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Abstract 

 

Dissolved Fe concentrations in subterranean estuaries, like their river-seawater 

counterparts, are strongly controlled by non-conservative behavior during mixing of groundwater 

and seawater in coastal aquifers. Previous studies at a subterranean estuary of Waquoit Bay on 

Cape Cod, USA demonstrate extensive precipitation of groundwater-borne dissolved ferrous iron 

and subsequent accumulation of iron oxides onto subsurface sands. Waquoit Bay is thus an 

excellent natural laboratory to assess the mechanisms of Fe-isotope fractionation in redox-

stratified environments and determine potential Fe-isotope signatures of groundwater sources to 

coastal seawater. Here, we report Fe isotope compositions of iron-coated sands and porewaters 

beneath the intertidal zone of Waquoit Bay. The distribution of pore water Fe shows two distinct 

sources of Fe: one residing in the upward rising plume of Fe-rich groundwater and the second in 

the salt-wedge zone of pore water. The groundwater source has high Fe(II) concentration 

consistent with  anoxic conditions  and yield δ56Fe values between 0.3 and –1.3‰. In contrast, 

sediment porewaters occurring in the mixing zone of the subterranean estuary have very low 

δ56Fe values down to –5‰. These low δ56Fe values reflect Fe-redox cycling and result from the 

preferential retention of heavy Fe-isotopes onto newly formed Fe-oxyhydroxides. Analysis of Fe-

oxides precipitated onto subsurface sands in two cores from the subterranean estuary revealed 

strong δ56Fe and Fe concentration gradients over less than 2m, yielding an overall range of δ56Fe 

values between –2 and 1.5‰. The relationship between Fe concentration and δ56Fe of Fe-rich 

sands can be modeled by the progressive precipitation of Fe-oxides along fluid flow through the 

subterranean estuary. These results demonstrate that large-scale Fe isotope fractionation (up to 

5‰) can occur in subterranean estuaries, which could lead to coastal seawater characterized by 

very low δ56Fe values relative to river values.  
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1. Introduction 

 

Iron is a particle reactive trace metal present at extremely low concentrations in the upper 

ocean (<1nM) (e.g. Wu et al., 2001; Boyle et al., 2005) and is now recognized as a limiting 

nutrient in large regions of world’s ocean and in certain coastal waters (Martin, 1990; Hutchins et 

al., 1999; Archer and Johnson, 2000; Boyd et al., 2000). The main sources of dissolved Fe into 

the ocean are atmospheric deposition, input from rivers, re-suspended sediment and pore water 

along continental shelves and hydrothermal vents (e.g. Wells et al., 1995; Elderfield and Schultz, 

1996; Johnson et al., 1999). In contrast  to the interior of the oceans, marine sediments and rivers 

are important sources of iron to the  water column of coastal systems (e.g., Hutchins et al., 1999; 

Johnson et al., 1999; Elrod et al., 2004;. Mayer, 1982; Powell and Wilson-Finelli, 2003; Jickells 

et al., 2005; Buck et al., 2007; Ussher et al., 2007).  

The stable isotope composition of Fe can provide valuable insights into the sources of Fe 

and Fe biogeochemical cycles in marine and terrestrial environment. In particular, significant 

fractionation of Fe isotopes has been demonstrated during partial oxidation and reduction 

reactions, suggesting that Fe isotopes are useful tracers of Fe redox cycling (Beard et al., 2003b; 

Johnson et al., 2004; Rouxel et al., 2005; Staubwasser et al., 2005; Teutsch et al., 2005; 

Severmann et al., 2006; Anbar and Rouxel, 2007; de Jong et al., 2007). These redox processes 

include dissimilatory Fe(III) reduction (Beard et al., 1999; Beard et al., 2003a; Crosby et al., 

2007; Icopini et al., 2004), anaerobic photosynthetic Fe(II) oxidation (Croal et al., 2004), abiotic 

Fe(II) oxidation and precipitation of ferric hydroxides (Bullen et al., 2001; Balci et al., 2006), and 

sorption of aqueous Fe(II) onto ferric hydroxides (Icopini et al., 2004; Teutsch et al., 2005).The 

largest equilibrium isotope fractionations of around 3‰ have been observed and theoretically 

calculated between co-existing Fe(III) and Fe(II) aqueous species (Johnson et al., 2002; Welch et 

al., 2003; Anbar et al., 2005).  

Our knowledge of the Fe isotope composition of Fe sources to the ocean remains 

incomplete. Fe carried by rivers, including both soluble, colloidal and particulate fractions, has 

δ56Fe values ranging between ~0 and -1‰, suggesting that riverine Fe is isotopically light relative 

to igneous rocks (Fantle and De Paolo, 2004; Bergquist and Boyle, 2006). Iron isotope 

compositions of marine pore fluids from the California continental reveal a relatively large Fe 

isotope fractionation during early diagenetic processes, with δ56Fe values ranging from –3 to 
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+0.4‰ (Severmann et al., 2006). Hence, the intense cycling of Fe between oxidized and reduced 

species in the upper few cm of coastal sediments can lead to the release of low δ56Fe iron from 

sediments to the water column (Staubwasser et al., 2005; Severmann et al., 2006). 

Studies indicate that groundwater may contribute significantly to dissolved chemical 

species to the oceans (Moore, 1999) and, in one recent case, may also represent a large source of 

dissolved Fe to the coastal ocean (Windom et al., 2006). The magnitude of groundwater fluxes is 

influenced by biogeochemical processes occurring in the subterranean estuary, defined as the 

mixing zone between groundwater and seawater in a coastal aquifer. Dissolved Fe concentrations 

in subterranean estuaries, like their river-seawater counterparts, are strongly controlled by non-

conservative (removal) behavior during mixing of river water and seawater (Sholkovitz, 1976; 

Boyle et al., 1977). However, a unique feature of subterranean estuaries is that the removal of Fe 

and other nutrients is mainly controlled by the redox characteristics of the fresh and saline 

groundwater (Slomp and Van Cappellen, 2004). In particular, the recent discovery of an "Iron 

Curtain" in the subterranean estuary of Waquoit Bay on Cape Cod, USA demonstrates extensive 

precipitation of groundwater-borne dissolved ferrous iron and subsequent accumulation of iron 

oxides onto subsurface sands at the groundwater-seawater interface (Charette and Sholkovitz, 

2002; Charette et al., 2005; Charette and Sholkovitz, 2006).  Waquoit Bay is thus an excellent 

natural laboratory to assess the Fe-isotope composition of the groundwater input in a coastal zone 

and to evaluate if the iron flux from subterranean estuaries has a unique Fe isotope signature that 

is distinct from other coastal iron sources.   

Here, we report a comprehensive study that demonstrates that the precipitation of iron 

oxides and redox-driven diagenetic reactions in subterranean estuaries produce large-scale 

variations of Fe isotopes in both sediments and pore water. This approach provides important 

constraints on the mechanisms of Fe-isotope fractionation during Fe redox cycling. In particular, 

we aim to evaluate the relative effects of Fe-isotope fractionation associated with oxidative Fe 

precipitation vs. reductive Fe-dissolution pathways in a redox stratified environment.  

 

2. Materials and Setting 

  

Waquoit Bay is a shallow estuary located on the south shoreline of Cape Cod, MA, USA. 

A significant portion of the freshwater input into the bay occurs as submarine discharge of 
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groundwater (Charette et al., 2001) which is mostly restricted to a narrow (~25m-wide) band 

along the head of the bay (Michael et al., 2003) (Fig. 1). Freshwater flowing downgradient from 

the water table may either discharge at the shore or flow directly under the beach into the sea. The 

hydraulic gradient that drives freshwater toward the sea along the fresh-saline groundwater 

interface also drives saltwater shoreward, creating a saltwater circulation cell (Michael et al., 

2005; Moore, 1999). The hydraulic gradient is influenced by tides and rainfall, leading to hourly 

(Sholkovitz et al., 2003), seasonal (Michael et al., 2003), and interannual variability in 

groundwater discharge rates at this location. Topography also exerts a significant control on the 

location and flux of groundwater discharge at Waquoit Bay (Mulligan and Charette, 2006). While 

these factors can modulate the peak concentration and vertical/horizontal position of the 

dissolved Fe plumes in Waquoit Bay, six years of repeated sampling shows the same general 

features in the Fe distributions as reported in this paper (Charette et al., 2005).   

