
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Woods Hole Open Access Server
Acoustic diffraction by deformed edges of finite length: Theory
and experimenta)

Timothy K. Stanton and Dezhang Chu
Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution,
Woods Hole, Massachusetts 02543-1053

Guy V. Norton
Naval Research Laboratory, Stennis Space Center, Mississippi 39529I

�Received 30 June 2005; revised 16 August 2006; accepted 10 November 2006�

The acoustic diffraction by deformed edges of finite length is described analytically and in the
frequency domain through use of an approximate line-integral formulation. The formulation is based
on the diffraction per unit length of an infinitely long straight edge, which inherently limits the
accuracy of the approach. The line integral is written in terms of the diffraction by a generalized
edge, in that the “edge” can be a single edge or multiple closely spaced edges. Predictions based on
an exact solution to the impenetrable infinite knife edge are used to estimate diffraction by the edge
of a thin disk and compared with calculations based on the T-matrix approach. Predictions are then
made for the more complex geometry involving an impenetrable thick disk. These latter predictions
are based on an approximate formula for double-edge diffraction �Chu et al., J. Acoust. Soc. Am.
122, 3177 �2007�� and are compared with laboratory data involving individual elastic �aluminum�
disks spanning a range of diameters and submerged in water. The results of this study show this
approximate line-integral approach to be versatile and applicable over a range of conditions.
© 2007 Acoustical Society of America. �DOI: 10.1121/1.2405126�
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I. INTRODUCTION

The subject of acoustic diffraction by finite deformed
edges has been studied in previous investigations through
analytical, numerical, and experimental methods. While all
motivations have included advancing the fundamental under-
standing of the acoustic scattering processes, the applications
were diverse and include understanding acoustic diffraction
around noise barriers, seamounts, and seashells. Given the
complexity and possible limitations of exact solutions �such
as being constrained to certain canonical shapes �Bowman et
al., 1987��, approaches are generally approximate and may
be based, in part, on formally exact solutions to the wave
equation for the infinitely long straight edge. For example, in
the work of Medwin and colleagues, the Biot-Tolstoy solu-
tion was truncated in the time domain in order to estimate the
acoustic diffraction by finite straight wedges �Medwin, 1981;
Medwin et al., 1984�. More recently, Svensson et al. �1999�
incorporated the solution in a line integral to develop an
approximate analytical time-domain formulation describing
the diffraction by arbitrarily deformed edges of finite length.
Also, Menounou and colleagues developed an approximate
line-integral approach describing diffraction by edges and
wedges of half-planes of arbitrary directivity functions �spe-
cific to the type of edge� and incident signal for both straight
�Menounou et al., 2000� and jagged �Menounou and You,
2004� edges. One extension of the Medwin concept was the
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construction of a deformed edge through an assemblage of
wedges �Keiffer et al., 1994�. Given the inherent inaccura-
cies of the approximate approaches, others have approached
the problem through numerical methods �Kristensson and
Waterman, 1982; Norton et al., 1993�. In addition to the
above cases involving impenetrable bodies, other studies
have investigated the interaction of sound with elastic bodies
that possess edges �Hefner, 2000: Hefner and Marston, 2001;
2002�.

Although there has been a growing body of work involv-
ing diffraction by deformed finite-length edges, each work
has been limited to either a particular geometry �i.e., shape of
edge� or a particular infinite-edge solution as a basis, or both.
Furthermore, there are relatively few comparisons of predic-
tions of diffraction by deformed finite-length edges with nu-
merical and experimental data. In this paper a general ap-
proximate analytical formula is derived to describe
diffraction by deformed, finite-length edges �or multiple
closely spaced edges�. The formula is applied to the case of
disks where the acoustic diffraction by the leading edge of
various disks is studied theoretically, numerically, and ex-
perimentally. Disks of infinitesimal thickness �knife-edge�
and finite thickness �double edge� are investigated for vari-
ous diameters and orientations. As described below, the for-
mulation is an advancement in terms of generality. Also, the
numerical and experimental data are not only useful in com-
parisons with the theoretical predictions, but also contribute
to the limited base of data associated with deformed finite-

length edges.
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The approximate analytical expression describing the
diffraction by the deformed edge is derived using a formula-
tion based on the case of infinitely long edges, but employing
a line-integral along the length of the edge to account in an
approximate manner for deformations of the edge �Fig. 1�.
Although this particular line-integral method is adapted from
the deformed cylinder formulation in Stanton �1989�, it is
conceptually similar to other approaches such as Svensson et
al. �1999� and Menounou et al. �2000�. In fact, line-integral
approaches have been used for more than one century and a
brief review with comparisons between various approaches
is presented in Menounou et al. �2000�. Although similar
conceptually, there are differences, however, involving gen-
erality and geometry. For example, the Svensson et al. for-
mulas involve use of a particular infinite-edge solution and
apply it to predict multiple-order diffraction between oppo-
site edges of a disk. The Menounou et al. formulas involve
an arbitrary infinite-edge solution and apply it to edges and
wedges of half-planes. The approach described here is lim-
ited to diffraction from a single edge �or single group of
closely spaced edges�, but is written in a general form based
on an arbitrary infinite-edge solution. Furthermore, it is writ-
ten for an arbitrarily deformed edge of finite length. Note
that although the Medwin et al. approach involved finite
length edges, it incorporated one particular infinite edge for-
mula �Biot-Tolstoy�, while the approach in this paper is more
general as it involves an arbitrary infinite edge formula.
Since this new formulation is based on the diffraction by an
infinitely long edge, it is generally applicable for conditions
under which deformations in the edge are slowly varying and
when the edge is near normal to the directions of the incident
and diffracted signals �as in the Svensson et al. and Me-
nounou et al. approaches�.

