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Higher-order acoustic diffraction by edges of finite thickness
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A cw solution of acoustic diffraction by a three-sided semi-infinite barrier or a double edge, where
the width of the midplanar segment is finite and cannot be ignored, involving all orders of
diffraction is presented. The solution is an extension of the asymptotic formulas for the double-edge
second-order diffraction via amplitude and phase matching given by Pierce �A. D. Pierce, J. Acoust.
Soc. Am. 55, 943–955 �1974��. The model accounts for all orders of diffraction and is valid for all
kw, where k is the acoustic wave number and w is the width of the midplanar segment and reduces
to the solution of diffraction by a single knife edge as w→0. The theory is incorporated into the
deformed edge solution �Stanton et al., J. Acoust. Soc. Am. 122, 3167 �2007�� to model the
diffraction by a disk of finite thickness, and is compared with laboratory experiments of
backscattering by elastic disks of various thicknesses and by a hard strip. It is shown that the model
describes the edge diffraction reasonably well in predicting the diffraction as a function of scattering
angle, edge thickness, and frequency. © 2007 Acoustical Society of America.
�DOI: 10.1121/1.2783001�
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I. INTRODUCTION

To study the scattering by a seafloor covered by shells,
laboratory measurements of free-field backscattering by sea
shells and a variety of machined circular disks with different
sizes, thicknesses, and material properties were made �Stan-
ton and Chu, 2004�. Qualitative similarities were observed
between the scattering by the edges of the disks and the
edges of the shells �especially the sand dollar� �Stanton and
Chu, 2004�. A major challenge remains for quantitatively
describing acoustic diffraction by edges that occur in nature,
which are deformed, of finite length, and are composed of a
complex material such as one with elastic properties.

One special case of deformed edges of finite length con-
cerning the problem of diffraction by circular disks has been
studied intensively by many investigators. Sleator �1969�
presented an exact solution based on the modal series solu-
tion of an oblate spheroid by letting the aspect ratio approach
zero. The T matrix method, a formally exact analytical/
numerical approach, has been used to study the acoustic and
electromagnetic scattering by circular disks �Kristensson and
Waterman, 1982�. A number of approximate approaches have
also been developed. Keiffer et al. �1994�, by using the Huy-
gens wavelets approach, presented a discrete wedge assem-
blage �WA� model that was based on the exact and closed
form solution of scattering by an infinitely long straight
wedge in the time domain �Biot and Tolstoy, 1957�. This
method was first proposed by Medwin et al. �1982� by using
the truncated time series from the solution to an infinitely
long straight wedge to describe the diffraction by straight

a�Current address: NOAA-NMFS, Northwest Fisheries Science Center, Se-

attle, WA 98112. Electronic mail: dchu@whoi.edu

J. Acoust. Soc. Am. 122 �6�, December 2007 0001-4966/2007/122�6
finite-length wedges. Svensson et al. �1999� extended the
WA model to a more generalized integral form that can in-
clude the second-order diffraction by using the secondary
edge sources. It was shown that a second-order diffracted
component that circumnavigates the disk could be accurately
included in the calculations and was calculated numerically.
Recently, Li et al. �1998� presented a hybrid-iterative method
to compute the scattering by a conducting circular disk. The
model combined analytical and numerical approaches and
employed a number of techniques including the vector wave
eigenfunction expansion, the least-squares method, and the
mode matching. A brief review of other approximate meth-
ods was also given in that paper including the physical optics
�Rahmat-Samii, 1988�, the physical theory of diffraction
�Ufimtsev, 1962�, the geometric theory of diffraction �Keller,
1962�, and the method of moments �Duan et al., 1991�.

All of the above-mentioned methods were applied to the
problem of calculating the diffraction by circular disks with
single knife edges �left drawing in Fig. 1�a��, i.e., disks of
zero thickness. However, realistic cases may involve edges
of finite thickness—that is, a double edge or truncated wedge
geometry �middle drawing in Fig. 1�a� and the three-
dimensional geometry shown in Fig. 1�b��. For example, in a
recent paper, the scattering by elastic circular disks was stud-
ied for the purpose of understanding the underlying scatter-
ing mechanisms of benthic shells �Stanton and Chu, 2004�.
Although the disks were quite thin relative to their diameter,
the value of kw, where k is the acoustic wave number and w
is the thickness, was comparable to unity. In this scattering
region, the thickness cannot be ignored and higher-order dif-
fraction between the two closely spaced parallel edges along
the perimeter of the disk must be taken into account �right

drawing in Fig. 1�a��.
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To demonstrate the necessity of including higher-order
diffraction, we compare the experimental data �partial wave
target strength �PWTS� of the leading edge, the portion of
the disk closer to the transducers, i.e., “A” on the left graph
in Fig. 2� with the theoretical predictions �Fig. 2�. The two
diffraction models are the knife-edge single-diffraction
model �solid� corresponding to the case illustrated in Fig.
1�a� �left� and the double-edge, first-order diffraction model
�dashed� corresponding to the case also illustrated in Fig.
1�a� �middle�. Both models are based on the asymptotic so-
lution for an infinitely long straight wedge or a knife edge
�Pierce, 1974� and are incorporated into the deformed wedge
formulation �Stanton et al., 2007�. Clearly, the single-
diffraction model of a knife edge severely underestimates the
edge diffraction from scattering angles between 30° and 90°.
It is well known that for an infinitely long screen of half
space, or a knife edge, the diffraction approaches zero as the
scattering angle �backscatter� approaches the edge-on inci-
dence ��=90° in Fig. 2�. Another natural edge-diffraction

FIG. 1. �Color online� �a� 2D cross-sectional view of diffraction by infi-
nitely long straight truncated wedges of two thicknesses. “S” and “R” indi-
cate the locations of the point source and receiver, respectively. �b� Three-
dimensional �3D� view of diffraction by an infinitely long straight truncated
wedge.
model includes a simple summation of the first-order diffrac-
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tion by two wedges of right angle as shown as a dashed line
in Fig. 2. This double-edge single-diffraction model provides
a much better fit to the data, especially for the overall pat-
tern, but it overestimates the overall level of diffraction by a
few decibels. To better describe the diffraction by an edge of
finite thickness, a more sophisticated model is desirable.

Predicting diffraction by disks of finite thickness faces
two major challenges—one is to account for the deformation
�circular curve� of the double edge and the other is to ac-
count for the multiple diffraction between the two closely
spaced edges. The deformation can be accounted for with an
approximate line integral approach and has been studied in a
separate paper �Stanton et al., 2007�. In this paper, higher-
order diffraction between two infinitely long edges is studied
and formulations are developed. The approach is based on a
formulation published by Pierce �1974� where the second-
order diffraction is included for cases when kw�1. In this
paper, Pierce’s approach is extended to include all orders of
diffraction, in which a heuristic formula is used to analyti-
cally connect the strength of the virtual sources associated
with the thickness between the thin �knife edge� and thick
�finite thickness� disk solutions so that the solution can be
used to estimate diffraction for all thicknesses. The solution,
once incorporated into the deformed edge line integral and
using empirically determined coefficients, is compared with
the laboratory data involving machined elastic disks of vari-
ous thicknesses as a function of orientation and disk thick-
ness. Furthermore, the model predictions are also compared
with the previously published experimental data involving
the diffraction by a straight strip of finite width �Medwin et
al., 1982�. In deriving the high-order diffraction model, since
we include only the first arrival �edge diffraction� from the
pulse-compressed signal for each ping and the reflection co-
efficient for an infinite aluminum plane is close to unity, the
influence of elasticity is ignored and a proposed higher-order
diffraction model is based on the rigid wedge solution.

The paper is organized as follows: Section II defines the
problem. Section III briefly reviews the diffraction by an
infinitely long straight single wedge and examines the dif-
fracted field across the reflection and shadow boundaries for
the two extreme situations r→0 and r→�. In Sec. IV, the
higher-order diffraction model will be developed. Model-
data comparison and the subsequent discussions will be in-
cluded in Sec. V. Finally, summaries and conclusions are
provided in Sec. VI.