Previous studies of the subterranean estuary of Waquoit Bay (Charette and Sholkovitz, 

2002, 2006; Charette et al., 2005) have reported on element cycling of Fe, Mn, Ba, P and U in the 

permeable sediments and pore water. A series of sediment cores, ranging from 1.1 to 2.0 m in 

length were collected at the head of Waquoit Bay in April 2001 using a vibracoring technique 

(Charette and Sholkovitz, 2002). The pore water within the permeable sands of these cores 

drained away during the extrusion and sectioning activities. Hence, our solid phase data of Fe 

isotopes for these cores are not accompanied by pore-water data. Of the five recovered cores, 

Cores 2 and 3 have been selected for this study based on their location relative to the source of 

groundwater in the bay (Fig. 1). Core 2 is located near the piezometer transect A-A’ in Figure 1 

whereas Core 3 is located near piezometer #4, about 50 m apart. The recovered lengths for cores 

2 and 3 were 175 and 169 cm, respectively. The most outstanding visual feature of these cores is 

the color changes that occur over a transition zone of many tens of centimeters. Core 2 changes 

from gray to dark red coating at a depth of ~85 cm; this color change reflects predominantly the 

deposition of ferrihydrite (64%) with goethite (26%) and  lepidocrocite (10%). Core 3 changes 

from gray to red to orange at a depth of ~30cm and has the largest amount of lepidocrocite (19%) 

whereas goethite and ferrihydrite represent 44 and 37% respectively (Charette et al., 2005). We 

also analyzed two types of “background” sediments (1) surface beach sand from the head of 

Waquoit Bay near the coring sites, and (2) offsite sand collected from a Vineyard Sound beach 

located 10km from Waquoit Bay. All types of sediments (surface and deep) have similar size 
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distribution and contain greater than 95% sand (mainly quartz with trace amounts of plagioclase 

and clinopyroxene, amphiboles and mica) and less than 5% silt and clay.  

 A piezometer was used to obtain a two dimensional distribution of the porewater 

composition at the head of the bay along a 17m transect. Field sampling methods and porewater 

chemistry are presented in detail in previous studies (Charette and Allen, 2006; Charette and 

Sholkovitz, 2006). The piezometer consists of a screened port at the end of a thin probe which 

can be pushed down into the beach sands. Ground water is pumped to the surface through plastic 

tubing.  Slow pumping and immediate filtration using syringes keeps the ambient air out of the 

samples which minimizes the oxidation of dissolved Fe (II) to particulate Fe (III) oxides prior to 

acidification and storage. Each profile required 4 to 8 h of sampling, and the complete transect 

covered 17 days (7 June to 3 July 2002). Hence, the pore-water data do not represent synchronous 

distributions of the measured parameters. The salinity distribution along the piezometer transect 

A-A’ (Fig. 1) is presented in Figure 2 and shows that there is a well-defined subterranean estuary 

beneath the head of the Bay. Fresh groundwater flows across a narrow seepage face parallel to the 

shoreline. Two distinct sources of high dissolved Fe have been identified (Fig. 2). One source 

resides in the upward rising plume of Fe-rich freshwater and the second source lies in the salt-

wedge zone of mid to high salinity pore water. The second source of dissolved Fe, where pore 

water concentrations reach up to 75 µM in Piezometer#8  along the transect A-A’ (Fig. 2) and up 

to 500 µM in Piezometer #4 (~50m away), result from chemical diagenesis typical of that found 

in reducing marine sediments where microbial activity leads to the reduction of Fe oxide 

(Froelich et al., 1979). Pore water data show that sulfate reduction is not occurring in the salt 

wedge section that contains high levels of reduced Fe and Mn. Hence, the production of sulfides 

is not an important part of the redox-driven cycling of Fe (Charette and Sholkovitz, 2006). The 

lack of sulfide formation in porewater, together with dissolved O2 concentration less down to 0.5 

mg/L, suggest mostly O2-deficient but not anoxic conditions within the subterranean estuary. 

Representative samples of groundwater and Fe(II)-rich pore waters with Fe concentration 

between 30 and 490 μM were selected for Fe isotope measurements (Fig. 2). 

 It is important to note the large difference in scale between the sediment cores (maximum 

1.8 m in length) and porewater samples that extend up to 8 m into the sediment beneath the head 

of Waquoit Bay (Figure 2). Hence, sediment core geochemistry cannot be directly link to 

porewater geochemistry. Because the Fe concentrations continue to increase toward the bottom of 



 7

the sediment cores, the full vertical extent of the iron curtain sediments was not entirely known at 

the time of collection. Recently, a set of longer (7 m) sediment cores from this location were 

collected. Fe (hydr)oxide analysis of the sediment revealed the existence of two iron curtains: (1) 

a shallow one, approximately 2 m in the vertical, likely associated with oxidation of Fe from the 

freshwater Fe plume, and (2) a deeper, 1 m zone of high Fe located just above the mid-high 

salinity Fe maximum (Gonneea et al., 2007).  

 

3.  Analytical method 

 

Core sediments and beach sands were air dried and hand-sieved through a polypropylene 

mesh with a nominal retention diameter of 1 mm. The concentration of Fe and Mn in the sieved 

sediments, along with their associated P, Ba, U and Th concentrations, have been reported 

previously (Charette et al., 2005; Charette and Sholkovitz, 2006) using a selective dissolution 

protocol (Hall et al., 1996). This protocol was designed to selectively dissolve “amorphous” iron 

oxides followed by “crystalline” Fe (hydr)oxides using reductive solutions of 0.25 M 

hydroxylamine hydrochloride in 0.05 M HCl and 1 M hydroxylamine hydrochloride in 25% 

glacial acetic acid respectively. The sum of these two leaches is referred to a “total oxide” 

composition and data are reported in Table 3.  

Because reductive Fe-(hydr)oxides dissolution may fractionate Fe-isotopes during 

incomplete reduction of Fe(III) to Fe(II) (Icopini et al., 2004), we preferred using concentrated 

acid dissolution that prevent Fe-isotope fractionation (Skulan et al., 2002). Fe-oxides, coating 

quartz sands, were dissolved in PTFE beaker using ultra-pure grade 6N HCl on hot plate for 24 

hours at approximately 80°C. 10mL of 6N HCl with 50μl of ultrapure H2O2 were used for about 

500mg of sands. Because the sediments at Waquoit Bay are primarily composed of quartz sand 

coated with various Fe-oxide phases and contain only minor silicate minerals, Fe concentrations 

determined using our strong acid leach method agreed well with total Fe concentration using the 

selective dissolution protocol reported in Charette et al. (2005). Sample purification for mass 

spectrometry analysis has been undertaken by ion-exchange chromatography in a clean room 

environment following previous protocols (Beard et al., 2003a; Rouxel et al., 2005). After 

centrifugation and separation of 6N HCl by pipetting, a precise solution volume, corresponding to 

not more than 100 μg of Fe, was purified on Bio-Rad AG1X8 anion resin (2.5 mL wet bed). After 
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30 mL of 6N HCl was passed through the column to remove the matrix, 20 mL of 0.12N HCl was 

used to elute Fe.  Eluted solution was then evaporated to dryness and dissolved with 2% HNO3 

for mass spectrometry analysis.  

In treating the pore water samples, aliquots are evaporated and then purified in the same 

manner as for solid samples.  No more than 15 mL of the water samples are dried down in PTFE 

beakers with 1mL of concentrated HNO3. This step is repeated. The maximum operational 

volume for saline water reflects the high load of salts that prevent evaporating larger volume of 

waters without subsequent problems during chromatography separation. After evaporation, the 

residues of the water samples are dissolved with 5mL 6N HCl with trace of H2O2 and 

subsequently purified through ion-exchange chromatography.  

The Fe isotope composition was determined with a Finnigan Neptune multicollector 

inductively coupled plasma mass spectrometry (MC-ICPMS) operated at Woods Hole 

Oceanographic Institution (WHOI). The Neptune instrument permits high precision measurement 

of Fe isotope ratios without argon interferences using high-mass resolution mode (Malinovski et 

al., 2003; Weyer and Schwieters, 2003; Arnold et al., 2004). Mass resolution power of about 

8000 (medium resolution mode) was used to resolve isobaric interferences, such as ArO on 56Fe, 

ArOH on 57Fe, and ArN on 54Fe.  