As mentioned above, the general formula is evaluated
for two cases of increasing complexity, each involving im-
penetrable disks. The first case involves the ideal geometry
of the thin �knife-edge� disk which is based on an exact
solution for the infinitely long knife edge presented in Morse
and Ingard �1968�. The predictions are then compared with
calculations using the T-matrix approach �Kristensson and
Waterman, 1982; Norton et al., 1993� for two diameters and
a wide range of orientation angles. This is a relatively pure
test of the deformed edge formulation as the only approxi-
mation in the comparison involves the fundamental approxi-
mation of the line integral being based, in part, on an infinite

FIG. 1. Deformed truncated wedge of finite length.
edge theory. The more complex case is then studied for disks
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of finite thickness. In this case, double-edge diffraction must
be taken into account. The line-integral formula incorporates
a double-edge diffraction formula from Chu et al. �2007�,
which is based on an extension of a formula in Pierce �1974�
involving diffraction by an impenetrable infinitely long
double edge. The results of these latter predictions are com-
pared with laboratory measurements of broadband diffraction
by the leading double edge of individual elastic disks �alu-
minum, submerged in water� of various diameters and over a
wide range of orientation angles. In this latter case, the
theory has three approximations. In addition to its inherent
approximation of being based on an infinite edge theory, the
infinite edge theory only approximately accounts for higher-
order diffraction from the double edge. Also, the theory does
not account for elastic effects.

This paper is organized as follows: In Sec. II, a general
formula is derived describing the diffraction by finite-length
deformed edges. The line-integral component of the formula
is evaluated for the simple cases of a straight finite-length
edge and a disk. In addition, the diffracted field by the lead-
ing edge is written explicitly for the case of a thin, impen-
etrable disk using the exact formula describing diffraction by
an infinitely long knife-edge from Morse and Ingard �1968�.
In Sec. III, numerical calculations are described that are
based on the T-matrix approach and are used to predict dif-
fraction by a thin, impenetrable disk. In Sec. IV, a laboratory
experiment is described in which the broadband diffraction
by the leading double edge of a variety of individual thick,
elastic disks submerged in water is measured. In Sec. V, re-
sults of the numerical calculations, laboratory experiment,
and modeling using the line integral are presented and com-
pared with each other. In Secs. VI and VII, the results are
discussed and interpreted, and conclusions are made about
the range of validity of the line-integral formulation.

II. THEORY

A. General formulation

The general approach toward describing the diffraction
by deformed finite-length edges is based on the line-integral
method used in Stanton �1989� to describe the scattering by
deformed finite-length cylinders. In that case, the scattering
per unit length of an infinitely long cylinder was incorpo-
rated into an integral along the length of the deformed cyl-
inder. The integral took into account phase shifts due to de-
viations of the cylinder from a straight line. In a similar
fashion, the diffraction per unit length from an edge is esti-
mated and used to estimate the diffraction from deformed
edges. This can apply to a single edge or assemblage of
edges such as the double-edge case to be addressed later in
this paper.

The line-integral approach begins by examining the ra-
diated pressure from a line source. From Chap. 21 of
Skudrzyk �1971�, the differential pressure radiated from an
infinitesimal section of an infinitely long line is

dpls = �q
eikrr

rr
dz , �1�
where
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� � −
ik�c

4�
, �2�

q is the volume flow per unit length of the line source, k is
the acoustic wave number �=2� /�, where � is the acoustic
wavelength�, rr is the distance between the receiver and an
arbitrary point along the line, dz is the differential length of
the line which coincides with the z axis, � is the density of
the surrounding fluid, and c is the speed of sound of the fluid.
The total pressure radiated by the line is calculated by inte-
grating along its entire length,

pls = ��
−�

�

q�z�
eikrr

rr
dz , �3�

where q is assumed to vary as a function of z.
At this point, the radiation from a line source has been

formulated in terms of the volume flow per unit length. In
this deformed-edge approximation, the radiation will now be
treated as the reradiation due to the diffraction by a single,
infinitely long straight edge or assemblage of closely spaced,
infinitely long straight edges. The diffraction is bistatic and
the source and receiver are in the same plane whose normal
is the edge, which is still straight at this point in the deriva-
tion.