II. DEFINITION OF THE DIFFRACTION PROBLEM

The total field associated with the presence of a diffract-
ing object is the sum of the incident �pinc�, reflected �pref�,
and total diffracted �pdif,tot� fields and can be expressed as

ptot = pinc + pref + pdif,tot. �1�

The incident and reflected fields can be determined eas-
ily based on the scattering geometry using the method of
images �Biot and Tolstoy, 1957�. For a single edge or wedge,
the total diffracted field is solely due to the first-order
�single� diffraction by the edge �Fig. 1�a�, left�. However, for

the diffraction by two parallel infinitely long edges �double
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edge� or more generally, a truncated wedge �Fig. 1�b��, the
total diffracted field is composed of the first-order diffraction
from the two edges �Fig. 1�a�, middle� and the higher-order
diffraction between the edges �Fig. 1�a�, right�

pdif,tot = �
n=1

�

pdif,n,

where pdif,n represents the nth order diffraction from the
double edge. The second-order diffraction pdif,2 that corre-
sponds to the ray path S→1→2→R or S→2→1→R �Fig.
1�a�, right� is also referred to as “double diffraction” by a
number of authors �Karp and Keller, 1960; Keller, 1962;
Pierce, 1974; Medwin et al., 1982; Svensson et al., 1999�.
The reason why we use the terminology “second-order dif-
fraction” instead of double diffraction is that double diffrac-
tion, when taken literally, could also imply first-order diffrac-
tion by edges 1 and 2 of the double edge �Fig. 1�a�, middle�
rather than second-order diffraction. In the following sec-
tions, we will derive an analytical expression for pdif,tot that
includes all orders of diffraction from a double edge, or a

FIG. 2. Comparison between laboratory data and knife-edge diffraction mod
aluminum disk with a diameter of 8 cm �D� and thickness of 1.9 mm �W�. T
Pierce �1974� and with the curvature of the edge accounted for using the
first-order diffracted waves from the two right-angle wedges at A.
truncated wedge.
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III. FIRST-ORDER DIFFRACTION

A. Background and Pierce’s solution for first-order
diffraction

Diffraction of electromagnetic and acoustic waves by an
infinitely long straight wedge �not truncated� has long been
studied and can be traced back to Sommerfeld �1954�, who,
in 1896, first presented the exact solution in the frequency
domain due to a plane incident wave for a knife edge �wedge
angle of �w=2�, where �w is defined in Fig. 3� and sug-
gested that the solution for a wedge with an arbitrary wedge
angle can be derived based on the same principle. The dif-
fraction by wedges for a cylindrical incident wave was pre-
sented by Carslaw �1899, 1920�. Later on, MacDonald pro-
vided an exact solution, also in the frequency domain, for a
rigid wedge due to a cylindrical source �MacDonald 1902�
and a point source �MacDonald 1915� in the form of a con-
tour integral. Biot and Tolstoy �1957�, using the method of
normal coordinates, presented an exact impulse solution in
closed form for a rigid wedge due to a point source involving
only elementary functions. Applications and developments
based on Biot and Tolstoy’s �BT� solution have been reported
by many investigators �Medwin et al., 1982; Kinney et al.,
1983; Daneshvar and Clay, 1987; Chu, 1989; Clay et al.,

e “�” symbol indicates measured diffraction by the leading-edge �A� of an
lid curve is the model prediction based on an infinitely long knife edge from
d described in Stanton et al. �2007�. The dashed curve is the sum of the
el. Th
he so
metho
1993; Li et al., 1994; Keiffer et al., 1994; Medwin and Clay,
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1998; Feuillade et al., 2004�. At almost the same time when
Biot and Tolstoy published their point source solution, in a
much less referenced work by Friedlander �1958�, an exact
two-dimensional �2D� solution due to a line source in the
time domain involving only the elementary functions was

FIG. 3. �Color online� Geometry illustrating different diffraction regions
associated with diffraction by an infinitely long straight wedge. 2D cross-
sectional view.
plitude” throughout the paper and the distance

3180 J. Acoust. Soc. Am., Vol. 122, No. 6, December 2007
also presented. A variety of solutions using other methods
and focusing on other types of applications have also been
published �Keller et al., 1956; Keller, 1957, 1962; Ufimtsev,
1962; Morse and Ingard, 1968; Pierce, 1974, 1981; Tolstoy
and Clay, 1987; Tolstoy, 1989a,b; Davis and Scharstein,
1997; Menounou et al., 2000�.

We choose to begin with a solution that originated in
Pierce �1974� and was given in a complete form in Pierce
�1981�. Because of the limited bandwidth of the acoustic
system used in our experiment, this frequency domain cw
solution is appropriate for our application. In addition, the
spectral representation is a convenient analytical form that
can be manipulated easily and extended to include all orders
of diffraction. The integral form of a spectral representation
of the exact solution of the diffracted wave from an infinitely
rigid wedge �Fig. 3� due to a point source is �Pierce, 1981,
pp. 479–489�

pdif = −
S sin ��

2�w
�
±
�

−�

� eikR��−is�

R�� − is�
Fs�s,� ± �0�ds , �2a�

where S is the source strength, �=� /�w is the wedge param-
eter, and
Fs�s,�� =
cos �� − cos �� cos �s

�cosh �s − 1�2 + 2�cosh �s − 1��1 − cos �� cos ��� + �cos �� − cos ���2 , �2b�
R�� − is� = �r2 + r0
2 − 2rr0 cos�� − is� + �z − z0�2�1/2

= �r2 + r0
2 + 2rr0 cosh s + �z − z0�2�1/2. �2c�

Without loss of generality, we assume �=� /�w�1 and 0
	�0	� in our analysis throughout the paper.

Although Eqs. �2a�–�2c� were originally derived using a
contour integral, they can also be derived from the exact
impulse solution given by Biot and Tolstoy �1957�, which is
based on the method of normal coordinates �see the Appen-
dix�. Equations �2a�–�2c� and �A10� are exactly the same.
The exact cw solution for wave propagation in a 2D wave-
guide based on the normal coordinates was provided by Tol-
stoy and Clay �1987�. The integral variable s represents the
imaginary part of a complex angle 
=�− is as described in
Pierce �1981, p. 489�. When 
 is a real number, it represents
the angle between the receiver and the source images �Pierce,
1981; Biot and Tolstoy, 1957�. For kR�s� much greater than
unity, Eq. �2a� reduces to a simpler but approximate form.
Following the procedures outlined in Pierce �1981�, the ap-
proximate solution can be expressed as

pdif = S
eikL

L
�D+ + D−� = S

eikL

L
D�, kR � 1, �3�

where D�	D++D−, will be referred to as “diffraction am-
L = ��r + r0�2 + �z − z0�2�1/2 �4�

represents the shortest distance connecting the point source,
the apex of the wedge, and the point receiver. The diffraction
function D± is

D± =
ei�/4


2

sin ��

�1 − cos �� cos ��� ± �0��1/2AD��M��� ± �0�� ,

�5�

where

� =
2rr0

L
, �6a�

M���� =
cos �� − cos ��

��1 − cos �� cos ���1/2 , �6b�

and AD�X� is the diffraction integral �Pierce, 1974, 1981�,

AD�X� =
1

�
2
�

−�

� e−u2
du


�/2X − e−i�/4u

= sign�X��f��X�� − ig��X��� , �6c�

where the functions f�X� and g�X� are auxiliary Fresnel func-
tions defined in Abramowitz and Stegun �1971, p. 111�. For

small X, we have
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f�X� =
1

2
−

�

4
X2 + ¯ , �7a�

g�X� =
1

2
− X +

�

4
X2 − ¯ . �7b�

For large X, we have

f�X� =
1

�X
−

3

�3X5 + ¯ , �8a�

g�X� =
1

�2X3 −
15

�4X7 + ¯ . �8b�

For �X��2, the errors introduced by only keeping the leading
term in Eqs. �8a� and �8b� are less than 1%.

If ��1 and the receiver is not too close to either the
shadow boundary ��=�+�0 for �0	�w−� or �=�0−� for
�0��� or the reflection boundary ��=�−�0 for �0	� or
�=2�w−�+�0 for �0��� �Fig. 3�, an asymptotic solution
can be obtained by keeping only the first term of f�X� and
ignoring g�X�,

D� = � 1

��
 ei�/4


2
� sin ��� 1

cos �� − cos ��� + �0�

+
1

cos �� − cos ��� − �0�� . �9�

The above-presented representation can also be obtained
by applying the method of stationary phase directly to Eq.
�2a�–�2c�. The diffraction factor given by Eq. �9� is the same
as that given by Keller �1962� using the geometric theory of
diffraction �GTD�, and by Morse and Ingard �1968� by di-
rectly solving the wave equation.

