted for more than half of total

activity in the controls but less than half in the treated group. In

1 The embryos used in the experiments described here began hatching at

stage 34. However, based on observations of several different pools of
eggs, hatching generally does not begin until stage 35. A synopsis of
Fundulus embryonic development is presented in Table 3-1.
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Table 2-11. BPM activity in fractions of homogenates of control and
Aroclor-exposed Fundulus embryos and eleutheroembryos*.

Embryonic material Fraction
Act i vity (femtomole/min/ind ividua 1)+

Control 200 ppb Aroclor l254

eleutheroembryos

10K N. D. ++ 100 + 9

40K N.D. l2 + 4

carcass, 10K 22 + 2 133 + 5

carcass, 40K 17 + 3 76 + 7

liver, whole 52 + 6 117 + 11
homogenate

Whole embryos

Dissected

*Eggs stripped from six females and fertilized with minced testes from four
males were treated under conditions similar to those described in Table 2~I.
At the time of assay, 11 days of development, control embryos were in stage
33 (N · 121). Aroclor exposed embryos (N= 34) were assayed in the same
stages after 16 days of development. Median hatching times for control and
Aroclor treated embryos were 14 and 16 days, respectively. Approximately
90% hatching of the control embryos occurred by day ls after fertilization,
whereas about 19 days were required for 90% hatching of the Aroclor exposed
embryos. Hatching success in the two groups was similar: 95% for the
controls and 93% for the Aroclor treated embryos. Water was changed and
additional inducer added ten times before embryos were assayed, and 14
times before treated eleutheroembryos were assayed.

+Whole embryos: Mean of three replicates + SD. Data for eleutheroembryos
represent means of two replicates ~ range.-

++H.D. = not detectable. Limits of detection: 10K fraction, II
femtomole/min/embryo; 40K fraction, 7 femtomole/min/embryo.



Page 75.

either case the data suggest that extrahepatic tissues of fish embryos

may playa significant role in the metabolism of foreign compounds.

The distribution of monooxygenase activity in centrifugal fractions

of Fundulus embryos was atypical. In adult fish and higher vertebrates

the majority of xenobiotic monooxygenase activity in various active

tissues is associated with the microsomal fractions of homogenates. In

Fundulus embryos, the majority of induced BPM activity was associated

with the 10K fraction, which was sedimented under conditions

approximating those used for preparing mitochondrial fractions from adul t

fish liver. After hatching a larger portion of the activity was

associated with the high speed or 40K fraction. Chatterjee et ale (l96S)

reported a similar difference between the sedimentation properties of

liver microsomal enzymes from fetal and neonatal rats which may have been

the result of the formation of vesicles from the fetal hepatic

endoplasmic reticulum (ER) that were larger than the microsomes produced

from neonatal or adult hepatic ER. Considering the unusual distribution

of BPM activity in the centrifugal fractions of embryos, it is important

to know whether the 10K and 40K fractions prepared from whole embryos, as

described here, correspond to mitochondrial and microsomal fractions.

Another question which arises from these results is whether the

metabolism of BP by Fundulus embryos is catalyzed by a typical cytochrome

P-450 dependent monooxygenase or some other enzyme.

The data presented clearly demonstrate the induction of BPM activity

in fish embryos and eleutheroembryos by common environmental

contaminants. Since the levels of these substances accumulated by
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embryos during the course of exposure were not monitored, the question

remains whether environmentally realist ic leve ls are like ly to produce a

response. Another important question is whether fish embryos are

competent to respond to inducers of monooxygenase activity at earlier

stages in development.

BPM activity was readily measurable in control eleutheroembryos but

could not be detected in fractions from untreated or control embryos.!

Although the limits of detection were fairly high, the data suggest that

there is a substantial increase in the capacity of Fundulus embryos to

metabolize BP after hatching. Questions which remain are whether

Fundulus embryos have the capacity to metabolize xenobiotics before

hatching, and whether the appearance of activity during later embryonic

development is associated with hatching or is simply a function of age.

All of the above questions are addressed in the next two chapters. The

possible significance of the presence and inducibility of monooxygenase

activity in fish embryos and eleutheroembryos will be discussed later.
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CHAPTER 3

THE XENOBIOTIC MONOOXYGENASE SYSTEM IN EARLY DEVELOPMENTAL

STAGES OF FUNDULUS HETEROCLITUS

In the previous chapter data demonstrating the presence and

inducibility of benzo(a)pyrene monooxygenase activity in Fundulus

heteroclitus embryos and eleutheroembryos were described. In these early

experiments monooxygen8se activity was not detectable in fractions

prepared from untreated embryos, but could be induced in embryos by

exposure to oii and PCBs. In contrast to the results with embryos, BPM

activity was measurable in both the livers and extrahepatic tissues of

control eleutheroembryos, and was also inducible in these tissues. These

data suggest that in Fundulus there is a substantial increase in the

capacity to metabolize foreign compounds after hatching.

The results of further experimental work on the ontogeny of the

monooxygenase system in untreated Fundulus embryos are presented in this

chapter. Using improved methods, levels of BPM activity were measured in

fractions prepared from whole embryos. Changes associated with hatching

were examined, and some basic properties of embryonic monooxygenase

activity were characterized, including its subcellular localization and

evidence for the involvement of cytochrome P-450. Additionally, levels

of monooxygenase act ivity and components of the monooxygenase system were

measured in livers of Fundulus larvae and juveniles.
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MATE RIALS AND METHODS

Chemical s :

Generally labelled (3H1 -benzo(al pyrene was purchased from Amersham

Searle, Arlington Heights, IL. Aquasol, (dimethyiamine-l4Cl-

aminopyrine, (14Cl-förmaldehyde, (l4Cl-toluene and (3Hl-toluene

~ere purchased from New England Nuclear, Boston, MA. NADPH, NADH, bovine

1
serum albumin, HEPES, and horse heart cytochrome c were from Sigma

Chemical Co., St. Louis, MO. Aminopyrine (AP) , benzo(alpyrene,

o(-naphthoflavone (ANF) and dimethylsulfoxide (DMSO) were from Aldrich

Chemical C?, Milwaukee, WI., and SKF-s2sA was a gift of Smith Kline and

~rench Laboratories, Phi ladelphia, PA. All other chemicals, sol vents and

!

gases were standard reagent grade or higher quality and were purchased

from various suppl iers. Microsurg ical instruments were purchased from

Roboz Surgical Instrument Co., Inc., Washington, D. C., and Fluropore

filters from the Millipore Corp., Bedford, MA.

Animals:

Adult Fundulus heteroclitus were collected by seining or trapping at

Herring Brook Marsh, North Falmouth, MA 2, and were maintained in

flow-through aquaria in a mixture of natural seawater and dechlorinated

1 HEPES i 8 N-2-Hydroxethy lpiperazine-Nl-2-ethanesulfonic acid.

Other abbreviations are, listed at the beginning of the thesis.

2For a photograph ,of the collection site and the authorl s back see

(Rose, 1980).
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tap water at a salinity of about 200/00. Fish were fed chopped

quahogs, smelt, and scup as well as the following commercial fish foods

distributed by Tetra Products, NY: Tetra SM, SM80, and conditioning food.

Eggs were obtained either from ripe fish collected during the natural

spawning season or fish in which gametogenesis was induced by appropriate

condi tions of light and temperature (14-l6 hour light period at 22-230)

as described by Boyd and Simmonds (1974). Eggs were stripped from ripe

fish, fertilized with minced testis, and incubated at 200 in glass

dishes with daily water changes. The incubation medium was 0.22 p

filtered natural seawater, adjusted to a salinity of 25 or 300/00 with

deionized water. Generally, within 24 hours of fertilization embryos

were gently rolled on filter paper to remove chorionic fibrils and thus

prevent clumping. Methods for handling Fundulus embryos have been

discussed in detaii by Trinkais (1967). The standard Fundulus embryonic

stages described by Armstrong and Child (1965) will be used here.

In experiments in which Fundulus larvae and juveniles were examined,

feeding of fry was begun within 4 to 5 days of hatching, when some yolk

was still present. The fry were provided with a continuous supply of

freshly hatched brine shrimp, which was supplemented with Tetra SM after

about 2 weeks. Fry were maintained in glass aquaria in static, aerated,

filtered natural seawater at the same temperature and salinity as during

the embryonic period. Water was changed every other day, and the light-

dark cycle was controlled with a 14 hour light period.
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Embryo fractionation:

Assays were performed on centrifugal fractions of whole embryo

homogenates. In preparation for homogenization, embryos were

dechorionated with microsurgical scissors, washed in 0.05 M Tris-HCl pH

37.2t 1 ro EDTA, 0.25 M sucrose (TES) , and then gently trumpetted in

and out of a Pasteur pipette tip to rupture yolk sacs and release a

substantial portion of the fluid yolk. After trumpetting, embryos were

washed twice by swirling in TES, and then homogenized in this buffer

(is-2s ~l/embryo) in a Potter-Elvehjem tissue grinder with a teflon

pest le, 8 strokes at about 2500 rpm. Eleutheroembryos were simply washed

with TES and then similarly homogenized. All operations were carried out

at ice temperature. The numbers of embryos and e leutheroembryos used

varied, but generally was greater than 50. Embryos were weighed using

the method described in Chapter 4 for PCB quant itation.

Centrifugal fractions of embryos were prepared in either 7 or 10 ml

tubes in a Sorvall SS-34 rotor. The standard conditions were equivalent

to 5 minutes at a maximum of 200 xg (low speed), 15 min. at a maximum of

10,000 xg (10K), and 180 min. at a maximum of 40,000 xg (40K or

microsomal) for full tubes. However, in all cases tubes were spun with

substantially less than full volumes and sedimentation conditions were

adjusted using the "K" factor method (Du Pont Instrument, Centrifuge

Applications Bulletin No.1). The time of microsomal spins did not exceed

90 minutes. Pellets were resuspended in the BP monooxygenase assay

3The pH of Tris buffers is temperature sensitive; all Tria buffers were

pH adjusted at 300.
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buffer, 0.05 M Tris-HC1, pH 7.2 (0.2-3.0 J1l/embryo). In some cases when

just the microsomal fraction was assayed, the low speed and lOK fractions

were sedimented in the same tube without decantation of supernatant

fluid; this resulted in a higher yield of microsomal protein per embryo.

When the distribution of enzymatic activity in the various fractions was

examined, each pellet was washed by resuspension in buffer by hand

homogenization and then resedimented. The wash and the original

supernatant fluids were combined at each step in the fractionation.

Livers from eleutheroembryos, larvae, and juveniles:

Livers were dissected from Fundulus eleutheroembryos in ice cold

Tris-sucrose (TS) buffer4 using microsurgical instruments. Livers were

carefully separated from gall bladders, transferred with a drawn out

Pasteur pipette to a 1 ml Potter-Elvehjem tissue grinder, washed once

with TS, then homogenized in this buffer (1-3 pl/liver) with a teflon

pestle, 8 strokes at about 2500 rpm. The resulting dilute whole

homogenates (about 0.5 pg protein/pl) were assayed immediately without

further fractionation. Homogenates were prepared from pools of livers

dissected from 30-60 individuals. Eleutheroembryo carcasses remaining

after dissection were fractionated like whole embryos.

Larvae and juveniles wére immobilized by placing in ice cold

seawater, killed by pithing then washed with and dissected in ice cold TS

buffer. Livers carefully separated from gall bladders were homogenized

like those from eleutheroembryos. The concentration of protein in the

4Tris-sucrose buffer is 0.05 M Tris-HC1, pH7. 2, 0.25 M sucrose.
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liver homogenates ranged from 0.5-4.0 pg/pl. In some cases, whole

homogenates were assayed for monooxyg~~4se activity immediately. The

following procedure was established for the preparation of microsomes

from larval and juvenile livers. Homogenates were centrifuged in 0.4 ml

conical bottom polypropylene tubes using a Sorvall SS-34 rotor with

Sorvall no. 365 rubber adaptors. A postmitochondrial supernatant was

prepared by spinning 300 pl of homogenate for 10 min. at 5000 rpm;

microsomes were then spun down at l8,000 rpm for 60 min. These speeds

are approximately equivalent to a maximum of 2100 xg and 27,500 xg,

respectively. Centrifugation times and speeds were corrected when

volumes other than 300 pl were used. Microsomes were resuspended in

0.05 M Tris-HC1, pH 7.2 to a protein concentration of 0.4-0.6 pg/pl.

Microsomes were stored in liquid nitrogen until used. A comparison of

adult microsomes prepared by this microprocedure and the standard liver

fractionation procedure used in this laboratory is presented in the

Results section.

Livers from adults:

The adult Fundulus used here were collected in November 1980. Three

pools of livers were prepared, each with livers from 3 males and 3

females. Fish were killed by severance of the spinal column; livers were

immediately excised, washed with ice cold TS buffer, minced with scissors

and homogenized 1/20 (W/V) in the buffer like the livers of embryos.

During dissection care was taken to avoid rupturing gall bladders, and no

livers contaminated with bile were used. Aliquots of the dilute whole
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homogenates were assayed immediately for monooxygenase activity for

comparison with whole homogenates of livers from eleutheroembryos and-

larvae. The remainder of the homogenates were fractionated in a Sorvall

SS-34 rotor in 15 ml Corex tubes. A postmitochondrial supernatant (PMS)

was prepared by spinning 12 ml of homogenate per tube at a maximum of

lO,OOO xg for 10 minutes. Microsomes were spun down from the PMS at a

maximum of 40,000 xg for 90 minutes and were resuspended in 0.05 M

Tris-HCl pH 7.2, 3 ml of buffer per gram wet weight of liver. Microsomes

were stored in liquid nitrogen until they were assayed.

glassware used in the purification procedure was washed with chromic acid

cleaning solution and hexane, and the entire procedure was done under red

light. The actual specific activity of each preparation was determined

by counting aliquots of dilutions of 3-4 individual stock solutions of
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the (3H1 -BP.

The BPM assay was carried out in 10 x 75 mm disposable glass tubes

with a reaction volume of 25 pl. Reaction mixtures consisted of 0.05 M

Tris-HC1, pH 7.2 at 300, 0.40 mM NADPH, 0.070 mM (3H1-BP, 0.8 mg/ml

bovine serum albumin (BSA) , and varying amounts of embryonic protein

depending on the fraction assayed. Between 15-100 pg of whole embryo

microsomal protein, 4-10 pg of whole liver protein, and i-s ,ig of liver

microsomal protein were added per reaction mixture. Blanks consisted of

the complete reaction mixture without NADPH. The reaction was initiated

on ice by adding BP in 1 pl of acetoneS. When the influence of ANF or

SKF-52SA on the reaction was examined, these inhibitors were added with

the BP in 1 pl of acetone. Incubation was for 25 minutes at 300, then

reactions were stopped by placing on ice and adding SO pl of 0.15 M KOH

in 85% dimethylsulfoxide. The stopped reaction mixtures were extracted

th ree times, by vortexing for 15 seconds with 0.25 ml of hexane,

centrifuging for 5 minutes at 5000 rpm, and then aspirating off the

organic phase. Polar metabolites were quantitated by counting 30-50 pl

of the remaining aqueous phase in 3 ml of Aquasol acidified with 10 pl of

0.6 N HCl. Counting was done in a Beckman LS-IOOC liquid scintillation

counter, and efficiency was determined by internal standardization with

3
(H)-toluene. All micropipetting devices used in the procedure were

calibrated gravimetrically using water with correction for evaporation.

sThere was no difference in the total activity measured with adult Fundulus

hepatic microsomes, when the enzyme was pre-incubated with BP at the reaction
temperature and then initiated by the addition of cofactor, as compared to
initiation on ice by the addition of BP.
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The assay was carried out under red light from the addition of

(3H)-BP through the first extraction with hexane. Although Van

Cantfort ~ al. (1977) indicate that the activity measured in the assay

is little affected by exposure to light, the sensitivity of the assay is

decreased when the procedure is carried out under white light. The limit

of detection of the assay is determined by the sample to blank ratio.

Exposure of BP solutions and reaction mixtures to white light results in

elevated blanks, presumably due to photooxidation. The blank was

minimized in the procedure described here by reducing the assay volume

and using great care to protect the (3H)-BP from light. The assay as

described can detect about 1 pmole of metabolites in the final stopped

reaction mixture.

In experiments in which the gas phase above BPM reaction mixtures was

controlled, assays were performed in 10 x 50 mm tubes. Enzyme and

cofactor or enzyme and buffer were added to the tubes and they were then

sealed with serum stoppers and kept at ice temperature. Mixtures of

N2 :02 and CO:02 (80:20) were prepared in the sealed tubes in the

following way. The sealed volume of each tube was connected to a

manifold with capillary tubing and also the needle of a 20 ml syringe was

passed through the serum stopper. The tube-syringe units were

sequentially evacuated and then gassed with either N2 or CO. After

several cycles, the total volume of gas in each tube-syringe unit was

adjusted to 8 ml by moving the syringe plunger. Each tube was

disconnected from the manifold and 2 ml of O2 was injected through the

stopper with a second syringe. Mixing was accomplished by pumping gas
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back and forth between the two syringes, then they were removed, leaving

the sealed tube with the desired gas mixture. When just a nitrogen

atmosphere was des ired, sealed tubes were simply connected to the

manifold and alternately evacuated and gassed several times. Reactions

were initiated by injection of (3H1-BP through the serum stoppers with

a microsyringe. The rest of the procedure was standard as described

above.

The BPM assay conditions were optimized for the activity in adult

Fundulus hepatic microsomes. The conditions used here differ in a number

of ways from those described in Chapter 2; changes generally were made to

optimize activity and thus increase the sensitivity of the assay. The

concentrations of BP and NADPH used were saturating. At a constant ionic

strength of 0.14, the adult BPM activity was insensitive to pH from 6.8

to 7.5 and fell off at higher or lower pH's; pH 7.2 was chosen as

standard for the assay. At equivalent ionic strengths, activity was

about 25% higher when Tri s was used for buffering rather than potassium

phosphate. Activity fell off continuously with increasing Tris

concentration; the selection of the standard concentration for the assay

(0~05 M) was based on the need to maintain adequate buffering capacity.

oMaximal activity was observed at a temperature of 35 , then fell off

sharply at higher temperatures. The activity at 350 was only

o 0marginally higher than at 30 , so 30 was selected as the standard

temperature. Acetone was fouhd to be superior to methanol as a solvent

for the addition of BP; BPM activity with acetone was 17% higher than

with methanol. The adult BPM activity showed no dependence on magnesium,
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and in fact was inhibited by its presence. BSA was included in 
reaction

mixtures to maintain linearity with enzyme concentration at low protein

concentrations; variations in the concentration of BSA had iittle effec t

on the adult activity. In the original reference, the stopped reaction

mixtures were extracted 2 times with hexane, while 3 extractions were

used here. The additional extraction was found to reduce replicate

variability, although the activity measured is somewhat lower than with 2

extractiorts. Under the standard conditions, the BPM activity in adult

liver microsomes is linear with time for 30-35 minutes and with protein

from 1 to at least 10 pg.

Aminopyrine N-demethylase (APD) was assayed by the radiometric

procedure of Poland and Nebert (1973) modified for use on a microscale.

The substrate used was prepared in the following way. Unlabelled

aminopyrine (AP), recrystallized twice from methanol, was mixed with an

aqueous solution of il4C)-AP to a specific activity of 1.5 pCi/umole.

The AP was extracted from this solution into chloroform, then was washed

th ree times with deionized water to remove any soluble impuri ties, dried

with anhydrous MgS04, filtered through a chloroform washed 0.2 p

fluoropore filter, and dried under a stream of nitrogen, then under

vacuum. The labelled AP was stored as a dry powder, desiccated at

-200. The specific activity of each preparation was checked by

countingaliquots of dilutions of 3-4 individual stock solutions.

The assay was carried out in 6 x 50 mID tubes with the total reac tion

volume reduced to l5 J.i. The reaction mixture consisted of 7.5 ro

il4C)-AP, 7.5 ro NADPH, 10 ro semicarbazide-HCl, 1 ro MgC12, 0.15 M
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Tris-HC1, pH 7.2 at 300, and varying amounts of protein depending on

the sample assayed . About 100 J.g of whole eleutheroembryo microsomal

protein, 10 pg of juvenile liver microsomal protein, and 20 J.g of adult

liver microsomal protein were added per reaction mixture. Blanks

adding SO )11 of ice cold 0.1 N NaOH and 0.38 ml of chloroform. After

addition of chlorof,orm, tubes were vortexed for 10 seconds to extract the

unmetabolized parent compound, then the phases were separated by

centrifugation for 5 minutes at 5000 rpm. A 60 pl aliquot of the aqueous

phase of each tube was transferred to a new tube containing 0.38 ml of

fresh chloroform, then vortexed and centrifuged again. To quantitate the

production of formaldehyde 40 J.l of the final aqueous phase was counted

in 3 ml of Aquasol acidified with LO pl of 0.6 N HCl. The scintillation

counting efficiency was determined using (14CJ-toluene as an interna 1

standard. The efficiency of recovery of formaldehyde was measured by

adding 200 picomoles of (14CI-CH20 (10 pCi/pmoU in place of

(14cJ-AP; typically, the recovery was around 80-85%. The recovery of

formaldehyde was considered when activity was calculated.

The conditions of the APD assay were optimized for the activity in

adult Fundulus hepatic microsomes. The concentrations of substrates used

were saturating. Activities measured were equivalent with HEPES, Tris

and phosphate buffers. The adult APD activity was insensitive to pH from

7.0 to 8.2 at a constant ionic strength of 0.1. The activity fell off at
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pHIs below 7.0, and pH 7.2 was chosen as the standard condition for the

assay. A Tris buffer concentration of O.ls M was optimal, as the

activity declined at either higher or lower buffer concentrations.

Activity increased sharply with temperature between 250 and 300; but

then rose only moderately at higher temperatures; 300 was chosen as the

standard temperature. In contrast to BPM activity, APD activity was

++
enhanced by Mg ; the optimal concentration was 1 mM. Under the

standard conditions, the reaction with adult liver microsomes was iinear

with time for 40 minutes, and with protein up to 40 pg.

NADPH-cytochrome c reductase was assayed by a modification of the

method of Phillips and Langdon (1962) using a reaction mixture containing

0.40 mM NADPH, 100 pM horse heart cytochrome c, 1 mM KCN, and 0.2 M

phosphate buffer, pH 7.7, and vary ing amounts of protein depending on the

fractions assayed in a final volume of 0.45 ml. Between 5-25 pg of whole

embryo microsomal protein and about 2 pg of liver microsomal protein were

added per reaction mixture. The reaction was initiated by the addition

of NADPH and was incubated at 250. The reduction of cytochrome c was

followed at 550 nm using a Cary 118-C dual beam recording

spectrophotometer with water-jacketed cuvette holders. Reference

cuvettes contained reaction mixtures without enzyme. Reduced cytochrome

-l -1
c was determined using an extinction coefficient of 2l cm mM .

NADH-cytochrome c reductase was assayed under identical conditions with

0.40 mM NADH substituted for NADPH. Succinate-cytochrome c reductase was

assayed according to Green et ale (l95s) as previously described

(Stegeman et ~., 1979), except the reaction volume was reduced to 0.45

ml. Reaction mixtures contained from 4-20 pg protein depending on the
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o
fraction assayed and the incubation temperature was 25 .

The conditions of the NADPH-cytochrome c reductase assay were

optimized for the activity in Fundulus adult hepatic microsomes. At a

constant ionic strength of 0.5, the reaction was fairly insensitive to pH

from 6.9 to 8.l, however the optimal pH was around 7.7. The reaction was

insensitive to ionic strength from values of 0.4 to 0.9, but dropped off

sharply beyond this range. The ionic strength of the buffer used is

0.58. The temperature of the assay is optimal and the concentrations of

substrates are saturating. Activities were measured within the range qf

time and protein in which linearity was observed.

Protein was assayed by the method of Lowry ~ ale (1951) using

crystalline BSA as a standard.

Cytochrome P-4s0 and cytochrome b5:

For difference spec trocopy, fractions were prepared from whole

homogenates of eleutheroembryos essentially as described above, except

microsomes were washed by resuspension in TES buffer and then

resedimented. In some cases the 10K fraction was sedimented for 3 times

longer than the standard time, and in all cases great care was taken to

avoid contamination of the microsomal fraction with material from the 10K

or "mitochondrial" pellet. Microsomes were either resuspended in TES

buffer or 0.05 M pH 7.2 Tris-HCi. Difference spectra were recorded in a

Cary 118 dual beam spectrophotometer using self masking microcuvettes

with about 0.6 ml of sample per cuvette. Cytochrome P-4s0 content was

estimated using the CO reduced versus CO oxidized method (Matsubara et

al., 1974). A suspension of microsomes, at about 0.5 mg protein/ml, was
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bubbled with CO, then divided equally into 2 cuvettes, and a baseline was

recorded. Sodium dithionite was then added to the sample cuvette and the

spectrum recorded. To measure cytochrome bS' a suspension of

microsomes was divided between two cuvettes and a baseline was recorded.

NADH was added to the sample cuvette in a small volume of buffer to a

final concentration of 0.034 mg/ml; an equal volume of buffer was added

to the reference cuvettes, and the spectrum was recorded (Stegeman et

!l., 1979).

Since only a limited volume of juvenile hepatic microsomes was

available for spectrophotometric analysis, the same microsomal suspension

was assayed for both cytochrome bs and cytochrome P-450. Cytochrome

bS was assayed as above, then the microsomal suspensions in the sample

and reference cuvettes were recombined and additional NADH added to make

the suspension 0.034 mg/ml with NADH. The microsomal suspension was then

bubbled with CO and cytochrome P-4s0 was quantitated as above. Adult

hepatic microsomes were similarly assayed for cytochromes P-4s0 and

bs. With adult microsomes, CO reduced versus CO oxidized difference

spectra were also recorded in the absence of NADH. An extinc tion
-1 -l

coefficient of 91 ro em (OD490-4s0) was used for cytochrome

P-4S0 and 185 mM-lcm-l (OD424-4l0) for cytochrome b5 (Omura and

Sato, 1964).

Electron microscopy:

Stage 33-34 embryos (200) were homogenized and fractionated as

described above. Freshly prepared 10K and 40K pellets were fixed
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for 3 hours at room temperature in 3% glutaraldehyde, 1.5% formaldehyde

(generated from paraformaldehyde), 0.05% CaC12 and 5% sucrose in O.lM

cacodylate buffer, pH 7.4, then were stored at SO in a solution of 1%

glutaraldehyde in cacodylate buffer. Pellets were post fixed with osmium

tetroxide, embedded in Spurrs resin, and thin sections were examined with

a Hitachi HS-9 electron microscope.

RESULTS

Summary of early development in Fundulus:

Standard stages for Fundulus heteroclitus embryonic development have

been described by Oppenheimer (1937) and by Armstrong and Child (1965);

the latter are used here. A brief summary of events during the course of

Fundulus embryonic development is given in Table 3-1. The developmental

events listed in the table were described by Armstrong and Child (1965),

but the schedule of deve lopment shown is based on original observations.

It should be noted that age in days is measured from the time of

fertilization. The developmental sequence was found to closely follow

the schedule given by Armstrong and Child up to around stage 30, after

which development was observed to proceed more slowly. This difference

in developmental rate may be due to genetic differences in the

populations sampled, or possibly some difference in incubation conditions

other than temperature.

The overall mean hatching time for 5 pools of embryos in which

hatching was closely monitored was 19.9 + 1.8 days from fertilization
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Table 3-1. A Synopsis of Fundulus heteroclitus Embryonic Development st
200 -"

Age in Days+
Deve lopmental

Stages Developmental Events

0-2 1-20 Early development,
gastru lation, neuralation.

2-3 21-24 Further differentiation of
brain; differentiation of

sensory organs, pericardium,
heart, trunk musculature, and
blood cells, first cardiac
contractions.

3-4 25-26 Onset of circulation,
otol i ths ap pear, first

body motility.

4-7 27-30 Appearance of urinary
blaJder, retinal
pigmentation, liver, and
pec tora 1 fin rud iments, body
cavity forming, pronephros
can eliminate dyes.

7-14 31- 34 Swimbladder and rays in
caudal fin nppear; lower jaw

fornis and mouth opens; first
fin motility; increased
retina 1 pigmentat ion.

35- 37 !latChing, head lifted off
yolk, decrease in yolk
size, medial fins form-Va riab le

depending on
time of
hatching

38- 39 Increased swimming capacity,

onset of feeding, conspicuous
yolk disappears, end of
embryonic period.

*
The deve lopmental events listed in this table were described by

Arinstrong and Child (1965), but the schedule of development is based
on original observations on 5 pools of eggs frum a total of 55 females.

+ Age in days is measured from the time of fert ilization.
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(+ S.D. of mean). Hatching occurs over a period of about a week; the

mean time from the onset of hatching to 90% hatching was 5.9 ! 1.7 days.

Generally the first embryos to hatch were in stage 35, while latest

hatching embryos were in stages 36 or 37. Prior to hatching the

development of embryos of the same age is closely parallel, while embryos

that have hatched (e leutheroembryos) deve lop more rapidly than those that

have not hatched. Since hatching occurs over several days, more than one

developmental stage will be present after the onset of hatching although

all emb ryos are of the same age.

Fundulus eleutheroembryos were observed to begin feeding in stage 38,

when conspicuous yolk is stiii present. Those that were not fed did not

develop beyond stage 39, the stage described by Armstrong and Child

(1965) as transitional between the embryonic and larval periods. Larval

development in Fundulus is characterized by extremely rapid growth and

attainment of the adult body form. During the larval period the dorsal

and ventral fins develop, the scales appear, and the overall body

proportions approach those of the adult. For the purpose of this study

the larval period is defined as beginning at the end of stage 39 with

the appearance of rays in the dorsal fin, and is considered to end when

all of the fins have the adul t form. When raised at 200C, Fundulus

begins feeding about 4 days after hatching. The larval period begins at

about 6 days and lasts until about 24 days after hatching. The juvenile

period which follows is also characterized by rapid growth.
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Characterization of centrifugal fractions of whole eleutheroembryos:

Shown in Figure 3-l are the distributions of BPM activity and various

cytoch rome c reductase activities in centrifugal fractions prepared from

whole eleutheroembryos as described in Materials and Methods. The data

are plotted as the relative specific activity in a given fraction versus

the percent total protein in that fraction. Relative specific activity

is the ratio of the percent total activity, and the percent total

protein. Thus, the area under each bar in the plots is equal to the

percent total activity in that particular fraction. Succinate cytochrome

c reductase (SCR), a mitochondrial marker (Fleischer and Kervina, 1974),

clearly sedimented in the lOK fraction. Both NADPH cytochrome c

reductase and BPM activities were clearly enriched in the 40K fraction as

indicated by their high relative specific activities in this fraction.