The deformed-edge formulation depends on whether the
infinite edge formulation is based on use of a plane-wave
source or a point source. A detailed derivation will first be
given for the point-source-based infinite edge formulation.
At the end of the derivation, details of the plane-wave-based
formulation will be briefly summarized. For a point source a
distance ri away from the edge at position z, the volume flow
can be written as

q�z� = f �PS��z�
eikri

ri
, �4�

where now f �PS��z� is the component of q due to the �point
source� diffraction by the edge and the term ri

−1 exp�ikri�
accounts for the spreading of the incident wave from the
source and its phase shift. Integrating Eq. �3� and assuming
that f �PS��z� varies slowly with z compared with kri and krr

allows the stationary phase approximation to be used. Under
this condition, the integral is approximately

Pdiff
��,PS� � �f �PS��0��2��1/2�kri

�0�rr
�0��ri

�0� + rr
�0���−1/2

�eik�ri
�0�+rr

�0��ei�/4, �5�

where ri
�0� and rr

�0� are the shortest distances between the
source and receiver, respectively, and the edge. As mentioned
above, the expression for radiation, pls, in Eq. �3� has been
replaced by the reradiation or diffraction Pdiff

��,PS� by an infi-
nitely long edge and due to a point source.

From this equation, f �PS��0� is

f �PS��0� = �−1�2��−1/2�kri
�0�rr

�0��ri
�0� + rr

�0���1/2

�e−ik�ri
�0�+rr

�0��e−i�/4Pdiff
��,PS�. �6�

In order to estimate the diffracted field from a finite-length
deformed edge, or assemblage of closely spaced edges, this

�PS�
expression for f �0� is used to estimate the volume flow in
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an expression similar to Eq. �3�. However, q is only known
�and approximately, at that� for z=0. Assuming that the com-
ponent of the edge that dominates the diffraction is the one
involving normal incidence �e.g., z=0 for the straight edge�,
the integral is approximated by replacing f �PS��z� with
f �PS��0�. This approximation restricts the geometries to those
deformed edges with at least one section that involves nor-
mal incidence �such as at the midpoints of the leading and
trailing edges of a disk�. The phase shift exp�ikri� in q is still
allowed to vary within the integral as the phase shifts play a
significant role in the diffracted signal. Replacing q�z� in Eq.
�3� with f �PS��0�ri

−1 exp�ikri�, and evaluating exp�ikri� and
exp�ikrr� in the far field, the diffracted field due to a finite-
length deformed edge is, approximately,

Pdiff � Pdiff
��,PS��2��−1/2�k�ri

�T� + rr
�T��/�ri

�T�rr
�T���1/2e−i�/4

��
rpos

eikrpos�r̂i−r̂r�·r̂pos�drpos� , �7�

where r̂i, r̂r, and r̂pos are unit vectors �indicated by the “ˆ”
symbol� for the incident field, diffracted field toward the di-
rection of the receiver, and position of the edges, respec-
tively. For this finite-length geometry, the outer dimensions
are small compared with ri and rr so that the amplitude de-
pendence upon ri and rr could be taken outside the integral
and be replaced by the terms ri

�T� and rr
�T�, which correspond

to the distance from the source and receiver, respectively, to
a fixed point on or near the target �i.e., the origin�. The term
Pdiff

��,PS� is evaluated using these latter distances. Furthermore,
in this far-field approximation, the outer dimensions of the
object are smaller than the first Fresnel zone of the trans-
ceiver. The term �drpos� replaces dz to allow for an arbitrary
deformation of the edge.

Equation �7� is a general approximate expression pre-
dicting the far-field diffraction by a deformed finite-length
edge or edges. The formula is general both with respect to
the facts that the edge is of arbitrary deformation and that the
approach is not specific to any particular infinite-edge formu-
lation �i.e., Pdiff

��,PS��, with the exception that the infinite-edge
formulation involves use of a point source. For the case in
which the infinite-edge formulation involves a plane-wave
source, there will be no phase shift �exp�ikri�� or spreading
�ri

−1� terms in Eq. �4�, simplifying that equation to q�z�
= f �PW��z�. Here, the phase of the incident plane wave is as-
sumed to be uniformly zero along the straight axis. The only
spreading term will involve rr for the point receiver. Follow-
ing the same steps in the derivation as for the point-source-
based formulation, the far-field diffraction by a deformed
finite-length edge or edges is

Pdiff � Pdiff
��,PW��k/2�rr

�T��1/2e−i�/4�
rpos

eikrpos�r̂i−r̂r�·r̂pos

��drpos� . �8�

This plane-wave-based formulation is quite similar to the
corresponding point-source-based formulation given in Eq.
�7�, with the major difference being the dependence of Pdiff

in Eq. �7� on the distance ri
�T� associated with the point
source.
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The most significant approximation associated with both
Eqs. �7� and �8� concerns the fact that the derivations are
based on the diffraction from an infinitely long straight edge
or edges. As with the deformed cylinder approach, these for-
mulations will only be valid for smooth deformations in the
edge and for angles of incidence near normal to the edge.
However, for certain objects, this latter restriction is relaxed.
As will be seen in later sections, for cases such as the disk,
although there are angles of incidence along the perimeter
well away from normal, errors associated with those angles
do not contribute significantly to the estimated diffracted
field since the contributions from the first Fresnel zone,
which involve normal and near-normal incidence, dominate
the diffraction.

B. Special cases

The general formulation in Eq. �8� is evaluated for two
simple geometries, the straight finite-length edge�s� and disk.