Instrumental mass bias is corrected using Ni isotopes as internal standard. This method, 

which has been proved to be reliable for the Neptune instrument, involves deriving the 

instrumental mass bias from simultaneously measuring a Ni standard solution (Malinovski et al., 

2003; Poitrasson and Freydier, 2005). We also used the "sample-standard bracketing" technique 

to correct for instrumental mass discrimination by normalizing Fe isotope ratios to the average 

measured composition of the standard that was run before and after the sample (Belshaw et al., 

2000; Beard et al., 2003a; Rouxel et al., 2003). Fe isotope compositions are reported relative the 

Fe-isotope standard IRMM-14 using the following notation: 

δ56Fe=1000 * [(56Fe/54Fe)sample/(56Fe/54Fe)IRMM-14 -1]  (1) 

δ57Fe=1000 * [(57Fe/54Fe)sample/(57Fe/54Fe)IRMM-14 -1]  (2) 
53Cr, 54Fe, 56Fe, 57Fe, 58Fe+58Ni 60Ni, and 61Ni isotopes were counted on the Faraday cups 

using the high mass resolution mode. Although quantitatively separated during analysis, Cr, 

which interferes with 54Fe, was monitored during each Fe isotope measurements and found to 

identical of background levels. Baseline corrections were made before acquisition of each data 
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block by completely deflecting the ion beam. All isotope data reported in this study were 

analyzed at least twice using both techniques (i.e. Ni doping and standard-sample bracketing) and 

the internal precision of the data are given at 95% confidence levels based on the standard 

deviation calculated on duplicates.  

Purified samples of Fe-oxide-coated sands were diluted to 1.5 ppm of Fe and Ni and 

introduced into the plasma using a double quartz spray chamber system (cyclonic and double 

pass) and a microconcentric PFA nebulizer operating at a flow rate of about 100 μl/min.  Purified 

water samples were analyzed using a desolvation nebulizer (Cetac Apex) and X-cones (Thermo-

Finnigan) to improve the sensitivity of the Neptune (Schoenberg and Von Blanckenburg, 2005).  

Based on over 50 analyses – dissolution, purification and ICP-MS measurement - of an 

internal standard (BHVO-1, a Hawaiian basalt), we have obtained an average of δ56Fe values at 

0.10 with a precision of 0.09‰ (2σ).  We evaluated the accuracy of measuring Fe isotopes in 

saline water samples through the analysis of Fe isotope composition of artificial samples 

corresponding to seawater-like matrix doped with Fe standard. Procedural blanks, including 

evaporation/dissolution steps and ion exchange purification are below 5 ng.  As presented in 

Table 1, a precision of 0.15‰ can be achieved for saline water samples as low as 5μM and 

probably lower.  

 

4. Results  

 

4.1. Fe-isotope composition of groundwater and brackish porewaters. 

 

In a previous study, Charette and Sholkovitz (2006) reported Fe concentrations in 

porewater ranging from less than 1 µM to up to 500 µM for the whole salinity range of the 

subterranean estuary. A subset of twenty-six porewater samples has been selected for this study 

based on their Fe concentration and location within the subterranean estuary. Exact location of 

these porewater samples relative to the subterranean estuary are presented in Figure 2 together 

with corresponding Fe-concentration and salinity.  

We selected groundwater samples with salinity <0.4 along the piezometer transect (Pz #6, 

7 and 10) to characterize the Fe-isotope composition of Fe(II) in the seaward-moving plume of 

freshwater feeding the subterranean estuary. Results show a range of δ56Fe values between 0.44 
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and –0.8‰ (Table 2) with higher δ56Fe values found in shallower sections whereas lower δ56Fe 

values are found deeper near the salinity gradient within the subterranean estuary.  

We also selected brackish porewater samples with salinity between 19 and 29 and Fe-

concentrations between 40 and 500 µM and obtained δ56Fe values ranging from –4.8‰ to 0.22‰ 

(Table 2). It is important to note that porewater having a salinity between 19 and 27 (e.g. 

Piezometer #3 and #4) display the largest Fe-isotope fractionation suggesting that most of the 

fractionation of Fe-isotopes in porewater is observed at the interface between the two major 

sources of reduced Fe in the subterranean estuary. This range of δ56Fe values is the largest 

reported so far in natural systems and indicates that Fe redox cycling across the salinity gradient 

at Waquoit is able to produce extreme Fe-isotope fractionation in porewater. 

 

4.2. Fe-isotope composition of permeable sediments. 

 

As presented in Figure 3 and Table 3, Fe oxide coated sands in Core #2 have Fe 

concentrations ranging from 500 to 8000 ppm and δ56Fe values decreasing upward from ~1.5‰ 

at 140 cm to 0‰ near the surface. The δ56Fe gradient of 1.5‰, over 1.4 m of section mirrors the 

Fe concentration gradient. The Fe concentration in Core 3 increases downward from 900 ppm to 

more than 7500 ppm at 100 cm. In contrast to mostly positive δ56Fe values in Core 2, Core 3 

oxides have systematically negative δ56Fe values. Core 3 also exhibits a well defined minimum 

δ56Fe (-1.8‰) in the mid-depth section (45-55cm) while maximum δ56Fe values (between –0.2 

and –0.4‰) occur at the top and bottom (120cm) of the core (Fig. 3). The overall range of δ56Fe 

values ~ 1.6 ‰ in Core 3 is however similar to Core 2. Two types of “background” sediments 

(surface beach sand at Waquoit Bay and offsite sand collected 10km from Waquoit Bay) were 

also analyzed and results show a restricted range of Fe-isotope composition clustered at 0‰ and 

Fe concentrations between 300 and 430 ppm.  

Because a vibra-core was used to recover sediment cores, it was not possible to sample 

corresponding pore water. Although Core 2 and 3 were recovered in the proximity of piezometer 

#8 and #4 respectively (Fig. 1), we only have Fe-isotope composition of pore water deeper in the 

section. However, we note that generally negative δ56Fe values in Fe-oxides in Core 3 (down to -

1.8‰) are consistent with the highly negative values found in Piezometer #4 (δ56Fe values down 

to -2.4‰ at 4 meters depth). Likewise, positive δ56Fe values in Core 2 are consistent with higher 
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δ56Fe values in Piezometer #8 (δ56Fe between 0.22 and -0.31‰ from 0.6 to 0.9 m depth). Hence, 

the major difference between Core 2 (i.e. mostly positive δ56Fe values) and Core 3 (i.e. mostly 

negative δ56Fe values) is, to a first approximation, the result of different initial δ56Fe values for 

pore water Fe(II) for each cores The difference between δ56Fe values in Core 2 and 3 that are 

about 50 m apart as well as the variability of δ56Fe values of up to 1.5‰ within each core 

demonstrate large variations of porewater δ56Fe values over several centimeters to meters at the 

head of the Bay. The significance of these variations is discussed in the following section. 

 

5. Discussion 

 

5.1. Freshwater source at Waquoit Bay 

   Cape Cod ground burden consists mainly of coarse-grained sand, and as such rain 

precipitation infiltrates the sediments and recharges subsurface aquifers. Hence, groundwater is a 

major source of freshwater to Waquoit Bay in addition to the two rivers that drain into it 

(Charette et al., 2001). The source of Fe(II) we have measured in the groundwater is uncertain, 

but likely derives from rainwater circulating through soils and local freshwater ponds.  Previous 

measurements that have been made on dissolved Fe in rivers, including both soluble and colloidal 

fractions, have shown variable δ56Fe values ranging between ~0 and –1 ‰.  This suggests that 

dissolved Fe is isotopically light relative to igneous rocks (Fantle and De Paolo, 2004; Bergquist 

and Boyle, 2006). Measurements on the Fe-isotope compositions of pore water in soils also 

indicate that mineral dissolution in the presence of Fe-chelating organic ligands and Fe-reducing 

bacteria preferentially releases light Fe from silicates and Fe-oxides (Brantley et al., 2001; 

Brantley et al., 2004; Emmanuel et al., 2005). Teutch et al. (2005) obtained δ56Fe values of – 0.4 

± 0.1‰ for anoxic groundwater which are lighter than the sediment leach for Fe(III) (0.16 ± 0.05 

‰). These values have been interpreted as reflecting a slight fractionation (only 0.3 ‰) during 

microbial mediated reductive dissolution of Fe-oxyhydroxides present in the aquifer.  

Our measurements of δ56Fe values in the groundwater at Waquoit Bay, between 0.44 and 

–0.8‰, are thus similar to the values that have been obtained for dissolved Fe in several other 

systems. The lowest δ56Fe values down to –0.8‰ could be explained by either reductive 

dissolution of Fe(III)-oxyhydroxides (Beard et al., 2003a; Icopini et al., 2004; Balci et al., 2006) 

or organic-ligand promoted silicate dissolution (Brantley et al., 2004) in soil environments. The 
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origin of the positive δ56Fe values (up to 0.44‰) is however less clear. It is possible that they are 

due to quantitative reductive dissolution of isotopically enriched Fe-oxides in subsurface 

sediments beneath the head of the Bay. It is also possible that run-off freshwater may be 

characterized by slightly positive δ56Fe values ~ 0.4 ‰ as recently reported in local rivers 

(Escoube et al., 2007). In both cases, δ56Fe values in groundwater are controlled by the mixing 

between shallow and deeper sources with positive and negative δ56Fe values respectively. Based 

on these results, we constrain the δ56Fe value of the freshwater source of Fe(II) to Waquoit Bay to 

be around –0.15±0.5 ‰ which is, on average, close to bulk δ56Fe values for soils and lithogenic 

Fe-sources (Emmanuel et al., 2005; Poitrasson and Freydier, 2005).  