However, considerable NADPH cytochrome c reductase activity was present

in all fractions. The presence of NADPH-cytochrome c reductase activity

in the supernatant may be due to proteolysis, physical disruption or

incomplete sedimentation of all part iculate material.

The localization of monooxygenase activity and NADPH cytochrome c

reductase activity in the 40K fraction, and the fact that this

preparation is post-mitochondrial, indicate that it corresponds to a

whole eleutheroembryo microsomal fraction. This fraction does contain

mitochondrial contamination as indicated by the presence of SCR

activity. Reduction of the mitochondrial contamination of the microsomal

fract ion by more intense sedimentation of the 10K "mitochondrial"

fraction, could only be achieved at a substantial loss of microsomal BPM

activity. The SCR activity in the microsomal fraction may be associated

with fragments of mitochondrial membrane rather than intact mitochondria.
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Figure 3-1. Distribution of benzo(a)pyrene monooxygenase activity and
various cytochrome c reductase activities in centrifugal fractions of
whole eleutheroembryos. A total of 52 eleutheroembryos in stages 36-39
were homogenized and fractionated as described in Materials and
Methods. The fractions are: I, low speed; II, 10K; III, 40K or
microsomal; iV, supernatant. Relative specific activity is the percent
total activity divided by the percent total protein.
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NADH-cytochrome c reductase activity sedimented similarly to SCR

activity except that activity was also present in the supernatant. The

co-sedimentation of most of the NADH-cytochrome c reductase activity with

SCR activity suggests that the NADH-cytochrome reductase activity is

associated with the mitochondrial electron transport systems. The ratio

of the relative specific activities of the NADH- and succinate-cytochrome

c reductases in, the microsomal fraction is about l~ 3 times greater than

that in the mitochondrial fraction, suggesting that at least a portion of

the NADH-cytochrome c reductase in the microsomes is derived from the

endoplasmic reticulum and is not due to mitochondrial contamination.

Both the 10K and 40K fractions of whole embryos were examined by

electron microscopy. The 10K fraction was clearly enriched in

mitochondria (not shown), and the 40K fraction (Figure 3-2) was largely

composed of membranous vesicles resembling liver microsomes (see:

Fleischer and Kervina, 1974). The 40K pellet also contained a large

amount of nonvesicular cellular debris, the source of which is not

apparent. Liver microsomes are much more homogenous than the "whole

embryo microsomal fraction" prepared here, but this is not surprising

considering the variety of tissues and structures likely to be

contributing to this fraction. The low speed fraction of whole

eleutheroembryos was examined by light microscopy and was found to be

composed mostly of large debris, including sheets of unbroken cells,

piecès of capillaries, and red blood cells. The low speed pellet is

fibrous and brown in color, the lOK pellet is granular and black, and the

microsomal pellet is gelatinous, and pale brown to yellowish in color.
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Figure 3-2. Electron, micrograph of a 40K or microsomal pellet
prepared from a homogenate of whole Fundulus embryos (stages 33-34).
Original magnification was 20 i OOOX and the scale bar equals 1 pM.
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Detection of BPM activity in untreated embryos before hatching:

When fractions were prepared from embryos as described in Haterials

and He thods, BPM activi ty was reproducibly detectable at every

prehatching stage examined. The procedure used involves removing the

chorions from embryos with microsurgical scissors, then mechanically

rupturing yolk sacs and washing embryos free of a substantial quantity of

the yolk. Dechorionation prior to homogenization was found essent ial for

the detection of BPM activity in untreated Fundulus embryos. When

embryos were prepared for fractionation in this way, BPM activity was

generally only detectable in the microsomal or 40K fraction, consistent

with the primary localization of this activity in eleutheroembryos. Thus

no change in the distribution of activity in untreated embryos before and

after hatching was observed.

In the experiments described in the previous chapter, BPM activity

was not detectable in centrifugal fractions of untreated embryos, and in

inducer exposed embryos activity was largely associated with the lOK

fraction. These embryos were homogenized with their chorions or shells

intact. After hatching a much larger portion of the monooxygenase

activity was associated with the 40K fraction. The distribution of BPM

activity in centrifugal fractions observed in these early experiments was

due in part to over sedimentation of the mitochondrial fraction, as

sedimentation times were not corrected when tubes contained less than

full volumes. However, sedimentation conditions were not responsible for

the change in distribution of activity after hatching. The mitochondrial

fractions of eleutheroembryos were actually sedimented more intensely
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Ontogeny of microsomal enzyme activities:

The developmental patterns of BPM and NADPH- and NADH- cytochrome c

reductase activities in microsomes prepared from whole embryos and

eleutheroembryos are shown in Figure 3-3. The data presented are

compiled results from assays on 7 different groups of embryos; data

points for each group are indicated by distinct symbols.

A striking developmental pattern is seen for BPM activity, with low

specific activities in microsomes prepared from embryos, and about a

10-fold higher specific activity in microsomes prepared from

eleutheroembryos. The earliest embryos examined were 4 days from

fertilization in stages 25-26. The increase in monooxygenase activity in

eleutheroembryos was not programmed to occur at a given age but rather

required hatching, as indicated by the data points at 19 days of age.

BPM specific activity was l7-fold higher in microsomes from 19-day old

eleutheroembryos compared to microsomes from 19-day old embryos from the

same group (additional data on this group of embryos will be presented in

a later section).
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Figure 3-3. Ontogeny of BPM activity and NADPH- and NADH-cytochrome c
reductase activities in microsomés prepared from whole Fundulus embryos
and eleutheroembryos. Embryos and eleutheroembryos were fractionated
and assayed as described in Materials and Methods. Microsomes were

prepared from 50-500 embryos or eleutheroembryos. The data are
compiled from assays on a total of 3400 embryos and eleutheroembryos
from 7 different pools of eggs; stripped from a total of 78 females.
Each data point is the mean of 3 to 4 replicate determinations on an

individual microsomal preparation; distinct symbols are used to
indicate data from different embryo cohorts.



Page 104

.S:
~ NADH CYTOCHROME C REDUCTASE
~~
bi 64 Â
~
.~

~ 48

~
Cb 32~ ..

II -S ~-.-. Ä~ lb .~E: ~ .~ (. 16
"0
~

0
.s:
~ NADPH CYTOCHROME C REDUCTASE
~~
bi 32 .
~
-~
~ 24

"' .
Â.

~ .
~ 16

~~ .. .-() ~ Â . Â
E:~ (. 8

-.
~

0

.~ BENZO(A)PYRENE MONOOXYGENASE~
e 28
~ .
bi 24 ELEUTHEROEMBRYOS r: 0-0~ .

(Hatched) Â.~ 20

~ 16
~
~ 12 EMBRYOS

~~ (Not Hatched)

~~ 8
~

~
4 i .

~ y .-Ä-W-. - --------Â .0
0 4 8 12 16 20 24

AGE in DAYS



Page 105

Each of the eleutheroembryo data points in Figure 3-3 were obtained with

individuals that had hatched over a period of 1-4 days before the time of

assay. The post-hatching increase in specific activity occurs over a

shorter interval, and these data do not provide information on the time

course of the change. This topic will be treated in a later section.
Whole embryo weight, yield of microsomal protein, and level of BPM

activity at different developmental stages of Fundulus are shown in Table

3-11. These data were obtained with a single pool of embryos from 8

females. The weights are of whole embryos, which consist of the embryo

body and yolk. In Fundulus whole embryo weight does not change very much

over the course of development. However, around the time of hatching a

weight loss has consistently been observed, which apparently is due to a

loss of fluid from the embryo. In stages 33-34 the urinary bladder and

pericardial and peritoneal cavities contain substantial fluid. Around

the time of hatching (stages 35-36) this fluid is released, and the yolk

is pulled up into the peritoneal cavity, making the embryo more compact.

Although whole embryo weight changes relatively iittle with development,

there is a continuous increase in the mass of the embryonic body at the

expense of yolk. Thus, as seen in Table 3-11, there is a steady increase

in the yield of microsomal protein per embryo.

The developmental pattern of BPM specific activity seen in Table 3-11

is like the overall pattern in Figure 3-36. In the case of these

part icular embryos there was about a 30% decline in BPM specific

6 The BPM specific activity data in Table 3-11 are plotted in Figure

3-3 using triangular symbols.
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activity from days 4 to 17 of development; this was followed by a l5-fold

increase in activity after hatching. The changes in specific activity do

not closely reflect changes in the total capacity of the embryos to

metabolize benzo(a)pyrene. Although BPM specific activity decreased from

~ay 4 to 17, the total activity normalized to weight rose about s-fold

over this period due to the increase in microsomal protein with growth.

For the same reason, the increase in total activity per unit weight after

hatching was more than twice the increase in specific activity. Thus,

from the earliest embryonic stages of Fundulus examined there is a

continuous increase in the total capacity to metabolize benzo(a)pyrene

with development.

The developmental pattern of whole embryo microsomal NADPH-cytochrome

c reductase activity was distinct from that of BPM activity. The highest

specific ac tivi ties in whole embryo microsomes were measured around 5

days of development (stage 28). The specific activity decreased roughly

2 to 4-fold by day 13 (stages 33-34), then remained fairly constant up to

the time of hatching (stage 35), and then showed a modest increase of

about 1.6-fold in stages assayed after hatching (stages 36-39). Prior to

hatching, the developmental pattern of NADH-cytochrome c reductase

closely resembled that of NADPH-cytochrome c reductase; however, NADH

reductase activity did not increase after hatching. The specific

activity of NADH cytochrome c reductase was greater than that of

NADPH-cytoch rome c reductase at all of the pre-hatching stages; but after

hatching, the activities of the two reductases were about the same.
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Test for the presence of endogenous inhibitors before hatching:

One possible explanation for the consistently lower BPM activity

measured in microsomes prepared from embryos, as compared to those

prepared from eleutheroembryos, is the presence of an endogenous

inhibitor or inactivator. A 1 ikely candidate is the hatching enzyme

which'is released in large quantities from glands within the mouth of the

embryo at the time of hatching (Armstrong, 1936). This protease (Kaighn,

1964) digests the inner layers of the chorion, then hatching occurs when

movements of the embryo rupture the thin enve lope which remains.

Substantial amounts of hatching enzyme must be present in embryos

approaching hatching. Re lease of this protease upon homogenization of

embryos could conceivably inactivate the microsomal monooxygenase system.

To test for the presence of endogenous inhibitors or inac tivators

released upon homogenization of the embryos, microsomes w~re prepared

from homogenates of dechorionated embryos, eleutheroembryos, and a

mixture of the two homogenized together. Both the embryos and

eleutheroembryos were from the same pool of eggs and were 24 days old.

The results of BPM assays are shown in Table 3-111. Consistent with the

previous results, the microsomes prepared from eleutheroembryos were much

7more active in metabolizing BP than those from the embryos. The

microsomes prepared from the mixed homogenate had an activity that was

the exact numerical average of the activities measured in embryo and

7 Note, the activi ties in Table 3-111 are normalized per embryo.

data were not plotted in Figures 3-3 because sufficient material
protein determinations was not available, thus specific activity
not be calculated.

The se
for
could
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Table 3-III. BP monooxygenase activity in microsomes prepared from whole
embryos, eleutheroembryos, and a mixture of the two
homogenized together.

Materia 1 Homogenized+
*

BP Monooxygenase

Measured Expec ted

Embryos 37 + 4

Eleutheroembryos 357 + 7

Embryos + Eleutheroembryos (i: 1) 197 + 5 197

+ The embryos and eleutheroembryos used were from the same pool of
eggs and were 24 days old. Eleutheroembryos had hatched at various
times over the preceding 5 days and were in stages 36-39; embryos
were in stages 35 or 36. Microsomes were prepared from homogenates
of 60 dechorionated embryos, 60 eleutheroembryos, and a mixture of 30
dechorionated embryos and 30 eleutheroembryos. Fractionation and assay
procedures were as described in Materials and Methods.

*
Activity is expressed as fmole/min/embryo. Data are the mean of 3
replicates ~ S.D.

,I
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eleutheroembryo microsomes. This result shows quite clearly that the

activities were additive, and that there were no factors released from

embryos upon homogenization capable of inactivating the eleutheroembryo

monooxygenase system. The data also indicate that the paucity of

activity in embryos is not due to the absence of some soluble activator

which appears after hatching, such as a metal ion or cofactor, since in

that case greater than additive results would probably have been seen.

Apparent ly the observed increase in monooxygenase activi ty after hatching

is not artifactual, but is a measure of a real change in the capacity of

embryos to metabolize xenobiotics.

Time-dependent changes in BPM and NADPH-cytochrome c reductase activities

after hatching:

The data of Figure 3-3 show that there is greater than an order of

magnitude increase in BPM specific activity, and about a 1.6-fold

1ncrease in NADPH-cytochrome c reductase specific activity in whole

Fundulus embryo microsomes after hatching. Since pools of

e leutheroembryos that had hatched over a number of days were assayed, the

time courses of these increases in activity are not apparent from these

data. The ideal way to determine the time courses of increase would be

,to follow these activities 1n a group of eleutheroembryos that hatched

within a short interval of time. The problem is that hatching times are

distributed over a period of about a week, and a very large pool of

embryos would be required to provide an adequate number of

eleutheroembryos hatching over a short interval. A different approach
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was taken. A pool of eleutheroembryos was divided into groups that had

hatched during sequential intervals before a single point in time when

they were all fractionated. In other words, all the eleutheroembryos

were the same age at the time of assay, but eleutheroembryos in different

groups had been hatched for various lengths of time. Data collected in

thi s way will not show a strict time course, but still will give an

ind icat ion of how much time is required after hatching for the changes in

activity to occur.

The results of this experiment are illustrated in Figure 3-4; the

details of the experimental protocol are described in the figure legend.

A group of embryos of the same age were also assayed for comparison to

the eleutheroembryos. There was a continuous increase in BPM specific

activity with the length of time that eleutheroembryos had been hatched.

Microsomes from eleutheroembryos that hatched just prior to fractionation

(0.2 to 2.5 hours) were only modestly (l.4 times) more active in

metabolizing BP than those from embryos. The largest single increment in

activity was in the group that had hatched 12 to 24 hours before

fractionation. Microsomes from that group were 11 times more active in

metabolizing BP than those from the embryos. The BPM specific 
activity

in microsomes from the eleutheroembryos that hatched 24 to 60 hours

before fractionation was 26 fmole/min/pg, 17 times greater than the

activity in the preparation from the embryos. Based on data obtained

from other e leutheroembryos that had hatched from 1 to 4 days before
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Figure 3-4. Levels of BPM activity and NADPH cytochrome c reductase
ac tivi ty in microsomes prepared from 19 day old eleutheroembryos that
hatched during various intervals prior to fractionation, and in a group
of dechorionated embryos of the same age. Embryos and eleutheroembryos
were from a pool of 4300 eggs stripped from ls females and fertilized
with minced testis from 5 males. Zero time is the mòment at which all
dishes of eleutheroembryos were placed on ice. They were subsequently
homogenized and frac tionated as described in Materials and Methods.
Each group consisted of about 80 individuals except the 24-60 hour
group which had 68 eleutheroembryos. The eleutheroembryos in the
various hatching groups were in different developmental stages. The
staging was'as follows: not hatched, stages 35-36; 0.2-2.5 hr. and
2.s-l2 hr, stages 36-37; 12-24 hr., stage 37; 24-60 hr., stages 37-38.
The mean hatching time for the entire pool of embryos was 20.9 + 1.7
days. The data are the mean of 3 replicate determinations; errõr bars

,are the standard deviation. Where error bars are not indicated the
coefficients of variation (S.D. /mean) were less than 0.05.
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fractionation (Figure 3-3 and Table 3-11)8, further increases in

specific activity in whole eleutheroembryo microsomes would not be

expected with additional time from hatching. Thus, the maximal level of

BPM activity appears to be reached in eleutheroembryos somewhat after 24

hours from hatching. Again, these data clearly show that the increase in

BPM specific activity observed in post-hatching stages is not simply

age-dependent. Furthermore, the data indicate that the trigger for

increase occurs proximate to the event of hatching.

The increase in NADPH-cytochrome c reductase specific activity after

hatching did not closely follow the increase in BPM activity (Fig. 3-4).

The specific activity of NADPH-cytochrome c reductase in the microsomes

prepared from eleutheroembryos 12 to 24 hours after hatching was only l.l

times greater than that in the microsomes from embryos, while there was

an eleven-fold difference in the capacity of these two preparations to

metabolize BP. The largest increment in NADPH-cytochrome c reductase was

in the 24-60 hour group, whose activity was 1.5 times higher than that of

the dechorionated embryos. The time course of the increase in

NADPH-cytochrome c reductase ac tivi ty after hatching is apparent ly

distinct from that of BPM activity. NADH-cytochrome c reductase activity

was also measured in each of the groups in this experiment. As before

(Fig. 3-3), hatching had no effect on this activity. Activities were

essentially identical in all preparations (mean value: 20.5 ~ 0.7 pmole

cytochrome c reduced/min/pg protein).

8The data from the dechorionated and 24-60 hr groups in this experiment

are the points plotted in Figure 3-3 at 19 days of age. Earlier stages
from the same pool of embryos are also plotted in the figure indicated by
diamond-shaped symbols.
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Requirements for BPM activity in microsomes:

In Table 3-IV the microsomal BP monooxygenases of whole Fundulus

embryos and eleutheroembryos, and adult liver are compared with regard to

requirements for activity and sensitivity to inhibitors. The adult liver

and eleutheroembryo activities are seen to require native enzyme, oxygen

and NADPH, and are much less effectively supported when NADH is

substituted for NADPH. An absolute oxygen dependence was not

demonstrated, but the simple gassing procedures used here would not be

expected to produce truly anoxic conditions. In all cases BPM activity

was substantially inhibited by carbon monoxide, evidence that cytochrome

P-450 mediates this activity. Furthermore, in all cases, 100 pM

cytochrome c effectively abolished BPM activity. In incubations with

cytochrome c, the concentration of NADPH was increased to i.6 ro, a level

far in excess of that which could be oxidized by the NADPH-cytochrome c

reductase present in any of the preparations. The inhibition of BPM

activity by cytochrome c in the presence of excess NADPH suggests that

cytochrome c interferes with the flow of electrons from NADPH to the

oxygenase, rather than just depleting NADPH. Cytochrome c inhibition of

microsomal monooxygenase activity provided the first evidence that the

physiological role of microsomal NADPH-cytochrome c reductase is the

transfer of electrons from NADPH to cytochrome P-4s0 (Phillips and

Langdon, 1962). The properties of the BPM activity measured in the

Fundulus preparations are typical of cytoch rome P-450 dependent

reactions. The data presented in Table 3-IV strongly suggest that the

BPM activities of adult Fundulus hepatic microsomes, and whole embryo and

eleutheroembryo microsomes are catalyzed by cytochrome P-4s0 systems.
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Analysis of eleutheroembryo fractions by difference spectroscopy:

Microsomes prepared from whole eleutheroembryos were analyzed by

difference spectroscopy in an effort to detect and quantify cytochromes

P-4s0 and bS. Only a limited number of analyses were possible, because

t~e spectral techniques are not very sensitive and require material from

a large number of eleutheroembryos. To avoid interference from any

hemoglobin present, CO reduced/CO oxidized difference spectra were

recorded (Matsubara et !l., 1974). Such spectra obtained with Fundulus

adult liver microsomes, and the microsomal and lOK fraction of

eleutheroembryos are shown in Figure 3-5. Curve A is the spectrum of

adult hepatic microsomes. The peak at 450 nm is due to cytochrome P-450

and the shoulder around 430 nm is due to cytochrome b5 which absorbs at

424 nm in the reduced state. Curves Band C were obtained with whole

eleutheroembryo microsomes. These spectra closely resemble the

cytochrome P-4s0 spectrum, except for peaks at 430 nm, and, in the case

of curve C, the increased depth of the trough at 410 nm. Generally the

CO reduced/CO oxidized difference spectrum of eleutheroembryo microsomes

consisted of peaks at 450 nm and 430 nm and a trough at 410 nm. Often

the peak at 430 nm was much larger than that at 450 nm, and in some cases

only a shoulder was seen around 450 nm. The peak at 430 nm was not due

to cytoch rome b5, as the addition of NADH to both the sample and

reference cuvettes had no noticeable effects on this signal. The

reduction of cytochrome b5 by NADH would eliminate its contribution to

the reduced versus oxidized difference spec trum.
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Figure 3-5. Difference spectra obtained with whole Fundulus

eleutheroembryo fractions and adult liver microsomes. Fractions were
prepared and analyzed as described in Materials and Methods. Curves A
through D áre CO-dithionite reduced versus CO oxidized difference
spectra, which were redrawn from the original tracings. Spectrum A:
cuvettes contained adult liver microsomes from a pool of livers from 3
male and 3 female fish, at 0.67 mg protein/ml. Spectrum B: microsomes
from a pool of 240 stage 37-39 whole eleutheroembryos at 0.30 mg
protein/ml. In an effort to reduce mitochondrial contamination of the
microsomal fraction, the 10K or "mitochondrial" fraction of these
e leutheroembryos was sedimented 3 times longer than usual. Spectrum
C: microsomes from a pool of 190 stage 38-39 whole eleutheroembryos at
0.46 mg protein/ml. Spectrum D: the 10K fraction from the spectrum C
eleutheroembryos at 0.64 mg protein/ml. For spectra A and D each
division on the absorbance scale is equal to an optical density of
O.Ol, while for spectra Band C, each division equals an optical
density of 0.001. The eleutheroembryo microsomes were analyzed fresh,
the other fractions were stored in liquid nitrogen before analysis.
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Curve D is the spec trum of the 10K fraction of the eleutheroembryos

from which the micro somes of curve C were prepared. As discussed earl ier

the majority of the mitochondria sediment in this centrifugal fraction of

eleutheroembryos. Mitochondrial cytochrome a3 in the reduced state

forms a complex with CO which has an absorbance of 430 nm, and is

probably responsible for the peak at 430 nm in the difference spectrum of

the 10K fraction (curve D). Since whole eleutheroembryo microsomes are

contaminated with mitochondria, as indicated by the presence of succinate

cytochrome c reductase activity, it would seem likely that this

contamination is responsible for the signal at 430 nm in the microsomal

difference spectrum. The spectra obtained with the 10K and microsomal

fractions of whole eleutheroembryos are clearly distinct. The peak at

450 nm appears only in the microsomal spectrum, and is very likely to be

due to cytochrome P-4s0. This conclusion is supported by the catalytic

data (Table 3-IV) which indicate that cytochrome P-450 is present in

e leutheroembryo micro'somes.

Figure 3-6 shows NADH reduced versus oxidized difference spectra

obtained with microsomes from whole eleutheroembryos (A) and adult liver

(B). The liver microsomal difference spectrum is characteristic of

cytochrome bs' with a trough around 410 nm and a peak near 424 nm

(Omura and Sato, 1964). The difference spectrum of eleutheroembryo

microsomes was similar to that of liver microsomes, while the 10K

fraction of whole eleutheroembryos did not give a difference spectrum

when an NADH-reduced sample was compared to an oxidized reference. Thus,

the peak in the eleutheroembryo microsomal difference spectrum is likely

to be due to cytochrome bs rather than mitochondrial contamination.
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Figure 3-6. Cytochrome b5 difference spectra obtained with whole
Fundulus eleutheroembryo microsomes and adult liver microsomes.
Fractions were prepared and analyzed as described in Materials and
Methods. NADH reduced versus oxidized difference spectra were
recorded. Spectrum A: cuvettes contained eleutheroembryo microsomes
at 0.57 mg protein/ml. These microsomes were prepared from a
homogenate of 880 stage 38-39 eleutheroembryos, with the lOK fraction
sedimented for 3 times as long as standard. Spectrum B: adult liver
microsomes at 0.84 mg protein/ml, from a pool of livers from 3 males
and 3 females. Both spectra were redrawn from the original tracings,
and spectrum A was corrected for baseline absorbance.
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Compilation of data on the monooxygenase system in microsomes prepared

from whole eleutheroembryos:

Shown in Table 3-V is a compilation of the data on the levels of

monooxygenase activities and the components of microsomal electron

transport in whole eleutheroembryo microsomes. In addition to BPM

activity, another monooxygenase activity, aminopyrine N-demethylase (ADP)

was measurable in whole eleutheroembryo microsomes. The ontogeny of ADP

was not examined. The specific contents of cytochrome P-450 and

cytochrome b5 were estimated from difference spectra like those in

Figures 3-5 and 3-6. As a point of reference, the leve 1 of cytochrome

P-450 in-eleutheroembryo microsomes is about 1/40 of the level in adult

Fundulus hepatic micro somes.

BPM activity in livers of Fundulus eleutheroembryos, larvae and adults:

The use of microsomal preparations from whole embryos has proven

valuable for answering basic questions concerning the ontogeny of the

microsomal monooxygenase system in Fundulus. However, it is desirable to

know how xenobiotic monooxygenase activities change during the course of

development of individual organs and tissues. The liver is of particular

interest because in adult vertebrates it is the primary site of

xenobiotic metabolism, and generally has the highest levels of microsomal

monooxygenase activities. Results presented in Chapter 2 (Table 2-II)

demonstrated that BPM activity can be detected in the livers of untreated

eleutheroembryos. Additional determinations of BPM activity in

eleutheroembryo livers were made, and hepatic BPM activity was also



lage 124

Table 3-V. Monooxygenase activities, NADPH- and NADH-cytochrome c

reductase activities and content of cytochromes P~4S0 and
bS in microsomes prepared from whole Fundulus
eleuthe roembryos.

Benzo(a)pyrene monooxygenase

(fmole/min/pg protein)
23 + 3

Aminopyrine N-demethylase

(fmole/min/pg protein)
89 + 14

NADPH-cytochrome c reductase

(pmole/min/pg protein)
21 + 2

NADH-cytochrome c reductase

(pmole/min/pg protein)
22 + 2

Cytochrome P-4S0

(fmole/pg protein)
8 + 1

Cytochrome bS

(fmole/pg protein)
9 + 1

Microsomes were prepared from pools of whole eleutheroembryos which

were 19-24 days old (stages 36-39). All data are the mean of
assays on 3 pools ~ SD, except the cytochrome bS data which is

the mean of 2 determinations + range. All pools of
eleutheroembryos contained at-least 60 individuals, and were
obtained from several different females. The BPM and reductase
data were plotted in Figure 3-2 (diamond, square and upright
triangular symbolA).
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measured during the early larval period. Whole homogenates of liver were

assayed rather than microsomes, because only about 40 to 60% of the total

activity is usually recovered in. liver microsomal fractions. Considering

the extremely small amount of tissue available from eleutheroembryos

(about 1 pg protein/liver), it was necessary to maximize the amount of

product produced in the assay reaction mixtures.

A comparison of body weight, liver protein to body weight and hepatic

BPM activity in Fundulus eleutheroembryos, larvae and adults is shown in

Table 3-VI. The liver protein to body weight ratio is used here rather

then the standard liver weight to body weight ratio as an indicator of

the amount of liver tissue per unit body weight, because wet weights

could not be obtained for the very small livers of eleutheroembryos and

larvae. Growth is very rapid in Fundulus once feeding begins; over an

, interval of about 5 days from the late embryonic period to the early

larval period body weight more than doubled. It should be noted that the

body weight shown for eleutheroembryos includes the weight of yolk. Yolk

was about 35% of the total weight in the stage 36-38 eleutheroembryos

examined.' Associated with the transition from the embryonic to larval

periods of development and the onset of feeding, is a large increase in

the amount of liver protein per unit body weight. This parameter

increased by a factor of 3.5 from the late embryonic to larval periods.

Part of the increase was due to yolk absorption, but even when corrected

for yolk, the larvae had more than twice the relative amount of liver

protein as eleutheroembryos. The yield of iiver protein per unit body

weight varied considerably between different groups of larvae, although



T
a
b
l
e
 
3
-
V
I
.
 
B
P
M
 
a
c
t
i
v
i
t
y
 
i
n
 
l
i
v
e
r
 
w
h
o
l
e
 
h
o
m
o
g
e
n
a
t
e
s
 
f
r
o
m
 
F
u
n
d
u
l
u
s
 
e
l
e
u
t
h
e
r
o
e
m
b
r
y
o
s
.
 
l
a
r
v
a
e
 
a
n
d

a
d
u
l
t
s
.
 
+

S
t
a
g
 
e

D
ay

s 
fr

om
B
o
d
y
 
W
e
i
g
h
t

m
g
 
L
i
v
e
r
 
p
r
o
t
e
i
n

H
e
p
a
t
i
c
 
B
P
M
 
A
c
t
i
v
i
t

H
at

ch
in

g
(m

g)
g
 
B
o
d
y
 
w
e
i
g
h
t

un
it/

JI
g 

pr
ot

ei
n

u
n
i
t
/
m
g
 
b
o
d
y
 
w
e
i
g
h
t

E
le

u 
th

er
oe

m
b 

ry
os

j-
4'

2
.
1
 
+
 
0
.
2

0
.
5
4
 
+
 
0
.
0
5

5
7
 
+
 
7

3
0
 
+
 
2

E
ar

ly
 la

rv
al

pe
ri

od
7-

9
4
.
8
 
+
 
0
.
9

1
.
9
 
+
 
0
.
8

. 8
4 

+
 6

l
6
0
 
+
 
7
0

A
du

 1
 t

)4
00

7
6
3
0
 
+
 
3
3
0

3
.
6
 
+
 
0
.
4

2
9
0
 
+
 
3
1

1
0
3
0
 
+
 
1
3
0

+
 
E
l
e
u
t
h
e
r
o
e
m
b
r
y
o
s
 
a
n
d
 
l
a
r
v
a
e
 
w
e
r
e
 
r
a
i
s
e
d
 
f
r
o
m
 
p
o
o
l
s
 
o
f
 
e
g
g
s
 
s
t
r
i
p
p
e
d
 
f
r
o
m
 
a
 
t
o
t
a
l
 
o
f
 
a
b
o
u
t
 
5
0

f
e
m
a
l
e
s
.
 
T
h
e
 
b
o
d
y
 
w
e
i
g
h
t
 
s
h
o
w
n
 
f
o
r
 
e
l
e
u
t
h
e
r
o
e
m
b
r
y
o
s
 
i
n
c
l
u
d
e
s
 
t
h
e
 
y
o
l
k
.
 
