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Abstract

Mesenchymal stem/stromal cells (MSCs) are an essential element of most modern tissue engineering and 
regenerative medicine approaches due to their multipotency and immunoregulatory functions. Despite 
the prospective value of MSCs for the clinics, the stem cells community is questioning their developmental 
origin, in vivo localization, identification, and regenerative potential after several years of far-reaching 
research in the field. Although several major progresses have been made in mimicking the complexity of 
the MSC niche in vitro, there is need for comprehensive studies of fundamental mechanisms triggered by 
microenvironmental cues before moving to regenerative medicine cell therapy applications. The present 
comprehensive review extensively discusses the microenvironmental cues that influence MSC phenotype 
and function in health and disease – including cellular, chemical and physical interactions. The most recent 
and relevant illustrative examples of novel bioengineering approaches to mimic biological, chemical, and 
mechanical microenvironmental signals present in the native MSC niche are summarized, with special 
emphasis on the forefront techniques to achieve bio-chemical complexity and dynamic cultures. In particular, 
the skeletal MSC niche and applications focusing on the bone regenerative potential of MSC are addressed. 
The aim of the review was to recognize the limitations of the current MSC niche in vitro models and to identify 
potential opportunities to fill the bridge between fundamental science and clinical application of MSCs.
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BMP		  bone morphogenetic protein
CFU-Fs		 colony-forming unit fibroblasts
CXCL12	 C-X-C motif chemokine ligand 12
CXCR4		 C-X-C chemokine receptor type 4
DCCs		  disseminated cancer cells
DKK1		  Dickkopf-related protein 1
ECs		  endothelial cells
ECM		  extracellular matrix

FasL		  Fas ligand
FDA		  Food and Drug Administration
Flt3		  fms like tyrosine kinase 3
HCs		  hematopoietic cells
HLA		  human leucocyte antigene
HSCs		  hematopoietic stem cells
HSPCs		  hematopoietic stem and progenitor
			   cells
IL			   interleukin
iNOS		  inducible nitric oxide synthase
MAPK		  mitogen-activated protein kinases
MCP-1		  monocyte chemoattractant protein-1
M-CSF		  macrophage-colony-stimulating
			   factor
miRNA		 microRNA
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MMPs		  matrix metalloproteinases
MSCs		  mesenchymal stem/stromal cells
Mɸ		  macrophages
NG2		  neural/glial antigen 2
OC		  osteoclasts
OPG		  osteoprotegerin
PDGFRβ	 platelet-derived growth factor
			   receptor beta
piRNA		  piwi-interacting RNA
PCL		  polycaprolactone
PGA		  poly(glycolic acid)
PLA		  poly(lactic acid)
PLGA		  poly(lactic-co-glycolic acid)
PMMA		 polymethylmethacrylate
RANKL	 receptor activator of NF-κB ligand
RGD		  arginylglycylaspartic acid
RNAi		  RNA interference
ROS		  reactive oxygen species
Runx2		  Runt-related transcription factor 2
SCF		  stem cell factor
SCID		  severe combined immunodeficiency
SDF-1		  stromal cell-derived factor-1
STAT3		  signal trnasduces and activator of
			   trancription 3
TRP		  transient receptor potential
VEGF		  vascular endothelial growth factor

Introduction

Friedenstein and co-workers originally identified 
a rare sub-population of cells in the BM with the 
potential to proliferate in plastic-adherent colonies 
with a fibroblastic appearance, first designated 
as CFU-Fs (Friedenstein et al., 1974). Later in 
vivo experiments have revealed the potential of 
BM-isolated adherent cells to generate de novo 
the BM stroma and its environment upon serial 
transplantation to heterotopic anatomical sites 
(Caplan, 1991; Owen, 1988), leading to the current 
concept of BM-derived MSCs.
	 Although the BM is the most widely recognized 
source of MSCs, further research has suggested the 
presence of MSC-like cells in other tissues, including 
adipose tissue (Zuk et al., 2002), peripheral blood 
(Tondreau et al., 2005), dental pulp (Gronthos et al., 
2000), pancreatic islets (Carlotti et al., 2010), synovial 
membrane (Hermida-Gómez et al., 2011), periodontal 
ligament (Seo et al., 2004), anterior cruciate ligament 
(Prager et al., 2018), endometrium (Schwab et al., 
2008), bursa subacromialis (Steinert et al., 2015), 
placenta (Fukuchi et al., 2004), umbilical cord (Baksh 
et al., 2007), and umbilical cord blood (Sarugaser et al., 
2005). It has been further proposed that MSCs may 
be present in any vascularized tissue at perivascular 
sites (Crisan et al., 2008).
	 Due to their multipotency and wide dispersion 
in the body, MSCs are an essential element of 
most modern tissue engineering and regenerative 
medicine approaches. There are extensive reviews 