 

5.2. Fe-isotope systematics of Fe-oxide coated sands 

 As reported by Charette and Sholkovitz (2002), the deeper sections of Cores 2 and 3 are 

characterized by large amounts of Fe oxides (ferrihydrite, lepidocrocite and goethite) that 

precipitate on quartz sand.  Note that the salinity gradient along Piezometers #8 and #4 is located 

in the vicinity of Core 2 and 3 respectively (Table 2). This implies that the source of Fe to these 

sediment cores is derived from Fe(II)-rich brackish pore waters. A “background” Fe-

oxyhydroxide component in sand is also anticipated in Core 2 and 3 because the analysis of two 

surface beach sand samples, away from any groundwater sources, yielded Fe concentration 

betweens 300 and 430 ppm (Table 3). This “background” Fe-oxyhydroxide component has a 

restricted range of Fe-isotope composition clustered at 0‰. Although the source of Fe-

oxyhydroxide in coastal area may be multiple (e.g. detrital, hydrogeneous, diagenetic sources), 

beach sands remote from local groundwater sources tend to have homogeneous Fe concentrations 

and δ56Fe values near 0‰. Hence, two major components of Fe are expected in sediment Core 2 

and 3: (1) background Fe-oxides with δ56Fe values near 0‰ and concentrations below 500ppm; 

and (2) and Fe-oxides formed during the upward transport and oxidation of Fe(II)-rich pore 

waters from saline zone.  

An important question to address is whether these variable δ56Fe values and Fe-

concentrations through the sediment cores at Waquoit Bay result from mixing effects between 

lithogenic Fe-oxides and diagenetic (i.e. derived from Fe-rich porewater) Fe-oxides or result from 

in-situ Fe-isotope fractionation during oxidative Fe precipitation. The potential relationships 
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between Fe concentrations and δ56Fe values of Fe oxides in the case of mixing between lithogenic 

and diagenetic Fe-oxides are presented in Figure 4. The model assumes δ56Fe values for 

lithogenic at 0‰ and diagenetic Fe-oxides having δ56Fe values similar to those measured in the 

deeper section of each core. The results suggest that Fe-isotope composition of both sediment 

cores cannot be simply explained by a binary mixing between these two sources. In the case of 

Core 2, the mixing between lithogenic and isotopically enriched Fe-oxides does not account for 

the near linear correlation between Fe concentrations and δ56Fe values. Similarly, in the case for 

Core 3, the strong curvature observed between Fe concentrations and δ56Fe values argue against 

simple mixing effects. 

 

The correlation between Fe concentration and δ56Fe values in Core 2 and bottom half of 

Core 3 is consistent with results reported by Bullen et al. (2001) and Teutsch et al. (2005). Bullen 

et al. (2001) reported abiotic Fe isotope fractionation during precipitation of isotopically enriched 

Fe-oxyhydroxides from Fe-rich spring water, resulting in lighter aqueous Fe(II) and lower Fe in 

the remaining dissolved Fe(II). Teutch et al. (2005) measured the evolution of the Fe-isotope 

composition of Fe(II)-rich reduced groundwater during injection of oxygen-containing water. 

They show that  the adsorption of Fe(II) onto newly formed Fe(III)-oxyhydroxides yields a very 

light groundwater component with δ56Fe values as low as –3 ‰, indicating that heavier Fe(II) is 

preferentially adsorbed to the newly formed Fe(III)-oxyhydroxides surfaces. These field 

observations are consistent with experimental studies showing a preferential enrichment of heavy 

Fe-isotopes associated with the formation of Fe-oxyhydroxides (Welch et al., 2003; Croal et al., 

2004; Balci et al., 2006). Our results also suggest that a similar process is affecting the Fe-isotope 

composition of sediment cores at the head of Waquoit Bay. 

In order to test the hypothesis that the fractionation of Fe-isotopes in iron oxides is 

controlled by partial oxidation of Fe(II)-rich porewater upon mixing with seawater, we have 

formulated a simple mathematical model for the evolution of Fe-isotopes in sediments. The 

numerical model is described in more detail in Appendix A and results are presented below for 

Core #2 and #3. In this model, it is considered that Fe(II) is progressively oxidized within the 

uppermost ~ 2 m of sediments, limited by oxic coastal seawater and Fe(II)-rich porewater (Fig. 

5). Hence, for each depth level, Fe concentration and isotope composition in sediments will be 

controlled by the extent of Fe-oxyhydroxide precipitation and input from underlying porewater as 
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well as and the relative contribution of « background » Fe-oxides having δ56Fe=0‰. In this 

model, the theoretical relationship between Fe concentration and Fe-isotope composition of 

sediments for each depth is calculated using advection-reaction model during partial Fe(II) 

oxidation and Fe-oxyhydroxide precipitation. Variable parameters of this model include: i) initial 

δ56Fei composition of porewater Fe(II); ii) Fe(II) oxidation rate; iii) Fe-isotope fractionation 

factor α between Fe(II) and Fe-oxyhydroxides. The rate of Fe(II) oxidation cannot be easily 

determined at each depth since O2 concentrations are not available along the sediment sections. 

Nevertheless, in the oxygen deficient conditions in sediment porewater of Waquoit Bay,  with O2 

< 5μM and seawater-like pH, temperature and salinity, the Fe(II) oxidation rate is expected to be 

less than ~ 0.3 day-1 (Millero et al., 1987). The mean groundwater discharge for the head of 

Waquoit Bay is considered constant at 8 cm d-1 following the estimation by Abraham et al. 

(2003). It is however important to note that significant temporal variability of the groundwater 

discharge occurs in response to tidal cycles and seasonal or interannual precipitation variability. 

There is also evidence that the groundwater discharge is heterogeneously distributed along the 

head of Waquoit Bay with Core 3 located in area with higher groundwater flow than in Core 2 

(Mulligan and Charette, 2006). Although a more complex numerical treatment of Fe-isotope 

systematics in sediment cores, one that integrates variable rates of Fe(II) oxidation, Fe-isotope 

fractionation factors and groundwater discharge (both vertically and horizontally) is possible, 

such a model is beyond our objectives for this paper. 
 

5.2.1. Core 2:  

Results for Core 2 are presented in Figure 4 and show that the relationship between Fe-

concentration and Fe-isotope composition can be modeled using a simple advection-reaction 

model during partial Fe(II) oxidation and Fe-oxyhydroxide precipitation. A best fit of the data is 

obtained using a solid-liquid fractionation factor (α) at 1.001 and initial δ56Fe values of 0.8‰. 

The pseudo-first-order rate constant of Fe(II) oxidation is set constant at 0.12 d-1 over the entire 

core section, which is consistent with suboxic conditions (Millero et al., 1987). The value around 

1.001 for the fractionation factor indicate that the δ56Fe value of precipitated Fe-oxides is 

enriched in heavy isotopes by 1.0‰ relative to dissolved Fe(II) which is similar to those obtained 

for abiotic Fe oxidation (around 0.9‰) (Bullen et al., 2001) and slightly lower than for bacterial 

Fe oxidation (around 1.5‰) (Croal et al., 2004). The initial δ56Fe i value (~0.8‰) of porewater in 
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Core 2 is however higher than maximum measured δ56Fe values in porewater from Piezometer #8 

(δ56Fe between 0.22 and -0.31‰ from 0.6 to 0.9 m depth). This discrepancy may be explained by 

the differences in sampling time (i.e. Core 2 was recovered in April 2001 whereas porewater 

samples were recovered between June and July 2002) and the fact that porewater composition 

may changes through time. It is also possible that higher porewater δ56Fe i values (~0.8‰) are due 

to reductive dissolution of isotopically enriched Fe-oxides previously precipitated deeper in Core 

2.  

 

5.2.2. Core 3: 

  Results for Core 3 are presented in Figure 4 and the relationship between Fe-

concentration and Fe-isotope composition has been modeled using a similar advection-reaction 

model than for Core 2. Although the model reproduce the well defined minimum δ56Fe values (-

1.5 to 1.8‰) in the mid-depth section (0.5-0.6m), a single best-fit model curve cannot be 

obtained using a constant Fe(II) oxidation rate over the entire section of Core 3. Using a solid-

liquid fractionation factor (α) at 1.0012, the lower section of Core 2 is best explained using Fe(II) 

oxidation rate at 0.25 d-1 whereas the upper section is best explained using higher Fe(II) oxidation 

rate at 0.4 d-1 (Fig. 4). These results suggest that Fe(II) oxidation rate increase upward, during 

mixing between O2-poor porewater and oxic seawater.  