T
h
e
 
a
c
t
u
a
l
 
w
e
i
g
h
t
 
o
f
 
t
i
s
s
u
e

i
s
 
a
b
o
u
t
 
6
5
%
 
o
f
 
t
h
e
 
t
o
t
a
l
 
w
e
i
g
h
t
 
w
i
t
h
 
y
o
l
k
.
 
E
l
e
u
t
h
e
r
o
e
m
b
r
y
o
s
 
w
e
r
e
 
i
n
 
s
t
a
g
e
s
 
3
6
-
3
8
.
 
T
h
e
 
o
v
e
r
a
l
l
 
m
e
a
n

h
a
t
c
h
i
n
g
 
t
,
i
m
e
 
w
a
s
 
2
1
 
+
 
1
 
d
a
y
s
 
f
r
o
m
 
f
e
r
t
i
l
i
z
a
t
i
o
n
.
 
A
d
u
l
t
s
 
w
e
r
e
 
c
o
l
l
e
c
t
e
d
 
a
t
 
H
e
r
r
i
n
g
 
B
r
o
o
k
 
m
a
r
s
h
 
i
n

N
o
v
e
m
b
e
r
.
 
B
a
s
e
d
 
o
n
 
l
;
n
g
t
h
 
t
h
e
y
 
w
e
r
e
 
b
e
t
w
e
e
n
 
l
~
2
 
y
e
a
r
s
 
o
l
d
 
(
V
a
l
i
e
l
a
 
e
t
 
a
l
.
,
 
1
9
7
7
)
.
 
A
s
s
a
y
s
 
w
e
r
e

'
 
-
-

p
e
r
f
o
r
m
e
d
 
o
n
 
w
h
o
l
e
 
h
o
m
o
g
e
n
a
t
e
s
 
o
f
 
p
o
o
l
s
 
o
f
 
l
i
v
e
r
s
.
 
T
h
e
 
n
u
m
b
e
r
 
o
f
 
l
i
v
e
r
s
 
p
o
o
l
e
d
 
a
t
 
e
a
c
h
 
o
f
 
t
h
e
 
s
t
a
g
e
s

w
e
r
e
 
a
s
 
f
o
l
l
o
w
s
:
 
e
l
e
u
t
h
e
r
o
e
m
b
r
y
o
s
,
 
a
b
o
u
t
 
,
4
0
;
 
l
a
r
v
a
e
.
 
8
-
3
0
;
 
a
d
u
l
t
s
.
 
3
 
f
r
o
m
 
m
a
l
e
s
,
 
3
 
f
r
o
m
 
f
e
m
a
l
e
s
.
 
T
h
e

e
l
e
u
t
h
e
r
o
e
m
b
r
y
o
 
d
a
t
a
 
a
r
e
 
t
h
e
 
m
e
a
n
 
v
a
l
u
e
s
 
f
o
r
 
2
 
g
r
o
u
p
s
 
+
 
r
a
n
g
e
.
 
t
h
e
 
l
a
r
v
a
l
 
a
n
d
 
a
d
u
l
t
 
d
a
t
a
 
a
r
e
 
t
h
e
 
m
e
a
n

v
a
l
u
e
s
 
f
o
r
 
3
 
g
r
o
u
p
s
!
 
S
.
D
.
 
-

'U pi lQ /l /- N 0\



Page 127

they were raised under similar conditions. On the average the adults had

more than twice as much liver protein per unit body weight as the larvae,

but for one group of larvae the value of this parameter was 75% of the

adult value.

BPM specific activities in the livers of eleutheroembryos and larvae

were similar, and were about 20% and 30% of the activity measured in

adults, respectively. Because of increase in the relative amount of

liver protein, total hepatic BPM activity per unit 
body weight was more

than 5-times higher in larvae than in eleutheroembryos. Even though

hepatic BPM specific activity changes little from the late embryonic to

early larval periods there is a substantial increase in the relative

hepatic capacity to metabolize BP over this interval of development. On

the average, the adults assayed had about 6 times as much hepatic BPM

activity per unit body weight as the larvae.

Localization of BP monooxygenase activi ty in the microsomal fraction of

Fundulus larval liver, and a comparison of enzymatic activities and

cytochrome content of larval, juvenile and adult hepatic microsomes

Since the total hepatic capacity to metabolize BP measured at the

beginning of the larval period was only a fraction of the adult capacity,

it was of interest to see how the level of this activity and associated

components of the monooxygenase system changed during larval and early

juvenile development. Since BPM activity was readily detectable in the

larval liver, it was desirable to prepare microsomal fractions rather



Page l28

than assay whole homogenates. Microsomes offer the advantage that they

can be frozen in liquid nitrogen with little loss of activity, and they

afford the possibility of the measurement of cytochromes P-4s0 and bs

without interference from mitochondrial cytochromes and hemoglobin.

Since only a limited amount of larval and juvenile liver was

available, a centrifugation procedure was empirically established for the

preparation of hepatic microsomes from small volumes of homogenates.

Using the microproc.edure, microsomes can be prepared from as little as

100 ul of liver homogenate. A comparison of adult liver microsomes

prepared by this microprocedure and the standard fractionation procedure

is shown in Table 3-VII. For each of the enzymatic activities examined,

the percent of the total activity sedimenting in the microsomal fraction

was quite similar for the two procedures. The yield of protein per gram

; liver was somewhat higher in the microsomes prepared by the

microprocedure, and the specific activities of the two reductases and BPM

were 85 to 87% as great as those in the microsomes prepared by the

standard procedure. A similar leve 1 of mitochondrial contamination was

present in the fraction prepared by both procedures as indicated by the

levels of succinate-cytochrome c reductase activity.

Data on the distribution of BPM activity in centrifugal fractions of

Fundulus larval liver prepared using the microprocedure are shown in

Table 3-VIII. The localization of BPM activity in the microsomal

fraction is apparent, as the microsomal specific activity is 5 times that

in the combined nuclear-mitochondrial fraction. Of the total activity

measured in the whole homogenate, 93% was recovered in these two

fractions; the supernatant fraction was not assayed.
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Table 3-VIII. BP monoxygenase activity in centrifugal fractions of
Fundulus larval liver.+

BP Monooxygenase Ac tivi ty
Fraction

fmole/min/ pg protein Percent total

Whole homogenate 127 + 14 lOO

Nuc lear-mitochondrial 88 + 7 35

Microsomal 453 + 8 58

+ Larvae were 41 days from fert ilization and had hatched about 20 days
prior to assay. A pool of 23 livers were homogenized and fractionated
as described in Materials and Methods. Specific activity data are the
mean of 3 replicates! SD.
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Shown in Table 3-IX are data on the levels of monooxygenase

activities, NADPH- and NADH-cytochrome c reductase activities, and

cytochrome content in microsomes prepared from Fundulus larvae, juvenile,

and adult livers. All of the larvae and juveniles were raised from a

single pool of embryos. As noted above growth is rapid after the onset

of feeding; from 9 to 48 days after hatching body weight increased

26-fold. Over this interval the ratio of total liver protein to body

weight showed little change, but the yield of microsomal protein was

lower in the juveniles than in the larvae. Apparently the most dramatic

change in the re lative amounts of liver protein occurs during the

transition from the embryonic to larval periods of development (Table

3-VI) .

BPM specific ac tivi ty increased 2.5-fold from 9 to 48 days after

hatching. Total hepatic microsomal BPM activity normalized to body

weight increased about 1.3-fold from the early to mid-larval period, but

then, due to the decline in microsomal protein, remained essentially

unchanged at the later stages assayed. Thus, while BPM specific activity

continually increased over the interval of development examined, there

was little change in the total hepatic capacity to metabolize BP per unit

weight.

The data on adult hepatic microsomes in Table 3-IX were obtained with

the same pools of livers used for the whole homogenate data in Table

3-VI. Consistent with this whole homogenate data, hepatic microsomal BPM

specific activity in the early larval period was about 25% of the adult

value. In the oldest juveniles examined, the microsomal BPM specific

activity was 63% of the adult value.
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Table 3-IX. A comparison of hepatic microsomal enzyme activlties and 
cytochrome content in

fractions prepared from Fundulus larvae, juveniles and adults.

Character --------- La rva e --------- ----Juveni les----+ Adults

+9 +15 +30 +48 ) 400

5.35.: 0.39 12.4 + 1.9 50.6 + 12.4 140 .: 27 7360 + 330

2.7 2.7 3.0 2.7 3.56 + 0.36

0.16 0.17 0.087 0.088 0.121 + O. 003

Days from hatchi ng

Body weight (mg)

pg Liver protein
mg Body weight

pg Microsomal protein
ug Liver protein

Benzo(a)pyrene Monooxygenase
(unit/pg microsomal' protein)
(unit/pg body weight)

334 + 41
145 :; 10

430 + 44
192 :; 3

692 + 30
180 :; 6

853 + 87
204 :; 5

1360 + 218
587 :; 70

Aminopyrine Oemethylase
(unit/pg microsomal protein)

1940 .: 350 2730 + 300

NADPH Cytochrome c Reductase
(unit/pg microsomal protein) 101 + 12 160 + 6 162 .: 45 112 + 9

NADH Cytochrome c Reductase
(unit/pg microsomal protein)

148 .: 19 299 + 16 229 .: 26 221 + 14

Cytoch rome P-450
(nmole/pg microsomal protein) 0.354 0.305 + 0.069

Cytochrome b5

(nmole/u~ microsomal protein) 0.102 0.121 + 0.002
+ Larvae and juveniles were raised from a single pool of eggs stripped from 9 females and

fertilized with minced testis from 3 males. For larval stages, livers were pooled from about 30
individuals. A sample of 10 individuals was weighed intact before dissection. For juveniles,
livers were pooled from 13-16 individuals, each of which was weighed intact before dissection.
Larval and juvenile body weights are the mean of individual values,: SO. Enzyme assays are the
mean of 3 replicates + SO. All adult data are the mean values of 3 pools + SO. The adult pools
were described in Tabie 3-VIII. Enzyme units: BPM, fmole metabolites/mini APD fmole

CH20/min; reductases, pmole cytochrome c reduced/min.
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The specific activity of microsomal NADPH-cytochrome c reductase

measured in larvae was about the same as that in adults. In the juvenile

stages examined, this activity was somewhat higher than the leve 1 in

adults. It thus appears that this reductase is not limiting

monooxygenase activity in juvenile and larval hepatic microsomes, which

further suggests that the level of BPM activity may be determined by the

amount, or form of cytochrome P-450 present at these stages of

deve lopment. Cytochrome P-4s0 and cytochrome bs were readily

measurable in the liver microsomes prepared from the Fundulus juveniles

48 days from hatching. (Sufficient material for analysis was not

available from the earlier stages.) The spectra are shown in Figure 3-7,

and the specific contents are listed in Table 3-IX. The spectra are

essentially the same as those of the adult cytochromes (Figures 3-5 and

3-6). The peak of absorbance for the juvenile cytochrome P-450 was about

449 nm, while for the three pools of adult livers examined, the peaks

were at 449-450 nm. The specific content of cytochrome P-4s0 in the

juvenile microsomal sample was about the same as that in the adult

microsomes, which is interesting since the juvenile BPM activity was

about 60% of the adult level. This suggests that the adult cytochrome

may be more efficient in catalyzing BP metabolism than the juvenile

cytochrome, supporting the idea that the forms of cytochrome P-450

present in these adults and juveniles were different. However, the

ratios of aminopyrine demethylase activity to BPM activity in the

juvenile and adult hepatic microsomes were similar (Table 3-IX) ,

indicating the similar substrate specificities of the adult and juvenile

cytoch romes.
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Figure 3-7. Difference spectra obtained with hepatic micro somes from
Fundulus juveniles 48 days from hatching. Microsomes were prepared
from a pool of 13 juvenile livers and analyzed as described in
Materials and Methods. The concentration of microsomal protein in the
cuvettes was 0.25 mg/ml. The upper curve is an NADH reduced versus
oxidized difference spec trum, which is characteristic of cytochrome
bs. The lower curve is a CO, dithionite reduced versus CO difference
spectrum on the same sample, with NADH balanced. This spectrum is

characteristic of cytochrome P-4S0. Quantitative data on the specific
contents of cytochromes P-450 and bs in these microsomes (+48) are
given in Table 3-IX.
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It is important to note that the value for juvenile cytochrome P-4s0

in Table 3-IX is from a single determination; such limited data should

not be overinterpreted. Also, cytochrome P-450 was assayed in the

presence of NADH, which was necessary for the prior assay of cytochrome

bs. Assays were performed in this way because of the limited amount of

juvenile hepatic microsomes available for spectrophotometric analysis.

Levels of adult cytochrome P-4s0 measured in the absence of NADH were on

the average 40% higher' than in its presence. ! Whether the level of
i

cytochrome P-450 determined in juveniles was similarly affected by NADH

is not known.

To further examine the possibility that different isozymes of

cytochrome P-4s0 are present in hepatic microsomesfrom Fundulus larvae,

juveniles and adults, the sensitivity of BPM activity in these

preparations to inhibitors of cytochrome P-450 was examined. The two

inhibitors used were oC-napthoflavone (ANF) and SKF-525A. The microsomal

preparations used were the same as in Table 3-IX, except that the younger

larvae and juveniles were not examined. The data are shown in Table

3-X. Results with the microsomes prepared from th ree pools of adul t

livers are shown separately. Each of the stages showed a very similar

sensitivity to the two inhibitors, and the inhibition produced by ANF and

SKF-52SA was quite similar. On the basis of the sensitivity of BPM

activity to these inhibitors, the larval, juvenile and adult hepatic

cytochromes P-4s0 appear quite similar.
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Table 3-X Inhibition of Fundulus larval, juvenile and adult hepatic
microsomal BPM activity by O(-napthoflavone and and SKF-525A+.

Inhibitor Pe rc ent BPM activity remaining
La rvae Juveni les Ad u L t s

( + l5d) ( +48d) Poo 1 1 Pool 2 Pool 3

0( -nap tho flavone
1 pM 86 :! 4 91 + 5 93 + 7 95 + 1 91 + 2

10 pM 67 + 1 65 :; 3 70 ~ 4 68 :; 2 66 :; 2

100 ¡.M 50 :; 2 43 :; 4 44 + 2 44 + 1 43 + 2

SKF-525A
1 I'M 79 + 5 !l6 + 7 97 + 4 94 + 2 97 + 2

10 ¡.1 74 :; 7 72 :; 2 80 :; 4 75 + 3 79 + 5

100 I'M 47 :; 7 45 :; 5 53 + 4 51 + 1 54 + 1

+ Microsomal preparations were the same as in Table )-X. Assays were
performed as described in Materials and Methods. All data are the mean of 3
replicates + SU,
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DISCUSSION

Monooxygenase activity and components of the monooxygenase system in

Fundulus embryos and e leutheroembryos:

The data presented here clearly show that preparations from untreated

Fundulus embryos have the capacity to metabolize benzo(a)pyrene in

vitro. Presumably this in vitro activity reflects an in vivo capacity to

metabolize BP and other xenobiotics. Generally, with untreated embryos

BPM activity was only detectable in the microsomal or 40K fraction of

homogenates, and removal of the chorion prior to homogenization was found

essential for detection of this activity. In contrast to embryos, BPM

activity was measurable in all of the particulate fractions of

eleutheroembryos, but this activity was clearly localized in the

microsomes (Figure 3-1). Thus, when fractions are prepared from whole

embryos or eleutheroembryos as described in Materials and Methods, there

is no change in the distribution of BPM activity after hatching. The

results presented in Chapter 2, in which petroleum and PCB-induced BPM

activity were localized in the 10K fraction of embryos, apparently were

artifacts of homogenization of embryos with their chorions intact.

The 40K frac tion of homogenates of whole e leutheroembryos was shown

to correspond to a microsomal fraction, since it is a post-mitochondrial

particulate fraction and both NADPH-cytochrome c reductase activity and

BPM activity sediment with it. Furthermore, when a whole embryo 40K
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pellet was examined by electron microscopy (Figure 3-2), it was seen to

contain much vesicular material resembling adult iiver microsomes.

NADH-cytochrome c reductase activity was primarily localized in the 10K

or "mitochondrial" fraction, but activity was also present in all other

fractions. A substantial portion of the NADH-cytochrome c reductase

ac tivi ty in eleutheroembryonic micro somes may be associated with

mitochondrial fragments. The presence of cytochrome bs in whole

eleutheroembryo microsomes (Figure 3-6), and the fact that NADH does

support BPM activity (Table 3-IV) , provides evidence that some of the

NADH-cytochrome c reductase in the 40K fraction is derived from the

endoplasmic reticulum, and is not associated with the respiratory,

mitochondrial elec tron transport system.

The BPM activity in microsomes prepared from whole Fundulus

eleutheroembryos, has properties of a typical cytochrome P-450 dependent

monooxygenase activity. This activity requires native enzyme, oxygen and

NADPH, and is inhibited by carbon monooxide and cytoch rome c (Table

3-IV). NADPH was much more effective in supporting this activity than

NADH. The BPM activity in adult Fundulus hepatic microsomes has similar

sensitivities and requirements. The activity in microsomes from whole

Fundulus embryos also appears to be cytochrome p-4s0 dependent, as it is

inhibited by both CO and cytochrome c. This activity was not

characterized as completely as the others, because of the limited amount

of embryonic material available. Additional evidence indicating that the

ßPM activity in Fundulus embryos and eleutheroembryos is cytochrome P-4s0

dependent is the fact that it is induced by the known inducer of

cytoch rome P-450, Aroclor l2s4 (Alvares, 1977).
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Microsomes prepared from whole eleutheroembryos were analyzed

spectrally for cytochrome P~4s0 and cytochrome bS. The

spectrophotometric assays for these cytochromes are not very sensitive,

so a relatively large amount of material was required for the assays, and

only a limited number of assays could be performed. For measuring

cytochrome P-4s0 the reduced CO/CO oxidized method of record ing

difference spectra was used to eliminate effects from contaminating

hemoglobin, and allow quantitation of cytochrome P-4S0 in the pr~sence of

mitochondrial contamination. With microsomes prepared from whole

eleutheroembryos a signal was consistently observed at 450 nm, but there

always was interference at 430 nm (Figure 3-5). The peak at 430 nm was

not due to cytochrome bs' since the addition of NADH to sample and

reference cuvettes had no effect on the difference spectrum. Whole

eleutheroembryo microsomes are contaminated with mitochondria as

indicated by the presence of succinate-cytochrome c reductase activity

(Fig. 3-1); this contaminatiön is the likely source of the peak at 430

nm. Much evidence indicates that the signal at 450 nm is due to

cytochrome P-4s0. First of all, the catalytic data described above

strongly suggest that the BPM activity measured in whole eleutheroembryo

microsomes is cytochrome P-4S0 dependent (Table 3-IV). Additionally the

peak of 450 nm was only present in the microsomal difference spectrum and

not in the difference spec trum of the 10K fraction, which is consistent

with the localization of BPM activi ty.

A turnover number can be estimated for benzo( a)pyrene from the data

in Table 3-V. The turnover number is calculated by dividing the average
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BPM specific activity by the average specific content of cytochrome

P-450, and is a measure of the catalytic efficiency of the cytochrome. A

value of 2.9 fmole BP metabolites/min/fmole of cytochrome p-450 is

obtained for the eleutheroembryo cytochrome P-4s0. A similar calculation

for the Fundulus adult hepatic microsomes described in Table 3-IX gives a

value of 3.2 (calculated for the levels of cytochrome P-4s0 measured

without prior reduction with NADH). The very good agreement of these two

numbers supports the contention that the peak at 450 nm in the CO

reduced/CO oxidized difference spectrum of eleutheroembryo microsomes is

due largely to cytochrome P-4s0, and apparently the content of cytochrome

p-450 can be reasonably estimated from these spectra.

It is not surprising that a clean cytochrome P-4s0 spectrum could not

be obtained with eleutheroembryo microsomes, considering that the

microsomes were prepared from homogenates of whole eleutheroembryos.

This is equivalent to trying to measure the cytochrome P-450 content of a

fish by preparing microsomes from a homogenate of the 
whole animal. This

approach is certainly not ideal, since the majority of tissue homogenized

are likely to have low levels of cytochrome P-4s0, and are also likely to

contribute factors to the microsomal fraction which may interfere with

the difference spectrum of this cytochrome.

Cytochrome b5 is usually measured in microsomes by recording an

NADH reduced versus oxidized difference spectrum (Omura and Sato, 1964).

Under such conditions whole eleutheroembryo microsomes gave a spectrum

similar to that of cytochrome b5 (Figure 3-6); while whole

eleutheroembryo 10K fractions did not give difference spectra. Thus, the
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spectrum recorded with microsomes is not likely to be due to

contamination from mitochondrial cytochromes. The fact that NADH

supports BPM activity in whole eleutheroembryo microsomes is further

evidence for the presence of cytoch rome b5. The leve ls of cytoch rome

b5 measured in whole eleutheroembryo microsomes were similar to those

of cytoch rome P-450.

Because the spectrophotometric assays of cytochrome P-4s0 and

cytochrome bs were near the limits of detection with samples from

eleutheroembryos, no attempts were made to measure these cytochromes in

whole embryo microsomes. Based on the levels of BPM activity,

dechorionation of an adequate number of embryos for a single cytochrome

P-4s0 determination would require about 20 hours of dissection. A

reasonable way to demonstrate cytochrome P-450 in Fundulus embryos would

be immunochemically, with antibodies to purified adult forms of

cytochrome P-4s0. Unfortunately, the adult cytochromes have yet to be

purified.

Ontogeny of microsomal enzyme activities:

A striking developmental pattern was observed for BPM specific

activity in whole embryo microsomes. BPM activity was uniformly low at

all stages assayed before hatching, then within 24 hours after hatching

activity increased 10-fold (Figures 3-2, 3-3). This increase in BPM

activity after hatching was shown not to be age-dependent, but rather to

require hatching, as activity increased with time from hatching among a

group of eleutheroembryos of the same age (Fig. 3-4). The possibility
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that the low BPM activity in microsomes prepared from whole embryos is

due to an endogenous inhibitor, such as the hatching protease, was ruled

out by a mixing experiment (Table 3-111). A lack of a role for the

hatching protease in inactivating the embryonic monooxygenase system is

also indicated by the fac t that the activity measured in newly hatched

eleutheroembryos is only slightly higher than in embryos of the same age

(Fig. 3-4). Furthermore, high levels of activity can be induced in

embryos by PCBs (Chapters 2 and 4). This indicates that the low

constitutive activity is a real measure of the capacity of embryos to

metabolize BP, rather than the result of inactivation by an endogenous

factor.

The ontogenic pattern of total BPM activity per unit weight was

somewhat different than that of BPM specific activity. Activity per unit

embryo weight continually increased from the earliest stages examined as

a result of the increase in the mass of tissue and yield of microsomal

protein with growth (Table 3-11). However, there was a dramatic 39-fold

jump in total BPM activity per unit weight after hatching as a result of

the increase in BPM specific activity.

BPM activity was measurable in whole embryo microsomes at the

earliest stages assayed (stages 25-26), which is short ly after the onset

of circulation (Fig. 3-3, Tables 3-1 and 3-11). Light microscopic

examination of thin sections of embryos indicates that the liver rudiment

does not appear until stages 28-29. The presence of BPM activity in

whole embryo microsomes prior to the appearance of the liver rudiment

points to the significance of the extrahepatic tissues in xenobiotic
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The fact that BPM activity has been demonstrated in Fundulus embryos,

indicates that they probably have the capacity to metabolize a great

variety of lipophilic foreign compounds, including many environmentally

relevant substances.

The developmental pattern of NADPH-cytochrome reductase activity was

distinct from that of BPM activity (Fig. 3-3). While BPM activity

changed little before hatching, the highest specific activities of

NADPH-cytochrome c reductase were measured in the earliest stages

examined, then dropped off sharply to a plateau in stages prior to

hatching. The specific activity of NADPH-cytochrome c reductase did

increase after hatching, but the increase was modest compared to that of

BPM activity (Figure 3-3). Also the time course of the increase in

reductase activity after hatching was slower than the increase in

monooxygenase activity (Figure 3-4). The different developmental

patterns for ßPM activity and NADPH-cytochrome c reductase activity

suggest that these two activities are independently controlled. Although

there is a lack of correlation between the levels of NADPH-cytochrome c

reductase activity and monooxygenase activity, the cytochrome c

inhibition data (Table 3-IV) indicate that the reductase plays a

functional role in NADPH-dependent monooxygenase activity.

The high levels of reductase activity in the microsomes of early

embryos, and the large increase in BPM activity shortly after hatching,

without concommitant changes in reductase ac tivi ty, suggest that the

level of reductase activity is not limiting monooxygenase activity in

embryos. In fact the ratio of NADPH-cytochrome c reductase activity to
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BPM activity in embryo microsomes is 10-fold higher than that in adul t

liver micro somes (compare data in Table 3-IX and figure 3-3). These data

suggest that changes in the cytoch rome components of the system are

likely to be associated with the large posthatching increases in

monooxygenase activity. A similar conclusion was mentioned above

concerning deve lopmental changes in BPM activi ty in larval liver.

However, such interpretations must be made with caution. First of all,

in the present case there is no direct evidence indicating that changes

in the levels of cytochrome P-4s0 are associated with the posthatching

increase in monooxygenase activity. Another possibility is that changes

in the functional association of cytochrome P-450 and its reductase are

responsible for the increased BPM activity after hatching. As discussed

in the introduction, in the livers of chickens there is about a 3-fold

increase in certain microsomal monooxygenase activities within 24 hours

of hatching, but little change in the content of cytochrome P-450 or the

level of NADPH-cytochrome c reductase activity (Powis et al., 1976).

However, the increase in monooxygenase activity is correlated with an

increase in NADPH-cytochrome P-4s0 reductase activity. Whether this is

the case in Fundulus is not known. A point worth emphasizing is that BPM

and reductase activities were measured in microsomes prepared from whole

Fundulus embryos and eleutheroembryos. The activities measured are more

or less an average of those in many different tissues. It is possible

that in certain tissues the levels of reductase activity are actually

limiting monooxygenase activity, and that high reductase activities occur

in some tissues without associated monooxygenase activity.
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Hepatic monooxygenase activities:

BPM activity was measured in preparations of livers from Fundulus

eleutheroembryos, larvae, juveniles and adults. Assays with livers from

eleutheroembryos and young larvae were performed on liver whole

homogenates (Table 3-VI). Using a microfractionation procedure the

larval hepatic BPM activity was shown to be localized in the microsomal

fraction (Table 3-VIII). The levels of hepatic microsomal BPM activity

were followed from the early larval period into the juvenile period

(Table 3-IX). The overall pattern observed indicates that hepatic BPM

specific activity increases steadily from the late embryonic to the

juvenile periods of development. The total increase in specific activity

over this interval (combining whole homogenate and microsomal data) was

about 4-fold.

Over the period of development examined, the greatest increase in the

relative hepatic capacity to metabolize BP was during the transition

between the late embryonic and early larval periods. With the onset of

feeding, total liver protein per unit body weight rises rapidly. This

increase in re lative liver protein coupled with an increase in BPM

specific activity, results in about a 5-fold higher level of BPM activity

per unit body weight in young larvae compared to eleutheroembryos (Table

3-VI). In the group of larvae and juveniles from which liver microsomes

were prepared, there was little change in total liver protein per unit

body weight with development, and the yield of microsomal protein per

unit body weight actually declined with age (Table 3-IX). So while BPM

specific activity continually increased during larval and juvenile



Page 149.

development, there was little change in BPM activity per unit weight.

Further work is necessary to determine whether this is a general feature

of the development of the liver in Fundulus, since the data in Table 3-IX

were obtained with larvae and juveniles raised from a single pool of

eggs. Considerable variation was observed in the yield of total liver

protein among different groups of larvae.

In the Results section, hepatic BPM activities measured at various

developmental stages were compared to results obtained with adult

preparations (Tables 3-VI and 3-IX). In adult Fundulus, hepatic BPM

specific activity and total activity vary to some extent with season

(Stegeman, 1981a). Activities are generally highest in the fall and

lowest in midsummer; the variation may be as great as 2-fold. The adult

data in Tables 3-VI and 3-IX were from fish collected in November, and

are therefore at the upper range of adult activity. Considering this,

hepatic BPM specific activity in eleutheroembryos and young larvae are

about 25% and 40% of the average adult levels respectively. On the basis-

of total hepatic BPM activity normalized to body weight, the differential

between adults and the early deve lopmental stages is even greater. Total

hepatic BPM activity per unit body in eleutheroembryos and young larvae

i8 about 4% and 20-30% of the average adult level, respectively. The

specific activity of BPM activity in hepatic microsomes from the oldest

juveniles examined is within the range that occurs in adults. However

the activity per unit body measured is still only about 40% of the

average adult level.
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On the basis of the specific activities of BPM, aminopyrine

demethylase, NADPH- and NADH-cytochrome c reductases, and the specific

contents of cytochromes P-4s0 and bs' the hepatic microsomal

monoo~ygenase systems of Fundulus juveniles and adults appear quite

similar (Table 3-IX). Additionally, larval, juv-iile and adult hepatic

BPM activity show similar sensitivities to the cytochrome P-450

inhibitors, c; -naphthoflavone and SKF-s2sA. In mammals these compounds

differentially inhibit the monooxygenase activities induced by 3-MC and

PB, respectively (Lu et al., 1972; Thorgeirsson et ~., 1979; Goujon ~

!l., 1972; Wiebel et !l., 1971). These inhibition data indicate that the

larval, juvenile and adult hepatic cytochromes P-450 are catalytically

similar.

Comparative aspects of the development of the monooxygenase system, and a

rationale for the deve lopmental pattern in Fundulus:

The increase in BPM activity in whole Fundulus embryo microsomes

after hatching resembles the postnatal increases in hepatic monooxygenase

activity seen in mammalian species (e.g. Cresteil et ~., 1979; DaUner

et ~., 1966; Gielen et ~., 1972; Lucier et al., 1975; Manchester and

Neims, 1977; Rane et !l., 1973). Increases in hepatic monooxygenase

ac tivi ties short ly after hatching also occur in chickens (Powis ~ al.,

1976). The Fundulus data are not directly comparable to the mammalian or

avian liver data, since preparations from whole embryos were used. It is

not known which tissues are responsible for the posthatching surge in BPM

ac tivi ty in Fundulus. Premature delivery e~periments with rats and
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guinea pigs have demonstrated that some physiological change associated

with birth triggers the postnatal increases in cytochrome P-450 and

associated monooxygenase activities (Leakey and Fouts, 1979; Manchester

and Neims, 1977). Data presented here indicate that in Fundulus hatching

is required for the increase in BPM activity which occurs during later

embryonic deve lopment, and that this increase in activi ty is not

programmed to occur at a certain age (Figure 3-3). The factors

regulating the postnatal increases in the components of the monooxygenase

system in mammals have not been clearly established. During perinatal

development in mammals changes in the leve ls of a number of enzymes have

been shown to be under hormonal control (Greengard, 1971; Oliver, 1974).