on the biology of the MSCs, elucidating their nature 
and unique properties (Bronckaers et al., 2014; 
Méndez-Ferrer et al., 2010; Phinney and Prockop, 
2007; Prockop and Oh, 2012). In the present review, 
the different microenvironmental cues influencing 
the MSC phenotype and function either in health 
and disease – including cellular, chemical, and 
physical interactions – are discussed. In addition, 
the most recent in vitro culture strategies addressing 
the complexity of the in vivo MSC environment are 
summarized.

The MSC identity relies on their localization

The characterization of MSCs either ex vivo or 
in vivo remains difficult since there is neither a 
distinct definition nor a robust assay to identify 
MSCs in a mixed population of cells. However, 
the International Society of Cellular Therapy has 
established three main criteria that should be 
fulfilled by genuine MSCs in vitro. These cells should 
(1) exhibit plastic adherence; (2) express a set of 
surface markers – i.e., CD73, CD90, CD105, and lack 
the expression of CD45, CD34, CD14 or CD11b, 
CD79α or CD19, and HLA-DR; (3) have the ability 
to differentiate in vitro into mesenchymal lineages, 
namely adipocyte, chondrocyte, and osteoblast 
(Dominici et al., 2006). These criteria are applied for 
the in vitro characterization and validation of putative 
MSCs isolated from different tissue sources; however, 
differences exist in MSCs isolated from various 
tissue origins for what concerns the clonogenecity 
level, proliferation rate, differentiation potential, cell 
surface marker expression, and, most importantly, 
their regenerative potential in vivo (Bianco et al., 
2008; Hass et al., 2011; Raicevic et al., 2011). In fact, 
only cells isolated from the BM reestablish the 
marrow stroma upon serial transplantation in mice 
(Méndez-Ferrer et al., 2010; Sacchetti et al., 2007). 
CD146+ pericytes, firstly isolated from the BM (Bianco 
et al., 2008) and later from multiple vascularized 
human organs (Crisan et al., 2008), exhibit long-term 
proliferation and trilineage differentiation potential 
in in vitro cultures. However, pericytes, identified 
by the expression of the transcription factor Tbx18, 
maintain their identity during aging and diverse 
pathological in vivo settings and do not contribute 
to tissue regeneration (Guimarães-Camboa et al., 
2017), suggesting that the plasticity of these cells 
observed in vitro can be in fact the result of artificial 
cell manipulations. Regardless of the controversy, 
these findings provide evidence that MSCs should not 
be classified as a uniform population of theoretically 
multipotent cells, but rather a super-family of tissue-
specific committed progenitors, possibly even with 
a distinct developmental origin, as proposed by 
Robey (2017) and Sacchetti et al. (2016). Noteworthy, 
isolated MSCs seem to reflect an organ-specific 
potency and a mechanical memory from past physical 
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environments, which can influence cell fate – e.g., 
MSCs originated from the BM are more predisposed 
to give rise to the skeleton, MSCs from adipose tissue 
to adipocytes and those from other organs to the 
respective native connective tissues (Sacchetti et al., 
2016; Yang et al., 2014).

The nomenclature debate
Due to already identified functional and anatomical 
diversity of putative MSCs and the lack of robust 
assays, the nomenclature of these cells has been 
extensively debated in the field since their discovery. 
First named as ‘colony-forming-unit fibroblasts’ by 
Friedenstein in 1974 (Friedenstein et al., 1974), quickly 
their name was changed to ‘marrow stromal cells’ 
when their in vivo potential to generate de novo the 
complete BM structural components was proven 
(Owen, 1988). Caplan (Caplan, 1991) has proposed to 
introduce the term ‘mesenchymal stem cells’ due to 
their clonability and multilineage potential as well as 
their loose architecture of randomly organized cells 
surrounded by large amounts of ECM, which is a 
characteristic of mesenchymal tissues. However, the 
International Society for Cellular Therapy (Horwitz 
et al., 2005) has decided to change the term back to 
‘mesenchymal stromal cell’, due to the inappropriate 
and misleading use of the term ‘stem’, especially 
in the context of cell therapy applications. Also, 
the term ‘mesenchymal’ has been lately involved 
in controversy since it can be easily misinterpreted 
with the differentiated lineages derived from the 
mesoderm germinal layer – i.e., skeletal muscle, 
bone, connective tissue, heart, and urogenital system 
– which do not have the same MSC differentiation 
potential. Given that, the scientific community has 
widely accepted that, for terms of clarity, the tissue of 
origin of the isolated MSCs should always be stated 
in their name (Robey, 2017; Sipp et al., 2018). Other 
suggested terminologies have emerged, not based on 
the cell’s anatomical location nor their differentiation 
potential but on their function and application for 
clinics – e.g., Caplan proposal to change the name 
to ‘medicinal signaling cells’ because of their in vivo 
secretory function (Caplan, 2017).