1. Straight finite-length edge„s…

In the case of the straight edge�s� of length L, the inte-
gral in Eq. �8� is evaluated over the range −L /2 to +L /2 with
the origin at the center of one of the edges. In this case, the
approach is valid for scattering geometries where effects due
to the ends of the target are not appreciable. Since a finite
edge in this formulation is the finite-length portion of a semi-
infinite strip, geometries where appreciable diffraction oc-
curs by the edge of the semi-infinite portion of the strip must
be avoided for this formulation to apply. The integral in Eq.
�8� is equal to the product of the length of the edge�s� and a
sinc function which describes the orientation dependence of
the diffraction,

Pdiff = Pdiff
��,PW��k/2�rr

�T��1/2e−i�/4L
sin �

�
, �9�

where �= 1
2kL�r̂i− r̂r� · r̂edge for the bistatic case and �

=kL cos � for the case of backscatter �r̂edge is the unit direc-
tion vector of the edge and � is the angle between the direc-
tion of the incident field and the axis of the edge�s��. This
result shows that the diffraction by a finite-length edge�s� is
proportional to the length of the edge�s�. Furthermore, the
orientation dependence of the diffraction is approximated by
the sinc function.

2. Disk

In the case of the disk, first the general solution is ex-
pressed for the case of backscatter for this geometry, then an
explicit expression is written for the case of a thin impen-
etrable disk. Finally, high-frequency approximations are
made for the leading and trailing edges of a disk.

a. General expression for backscatter From the geom-
etry defined in Fig. 2, the vectors in Eq. �8� are given as

rpos = a cos 	î + a sin 	 ĵ , �10�

drpos = �− a sin 	î + a cos 	 ĵ�d	 , �11�
�drpos� = ad	 , �12�
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r̂i = sin 
 ĵ − cos 
ẑ , �13�

r̂r = − sin 
 ĵ + cos 
ẑ �backscatter� , �14�

where a is the radius of the disk, î, ĵ, and k̂ are the unit
vectors associated with the x, y, and z axes, respectively, and
the source/receiver is in the yz plane.

Inserting these quantities into Eq. �8� gives the ex-
pression for the diffracted pressure in the back direction,

Pdiff = Pdiff
��,PW��k/2�rr

�T��1/2e−i�/4aI , �15�

where

I �� ei2ka sin 
 sin 	d	 . �16�

The separate contributions to I from the trailing and leading
edges are determined by integrating over the ranges 0�	
�� and ��	�2�, respectively:

I = �J0�2ka sin 
� ± i2s0,0�2ka sin 
� �17�

where the “+” and “−” signs correspond to the trailing and
leading edges, respectively. The terms J0 and s0,0 are the
Bessel and Lommel functions of order zero, respectively.

b. Thin impenetrable disk Evaluation of Eq. �15� re-
quires use of an expression for Pdiff

��,PW� describing the diffrac-
tion by an infinitely long edge. Morse and Ingard �1968�
present an exact expression for the total field describing the
bistatic diffraction by an impenetrable, infinitely long
straight knife-edge due to an incident plane-wave source �Eq.
�8.4.6� of that work�. For the case of backscatter, their equa-
tion simplifies to

Pdiff
��,PW� = Ae−ikrr

�0�
	E�
2krr

�0�� − 1�

+ Aeikrr
�0� cos 2�E�− 
2krr

�0� sin �� , �18�

where A is the amplitude of the incident plane wave and � is
defined in Morse and Ingard as the angle of the direction of
the incident plane wave relative to the normal to the half-
plane containing the edge. Here, the incident plane wave,
A exp�−ikrr

�0��, was subtracted from the total field to give the

FIG. 2. Diffraction geometry for disk �backscattering�. The source/receiver
and disk are in the yz and xy planes, respectively.
scattered field. For an incident wave traveling in a direction
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normal to the plane, �=0, and for edge-on incidence, �
=� /2. In the disk geometry defined in Fig. 2 of this paper,
where 
 is always positive, �=
 for the leading edge of the
disk and �=−
 for the trailing edge. The function E�. . .� is
defined in Eq. �8.4.3� of Morse and Ingard and can be ex-
pressed in terms of Fresnel integrals as shown in Eq. �8.4.5�
of that work. Note that Eq. �18� is for all krr

�0� and in the limit
of krr

�0�1, the diffracted field varies as �krr
�0��−1/2.

Inserting Eq. �18� into Eq. �15� gives an approxi-
mate explicit expression for the diffraction by the edge of a
thin, impenetrable disk,

Pdiff = A�S1 + S2��k/2�rr
�T��1/2e−i�/4aI , �19�

where S1�e−ikrr
�T�

	E�
2krr
�T��−1�

and S2 � eikrr
�T� cos 2
E�±
2krr

�T� sin 
�;

where the “+” and “−” signs in S2 correspond to the trailing
and leading edges, respectively. Evaluation of Eq. �19� for
the leading edge of two disks shows that the diffraction by
the edges is a strong function of orientation of the disk and
the dimensionless product, ka �Fig. 3�. Also, because of the
curvature of the disk, the dependence of the diffraction upon
ka and orientation angle 
 tends to have an oscillatory com-

FIG. 3. �Color online� Diffracted echo in backscatter direction from infi-
nitely long, impenetrable straight knife-edge �upper� compared with diffrac-
tion in backscatter direction by the leading edge of thin, impenetrable disks
�lower�. Since the diffracted field spreads differently for the infinitely long
edge and the disks, the plots are on arbitrary scales for comparison. The
frequency is 60 kHz for all predictions and the diameters of the disks are 8
and 20 cm. The same �exact� expression for Pdiff