B. Special limiting cases of first-order diffraction

In Pierce’s original work �1974�, the second-order dif-
fraction involves only a special geometry in which both the
receiver and the edge apex on the far side are in the shadow
zone of the source, hence direct insonification and reflection
can be completely ignored. To study the higher-order diffrac-
tion by edges with a more general geometry, we need to
investigate the characteristics of the single diffraction by in-
finitely long straight wedge for some special cases. When the
receiver is on or very close to either the shadow boundary or
reflection boundary, i.e., either cos ���+�0�=cos �� or
cos ���−�0�=cos ��, then M�=0. Using Eqs. �7a� and �7b�,
the diffracted wave reduces to

pdif → S
eikL

2L
. �10�

In other words, the diffracted field is approaching one-
half of the reflected wave. This is consistent with the results
in the frequency domain given by Sandness et al. �1983� and
in the time domain given by Svensson and Calamia �2006�
and Calamia and Svensson �2007�. A special case is that
when the wedge angle �w also approaches � �half space�,
both the numerator and the denominator of M� given by Eq.

�6b� tend to zero. However, by applying the L’Hospital’s
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rule, it is straightforward to show that M�→0 as �w→�, and
consequently, AD→1/2 is finite but D±→0 by Eq. �5�. This
is exactly what is expected since for �w→�, the diffraction
should approach zero.

Next, we examine the continuity of the total field when
the observation point crosses the shadow or reflection bound-
ary. Without loss of generality, we assume the source angle
�0	� and allow the receiver angle � to vary between 0 and
�w as shown in Fig. 3. There are three regions.

Region I:

ptot = pinc + pref + pdif, 0 	 � 	 � − �0, �11a�

M��� − �0� 	 0, M��� + �0� 	 0. �11b�

Region II:

ptot = pinc + pdif, � − �0 	 � 	 � + �0, �12a�

M��� − �0� 	 0, M��� + �0� � 0. �12b�

Region III �shadow region�:

ptot = pdif, � + �0 	 � 	 �w, �13a�

M��� − �0� � 0, M��� + �0� � 0. �13b�

The total field under two limiting conditions will be ana-
lyzed: �1� Both source and receiver are in the far field; and
�2� either source or receiver is on the apex of the wedge.
Far field.

�1� Reflection boundary: �→�−�0.
�a� �−→�−�0 �Region I�:

M��� + �0� → 0− → D+ = −
1

2
,

pdif = S
eikL

L �−
1

2
− � ei�/4


2


�
sin ��


1 − cos �� cos ��2�0 − ��

�AD��M��2�0 − ���� , �14a�

ptot = pinc + pref + pdif

= pinc + S
eikL

L
+ S

eikL

L �−
1

2
− � ei�/4


2


�
sin ��


1 − cos �� cos ��2�0 − ��

�AD��M��2�0 − ����
= pinc + S

eikL

2L
− S

eikL

L � ei�/4


2


�
sin ��


1 − cos �� cos ��2�0 − ��
�AD��M��2�0 − ��� . �14b�
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�b� �+→�−�0 �Region II�:

M��� + �0� → 0+ → D+ =
1

2
,

pdif = S
eikL

L �1

2
− � ei�/4


2


�
sin ��


1 − cos �� cos ��2�0 − ��

�AD��M��2�0 − ���� , �14c�

ptot = pinc + pdif

= pinc + S
eikL

L �1

2
− � ei�/4


2


�
sin ��


1 − cos �� cos ��2�0 − ��

�AD��M��2�0 − ���� = pinc + S
eikL

2L

− S
eikL

L � ei�/4


2
 sin ��


1 − cos �� cos ��2�0 − ��

�AD��M��2�0 − ��� . �14d�

Equations �14b� and �14d� are exactly the same, con-
firming the continuity of the total field across the reflection
boundary. The subscripts of �± and 0± stand for approaching
� and 0 from above ��� and below ���, respectively. It can
be seen that when the receiver approaches the reflection
boundary from below �Eq. �14a��, part of the diffracted field
approaches one-half of the reflected field but changes sign to
compensate for the disappearance of the reflected field when
the receiver enters Region II �Eq. �14c��.

�2� Shadow boundary: �→�+�0.
�a� �−→�+�0 �Region II�:

M��� − �0� → 0− → D− = −
1

2
,

pdif = S
eikL

L �−
1

2
− � ei�/4


2


�
sin ��


1 − cos �� cos ��2�0 + ��

�AD��M��2�0 + ���� , �15a�

ptot = pinc + pdif

= S
eikL

L
+ S

eikL

L �−
1

2
− � ei�/4


2


�
sin ��

1 − cos �� cos ��2�0 + ��
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�AD��M��2�0 + ����
= S

eikL

2L
− S

eikL

L � ei�/4


2


�
sin ��


1 − cos �� cos ��2�0 + ��

�AD��M��2�0 + ��� . �15b�

�b� �+→�+�0 �Region III�:

M��� − �0� → 0+ → D− =
1

2
,

pdif = S
eikL

L �1

2
− � ei�/4


2


�
sin ��


1 − cos �� cos ��2�0 + ��

�AD��M��2�0 + ���� , �16a�

ptot = pdif = S
eikL

2L
− S

eikL

L � ei�/4


2


�
sin ��


1 − cos �� cos ��2�0 + ��
AD��M��2�0 + ��� .

�16b�

Again, we see that the total field is continuous across the
shadow boundary.
Receiver on the apex (near field).

The results given by Eq. �10� and those studied previ-
ously are valid only for receiver being away from the apex of
a wedge. To find the exact diffracted field at the apex, we
need to reevaluate the integral given in Eq. �2a�–�2c� directly
instead of using the asymptotic solution given by Eqs.
�3�–�5� and �6a�–�6c�. By setting r=0 in Eq. �2a�–�2c�, we
obtain

pdif = − S
eikR0

R0

sin ��

2�w
�

−�

�

�
±

Fs�s,� ± �0�ds

= − S
eikR0

R0
�
q=1

4
sin �xq

2�w
�

−�

� ds

cosh �s − cos �x

= − S
eikR0

R0

1

2�
�
q=1

4

sin �xq�
0

� du

cosh u − cos �x

= − S
eikR0

R0

1

2�
�
q=1

4

sin �xqIq, �17a�

where R0= �r0
2+ �z−z0�2�1/2. The terms x1, x2, x3, and x4 cor-

respond to �+�+�0, �+�−�0, �−�+�0, and �−�−�0, re-
spectively. From the first to the second line in Eq. �17a�, we

have also used the relation �Pierce, 1981, p.489�
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sin ���
±

Fs�s,� ± �0� = �
q=1

4
sin �xq

cosh �s − cos �x

= �
q=1

4
sin �xq

cosh �s + cos�� − �xq�
.

�17b�

The analytical expression for Iq is tabulated in Gradshteyn
and Ryzhik �1980� �3.514.1�,

Iq =
1

sin �xq
�� − ��xq�� , �18�

where the quantity in the square brackets may be expressed
as

�xq� = 2�w + xq, xq � 0,

�xq� = xq, 0 	 xq 	 2�w, �19�

�xq� = xq − 2�w, xq � 2�w.

The above-presented results are obtained by ensuring
that the angle �xq� falls in the range of 0	 �xq�	2�w, where
xq could be any combination of �±�±�0. Substituting Eq.
�18� into Eq. �17a� leads to

pdif = − S
eikR0

R0
�
q=1

4
1

2
�1 − �xq�/�w� . �20�

The values of �xq� in the three regions �Fig. 3� are listed
in Table I. The total field at the apex is amplified by a factor
of 2� /�w, which is consistent with that discussed by Pierce
�1981, p. 480�.
Receiver position moves from the apex to the far field.

For a receiver position that varies continuously between
the apex and the far field, to our knowledge, there are no
closed-form analytical solutions for a cw with satisfactory
accuracy available for a general case of an arbitrary wedge

TABLE I. Values of �xq� and diffraction in three diffraction regions shown
in Fig. 3 computed using Eqs. �11�–�13�, �19�, and �20�. In obtaining the
results, we have assumed �=� /�w�1 and 0	�0	� in our computations.
Note that since r=0, pinc= pref=SeikR0 /R0, where R0= �r0

2+ �z−z0�2�1/2.