The dynamics of the MSC niche

There is abundant evidence suggesting that the 
MSC ability to maintain themselves or to give rise 
to differentiated progeny is strictly governed by 
complex interactions within their close environment 
– first proposed for HSCs as stem cell niche 
(Schofield, 1978). The concept of a stem cell niche 
has later been established as an interactive structural 
unit, organized to facilitate cell-fate decisions in 
a proper spatiotemporal manner, comprising the 
structural and functional components of the ECM, 
the cellular signaling with stem adjacent cells 
and other environmental cues, such as gradients 
of hypoxia (Fig. 1) (Li and Xie, 2005; Scadden, 

2006). In vivo remodeling of the stem cell niche 
occurs constantly during development, e.g., during 
skeletal development and epithelial branching 
morphogenesis (Rozario and DeSimone, 2010) or in 
adults during wound healing (Schultz and Wysocki, 
2009), where both inflammatory, angiogenic, and 
morphogenetic factors are present, culminating in 
an adjustment of the mechanochemistry and cellular 
composition of the tissue.

Age and diseases
The dynamics of the BM niche vary strongly with 
age and disorder phenotypes. During aging, a 
quiescence-to-senescence transition occurs in 
niche-residing MSCs, which strongly impairs the 
interactive signaling network of all niche-residing 
cells and ultimately the complete regenerative 
activity (Herrmann et al., 2019). This phenomenon 
is driven either by the age-associated BM fat tissue 
expansion (Ambrosi et al., 2017) and/or by the inherent 
modulation of number and type of vessels in bone 
and BM (Watson and Adams, 2017; Zimmermann et 
al., 2011). The signature and proliferation capacity  
of MSCs is also compromised in ECM-related 
disorders, such as tissue fibrosis – where an excessive 
deposition of ECM is observed (Usunier et al., 2014) – 
or osteoarthritis (Maldonado and Nam, 2013) – which 
is linked to a resilient ECM degradation mediated 
primarily by MMPs and to an over-activation of 
osteoclast activity (Maldonado and Nam, 2013). 
Disruption of such control mechanisms generates 
aberrant ECM, both structurally and mechanically 
altered, leading to abnormal behaviors of cells 
residing in the niche and, ultimately, to enormous 
repercussions on the overall tissue homeostasis and 
functionality (Bonnans et al., 2014; Cox and Erler, 
2011).
	 BM niches can also be targeted by metastasizing 
cancer cells (discussed in more detail below), where 
a malignant vicious cycle between niche and tumor 
cells is created, adapting the ECM dynamics to each 
step of tumor progression (Herrmann et al., 2019; Lu 
et al., 2012).

Cellular interactions
MSCs gather in niches in distinct location within 
the BM – namely endosteal (Nakamura et al., 2010), 
stromal (Herrmann et al., 2019; Pereira et al., 1998), and 
perivascular (Winkler et al., 2010). The phenotypical 
similarities of MSCs within their respective niches 
are currently not completely known. However, the 
interplay with cells of different maturation and 
activation states from each niche must surely play a 
pivotal role in adult tissue dynamics.
	 MSC communication with ECs and HCs in the 
BM, which drives the BM niche integrity and bone 
tissue homeostasis and repair, is discussed in this 
section. The proper reproduction of these interactions 
in experimental approaches is mandatory for 
revealing fundamental properties of the regenerative 
process and creating rational cell-based therapeutic 
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strategies. The understanding of the relationships 
between these cells is loaded by difficult definitions 
of certain cell phenotypes and functionalities, as they 
might share cell origin, i.e., mesenchyoangioblast and 
hemangioblats, where progenies possess endothelial 
and hematopoietic signatures (Angelos et al., 2018; 
Breitbach et al., 2018; Guibentif et al., 2017). By 
protecting the primitive stem cells from exhaustion 
and, on the other side, supporting extensive 
progenitor activation and differentiation when needed 
(Ramasamy et al., 2016), the spatial arrangement of the 
BM hubs is responsible for governing heterogeneity 
within cell populations (Crisan and Dzierzak, 2016). 
Cell-to-cell communication includes interaction 
between membrane and cytoplasm and production 
of growth factors and cytokines. Extracellular vesicles 
containing proteins, lipids, miRNA, piRNA (De Luca 
et al., 2016), or mitochondria transfer (Mahrouf-
Yorgov et al., 2017) are important mechanisms of 
cell communication between MSCs and HCs (De 
Luca et al., 2016), as well as ECs (Gong et al., 2017; 
Qin and Zhang, 2017) and cancer cells (Lin et al., 
2016), regulating their differentiation, migration, and 
survival. MSCs provide an instructive environment 