��,PW� �Eq. �18�� was used to
produce the upper plot as it was in the lower plots �once integrated through
use of Eqs. �15� and �16� to give Eq. �19��, as well as in Fig. 5. The angle

=0° is normal incidence to flat surface of disk and half-plane associated
with the infinite knife-edge, while 
=90° corresponds to edge-on incidence.
ponent �versus the smoothly varying predictions for the infi-
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nite knife-edge from Eq. �18�� because of the varying num-
bers of Fresnel zones occupying the perimeter of the disk.

c. High-frequency limit to circular disk �ka1�. In or-
der to further investigate the diffraction by the edge�s� of a
disk, the high-frequency limit is explored. In this case, the
frequency is high relative to the radius �i.e., ka1�. Using
the method of stationary phase and dividing the integral in
Eq. �16� into sections corresponding to the leading and trail-
ing edges of the disk �one stationary point per section�, the
integral becomes
Leading edge: ��	�2�

I =
 �

ka sin 

ei�/4e−i2ka sin 
; �20�

Trailing edge: 0�	��

I =
 �

ka sin 

e−i�/4ei2ka sin 
. �21�

In each of these cases, the integral is shown to vary inversely
with the square root of the product of ka and sin 
. Note that
the factor of a−1/2 is offset by the factor of a in the numerator
of Eq. �15�, resulting in the diffracted field increasing with
a1/2.

3. First Fresnel zone and effective length

The first Fresnel zone plays an important role in the
diffraction by edges. The radius of the first Fresnel zone of a
plane-wave source incident upon an infinitely long straight
line and received in the backscatter direction by a point re-
ceiver is 
rr

�0��. Similarly, the radius of the first Fresnel zone
of a plane-wave source incident upon a curved finite-length
line with a constant radius of curvature a and received in the
backscatter direction by a point receiver in the far field of the
line and at high frequencies is 
a� /2 �where the curvature is
in the plane containing the direction of the incident field and
the line is bent symmetrically toward or away from the
source/receiver�. By inserting either of those expressions for
the radius of the first Fresnel zone into the term L �length� of
the diffracted pressure in the backscatter direction due to a
straight finite edge at normal incidence �Eq. �9��, the result
will be the diffracted pressure in the backscatter direction for
those corresponding cases of an infinitely long straight edge
or leading or trailing edge of a disk at edge-on incidence �to
within a phase factor�. Thus, the effective size of the infi-
nitely long straight edge and edge of a disk is the radius of
the first Fresnel zone.

III. NUMERICAL CALCULATIONS—THIN
IMPENETRABLE DISK

In order to understand the diffraction by a deformed
edge under ideal conditions, the T-matrix approach was used
to predict the diffraction by thin, impenetrable disks. The
T-matrix method is a formally exact numerical solution to the
wave equation and is routinely used as a basis for compari-
son for other approaches. The formulation used is based on
the work of Kristensson and Waterman �1982�, with details

of its implementation given in Norton et al. �1993�.
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The T-matrix calculations were computed in the fre-
quency domain and then converted into the time domain
through the use of a fast Fourier transform �FFT�. The re-
quirement for sampling in the frequency domain was such
that the return from the leading and trailing edge in the time
domain is separated by at least one time step. Based on the
maximum ka used �64�, this resulted in the minimum inci-
dent angle, capable of resolving the two returns, of approxi-
mately six degrees. This maximum ka was kept the same for
both disks. Thus, the maximum frequency and delta fre-
quency were different for each disk.

No special windows were applied to the T-matrix-
generated frequency response prior to transforming to the
time domain. The rectangular �default� window that results
from performing finite Fourier transforms causes the sinc�t�
function to be convolved with the true impulse response.
Finally, the numerical results were normalized by the mag-
nitude of the image reflection that occurs in the axial geom-
etry.

The highest order of spherical Hankel and Bessel func-
tions needed for convergence was dependent upon ka
�Norton, et al. �1993��. The higher the ka the more terms
required for convergence. For numerical implementation the
following rule was used: The highest order used was equal to
two times the value of ka �minimum of ten�. The maximum
azimuthal index used equaled the value of ka �minimum of
five�. The numbers used at low ka were more than sufficient
for convergence, but in order to insure convergence at high
ka these relationships were used. No problems were ob-
served throughout the numerical computations and conver-
gence was obtained for all values of ka. All computations
were carried out on a SGI Altix super computer.
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IV. LABORATORY EXPERIMENT—THICK ELASTIC
DISK

The measurements of acoustic diffraction by the disks
were part of a larger effort to understand the scattering by
benthic shells. In a laboratory experiment conducted in fall
2002, the scattering by a wide range of metal disks as well as
benthic shells was measured. The importance of the diffrac-
tion by the outer edge of the shells was identified and com-
parisons were made between the diffraction by the edge of
each shell and the diffraction from the double edge of a disk
with outer dimensions comparable to those of the shells
�Stanton and Chu, 2004�. In this paper, the results from the
measurements involving a subset of the disks are reported
and analyzed. These disks are constructed of aluminum with
a range of diameters �6–20 cm� at a constant thickness of
1.9 mm. Another set of disks in which the thickness was
varied at a constant diameter is analyzed in Chu et al. �2007�
where multiple diffraction between the edges is studied. De-
tails of the experimental setup and measurement procedure
are given in Stanton and Chu �2004� and in the references
cited in that paper, and are briefly summarized below.