Region I Region II Region III

Restrictions ��0
�+�0	�

�+�0�� �	�w

�−�0	�

�+�0	�w

�x1� �+�+�0 �+�+�0 �+�+�0

�x2� �+�−�0 �+�−�0 �+�−�0

�x3� �−�+�0 �−�+�0 �−�+�0+2�w

�x4� �−�−�0 �−�−�0+2�w �−�−�0+2�w

�q=1
4 �xq� 4� 4�+2�w 4�+4�w

pdif −S
eikR0

R0
�2−

2�

�w
� −S

eikR0

R0
�1−

2�

�w
� S

eikR0

R0
�2�

�w
�

ptot pinc+ pref+ pdif

=S
eikR0

R0
�2�

�w
�

pinc+ pdif

=S
eikR0

R0
�2�

�w
�

pdif

=S
eikR0

R0
�2�

�w
�

angle. We therefore need to evaluate the integral, Eq.
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�2a�–�2c�, numerically. For the case when the source is lo-
cated on the surface of the wedge but in the far field region
with the receiver location varying along the wedge surface
from the wedge apex to the source, Fig. 4 illustrates the
comparison between the exact and asymptotic solutions for a
right-angle wedge ��w=3� /2�. The solid curve is based on
the exact integral solution, Eq. �2a�–�2c�, computed numeri-
cally and normalized by SeikL /L �see Eq. �3��, while the
dashed curve is the diffraction amplitude, D�, defined in Eq.
�5� but using the asymptotic solution, Eq. �9�. At r /=0, the
value from the exact solution is 2� /�w=2/3. The circle on
the solid curve appearing at r /�0.08 corresponds to the
position of about 1.9 mm away from the apex, or the thick-
ness of the disk used in generating Fig. 2.

IV. HIGHER-ORDER DIFFRACTION

The diffraction by an infinitesimally thin edge, or a knife
edge, can be characterized by first-order diffraction or single
diffraction. However, real edges have a finite thickness and
there may be higher-order diffraction associated with the
boundaries of the “edge” �or, more precisely, truncated
wedge� that have appreciable magnitude. In the early 1950s,
Jones �1953� proposed an exact solution of the diffraction of
electromagnetic waves by a thick semi-infinite plate for both
parallel and perpendicular polarizations. The solutions in-
volve contour integrals that cannot be easily evaluated.
Keller and his colleagues presented approximate solutions
for higher-order diffraction by an aperture on a hard screen, a
problem that can be related to the scattering by a hard strip
by applying Babinet’s principle, using the method of the
GTD when the width of the aperture is not too small �Keller,
1957, 1962; Karp and Keller, 1960�. Medwin et al. �1982�
used a discrete Huygens wavelet approach to describe the
second-order diffraction by double edges. Tolstoy presented
an exact solution to a truncated rigid wedge or a double edge
�1989a,b�, but his solution is derived based on a line source.

FIG. 4. �Color online� Comparison between the exact solution �Eq.
�2a�–�2c� normalized by SeikL /L� and the diffraction amplitude defined in
Eq. �5� and based on an asymptotic expansion of D�, i.e., Eq. �9�, as a
function of range to the apex. The circle on the solid curve appearing at
r /�0.08 corresponds to the position about 1.9 mm away from the apex, or
the thickness of the disk used in generating Fig. 2.
Pierce �1974� used a ray-based “virtual source” approach and
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presented an approximate solution of the second-order dif-
fraction in a relatively simple and convenient analytical
form.

Our approach is to follow Pierce’s method and extend
his second-order solution to include all orders, by requiring
that the solution converges to the exact solution of an infi-
nitely long knife edge as the thickness of the double edge
approaches zero. The diagram of higher-order diffraction is
depicted in Fig. 5. Sj with j=1,2 , . . . ,� are the virtual
sources located respectively at the hypothetical extension of
the corresponding side of a wedge. The relationship between
the consecutive virtual sources is assumed to be

Sj = �Sj−1D�p
, �21�

where D�p
is the first-order diffraction from the edge p,

where p=1 or 2 corresponding to the edge number �Fig. 6�,
and � is a coefficient to be determined �����1�, which re-
lates diffraction of order j to that of order j-1. Note that S0 is
the source strength of the real source at the source position S
�Fig. 5�. As discussed in Pierce �1974�, once the width of the
truncated wedge increases, the diffraction of order greater
than two can be ignored and the “strength” of the virtual
source approaches a value of one-half of that when the
wedge is not extended because the total “effective” incident
field is the sum of the virtual source and its image. It should
be pointed out that since this method is based on the approxi-
mate representation, Eq. �3�, that requires kR�1, where R is
defined in Eq. �2c�, it implies that the condition kR�1 can
still be satisfied even if kr approaches zero provided that
kr0�1.

FIG. 5. �Color online� Diagram of higher-order diffraction.
Second-order diffraction.
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There are two ray paths for the second-order diffraction
that can be considered separately.

Path 1: S→1→2→R
�a� S→1→2 �first-order diffraction by edge “1” evalu-

ated at edge 2 by assuming edge 2 is not present, i.e. both
sides of edge 1 extend to infinity�

pdif
S12 = S0

eik�r01+w�

r01 + w
D�1

�w,0;r01,�01� . �22a�

�b� S→1→2→R �second-order diffraction by edge 2
evaluated at the receiver by assuming both sides of edge 2
extend to infinity�

pdif
S12R = pdif

S12� r01 + w

r01 + w + r2
eikr2D�2

�r2,�2;r01 + w,�w2
�

= �S0
eikL

L
D�1

�w,0;r01,�01�D�2
�r2,�2;r01 + w,�w2

� ,

�22b�

where L=r01+w+r2.
Path 2: S→2→1→R
�a� S→2→1 �first-order diffraction by edge 2 evaluated

at edge 1 by assuming both sides of edge 2 extend to infinity�

pdif
S21 = S0

eik�r02+w�

r02 + w
D�2

�w,�w;r02,�02� . �23a�

�b� S→2→1→R �second-order diffraction by edge 1
evaluated at the receiver by assuming both sides of edge 1
extend to infinity�

pdif
S21R = pdif

S21� r02 + w

r02 + w + r1
eikr1D�1

�r1,�1;r02 + w,0�

= �S0
eikL

L
D�2

�w,�w2
;r02,�02�D�1

�r1,�1;r02 + w,0� ,

�23b�

where L=r02+w+r1.
If we set �=1/2, and using the approximate solution of

the diffraction function given in Eq. �9�, the resultant solu-

FIG. 6. Geometry illustrating model angles and ranges for the diffraction by
an infinitely long straight truncated wedge or a double-edge. 2D cross-
sectional view.
tion for the second-order diffraction by a double edge is ex-
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actly the same as that given in Pierce �1974�. Incorporating
the same concept of virtual sources, we can extend the
second-order solution to higher orders.
All orders of diffraction—General formulas.

Similar to the above-presented approach given for
second-order diffraction, general formulas can be obtained
for all orders of diffraction,

�1� Even Orders: 2�n+1�th, n=0,1 , . . .

pdif
S1�2n1�2R = �S0

eikLn

Ln
D�1

�w,0;r01,�01�D�2
�r2,�2;r01

+ �2n + 1�w,�w2���
m=0

n−1

�2D�2
�w,�w2;r01 + �2m

+ 1�w,�w2�D�1
�w,0;r01 + 2�m + 1�w,0�� , �24�

where Ln=r01+ �2n+1�w+r2. In Eq. �24�, the convention
�m=0

−1 �. . .�	1 is assumed. Note that when n=0, Eq. �24� re-
duces to the second-order diffraction pdif

S12R, Eq. �22b�.
.

pdif
S2�1n2�1R = �S0

eikLn

Ln
D�2

�w,�w2;r02,�02�D�1
�r1,�1;r02

+ �2n + 1�w,0���
m=0

n−1

�2D�1
�w,0;r02 + �2m

+ 1�w,0�D�2
�w,�w2;r02 + 2�m + 1�w,�w2�� ,

�25�

where Ln=r02+ �2n+1�w+r1. Also note that when n=0, it
S21R
reduces to the second-order diffraction pdif , Eq. �23b�.
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�2� Odd Orders: �2n+1�th, n=1,2 , . . .

pdif
S1�2n1�R = �2S0

eikLn

Ln
D�1

�w,0;r01,�01�D�2
�w,�w2;r01

+ w,�w2�D�1
�r1,�1;r01 + 2nw,0�

� ��
m=1

n−1

�2D�1
�w,0;r01

+ 2mw,0�D�2
�w,�w2;r01 + �2m + 1�w,�w2�� ,

�26�

where Ln=r01+2nw+r1 and the convention �m=1
0 �. . .�	1 is

assumed.