for angiogenesis, hematopoiesis, and osteopoiesis but 
also functional assistance to local and disseminated 
unhealthy or malignant cells (Dhawan et al., 2016; Lee 
et al., 2012; Roccaro et al., 2014; Xu et al., 2018).

MSCs and ECs
Stem cell behavior, tissue formation and regeneration 
as well as survival of bone grafts are under the 
control of the blood vessels, which supply oxygen 
and nutrients to the cells (Böhrnsen and Schliephake, 
2016; Ramasamy et al., 2016). Controlled diffusion 
of ROS, BM blood-vessel-forming ECs and vascular 
integrity determine and regulate HSPC as well as 
MSC localization and functionality (Fehrer et al., 
2007; Gomariz et al., 2018; Langen et al., 2014; Xu 
et al., 2018). Low permeable endosteal vessels with 
high integrity (H-type) differ from sinusoidal vessels 
with low integrity (L-type) and provide a poor ROS 
microenvironment, favoring HSPC maintenance, 
while fenestrated L-type vessels allow for HSPC 
respiration and mobilization (Itkin et al., 2016). Sca-1+ 
and Nestin+ MSCs are likewise associated with H-type 
vessels and sensitivity to ROS with HSPCs (Itkin et 
al., 2016). During aging, reduction of H-type vessels 

Fig. 1. MSCs’ biochemical and physical interactions within the BM niche. A bidirectional synergetic 
cross-talk is present in the MSC niche, which is ultimately responsible for the modulation of the dynamic 
state of multicellular tissues – e.g., external signals can change cell DNA transcription, while, in turn, 
signal transduction from the interior of the cell can modify the extracellular chemistry and mechanics 
(Bottaro et al., 2002). These interactions may comprise: (1) receptor recognition of insoluble and soluble 
ECM components – such as cytokines, growth factors, morphogenetic proteins, collagenous proteins, 
proteoglycans; (2) systemic factors through the vascular system; (3) paracrine and endocrine signals from 
local or distant sources, e.g., small-molecule agonists, steroid hormones, cytokines, peptides, ions; (4) cell-
cell interactions with the neighbor cells, such as niche-supporting cells, immune cells, ECs, or nerve cells; 
(5) environmental cues, including shear forces, pH effects, oxygen tension; (6) ECM mechanotransduction 
based on matrix elasticity and geometry.
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results in decreased levels of SCF and PDGFRβ+ or 
NG2+ perivascular stromal cells, which is associated 
with a decrease in the HSPC population in the BM 
(Kusumbe et al., 2016). Endothelial to mesenchymal 
transition, an example of cell plasticity, generating 
pro-inflammatory ECs (Al-Soudi et al., 2017; Chen et 
al., 2015), is often observed in adult pathologies (Erba 
et al., 2017; Medici and Olsen, 2012), musculoskeletal 
injury (Agarwal et al., 2016), and heterotopic bone 
ossification (Sun et al., 2016), but is also recognized 
as a developmental process connecting maturation 
and fate of MSCs and ECs.
	 MSC-EC cross-talk leads to the modulation of 
the angiogenic response, with MSCs behaving as 
pericyte-like cells in the stabilization of newly formed 
blood vessels (Duttenhoefer et al., 2013; Herrmann et 
al., 2014; Loibl et al., 2014). However, current data are 
conflicting. MSCs attenuate activation, proliferation 
and angiogenesis of ECs, through the production 
of MMP-1 (Zanotti et al., 2016) and ROS, leading to 
EC apoptosis, capillary degeneration (Marfy‐Smith 
and Clarkin, 2017; Otsu et al., 2009), and, finally, 
disease (Cipriani et al., 2007). In contrast, MSC-EC 
crosstalk stimulates proliferation and osteogenesis 
in MSCs and angiogenesis in ECs (Bidarra et al., 
2011; Böhrnsen and Schliephake, 2016). While BM 
endothelial progenitors, considered to be CD34+ 
or CD133+ cells, downregulate osteogenesis in 
MSCs (Duttenhoefer et al., 2015), EC progenitor-
derived growth factors are of critical importance for 
MSC engraftment, stemness, and repopulation in 
secondary grafts and osteogenesis (Lin et al., 2014).