The experiments were conducted in a tank of fresh water
using two closely spaced transducers, one as transmitter and
the other as a receiver. A broadband chirp �linear frequency
modulated� signal spanning the frequency range 40–95 kHz
was transmitted. The individual targets were 3.0 m from the
transducers and were rotated over the range 0°–360° in 1°
increments. The echoes were processed both in the time and
frequency domains. In the time domain, the echoes were
temporally compressed through a cross-correlation technique
resembling matched-filter processing so that echoes from
features of the targets could be resolved. The range resolu-

FIG. 4. Impulse response in backscat-
ter direction for 8-cm-diameter thin
disk as calculated with the T-matrix
method. Normal incidence is 0° and
edge-on incidence is 90°. The calcula-
tions were over the range 2.5–87.5°.
The color scale is in decibels relative
to the maximum value of the entire
plot. The time delay of 0 �s corre-
sponds to the center of the disk.
Stanton et al.: Diffraction by deformed edges



tion achieved through this signal processing approach is
about 2 cm, which corresponds to the inverse bandwidth of
the system.

V. RESULTS

A. Thin, impenetrable disk

1. General observations of numerical predictions

The impulse response for a 8-cm-diameter thin disk �im-
penetrable knife-edge� was calculated with the T-matrix
method �Fig. 4�. The calculations were performed in the
backscatter direction and over orientations of the disk span-
ning the range 2.5–87.5°. �i.e., near normal incidence to near
edge-on incidence�. The predictions show the diffraction
echoes from the edges following the expected sinusoidal pat-
tern throughout the range of orientations. The strength of the
backscattered echo from the leading edge is shown to de-
crease as the orientation angle approaches 90°, which is con-
sistent with the fact that diffraction by a knife edge at
edge-on incidence is zero. There is also a strong echo with an
arrival time that remains nearly constant at about 55 �s
throughout the entire range of orientations. This time corre-
sponds to a wave traveling along one face of the disk and
across the center �i.e., a travel distance equal to the diameter
of the disk�.

Partial wave target strengths �PWTS� of the leading
edge echoes were calculated with the T-matrix method for
the 60-kHz component of the impulse response for two thin,
impenetrable disks of different diameters �8 and 20 cm�.
These parameters were chosen for comparison with the labo-
ratory data collected. Here, the PWTS is the target strength
that is calculated from echoes from portions of a target, as
defined in Chu and Stanton �1998�. The leading edge echo is
shown to decrease for angles away from normal incidence,
and dropping precipitously near edge-on angles �Fig. 5�.
Also, the echoes are uniformly stronger for the larger disk.

2. Comparison with deformed knife-edge model

The deformed edge formulation is evaluated for the thin
impenetrable disk, using the exact solution from Morse and
Ingard �1968� for the infinite knife-edge �Eq. �19��, and com-
pared with the T-matrix calculations �Fig. 5�. The deformed
edge predictions for the leading edge of the disk possess the
same general trends as with the T-matrix method, as they
show a decrease with echo level for angles away from nor-
mal incidence, as well as show an increase in level for the
larger disk.

The discrepancies between the two sets of predictions
are relatively small for angles of orientation greater than
about 20° away from normal incidence. The deformed edge
predictions show a more pronounced series of oscillations in
the plot of PWTS versus angle than those from the T-matrix
predictions.

Also, the calculations from both methods show about a
4-dB difference between the cases of the 8-cm-diameter disk
and 20-cm-diameter disk for the higher angles. This is con-
sistent with the limiting form of the deformed edge predic-

1/2
tion, where the diffracted field varies as a when there are
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many Fresnel zones occupying the edge �i.e., conditions un-
der which the method of stationary phase can be used� as
discussed in Sec. II B 2 c.

B. Thick, elastic disk

1. General observations of laboratory data

The temporally compressed echoes as measured in the
laboratory contain resolved echoes from both the leading and
trailing double edges of the disks �Fig. 6�. Since the range
resolution of the system is 2 cm, then the individual edges
within each double edge pair are not resolvable. In addition
to the edge-diffracted echoes, there are strong echoes from
the flat surfaces of the disks at normal incidence to the disk
face, as well as echoes associated with circumnavigations
around the disk �double edge to flat surface to double-edge
path� arriving after the trailing edge echoes. There is overlap
between the trailing double-edge echoes and other echoes for
much of the range of orientation, preventing quantitative in-
terpretation of the trailing edge echoes. The leading double-
edge diffracted echoes are easily resolved from the other
types of echoes over a wide range of angles, and will there-

FIG. 5. �Color online� Comparisons between T-matrix and deformed-edge
calculations for thin, impenetrable disks of diameters 20 cm �upper� and
8 cm �lower�. The partial wave target strength �PWTS� of the diffraction by
leading edge only is calculated in each case. As in Fig. 3, Eq. �19� was used
for the deformed edge calculations, based on an exact solution to the infinite
knife-edge. The leading edge echo was numerically separated from the trail-
ing edge echo in the impulse response time series in the T-matrix calcula-
tions, although there was difficulty resolving the two echoes �hence resulting
in some contamination� for angles below about 20°. All calculations in-

volved 60 kHz for later comparison with the laboratory data.
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fore be the focus of the analysis. Partial wave target strengths
of the leading double-edge echoes were calculated for vari-
ous spectral components of the signal. The leading double-
edge echo was observed to be generally stronger for orienta-
tions closer to normal incidence �Fig. 7�. Also, the leading
double-edge echo tended to increase with increasing diam-
eter of the disk �Fig. 8�.