pdif
S2�1n2�R = �2S0

eikLn

Ln
D�2

�w,�w2;r02,�02�D�1
�w,0;r02

+ w,0�D�2
�r2,�2;r02 + 2nw,�w2�

� ��
m=1

n−1

�2D�2
�w,�w2;r02

+ 2mw,�w2�D�1
�w,0;r02 + �2m + 1�w,0�� ,

�27�

where Ln=r02+2nw+r2.
Having obtained the diffraction for all even and odd

orders, the total diffracted field will be the summation of all
orders of diffraction including the first-order diffractions

from both edges �see Fig. 1�a�—middle drawing�:
�28�
Note that even if w→0, the condition kLn�1 can still
be satisfied as long as k�r0i+rj��1, where i , j=1,2, and we
can still use the approximate solution Eq. �3� to factor out the
diffraction amplitude D� from the pressure field.
Determination of coefficent �.
To determine the coefficient � included in Eq. �21�, we
need to apply the requirement that the total field ptot that
includes the incident, reflected, and diffracted wave compo-
nents is equal to �2� /�w�eikr0 /r0 �r01=r02=r0 as w→0� at the
apex in the case of a knife edge or a double edge �Table I and

also Pierce, 1981�. The total diffracted fields in the different
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regions �Fig. 3�, even as the observation point approaches to
the apex �w→0�, should be consistent with those described
by Eqs. �11�–�13�. Each term in Eq. �28� can be expressed as
a product of a source term, a propagation term, and a diffrac-
tion function, S0�eikL /L�D�, with L=r+r0. Therefore, each
summation term, in the limiting case of w→0, reduces to

�
n=0

�

pdif
S1�2n1�2R ——→

w→0
�S0D�1

�0,0;r01,�01�D�2
�r2,�2;r01,�w2�

� �
n=0

�

�2n�D�2
�0,�w2;r01,�w2�D�1

�0,0;r01,0��n

=
�D�1

�0,0;r01,�01�D�2
�r2,�2;r01,�w2�

1 − �2D�2
�0,�w2;r01,�w2�D�1

�0,0;r01,0�
, �29a�

where we have assumed ��2D �0,� ;r ,� �
�2 w2 01 w2

where the last term, D�m
���, on the right-hand side of Eq.
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�D�1
�0,0 ;r01,0���1 to assure the convergence of the series

summation in Eq. �29a�. Similarly,

�
n=0

�

pdif
S2�1n2�1R ——→

w→0
�S0D�2

�0,0;r02,�02�D�1
�r1,�1;r02,0�

� �
n=0

�

�2n�D�1
�0,0;r02,0�D�2

�0,�w2;r02,�w2��n

=
�D�2

�0,�w2;r02,�02�D�1
�r1,�1;r02,0�

1 − �2D�1
�0,0;r02,0�D�2

�0,�w2;r02,�w2�
, �29b�

where, as in Eq. �29a�, we have assumed
��2D�1

�0,0 ;r02,0�D�2
�0,�w2 ;r02,�w2���1 to assure the con-

vergence of the series summation in Eq. �29b�. The two sum-
mations for the odd orders are
�
n=1

�

pdif
S1�2n1�R ——→

w→0
�2S0D�1

�0,0;r01,�01�D�2
�0,�w2;r01,�w2�D�1

�r1,�1;r01,0�

��
n=0

�

�2n�D�1
�0,0;r01,0�D�2

�0,�w2;r01,�w2��n

=
�2D�1

�0,0;r01,�01�D�2
�0,�w2;r01,�w2�D�1

�r1,�1;r01,0�

1 − �2D�1
�0,0;r01,0�D�2

�0,�w2;r01,�w2�
, �29c�

and

�
n=0

�

pdif
S2�1n2�R ——→

w→0
�2S0D�2

�0,�w2;r02,�02�D�1
�0,0;

�r02,0�D�2
�r2,�2;r02,�w2�

��
n=0

�

�2n�D�2
�0,�w2;r02,�w2�D�1

�0,0;r02,0��n

=
�2D�2

�0,�w2;r02,�02�D�1
�0,0;r02,0�D�2

�r2,�2;r02,�w2�

1 − �2D�2
�0,�w2;r02,�w2�D�1

�0,0;r02,0�
, �29d�
respectively. Since as w→0, r01=r02=r0 ,r1=r2=r, and the
double edge reduces to a single knife edge with a wedge
angle:

�sw = �w1 + �w2 − � . �30�

Note that for w→0, Ln’s in Eqs. �24�–�27� are the same.
Using Eq. �3�, the total diffraction amplitude, D��sw

, can be

obtained by normalizing Eq. �28� with S0eikL /L and can be
written as

D��sw
�r,�;r0,�0� = D��w1

�r,� + � − �w2;r0,�0 + � − �w2�

+ D��w2
�r,�;r0,�0� + D�m

��� , �31�
�31� represents the summation of four multiple-order diffrac-
tions given by Eqs. �29a�–�29d�. In all of the above-
presented equations, Eqs. �21�, �22a�, �22b�, �23a�, �23b�,
�24�–�28�, �29a�–�29d�, �30�, and �31�, the angles are mea-
sured counterclockwise from the right side of the corre-
sponding wedge �Fig. 6�. In addition, we have assumed that
r�w and r0�w, which lead to �01=�0+�−�w2 and �1=�

+�−�w2. Solving Eq. �31� for an angle dependent ����, we
obtain a coefficient that characterizes the virtual source,
�0���, for w=0. On the other hand, we know that when w
→�, �����→1/2 as discussed previously in Sec. III B �see
also Pierce, 1974�. To obtain � for an arbitrary w, we use an

interpolation function
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�w��� = ��0��� − ������e−�w/ + ����� , �32�

where  is the wavelength and the coefficient � controls the
rate of �w��� approaching �����. This function, chosen heu-
ristically, is used because it smoothly connects the limiting
values of � over the full range 0	w��. The coefficient �
can be determined through comparison of the prediction with
either data �which will be the case in this paper� or with an
exact solution.

Having obtained �w���, we can compute all diffraction
terms defined in Eqs. �24�–�27�, and hence the total diffrac-
tion given in Eq. �28�. It should be pointed out that Eq. �28�
is based on the scattering geometry shown in Fig. 6. If, how-
ever, one of the edges is in the shadow zone of the source,
such as edge 2 is in the shadow zone or �01��, the corre-
sponding first-order diffraction term, pdif

S2R, as well as the cor-
responding terms for the higher-order diffraction, pdif

S2�1n2�1R

and pdif
S2�1n2�R, should be removed. Furthermore, if the re-

ceiver is also in the shadow zone relative to one of the edges,
such as �2��w2−�, which is the geometry studied in Pierce
�1974�, the remaining first-order diffraction term, pdif

S1R, and
an additional higher-order diffraction term, pdif

S1�2n1�R, should
also be removed. As a result, the total diffraction contains
Fig. 2,
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only one term of the higher-order diffraction, pdif
S1�2n1�2R.

V. RESULTS AND DISCUSSION

Numerical example: Determination of ���� for a semi-
infinite plate of finite thickness.

For a plate, we have �w1=�w2=�w=3� /2, which results
in D�1

=D�2
=D� and �sw=2� by Eq. �30�. Furthermore, if

we assume a backscattering geometry and let w→0, we have
�2=�02=�, �1=�01=�−� /2 �Fig. 6�, and r01=r02=r0=r1

=r2=r. Using the symmetry of the wedge, we have

D�2
�0,�w2;r01,�w2� = D�1

�0,0;r01,0� = D�1
�0,0;r02,0�

= D�2
�0,�w2;r02,�w2�

= D��0,0;r0,0� = D��0,0;r,0� . �33�

Thus, the denominators in Eqs. �29a�–�29d� can be expressed
as

Denominator = 1 − �2D�
2 �0,0;r,0� . �34�

By combining Eq. �29a� with Eq. �29d�, and Eq. �29b�
with Eq. �29c�, the summation of the four terms involving
higher-order diffraction in Eq. �31� can be rewritten as
D�m
��� =

�D��r,�;r,�w��D��0,0;r,� − �/2� + �D��0,�w;r,��D��0,0;r,0��
1 − �2D�

2 �0,0;r,0�

+
�D��r,� − �/2;r,0��D��0,�w;r,�� + �D��0,0;r,� − �/2�D��0,0;r,0��

1 − �2D�
2 �0,0;r,0�

=
�D��0,�w;r,���D��r,�;r,�w� + D��r,� − �/2;r,0��

1 − �D��0,0;r,0�
. �35�
To obtain the last result of Eq. �35� we limited the scat-
tering angle by ����3� /2, a condition consistent with the
experiment configuration discussed in the next section. As a
result, D��0,0 ;r ,�−� /2�, D��0,�w ;r ,��, and D��0,0 ;r ,0�
are all in Region I �Fig. 3�, and thus have the same value
�Table I�:

D��0,�w;r,�� = D��0,0;r,� − �/2�

= D��0,0;r,0� =
2�

�w
− 2 = − 2/3. �36�

Substituting Eq. �36� into Eq. �35� leads to

D�m
��� = − �2�

3
 �D��r,�;r,�w� + D��r,� − �/2;r,0��

1 + 2�/3
.