Glucocort icoids apparent ly playa role in the postnatal increases in

hepatic monooxygenase activities in rats, and the analogous posthatching

increases in chickens (Leakey ~ al., 1979; Leakey and Dutton, 197s;

Leakey and Fouts, 1979; Leakey and Wishart, 1976; Mukhtar et ~., 1974).

It seems reasonable to speculate that hormonal factors are responsible

for the posthatching surge in BPM activity in Fundulus embryos. Other

fac tors which may be responsible for the posthatching increase in

monooxygenase activity will be discussed in Chapter 4.

The events of birth in placental mammals and hatching in oviparous

fish are physiologically quite distinct. Birth represents a

physiological crisis for the developing mammal (Greengard, 1971). The

continuous supply of glucose from the maternal circulation is cut off,

and within 24 hours of parturi tion there is an almost total depletion of

liver glycogen. The neonatal iiver must be able to metabolize the lipids
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and aminoacids from mother's milk and maintain serum glucose levels. The

neonate must tolerate an environment rich in oxygen, regulate its own

temperature, and can no longer depend on its mother's circulation to

remove nitrogenous wastes and bilirubin (a breakdown product of

hemoglobin). To meet this physiological challenge, changes occur at the

level of a number of enzymes during the perinatal period. The urea cycle

enzymes appear in the liver in late fetal life, as does UDP-glucuronyl

transferase,which is involved in bilirubin excretion. Phosphorylase,

responsible for glycogen breakdown emerges in the late fetal period, and

the enzymes of gluconeogenesis rise rapidly after birth. Presumably the

postnatal increases in monooxygenase activities meet the increased need

for xenobiotic metabolism, as the neonate can no longer depend on

maternal tissues to shield it from the chemical environment. While the

neonate will depend solely on motherl s milk for nutri tion, this does not

guar~ntee a supply of food free of xenobiotics. Lipophilic xenobiotics

such as PCBs are excreted in mother's milk (Alvares and Kappas, 1975).

In contrast to birth in mammals, hatching in fish does not represent

such a physiological crisis. After hatching endogenous yolk reserves

provide a continuous supply of nutrients, and there is no change in

environmental temperature. Histochemical examination of embryonic

rainbow trout livers indicate that stores of glycogen are not affected by

hatching (Vernier and Sire, 1976). Clearly though, hatching does

represent an environmental change for the developing embryo, since the

chorion is at least a partial barrier to the chemical environment. In

PCB uptake studies preliminary to the experiments described in Chapter 4,
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increases by an additional factor of 5 (Table 3-VI). Thus over a period

of about 7 days after hatching, there is a great increase in the capacity

of developing Fundulus to metabolize foreign compounds.
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CHAPTER 4

THE RESPONSES OF THE MONOOXYGENASE SYSTEMS OF FUNDULUS EMBRYOS

AND ELEUTHEROEMBRYOS TO AROCLOR l254

In the previous chapter aspects of the development of the xenobiotic

monooxygenase system in untreated early developmental stages of Fundulus

were examined. A striking developmental pattern was observed for

benzo(a)pyrene monooxygenase activity with low, fairly uniform specific

activities in whole embryo microsomes, followed by a ten-fold increase in

specific activity within one day of hatching. In Chapter 2 it was

demonstrated that BPM activity is inducible in Fundulus embryos and

eleutheroembryos by PCBs and No.2 fuel oil. In those early experiments

the uptake of inducers was not quantitated, thus the actual tissue levels

of inducers necessary to produce a response were not known. The

experiments presented in this chapter were designed to further

characterize the induction of monooxygenase activity in Fundulus embryos

and eleutheroembryos by Aroclor 1254. The questions approached include

whether environmentally realistic levels of PCBs can induce monooxygenase

activity in Fundulus embryos, and whether there is a change in the

relative sensitivity to PCBs as inducers of BPM activity after hatching,

considering the large change in constitutive activity associated with

this process. The relative capacity of early developmental stages to

respond to PCB induction of BPM activity was examined, and the the

spectrum of BP metabolites produced by eleutheroembryo microsomes was

analyzed by high performance liquid ch romatography (HPLC).
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MATERIALS AN METHODS

Chemicals and Supplies:

Chemicals were as described in Chapter 3 with the following

additions. Aroc1or 1254 was lot AA-1 from Monsanto Co., St. Louis, MO.

14
Protosol and a uniformly ( C)-labelled PCB isomeric mixture (96

pCi /mg) , approximately 54% chlorine by weight, were purchased from New

England Nuclear, Boston, MA. According to the manufacturer, the isomeric

composition of this PCB mixture (lot 872-193) determined by gas

chromatography was essentially the same as Aroclor 1254. Samples of

authentic BP metabolite standards were obtained from the lIT Research

Institute, Chicago, IL. Acetonitrile, ethylacetate and methanol were

purchased from Burdick and Jackson Laboratories, Muskegon, MI, and

trichloropropylene oxide (TCPO) from Aldrich Chemical Co., Milwaukee,

WI. Nalgene filmware tubes for liquid scintillation counting were

purchased from Nalge Co., Rochester, NY, and Nucleopore filters from

Nuc 1eopo re Corp., Reasanton, CA.

Embryos: PCB Exposure and Quantitation of PCB Uptake:

Embryos were obtained from adult Fundulus heterocli tus collected at

Herri ng Brook, North Falmouth, MA during 1979 and 1980. Methods of

obtaining and handling embryos and conditions of embryo maintenance were

as desert bed in Chapter 3. Embryos were exposed to Aroclor 1254 by

incubation in 100 mm glass pet ri dishes coated with films of this PCB
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mixture. To coat a petri dish with Aroclor 1254, 0.3 ml of a methanolic

solution was added to the dish and swirled to cover the entire surface,

then allowed to air dry. Examination of dish surfaces with a

stereomicroscope indicated that they were covered with a fairly uniform

distribution of micro-PCB droplets. Once all the solvent had evaporated,

fil tered seawater and embryos were added to dishes, and incubation was as

described in Chapter 3. For control dishes 0.3 ml of methanol was added

and allowed to evaporate. The rate of uptake of PCBs into embryos was

found to vary with the surface density of PCBs (weight/unit area) coating

a dish, and this quantity was varied to achieve desired rates of uptake.

The details of exposure protocols are described in the figure legends.

Tnis method is simple and results in uniform levels of PCBs in embryos

incubated within the same dish, and additionally has the great advantage

that embryos are exposed only to PCBs. Thus any effects observed can be

attributed solely to the PCB mixture and no synergisms are possible.

To allow quantitation of PCB uptake, varying amounts of the

14
( C)-PCBs described above were mixed with the Aroclor 1254. The

specific activities used ranged from 1-30 nCi/pg depending on the levels

of PCBs to be reached in embryos. To prepare a labelled PCB mixture, a

hexane solution of Aroclor 1254 was mixed with a volume of the

14
( C)-PCBs to approximately the desired specific activity. The actual

specific activity was determined by drying aliquots of this mixture on

tared aluminum microbalance pans, weighing, then quantitating the

radioactivity by liquid scintillation counting (LSC). The PCB mixture

was then dried under nitrogen and redissolved in methanol to the desired

concent ration.
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To quantitate the levels of PCBs in embryos due to exposure,

o
embryos were washed 3 times with filtered seawater (25 /oo)~

dechorionated with microsurgical scissors, transferred with a pipette to

tared pieces of 8 p polycarbonate Nucleopore filters, blottéd on filter

paper and weighed. Embryos and filters were solubilized in Protosol

overnight at room temperature in sealed Nalgene filmware tubes, then

counted in 3 ml of Aquasol acidified with an excess of HCl. Levels of

PCBs in eleutheroembryos were similarly quantitated, except they were

immobilized by washing in ice cold seawater. The counting efficiency was

14
determined by internal standardization using r C)-toluene. The

Nucleopore filter material served as an excellent support for the fragile

embryos during blotting and weighing; without such support wet weights

could not be obtained on dechorionated embryos,as direct blotting of

embryos results in rupture of the yolk sac. Because of the hydrophobic

nature of the polycarbonate filters, a negligible weight of water is

retained after blotting, and conveniently filters are completely

solubilized by Protosol. Levels of PCBs in eleutheroembryos were

similarly determined. In some cases the distribution of PCBs between the

yolk and the 'tissue, was examined by dissecting embryos or

eleutheroembryos free or yolk. The remaining bodies . were weighed and

solubilized like whole embryos. Before hatching, if great care was

exercised, yolk with. surrounding membrane could be removed from the

embryo intact but was too fragile to weigh. In these cases yolks were

transferred directly to filmware tubes with a Pasteur pipette, then

solubilized and counted. After hatching when the yolk is reduced in size
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and more viscous, weights were readily measured with yolks supported on

pieces of filter; the filter and yolk" were then solubilized and counted.

Fractionation of Embryos and Enzyme Assays:

Embryo fractionation and enzyme and protein assays were exactly as

desc ri bed in Chapter 3. All benzo (a )pyrene ~onooxygenase assays were

performed on fresh material; NADPH- and NADH-cytochrome c reductase and

aminopyrine demethylase assays were performed on fractions frozen in

liquid ni t rogen.

HPLC:

The spectrum of BP meta~olites produced by microsomes from

untreated and PCB-exposed eleutheroembryos were analyzed by high

performance liquid chromatography (HPLC). Microsomes were prepared from

1200 untreated stage 37-38 eleutheroembryos, which were from a pool of

eggs stripped from 25 females. Metabolites were prepared from these

microsomes by combining 1.1 mg of microsomal protein with 0.430 ?mole of

NADPH, 49 pmole Tris-HCI, pH 7.2, and 0.060 pmole of (3H)_ BP (390

pCi/umole) added in 20 pi of acetone, in a final volume of i mI.

Immediately after the addition of the (3H)-BP, half of the reaction

volume was removed and combined with 0.5 ml of acetone on ice; this

served as the zero-time blank to correct for oxidation productions

present in the BP. The remaining reaction volume was incubated for 25

minutes o
at 30 , then combined with 0.5 ml of acetone as before. To

examine the effects of TCPO (epoxide hydrolase inhibitor), TCPO was added

to a simila r reac ti on mixture to a: final content ra tion of lmM. BP
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metabolites were similarly prepared using adult Fundulus hepatic

microsomes.

When metabolites were prepared with microsomes from PCB exposed

eleutheroembryos, the reaction volume was reduced to 0.20 ml to reduce

the background from oxidized products of (3HJ-BP. The enzyme used was

0.30 mg of a pool of approximately equal amounts of microsomal protein

from groups 7 and 8 of Experiment 1 (described in Results). Immediately

3
the ( HJ-BP, half of the reaction volume was removedafter addition of

and combined with 0.9 ml of H20 and 1 ml of acetone; this served as the

zero-time blank. The remaining reaction volume was incubated as before

then combined with 0.9 ml of H20 and 1 ml of acetone. Water was added

simply to increase the working volume.

Metabolites were extracted according to Selkirk (1976) and were

finally ,dissolved in acetoni trile. Resolution of metab01 ites was

accomplished using a Dupont LC850 chromatograph with a 10 pi injection

loop, a 0.46 x25 em ODS column, and a UV detector operating at 254 nm.

Metabolites were eluted with a 40-100% gradient of acetonitrile in water

at a flow rate of 2 ml/min and were identified by coelution of peaks of

radioactivity with the UV absorbance of coinjected authentic standards.

Radioactive peaks were quantitated by liquid scintillation counting of

3
fractions collected during the course of elution. The ( HJ-BP used was

purified as descrihed in Chapter 3, and all procedures were done under

red Jig ht .
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Statistics:
The statistical significance of differences bet~een sample means

~as evaluated by the Student t-test on pooled estimates of variance

(Winer, 1971).

RESULTS
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Figure 4-l. Levels of PCBs in whole embryos during the course of
Experiment 1. Ten groups of 150 embryos were selected from a large pool
of eggs stripped from 18 females and fert ilized with minced testis from 5

m~les. Eight of the groups were exposed to varying levels of a mixture
of Aroclor 1254 and (14C)-PCBs (4 pCi/ug), while the other 2 groups
served as control s. Emb ryos were exposed to PCBs by incubation for 2
days in 10 em glass petri dishes coated with PCB films of varying surface

density, then were transferred to freshly coated dishes for an additional
2 days, then were finally transferred to clean dishes. The intervals of
exposure in coated dishes are indicated in the figure by the darkened
portions of the abscissa. Control groups were similarly treated with
transfers between clean dishes. The exposure of groups 1-4 began 1 day
after fertilization, while groups 5-8 were exposed beginning at 8 days of
age. The embryos in all groups were assayed for various enzymatic
activities 12 days after the initiation of exposure.

Dishes were coated with PCBs as described in Materials and Methods.
The amounts of PCBs added per dish for groups 1-4 were 426, 145, 48 and
16 pgls, respectively, and for groups 6-9: 200,80,30, and 10pgls
respectively. Incubation conditions and analysis of PCB levels were as
described in Materials and Methods. Each data point represents the mean
PCB levels in from 3-6 whole embryos calculated on a wet weight basis.
The mean coefficient of variation (8 .D. /mean) was about 10%. Embryos
analyzed before hatching were dechorionated, so the data before and after
hatching are comparable.
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in glass Pet ri dishes coated with PCB films of varying surface densities

for four days then transferring :to c1 ean dishês. The exposure conditions

were selected based on a preliminary embryo dose response experiment and

preliminary uptake experiments (data not shown). The levels of PCBs in

whole embryos e1eutheroembryos during the course of exposure are plotted

in Figure 4-1, and the details of the exposure '-method are described in

the legend to this figure. The chorions of group 1 embryos, which were

exposed to the highest levels of PCBs, became covered with PCB droplets

visible with a dissecting microscope. These chorion-associated PCBs were

responsible for the continued high rate of uptake of PCBs into group 1

embryos, after they were removed from direct contact with the PCB film

(the periods in contact with PCB films are indicated by the darkened

portions of the x-axis of Fig. 4-1.) A similar effect occurred in the

other groups, but to a lesser extent. The increase in whole embryo PCB

concentration in groups 5-8 after hatching is due to a decrease in the

whole embryo weight; between days 15 and 20 of age there was little

change in the total PCB content in embryos, but there 
was a mean decrease

of 26% in whole embryo weight. The decrease in embryo weight around the

time of hatching) due to loss of fluid) was described in Chapter 3.

For interpretation of induction results it is important to know the

tissue levels of PCBs, thus the distribution of PCBs within embryos and

eleutheroembryos near the times of assay was determined. The tissues

were dissected free of yolk and these two portions of the embryo and

eleutheroembryos were separately analyzed for PCB content. Only the

level~ of PCBs due to the exposure Were measured, the background levels
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of PCBs were not determned. Table 4-1 shows levels of PCBs in intact

embryos and eleutheroembryos as ,well as. ,tissue levels for each of the

indi vidual exposure groups shortly before they were fractionated and

assayed. Table 4-11 shows various compiled statistics on the embryo and

eleutheroembryo exposure groups. It can be seen that levels of PCBs

measured in intact embryos and eleutheroembryo~ were 3-4 times higher

than the respective tissue levels (Table 4-1). This was due to the fact

that in both embryos and eleutheroembryos the majority of PCBs was

associated with yolk (Table 4-11). For the eleutheroembryo exposure

groups 5-8, PCB concent ra tions in the yolk were 8-9 times highe r than the

tissue levels. The yolk concentrations of PCBs could not be

calculated for the embryo exposure groups, because their yolks were too

fragile to weigh. For comparison of the sensitivity of the induction

responses in embryos and eleutheroembryos, knowledge of the tissue levels

of PCBs necessary to produce a response is essential. For comparison of

results to environmental data, the levels of PCBs in intact embryos and

eleutheroembryos are most relevant.

As mentioned above there is a decrease in whole embryo weight after

hatching. This is evident in Table 4-11, when the whole embryo weights

of groups 1-4 (12 days of age) are compared to those of groups 5-8 (20

days of age). Despite the decrease in 
whole embryo weight from 12 to 20

days of development, there was a 180% increase in ~ody weight over

this period as a result of growth. The yield of microsomal protein per

mg of tissue weight was higher in the eleutheroembryos compared to
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Table 4-1. Levels of PCBls in Experiment 1 embryos and eleutheroembryos

near the times of assay.

+Exposure
Group Intact

ppm PCBs*
Tissues Yolk

Embryos

1 360 + 52 100 + 30

2 140 + 26 35 + 3

3 58 + 1 14 + 2

4 16 + 3 5.5 + 0.8

Eleutheroembryos

5 180 + 22 55 + 12 450 + 61

6 90 + 8 27 + 5 250 + 30

7 62 + 7 18 + 4 152 + 5

8 23 + 2 6.6 + 1.0 61 + 13

+
Exposure group refers to the designations in Figure 4-1.

* "Intact" refers to the whole embryo or eleutheroembryo (Le. the yolk
and tissues). "Tissues" refer to the remainder of the embryo or
eleutheroemb ryo after the yolk has been removed, essentially the
body. "Yolk" refers to the fluid yolk, lipid droplets and surrounding
membrane dissected from the yolk sac. Prior to. hatching, yolk and
surrounding membrane were too fragile to weigh and concentrations of
PCB i s could not be calculated. The data for exposure groups 1-4 were
obtained at 12 days of age, 1 day before they were assayed. For these
groups, whole embryo levels of PCBls were also determined on the day
of assay (plotted in Figure 4-1). The data for exposure groups 5-8
were obtained on the day of assay, at 20 days of development. Levels
of PCBs were quantitated as described in Materials and Methods. The
values shown are the mean + S.D. for 4-6 individual s. ppm = ng/mg wet
weight.
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Table 4-11. Compiled statistics for PCB-exposed Experlment 1 embryos and

eleutheroembryos near the times of assay.

CharâcterU Exposure Groups 1-4
Embryos

Exposure Groups 5-8
Eleutheroembryos

Age 12 days 20 days

Developmental Stages 33-34 36-38

Intact Weight (mg)

Tissues (body)
Weight (mg)

2.84 + 0.10 1.87 + 0.12

0.71 + 0.10 1.29 + 0.07

¡ig mic rosomal protein
mg weight

5.5 + 0.8 8.3 + 0.4

% total weight 25 + 3 69 + 3

% total PCll's

Yolk ·

Weight (mg)

% total weight

% total PCB's

8 + 2* 21 + 2

0.57 + 0.05

31 + 3

92 + 2* 79 + 2

U The terms whole "intact". "tissues" and "yolk" are defined in Table 4-1.

+
Exposure groups refer to the designations in Figure 4-1 and Table 4-1.
Group data were pooled a8 indicated and values are the mean of group data +
S.D. Within each group measurements were made on at least 5 individuals.

.
Yolk and surrounding membrane were too fragile to weigh before
hatching. Substantial fluid is released from the pericardial and
peri toneal cavi ties during dissec tion prior to hatching. Thus accurate
yolk weights can not be obtained by subtraction of the embryo body weight
from the intact embryo weight.
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embryosl. This was not a specific effect, as the yield of protein per

unit body weight was higher in all of ::he centrifugal fractions of thE'

eleutheroembryos. No effect of PCB exposure on the yield of whole embryo

or eleutheroembryo microsomal protein was apparent.

The exposure of embryos to PCBs had no apparent effect on the rate

of development. At the times of observation, embryos in each of the

groups were in the same development stages. Also the mean time to

hatching and the percent hatching were not affected by exposure to PCBs

at the levels used here. For groups 5-8 and their control the overall

mean hatching time ,was 19.8 t 0.3 days and the overall mean hatching

success ~as 98 + 0.5% (both + standard deviation of the mean). The

incidence of malformed embryos did not exceed 3.5% in any of the exposure

groups, and only normal embryos were assayed. It should be noted that in

the experiment described in Table 2-11, PCB exposure apparently slowed

the development of embryos. In this experiment PCBs were added to the

incubation water in DMSO. Possibly the effect on developmental rate was

due to an interaction of the PCBs and DMSO.

The results of monooxygenase and NADPH-cytochrome c reductase

assays on the microsomal fraction of whole embryos and eleutheroembryos

from the various exposure groups are shown in Figure 4-2. Embryos

(groups 1-4 and control) were assayed at 13 days of age in dev1'10pmental

stages 33-34. Exposure to Aroclor 1254 produced a clear dose dependent

1 The yield of microsomal protein for whole eleutheroembryos reported

in Table 4-11 is lower than that shown in Table 3-II. In the later case
microsomes were prepared by sedimenting the low speed and 10K fractions
in the same tube without decantation of supernatants. This leads to a
higher yield of microsomes.
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Figure 4-2. Microsomal BPM, APD and NADPH cytoch rome c reductase
activities in fractions prepared from Experiment 1 embryos and
eleutheroembryos. Enzyme specific activities are plotted versus the
levels of PCBs in whole embryos or eleutheroemb ryos at the time of
assay. The embryos were from exposure groups 1-4 (Figure 4-1) and their
control group. Pools of 88 embryos from each of these groups were
fractionated and prepared for assay at 13 days of age and stages 33-34.
The eleutheroembryos were from exposure groups 5-8 (Figure 4-l) and their
control group. Pools of 60 individuals from each of these groups were
fractionated and prepared for assay at 20 days of age in developmental
stages 36-38. The majority of eleutheroembryos had hatched more than l2
hours before they were fractionated. BPM data points are the mean of 4
replicates ~ S.D; NADPH-cytochrome c reductase data points are the mean
of 3 replicates ~ S.D., and APD points are the mean of duplicate
determinations ~ range.
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induction of embryonic microsomal BPM monooxygenase activity (Figure

4-2A). A near maximal induction of 27-fold over the low constitutive

activity of the control group was reached by a dose level of 140 ppm. At

the lowest dose level of PCBs, 16 ppm in the whole embryo, BPM activity

was induced 6 .3-fold. The dose response curve suggest s that levels as

low as 10 ppm in whole Fundulus embryos can induce a greater than 4-fold

induction of BPM activity. The ED50 for the induction of BPM activity

in embryos by Aroclor 1254 was graphically estimated to be about 45 ppm

2in the whole embryo. Despite the almost 30-fold induction of

embryonic BPM activity by PCBs, levels of NADPH-cytochrome c reductase

áctivity were essentially unchanged by exposure of embryos to this PCB

mixture. The levels of NADH-cytochrome c reductase activity were also

measured, and showed a similar lack of response to PCB exposure (data not

shown). The mean NADH-cytochrome c reductase activity was 25 pmole

cytochrome c reduced/min./pg protein, which was about 1.B times higher

than that of the NADPH-cytochrome c reductase.

Eleutheroembryos (groups 5-B and control) were assayed at 20 days

of age in developmental stages 36-38. Consistent with previous

observations, it can be seen that the basal BPM specific activity in the

control eleutheroembryos was about 10-fold higher than that in the

control embryos (compare 4-2A to 4-2B). In sharp contrast'to the results

with embryos, BPM activity was induced to a similar extent in

eleutheroembryos by all of. the dose levels of PCBs examined. The

induction ranged from 2.4 to 2.B-fold, and no dose dependency is

2 ED50 is the dose necessary to produce a half-maximal response.



Page 172.

apparent. (It should be noted that the PCB concentration scale in Figure

4-3B is 1/2 that in 4-3A). A near maximal induction was produced by only

23 ppm PCBs in whole eleutheroembryos, while about 140 ppm was requi red

for maximal induction in the stage 33-34 embryus. Despite the large,

increase in constitutive BPM specific activity associated with hatching,

the maximal specific activity induced by PCB exposure, both before and

after hatching, was about the same. With both embryos and

eleutheroembryos the maximal BPM activity induced was about 60 fmole of

metabolite/min/~g of microsomal protein. The lesser relative extent of

induction after hatching is due to the rise in basal activity.

In certain of the eleutheroembryo exposure groups aminopyrine

N-demethylase activity was also assayed (Figure 4-2B). Although BPM

activity was near maximally induced at 23ppm PCBs, APD activity was

essentially unchanged at a level of 90 ppm PCBs in the whole

eleutheroembryo. There is a suggestion of a modest increase in APD

specific activity at 180 ppm PCBs, but clearly over a range of PCB levels

that produce a, greater than 2.5-fold increase in BPM activity, APD

activity changes very little.

Consistent with previous observations, it can be seen that there

was an increase in the specific activity of the NADPH-reductase after

hatching. NADH-cytochrome c reductase activity was also measured in

whole eleutheroembryos microsomes (data not shown). The constitutive

activity of NADH-cytochrome c reductase did not change after hatching,

and the specific activities of the two reductases were essentially the

same in the control eleutheroembryos. Both reductase activities were
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modestly induced in eleutheroembryos by PCB expos~re at the higher dose

levels, although no induction was appa~_-.2!lt in embryos even at about twice

the highest level of PCBs in eleutheroembryos. At 180 ppm PCBs in, whole

eleutheroembryos, both the NADPH- and NADH-cytochrome C reductase

activities were greater tha? 1.3 times the control activities; these

increases in activity were statistically significant at the 0.001 and

0.01 levels, respectively (based on replicate determinations with

individual pools of microsomes). The dose response for induction of

NADPH cytochrome c reductase activity is apparently distinct from that of

the induction of BP monooxygenase activity, as BPM activity was near

maximally induced at 25 ppm PCBs in whole eleutheroembryos, while

induction of the reductase is only apparent at the highest dose levels.

The data in Figure 4-2 indicate that BPM activity is maximally

induced in eleutheroembryos (stages 36-38) at concent rations that are at

least 6-fold lower than required for maximal induction in embryos (stages

33-34). This suggests that the induction response in eleutheroembryos is

much more sensitive than in embryos. This is confirmed when the tissue

levels of PCBs necessary to produce maximal responses in embryos and

eleutheroembryos are compared. The BPM data presented in Figure 4-2 was

replotted versus the levels of PCBs in embryo bodies (tissue levels)

rather than the levels in intact embryos and eleutheroembryos, and the

activities were normalized to embryo body (or tissue) weights. illen the

data are plotted in this way (F'igure 4-3) a pattern similar to that seen

before is apparent. In embryos the induction of BPM activity was

dependent on the level of PCBs within the embryo bodies, with a maximal
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Figure 4-3. BPM activities for Experiment 1 embryos and eleutheroembryos
normalized to embryo body weight, and plotted versus ppm PCBs in embryo
bodies. Embryos (e), eleutheroembryos (.).
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induction of about 27-fold. The ED50 for induction, in terms of ppm of

Aroclor 1254 in the embryo body, was graphically estimated to be 13 ppm.

In the eleuthe roembryos each of the dose levels of PCBs produced an

apparently maximal 3-fold induction of activity. While about 35 ppm PCBs

within the embryo bodies was required for near maximal induction in the

embryos, a near ttaximal induction was observed in eleutheroembryos at

about 6.6 ppm. The data indicate that there is at least a 5-fold

increase in the sensitivity of the induction response between stages

33-34 and stages 36-38. Since the dose response for induction of BPM

acti vity in eleutheroembryos was not defined, the actual increase in

sensitivity may be even greater than 5-fold.

As already mentioned, the PCB exposure induced about the same

maximal BPM specific activity in tticrosomes from the stage 33-34 embryos

and the stage 36-38 eleutheroembryos (Fig. 4-2). However, as a result of

the increased yield of microsomal protein in eleutheroembryos (Table

4-2), the maximal induced BPM act! vity normalized to body weight is about

1.5 times higher in e1eutheroembryos than embryos. When the activities

are normalized to whole embryo weight, the differential is even greater

because of the growth of the embryo body with development (Table 4-2).

The activities in maximally induced e1eutheroembryos and embryos were

about 320 and 86 fmo1e BP metabo1ites/min/mg whole embryo weight,

respectively. Although similar maximal BPM specific activities can be

induced in the microsomes of embryos and eleutheroembryos, the

e1eutheroembryos would have considerably more total capacity to

metabolize benzofaJpyrene, and would reach the maximally induced state at

lower levels of the inducer.
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The data on BPM activities in the various exposure groups discussed

so far were obtained by assaying the mi~Losomal fraction of whole embryos

and eleutheroembryos. However, in Experiment 1 all of the centrifugal

fractions were assayed for BPM activity immediately after preparation. A

roughly parallel induction of activity was seen in the various

particulate fractions, and activity was not detectable in the supernatant

fractions (data not shown). Figure 4-4 shows the distribution of BPM

activity in the centrifugal fractions of PCB exposed embryos and

eleutheroembryos. The data plotted are the mean results for the four

exposure groups assayed before hatching and the four groups assayed after

hatching. BPM activity was similarly distributed in the centrifugal

fractions of the embryos and eleutheroembryos, and in both cases was

primarily localized in the microsomal fraction. These results confirm

the observations presented in Chapter 3 indicating that there is no

change in the dist ri bution of BPM activity after hatching.

Experiment 2

A comparison of the response of 4 and 13 day old embryos to PCB exposure:

To examine the relative capacity of 4 and 13 day old Fundulus

embryos to respond to PCB induction of BPM acti vi ty, an experimental

protocol similar to that of Experiment 1 was used. Two groups of embryos

(I and II) were exposed to Aroclor 1254 for 95 hours before they were

assayed for BPM activity at 4 and 13 days of development, respectively.