2. Comparisons with models

The measured diffracted echoes from the leading double
edge of the elastic disk are generally much larger than those
predicted for the thin, impenetrable disk �knife-edge� using
either modeling approaches, especially at the larger angles
�Figs. 5 and 7�. For example, for angles of 40° away from
normal incidence, the observed levels for the 8- and
20-cm-diameter-thick disks are several decibels above the
corresponding knife-edge predictions. For angles approach-
ing 90° away from normal �i.e., edge-on incidence�, the ob-
served �thick-disk� levels are tens of decibels higher, as the
predicted knife-edge echoes approach −�dB. Given the latter
discrepancy, the thickness of the disk needs to be taken into
account. Of course, the most rigorous treatment would also
require accounting for the elastic properties of the disk.

The scattering by the double edge of an elastic disk is
complex. In addition to diffraction by the edges �including
higher-order diffractions between the edges�, there is the po-
tential for conversion of the signal into elastic waves at the
boundary. Given that the disks are relatively thin �i.e., kw is
comparable to or smaller than unity, where w is the thick-
ness�, then the conversion effects on the face of the edge
might be small. Also, since the acoustic impedance of alumi-
num in water is much greater than unity, then there will be

little penetration of the incident signal into the disk. There-
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fore, as a first approximation, the scattering by the double
edge will be modeled as the pure diffraction by the two
edges.

The data were compared with predictions using a de-
formed double-edge diffraction formulation by incorporating
Pdiff

��,PS� of Chu et al. �2007� into Eq. �7� of this paper, and
evaluating for the disk geometry. In this case involving a
point source, the diffracted signal is given by a modified
form of Eq. �15� by replacing Pdiff

��,PW� with Pdiff
��,PS� and mul-

tiplying the right-hand side by 
2. The Chu et al. formula-
tion involves an impenetrable, infinitely long, straight double
edge and is based on the work of Pierce �1974�, where the
diffraction by a truncated wedge is described. Pierce derived
formulas for this case through second-order diffraction. Chu
et al. improved the accuracy of the second-order diffraction
predictions as well as included all higher orders of diffrac-
tion. The expression for the term I in Eq. �16� was used to
account for the leading double edge only.

The model predictions were based principally on mea-
sured dimensions of the disks, although there were param-
eters empirically determined from the data from one disk to
describe multiple diffraction for all of the disks �Chu et al.
2007�. As mentioned earlier, the transmitting and receiving
transducers are not collocated, which results in a deviation
from the true backscatter direction of an amount of 6.3°. The
predictions took into account this deviation, by evaluating
Pdiff

��,PS� for bistatic scattering. The predictions incorporating
bistatic scattering differed by less than 1 dB relative to true
backscatter.

There is generally agreement between the predictions
and both the trend and much of the structure of the data over
most conditions. For example, there is general agreement

FIG. 6. Temporally compressed echo
measured in backscatter direction ver-
sus orientation for 8-cm-diameter alu-
minum disk submerged in water. The
disk is 1.9 mm thick. Normal inci-
dence echoes �at 
=0°, 180°, and
360°�, leading and trailing double-
edge echoes, and circumnavigated
echoes are resolved. The circumnavi-
gated waves occur at approximately
110 �s after the trailing edge echoes.
Other echoes arrive near the circum-
navigated echoes and are out of the
scope of this analysis. The color scale
is in decibels relative to the maximum
value of the entire plot. Apparent ech-
oes at normal incidence arriving at
negative time delays are actually pro-
cessing sidelobes from the large zero-
time-delay echoes. The abbreviated
terminology “leading edge” and “trail-
ing edge” correspond to the more rig-
orous description “leading double
edge” and “trailing double edge.”
From Stanton and Chu �2004�.
concerning the trend of decreasing PWTS versus orientation
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angle of disk �Fig. 7�. In that same comparison only some of
the observed structure in the data is predicted by the model.
For example, all of the structure is predicted for the
8-cm-diameter disk. However, for the 10-cm-diameter disk,
the structure in the range of angles 40°–60° is not predicted.
For the disks of higher diameter, both predictions and obser-

FIG. 7. Partial wave target strength �PWTS� of leading double-edge dif-
fracted 60-kHz echo versus orientation angle for aluminum disks of various
diameters. Predictions are given by the solid lines and laboratory data are
given by the “�.” The diameters of the disks range from 6 to 20 cm, each
with a thickness of 1.9 mm. The 0° angle corresponds to normal incidence
to the flat surface of the disks, while 90° corresponds to edge-on incidence.
The angle 
 is illustrated in Fig. 2. The predictions are based on a formula-
tion from Chu et al. �2007� that describes the diffraction by an impenetrable
infinitely long, straight double edge. That formula is incorporated into the
deformed edge line integral in this paper.