It is interesting to note that, although Fe-isotope values between Core 2 and 3 are 

different, similar process (i.e. partial Fe(II) oxidation during upward advection of Fe-rich 

porewater) can explain Fe-isotope values in both Cores. In particular, the curvature in Figure 4 

between Fe concentration and δ56Fe values in Core 3 (i.e. minimum δ56Fe values at mid-depth) is 

explained by the cumulative effect of (1) preferential depletion in heavy Fe isotopes in porewater 

due to partial oxidation, producing negative δ56Fe values for Fe(III)-oxides and (2) increase in 

δ56Fe values for Fe(III) due to mixing effects with “background” Fe-oxyhydroxides having δ56Fe 

values around 0‰. Because the bottom half of Core 3 has much higher Fe-oxide concentration 

than “background” sands, δ56Fe values are mostly affected by Fe-isotope fractionation during 

partial Fe(II) oxidation whereas the top half, with lower Fe-oxide concentration, suggest a 

prominent effect of physical mixture between porewater-precipitated and “background” Fe-

oxyhydroxides. Similar mass balance consideration can be applied for Core 2 to explain the lack 

of curvature between Fe concentration and δ56Fe values in Figure 4. In this case, the precipitation 
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of isotopically heavy Fe-oxyhydroxides at the bottom of the core produces isotopically lighter, 

but not strongly negative, Fe-oxyhydroxides at the top of the core. Hence, the presence of 

“background” Fe-oxyhydroxides at ~0‰ through Core 2 doesn’t have significant effects on the 

overall Fe concentration vs. δ56Fe relationship, except in the uppermost section of the Core.  

 

5.3. Fe-isotope composition of brackish porewaters 

Because the variability of δ56Fe values in groundwater (between 0.44 and –0.8‰) is of 

second order compared to the large range of δ56Fe values up to 5‰ in brackish porewaters (i.e. 

salinity between 19 and 27) (Fig. 6), it is unlikely that the variations of δ56Fe values in brackish 

porewater is controlled by groundwater Fe-isotope composition. Charette and Sholkovitz (2006) 

and Spiteri et al. (2006) showed that a major fraction of iron in the ferrous-rich groundwater is 

oxidized within the freshwater end of subterranean estuary between Piezometers 6 and 3. Indeed, 

pore water pumped from piezometer 3 at a depth of 3 m contained suspended yellow particles 

that are nearly pure iron oxyhydroxides. Spiteri et al. (2006) investigated the effect of O2 and pH 

gradients on Fe(II) oxidation rates along a flow-line in the subterranean estuary of Waquoit Bay. 

Results show that the observed O2 gradient is not the main factor controlling oxidative 

precipitation. Rather it was shown that the pH gradient at the mixing zone of freshwater and 

seawater causes a ~ 7-fold increase in the rate of Fe(II) oxidation. In contrast, the enrichment of 

Fe(II) in the saline porewater end-member is the result of diagenetic reactions and reductive 

dissolution of Fe(III) oxides. Hence, we infer that the large Fe-isotope fractionation across the 

salinity gradient is due to successive redox reactions associated with the oxidative precipitation of 

dissolved ferrous Fe in the freshwater endmember and the reductive dissolution of Fe oxides at 

higher salinity.  

However, an important question remains is whether the very low δ56Fe values in 

porewaters (between -2 and -5‰) are solely the result of diagenetic reduction of Fe-oxides or 

may also result from partial Fe(II) oxidation in subsurface environments, as previously 

demonstrated in section 5.2 on the sediment cores. It has been experimentally demonstrated that 

Fe isotope fractionations during Fe(III) reduction (e.g. DIR, dissimilatory iron reduction) are 

dependent on reduction rates (Beard et al., 2003a; Johnson et al., 2004; Icopini et al., 2004). At 

high reduction rates, rapid formation and sorption of Fe(II) to ferric oxide substrate produced 

fractionations as large as –2.3‰ but this value corresponds to an extreme case. Hence, a 
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fractionation of –1.3 ‰ between biogenic Fe(II) and ferric oxide is more representative. Our 

results of Fe-isotope composition of saline porewaters (S>27, Fig. 7) show δ56Fe values ranging 

from 0.2 to –1.8‰, which are consistent with, but do not necessarily prove, Fe-isotope 

fractionation by Fe-reducing bacteria. These variations are also consistent with δ56Fe values 

found in suboxic porewater of margin sediments (Staubwasser et al., 2005; Severmann et al., 

2006) where diagenetic Fe-redox cycling at sediment-water interface produce isotopically 

depleted Fe(II) pool in porewater. Porewater samples with the highest Fe concentrations (Pz#4), 

representing the end-member for diagenetically reduced Fe(II), yield δ56Fe values of only –0.5‰ 

which are surprisingly similar to groundwater δ56Fe values (Fig. 7). This minimal fractionation 

may reflect either small fractionation factors during DIR due to specific environmental conditions 

for Fe-reducing bacteria or either limiting Fe(III) substrate availability (i.e. quantitative reduction 

of Fe(III) substrate). Considering the extent of Fe-isotope fractionation during DIR at around -1.2 

to -1.5‰ (Beard et al., 2003a; Icopini et al., 2004), it appears unlikely that DIR processes alone 

would produce δ56Fe values as low as –5 ‰ in porewaters in intermediate salinity and lower Fe-

concentrations.  

 

Uranium in oxic sea water is very soluble as its redox form is U(VI). In marked contrast, 

reducing conditions in pore water and ground water lead to U(IV) which is very particle reactive.  

Hence, reducing sediments are depleted in pore water U; upon the return of more oxic conditions, 

sedimentary U is oxidized to U(VI) species and U is rapidly released in porewater (Barnes and 

Cochran, 1990).. Because soluble U(VI) can be converted to insoluble U(IV) under conditions 

similar to those that favor the reduction of Fe(III) to Fe(II) (Cochran et al., 1986; Barnes and 

Cochran, 1990; Chaillou et al., 2002; Mcmanus et al., 2006), comparing U concentrations with 

δ56Fe values in porewaters may provide insight regarding the relative effect of oxidative Fe(II) 

precipitation vs. reductive Fe(III) dissolution. Charette and Sholkovitz (2006) reported U 

concentration in Waquoit subterranean estuary (Table 2) and observed a strongly non-

conservative behavior of U with an overall net U removal over the entire salinity range. They also 

reported evidence for U increase above seawater values at the high salinity end which likely 

reflect the release of adsorbed U(IV) under more oxidizing conditions. As presented in Figure 

7A, low δ56Fe values correlate well with high concentration of U in porewater.  Assuming that 

significant oxidation of porewater Fe(II) and precipitation of Fe-oxyhydroxide are associated with  
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U-rich pore waters, the low δ56Fe values (down to –5‰) in the sediment cores can result from the 

precipitation of isotopically heavy Fe-oxyhydroxides rather than from the reductive dissolution of 

Fe-oxyhydroxides.  

 As illustrated in Figure 7B,  the oxidative Fe precipitation can explain the observed range 

of Fe(II) concentrations (from 500µM to 25µM), as well as the Fe-isotopic composition in 

porewater. The simple model presented in Figure 7B assumes Rayleigh-type Fe-isotope 

fractionation in porewater during oxidative Fe precipitation. Considering an initial porewater Fe 

concentration of 500µM and δ56Fe value of –0.5 ‰, δ56Fe values as low as –5 ‰ would be 

expected after 95% of Fe-precipitation as Fe-oxyhydroxides with a fractionation factor of 1.0015 

(Balci et al., 2006). Similar low δ56Fe values may be also obtained with smaller fractionation 

factors ~ 1.0012 as those suggested during Fe(II) oxidation and precipitation of Fe-oxyhydroxides 

in sediment cores, but requires lower initial δ56Fe values at around -1.5‰ (Figure 7B). 

Additional fractionation is thus required if a significant fraction of precipitated Fe-oxides are 

further reduced and returned to the Fe(II) pool. For example, field observations suggest that redox 

gradients in Waquoit Bay groundwater are tightly coupled to seasonal and interannual movement 

of the fresh-saline groundwater interface (Charette et al., 2007).  