The experimental procedure is described in detail in the legend to Figure

4-5. The levels of PCBs in the two groups of embryos during the course
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Figure 4-4. The distribution of BPM activity in centrifugal fractions of
PCB exposed embryos and eleutheroembryos from Experiment l. The
designations i-iv refer to the low speed, 10 K, microsomal and
supernatant fractions, respectively. The embryo data are the mean
results for exposure groups 1-4, and the eleutheroembryo data ~ the mean
results for exposure groups 5-8 (Figure 4-1). Relative specific activity
is the percent total activity in a fraction divided by the percent total
protein.
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Figure 4-5. A) Leve ls of PCBs in Experiment 2 embryos during the course
of exposure. B) BPM activity in fractions from control (CON) and PCB
exposed embryos. Two groups of embryos were selected from a pool of eggs
stripped from 13 females and fertilized with minced testis from 4 males.
A port ion of the embryos in each gr9uP was exposed to a mixture of
Aroclor l254 and (14C)-PCBs (1.0 nCi/pg) for approximately 95 hours
before they were fractionated and assayed; the remaining embryos served
as controls. The exposure of group I was initiated 10 hrs. after
fertilization and that of group II, 9 days after fertilization. The
exposure was accomplished by incubating approximately 100 embryos in 10
em glass petri dishes coated with 600 pg of the (14C )-PCB mixture.
Embryos were transferred to the PCB coated dishes at the time of
initiation of exposure, and were incubated in the same dish with daily
water changes úntil they were fractionated. Control embryos were treated

similarly with transfers between clean dishes.
The data in part A of the figure are the mean PCB leve ls in from 3-6

dechorionated embryos.: S.D. For group I about 200 control and exposed
embryos were fractionated, while for group II about 100 control and
exposed embryos were fractionated. Group I embryos were fractionated at
4.4 days of development in stages 26-27, while group II embryos were
fractionated at l3 days of development in stages 33-34. The BPM data
shown in part B are the mean of 4 repl icates + S.D. The coefficients of
variation for the control data were 5-10%.
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of exposure are shown in part A of the figure. The rate of uptake of

PCBs into group I embryos was some..'hat .faster than into group II. The

final concent ration of PCBs reached in whole embryos of groups I and II

were 138 + 33 and 110 ~ 6 respectively. Microsomal BPM activity in

fractions prepared from embryos of the two exposure groups are sho~ in

part B of Figure 4-5. A very similar response =to the PCB exposure was

seen in both groups. The activity in the exposed embryos of group I was

l2-fold higher than that in the controls, while in group II there was an

8-fold induction. However, activity was induced to essentially the same

absolute level in both groups, as the constitutive activity in group I

was lower than that of group II. The data clearly show that as early as

4 days after fertilization (stages 26-27), Fundulus embryos are competent

to respond to exposure to inducers with increased levels of monooxygenase

activity, and that their capacity to respond is very similar to that of

13 day old embryos (stages 33-34).

In Experiment 1 embryos were also assayed at 13 days of development

in stages 33-34, and a similar level of constitutive activity was

observed. The levels of PCBs in group II embryos in this experiment were

near the maximally inducing levels of Experiment 1. The maximal relative

induction at 13 days of development in Experiment 1 was 27-fo1d ~ to a

specific activity of 60 fmole/min/pg protein, whereas here the relative

induction was only 8-fold to a specific activity of 22. However, the

total period of exposure here was one-third as long as in Experiment 1

and the levels of PCBs were increasing al~ost linearly throughout the

course of exposure. The relative ind-uction'of monooxygenase activity is
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apparently a function of both the average levels of PCBs and the length

of the exposure period.

Expe riment 3

Additional Observations on the Induction of BPM Activity in

Eleutheroembryos:

To further characterize the sensitivity of the induction response

after hatching,embryos were loaded with a range of PCB concentrations

lower than those in Experiment 1. The levels of PCBs in whole embryos

during the course of exposure are shown in Figure 4-6, and the details of

the exposure protocol are described in the legend to this figure. All

embryos exposed to PCBs were incubated together in a single coated dish;

when a desired level of PCBs was reached a portion of the embryos was

removed. In this way embryos were divided into 3 exposure groups, A-C.

The exposure was initiated at 2.8 days of development and

eleutheroembryos were assayed 21 days later in stages 38-39. The levels

of PCBs in whole eleutheroembryos and eleutheroembryo tissues or bodies

are shown in Table 4-111. The lowest levels of PCBs in intact

eleutheroembryofin this experiment were about 1/4 those in Experiment 1

(Table 4-1). However the eleutheroembryos in this experiment were older

than those of Experiment 1 (24 compared to 20 days) and had less yolk

remaining. The tissues constituted 92% of the whole embryo weight, and

contained on the average 51% of the total body burden of PCBs (compare to

values in Table 4-11). For these eleutheroembryos (stages 38-39), the

ratio of the percent total PCBs in the tissues to the percent total

weight was 0.55. For both the stage 33-34 embryos and stage 36-38
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Figure 4-6. Levels of PCBs in whole embryos during the course of
Experiment 3. Eggs were stripped from 3 females and fertilized with
minced testis from 1 male. Of a total of 230 eggs, 60 served as contro ls
and the remainder were exposed toa mixture of Aroclor 1254 and

i14C)-PCBs (30 nCi/pg). At 2.8 days of development those embryos that
were to be exposed to PCBs were transferred to a 10 em glass petri dish
coated with 20 pg of the PCB mixture. The uptake of PCBs into embryos
was monitored in time; when a des ired level was reached a portion of the
embryos was transferred to a clean dish. Remaining embryos were
transferred daily to a freshly coated dish. In this manner embryos were
evenly divided into 3 exposure groups; group C was removed from exposure
to the PCB film after 10 hours ,group B after 59 hours, and group A after
l48 hours. The incubation conditions and quantitation of PCB leve ls were

as described in Materials and Methods. The data points represent the
mean PCB leve ls in 4 embryos! S.D.
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Table 4-111. Levels of PCBs in intact eleutheroembryos and eleutheroembryo

tissues at the time of assay in Experiment 3. +

Exposure Group
*

ppm PCBs

Intac t

Eleutheroembryo
Tissues

A 33.4 + 1. 9 13.8 + 1.5

b 11.9 + 0.30 7.6 + 1.8

c 5.3 + 0.4 3.4 + 0.7

+ r

Exposure group refers to the designations in Fig. 4-6.

*
Values are the mean of determination on 4 individuals + S.D.
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eleutheroembryos of Experiment 1, this parameter was 0.31. This

indicates that towards the end of th£ ~mbryonic phase of development,

when the yolk is almost completely absorbed, the rêlease of PCBs into the

tissues is not matched by growth. Thus there apparently is a

redistribution of PCBs from the yolk into the tissues as the end of the

embryonic period of development is approached. For a given level of PCBs

measured in intact embryos or eleutheroembryos, later stage

eleutheroembryos will have higher levels of PCBs in the tissues.

The levels of microsomal BPM activity in the various exposure

groups are plotted in figure 4-7. At each of the 3 dose levels of PCBs,

BPM activity was induced about 5-fold over the constitutive activity of

the control group. At the lowest dose level there were 5.3 + 0.4 ppm

PCBs in the whole embryo and 3.4 + 0.7 ppm in the embryo body. The data

show that this level of PCBs produced a maximal induction of BPM activity

in the latê embryonic period. Since a maximal induction was observed at

all the doses an ED50 cannot be estimated and the sensitivity of the

induction response in these Fundulus eleutheroembryos remains a

question. Both the relative and absolute extent of maximal induction are

higher in this experiment compared to Experiment 1. However, the

exposure here was for 21 days rather than 12 days and the embryos were

older and in later stages.

HPLC :

The resolution of BP metabolites produced by micro somes from whole

PCB exposed eleutheroembryos, is shown in Figure 4-8. The relative
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Fignre 4-7. Experiment 3 results; microsomal BPM acti vi ty in fractions
prepared from whole eleutheroembryos exposed to varying levels of PCBs
(exposure to PCBs shown in Figure 4-6). The activity is plotted versus
the levels of PCBs in the whole eleutheroembryos at the time of assay.
The point at zero ppm PCB~ corresponds to the control group which was not

exposed; the background levels of PCBs in embryos was not determined. A
total of 15 embryos from each of the exposure groups was assayed at 24

days of age in stages 38-39. The mean hatching time for all groups was
22 days. The data plotted are the mean of 3 replicates + S.D.
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Figure 4-8. HPLC elution profile of benzo(a)pyrene metabolites produced
by microsomes from PCB treated Fundulus eleutheroembryos. The procedure
is described in Materials and Methods; the microsomes used were a mixture
of the preparations from exposure groups 7 and 8 described in Figure

4-1. The data were corrected for background oxidation products present
in the substrate by subtraction of the radioactivity in the analysis of a

ze ro time blank. A total of about 50 ~mole of metabolites were
injected. The BP peak was at 550 X 10 dpm/ml, and less than 4% of the
BP in the reaction mixture was metabolized. The abbreviations are diol =
dihydrodiol, Q = quinone, and OH = hydroxy.
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amounts of the various metabolites are shown in Table 4-IV, along with

comparative data on the proportion of metabolites produced by adult

Fundulus hepatic microsomes. The principal metabolites produced by

eleutheroembryo microsomes were dihydrodiols and quinones; peaks

coeluting with 9- and 3-hydroxy-BP standards were also present. The

benzo-ring dihydroxy metabolites, trans-7,8- and

trans-9,10-dihydrodiol-BP, comprised more than 40% of the total

metabolites, and no trans-4,5-dihydrodiol-BP was detectable. The

identity of the hydroxy metabolites is not certain as phenols other than

the standards used elute in this region (Tjessum and Stegeman, 1979).

The small peak eluting before the diols may correspond to

multi-hydroxylated metabolites, based on preliminary mass spectral

analysis of adult fish metabolites eluting in this region (Stegeman,

1981a) .

Metabolites produced by microsomes from untreated eleutheroembryos

were also analyzed by HPLC, but in these first attempts with preparations

of low activity, the resolution was not as good as seen in Figure 4-8,

because of high background counts (data not shown). The microsomes from

untreated eleutheroembryos did produce a spectrum of metabolites similar

to that produced by the preparation from PCB treated eleutheroembryos,

with a high proportion of dihydrodiol metabolites and lesser amounts of

quinones and phenols. Whether the microsomes from untreated

eleutheroembryos produced any trans-4, 5-dihydrodiol could not be

determined from the chromatogram obtained. The production of dihydrodiol

metabolites by microsomes from both untreated and PCB-exposed
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Table 4-IV. Relative amounts of benzo(a)pyrene metabolites produced by
microsomes prepared from adult Fundulus liver and whole PCB
exposed e leutheroembryos.

Percent of Total*

Metabolite
Eleutheroembryos Adult Liver

9,10 Dihydrodiol 2l 19

4,5 Dihydrodiol N.D. + N. D.

7,8 Dihydrodiol 24 20

1,6 Quinone 11 12

3,6 Quinone 23 15

9-Hydroxy 7 5

3-Hydroxy 14 29

* Calculated as the percent of the total radioactivity eluting in

these peaks. The eleutheroembryo data are from the chromatogram
shown in Fig. 4-8. The overall rates of production of metabolites
for the eleutheroembryo and adult liver microsomes were 53 and 314
pmole/min/mg protein, respectively. These values were calculated
based on an estimated extraction efficiency of 50%.

+ N.D. = not detectable.
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eleutheroembryos indicates that the enzyme epoxide hydrolase is present

in these preparations (Yang ~ a1., 1978). This was confirmed by

including the epoxide hydrolase inhibitor trichloropropylene oxide (TCPO)

(Selkirk ~~., 1974) in a BP metabolite reaction mixture. TCPO

abolished the diol peaks produced by microsomes from untreated

eleùtheroembryos (data not shown). From Table:4-IV it can be seen that

the spectru of BPmetabolites produced by adult hepatic microsomes is

very similar to that produced by the microsomes from PCB exposed

eleutheroembryòs. The adults produced somewhat more material eluting

with the 3-hydroxy standard and less of the 3,6-quinone. These results i
i
i

indicate the catalytic similarity of the forms of cytochrome P-450

responsible for BP metabolism in Fundulus adults 
and eleutheroembryos.

DISCUSSION

The data presented in thi s chapter clearly show that BPM activity

in Fundulus eleutheroembryos is maximally induced at lower doses of PCBs

than those required for maximal induction in embryos (Figures 4-2, 4-3

and 4-7). When embryos and eleuthe roembryos were similarly exposed to

Aroclor 1254 for 12 days, a dose-dependent induction of BPH activity was

observed in microsomes prepared from whole embryos (stages 33-34), but

BPM activity was near maximally induced (2.7x) at all dose levels in the

preparations from eleutheroembryos (Figures 4-2 and 4-3). Maximal

induction of BPM activity in eleutheroembryos occurred at lower tissue

..
(body) levels of PCBs than requi red in embryos (Fig. 4-3). Thus the
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difference in the response of embryos and eleutheroembryos was not simply

due to a change in the distribution of PCBs with yolk absorption.

Although the dose-dependency for the induction of BPM activity in

eleutheroembryos must be established before the real sensitivity is

kno~n, the data obtained indicate that eleutheroembryos in stages 36-38

are at least 5-times more sensitive to PCBs thán embryos in stages 33-34.

Although constitutive BPM acti vi ty ~as lo~ before hatching, the

maximal extent of induction ~as 27-fold, and the maximal induced specific

activity ~as the same in microsomes prepared from both embryos and

eleutheroembryos (Fig. 4-3). Thus the lo~ activi ties measured in embryos

are not due to a lack of capacity to respond to induction. These results

also indicate that endogenous inhi bitors of the monooxygenase activity

are not present in embryos, consistent with the data from the mixing

experiment desc ri bed in Chapter 3 (Table 3-111). The results obtained

here also confirm that there is no difference in the distribution of BPM

acti vi ty in the cent rifugal fractions of embryos and eleutheroembDTos

(Fig. 4-4).

Several factors could be responsible for the increase in to higher

sensitivity of the induction response after hatching. One possibility is

that the most active inducers are metabolites of the PCBs, and that the

increased constitutive monooxygenase activity after hatching leads

concent ra tions of these particularly active inducers ~ithin responsive

tissues. However, there is no evidence that PCBs require metabolism for

activity as inducers? and some of the most active inducers are likely to

be metabolized very slo~ly (Gold'stein ~ ~., 1977; Parkinson ~ ~.,
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1980; Poland and Glover, 1977). Another possibility is suggested by the

results of Guenthner and Mannering (19/7a and 1977b) ~ They reported

evidence that in rats a repressor of maternal origin blocks the response

of fetal liver to phenobarbitaL. Shortly after parturition the neonatal

Ii ver is normally responsive to PB. Perhaps an endogenous repressor

produces a similar effect on the response of Fundulus 

embryos to PCBs

prior to hatching.

Another interesting difference between the response of embryos and

eleutheroembryos to Aroclor 1254, is that neither NADPH- or

NADH-cytochröme c reductase activities were induced in embryos, but both

of these activities were induced in eleutheroembryos (Fig. 4-2 and

text). The dose response for induction of NADPH-cytochrome c reductase

acti vity in eleutheroembryo microsomes was clearly distinct from that of

BPM activity (Fig. 4-2). The induction of the reductase activity was

dose dependent, while BPM activity was maximally induced at all dose

levels of Aroclor 1254. These results indicate that the reäuctase and

BPM activity are under independent control. This conclusion is also

supported by the fact that the time courses for the increases in BPM

activity and NADPH-cytochrome c reductase activity are distinct in

untreated animals after hatching (Fig. 3-4). In Chapter 3 it was pointed

out that the increase in monooxygenase activity in untreated Fundulus

embryos after hatching was like that seen postnatally in mammalian

species, although hatching and birth are physiologically quite

different. It is interesting to note that in rabbits, rats and guinea

pigs, NADPH-cytochrome c reductase activity is either not inducible in
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fetal liver by PB or inducible only shortly before birth, but PB readily

induces this activity in the livers of neonates and adults (Crestei1 et

a1., 1979; Guenthner and Hannering, 1977a; Kuenzig et a1., 1974; Rane et

a1., 1973). These results further suggest the similarity of the effects

of birth in mammals and hatching in Fundulus on the regula:tion of the

monooxygenase system.

The fact that BPM activity was induced almost 30-fold in whole

embryo microsomes with no change in NADPH-cytochrome c reductase activity

indicates that the levels of NADPH-cytochrome c reductase are not

limiting monooxygenase activity in these preparations (Fig. 4-2). In

further support of this conclusion, the ratio of NADPH-cytochrome c

reductase activity to BPM activity in maximally induced whole embryo

microsomes is still 3-fold higher than in adult liver microsomes (compare

Fig. 4-2 and Table 3-IX). Als~maximal induction of BPM activity in

eleutheroembryo micro somes occurs at levels of PCBs that do not induce

detecta ble increases in NADPH-cytochrome c reductase activity. It is

worth noting again that, although the levels of NADPH-cytochrome c

reductase activity generally have not correlated with the levels of BPM

activity~ the inhibition by cytochrome c (Table 3-IV) quite clearly

indicates a functional role for this reductase in supporting

monooxygenase activity. Substantial induction of monooxygenase activity

with little change in NADPH-cytochrome c reductase activity is not

unusual~ and in fact is typical of the response to 3-MC type inducers in

mammals. In mammals induced monooxygenase acti vi ty is due ~o the

induction of specific forms of èytochrome P~450. The induction of BPM
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APD activity in eleutheroembryo microsomes at the highest levels of PCBs

used (Fig. 4-2B). Perhaps Fundulus are capable of responding to PCB

isomers that are PB type inducers, but only at very high doses. Another

possibility is that a minor component of Aroclor 1254 is capable of

inducing APD acti vi ty in Fundulus eleutheroembryos, and this substance

mayor may not be a PB type inducer in mammals; Along these lines, James

and Bend (1978) made the very interesting observation that

3,3' ,4,4' ,5,5'-hexachlorobiphenyl (HCB) nominally a 3-MC-type inducer,

produced an induction response in sheep shead that was very different from

the response produced by 3-MC. Administration of 3-MC to sheepshead did

not affect benzphetamine N-demethylase (BeND) activity, and induced BPM

acti vi ty that was inhi bi ted by 0( -napthoflavone (~~). Aroclor 1254

produced a response similar to 3-MC. In contrast, 3,3' ,4,4' ,5,5'-HCB

induced hepatic BeND and NADPH-cytochrome c reductase acti vi ties, as well

as BPM activity that was not inhibited by ANF. This type of response is

generally associated wi th t~ PB class of inducers. However i

2,2' ,4,4' ,5,5'-hexabromobiphenyl had no effect on any of these

ac'tivities, even though it is a PB-type inducer in rats. It should be

noted that 3,3' ,4,4' ,5,5'-HCB apparently has not been detected in Aroclor

1254 or similar European PCB mixtures, and the related congener

3,3' ,4'4'-tetrachlorobiphenyl is a minor component of commercial PCBs

(Jensen and Sundstrom, 1974; Sissons and Welti, 1971). Some fish may

have an induction response that resembles the PB-type, but that is not

elicited by PB-type compounds. It will be of great interest to examine

the response of Fundulus eleutheroembryos to 3,3' ,4,4' ,5,5'-HCB and to
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determine whether higher doses of Aroclor 1254 do in fact induce APD

activity.

Induction competence in embryos prior to the appearance of the liver

rudiment:

The data of Experiment 2, presented in Figure 4-5, clearly show

that embryos as early as 4.4 days from fertilization (stages 26-27) are

competent to respond to Aroclor 1254 exposure with increased levels of

BPM activity. The response of the stage 26-27 embryos was very much like

that of simarly exposed stage 33-34 embryos (13 days old), which suggests

that all competent stages prior to hatching are similarly sensitive to

PCBs. Comparison of the response of the stage 33-34 embryos of

Experiments 1 and 2 (Figures 4-2 and 4-5) indicate that the level of

induced BPM activity depends on the length of exposure as well as the

average concentration of PCBs in the embryos.

Examination of thin sections of Fundulus embryos by light

microscopy revealed that the liver rudiment appears between stages 28 to

29. Therefore, the induction response in stage 26-27 embryos is due

solely to the extrahepatic tissues. This may be the earliest point

during the development of a vertebrate species in which induction of

monooxygenase activity has been directly demonstrated. Apparently, there

are no reports in the literature of the induction of monooxygenase

activity in embryos before the appearance of the liver rudiment.

However, Galloway et al. (1980) reported indirect evidence that mouse

embryos as early as day 7 1/2 of gestation can respond to 3-MC-type
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inducers. Briefly, they observed an increased incidence of sister

chromatic exchanges (SCE) in embryos o~ ~esponsive strains of mice

cultured in the presence of BP, but not in embryos of strains genetically

nonresponsive to 3-MC-type inducers. These results were interpreted as

indicating that the responsive strain embryos have the capacity to

activate BP, and that this capacity is induced. (These experiments are

described in more detail in Chapter 1, p. 53) A direct comparison of the

development of Fundulus and mice is difficult with the data available,

but the day 7 1/2 of gestation in mice is about equivalent to the 3rd day

of development in Fundulus.

Quite possibly Fundulus embryos are competent to respond to

monooxygenase inducers earlier than stages 26-27. BPM activity was

detectable in untreated embryos at stages 25-26 (Table 3-11). It seems

likely that these stages will also be found to be competent. Examination

of induction competence in earlier stages will require a different

approach than that taken in Experiment 2. There are limits to how

quickly embryos can be loaded with PCBs by exposure after fertilization.

To examine induction competence in earlier stages, eggs will have to be

loaded with inducer in the ovary by maternal exposure. This approach was

attempted. Female Fundulus, naturally in spawning condition were

stripped of eggs, then intraperitoneally injected with about 180 mg/kg

14
( C)-labelled PCBs. The fish were maintained under conditions to

promote further egg production, and eggs were obtained from some fish

with about 100 ppm PCBs. However, the fish produced an inadequate number

of eggs to examine the question of when induction competence appears.
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Yet this approach should be useful for future studies of induction

competence in early embryos.

Factors affecting the induction of BPM activity in embryos and

eleutheroembryos:

To further compare the response of pre-hátching and post-hatching

stages to Aroclor 1254, data from Experiment 1 embryos (stages 33-34) and

Experiment 3 eleutheroembryos (stages 38-39) were compiled in Table 4-V.

The exposures were not equivalent since the embryos were exposed to PCBs

for 12 days (Fig. 4-1) and the eleutheroembryos were exposed for 21 days

(Fig. 4-6). Howevert this is more like the situation encountered under

"natural" conditionst when eggs are spawned from PCB contaminated fish.

In contaminated environments, embryos are likely to contain substantial

levels of PCBs continuously over the course of development.

In Experiment 3 a maximal induction of BPM activity in

eleutheroembryo microsomes was observed at the lowest dose. ,level of PCBs

used (Fig. 4-7), thus the actual sensitivity of the eleutheroembryos to

PCBs was not established. From the data in Table 4-V, it is seen that

the stage 38-39 eleutheroembryos were maximally induced by levels of PCBs

in the tissues that were 1/10 as great as necessary for maximal induction

in the stage 33-34 embryos. In terms of the levels of PCBs calculated

for intact embryos and eleutheroembryos, the eleutheroembryos were

maximally induced by PCB concentrations not more than 1/26 those required

for maximal induction in embryos. The difference in the relative
. .

sensiti vi ty indicated by these', two measures of PCB content is due to the
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Table 4-V. A compilation of data on the sensitivity of Fundulus embryos
and e leutheroembryos to Aroclor 1254 as an inducer of BPM., *activity.

Embryos
(stages 33-34)

Eleutheroembryos
(stages 38-39)

EDsO in ppm Aroclor l254

Intact 45

Tissues 13

Lowest dose at which
maximal induction observed
(ppm Aroclor l254)

Intact 140 5.3

Tissues 35 3.5

* Data are from Experiments land 3. The terms "intact" and "tissues"
are defined in Table 4-1. The values for eleutheroembryos were the
lowest leve ls of Aroclor 1254 used; these stages may be even more
sensitive. The concentrations of Aroclor 1254 are on a wet weight basis,
and background leve ls of PCBs in embryos and e leutheroembryos were not
measured.
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fact that in eleutheroembryos proportionately more of the total burden of

PCBs was located in the tissues, compared to the distribution in the

embryos (compare Tables 4-1, 4-11, 4-111 and Results text, Experiment

3). Thus in addition to the increased sensitivity of the induction

response after hatching, pharmacokinetic effects will favor a response at

lower total burdens of PCBs in later stage eleutheroembryos than in

embryos.

There are at least four factors which will affect the level of

',induced BPMactivity in Fundulus embryos and eleutheroembryos exposed to

PCBs. These are the total burden of PCBs, the length of exposure, the

developmental stage (pre- or post-hatching) and the distribution of PCBs

between the yolk and tissues. Under conditions of continuous exposure,

these factors will result in an increase in the level of induced activity

'as development proceeds. When the concentrations of PCBs present are

adequate to produce only a slight induction before hatching, the greatest

change in induced activity will occur after hatching, when the

sensitivity of the induction response greatly increases.

Comparison of the induction response to other species:

The available data on the sensitivity of Fundulus early

developmental stages in summarized in Table 4-V. In chickens, the only

other species examined at embryonic stages, Aroclor 1254 is not a very

potent inducer of hepatic BPM activity. The ED50 for the whole chicken

embryo with yolk is about 130 ppm, or about 3-times higher than in

Fundulus embryos (Poland and Glover, 1977).
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Apparently rainbow trout is the only species of fish in which dose

response data for the PCB induction of ~enzo(a)pyrene metabolism have

been reported. Elcombe and Lech (1978) examined the response of hepatic

BPM activity to intraperitoneal doses of Aroclor 1242. This PCB mixture

contains 42% chlorine by weight and is of similar potency as Aroclor 1254

as an inducer of monooxygenase activities in rats (Ecobichon and Comeau,

1974). In adult trout the level of induced BPM activity increased fairly

steadily up to 275 mg/kg, which was the highest dose examined. The

lowest dose used, 32 mg/kg, produced a clear induction of BPM activity.

If these doses were uniformly distributed in the treated animals, which

is not at all likely, 1 mg/kg would be equivalent to 1 ppm in the whole

body. Comparison of the data of Elcombe and Lech to that obtained with

Fundulus (Table 4-V), suggest that Fundulus eleutheroembryos are much

more sensitive to PCBs as inducers than adult trout. Maximal induction

of BPM activity was produced by 3.4 ppm Aroclor 1254 in the

eleutheroembryo body. However, a number of factors make direct

comparison of these data difficult. First of all, different PCB mixtures

were used (Aroclors 1242 and 1254). The tissue distribution of PCBs

administered by i.p. injection may be very different from that resulting

from uptake during the course of develop~ent. Finally, microsomes were

prepared from whole eleutheroembryos compared to hepatic microsomes from

the trout.

Egaas and Varanasi (1980) examined the effect of preexposure of

rainbow trout to Aroclor 1254, on the in vitro binding of BP to DNA

catalyzed by liver enzyme preparations. Feeding trout a dose of 10 mg/kg
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Aroclor 1254 resulted in a 20-fold i nc rease in DNA binding, and higher

doses did not produce a further 'increase. A dose of 1 mg/kg did not

significantly affect the level of DNA binding. Apparently the BPM

activity responsible for the binding of BP to DNA was maximally induced

by 10 mg/kg Aroclor 1254. This result suggests that trout are sensitive

to fairly low levels of PCBs. The different r6utes of administration

used by E1combe and Lech (1978) and Egaas and Varanasi (1980) (oral

versus 1. p.) are likely to be partially responsible for the great

differences in the response to PCBs observed in these studies. Possibly

the sensitivity of rainbow trout to Aroclor 1254 as an inducer of BPM

acti vi ty is of the same order of magni tude as that of Fundulus

e1eutheroembryos. However, Fundulus eleutheroembryos may yet prove to be

much more sensitive to PCBs, once the dóse dependency is established.

Envi ronmenta1 levels of PCBs:

PCBs are ubiquitous contaminants of the global environment

(Risebrough et a1. ,1972 ; Nisbet and Sarofim, 1972; Wassermann et a1.,-- --
1979). In the past commercial PCB mixtures were widely used for a number

of applications in industry such as dielectric fluids in capacitors, heat

exchange fluids and plasticizers. The U. S. production between 1957 and

1975 was about 400, 000 tons (Lloyd ~ al., 1976). During the early

19701 s about 18, 000 tons per year were produced in the U. S. of which

4,500 tons per year a re estimated to have been released into the

environment (Maugh, 1975). Production in the United states ~as stopped

in 1977. PCBs are very stable and thus persistent in the environment,
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.

and because they are lipophilic they are readily accumulated by

organisms. The higher chlorinated isr~Qrs are only very slowly

metabolized and eliminated (Bickel and Muehlebach, 1980).

Table 4-VI shows levels of PCBs in fish collected at different

locations. The data were selected to give an idea of the range of

concentrations encountered. Generally, fish from lakes and rivers in

industrialized areas are most heavily contaminated, but PCBs are detected

in fish remote from human activities, such as in the deep sea. In

composite samples of fish collected from major freshwater systems in the

U.S., PCBs were detectable in 93% of the samples, and 53% of the samples

were in excess of 5 ppm (Veith ~ al., 1979). As part of a National

Pesticide Monitoring Program composite samples of juvenile estuarine fish

of mixed species were analyzed for PCB content (Butler and Schut zmann ,

1978). The data were reported as state-wide averages. For east coast

states, the values ranged from 0.083 ppm (Florida) to 0.780 ppm

(Delaware), and the overall mean was 0.343 ppm. These values are

expressed on a wet weight basis for whole fish using Aroclors 1242, 1254,

and 1260 as standards.

Fundulus heteroclitus occur in estuarine environments from Florida

to Maine (Bigelow and Schroeder, 1953), and thus are found in areas

remote from contamination as well as in areas heavily affected by urban

and industrial pollution. The ED50 for induction of BPM activity in

stage 33-34 Fundulus embryos is about 45 ppm Aroclor 1254 in the whole

embryo (Table 4-V). From the dose response curve in Fig. 4-2A, it can be

estimated that concentrations of PCBs as low as 10 ppm in the whole
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embryo will produce about a 4-fold induction of BPM activity. It should

also be remembered that No. 2 fuel oi: ~as shown to induce BPM activity

in Fundulus embryos (Table 2-1). In contaminated environments a number

of different substances could potentially contribute to an induction of

monooxygenase activity. Values for PCB levels in Fundulus eggs are not

yet available, and the relationship between the levels in spawned eggs

and whole adult fish is not known. But the average PCB, levels in

estuarine fish mentioned above, and values appearing in Table 4-VI give

an indication of the concentrations of PCBs found in environmental

samples.

Considering the relative insensitivity of Fundulus embryos to PCBs,

and probably other monooxygenase inducers, substantial inductions in

embryos are likely to occur only at particularly polluted sites. Based

on the observation of maximal induction at about 5 ppm Aroclor 1254 in

whole eleuthe roembryos, and about 3.4 ppm in the tissues (Table 4-V and

Fig. 4-7), it seems reasonable to assume that levels of PCBs less than i

ppm in whole eleutheroembryos and approaching 0.5 ppm in the tissues

would produce a detectable induction of BPM activity. Thus, in heavily

contaminated environments Fundulus eleutheroembryos are likely to have

maximally induced monooxygenase systems, and some degree of induction is

likely at levels of moderate contamination at many locations. An

important question is just how sensitive are Fundulus eleutheroembryos to

the inducing properties of PCBs. In Chapter i data was described which

suggests that individuals of some species of fish, and perhaps all

members of certain other species of fish, have monooxygenase systems that
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are partially induced. Considering the results obtained with Fundulus,

this may well be the case.