FIG. 8. PWTS of leading double-edge echo versus diameter of aluminum di
solid lines and laboratory data are given by the “�.” The thickness of the d
model �impenetrable deformed double edge� as in Fig. 7. The data for the 9
model, over the entire range of diameters.
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vations show a more rapid set of oscillations in the pattern of
PWTS versus angle, although the respective patterns do not
necessarily coincide with each other. There is also very good
agreement between predictions and the data concerning the
increasing trend of PWTS versus diameter of disk at edge-on
incidence �angle of 90° in Fig. 8�. At this angle, both the data
and predictions increase by about 5 dB as the disk diameter
is increased from 6 to 20 cm, which is consistent with the
deformed edge prediction that the diffracted field varies as
a1/2 �Sec. II B 2 c�. The predicted levels tend to depart from
observations for angles approaching normal incidence to the
disk face and larger diameters �angles of 40° and 60° in Fig.
8�. There was also reasonable agreement between predictions
and data in the study of diffraction as a function of thickness
of disk �not shown�. Those results are presented in Chu et al.
�2007� as part of a study of multiple diffraction.

VI. DISCUSSION

The general agreement between the deformed edge pre-
dictions and the numerical calculations and laboratory data
over much of the range of conditions indicates that the ap-
proximate approach of the line-integral method to estimate
effects due to deformations of the edge has merit. The most
significant approximation in the predictions involved the ap-
proximation of basing the formulation, in part, on a solution
involving infinitely long edges. Phase shifts using the line-
integral approach were assigned to the local field or diffrac-
tion per unit length to account for deviations of the edges
from a straight line. With this approximation, it is anticipated
that the approach is generally only valid for slowly varying
deformations and for geometries involving near-normal inci-
dence to the edge. However, the disks involve a wide range
of angles of the edge relative to the incident acoustic signal,
giving rise to conditions of possibly significant error. For
each orientation, although there was a wide range of angles
�corresponding to different points along the perimeter of the
disk�, there was always a section of the disk in which the
incident angles were near normal to the tangent of the
edge-—that is, the section of perimeter closest to the trans-
ceiver. This section contains the first Fresnel zone of the
acoustic signal which, at these high frequencies, will domi-
nate the echo. Thus, although the predictions for the portions
of the edge outside of the first Fresnel zone may contain

60 kHz and for three orientation angles. Model predictions are given by the
s 1.9 mm. The angle 
 is illustrated in Fig. 2. The predictions use the same
gle follow the trend of varying by a1/2, as predicted by the deformed edge
sk at
isks i
0° an
Stanton et al.: Diffraction by deformed edges 3175



significant error, the errors tend to be canceled out through
the alternating signs of the adjacent Fresnel zones. Given the
occurrence of this phenomenon, the potentially significant
errors in the approach are not realized with this particular
scattering geometry.

Certainly, the purest test of the line-integral formula in-
volved the thin, impenetrable disk. Here, an exact formula
was used for the infinite knife-edge and the comparison was
made with the T-matrix calculations which are exact. Thus,
the principal source of error was in the fundamental approxi-
mation of the line-integral formula where the local diffrac-
tion per unit length was based on the infinite edge formula-
tion. The comparisons showed that the line-integral approach
was to within about 2 dB of the T-matrix calculations for the
angles of incidence greater than 20° from normal incidence.
There were greater discrepancies for smaller angles. These
latter differences can be attributed, at least in part, to the fact
that it was increasingly more difficult at the small angles to
numerically resolve the echoes from the leading and trailing
edges in the T-matrix calculations.

A much less pure, but interesting, test involved the com-
parison of the formulation with the laboratory data involving
thick, elastic disks. Here, in addition to the fundamental limi-
tation of the formulation discussed above, there were sources
of error involving the differences between diffraction by an
elastic body and an impenetrable one, and the fact that the
infinite double-edge formula used in the integral was ap-
proximate. With these additional sources of error, the dis-
crepancies were generally up to about 5 dB. Quantification
of the error associated with elastic effects are out of the
scope of this present study, although the error associated with
the double-edge formula is discussed in Chu et al. �2007�.

VII. CONCLUSIONS

A general approximate formula was derived to predict
diffraction from deformed edges of finite length using a line-
integral approach. The formula is general, as it is written for
arbitrary deformations and is based on an arbitrary infinite
edge formula. There was reasonable agreement between pre-
dictions using this formula and exact numerical predictions
for a thin, impenetrable disk and laboratory data involving
thick, elastic disks. For the conditions under which the
sources of error in the analysis were at a minimum, i.e.,
angles greater than about 20° from normal incidence of the
thin, impenetrable disks, predictions using the formulation
were to within about 2 dB of the exact solution. Deviations
were expectedly greater �about 5 dB� with the thick, elastic
disk as the infinite double-edge formula was approximate
and elastic effects were not taken into account. Although
there is potential for significant error for any finite-length
edge geometry due to the fact that the formula is based, in
part, on one associated with infinitely long edges, significant
error was not realized for the scattering geometries in this
paper due to the dominance of the first Fresnel zone and

cancellation of the errors associated with higher-order
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Fresnel zones. Given the wide range of conditions under
which this line-integral approach appears to be valid, there is
great utility in the approach.
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