MSCs and HCs
Crosstalk of MSCs and HSPCs is one of the most 
studied issues in physiological homeostasis and 
adult tissue regeneration (Chan et al., 2015; Raggatt 
et al., 2014), where progenies of these cells are major 
participants in immune response, inflammation 
resolution, and tissue repair. Coherency of the 
skeletal system and hematopoiesis maintenance 
(Visnjic et al., 2004) contributes to the BM as stem 
cell niche environment, as described above. Many 
mechanisms of HSPC activation by infections or 
various cytokines have been revealed, while the major 
pathways involved in steady state and emergency 
hematopoiesis, generating the full repertoire of 
immune cells, are still not understood (Boulais 
and Frenette, 2015; Crisan and Dzierzak, 2016). In 
case of an altered MSC contribution to osteoblast 
or adipocyte pool in the BM, biased hematopoiesis 
occurs through disbalanced myelo-/lymphopoiesis. 
Distinct stromal cell factors – such as SCF, CXCL12, 
Flt3 ligand, Wnt3a, angiopoietin-like proteins, 
thrombopoietin, and fibroblast growth factor 1 – 
control HSPC quiescence, survival, proliferation, 
self-renewal, and mobilization or retention in their 
niche (Crisan and Dzierzak, 2016; Wohrer et al., 2014). 
Deletion of CXCL12 from perivascular stromal cells 
or osteoblasts depletes HSPCs and early lymphoid 

progenitors, respectively (Ding and Morrison, 2013). 
Leptin receptor+ perivascular stromal cells are the 
main source of SCF and CXCL12 in the BM (Ding 
and Morrison, 2013; Zhou et al., 2014) and conditional 
deletion of SCF leads to the depletion of quiescent 
HSPCs (Zhou et al., 2014), while deletion of CXCL12 
leads to HSPC mobilization (Ding and Morrison, 
2013). Since the fast onset of HSPC differentiation 
in culture complicates the ex vivo amplification of 
HSCPs for their clinical application, development 
of improved HSPC-amplifying strategies where 
HSPCs retain their stem cell capacity are still in 
progress. MSCs support the proliferation of ex-vivo-
expanded committed hematopoietic progenitors 
(Hammoud et al., 2012) and their co-culture in 3D 
macroporous hydrogel scaffolds, mimicking the 
spongy architecture of trabecular bone, results in 
higher CD34+ frequency (Raic et al., 2014). However, 
the impact of MSCs on HSPC stemness during 
different in vitro cultivation and repopulating 
activity in SCID remains unclear. MSC effects on 
mature or differentiated HCs are widely studied, 
particularly in order to reveal the immunobiology 
of MSCs, where their immunosuppressive capacity 
is attempted to be harnessed in clinical settings 
(Galleu et al., 2017; Simonson et al., 2015; Trento et 
al., 2018). On the contrary, functional adjustment 
of MSCs in hematologic malignancies, including 
acute lymphoblastic or myeloid leukemia, multiple 
myeloma, lymphomas, chronic myeloid leukemia, 
and myelodysplastic syndromes are described 
(Civini et al., 2013; de la Guardia et al., 2017), while it 
is still unknown whether malignant hematopoietic 
progenitors modify MSCs or if leukemia-triggering 
changes occur first in MSCs and the healthy marrow 
niche (Schroeder et al., 2016).
	 The murine Lin−Sca-1+cKit+ population, referred to 
as HSPCs, controls MSC differentiation, stimulating 
osteogenesis through the production of BMP-2 and 
-6, while, in aged and osteoporotic mice, HSPCs 
fail to generate BMPs (Jung et al., 2008). Also, in 
vitro co-culturing demonstrates that murine HSPCs 
impact clonogenicity and favor an osteogenic gene 
expression profile in MSCs (Jung et al., 2008). On the 
other hand, differentiated HCs may also affect MSC 
features, directly through the modulation of their 
properties as constitutive cells of the mutual niche 
or indirectly through paracrine activity and feedback 
effects (Vasandan et al., 2016).
	 Increased megakaryocyte numbers in the 
BM are associated with elevated BMP-2, -4, and 
-6 in mice and are followed by stimulation of 
MSC osteogenesis (Garimella et al., 2007). While 
osteoblast maturation and skeletal homeostasis 
might be supported by megakaryocyte (Alvarez 
et al., 2018; Kacena et al., 2006), data regarding the 
effects on osteoclastogenesis suggest inhibitory 
effects of megakaryocyte on osteoclast development 
and functions (Beeton et al., 2006; Ciovacco et al., 
2010; Kim et al., 2018). In vitro studies show that 
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monocytes can induce osteogenesis in MSCs through 
cell contact, which leads to the activation of STAT3 
signaling followed by upregulation of Runx2, ALP, 
and Oncostatin M and downregulation of DKK1 in 
MSCs (Nicolaidou et al., 2012). From these data, it 
is clear that bidirectional interactions of MSCs and 
HCs at different developmental stages regulate local 
tissue functionality and their elucidation particularly 
contributes to the understanding of normal as well 
as malignant stem cell biology.