In microsomes prepared from untreated Fundulus embryos a greater

than lO-fold increase in BPM activity is observed shortly after hatching

(Fig. 3-4). It is interesting that this increase in constitutive

activity correlates with the large increase in sensiti vityof the

induction response after hatching. As noted in Chapter 3, it seems

reasonable to hypothesize that the levels of constitutive monooxygenase

activity around the time of hatching are under hormonal control.

However, it is also possible that the background levels of PCBs or other

xenobiotics in untreated embryos, which do not have much effeèt on the

relatively insensitive stages prior to hatching, are responsible for the

post-hatching increase in BPM activity. This possibility can not be

ruled out since the dose-dependency of the post-hatching induction

response was not established, and the background levels of PCBs and other

xenobiotics in embryos were not determined. However, the post-hatching

changes in the monooxygenase system of untreated embryos and the PCB

induced changes are somewhat different. In untreated embryos both BPM

activity and NADPH-cytochrome c reductase activity increase after

hatching, while NADH-cytochrome c reductase activity remains unchanged

(Figures 3-3 and 3-4). In PCB exposed embryos, both NADH- and

NADPH-cytochrome c reductases are induced to the same extent, but only at

concentrations of PCBs much greater than required to maximally induce BPM

activity (Fig. 4-2 and text). Under conditions in which BPM activity is

submaximally induced, there probably would be no change in either
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reductase activity. These results suggest that the post-hatching changes

in the monooxygenase system of unt reat~u embryos are not due solely to a

xenobiotic-type induction.

The levels of BPM activity, measured in microsomes prepared from

untreated eleutheroembryos from several different pools of eggs, were

quite similar (Figure 3-3). These pools of eggs were obtained from fish

collected during two different spawning seasons, at different sites in

Herring Brook marsh, and in one case eggs were obtained from fish which

had been aquarium maintained for more than 10 months (Table 3-2). If the

post-hatching increases in BPM activity were due to xenobiotic-type

induction, one would expect graded responses depending on the levels of

inducers present, since the activities measured clearly were not at the

maximally induced level. It seems unlikely that long term aquarium

maintained fish produced eggs with essentially the same levels of

xenobiotic inducers as the fish collected in the field. Thus it seems

unlikely that xenobiotics present in the embryos are responsible for the

majority of the post-hatching increase in BPM activity. To determine if

there is a contribution from xenobiotic-type induction to the

post-hatching increase in BPM activity, the sensitivity of the induction

response in eleutheroembryos must be established in conjunction with

measurements of residues of selected xenobiotics. Also, following the

post-hatching development of aminopyrine N-demethylase activity, which is

not induced by moderate levels of PCBs, would be valuable. Large

post-hatching increases in APD activity would be strong evidence that

xenobiotics are not involved in the increases in monooxygenase activity

after the hatching in untreated embryos.
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Possible significance of the presence and inducibility of xenobiotic

monooxygenase acti vi ty in Fundulus embryos and eleutheroembryos:

The spectra of BP metabolites produced by microsomes prepared from

untreated and PCB exposed eleutheroembryos and adult Fundulus liver (Fig.

4-8, Table 4-111, and text) are typical for marine teleost fish with a

high proportion of benzo-ring metabolites (Stegeman, 1981b). This type

of. metaboli te spect rum resembles those produced by 3-MC induced mammals

(Thorgiersson and Nebert, 1977). The production of diol metabolites by

eleutheroembryo microsomes was shown to depend on the enzyme epoxide

hydrolase (EB), as the EH inhibitor TCPO abolished these peaks~ The fact

that microsomes prepared from Fundulus eleutheroembryos are active in

metabolizing the benzo-ring of benzo(a)pyrene and have epoxide hydrolase

activity, suggests that they are capable of activating BP to the highly

mutagenic 7, 8-dihydrodiol -9, IO-epoxides, which are likely to be the

ultimate carcinogenic forms of BP. Populations of Fundulus in

contaminated environments might be at risk of initiation of .cancer from

BP and related polycyclic aromatic hydrocarbons (PAR) during the

sensitive embryonic stages.

BPM activity was detectable in untreated Fundulus embryos as early

as stages 25-26, at about 4 days from fertilization (Table 3-111), and

Fundulus embryos were shown to be competent to respond to PCB induction

of BPM activity at stages 26-27 (Fig. 4-5). Circulation of blood begins

in stage 25, and subsequent stages are characterized by active'

organogenesis. Organs and structures which have yet to appear at stages
. .

25-26 include the liver, gall bladder, swim bladder, gills and jaws. BP
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and certain other PAH's are not only carcinogens but also teratogens

(Lambert and Nebert, 1977; Shum et al., 1979). Production of activated

metabolites from BP or other xenobiotics during the period of active

organogenesis could lead to malformations. Induction of monooxygenase

activity by PCBs or other inducers might increase the risk of

teratogenesis. Shum ~ al. (1979) have demonstrated that when pregnant

mice are dosed withBP, the genetic capacity of fetuses to respond to

3-MC-type inducers is associated with increased in utero toxicity and

malformations. Considering the potential deleterious effects of

induction of monooxygenase activity during organogenesis, the relative

insensiti vity of Fundulus embryos to monooxygenase inducers seems to be

very adaptive. During the most critical stages of development, prior to

hatching, very high levels of inducer are necessary to produce a response

(Fig. 4-2A). After hatching when the potential exposure to xenobiotics

is considerably greater (discussed in Chapter 3), and the need to

metabolize and eliminate xenobiotics is likely to be more important,

monooxygenase activity is stimulated by much löwer levels of inducer.

This regulatory system may have evolved to protect developing Fundulus

from the toxicity of naturally occurring xenobiotics.
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CHAPTE R 5

HEPATIC BENZO(A)PYRENE MONOOXYGEiIfiSE ACTIVITY IN BROOK TROUT

(SALVELINUS FONTINALIS) EMBRYOS: CONSTITUTIVE LEVELS

AND INDUCTION BY PCBs

In the previous three chapters various aspects of the ontogeny of the

xenobiotic monooxygenase system in the killifish Fundulus heteroclitus

were examined. Using microsomes prepared from whole embryos, BPM

activity was shown to be present fairly early during embryonic

development and was found to increase sharply within 24 hours of

hatching. This activity was inducible both before and after hatching,

and the' induction after hatching was shown to occur in both the liver and

extrahepatic tissues. The sensitivity of the induction response was

shown to be much greater in eleutheroembryos than embryos.

A basic question which arises from these observations is whether

embryos of other species of fish have the capacity to metabolize

xenobiotics and to respond to inducers of cytochrome P-450. In this

chapter work addressing this question is presented. The capacity of

untreated and PCB exposed brook trout embryos to metabolize

benzo(a)pyrene is examined, and levels of activity are compared to those

in yearling brook trout. The results obtained are contrasted to the

observations on Fundulus.
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MATE RIALS AND METHODS

Chemicals and Supplies:

All chemicals and supplies were as described in the previous chapters.
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Exposure of Embryos to PCBs and Quantitation of PCB Levels Within Embryos:

Brook trout embryos were exposed l.ù Aroclor 1254 spiked with a

(14CJ-POlychlorinated biphenyl isomeric mixture of similar composition

(the same lots used in Chapter 4), by addition of this material to the

incubation water in DMSO. The details of the exposure are described in

the legend to Figure 5-2. To quantitate (14C)-PCBs in brook trout

embryos, embryos were removed from exposure dishes, washed twice with

water, dechorionated, weighed, and then solubilized in 0.3 ml of Protosol

in glass vials for 2 days at 40°. Ten ml of Aquasol and 0.3 ml of 0.6 N

HCl was added to each vial, and radioactivity was measured by liquid

scintillation counting. Counting efficiency was determined as before.

To check for loss of PCBs during solubilization, known amounts of

(14CJ-PCBs were added to vials with embryos and Protosol, then treated

as above; greater than 95% of the PCBs were accounted for.

Preparation of Materials for Assay:

Whole brook trout embryos were fractionated by a method similar to

that used for Fundulus (Chapter 3). Embryos were dechorionated with

microsurg ical sc issors, then yolk sacs were individually torn with

forceps, releasing a substantial portion of the fluid yolk. Embryos were

1then washed in ice cold TES buffer, and homogenized like Fundulus

1 TES buffer is 0.05 M Tris-HC1,

buffer is the same without EDTA.
adjusted at 25°, tha temperature

pH 7.2, 1 ro EDTA, 0.25 M sucrose; TS
For brook trout all buffers were

of the BPM assay.
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embryos in 25 pl TES buffer per embryo. Centrifugation conditions were

identical to those described in Chapte~ J. The 10K and 40K pellets were

resuspended in 0.05 M Tris-HCl, pH 7.2 (2pl/embryo).

Livers were dissected from brook trout embryos and homogenized

essentially as described for Fundulus embryos, except homogenization was

in 3-5 pl of TS buffer per liver. Whole homogenates were assayed

immediately for ßPM activity. In some cases the carcasses remaining

after dissection were homogenized and fractionated by differential

centrifugation like whole embryos. Prior to homogenization, the gut of

each carcass was cut open and rinsed with TES buffer to remove the bile

which accumulates there during development. Homogenization of carcasses

was in lOO pl of TES buffer/embryo. The 10K and 40K fractions were

resuspended in 0.05 M pH 7.2 Tris-HCl (3-5 pl/embryo)and assayed

immediately for BPM activity.

Liver homogenates and microsomes were prepared from brook trout

yearlings as described for Fundulus adults. Whole homogenates were

assayed for BPM activity immediately, while microsomal suspensions were

stored in liquid nitrogen before use.

Benzo(a)pyrene Monooxyenase Activity:

BPM activity was assayed under the same conditions used for Fundulus

(Chapter 3) except the incubation time was 20 minutes and the incubation

o
temperature was 25 and between 2-30 pg of liver protein was added per

reaction mixture. The incubation temperature was determined to be

optimal using yearling hepatic microsomes, and the reaction with yearling
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microsomes was linear with time for at least 20 minutes, and with liver

homogenåte protein up to 70 pg per reaction mixture.

Activity was considered detectable when the complete reaction mixture

differed from the blank at the 0.05 level of significance by the Student

t-test. The limit of detection of activity for any given sample depends

on the repl icate variability and the amount of material added per

reaction mixture. For the purposes of this study the limit of detection

is defined as that amount of product necessary for the power of the

t-test to be 0.95 with P ~ 0.05. This was individually calculated for

samples in which activity was not detectable using the pooled estimate of

variance of the complete reaction mixture and blanks (Winer, 1971).

Dividing the amount of product calculated by the incubation time and the

number of embryos per reaction mixture gives a limit of detection in

terms of BP metabolites/minI embryo.

RESUL TS
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Hepatic BP Monooxygenase Ac tivi ty in Brook Trout Embryos and

Eleutheroembryos:

BPM activity was readily measurable in the livers of brook trout

embryos at the stages examined. Figure 5-l shows the specific activity

of BPM in whole homogenates of livers of brook trout embryos and

eleutheroembryos. The data were obtained with embryos from the two pools

of eggs described in Materials and Methods. There apparent ly is about a

3-fold increase in BPM specific activity in the embryonic liver after

hatching. Because of this increase in activity the data were plotted

versus days from hatching rather than age (days from fertilization).

This allows comparison of the data from the two groups of embryos which

had mean hatching times 6 days apart. After the initial posthatching

rise, there appears not to be much change in hepatic BPM specific

activity over the period of development examined. There is a suggestion

òf an initial peak in activity after hatching, but further sampling is
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Figure s-l. BP monooxygenase activity in whole homogenates of livers of

brook trout embryos and eleutheroembryos. Embryos were from the two
pools of eggs described in Materials and Methods (~ Pool I; _, Pool
II). The overall mean hatching time for these two pools of eggs was 46 +
3 days (+ range). At each sampling livers from 5-30 individuals were
pooled, 'homogenized, and immedîately assayed for BPM activity. The data
are the mean of 3 or 4 replicates and error bars indicate S.D.
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necessary to determine whether this is a general feature of the

developmental pattern.

Additional data on the embryos described in Figure 5-1 is presented

in, Table 5-1, along with comparative data on yearling brook trout. The

da,ta were pooled for the embryos at -6 and -1 days from hatching, 8 and 9

days from hatching, and 22 and 32 days from hatching. Over the course of

embryonic development in brook trout, there is a continual increase in

the mass of tissue at the expense of yolk. As can be seen in Table 5-1,

near the time of hatching the embryo body accounted for only l4% of the

total weight of the embryos examined, while 4 weeks after hatching the

embryo body composed more than 50% of the whole embryo weight. Over this

period of deve lopment, whole emb ryo weight was observed to change litt le
(data not shown). As sociatedwith the growth of the embryo body is an

increase in total liver protein per embryo, but the ratio of liver

protein to embryo body weight changed little over the interval of

development examined. The mean value 'was l.2 pg liver protein/mg body

weight, which is similar to the value of 1.7 obtained for yearlings.

The fac t that hepatic BPM specific activity increased about 3-fold

after hatching, then changed little in later embryonic stages is apparent

from the pooled data shown in Table 5-1. However, as a result of growth,

the total hepatic capac ity to metabolize BP normalized to whole embryo

weight steadily increased over this interval. Of interest is the fact

that BPM specific activity was essentially the same in the livers of

brook trout embryos and yearlings, and the activity in eleutheroembryos

was about 2-5 times higher than that in yearlings. The yearlings were
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from one of the' pools of eggs from which embryos were obtained, and were

raised at the Sandwich fi,sh hatchery as part of the regular stock. The

levels of activity measured in yearlings are at least as high as in

reproductively quiescent adults (Stegeman, 1981a). Thus in brook trout,

the embryonic liver near the time of hatching is as active as adult liver

in metabolizing BP, and after hatching is considerably more active than

adult liver. However, because the embryonic body near hatching

constitutes less than a fifth of the total embryo weight, embryos at this

time have substantially less hepatic capacity to metabolize BP per unit

total weight than yearlings or adults. The activi ty per unit weight

rises sharply after hatching with the increasè in specific activity and

growth.

Lack of Detection of BPM Activity in Fràctions of Whole Embryos and

Embryo Carcasses:

Initially BPM assays were performed on 10K and 40K fractions of

dechorionated brook trout embryos that werè prepared for homogenization

similarly to Fundulus embryos. There was no indication of activity in

fractions prepared from embryos in stages l6-l8, and 21A and 21B2. The

limits of detection for these assays calculated as described in Materials

and Methods were around 30 fmole BP metabolites/min/embryo. Carcass

2 The liver rudiment is first apparent in sections of fixed embryos at

stage 15, and is visible in the intact embryo by stage 17; circulation
begins in stage 16 (Ballard, 1973). Stages 16-18 in brook trout are
roughly equivalent to stages 25-29 in Fundulus, and stages 21A and B in
brook trout are roughly equivalent to stage 33 in Fundulus (See Table
3-1). Brook Trout hatch in stage 23.



Page 225.

fractions from the embryos assayed for hepatic BPM activity at -6 and +1

days from hatching (Figure 5-1), were :':30 assayed, and no activity was

detectable. For the eleutheroembryos +1 day from hatching, the estimated

limit of detection of activity for the 10K and 40K carcass fractions was

about 100 fmole BP metabolites/min/eleutheroembryo, 
whereas the hepatic

activity that was measured was 357 fmole/min/eleutheroembryo. The fact

that the limit of detection in the carcass fractions is substantially

lower than the activity in the liver, suggests that in brook trout

embryos the liver plays the major role in xenobiotic metabolism.

Induction of BP Monooxygenase Activity in Brook Trout Embryonic Liver by

Aroclor l2s4:

In order to examine the competence of brook trout embryonic liver to

respond to monooxygenase inducers, brook trout embryos were exposed to

two dose levels of Aroclor l254 for a period of 3 weeks. The levels of

PCBs in the embryos during the course of the exposure are shown in Figure

5-2 and the details of the exposure protocol are described in the legend

of this figure. The embryos were assayed approximately 5 days before

hatching. The levels of BPM activity in whole homogenates of livers from

control and exposed embryos are shown in Table 5-11. At both dose levels

Aroclor l2s4 induced hepatic BPM activity about 4-fold. Apparently this

is the maximal extent of the response since no dose dependence was

observed. The exposure produced no apparent change in total liver

protein (data not shown).
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Figure 5-2. Levels of PCBs in dechorionated brook trout embryos during
the course of exposure. Embryos were from Pool II described in Materials
and Methods. For each treatment, 65 embryos were incubated in 10 cm
glass petri dishes in 30 ml of water at 10°. Embrios were exposed to

0.75 (-) or 7.5 (.) ppm Anoclor 1254 spiked with ( 4CJ-chlorinated
biphenyls to a specific activity of 0.3 nCì/pg. The PCBs were added in
15 pi of DMSO; DMSO alone was added to control embryos. The exposure was
initiated 23 days after fertilization (embryos were in stages l8 and 19)
and water was changed and additional inducer added at 48 hour intervals
for a total of LO additions. Uptake of PCBs by embryos was quantitated
as described in Materials and Methods. Each data point is the mean of
determinations on 3 embryos; error bars indicate the standard deviation.
Where error bars are not shown coefficients of variation (SD/mean) were
less than 6%.
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Table 5-11. BP monooxygenase activities in whole homogenates of livers

from control and Aroclor l2s4 exposed brook trout embryos+

Gro up

+

ppm PCBs in +
Who le Embryos

at Time of Assay
BPM Activity*

(pmole/min/pg protein)

Contro 1 17 + 6

0.75 ppm 64 + 4 71 + 7

7.5 ppm 229 + 6 68 + ls

+ Embryos were exposed to Aroclor 1254 as described in Figure 5-2,

and were assayed at 44 days of development in stage 22B. The mean
hatching time for this pool of embryos was 49! 0.6 days (+ SD).

+

+ Da ta are the mean of 3 repl icates ! SD.

* For each group, assays were performed on homogenates of pools of
16-20 livers. The data are the mean of 5 replicates! so. Both
treated groups are significantly different from the control group at
P ~ 0.001.
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DISCUSSION
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adult trout (Table 5-1). The ontogeny of BPM activity in brook trout

resembles that seen in chicken, where bùbstantial monooxygenase activity

is present before hatching, and within 1 day after hatching activity

rises to about twice the adult level (Powis et al., 1976).

Unlike the results obtained with Fundulus, BPM activity was not

detectable in fractions of homogenates of whole brook trout embryos.

However, whole embryo fractions were assayed only at stages earlier than

those in which liver BPM activity was measured. Carcasses remaining

after livers were excised were also assayed and no BPM activity was

detected. These results suggest that in brook trout embryos, the liver

is the primary site of xenobiotic metabolism. It should be noted that

endogenous inhibitors may have prevented the detection of activity in

carcass or whole embryo fractions. No mixing experiments like that done

with Fundulus embryos (Table 3-III) were performed to examine this

question.

Aroclor l2s4 was shown to induce BPM activity in livers of brook

trout embryos (Table 5-11). Both dose levels used (64 and 229 ppm in the

whole embryos) induced BPM activity four-fold, which apparently is the

maximal extent of induction. Addison et ale (1979) have previously shown

that Aroclor 1254 induces hepatic ethoxycoumarin O-deethy lase activi ty in

the livers of adult brook trout. The results presented here clearly show

that brook trout liver is competent to respond to monooxygenase inducers

during early development.

In Fundulus about 140 ppm PCBs in whole embryos was required for

maximal induction of BPM activity (Fig. 4-2). It should be remembered
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that BPM activity in Fundulus embryos was measured in microsomes prepared

from whole embryos. Comparison of the Fundulus and trout data suggest

that brook trout embryos are more sensitive to PCBs than Fundulus

embryos. However, a number of factors make comparison of liver and whole

embryo data uncertain. For example, the details of how PCBs distribute

within embryo bodies are not known - the liver may be a site of high

concentration. Also the sensitivities of different tissues to induction

may vary. Thus, with the data available it is not possible to say

whether brook trout embryos are more sensitive to PCBs than those of

Fundulus.

Levels of PCBs in the ppm range commonly occur in freshwater fish

(Veith et al., 1979). Eggs of lake trout collected in Lake Michigan in

1973 had levels of PCBs as high as 9.90 ppm on a wet weight basis

(Stauffer, 1979). While a maximal induction of hepatic BPM activity in

brook trout was observed at 64 ppm PCB in the whole embryos, levels less

than 10 ppm are likely to produce some response, and they could be

considerably more sensitive. In many freshwater systems, induction of

monooxygenase activity during the embryonic development of fish seems

likely. It is important to determine the dose-dependency of the

induction of monooxygenase activity in the embryos of freshwater species.

The results of the following study are particularly relevant to the

data presented here. Wales et ale (1978) reported that when rainbow

trout eggs were exposed to 0.5 ppm aflatoxin B 1 for one hour, an

incidence of liver tumors as high as 60% was observed in fish one year

later. The incidence of tumors was relatively low when the eggs were
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exposed prior to the appearance of the liver rudiment, but rose sharply

after it appeared. Aflatoxin Bi is a procarcinogen that requires

metabolic activation by the cytochrome P-450 monooxygenase system

(Campbell and Hayes, 1976). Apparently the monooxygenase system is

preSent in rainbow trout embryonic hepatocytes short ly after the

appearance of the liver rudiment, although no measurements of aflatoxin

metabolism were made for lack of an adequately sensitive assay. These

findings point out the possibte consequences of the metabolism of

care inogens by embryonic fish liver.
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CHAPTER 6.

SUMMARY AND DISCUSSION

The most importa~,t original findings of the research described in

this thesis are listed below.

l). Fish embryos and larvae have the capacity to metabolize
xenobiotics.

2). Common environmental contaminants, PCBs and petroleum
hydrocarbon, can induce xenobiotic monooxygenase activity in
f ish embryos.

3). During embryonic deve lopment in Fundulus there is a large

increase in the sensitivity of the induction response after
hatching. This regulatory mechanism might serve to protect the
most sensitive developmental stages from damage from activated
metabolites.

4). Fundulus embryos are competent to respond to monóoxygenase
inducers as early as 4.5 days from fertilization, prior to the
appearance of the liver rudiment. This may be the earliest
stage in the development of a vertebrate species in which
induction of monooxygenase activity has been directly
demons trated.

5). Environmentally reaiistic levels of PCBs are likely to induce
monooxygenase activity during the embryonic period in sensitive
species of fish.

Experimental results have been discussed in detail in Chapters 3-5. The

following discussion will serve to highlight and summarize the findings

and point out questions which remain.

The data presented in this thesis has clearly demonstrated that fish

embryos and larvae have the capacity to metabolize foreign compounds. In

microsomes prepared from Fundulus embryos, BPM activity was measurable as

early as 4 days after fertilization (stages 25-26) (Table 3-11). This is

shortly after the onset of circulation and near the beginning of the most
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Chapter 3, the potential exposure to xenobiotics is much greater, and

increased constitutive levels of monooxygenase activity and a more

sensitive induction response are likely to be adaptive.

The ontogenic pattern of monooxygenase activity in brook trout liver

contrasts to the results obtained with Fundulus. The levels of BPM

activity in Fundulus embryonic liver are not known, but the BPM specific

activity in eleutheroembryo livers is about 1/4 the adult level.

Presumably in embryos the activity is much lower than in

eleutheroembryos. Brook trout embryonic liver is about as active as

adult liver in metabolizing BP, and after hatching BPM specific activity

in the liver increases to a level 2.5 times that found in adults (Table

5-1). This increase in BPM activity after hatching can be rationalized

by the arguments discussed above, but the function of the relatively high

monooxygenase activity before hatching is uncertain. Data described in

Chapter 5 suggests that the liver may playa more important role in

xenobiotic metabolism in trout embryos than in Fundulus embryos, which

might explain the high activity in trout embryonic liver.

While only 2 species of fish were examined in this study, it seems

reasonable to assume that the early developmental stages of many species

are likely to have the capacity to metabolize foreign compounds.

Considering the differences between Fundulus and brook trout, it will be

necessary to examine ontogenic patterns in several species before general

patterns can be discerned. The data obtained with Fundulus and brook

trout indicate that levels of PCBs which occur in the environment are

likely to induce monooxygenase activity during the embryonic development

of sensitive species. However, the actual sensitivities of Fundulus
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eleutheroembryos and brook trout embryos was not established, since

maximal inductions were observed at all doses used (Fig. 4-2, 4-5; Table

5-11). It will be of great interest to determine the sensitivity of the

induction responses during embryonic deve lopment in a number of different

species of fish. This infonnation is important to understanding the

effects of low level contamination on early developmental stages. Also

of great interest is whether other species besides Fundulus show a change

in the sensitivi ty of the induction response with deve lopment,

considering the apparent adaptive advantage this offers.

As noted above, monooxygenase activity was detectable in preparations

from Fundulus embryos prior to the period of most active organogenesis.

Fundulus embryos were also shown to be competent to respond to

monooxygènase inducers during this sensitive period of development.

These results suggest that in contaminated environments fish embryos

might be subjec t to teratogenic effects from activated metabolites

generated by the monooxygenase system.

activity might potentiate such effects.

Induction of higher levels of

The rapidly proliferating
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and when does induction competence appear? In Fundulus a further

characterization of the changes associated with hatching is necessary.

Is the increase in BPM activity after hatching associated with an

increase in cytochrome P-4s0? Is de novo synthesis of cytochrome P-450

triggered by some process associated with hatching? More fundamental and

difficult questions are what factors are responsible for the

post-hatching increase in BPM activity in untreated embryos, and what

contro ls the increase in induction sensitivity after hatching. A

question of basic importance is what role does the metabolism of foreign

compounds by fish embryos play in the initiation of cancer and the

production of malformations.



Page 239.

ADDISON R.F., ZINCK M.E. and WILLIS D.E. (1977) Mixed-function
oxidase enzymes in trout (Salvelinus fontinalis) liver; absence of
induction following feeding of p,p-DDT or p,p-DDE. Compo Biochem.
Physiol s7C, 39.

ADDISON R.F., ZINCK M.E., WILLIS D.E. and DARROW D.C. (1979)

Induction of hepatic mixed function oxidases in trout by
polychlorinated biphenyls and butylated monochlorodiphenyl ethers.
Toxicol. ~. Pharmacol. 49:245-248.

AHOKA J.T., KARKI N.T., OIKARI A. and SOIVIO A. (1976) Mixed
function monooxygenase of fish as an indicator of pollution of
aquatic environment by industrial effluent. Bull. Environ. Contam.
Toxico l. l6, 270.

AHOKAS J., PAAKKONEN R., RONNHOLM R., RAUNIO V., KARKI N. and PELKONEN
O. (1977) Oxidative metabolism of carcinogens by trout liver
resulting in protein binding and mutagenicity In: "Microsomes and
Drug Oxidations." (V. Ullrich, 1. Roots, A. Hildebrandt, R.W.
Estabrook and A.H. Conney, eds:), p. 435. Pergamon Pre~s, Oxford.

AHOKAS J.T., PELKONEN O. AND KARKI N.T.
polycyclic hydrocarbons by a highly
hydroxy lase in the liver of a trout
Res. Commun., 63, 635.

(975) Metabolism of
active aryl hydrocarbon
species. Biochem. Biophys.

AHOKA J.T., PELKONEN O. and KARKI N.T. (1976) Cytochrome P-4s0and
drug induced spectral interactions in the hepatic microsomes of
trout, Salmo trutta lacustris. Acta Pharmacol. Toxicol. 38, 440.

AHOKAS J.T., PELKONEN O. and KARKI N.T. (l977)
benzo(a)pyrene hydroxylase of trout liver.

Characterizat ion of

Cancer Res. 37,3737.

AHOKAS J. T., SAARNI H., NEBERT D.W. and PELKONEN O. (1979) The in
vitro metabolism and covalent binding of benzo(a)pyrene to DNA
catalysed by trout liver microsomes. Chem.-Biol. Interactions 25,
103.

ALVARES A.P., BICKERS D.R. and KAPPAS A. (1973) Polychlorinated
biphenyls: a new type of inducer ,of cytochrome P-448 in the
liver. Proc. Natl. Acad. Sci. 70:1321.

ALVARES A.P. and KAPPAS A. (1975) Induction of aryl hydrocarbon
hydroxy lase by polychlorinated biphenyls in the foeto-placental
unit and neonatal livers during lactation. FEBS Letters SO: l72.

ALVARES A.P. and KAPPAS. (1977) Heterogeneity of cytochrome P-4s0s
induced by polychlorinated biphenyls. l. Biol. Chem. 252:6373.



Page 240.

ALVARES A. P., SCHELLING G. and LEVIN W. (l970) Species differences in
the induction of microsomal hemoproteins and 3,4-benzpyrene
hydroxylase by phenobarbital and 3-methylcholanthrene. J. Pharmac.
Ex p. The r . 17 5 : 4 .

,ALVARES A.P., SCHELLING G., LEVIN W. AND KUNTZMAN R. (1967) Studies

on the induction of CO-binding pigments in liver microsomes by
phenobarbital and 3-methylcholanthrene. Bioch. Biophy. Res. Comm.
29:521.

ARMSTRONG P.B. (1932) The embryonic origin of function in the
pronephros through differentiation and parenchyma-vascular
association. Amer. J. Anat. sl:is7.

ARMSTRONG P.B. (1936) Mechanism of hatching in Fundulus
heteroclitus. Biol. Bull. 71 :407.

ARMSTRONG P. B. and CHILD J. S .
of Fundulus heteroclitus.

(1965) Stages in the normal development
Biol. Bull. 128: 143.

ATLAS S.A., BOOInS A.R., FELTON J.S., THORGEIRSSON S.S. and NEBERT
D. W. (1977) Ontogenetic expression of polycyclic aromatic
compound-inducible monooxygenase activities and forms of cytochrome
P-450 in the rabbit. Evidence for temporal control and organ
specificity of two genetic regulatory systems. l. Biol. Chem.
252:4712.

BAIRD R.C., THOMPSON N.P., HOPKINS T.L. and WEISS W.R. (l97s)
Chlorinated hydrocarbons in mesopelagic fishes of the eastern Gu lf
of Mexico. Bull. Mar. Sci. 25:473.---

BALK L., MEIJER J., SEIDEGARD J., MORGENSTEIN R. and DEPIERRE J.W.
(1980) Initial characterization of drug-metabolizing systems in
the liver of the northern pike, Esox lucius. Drug Metab. Disp.
8: 98.