�37�

If we now express �D in terms of �w and � as illustrated in
�D = �w − � , �38�

we are able to apply the simulation results directly to the
diffraction by the leading edge of a circular disk. For ���
�3� /2, we have 0��D�� /2. Inserting Eq. �37� into Eq.
�31� and replacing � with �D result in

D�2�
�r,3�/2 − �D;r,3�/2 − �D� = D�3�/2

�r,� − �D;r,� − �D�

+ D�3�/2
�r,3�/2 − �D;r,3�/2 − �D� − �2�

3


�
D�3�/2

�r,3�/2 − �D;r,�w� + D�3�/2
�r,� − �D;r,0�

1 + 2�/3
.

�39�

In Eq. �39�, we use subscripts 2� and 3� /2 to differen-
tiate the wedge angles between a knife edge ��w=2�� and a
right-angle wedge ��w=3� /2� explicitly. If we let

D� = D� �r,3�/2 − �D;r,3�/2 − �D� , �40a�

knife 2�
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D�1st
= D�3�/2

�r,� − �D;r,� − �D� + D�3�/2
�r,3�/2

− �D;r,3�/2 − �D� , �40b�

and

D�high
= D�3�/2

�r,3�/2 − �D;r,�w� + D�3�/2
�r,� − �D;r,0�

�40c�

represent the terms associated with the diffraction by the
single knife edge, the first-order diffraction by the double
edge, and the higher-order diffraction by the double edge, the
coefficient �0��D� can be obtained by

�0��D� = −
3

2�1 +
D�high

D�knife
− D�1st

−1

. �41�

The computed coefficient �0��D� �dot-dashed line� is il-
lustrated in Fig. 7. From Fig. 7, we see that �0��D� is less
than 1

2 when �D is well away from edge-on incidence, or
�D� �� /2, indicating a small contribution from the higher-
order diffraction to the total diffraction field. As �D increases
but is not too close to edge-on incidence, �0��D� increases
with a moderate rate �slope�. Once the scattering angle �D

approaches the edge-on angular position, �D�85°, the coef-
ficient �0��D� increases with a much higher rate and ap-
proaches the value of 3

4 at the edge-on angular position ��D

=� /2�, indicating a much increased contribution from the
higher-order diffraction.

One of the interesting problems in edge diffraction we
want to address is how thin a plate needs to be in order for a
plate to behave as a knife edge, or a screen, for which only
the first-order diffraction from a knife edge ��w=2�� needs
to be considered. Jones �1953� suggested that for the case of
a plane incident wave, once the thickness of the plate is
one-tenth of the acoustic wavelength, the plate can be treated
as a knife edge. However, Jones did not provide any angle
dependence or a quantitative basis for the statement. An ex-

FIG. 7. Coefficient � vs angle for several cases. The dashed curve corre-
sponds to the limit of the thickness w→�, the dot-dashed curve is for the
limit w→0 determined by Eq. �41�, and the solid curve corresponds to
interpolated � computed from the interpolation function Eq. �32� with w
=1.9 mm and the frequency of 60 kHz and a fit to laboratory data, as de-
scribed later in this section.
ample of such a problem is illustrated in Fig. 8, where the
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ratio of the plate width to the wavelength �w /� that is re-
quired to provide a difference in diffraction level between a
knife edge and a double edge of less than 5%, or 0.5 dB, is
plotted as a function of �D. It can be seen that at a scattering
angle of �D�10°, w / is greater than 0.1, indicating that
when the incident wave approaches the direction parallel to
the normal of the plate flat surface �broadside incidence�, the
higher-order diffraction resulting from the interaction be-
tween the two edges can be ignored. As the scattering angle
increases, the ratio or the projected width of the plate �
Dcos�D, where D is the diameter of the disk� decreases,
indicating that more and more contribution from the higher-
order diffraction has to be considered. For �D�2°, the dif-
ference between the knife-edge solution and Eq. �28� is less
than 5%. Further calculation indicates that for the limiting
case as �D→0, the maximum difference between the two
models is less than 1.5%.

When the scattering angle is greater than 80°, the ratio
approaches zero, corresponding to a sudden change in slope
of the � curve shown in Fig. 7. The physical explanation for
this phenomenon is not clear at this point, it may be related
to our heuristic approach that forces the total diffraction
based on the ray representation, Eq. �28�, to converge to the
first-order diffraction by a knife edge once the width of a
double edge approaches zero.

Figure 9 demonstrates the relative importance of the
contributions from higher-order diffraction in a different way
at two incident angles, 10° and 89°, respectively. It can be
seen that for an incident angle close to the broadside of the
disk ��D=10° �, the total field including only the first-order
diffraction can provide satisfactory result with a relative er-
ror of about 10% or less. In contrast, as the angle of inci-
dence moves away from the broadside ��D=89° �, the rela-
tive error increases to more than 400% when including only
the first-order diffraction, to about 70% when the second-
order diffraction is included, and to less than 10% when the

FIG. 8. The ratio of width to wavelength of the truncated wedge, which is
required to make the difference in edge diffraction between a knife edge and
a double edge of finite thickness less than 5%, vs the scattering angle for a
backscattering geometry.
third-order diffractions are included. For the diffraction order
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greater than 4, the diffraction is basically indistinguishable
from the converged value for n→�. These results are con-
sistent with those shown in Figs. 7 and 8.
Comparison with experimental data.

�1� Diffraction by metallic disks. Laboratory experi-
ments involving a wide range of metal circular disks were
conducted in Fall 2002. The purpose of the experiments was
to understand the acoustic scattering by the seafloor covered
with benthic shells. Metal disks were chosen as part of these
free-field scattering measurements as they possess similar
characteristics to the shells �Stanton and Chu, 2004�. The
experiments were conducted in an elongated rectangular tank
with the scattering targets located about 3 m away from the
transmitter-receiver pair in a near-backscattering configura-
tion. Details of the experimental setup can be found in Stan-
ton and Chu �2004�. The PWTS, representing the edge dif-
fraction from leading edge, was extracted from the
backscattered time series by using a pulse compression tech-
nique �Chu and Stanton, 1998�. Although the elasticity of the
metal disk could also play a role in the diffraction process,
the exclusion of the arrivals later than the first arrival for
each ping can greatly reduce, if not eliminate, the influence
resulting from the possible elastic surface and plate waves. In
addition, since the reflection coefficient for an infinite alumi-
num plane is close to unity, the diffraction model based on
the rigid wedge approximation is assumed to be valid in the
following data/model comparison.

As mentioned in Sec. I, there are two aspects in con-
structing a complete diffraction model by a circular disk
from the solution by an infinitely long knife edge. One is to
take into account the finite thickness by including the higher-
order diffraction, which is the subject of this paper, and the
other is to account for the deformation of the edge. The
deformation factor can be computed by a line integral over
the leading edge of the disk and can be expressed as �Stanton
et al., 2007�:

FIG. 9. Diffraction amplitude normalized by the converged amplitude �n
→�� as a function of diffraction orders at two different incident angles for
a monostatic scattering geometry.
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fD = a�J0�2ka sin �D� − i
2

�
s0,0�2ka sin �D�� , �42�

where a is the radius of the disk, J0�x� is the Bessel function
of order zero, and s0,0 is the Lommel function of order zero
�Abramowitz and Stegun, 1974�. The complete solution for
the diffraction by a circular disk of finite thickness is the
product of pdif,tot from Eq. �28� and the deformation factor
fD.