Thus, multiple cycles of Fe-reduction and oxidation are likely to occur within the 

subterranean estuary at Waquoit Bay and can produce δ56Fe values down to –5‰ in the 

porewaters. However, it is important to note that, though Fe reduction is responsible for the 

enrichment of Fe in porewater, strongly negative values of Fe-isotopes are mostly the result of the 

oxidative pathways of the Fe cycle and the sequestration of heavy Fe-isotopes in Fe-oxides.  It is 

also possible that Fe(II) could be adsorbed onto newly formed Fe-oxyhydroxides in sediment 

during increasing oxygenation. Teutch et al. (2005) reported strong Fe-isotope fractionation (up 

to 3‰) in groundwater Fe(II) resulting from rapid adsorption of Fe(II) on Fe-oxyhydroxides 

formed during injection of O2-containing water. Similar process may also be important in the 

subterranean estuary at Waquoit Bay given the high Fe-oxyhydroxide content in cores. 

 

Fe-isotope results in the subterranean estuary of Waquoit Bay could be also compared to 

recent studies of Fe-isotope composition in Fe-oxide concretion from the Navajo Sandstone that 

precipitated from reducing Fe-rich groundwater (Chan et al., 2006; Busigny and Dauphas, 2007). 

In these studies, negative δ56Fe values for Fe-oxide concretions (down to ~ -2‰) have been 
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explained by complete oxidation and precipitation from aqueous fluids that had negative δ56Fe 

values. These low δ56Fe values have been either interpreted as resulting from bacterial reduction 

of Fe-oxides (Chan et al., 2006) or evolution of the fluid composition through precipitation and/or 

adsorption isotopically heavy Fe during fluid flow (Busigny and Dauphas, 2007). These studies 

can be reconciled if both bacterial reduction of Fe-oxides and partial Fe(II) oxidation occur in 

conjunction in O2-depleted environments, as  those observed at Waquoit Bay. 

 

5.4. Hydrogeochemical Model 

 

The conceptual model of Fe-isotope systematic in subterranean estuary at Waquoit Bay is 

presented in the schematic diagram in Figure 8. This figure incorporates the hydrology of the 

subterranean estuary as described previously (Charette et al., 2005; Charette and Sholkovitz, 

2006) as well as Fe-isotope compositions observed in this study. Seepage meter studies at 

Waquoit Bay have shown that subterranean circulation leads to the upward flow of saline pore 

water to the intertidal zone (Michael et al., 2003; Sholkovitz et al., 2003). A plume of seaward 

flowing fresh groundwater and recirculating seawater lead to a salt-wedge type distribution of 

pore-water salinity. The sedimentary and aqueous environment of this subterranean estuary is one 

of active redox reactions for Fe where two major sources and oxidative sinks of reduced iron are 

found: (1) a freshwater plume from the land transporting high concentrations of dissolved Fe(II) 

toward the bay where the precipitation of iron oxyhydroxides occurs in the freshwater end of the 

plume (resulting from oxic seawater recirculation and/or pH increase); and (2) the upward 

transport and oxidation of Fe(II)-rich pore waters in the saline zone (representing the major 

source of the iron oxyhydroxide rich cores reported in this study). These terrestrial and marine 

sources are probably interconnected as they operate within several meters of each other in the 

vertical and offshore directions. Since both end-members have δ56Fe values varying between 0.3 

and –1.3‰, likely resulting from dissimilatory Fe reduction (noted as DIR in Fig. 8), most of the 

Fe-isotope fractionation is occurring during oxidative precipitation of Fe-oxyhydroxide (noted as 

OIP in Fig. 8) within the mixing zone between groundwater and brackish O2-depleted porewater. 

Hence, both high concentration of Fe(II) in porewater (resulting from DIR) and partial Fe(II) 

oxidation are required to produce the large scale Fe-isotope fractionation found in both sediment 

and porewater.  
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It is likely that this large-scale Fe isotope fractionation (up to 5‰) produced by the 

precipitation of Fe-oxides in permeable sediments during the mixing of anoxic groundwater with 

seawater is not restricted to the subterranean estuary at Waquoit Bay. More generally, any coastal 

aquifer with pore water bearing high dissolved ferrous iron that intercepts oxic to suboxic 

seawater may produce a Fe(II) flux to coastal seawater characterized by negative δ56Fe values. 

The radium isotope studies by Charette et al. (2001) show that there is strong groundwater 

signature in Waquoit Bay water. Although the isotopic composition of dissolved and suspended 

Fe in the water column of Waquoit Bay  has yet to be measured, our results imply that 

subterranean estuary may impact Fe-isotope budget in coastal waters.  

 

6. Conclusions 

 

Dissolved Fe has a distinctly non-conservative behavior in estuaries (Sholkovitz, 1976; 

Boyle et al., 1977; Mayer, 1982) due to the rapid flocculation of dissolved Fe and humic 

substances during mixing between rivers and seawater. Similar features are also observed in 

subterranean estuaries but here, redox characteristics of the freshwater and seawater have 

significant influence on the partitioning of Fe between the solid and aqueous phases. In previous 

studies, it has been demonstrated that the upward transport of Fe(II)-rich groundwater is 

responsible for the formation of Fe oxide-rich sands (Iron Curtain) in the subterranean estuary of 

Waquoit Bay (Charette and Sholkovitz, 2002). In this study, we reported a large scale Fe isotope 

fractionation in iron-coated sands and porewater in the intertidal zone of Waquoit Bay. The 

distribution of Fe-isotopes in pore water reveal that very low δ56Fe values of porewater down to -

5‰ occur within the mixing zone of the subterranean estuary. We interpret the Fe-isotope 

fractionation to reflect intensive Fe-redox cycling across a density interface between anoxic 

groundwater and O2-deficient saline porewaters. Large range of δ56Fe values, between –2 and 

1.5‰ has been also observed in two sediment cores across the subterranean estuary. The 

relationship between Fe concentration and δ56Fe values of Fe oxides can be modeled by 

incremental processes (distillation) during the progressive precipitation of Fe-oxides during fluid 

flow across the subterranean estuary. These results suggest that partial Fe(II) oxidation in low  O2 

conditions is the major process producing the large scale Fe-isotope fractionation found in both 

sediment and porewater.  
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The Fe isotope composition of dissolved Fe in oceanic water masses has not been 

systematically determined as the analytical difficulties have yet to be mastered. Hydrogenous 

accumulations in the form of ferromanganese (Fe-Mn) oxides display variable, but negative δ56Fe 

values that may provide record of marine Fe isotope composition (Zhu et al., 2000; Levasseur et 

al., 2004). Among potential sources of negative δ56Fe components in seawater, continental run-

off (Fantle and Depaolo, 2004), hydrothermal sources (Beard et al., 2003b) and diagenetic pore 

fluids from shelf sediments (Staubwasser et al., 2005; Severmann et al., 2006) have been 

suggested to provide significant source of low- δ56Fe iron to the oceans. In this study, we 

demonstrated that groundwater input in subterranean estuaries may also represent a significant 

source of light Fe in seawater due to the preferential sequestration of heavy Fe-isotopes in 

sediments, yielding aqueous Fe(II) with δ56Fe down to –5.0‰. Considering the recently 

recognized importance of submarine groundwater input as source of dissolve Fe in the ocean 

(Windom et al., 2006), future studies will need to focus on the Fe isotopic composition of coastal 

waters in order to further our understanding of the links between biogeochemical processes 

occurring in subterranean estuaries and coastal water Fe pools. 
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Appendix A 

 

The model runs as follows. First, pore water Fe2+ concentrations within the uppermost 2m 

of the sediments are determined using the general 1-dimension diagenetic model described by 

Richter and De Paolo (1987) and Berner  (1980):  
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where Ci represents the concentration of the solute i, t is the time, z is the depth, Dc is the 

diffusivity of the solute i , υ is the advective velocity and ΣR represents the sum of the reaction 

terms.  

In the case of homogeneous Fe(II)-oxidation in porewater, ΣR is given by 
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where k1 is the pseudo-first-order rate constant of Fe(II) oxidation which is strongly 

dependent upon pH and O2 (e.g. Millero et al., 1987) following:   

k1 = -k [OH-][O2]     (a.3) 

To a first approximation, this formulation does not take into account the heterogeneous 

oxidation whereby the rate of oxidation increases with the concentration of Fe(III) hydroxide due 

to autocatalytic effects.  

The diffusion coefficient Dc is related to the temperature, porosity and tortuosity of the 

sediment which are considered constant with depth over the uppermost 2-m of sediment section. 

Given a porosity of 0.35 for sand sediments at Waquoit Bay (Hoefel and Evans, 2001), DFe2+ can 

be estimated at ~ 0.04 cm2 d-1 (Li and Gregory, 1974). The groundwater discharge for the head of 

Waquoit Bay has been estimated by Abraham et al. (2003) at υ ~ 8 cm d-1. Although the total 

groundwater discharge proceeds through both horizontal and vertical transport, we only 

considered vertical advection in our model.  Because only two cores have been investigated in 

this study, it is presently impossible to develop a more complex 2D  advection-reaction model.  