BALL L.M., ELMAMLOUK T.H. and BEND J.R. (1980) Metaboiism of
benzo(a)pyrene in little skate mixed-function oxidase systems.
In: "Micro somes and Drug Oxidations and Chemical Care inogenesis.",
Vol. 2. (M.J. Coon, A.H. Conney, R.W. Estabrook, H.V. Gelboin,
J.R. Gillette and P.J. O'Brien, eds.) p.1203. Academic Press,
New York.

BALLARD w.w. (1973) Normal embryonic stages fnr salmonid fishes,
based on Salmo gairdneri Richardson and Salvelinus fontinalis
(Mitchell). J. Exp. Zool. 184:7.

Balon E.K. (1975) Terminology of Intervals in Fish Developiient.
J. Fish. Res. Bd. Can. 32:1663.



Page 241.

BASU T.K., DICKERSON J.W.T. and PARKE D.V.W. (971) Effect of
deve lopment of microsomal drug-metabolizing enzymes in rat liver.
Biochem. J. 124: 19.

BEND J. R., BALL L. M., ELMLOUK T. H., JAMES M.O. AND PHILPOT R.M.

(l979) Microsomal mixed-function oxidation in untreated and
polycyclic aromatic hydrocarbon-treated fish. In: "Pesticide and
Xenobiotic Metabolism in Aquatic Organisms." (M.A.Q. Kahn, J.J.
Lech and J.J. Menn, eds.) p. 297. American Chem. Soc. Washington
D. C.

BEND J. R., FOUREMAN G.L. and JAMES M.D. (1978) Partially induced
hepatic mixed function oxidase in individual members of certain
marine species from coastal Maine and Florida. In: "Aquatic
Pollutants, Transformation and Biological Effect-Š" (D. Hutzinger,
I.H. VanLelyveld, and B.D.J. Zoeteman, eds.). Pergamon Press, New
York.

BENDJ.R., HALLP. and FOUREMANG.L. (1976) Comparisonof
benzo(a)pyrene hydroxylase (aryl hydrocarbon hydroxylase, AHH)
activities in hepatic microsomes from untreated and
l,2,3,4-dibenzanthracene (DBA)-induced male little skates (Raja
erinacea). Bull. Mt. Desert Is. Biol. Lab. l6:3.

BEND J.R. and JAMES M.O. (1978) Xenobiotic metabolism in marine and
freshwater species. In: "Biochemical and Biophysical Perspectives
in Marine Biology." (D.C. Maiins and J.R. Sargent, eds.). Vol. 4,
p. l28. Academic Press, New York.

BEND J. R., JAMS M.O., and DANSETTE P.M. (l977) In vitro metabolism
of xenobiotics in some marine animals. Ann. N. Y. Acad. Sci. 298,
505.

BEND J. R., POHL R.J., ARINO E. and PHILPOT R.M. (1977) Hepatic
microsomal and solubilized mixed-function oxidase systems from the
little skate, Raja erinacea, a marine elasmobranch. In:
"Microsomes and Drug Oxidations." (V. Ullrich, 1. Roots, A.
Hildebrandt, R.W. Estabrook and A.H. Conney, eds.), p. l60.
Pergammon Press, Oxford.

BEND J.R., POHL R.J. and FOUTS J.R. (1973)
microsomal mixed-function oxidase system
erinacea, inc luding its response to some
Desert Is. Biol. Lab. 13:9.

Further studies of the

of the little skate, Raja
xenobiotics. Bull. Mt.

BERRY D.L., SLAGA T.J., WILSON N.M., ZACHARIAH P.K., NAMUNG M.J.,
BRACKEN W.M. and JUCHAU M. T. (l977) Transplacental induction of
mixed-function oxygenases in extrahepatic tissues by ,
2,3,7,8-tetrachloro-p-dioxin. Biochem. Pharmacol. 26:l383.



Page 242.

BICKEL M. H. and MUEHLEBACH S. (1980) Pharmacokinetics and
ecodisposition of polyhalogenated hydrocarbons: aspects and
concepts. Drug Metab. Rev. ll: 149.

BICKERS D.R., HARBER L.C., KAPPAS A., ALVARES A.P. (1972)

Polychlorinated biphenyls: comparative effects of high and low
chlorine containing Aroclors on hepatic mixed-function oxidase.

Res. Comm. Chem. Path. Pharm. 3:505.

BIGELOW H.B. and SCHROEDER W.C. (1953) Fishes of the Gulf of Maine.
U.S. Government Printing Office, Washington, D.C.

BINDERR.L. and STEGEMN J.J. (1980) Induction of aryl hydrocarbon
hydroxylase activity in embryos of an estuarine fish. Biochem.
Phannacol. 29:949.

BOTELHO L.H., RYAN D.E. and LEVIN W. (1979) Amino acid compositions
and partial amino acid sequences of three highly purified forms of
liver microsomal cytochrome P-450 from rats treated with
polychlorinated biphenyls, phenobarbital, or 3-methy lcholanth rene.

l. Biol. Chem. 254: 5635.

BOWES G.W., MULVIHILL M.J., SIMONETT B.R.T., BURLINGAME A.L. and

RISEBROUGH R.W. Identification of chlorinated dibenzofurans in
American polychlorinated biphenyls. Nature 256:305.

BOYD J.F. and SIMONDS R. C. (1974) Continuous laboratory production
of fert ile Fundulus heteroclitus (Walbaum) eggs lacking chorionic
fibrils. J. Fish Biol. 6:389.

BROWN E. R. R.,
BEAMER P.
watershed
33: 189.

HAZDRA J.J., KEITH L., GREENSPAN I., KWAPINSKI J.B.G. and
(1973) Frequency of fish tumors found in a pol luted

compared to nonpolluted Canadian waters. Cancer Res.

BUHLER D. R. and RASMUSSON M.E. (1968) The oxidation of drugs by

fishes. Compo Biochem. Physiol. 25 :223.

BU RNS K.A. (976) Microsomal mixed func tion oxidases in an estuarine

fish, Fundulus heteroclitus, and their induction as a result of
environmental contamination. Compo Biochem. Physiol. s3B :443.

BUTLER P .A. and SCHUTZMANN R.L. (l978) Residues of pestici,ies and
PCBs in estuarine fish, 1972-76 - National Pesticide Mon Ltoring
Program. Pest. Monit. J. 12: 51-59.

CAMPBELL T.C. and HAYES J. R. (1976) The role of aflatoxin metabolism
in its toxic lesion. Tox.~. Pharm. 35: 199.

CARLSTEDT-DUKE J.M.B. (1979) Tissue distribution of the receptor for
2,3,7,8-tetrachlorodibenzo-p-dioxin in the rat. Cancer Res.
39:3127.



Page 243.

CARLSTEDT-DUKE J.M.B., ELFSTROM G., HOGBERG B. and GUSTAFSSON J.
(l979) Ontogeny of the rat hepatic receptor for
2,3,7,8-tetrachloro-dibenzo-p-dioxin and its endocrine
independence. Cancer Res. 39:4653.

CARLSTEDT-DUKE J.M.B., GILLNERM., HANSSON L., TOFTGARD R., GUSTAFSSON
S., HOGBERG B. and GUSTAFSSON J. (1980) The molecular basis for
induction of aryl hydrocarbon hydroxylase: characteristics of the
receptor protein for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).
In: "Biochemistry, Biophysics and Regulation of Cytochrome
P-4s0." (J. Gustafsson, J. Carlstedt-Duke, A. Mode, J. Rafter,
eds.). Elsevier/North Holland, New York.

CHABERS J .E. and YARBROUGH J.D. (1976) Xenobiotic biotransformation
systems in fishes. Compo Biochem. Physiol. ssC:77.

CHATTERJEE I.B., PRICE Z.H. and McKEE R.W. (1965) Biosynthesis of
L-ascorbic acid in different sub-cellular fractions of prenatal and
postnatal rat iivers. Nature 207:l168.

CHEDID A. and NAIR V. (1974) Ontogenesis of cytoplasmic organelles in
rat hepatocytes and the effects of prenatal phenobarbital on
endoplasmic reticulum development. Dev. Biol. 39:49.

CHEN T. S. and DuBOIS K.P. (1973) Studies on the enzyme inducing
effect of polychlorinated biphenyls. Tox.~. Pharm. 26:504.

CHEVION M., STEGEMN J.J., PEISACH J. and BLUMBERG W.E. (1977)
Elec tron paramagnetic resonance studies on hepatic microsomal
cytochrome P-450 from a marine teleost fish. Life Sci. 20:895.

CONNEY A. H. (1967) Pharmacological implications of microsomal enzyme
induction. Pharmacol. Rev. 19:317.

COON M.J. and VATSIS (l978) Biochemical studies on chemical
carcinogenesis: role of multiple forms of liver microsomal
cytochrome P-450 in the metabolism of benzo(a)pyrene and other
foreign compounds. In: "Polycyclic Hydrocarbons and Cancer, Vol.
1: Environment, Chemistry and Metabolism." (H. V. Gelboin and
P.O.P Ts i 0t eds.). Academic Press, New York.

COOPER D.Y., LEVIN S., NARASIMHULU S., ROSENTHAL D. and ESTABROOK R.W.
(1965) Photochemical action spectrum of the terminal oxidase of
mixed function oxidase systems. Science 147 :400.

CRESTEIL T., FLINOIS J.P., PFISTER A. and LEROUX J.P. (1979) Effect
of microsomal preparations and induction on cytochrome p-450
dependent monooxygenases in fetal and neonatal rat liver. Biochem.
Pharmaco l. 28: 2057.



Page 244.

DALLNER G., SIEKEVITZ P. and PALADE G.E. (1966a) Biogenesis of
endoplasmic reticulum membranes. I. Structural and chemical
differentiation in developing rat hepatocytes. l. Cell Biol. 30:73.

DALLNER G., SIEKEVITZ P. and PALAE G.E. (1966b) Biogenesis of

endoplasmic reticulum membranes. II. Synthesis of constitutive
microsomal enzymes in developing rat hepatocyte. l. Cell Biol.
30: 9 7.

deBARROS A., KAPLAN J., DUVALDESTIN P. and BERTHELOT P. (1978)

PB-induced increase of NADH-cytochrome b5 reductase activity in
rat liver microsomes. Biochem. Pharm. 27:367.

DePIERRE J.W. and DALLNER G. (1975) Structural aspects of the

membrane of the endoplasmic reticulum. Biochem. Biophys. Acta
415 :411.

DeWAIDE J. H. and HENDERSON P. T.

aminopyrine in rat and trout.
(1968) Hepatic N-demethy lation of

Biochem. Phatm. l7: 1901.

DICKENS M., BRIDGES J.W., ELCOMßE C. R., and NETTER K.J. (1978) A

nove 1 haemoprotein induced by isosafrole pretreatment in the rat.
Biochem. Biophys. Res. Comm. 80: 89.

DRUMOND A.H., McCALL J.M. and JONDORF W.R. (l972) Some factors
affecting liver microsomal drug metabolism in the chicken.
Proceedings of the Biochemical Society, Biochem. l. 130:73.

DUCE R.A. and DUURSMA E.K. (977) Inputs of organic matter to the
ocean. Marine Chem. 5: 3l9.

DUNN B.P. (1979) Polycyclic aromatic hydrocarbons in marine

sediments, bivalves, and seaweeds: \ Analysis by high-pressure
1 iquid ch romatography. In: "Po lynuc lear Aromatic Hydrocarbons:

Fourth International Symposium on Analysis, Chemistry and
Biology." (A. Bjorseth, ed.) p. 367. Battelle Press, Columbus,
Ohio.

DUS K. (1976) On the structure and function of cytochrome P-450.

In: "The Enzymes of Biological Membranes Vol. 4, Elec tron
Transport Systems and Receptors." (A. Martinosi, ed.). Plenum
Pres s, New York.

ECOBICHON D.J. and COMEAU A.M. (l974) Comparative effects of
commercial Aroclors on rat liver enzyme activities. Chem.-Biol.
Int. 9 :341-350.

ECOBICHON I.J., DYKEMAN R.W. and HANSELL M.M. (1978) The development
of hepatic drug-metabolizing enzymes in prenatal guinea pigs: A
biochemical and morphological study. Can. l. Biochem. 56:738.



Page 245.

ELCOMBE C. R., FRANKLIN R.B. and LECH J.J. (1979) Induction of hepatic
microsomal enzymes in rainbow trout. In: IIPesticide and
Xenobiotic Metabolism in Aquatic Organisms. 

II (M.A.Q. Kahn, J.J.

Lech, and J.J. Menn eds.). p.319. American Chemical Society,
Washington D.C.

ELCOMBE C. R. and LECH J.J. (1979) Induction and charac terization of
hemoprotein( s) P-4s0 and monooxygenation in rainbow trout (Salmo
gairdneri). Toxicol.~. Pharmacol. 49 :437.

ELCOMBE C.R. and LECH J.J. (l978) Induction of monooxygenation in
rainbow trout by polybrominated biphenyls: a comparative study.
Environ. Health Perspect. 23:309.

ELCOMBE C. R., VODICNIK M. J. and LECH J. J. (1980)

monooxygenase inducers in the rainbow trout.
Pharmacol. (in press).

Characterization of
Toxicol. ~.

EGAA E. and VARANSI U. (1980) Effect of preexposure of rainbow
trout to polychlorinated biphenyls on binding of benzo(a)pyrene
to DNA catalyzed by liver enzymes. Fed. Proc. 39: 1013.

ESTABROOK R.W. (1971) A new spec tral intermediate associated with
cytochrome P-4s0 function in liver microsomes. Bioch. Biophy. Res.
Comm. 42: 132.

FANTEL A.G., GREENWAY J.C., JUCHAU M.R. and SHEPARD T.H. (1979)
Teratogenic bioactivation of cyclophospamide. Life Sci. 25:67.

FEUER G. (i 978) Ro le of phospho lipids in the deve lopment of the

hepatic endoplasmic reticulum associated with drug metabolism.
Res. Commun. Chem. Path. Pharm. 22:549.- --

FLEISCHER S. and KERVINA M. (1974) Subcellular fractionation of rat
liver. In IIMethods in enzymology XXXi.1I (Ed. S. Fleischer and L.

Parker) . Academic Pres s, New York.

FORLIN L. (l980) Effects of Clophen AsO, 3-methylcholanthrene,
pregnenolone-l6a-carboni trile and phenobarbital on the hepatic
microsomal cytochrome P-450 dependent monooxygenase system in
rainbow trout, Salmo gairdneri, of different age and sex. Toxicol.
~. Pharmacol. 54:420.

FORLIN L. and LIDMAN V. (1978) Effects of Clophen A50, 4-,2,5,21,51
tetra- and 2,4,5,2' ,41 ,s'-hexachlorobiphenyl on the mixed-function
oxidase system of rainbow trout (Salmo gairdneri) iiver. Compo
Biochem. Physio l. 60C: 193.



Page 246.

FOUTS J.R. and DEVEREUX T.R. (1972) Developmental aspects of hepatic
and extrahepatic drug metabolizing enzyme systems: microsomal
enzyme components in rabbit liver and lung during the first month
of life. l. Pharmacol. Exp. Therap. 183:458.

FUJITA S. and PE ISACH J. (l977) Elec tron transfer between liver
microsomal cytochrome bs and cytochrome P-4s0 in the azo
reductase reaction. Biochem. Biophys. Res. Commun. 78:328.

GALLOWAY S.M., PERRY P.E., MENESES J., NEBERT D.W. and PEDERSEN R.A.
(1980) Cultured mouse embryos metabolize benzo(a)pyrene during
early gestation: Genetic differences detectable by sister
chromatid exchange. Proc. Natl. Acad. Sci. U.S. 77:3524.

GERHART E.H. and CARLSON R.M. (1978) Hepatic mixed-function oxidase
activity in rainbow trout exposed to several polycyclic aromatic
compounds. Env. Res. 17 :284.

GIELENJ.E., GOUJON F.M. and NEBERT D.W. Genetic regulation of

arylhydrocarbon induction. (1972) J. Biol. Chem. 247:1125.

GILLETTE J. R., BRODIE B.B. and LaDU B.N. (1957) The oxidation of

drugs by liver microsomes: on the role of TPNH and oxygen. J.
Pharmacol. Exp. Therap. l19: 532.

GILLETTE J.R., DAVIS D.C. and SASAME H.A. (972) Cytochrome P-450 and

its role in drug metabolism. Ann. Rev. Pharmacol. 12:57.

GILLETTE J. R., MITCHELL J. R. and BRODIE B.B. (1974) Biochemical

mechanisms of drug toxicity. Ann. Rev. Pharmacol. 14:271.

GILLETTE J. R.and STRIPP B. (975)
for drug metabolite production.

Pre- and postnatal enzyme capac ity
Fed. Proc. 34: 172.

GOLDBERG E.D. (976) "The health of the oceans." UNESCO Press, Paris.

GOLDSTEIN A., ARONOW L. and KALMN S.M. (1974) "The Principles of
Drug Action: The Basis of Pharmacology." J. Wiley and Sons, New
York.

GOLDSTEIN J.A., HAS J. R., LINKO P. and HARVAN D.J. (1978)
2,3,7,8-tetrachlorodibenzofuran in a comercially available 99% pure
polychlorinated biphenyl isomer identified as the inducer of
hepatic cytoch rome P-448 and aryl hydrocarbon hydrolase in the
rat. Drug Metal Disp. 6: 258.

GOLDSTEIN J.A., HICKMN P., BERGMAN H., McKINNEY J.D. and WAIXER M.P.
(1977) Separation of pure polychlorinated bipheny 1 isome ~s into
two types of inducers on the basis of induction of cytoch rome P-450
or P-448. Chem. Biol. Int. 17:69.---



Page 247.

GOUJON F.M., NEBERT D.W. and GIELEN,J.E. (1972) Genetic expression of
ary 1 hydrocarbon hydroxy lase induction. Mol. Pharmacol. 8: 667.

GRA T.E., GUARINO A.M., SCHRODER D.H. and GILLETTE J.R. (1969)
Changes in certain kinetic properties of hepatic microsomal aniline
hydroxylase and ethylmorphine demethylase associated with postnatal

~. p". development and maturation in male rats. Biochem. J. l13:68l.

I ~~ GREEN D.E., MU G. and KOHOUT P.M. (1955) Studies on the terminal
i r;// electron transport system. 1. Succinate dehydrogenase. J. BioL..
\ . / Chern. 217 :551.'-J

GREENGARD O. (1971) Enzymic differentiation in mammalian tissues.
Essays Bioch. 7: l59.

GREENLEE W.F. and POLAND A. (1979) Nuclear uptake of
2,3,7,8-tetrachlorodibenzo-p-dioxin in C57BL/6J and DBA/2J mice.
J. Biol. Chem. 254: 9814.

GRIECO M.P., HENDRICKS J.D., SCANLON R.A., SINNHUBER R.O. and PIERCE
D.A. (1978) Carcinogenicity and acute toxicity of
dimethylnitrosamine in rainbow trout (Salmo gairdneri). J. Natl.
Cancer Inst. 60: l12 7.

GRUGER E.H.Jr., HRUBY T. and KARRECH N.L. (1976) Sublethal effects of
structurally related tetrachlor-, pentachlor-, and
hexach lorobipheny 1 on juvenile coho salmon. Environ. Sc i. Techno!.
lO:l033.

GUENTHNER T.M. and MANNERING G.J. (1977b) Induction of hepatic
mono-oxygenase systems in fetal and neonatal rats with
phenobarbital, polycyclic hydrocarbons and other xenobiotics.

Biochem. Pharmaco 1. 26: 567-575.

GUENTHNER T.M. and MANNERING G.J. (1977b) Induction of hepatic
monooxygenase systems of pregnant rats with phenobarbital and
3-methylcholanthrene. Biochem. Pharmacol. 26:577.

GUENTHNER T.M. and NEBERT D.W. (1978) Evidence in rat and mouse liver
for temporal control of 2 forms of cytochrome P-450 inducible by
2,3,7,8-tetrachlorodibenzo-p-dioxin. Eur. l. Biochem. 9l :449.

HANSSON T., RAFTER J. and GUSTAFSSON J. (1979) A comparative study on
the hepatic in vitro metabolism of 4-androstene-3, 17-dione in the
hagfish, Myxine glutinosa, the dogfish, Squalus acanthias, and the
rainbow trout, Salmo gairdnerii. Gen. Compo Endocrin. 37 :240.

HANSSON T., RAFTER J. and GUSTAFSSON J. (1980) Effects of some common
inducers in the hepatic microsomal metabolism of androstenedione in
rainbow trout with special reference to cytochrome P-450 dependent
enzymes. Bioch. Pharmacol. 29:583.



Page 248.

HART S.G., ADAMSON R.H., DIXON R.L. and FOUTS J.R. (1962) Stimulation
of hepatic microsomal drug metabolism in the newborn and fetal
rabbit. l. Pharmacol. Exp. Therap. 137:103.

HARVEY G. R., MIKLAS H.P., BOWEN V.T. dnd STEINHAUER W.G. (1974)

Observations on the distribution of chlorinated hydrocarbons in
Atlantic Ocean organisms. J. Mar. Res. 32:103.

HAUGEN D.A.and COON M. J. (1976) Properties of elec trophoretically
homogeneous phenobarbital inducible and -napthof lavone forms of
liver microsomal cytochrome P-4s0. l. Biol. Chem. 251:7929.

HARBISON R. D. (l978) Chemical-biological reactions common to

teratogenesis and mutagenesis. Environ. Health Persp. 24: 87.

HEIDELBERGER C. (1975) Chemical carc inogenesis. Ann. Rev. Biochem.
44: 79.

HENDRICKS J.D., SCANLAN R.A., WILLIAMS J.L., SINNHUBER R.O. AND GRIECO

M.P. (1980) Carcinogenicity of N-methyl-NI-nitrosoguanidine to
livers and kidneys of rainbow trout (Salmo gairdnerU exposed as
embryos. J. Natl. Cancer Inst. 64:15l1.

HILL D.W., HEJTMANICK E., and CAMP B.J. (1976) Induction of hepatic
microsomal enzymes by Aroclor 1254 in Ictalurus punctatus (channel
catfish). Bull. Environ. Contam. Toxicol. 16 :495-502.

HINTON D.E., KLAUNIG J .E., LIPSKY M.M., JACK R., KAHNG M., SANEFUJI H.,
JONES R.T. and TRUMP B.F. (1978) Chemical carcinogenesis in
fish: Induction of hepatic drug metabolizing enzymes and bacterial
mutagenesis with polycyclic aromatic hydrocarbons (PAH). In:
"Polynuclear Aromatic Hydrocarbons in the Marine Environment." (N.
Richards, ed.). Proceedings of a Conference, Pensacola, Florida,

August 1978, U.S. EPA. (In press).

HOLDER G., YAGI H., DANSETTE P., JERMD.M., LEVIN W., LU A.Y.H. and
CONNEY A.H. Effects of the inducers and epoxide hydrase on the
metabolism of benzo(a)pyrene by live microsomes and a reconstituted
system: analysis by high pressure liquid chromatography. (1974)
Proc. Natl. Acad. Sci. U. S.A. 71 :4356.

HOLTZMAN J.L., GRA T.E., GIGON P.L. and GILLETTE J.R. (l968) The
distribution of the components of the mixed-func tion oxidase
between the rough and smooth endoplasmic reticulum of liver cells.Biochem. J. LLO:407. '

HRYCAY E.G. and PROUGH R. (1974) Reduced nicotinamide adenine
dinucleotide-cytochrome b5 reductase and cytochrome b5 as
electron carriers in NADH-supported cytochrome P-450 dependent
enzyme activities in liver microsomes. Arch. Bioch. Biophy.
165:331.



Page 249.

lMAI Y., HORIE S., YAMNO T. and IIZUKA T. (1978) Molecular
Properties, Chapter 3. In: "Cytochrome P-4s0." (R. Sato and T.
Omura, eds.). p. 37, Academic Press, New York.

INANO H., MORE K., TAMOKI B. and GUSTAFSSON J.A. (1976) In vitro

metabolism of testosterone in hepatic tissue of a hagfish,
Eptatretus burgeri. Gen. Compo Endocrin. 30:258.

JAKOBSSON S.V. and CINTI D.L. (1973) Studies on the cytochrome P-4s0
containing monooxygenase system in human kidney cortexmicrosomes.

l. Pharmacol. Exp. Therap. 185:226.

JAMES M.O. and BEND J. R. (1978) Effect of polynuclear aromatic
hydrocarbons and polyhalogenated biphenyls on hepatic
mixed-function oxidase activity in marine fish. In: "Carcinogenic
Polynuclear Aromatic Hydrocarbons in the Marine Environment." (N.
Richards, ed.). Proceedings of Conference, Pensacola, Florida.
August 1978, U.S. EPA (in press).

JAMES M.O. and BEND J. R. (1980) Po lycyclic aromatic hydrocarbon
induction of cytochrome P-4s0 dependent mixed-function oxidases in
marine fish. Toxicol.~. Pharmacol. 54: 1 l7.

JAMES M.O., KAHN M .A.Q. and BEND J. R. (1979) Hepatic microsomal
mixed-function oxidase activities in several marine species common
to coastal Florida. Compo Biochem. Physiol. 62C:is5.

JANSSON I. and SCHENKMN J. B. (1973) Evidence against the
participation of cytochrome bs in the hepatic microsomal
mixed-function oxidase reaction. Mol. Pharmacol. 9:840.

JENSEN S. and SUNDSTROM (l974) Structures and levels of most
chlorobiphenyls in two technical PCB products and in human adipose
tissue. Ambio 3: 70.

JERINA D.M. and DALY J.W. (l974) Arene oxides: A new aspect of drug
metabolism. Science 185: 573.

JOHNSON E.F. (1979) Multiple forms of cytochrome P-4s0: Criteria and
significance. Rev. Bioch. Toxicol. 1:1.

JUCHAU M.R., PEDERSEN M.G. and SYMMO K.G. (1972) Hydroxylation of
3,4-benzpyrene in human fetal tissue homogenates. Bioch.
Pharmacol. 21: 2269.

KAHL G.F., FRIEDERICI D.E., BIGELOW S.W., OKEY A.B. and NEBERT D.W.
(1980) Ontogenetic expression of regulatory and structural gene
products associated with the Ah locus. Dev. Pharmacol. Therap. 137.



Page 250.

KAIGHN M.E. (1964) A biochemical study of the hatching process in
Fundulus heteroclitus. Dev. Biol. 9 :56.

KAMTH S.A., KUMMEROW F.A. and NARAYAN K.A. (197l) A simple procedure
for the isolation of rat liver microsomes. FEBS Letters l7 :90.

KAPITULNIK J., TSHERSHEDSKY M. and BARENHOLZ Y. (1979) Fluidity of
the rat liver microsomal membrane: Increase at birth. Science
206: 843.

KATO R. (1974) Drug Metabolism Review 3: 1.

KING H.W.S., OSBORNE M. R., BELAND F.A., HARVEY R.G. and BROOKES P.
(1976) (+ )-7, 8-Dihydroxy-9l0-epoxy-7 ,8,9, 10-tetrahydro-
benzo( a)pyrene is an intermediate in the metabolism and binding to
DNA of Benzo(a)pyrene. Proc. Natl. Acad. Sci. U. S. 73: 2679.

KITCHIN K.T., SCHMID B.P. and SANYAL M.K. (1981) Teratogenicity of
cyclophospamide in a coupled microsomal activating/embryo
culture system. Biochem. Pharmacol. 30:59.

KLAA E.E. and BELISLE A.A. (1977) Organochlorine pesticide and

polychlorinated biphenyl residues in selected fauna from a
New Jersey salt marsh - 1967 vs. 1973. Pesticide Monit. J. 10: 149.

KRAR R.E., GREINER J.W., RUMBAUGH R.C., SWEENEY ToD. and COLBY H.D.
(1978) Relation of the gonadal hormones to growth hormone actions
on hepatic drug metaboiism in rats. J. Pharmacol. Exp. Therap.
204:247.

KUENZIG W., KAM J.J., BOUBLIK M., JENKINS F. and BURNS J.J. (1974)

Perinatal drug metabolism and morphological changes in the
hepatocytes of normal and phenobarbital-treated guinea pigs. J.
Pharmacol. Exp. Therap. 191:32.

KULKRNI A.P., SMITH E. and HODGSON E. (1976) Occurrence and

characterization of microsomal cytochrome P-450 in several
vertebrate and insect species. Compo Biochem. Physiol. 54ß: 509.

KUNTZMAN R., LEVIN W., JACOBSON M. and CONNEY A.H. (1968) Studies on
microsomal hydroxylation and the demonstration of a new carbon
monoxide binding pigment in liver microsomes. Life Sci. 7: 215.

KURELEC B., BRETVIC S., RIJAVEC M., MULLER W.E.G. and ZAHN R.K.

(1977) Benzo(a)pyrene monooxygenase induction in marine
fish-molecular response to oil pollution. Mar. Biol. 44: 211.



Page 2si.

KURELEC B., MATIJASEVIC Z., RIJAVEC M., ALACEVIC M., BRITVIC S., MULLER
W.E.G. and ZAHN R.K. (1979) Induction of benzo(a)pyrene
monooxygenase in fish and the Salmonella test as a tool for
detecting mutagenic/care inogenic xenobiotics in the aquatic

environment. Bull. Environ. Contam. foxicol. 2l:799.

LaFLAME and HITES (1978) The global distribution of polycyclic
aromatic hydrocarbons in recent sediments. Geochim. Cosomochim.
Ac ta 42: 289.

LAMBERT G.H. and NEBERT D.W. (1977) Genetically mediated induction of
drug-metabolizing enzymes associated with congenital defects in the
mouse. Teratol. 16:147-is4.

LEAKEY J. and DUTTON G.J. (1975) Precocious development in vivo of
UDP-glucuronyltransferase and aniline hydroxylase by
cort icosteroids and ACTH, using a simple new "cont inuous flow"
technique. Biochem. Biophys. Res. Commun. 66:250.

LEAKEY J .E.A. and FOUTSJ. R. (1978) Effects of hormones on the
development of enzymes associated with drug metabolism. Toxicol.
Appl. Pharmacol. 45: 362.

LEAEY J.E.A. and FOUTS J.R. (1979) Precocious development of
cytochrome P-4s0 in neonatal rat liver after glucocorticoid
treatment. Biochem. J. 182: 233.