A comparison of the model and the data is given in Fig.
10. The diffraction data as a function of backscattering angle
shown in Fig. 2 are replotted in Fig. 10 �open circles�, su-
perimposed with several diffraction models. The disk is
made of aluminum with a diameter of 8 cm and a thickness
of about 1.9 mm �0.075 in.�, which corresponds to 0.08 at
60 kHz �open circle in Fig. 4�. One of the diffraction models
assumes a knife-edge geometry, or a semi-infinite screen
�dotted�. As described in Sec. I, the diffraction by a knife-
edge decreases rapidly as �D→� /2, and approaches zero
once the incidence is edge-on. The contribution from the two
first-order diffractions from edges 1 and 2 defined in Eq. �28�
is also plotted in Fig. 10 �dashed�. The solid curve represent-
ing the total diffraction, including all orders of diffraction, is
computed from Eq. �28� with source coefficient �w��D� com-
puted from Eq. �32� and illustrated in Fig. 7 �solid�. The
interpolation coefficient, � in Eq. �32� is assumed to have a
linear relation with the ratio parameter, w /,

� = �1w/ + �0. �43�

Equation �43� results in a quadratic dependence of w /
for the exponent of the first term of the interpolation function
in Eq. �32�. The two constants �0=−2.7 and �1=34.9 are
determined based on the visual fit of the computed PWTS to
the data in Fig. 10. From Fig. 7, we see that the interpolated
�w��D� used to provide the “best” fit to the data is much
closer to �0��D� than to the asymptotic ����D�, which is 1

2 .
Figure 11 shows the comparison of the model with the

diffraction data from a number of aluminum disks with the

FIG. 10. Comparison of laboratory data �60 kHz� involving an aluminum
disk with various diffraction models.
same diameter but different thickness and at different back-
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scattering angles. The same value of �0 and �1 that were
determined in Fig. 10 were used to compute the theoretical
higher-order diffraction in each of the plots in Fig. 11. In
general, the PWTS at all angles decreases as the disk be-
comes thinner. For all plots, the slopes of the model are very
close to those of the data. The predicted absolute values of
PWTS are in general agreement with some of the data but no
more than 10 dB difference for the rest of the data such as at
60°. The comparison indicates that the proposed higher-order
diffraction model has significant merit in describing the edge
diffraction by circular disks of finite thickness. The mismatch
in this comparison may result from a number of factors in-
cluding approximations made in deriving the deformation
factor, the assumptions made in deriving factor �, and the
approximation of neglecting the elasticity of the disks, as
well as the uncertainty in measuring the scattering geometry.

For the purpose of comparison, the model predictions includ-
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ing only the first-order diffraction are also presented, which
overestimate the total diffraction in its overall level. Further-
more, the slope predicted by the double-edge first-order dif-
fraction model approaches zero and deviates more and more
from the data as �D→90o. This is consistent with the results
of Figs. 9 and 10.

�2� Diffraction by a hard strip. Medwin et al. �1982�
used the concept of Huygens impulsive wavelets to model
the second-order diffraction by a hard strip. Their solution
was based on the exact impulse solution of the diffraction by
an infinitely long straight wedge �Biot and Tolstoy, 1957�, or
BT solution, and was transformed to the frequency domain.
Their model predictions agreed with the experimental data
very well. Here we will present an alternative solution to the
problem to demonstrate the applicability of our approach.

For a hard strip, the nth order diffraction results from the
n

FIG. 11. �Color online� Comparison of
the measured partial wave target
strength of an aluminum disk �diam-
eter of 8 cm� of various thickness �w
=0.6, 1.0, 1.5, and 1.9 mm� with the
model of all orders of diffractions �Eq.
�28�� at different angles. For the scat-
tering angle at 90° �bottom right�, the
actual angle is 89.6° to exclude the
“edge-on” specular term.
contributions corresponding to 2 different diffraction ray
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paths. This is because for each new higher-order diffraction
there will be twice as many ray paths propagating along both
sides of the strip. For this particular geometry, it is extremely
hard, if not impossible, to find a general expression of the
total diffraction in closed form by summing all orders of the
diffraction similar to Eq. �28� with the explicit expressions
given in Eqs. �24�–�27�. As a result, we cannot use the same
method to determine the magnitude of the virtual source, �0,
as for the double-edge problem associated with a disk of
finite thickness. However, since we know that if the value of
kw, which can be determined from the width of the strip �w�
and the acoustic frequency used in their experiment, is large
compared to unity, the diffraction with order higher than 2 is
negligible. To compare directly with the laboratory experi-
mental data for a hard strip published by Medwin et al.
�1982�, instead of deriving the solution for the total field as
we did for the disk experiments, we now use the solutions
given by Eq. �3�, Eqs. �22a�–�22b�, and Eqs. �23a�–�23b�, to
express as the ratio of the “total diffracted field” �first and
second� to the first-order diffraction from edge “k,” where k
can be either 1 or 2 corresponding to edge “A” and “B,”

FIG. 12. �a� Geometry and notations of the parameters for diffraction by a
hard strip. The view is along the infinite length of the strip and the distance
between points “A” and “B” is the width w. �b� Comparison of data �Med-
win et al., 1982� with the second-order diffraction model �Eq. �47�� �solid�
and Medwin’s “double” or second-order diffraction �dashed�. The data are
the ratio of the total field to that of one-half of the total first-order diffraction
�ray paths SAR and SBR�. The model parameters are �0=0.2, ��=0.5, �0

=−2.7, and �1=34.9 �Eq. �32��. The distances from the strip to the source
and the receiver are 14.5 cm �OS, see �a�� and 23.2 cm �OR, see �a��, re-
spectively. The width of the strip �w� is 4 cm. The frequencies are from
about 1.5 to 30 kHz. Note that the horizontal axis in Medwin et al. is fre-
quency in log-scale and we use a dimensionless variable kw on a linear
scale, where w is the width of the strip.
respectively �Fig. 12�a��,
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RN = 2 +
�


kD�k
�rk,�k;r0k,�0k�

� �
12D�1
�w,0;r01,�01�D�2

�r2,�2;r01 + w,�w�

+ 
12D�1
�w,�w;r01,�01�D�2

�r2,�2;r01 + w,0�

+ 
21D�2
�w,0;r02,�02�D�1

�r1,�1;r02 + w,�w�

+ 
21D�2
�w,�w;r02,�02�D�1

�r1,�1;r02 + w,0�� , �44�

where the factors 
k, with k=1 or 2, is the propagation term
associated with edge A or B, and 
ij, where i, j=1,2, are the
propagation terms corresponding to the different ray paths
between the first- and second-order diffractions,


k =
eik�r0k+rk�

r0k + rk
, 
ij =

eik�r0i+w+rj�

r0i + w + rj
. �45�

For a symmetrical scattering geometry shown in Fig.
12�a�, we have r01=r02	r0, r1=r2	r, �w1

=�w2
	�w, �01

=�w−�02	�0, and �2=�w−�1	�. Since �w=2� and �
=� /�w=1/2 for a strip, it is easy to show that

D�1
�r1,�1;r01,�01� = D�2

�r2,�2;r02,�02�

	 D��r,�;r0,�w − �0�

= − D��r,�;r0,�0�

= D��r,�w − �;r0,�0� . �46�

Using these relations, Eq. �44� can be simplified to

RN = 2 − 4�eikw� r + r0

r0 + r + w


�
D��w,0;r0,�0�D��r,�;r0 + w,0�

D��r,�;r0,�0�
. �47�

Comparison of the computed theoretical predictions
with the laboratory experimental data published by Medwin
et al. �1982� is shown in Fig. 12�b�. Since the experiment
was performed in the air, the strip could be regarded approxi-
mately as a “hard” material. The model parameters needed to
compute �w��� in Eq. �32� are �0=0.2 and ��=0.5. As stated
previously, the determination of �0 for this problem is dif-
ferent from the backscattering case �Eq. �39��. As an approxi-
mation, we choose 0.2, an average value of �0 shown in Fig.
7, as the estimated �0 value. The same values of �0 and �1

that were used in Fig. 10 with the disk data were also used in
obtaining Fig. 12�b�. The width of the strip, w, is 4 cm. The
frequencies vary from about 15 to 30 kHz. The distances
from the strip to the source and the receiver are 14.5 cm �OS,
see Fig. 12�a�� and 23.2 cm �OR, see Fig. 12�a��, respec-
tively. The agreement between the data and the theory is very
good over a wide range of kw. To illustrate the difference
between Medwin’s second-order diffraction model �Medwin
et al., 1982� and the solution presented here, we superim-
posed the theoretical predictions from their diffraction model
as a comparison. It is seen that at lower frequencies, or small
kw, the present model provides better fit and the two models
are converged as kw increases. This is expected since at

lower frequencies, higher-order diffraction is important �see
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Fig. 9�. As kw increases, �w��� approaches ��=0.5, and the
current diffraction model reduces to the Pierce’s second-
order diffraction model. Since the BT solution, from which
Medwin’s diffraction model was derived, is exactly the same
as the Pierce’s solution �see the Appendix�, from which the
current higher-order diffraction is derived, Medwin’s second-
order diffraction model is essentially the same as our higher-
order diffraction model for large kw. The deviation between
the two theoretical models at higher frequencies �kw�18� is
likely due to the difficulties in numerical computations of the
double diffraction.