This suggests that Fe2+ transport through the sediments is essentially advective (i.e. Peclet 

number >> 1) and that equation (a.1) could be simplified as: 

[ ]+
++

−
∂

∂
−=

∂
∂ 2

22

1 Fek
z

Fe
t

Fe ν       (a.4) 



 24

Since Fe(II) oxidation fractionate Fe-isotopes toward heavy isotopes in the insoluble 

Fe(III) product,  the rate of Fe(II) oxidation is different between Fe-isotopes and equation (a.4) 

can be written for 56Fe and 54Fe isotopes: 
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Where 54k1 and 56k1 are the pseudo-first-order rate constant of 54Fe(II) and 56Fe(II) 

oxidation respectively. It is also assumed no differences in advection rate υ between 54Fe and 56Fe 

isotopes.  

The isotope fractionation factor during Fe(II) oxidation  α which is generally determined 

between 1.001 and 1.0015 (Bullen et al., 2001; Croal et al., 2004; Balci et al., 2006) is defined by 
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The theoretical relationship between Fe2+ concentration and isotope composition in 

porewater can be calculated using the DuFort-Frankel scheme, an explicit three-level finite 

difference method (Dufort and Frankel, 1953; Richter and De Paolo, 1987). This model is stepped 

in time and space allowing for advection and reaction. Fe2+ concentration and 56Fe/54Fe isotope 

ratios are calculated for each depth intervals using equations (4) and (5). The evolution of Fe2+
t,z 

at time t and depth z is described by 

[ ]zt
ztztztzt Fek

z
FeFe

t
FeFe

,1
21,

2
1,

2
,1

2
,1

2

1
22

−
+−

+
+

+
−

+
+

+

−
Δ
−

−=
Δ
− ν     (a.6) 

The parameter Δt is the time step used in the model calculation (in day) while Δz is the 

grid spacing in cm. Similarly, 54Fe2+
t,z and 56Fe2+

t,z are calculated using the same centered finite 

approach for solving equations (a.5) and (a.6). 

Since Fe-oxidation product is insoluble and considered immobile in sediments, Fe(III) 

concentration can be calculated for each depth intervals, such as: 
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Where ρ is sediment density (~ 2g cm-3) and Φ sediment porosity of ~ 0.35 for sediments 

at Waquoit Bay.  

 

The evolution of 54Fe(III) and 56Fe(III) at time t and depth z is then described by: 
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Where we solve 54Fe(III)t+1,z and 56Fe(III)t+1,z and allow the determination of δ56Fe values of Fe-

oxides at any depth z. The model is run until Fe(III) concentrations reaches the present day. Only 

parameters k1 (rate of Fe2+ oxidation) and fractionation factor α are adjusted to give a best fit of 

Fe(III) vs. δ56Fe relationship. 
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Figure Captions 

 

Figure 1 : Location of Waquoit Bay on Cape Cod, USA. The Bay opens to open seawater at the 

southern end. The expanded map of the head of the Bay shows the location of the piezometers 

along a profile (A-A’) perpendicular to the shoreline. Location for piezometer #4 Core#2 and 

Core#3 are also presented.  

 

Figure 2 : Cross section of pore water salinity and total dissolve Fe concentration (T.D. Fe) in 

μM along the shore-perpendicular transect A-A’ in Fig.1. The isochores of constant salinity and 

and T.D. Fe and the corresponding Piezometer measurements from this study is shown in each 

box. The piezometer station numbers for each profile are located along the top edge of the figure. 

Locations of samples selected for Fe-isotope analysis are marked with « * ». Results for 

Piezometer#4 are not presented. Location and depth of Core #2 along the transect A-A’ is also 

presented for comparison. Modified after Charette and Sholkovitz (2006).  

  

Figure 3 : Downhole variations of Fe-concentration and Fe-isotope composition in Fe-

oxyhydroxide coated sands from A) Core#2 and B) Core#3. Core 2 and Core 3 are located in the 

tidal zone of the head of Waquoit Bay near piezometer #8 and #4 respectively (see Fig.1). Gray 

shaded area correspond to the range of Fe-concentration and Fe-isotope composition for “off-

site” surface beach sands reported in Table 1. 

 

Figure 4 : Relationship between Fe-concentration and Fe-isotope composition of Fe-

oxyhydroxide coated sands in Core 2 and 3. Simple mixing relationships between Fe-

oxyhydroxide coated sands at the bottom of Core 2 and 3 and surface beach sands ([Fe] = 500 

ppm δ56Fe = 0 ‰) are illustrated using dashed lines. Gray and black lines correspond to the 

theoretical relationships between Fe concentration and Fe-isotope composition of sediments for 

each depth and are calculated using advection-reaction model during partial Fe(II) oxidation and 

Fe-oxyhydroxide precipitation. A) Model line for Core 2 is calculated using initial conditions for 

δ56Fe=0.8‰, Fe(II) oxidation rate of 0.12 d-1 and isotope fractionation factor α=1.001. B) Both 

model lines for Core 3 are calculated using initial conditions for δ56Fe=-0.8‰ and isotope 
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fractionation factor α=1.0012. Gray line and black lines are calculated using Fe(II) oxidation rate 

of 0.25 d-1 and 0.4 d-1 respectively. See text and Appendix for discussion.  

 

Figure 5 : Conceptual model used for calculating theoretical relationship between Fe-

concentration and Fe-isotope composition observed in Fe-oxyhydroxide coated sands in Core 2 

and 3. In this model, the upward transport and oxidation of Fe(II)-rich pore waters from saline 

zone and/or freshwater represents the major source of the Fe-oxyhydroxide rich cores. In 

addition, it is assumed that sands contain significant proportion of « background » Fe-oxides with 

δ56Fe near 0‰ as demonstrated by the analysis of surface sands in area not affected by 

groundwater input (Table 1). During Oxidative Fe Precipitation (OIP), newly formed Fe-

oxyhydroxide will preferentially incorporate heavy Fe-isotopes, producing a remaining aqueous 

Fe(II) pool enriched in light Fe-isotopes.  

 

Figure 6 : Relationships between Fe-concentration and Fe-isotope composition relative to 

porewater salinity. Porewater along the transect A-A’ (and specially related) are presented with 

the same symbol whereas porewater from piezometer 4 (50m along shore) is presented 

separately. The source of dissolved Fe in high-salinity pore water concentrations (up to 500 µM) 

results from chemical diagenesis typical of that found in reducing marine sediments where 

microbial activity leads to the reduction of Fe oxide. Shaded area represents the range of Fe-

concentration and isotope composition in freshwater source for Fe in the subterranean estuary.  

 

Figure 7 : A) and B) comparison of Fe-concentrations, Fe-isotope compositions and U 

concentrations  in porewaters for different salinity. DIR = Dissimilatory Iron Reduction; OIP = 

Oxidative Iron Precipitation.  A) U concentrations fir local coastal seawater near Waquoit Bay are 

shown in comparison (data from Charette and Sholkovitz, 2006) and suggest that U, in most case, 

is removed under low O2 conditions in Waquoit Bay subterranean estuary. B) Example of δ56Fe 

vs. [Fe] relationships for DIR and OIP are shown for comparison. Initial reduction of ferric oxide 

substrate (i.e. open system reduction) produce δ56Fe values for Fe(II) down to –1.3‰ and 

converge to initial Fe-isotope composition at high rate of DIR (i.e. close system reduction). OIP 

following Rayleigh-type distillation process is also presented. In this case, only large extent of 
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Fe-oxidation will produce large Fe-isotope fractionation (down to -5‰) in remaining aqueous 

Fe(II) pool. 