LEAKEY J .E.A. and WISHART G.J. (1976) Differential stimulation of
monooxygenase and UDP glucuronosyl transferase EC-2,4,1, and 17
activities in chick liver during natural development and after
treatment in ovo with corticosterone. Biochem. Soc. Trans. 4:1072.

LIDMAN U., FORLIN L., MOLANDER 0, AND AXELSON G. (1976) Induction of
the drug metabolizing system in rainbow trout (Salmo gairdnerii)
liver by polychlorinated biphenyls (PCBs). Acta Pharmacol.
Toxicol. 39:262.

LIPSKY M.M., KLAUNIG J.E. and HINTON D.E. (1978) Comparison of acute

response to polychlorinated biphenyl in liver of rat and channe 1
catfish: a biochemical and morphological study. J. Tox. Env.
Health 4: 107.

LLOYD J.W., MOORE R.M., WOOLF B.S. and STEIN H.P. (1976)
Polychlorinated biphenyls. J. Occup. Med. 18: 109.

LOWRY O.H., ROSEBROUGH N.J., FARR A.L. and RANDALL R.J.
Protein measurement with the folin phenol reagent.
193:26s.

(1951)
J. Biol. Chem.



Page 252.

LU A. Y. H., KUNTZMAN R. and CONNEY A. H. (1976) The liver microsomal
, hydroxy lation enzyme system. Induction and propert ies of the
functional components. In: Frontiers of Gastrointestinal Research
V.2 (L. van der Reis, ed.) S. Karger A.G., Basel.

LU A.Y.H. and LEVIN W. ()974a) The resolution and reconstitution of
the liver microsomal hydroxylation system. Bioch. Biophy. Acta
344 :205.

LU A.Y.H. and LEVIN W. (1974b) Liver microsomal electron transport
systems III. The involvement of cytochrome b5 in the
NADPH-supported cytochrome P-4s0 dependent hydroxylation of
chlorobenzene. Bioch. Biophy. Res. Comm. 6l: 1348.

LU A.Y.H., SOMOGYI A., WEST S., KUNTZMAN R. and CONNEY A.H. (1972)
Pregnenolone-16n(-carbonitrile: A new type of inducer of
drug~etabolizing enzyme s. Arch. Biochem. Biophys. 152 :457.

LU A.Y.H. and WEST S.B. (1972) Reconstituted liver microsomal enzyme
system that hydroxy latesdrugs, other foreign compounds, and
endogenous substrates. Mol. Pharmacol. 8 :490-500.

LU A.Y.H. and WEST S.B.
cytochromes P-450.

(1980) Multiplicity of mammalian microsomal
Pharmacol. Rev. 31:277.

LU A. Y. H., WEST S. B., VORE M., RYAN D., and LEVIN W. (l974) Role of
cytochrome bs in hydroxylation by a reconstituted cytochrome
P-450 containing system. l. Biol. Chem. 249:670l.

LUCIER G.W., SONAWANE B.R., McDANIEL O.S. and HOOK G.E.R. (1975)
Postnatal stimulation of hepatic microsomal enzymes following
administration of TCDD to pregnant rats. Chem. Biol. Interactions
11: 15.

MacLEOD S.M., RENTON K. W. and EADE N. R. (1972)

microsomal drug-oxidizing enzymes in immature
rats. l. Pharm. Exp. Therap. 183:489.

Development of hepatic

male and female

MANCHESTER D.K. and NEIMS A.H. (1977) The effect of birth on the
maturation of hepatic cytochrome(s) P-450 monooxygenase and
tyrosine aminotransferase activities in the guinea pig. Biol.
Neonate 31:213.

MARTZ F., FAILINGER C. and BLAKE D.A. (977) Pheny ltoin teratogenesis:
correlation between embryopathic effect and covalent binding of
putative arene oxide metabolite in gestational tissue. J.
Pharmacol. Exp. Therap. 203:231.

MATSUBARA T., PROUGH R.A., BURKE M.D. and ESTABROOK R.W. (1974) The
preparation of microsomal fractions of rodent respiratory tract and
their characterization. Cancer Res. 34:2196.



Page 253.

MAUGH II T. H. (l97 5) èhemical pollutants: polychlorinated biphenyls
still a threat. Science 190:1189.

McCORMCK K.M., CAGEN S.Z., RICKERT D.E., GIBSON J .E. and DENT J .G.
(1979) Stimulation of hepatic and renal mixed-function oxidase in
developing rats by polybrominated biphenyls. Drug Metab. Disp.
7:252.

McDERMOTT-ERLICH D., YOUNG D.R. and HEESEN T.C. (1978) DDT and PCB in
flatfish around southern California municipal outfalls.
Chemosphere 6 :453-461.

McKIM J. M. (l977) Evaluation of tests with early life stages of
fish for predicting long-term toxicity. J. Fish. Res. Bd. Can.
34: 1148.

MILLER J.A. (1970) Carcinogenesis by chemicals: An overview-G.H.A.
Clowes Memorial Lecture. Cancer Res. 30:559.

MUKHTAR H., SAHIB M.J. and KIDWAI J.R. (1974) Precocious induction of
hepatic aniline hydroxy lase and aminopyrine n-demethy lase with
hydrocort isone in neonatal rat. Biochem. Pharm. 23: 345.

MURPHY S.D. (1966) Liver metabolism and toxicity of thiophosphate
insecticides in mammalian, avian, and piscine species. Proc. Soc.
Expo Biol. Med. 123:392.

NARBONNE J.F. and GALLIS J.L. (1979) In vivo and in vitro effect of
phenoclor DP6 on drug metabolizing aetivity in mullet liver. Bull.
Environ. Contam. Toxicol. 23:338.

NATIONAL ACADEMY OF SCIENCES (1975) "Petroleum in the Marine
Environment." Washington, D. C.

NEBERT D.W. and GELBOIN H.V. (1969) The in vivo and in vitro
induction of aryl hydrocarbon hydroxyiãSe~mammalian cells of
different species, tissues, strains and developmental and hQrmonal
states. Arch. Biochem. Biophys. l34: 76.

NEBERT D.W. and JENSEN N.M. (1979) The Ah locus: Genetic regulation
of the metabolism of carcinogens, drugs, and other environmental
chemicals by cytochrome P-450 mediated monooxygenases. CRC Crit.
Rev. Bioch. 6:401.

NEBERT D.W., ROBINSON J.R., NIWA A., KUMAKI K. and POLAND A.P. (1975)
Genetic expression of aryl hydrocarbon hydroxylase activity in the
mouse. l. Cell. Physiol. 85:393.

NEFF J .M. (1979) Polycyclic aromatic hydrocarbons in the aquatic
environment. Sources, fates and biological effects. Applied
Science Publishers, London.



Page 254.

NEGISHI M. and KREIBICH G. (1978) Coordinated polypeptide synthesis
and insert ion of protoheme in cytoch rome P-4s0 during deve lopment
of endoplasmic reticulum membranes. l.. Biol. Chem. 13:4791.

NEIMSA.H., WARNERM., LOUGHNANP.M. and J.V. ARANDA (1976)
Developmental aspects of the hepatic cytochrome P-4s0 monooxygenase
system. Ann. Rev. Pharm. Tox. 16:427.

NEWBOLD, R.F. and BROOKES P. (l976) Exceptional mutagenicity of
benzo(a)pyrene diol epoxide in cultured mammalian cells. Nature
261:52.

NISBET I.C.T. and SAROFIN A.F. (1972) Rates and routes of transport

of PCBls in the environment. Environ. Health Perspect. 1:21.

NORMN R.L., JOHNSON E.F. and MULLER-EBERHARD U. (1978)
Identification of the major cytochrome P-450 form transplacentally
induced in neonatal rabbits by
2,3,7,8-tetrachlorodibenzo-p-dioxin. l.. Biol. Chem. 253:8640.

OKEY A.B., BONDY G.P., MASON M.E., KAHL G.F., EISEN H.J., GUENTHNER

T.M. and NEBERT D.W. (1979) Regulatory gene produc t of the Ah
locus. Charac terization of the cytosolic inducer receptor complex

and evidence for its nuclear translocation. J. Bio1. Chem.254:1l636. -- --
OLIVER I.T. (974) Developmental enzymology. In: "Concepts of

Development-" (J. Lash and J.R. Whittaker, eds.) Sinauer
Associates, Stamford, Conn.

OMURA T. and SATO R. (1964) The carbon monooxide-binding pigment of

liver microsomes. I. Evidence for its hemoprotein nature. J.
Biol. Chem. 239: 2370.

OPPENHEIMER J .M. (1937) The normal stages of Fundulus heteroclitus.
Anatom. Rec. 68: 1.

ORRENIUS S. ,ERICSSON J .L.E. and ERNSTER L. (1965)

Phenobarbital-induced synthesis of the drug metabolizing enzyme
system and its re lationship to the proliferation of endoplasmic
membranes: A morphological and biochemical study. l.. Cell Biol.
25:627.

PANCIROV R.J. and BROWN R.A. (1977) Polynuclear aromatic hydrocarbons
in marine tissues. Env. Sci. Tech. 11:989.

PARKINSON A., COCKERLINE R. and SAFE S. (1980a)
bipheny 1 isomers and congeners as inducers of
3-methyl-cholanthrene and phenobarbitone-type
activity. Chem.-Biol.lnter. 29:277.

Po lych lori nated

both
microsomal enzyme



Page 255.

PARKINSON A., ROBERTSON L, SAFE L and SAFE S. (l980b) Polychlorinated
bipheny ls as inducers of hepatic microsomal enzymes:

structure-activity rules. Chem.-Biol.lnter. 30:271.

PAYNE J..F. (1976) Field evaluation of oenzopyrene hydroxylase

induction as a monitor for marine pollution by petroleum. Science
191: 945.

PAYNE J.F., MARTINS i. and RAHIMTULA A. (1979) Crankcase oils: are
they a major mutagenic burden in the aquatic environment? Science
200: 329.

PAYNE J.F. and PENROSE W.R. (1975) Induction of aryl hydrocarbon
(benzo(a)pyrene) hydroxylase in fish by petroleum. Bull. Envir.
Contam. Tox. l4: 112.

PEDERSON M.G., HERSHBERGER W.K. and JUCHAU M.R. (1974) Metabolism of

3,4-benzo(alpyrene in rainbow trout (Salmo gairdnerii). Bull.
Environ. Contam. Tox. l2 :481.

PEDERSON M.G., HERSHBERGER W.K., ZACHARIAH P.K. and JUCHAU M.R.
(1976) Hepatic biotransformation of environmental xenobiotics in
six strains of rainbow trout (Salmo gairdneri). l. Fish. Res.
Board Can. 33: 666.

PEZZUTO J.M., YANG C.S., YANG S.K., McCOURT D.W. and GELBOIN H.V.

(1978) Metabolism of benzo( a)pyrene and
(- )-trans-7, 8-dihydroxy-7, 8-dihydrobenzo( a) pyrene by rat liver

nuclei and microsomes. Cancer Res. 38: 1241.

PHILLIPS A. H. and LANGDON R.G. (1962) Hepatic triphosphopyridine
nucleotide-cytochrome c reductase: Isolation, characterization,
and kinetic studies. J. Biol. Chem. 237: 2652.

PHILPOT R.M. AND ARINC E. (l97 5) Solubilization, separation and
part ial purification of cytochrome P-4s0 and cytochrome bs from
hepatic microsomes of the little skate Raja erinacea. Bull. Mt.
Desert Is. Biol. Lab. 15:62.---

PLISS G.B. and KHUDOLEY V.V.

agents in aquarium fish.

(1975) Tumor induction by carcinogenic
J. Natl. Cancer Inst. 55:129.

POHL R.J., FOUTS J.R. and BEND J.R. (1975) Responses of microsomal
mixed-function oxidases in the little skate, Raja erinacea, and the
winter flounder, Psuedopleuronectes americanus, to pretreatment
with TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) or DBA
(1,2,3,4-dibenzanthracene). Bull. Mt. Desert Is. Biol. Lab. 15:64.



Page 256.

POLAD A.and GLOVER E. (1974) Comparison of
2,3,7, 8-tetrach lorodibenzo-p-d ioxin, a potent inducer of ary 1

hydrocarbon hydroxylase with 3-methycholanthrene. Mol. Pharmacol.
10: 349.

POLAND A. and GLOVER E. (1975) Genetic expression of aryl hydrocarbon

hydroxylase by 2,3,4,7-tetrachlorodibenzo-p-dioxin: Evidence for a
receptor mutation in genetically nonresponsive mice. Mol.
Pharmacol. II :389.

POLAND A. and GLOVER E. (1977) Chlorinated biphenyl induction of aryl
hydrocarbon hydroxy lase: A study of the structure activity
re lationship. Mol. Pharmacol. 13: 924.

POLAND A., GLOVER E. and 'KENDE A.S. (1976) Stereospecific high
affinity binding of 2,3,7 ,8-tetrachlQrodibenzo-p-dioxin by hepatic
cytosol: Evidence that the binding species is receptor for
induction of aryl hydrocarbon hydroxylase. l. Biol. Chem. 25l :4936.

POLAND A.P. and NEBERT D.W. (1973) A sensitive radiometric assay of
aminopyrine n-demethylation. J. Pharm. Exp. Therap. 184:269.

POWIS G., DRUMOND A.H., MacINTYRE D.E. and JONDORF W.R. (1976)
Deve lopment of liver microsomal oxidations in the chick.
Xenobiotica 6 :69.

RANE A., BERGGREN M., YAFFE S. and ERICSSON J .L.E. (1973) Oxidative

drug metabolism in the perinatal rabbit liver and placenta.
Xenobiotica 3:37.

RASMUSSEN R.E. and WANG 1. Y. (974) Dependence of specific metabolism
of benzo(a)pyrene on the inducer of hydroxylase activity. Cancer
Res. 34:2290.

RIFKIND A. B., GILLETTE P.N., CHULL S.S. and KAPPAS A. (1973) Drug
stimulation of S-aminolevulinic acid synthetase and cytochrome
P-450 in vivo in chick embryo liver. J. PharmacoL. Exp. Therap.
185: 214: -

RIFKIND A. B., TROEGER M. and PETSCHKE T. (979) Equality of the rates
of mixed-function oxidation in livers of male and female chick
embry os. Biochem. Pharmacol. 28: 1681.

RIFKIND A.B., TSENG L., HERSCH M.B. and LAUERSEN N.H. (1978) Aryl
hydrocarbon hydroxylase activity and microsomal cytochrome content
of human fetal tissues. Cancer Res. 38: is72.

RISEBROUGH R.W. and DeLAPPE B. (1972) Accumulation of polychlorinated
biphenyls in ecosystems. Environ. Health Perspect. No.1 39.



Page 257.

ROSE K.J. (1980) Children of Poseidon. Omni, July.

ROSENTHAL H. and ALDERDICE D.F. (1976) Sublethal effects of environ-
mental stressors, natural and pollutional on marine fish eggs and
larvae. J. Fish. Res. Bd. Can. 33:,o~7.

RUGH R. (1-964) "Vertebrate Embryology" Chapter 6, p. 237. Harcourt,
Brace and World, Inc., New York.

RYAN D.E., THOMAS P.E., KORZENIOWSKI D. and LEVIN w. (1979)
Separation and characterization of highly purified forms of liver
microsomal cytochrome P-4s0 from rats treated with polychlorinated
biphenyls, phenobarbital and 3-methylcholanthrene. l. Biol. Chem.
254: 1365.

SATO R. and OMURA T. (1978) "Cytochrome P-450." Academic Press, New
York.

SCHENKMN J.B., JANSSON I. and ROBIE-SUH K.M. (1976) The many roles
of cytochrome bs in hepatic microsomes. Life Sci. 19:6l1.

SCHOENTAL R. (l974) Carcinogenicity as related to age. Ann. Rev.
Pharm. Tox. 14:185.

SCHWAB G.E., NORMN R.L., MULLER-EBERHARD U. and JOHNSON E.F. (l980)
Identification of the form of cytochrome p-4s0 induced in neonatal
rabbit liver microsomes by phenobarbital. Mol. Pharm. 17 :218.

SELKIRK J.K., CROY R.G., ROLLER P.P. and GELBOIN H.V. (1974)
High-pressure liquid chromatographic analysis of benzo(a)pyrene
metabolism and covalent binding and the mechanism of action of
7,8-benzoflavone and l,2-epoxy-3,3,3-trichloropropane. Cancer Res.
34: 3474.

SELKIRK J .K., CROY R.G. and GELBOIN H. V. (1976) High pressure liquid

chromatographic separation of LO benzo(a)pyrene phenols and the
identification of l-phenol and 7-phenol as new metabolites. Cancer
Res. 36:922.

SHORT C. R. and DAVIS L.E. (1970) Perinatal development of
drug-metabolizing enzyme activity in swine. J. Pharmacol. Exp.
Therap. l74:18s.

SHORT C. R., KINDEN D.A. and STITH R. (1976) Fetal and neonatal
development of the microsomal monooxygenase system. Drug Metab.
Rev. 5:1.

SHORT C. R. and STITH R. (1973) Perinatal development of hepatic

microsomal mixed function oxidase activity in ßwine. Bioch. Pharm.
22:1309.



Page 258.

SHUM S., JENSEN N.M. and NEBERT D.W. (1979) The murine Ah locus: In
utero toxicity and teratogenesis associated with genetic
differences in benzo(a)pyrene metabolism. Teratology 20:365.

SINNHUBER R.O., WALES J.H., AYRES J..I., ENGEBRECHT R.H. and AMEND D.L.

(l968) Dietary factors and hepatoma in rainbow trout (Salmo
gairdneri). I. Af1atoxins in vegetable protein feedstuffs. J.
Natl. Cancer Inst. 41: 711.

SISSONS D. and WELTI D. (971) Structural identification of
polychlorinated biphenyls in commercial mixtures by gas-liquid
ch romatography, nuclear magnetic resonance and mass spectrometry.
l. Chromatogr. 60: 15.

SMITH S. (1957) Early development and hatching.

of fishes, ed. by M.E. Brown, Vol. 1. 323-359.
New York.

In: The physiology
Academic Press,

SPAGNOLI J.J. and SKINNER L.C.

waters of New York State.
(1977) PCB's in fish from selected

Pesticide Monit. J. 11:69.

ST AUFFER T. M.
trout eggs
Trans. Am.

(l979) Effects of DDT and PCBs on survival of lake
and fry in a hatchery and in Lake Michigan, 1973-l976.
Fish. l08:178-186.

STATHAM C.N., SZYJKA S.P., MENAHAN L.A. and LECH J.J. (1977)
Fractionation and subcellular localization of marker enzymes in
rainbow trout liver. Biochem. Pharmacol. 26: 1395.

STEGEMN J.J. (1978) Influence of environmental contamination on
cytochrome P-4s0 mixed~function oxygenases in fish: implications
for recovery in the Wild Harbor Marsh. J. Fish. Res. Bd. Can.
35:668.

STEGEMN J.J. (979) Temperature influence on basal actívity and
induction of mixed function oxyg~nase activity in Fundulus
heteroclitus. J. Fish. Res. Board Can. 36:1400.

STEGEMAN J.J. (l980) Cytochrome P-450 and benzo( a)pyrene metabolism
in cardiac tissue of the marine fish Stenotomus versicolor.
Pharmacologist 20:248.

STEGEMN J. J. (1981a) Unpublished data - personal communication.

STEGEMAN J .J. (1981b) Polynuclear aromatic hydrocarbons and their
metabolism in the marine environment. In: "Polycyclic Aromatic
Hydrocarbons and Cancer." (H.V. Gelboi~and P.O.P. Tslo, eds.).
Academic Pre ss, New York.



Page 259.

STEGEMAN J.J. AND BINDER R.L. (l979) High benzo(a)pyrene hydroxylase
activity in the marine teleost fish Stenotomus versicolor.
Biochem. Pharmacol. 28: 1686.

STEGEMN J.J., BINDER R.L. and ORREN A. (1979) Hepatic and
ex trahepatic microsomal elec tron transport components and
mixed-func tion oxygenases in the marine fish Stenotomus
versicolor. Biochem. PharmacoL. 28 :3431.

STEGEMN J.J. and CHEVION M. (1980) Sex differences in cytochrome
P-4s0 and mixed-function oxygenase activity in gonadally mature
trout. Biochem. Pharmacol. 28:553.

STEGEMAN J.J., SKOPEK T.R. and THILLY W.G. (1978) Bioactivation of
polynuclear aromatic hydrocarbons to cytotoxic and mutagenic
products by marine fish. In: "Carcinogenic Polynuclear Aromatic
Hydrocarbons in the Marine Environment." (N. Richards, ed.).
Proceedings of Conference, Pensacola, Florida, August 1978, u.s.
EPA (in press).

STEGEMN J.J. and WOODIN B.R. (1980) Patterns of benzo(a)pyrene
metabolism in liver of the marine fish Stenotomus versicolor. Fed.
Proc. 39: 17 52.

SUGIYAM, T., MIKI N. and YAMNO T. (1979) The obligatory requirement
of cytochrome bs in the p-nitroanisole o-demethylation reaction
catalyzed by cytoch rome P-4S0 with a high affinity for cytochrome

bS' Biochem. Biophys. Res. Commun. 90:715.

THORGEIRSSON S.S., ATLAS S.A., BOOBIS A. R. and FELTON J.S. (1979)
Species differences in the substrate specificity of hepatic
cytochrome P-448 from polycyclic hydrocarbon-treated animals.
Biochem. Pharmacol. 28:217.

THORGEIRSSON S.S. and NEBERT D.W. (1977) The Ah locus and the
metabolism of chemical carcinogens and other foreign compounds.
Adv. Cancer Res. 24:149.

TJESSUM K. and STEGEMN J.J. (1979) Improvement of reverse-phase high

pressure liquid chromatographic resolution of benzo (a)pyrene
metabolites using organic amines: application to metabolites
produced by fish. Anal. Biochem. 99: 129-l3s.

TREDGER J.M. and CHHARA R.S. (1980) Factors affecting the properties
of mixed function oxidases in the liver and small intestine of
neo-natal rabbits. Drug Metab. Disp. 8:l6.

TRINKAUS, J. P.
Biology."

(1967) Fundulus. In: "Methods in Developmental
(F.H. Wilt and N.K. Wessells) Thomas Crowell, New York.



Page 260.

VAINIO H. (1974) Enhancement of microsomal drug oxidation and
glucuronidation in rat liver by an environmental chemical

polycblorinatedbiphenyl. Chem. Biol. Int. 9:379.

VanCANFORT J., DeGRAEVE J. and GIELEN J.E. (1977) Radioactive assay
for aryl hydrocarbon hydroxylase. Improved method and biological
importance. Biochem. Biophys. Res. Commun. 79: 505.

VALIELA I., WRIGHT J.E., TEAL J.M. and VOLK~N S.B. (1977) Growth,
production and energy transformation in the salt marsh killifish

Fundulus heteroclitus. Mar. Biol. 40: 135.

VARANASI U. and GMUR D.J. (1980) Metabolic activation and covalent
binding of benzo(a)pyrene to deoxyribonucleic acid catalyzed by
liver emzymes of marine fish. Biochem. Pharmacol. 29: 753.

VA RA AS I U., GMUR D.J. and KRAHN M.M. (1980) Metabolism and
subsequent binding of benzo(a)pyrene to DNA in pleuronectid and

salmonid fish. In: Polynuclear Aromatic Hydrocarbons: Fourth
International Symposium on Analysis, Chemistry and Biology." (A.
Bjorseth, ed.). p.455. Battelle Press, Colombus, Ohio.

VEITH G.D., KUEHL D. W., LEONARD E.N., PUGLISI F .A. and LEMKE A.E.

(1979) Polychlorinated biphenyls and other organic chemical
residues in fish from major watersheds of the United States,
1976. Pesticide Monit. J. 13:1.

VERNIER J. and SIRE M. (1976) Evolution of the glycogen content and
of glucose-6-phosphatase activity in the liver of Salmo gairdneri
during development. Tiss. Cell 3:531-546.

VOS,J.G., KOEMAN J.H. and van der MAAS M.C. (1970) Identification and
toxicological evaluation of chlorinated dibenzofuran and

chlorinated napthalene in two commercial polychlorinated
bipheny ls. Fd. Cosmet. Tox. 8 :625.

WALES J.H., SINNHUBER R.O., HENDRICKS J.D., NIXON J.E. and EISELE T.A.
(1978) Alfatoxin Bi induction of hepatocellular carcinoma in the
embryos of rainbow trout (Salmo gairdneri). l. Nat1. Cancer Inst.
60:1133-1139

WALTON D.G., PENROSE W.R. and GREEN J.M.
inducible mixed-function oxidase of
re levant to hydrocarbon monitoring.
35 : l54 7 .

(1978) The petroleum
cunner: some characteristics
J. Fish. Res. Board Can.

WASSERMNN M., WASSERMNN D., CUCOS S. and MILLER H.J. (1979) World
PCBs map: Storage and effects in man and his biologic environment
in the 19701s. Ann. N.Y. Acad. Sci. 320:69.



Page 26l.

WEBB R.G. and McCALL A.C. (1972)
biphenyl isomers in Aroclors.

Identities of polychlorinated
J. Ass. Off. Anal. Chem. 55:746.

WEINSTEIN I.B., JEFFREY A.M., JENNETTE K.W., BLOBSTEIN S.H., HARVEY
R.G., HARRIS C., AUTRUP H., KASAl h. and NAKNISHI K. (1976)
Benzo(a)pyrene diol epoxides as intermediates in nucleic acid
binding in vitro and in vivo. Science 193:592.

WEISBURGER E.K. (l978) Mechanisms of chemical carcinogenesis. Ann.
Rev. Pharm. Tox. 18 :395.

WELCH R.M., GOMMI B., ALVARES A. and CONNEY A.H. (l972) Effect of
enzyme induction on the metabolism of benzo(a)pyrene and
3' -methyl-4-monomethy laminoazobenzene in the pregnant and fetal
rat. Cancer Res. 32:973.

WEST S.B. and LU A.Y.H. (1977) Liver microsomal electron transport
systems: Properties of a reconstituted, NADH-mediated
benzo(a)pyrene hydroxylation system. Arch. Bioch. Biophy. 182:369.

WIEBEL F.J., LEUTZ J.C., DIAMOND L. and GELBOIN H.V. (197l)
Hydrocarbon benzo(a)pyrene hydroxylase in microsomes from rat

tissues: differential inhibition and stimulation by benzoflavones
and organic solvents. Arch. Biochem. Biophys. 144: 76.

WILSON J. T. (l970) Alteration of normal development of drug
metabolism by injection of growth hormone. Nature 225: 861.

WILSON J. T. and FROHMN L.A. (1974) Concomitant association between
high plasma leve ls of growth hormone and low hepatic mixed-func tion
oxidase activity in the young rat. J. Pharmacol. Exp. Therap.
189:255.

WINER B.J. (1971) "Statistical Principles in Experimental Design."
pp. 26-37. McGraw-Hill, New York.

WISHART G.J. and DUTTON G.J. (1975) Precocious development of
glucuronidating and hydroxy lating enzymes in chick embryos treated
with pituitary grafts. Biochem. J. is2: 325.

WISLOCKI P.G., WOOD A.W., CHANG R.L., LEVIN W., YAGI H., HERNANDEZ 0.,
JERINA D.M. and CONNEY A. H. High mutagenicity and toxicity of a
diol epoxide derived from benzo(a)pyrene. Biochem. Biophys. Res.
Commun. 68: LO 06.

WSZOLEK P.C. and LISK D.J. Persistence of polychlorinated biphenyls
and l, 1 -dichloro-2, 2-bis(p-chloropehy l)ethylene (p, p I-DDE) with age
in lake trout after 8 years. Environ. Sci. Technol. 13:1269-1271.



Page 262.

YANG S .K., DEUTSCH J. and GELBOIN H. V. (l97 8) Benzo( a)pyrene

metabolism: activation and detoxification. In: "Polycyclic
Hydrocarbons and Cancer, Vo l. 1, Environment ,-Chemistry, and
Metabolism." (H.V. Gelboin and P.O.P. TsIO, eds.). Academic
Press, N.Y.

YANG S.K., SELKIRK J.K., PLOTKIN E.V. and GELBOIN H.V. (1975) Kinetic
analysis of the metabolism of benzo(a)pyrene to phenols,
dihydrodiols, and quinones by high pressure liquid chromatography
compared to analysis of AHH assay, and the effect of enzyme
induction. Cancer Res. 35:3642.

YARBROUGH J. D. and CHAMBERS J .E. (977) Crude oil effects on
microsomal mixed-func tion oxidase system components in the striped
mullet (Mugil cephalus). Life Sci. 21: 1095.



Page 263.

BIOGRAPHT~AL NOTE

I was born in Brooklyn, N.Y. in 1950 and grew up in Huntington, N.Y.
1 graduated from Walt Whitman H.S., Huntington in 1968. Senior year in
high school I was awarded the Bausch and Lomb Science Medal. I was an
honors major in biochemistry at the University of Pennsylvania, and
graduated cum laude with a bachelors degree in 1972. After graduation I
worked as a research laboratory technician at the Penn Medical School for
three years. I was employed by Ulf Nilsson in the Dept. of Medicine,
Allergy-Immunology Section, and later by Leonard Warren in the Department
of Therapeutic Research. During 1974, I spent a summer working at the
Marine Biological Laboratory in Woods Hole with Leonard Warren. I
entered the Joint Program in 1975 and took the core curriculum in
toxicology in the Department of Food and Nutrition at MIT.

Publications:

BINDER R.L. and STEG~N J.J. (l980) Induction of aryl hydrocarbon
hydroxylase in embryos of an estuarine fish. Biochem. Pharmacol.
2 9 : 94 9 .

STEGEMN J.J., BINDER R.L. and ORREN A. (1979) Hepatic and extrahepatic
microsomal electron transport components and mixed function oxygenases
in the marine fish Stenotomus versicolor. Biochem. Pharmacol. 28:3431.

STEGEMAN J.J. and BINDER R.L. (1979) High benzo(a)pyrene hydroxylase
activity in the marine fish Stenotomus versicolor. Biochem. Pharmacol.
28: 1686.

JAIN R.S., BINDER R.L., LEVY-BENSHIML A., BUCK C.A. ~d
Purification of 0( -L-fucosidase from various sources
chromatography. l. Chromatog. 139:283.

WARREN L. (1977)
by affinity

JAIN R.S., BINDER R.L., WALZ C., BUCK C.A. and WARREN L.
Purification of ß -N-acetyl-D-glucosaminidase of the

by affinity chromatography. l. Chromatog. 136:141.

(1977)
horseshoe crab

I

J~\