From the three examples �Figs. 10–12�, we can conclude
that although the two empirical parameters, �0 and �1, are
determined originally from fitting particular backscattering
data set, the fact that the reasonable agreement between data
and theory by using the same �0 and �1 for all three different
cases, i.e., versus incident angle �Fig. 10�, width �Fig. 11�,
and frequency �Fig. 12�, suggests that the assumed relations
given by Eqs. �32� and �43� work reasonably well at least for
the diffraction by metal disks of finite thickness and by strip
of finite width. Particularly, since the latter two examples
involve varying w /, the reasonable agreement between the
model and the data suggests that the approximation of the
exponent term of the interpolation function, Eqs. �32� and
�43�, by a second-order polynomial of w / in obtaining �
may be justified. In addition, the three examples also suggest
that the two parameters work well not only for backscatter-
ing application �Figs. 10 and 11 but also for bistatic scatter-
ing application �Fig. 12�. This is actually expected since in
theory, the general solution of Eq. �28�, as well as Eq. �32�, is
valid for all scattering geometry.

VI. SUMMARY AND CONCLUSION

We have developed an approximate analytical solution
of bistatic scattering by a double edge of finite thickness that
includes all orders of diffraction from the edges. The solution
is an extension of a previously developed second-order dif-
fraction model �Pierce, 1974�. An amplitude function of the
virtual source ���, a function of the scattering geometry, the
thickness of the double edge, and the acoustic frequency, is
introduced heuristically to make the ray-based solution con-
verge to the exact solution of an infinitely long knife edge as
the thickness of the double edge approaches zero. A heuristic
interpolation function is used to obtain the � for a double
edge of an arbitrary thickness with two empirically deter-
mined parameters.

The solution, when combined with the approximate so-
lution to account for the deformation of a general edge �Stan-
ton et al., 2007�, is used to describe the edge diffraction by a
disk of finite thickness. It is found that the contribution of the
higher-order diffraction is small at or near broadside inci-
dence, increases with the incident angle at a moderate rate if
the incidence is not too close to edge-on, and increases dras-
tically as the incidence approaches the edge-on direction
��D→� /2�. The agreement between the theory and the data
is generally good. An approximate and closed form solution
of the diffraction by a hard strip that takes into account the

first- and second-order diffractions is presented and is com-

3192 J. Acoust. Soc. Am., Vol. 122, No. 6, December 2007
pared favorably with the laboratory experimental data over a
wide range of kw values, where k is the wave number and w
is the width of the strip.

In addition, the equivalence between the exact impulse
solution of an infinitely long straight wedge in the time do-
main �Biot and Tolstoy, 1957� and the integral solution in the
frequency domain given by various authors �Sommerfeld,
1954; Pierce, 1981� has been shown. Futhermore, the behav-
ior of the diffracted field due to the presence of an infinitely
long straight wedge under different conditions has been stud-
ied systematically and analytically. It is found that the dif-
fracted field increases drastically as it approaches either the
reflection or shadow boundaries and has an amplitude value
of one-half of the incident and/or reflected waves. At or near
the apex of the wedge, the diffracted field is constant within
the same diffraction regions but discontinuous across the re-
flection and shadow boundaries by a magnitude value of
unity �Table I�. It is also found that the edge diffraction has
the same order of magnitude as the incident and/or the re-
flected fields.

Despite the promising comparison between the data and
our higher-order diffraction model, it is recognized that in
deriving the approximate solution for the diffraction by a
double edge we have used several assumptions: �1� The re-
lationship between the virtual sources of adjacent order
specified in Eq. �21�; �2� an empirical interpolation function
defined by Eq. �32�; and �3� a linear relation between the
interpolation coefficient � and w / �Eq. �43��, where w is
the distance between the apexes of the two edges �Figs. 1�b�
and 5� or the width of the strip �Fig. 12�a�� and  is the
wavelength. These heuristic relations �assumptions� allow us
to understand the more complicated double-edge diffraction
problem involving all orders of diffraction in a relatively
simple way and gain more physical insight into the mecha-
nisms of the higher-order diffraction by a double edge.

In conclusion, we have derived an approximate ray-
based solution of diffraction by double edges in a general
form that can take into account all orders of diffraction. The
solution can, in principle, be extended to include more than
two edges.
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APPENDIX: EQUIVALENCY BETWEEN THE EXACT
TRANSIENT IMPULSE SOLUTION AND THE
CW REPRESENTATION OF THE DIFFRACTED WAVE
DUE TO AN INFINITELY LONG RIGID WEDGE

Pierce �1981, pp. 489–490� briefly provided the proce-
dures of how to convert the contour-integral-based spectral
representation to a transient solution, but did not provide the
closed-form impulse solution. Here we use a different
method to prove the equivalency between the exact spectral
representation �Eq. �2a�–�2c�� and the exact impulse solution

given by Biot and Tolstoy �1957�.
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The exact impulse solution of the diffracted wave due to
a point source for a rigid wedge, given by Biot and Tolstoy
�1957�, is

pdiffr�t� =
�c

4��wrr0

e−��

sinh �
�
±

�
sin���� ± � ± �0��

1 − 2e−�� cos���� ± � ± �0�� + e−2��u�t − �0� ,

�A1�

where u�x� is a unit step function and ��t� is a function of
time t and the other geometric parameters
0
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��t� = cosh−1 c2t2 − �r2 + r0
2 + �z − z0�2�

2rr0
, �A2�

where c is the sound speed. �0 is the shortest time required
for the wave traveling from the source to the apex, and then
to the receiver, or the time when ��t�=0,

�0 =
��r + r0�2 + �z − z0�2�1/2

c
=

L

c
, �A3�

where L is given in Eq. �4�. The source term � is the volume
flux and is related to the source strength S in Eq. �2a�–�2c� by
S=−� /4�, i.e., volume flux per unit solid angle. The sum-
mation in �A1� represents four combinations: ��, ��, ��,
and ��. It can be shown that straightforward manipulations
of Eq. �A1� lead to
pdiffr�t� =
�c

4��wrr0

sin ��

sinh �
�
±

cos �� − cosh �� cos���� ± �0��
cos �� − cos���� ± �0�� − sin2 �� sin2���� ± �0��

u�t − �0� . �A4�
The spectral representation can be obtained via the Fourier
transform of Eq. �A1� as

pdif�f� = �
−�

�

pdiffr�t�ei�tdt = �
�0

�

pdiffr�t�ei�tdt . �A5�

Using Eq. �A2�, we can change the integration variable t to
�,
dt =
rr0

c
sinh �

d�

R���
, �A6�

where

R��� = ct = �r2 + r0
2 + 2rr0 cos � + �z − z0�2�1/2. �A7�

Substituting Eqs. �A6� and �A7� into Eq. �A5�, we obtain
pdif�f� =
� sin ��

4��w
�

0

� eikR���

R��� �
±

cos �� − cosh �� cos���� ± �0��
cos �� − cos���� ± �0�� − sin2 �� sin2���� ± �0��

d� . �A8�
Using the trigonometric identity sin2 x=1−cos2 x, the de-
nominator of Eq. �A8� becomes

Denominator = �cosh �� − 1�2 + 2�cosh �� − 1��1

− cos �� cos ��� + �cos �� − cos ���2,

�A9�

where �=�±� . By using the relation S=−� /4�, we obtain
pdif�f� = −
S sin ��

2�w
�

−�

� eikR���

R���
D�d� , �A10�

where
D� =
cos �� − cosh �� cos����

�cosh �� − 1�2 + 2�cosh �� − 1��1 − cos �� cos ��� + �cos �� − cos ���2 . �A11�
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A factor of 2 included in Eq. �A10� results from extend-
ing the integral from 0 to −� by recognizing that the inte-
grant is a even function of �. Equation �A10�, along with
Eqs. �A7� and �A11�, is exactly the same as Eq. �2a�–�2c�.
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