 

Figure 8 : Conceptual hydrogeochemical model at Waquoit Bay across a section perpendicular to 

transect A-A’ in Fig.1. This model integrates porewater Fe concentrations profile presented in 

Figure 2 with high Fe(II) concentration represented as light-gray domain. Fe-oxide-rich sands 

(referred as “iron curtain’) are represented as dark gray area. Oxidative Fe precipitation (OIP) and 

dissimilatory Fe reduction (DIR) processes are also presented to illustrate possible pathways of 

Fe-reduction and oxidation between different Fe reservoirs.  
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Sample Fe N# δ56Fe 2SD δ57Fe 2SD
μM

Seawater* doped with IRMM-14
#1 5 4 0.03 0.19 0.06 0.27
#2 5 2 0.08 0.17 0.12 0.21
#3 10 2 -0.01 0.15 -0.05 0.21
#4 10 2 0.05 0.02 0.11 0.01

Average 0.04 0.08 0.06 0.16
Seawater* doped with BHVO-1

#1 10 2 0.16 0.20 0.20 0.20
#2 20 2 0.04 0.05 0.05 0.12
#3 50 2 0.09 0.03 0.28 0.10
#4 200 2 0.06 0.09 0.16 0.17
#5 400 2 0.16 0.02 0.21 0.04
#6 600 2 0.07 0.15 0.10 0.21

Average 0.10 0.10 0.17 0.16

Table 1. Fe-isotope composition of seawater matrix doped with 
various amount of Fe isotopic standards (IRMM-14 and BHVO-1)

* used 15mL of seawater and processed through complete chemical 
purification procedure. Procedural blank (seawater only) determined at 
~0.1 μM

# Number of duplicated analysis used to calculate average Fe-isotope 
isotope composition and precision (2SD: 2 standard deviation)



Table 2. Pore water concentrations of trace metals, Fe isotope composition of metals and ancilllary water quality parameters

Depth (m) Salinity PO4 (μM)
SiO4 

(μM)
Mn (μM) U (nM) Fe (μM) N# δ56Fe 2SD δ57Fe 2SD

Piezometer #3
4.42 25.9 4.6 222.0 22.8 12.5 39.7 4 -4.91 0.14 -7.38 0.19
4.57 26.1 6.9 214.0 21.4 10.30 50.6 2 -4.19 0.13 -6.28 0.18
5.03 26.4 13.1 190.0 8.4 8.5 50.6 4 -2.47 0.19 -3.63 0.15
5.49 26.6 15.8 161.0 4.2 7.70 51.0 2 -2.29 0.14 -3.32 0.20

Piezometer #4
3.96 19.1 0.9 245.0 26.1 1.3 146.0 2 -2.43 0.03 -3.75 0.03
4.42 23.2 0.5 203.0 30.0 2.8 112.0 2 -1.68 0.18 -2.50 0.25
4.88 24.5 0.7 196.0 19.6 2.4 67.4 2 -1.36 0.19 -1.97 0.19
5.79 26.5 7.8 200.0 19.4 1.7 64.5 2 -1.13 0.16 -1.67 0.25
6.71 25.7 14.1 171.0 16.2 1.4 77.6 2 -0.79 0.08 -1.19 0.11
7.16 25.7 14.2 174.0 21.3 1.4 100.9 2 -0.53 0.18 -0.75 0.16
7.62 26.2 9.6 152.0 17.4 1.2 330.0 2 -0.36 0.10 -0.51 0.17
7.92 26.5 8.9 158.0 18.9 1 491.5 2 -0.37 0.18 -0.63 0.25

Piezometer #5
0.15 28.8 9.4 83.4 14.1 4.3 58.9 2 -0.64 0.03 -0.93 0.03
0.61 28.8 9.4 121.0 23.6 3.3 48.4 2 -1.43 0.21 -2.18 0.30
5.18 27.5 13.1 141.0 2.6 3.9 42.6 2 -1.89 0.17 -2.80 0.16
5.64 28.1 10.3 138.0 2.8 2.7 46.7 2 -1.20 0.15 -1.79 0.19
6.55 28.9 14.3 102.0 1.4 2.5 41.5 2 -1.15 0.13 -1.82 0.16

Piezometer #6
1.52 0.4 0.5 27.4 5.0 0.8 141.1 2 0.44 0.03 0.74 0.05
1.98 0.1 2.5 16.9 1.2 1.0 54.2 2 -0.10 0.12 -0.21 0.14
7.01 25.7 1.8 202.0 29.1 17.3 42.9 2 -2.03 0.13 -3.07 0.16

Piezometer #7
3.20 0.0 0.7 117.0 2.7 1.2 196.3 2 -0.17 0.15 -0.26 0.19
3.66 0.0 0.1 109.0 12.9 0.1 106.5 4 -0.79 0.05 -1.14 0.05

Piezometer #8
0.61 27.6 9.3 178.0 31.3 3.4 79.0 4 0.22 0.12 0.43 0.13
0.91 28.4 4.8 232.0 30.0 1.2 41.2 4 -0.31 0.14 -0.47 0.16

Piezometer #10
3.05 0.0 0.2 23.5 3.0 0.3 119.4 3 0.29 0.12 0.45 0.21
3.96 0.0 0.1 25.1 4.7 1.5 128.3 4 -0.66 0.11 -0.89 0.15

PO4, SiO4, Mn, U and Fe data determined by high-resolution ICPMS from Charette and Sholkovitz, 2006

# Number of duplicated analysis used to calculate average Fe-isotope isotope composition and precision (2SD: 2 standard 
deviation)



Table 3.Chemical composition and Fe-isotope composition of surface beach sediment and sediment cores

Sample Depth Fe T Mn T N# δ56Fe 2SD δ57Fe 2SD
ppm ppm

Surface beach sand from Waquoit Bay near the coring sites
Sand "WB" 0.1 426 n.d. 2 0.04 0.17 0.13 0.27

duplicate* 2 -0.06 0.12 -0.07 0.14
duplicate 2 -0.03 0.10 0.00 0.15

Surface beach sand from Vineyard Bay, 10 km from Waquoit Bay
Sand "PB" 0.1 303 1890 2 0.00 0.08 0.08 0.22

duplicate 2 0.06 0.10 0.10 0.20
duplicate 2 0.02 0.17 0.11 0.21

Sediment Core 2
Core 2-1 2.5 785 23 3 -0.20 0.06 -0.30 0.02
Core 2-5 22.5 744 4 3 0.01 0.19 0.04 0.22
Core 2-10 47.5 820 4 3 0.14 0.09 0.29 0.17
Core 2-11 52.5 1106 5 2 0.09 0.04 0.16 0.04
Core 2-15 72.5 791 3 2 0.35 0.08 0.51 0.15
Core 2-17 82.5 772 4 2 0.54 0.05 0.75 0.14
Core 2-18 87.5 1094 5 4 0.48 0.24 0.70 0.32
Core 2-19 92.5 1279 7 2 0.48 0.07 0.67 0.17
Core 2-20 97.5 1373 9 6 0.52 0.21 0.78 0.34
Core 2-21 102.5 1666 2 0.63 0.01 0.93 0.01
Core 2-22 107.5 1847 2 0.65 0.02 0.96 0.01
Core 2-23 112.5 2279 12 3 0.98 0.06 1.42 0.14

duplicate 112.5 2279 3 1.03 0.08 1.52 0.17
Core 2-25 122.5 2376 2 0.92 0.02 1.42 0.04
Core 2-28 132.5 3255 7 2 1.48 0.10 2.35 0.20

duplicate 132.5 3255 2 1.57 0.14 2.40 0.18
Core 2-30 138.5 2613 5 2 1.39 0.04 2.09 0.10
Core 2-33 148.5 2040 5 2 1.22 0.02 1.75 0.04
Core 2-38 168.5 2480 6 2 1.20 0.01 1.81 0.01

duplicate 168.5 2480 2 1.26 0.05 1.84 0.01
Core 2-41 173 2795 - 3 0.98 0.23 1.55 0.14
Sediment Core 3
Core 3-17 3.2 906 9 4 -0.56 0.17 -0.83 0.29
Core 3-15 16.1 532 16 2 -0.21 0.14 -0.27 0.19
Core 3-14 24.2 659 5 2 -0.74 0.06 -1.06 0.03
Core 3-13 31.8 1684 2 -1.04 0.10 -1.52 0.11
Core 3-11 46.1 2581 11 3 -1.76 0.15 -2.60 0.16
Core 3-10 53.9 3625 15 3 -1.61 0.03 -2.34 0.06

duplicate 53.9 3625 2 -1.70 0.16 -2.45 0.25
Core 3-8 69.0 2605 2 -1.27 0.03 -1.86 0.02
Core 3-7 75.6 4883 26 2 -1.49 0.00 -2.18 0.05
Core 3-6 82.4 5181 27 2 -0.93 0.05 -1.40 0.11
Core 3-5 89.3 5041 23 3 -1.14 0.09 -1.71 0.17
Core 3-3 101.7 7588 22 3 -0.58 0.17 -0.85 0.24
Core 3-2 106.4 7190 17 2 -0.42 0.03 -0.60 0.05
# Number of duplicated analysis used to calculate average Fe-isotope isotope composition and precision (2SD: 2 standard deviatio
Fe and Mn concentration determined by reductive leaching method and ICPMS analysis, after Charette et al., 2006
* duplicate analysis include dissolution, chemical purification and mass spectrometry analysis