MSCs and Mɸ
Mɸ are phagocytic myeloid cells involved in 
inflammatory processes through dead cell and 
foreign material degradation. Mɸ pool contains self-
renewable embryonic Mɸ, which are established 
before the emergence of adult Mɸ which derive from 
marrow immature myeloid progenitors or circulating 
monocytes (Gomez Perdiguero et al., 2015; Yona et 
al., 2014). Mɸ are functionally specialized in lung, 
liver (Kupffer cells), or bone, where multinucleated 
OC near the bone surface participate in physiologic 
or pathologic bone resorption (Kim et al., 2014; Park 
et al., 2014; Wu et al., 2015). OC dissolve crystalline 
hydroxyapatite (Wenisch et al., 2003) and degrade 
the collagen-rich organic bone matrix (Henriksen 
et al., 2006). Due to their plasticity, Mɸ may have 
an anti-inflammatory (M2) or pro-inflammatory 
(M1) profile as well as many intermediate activation 
states. MSCs can facilitate monocyte to macrophage 
transition, but attenuate (Vasandan et al., 2016) 
or favor their pro-inflammatory and osteoclastic 
activities (Gamblin et al., 2014). MSCs induce a M2 
phenotype in BM-Mɸ, increasing their expression of 
arginase-1, IL-10, IL-4, and CD206 and decreasing 
the expression of IL-6, MCP-1, and iNOS (Cho et al., 
2014; Takizawa et al., 2017). Through the production 
of major osteoclastogenic [e.g., RANKL (Biswas et 
al., 2018) and M-CSF (Cappellen et al., 2002)] and 
anti-osteoclastogenic factors [e.g., OPG (Oshita et al., 
2011)], MSCs control bone resorption and remodeling 
(Sharaf-Eldin et al., 2016). By producing OPG and/
or FasL protein, MSCs exert a suppressive effect 
on osteoclastogenesis (Shao et al., 2015; Varin et al., 
2013) and are proposed to be suitable cell candidates 
for controlling inflammation-associated bone 
destruction, such as rheumatoid arthritis (Oshita et 
al., 2011). However, the absence of osteoclastogenesis 
may be associated with reduced osteoblastic 
commitment of MSCs, endosteal osteoblast loss, 
and impaired homing (Mansour et al., 2012) or 
clonogenicity of HSPCs (Lymperi et al., 2011).

MSCs and DCCs
MSC and their progeny may facilitate neoplastic 
growth (Doron et al., 2018). Communication between 
MSCs and bone-metastatic DCCs is unclear, but it is 
possible that MSCs control DCC settlement in the BM 
as competition for niche space may exist (Dhawan 
et al., 2016; Gordon et al., 2014; Rossnagl et al., 2018; 
Shiozawa et al., 2015). Prostate cancer cells induce 

an osteoblastic-type lesion, while breast cancer and 
myeloma cells form osteolytic-type of bone lesions 
(Hashimoto et al., 2018). Human BM biopsies show 
higher CD271+ MSCs and CD31+ frequencies in the 
absence of DCCs in the BM of prostate cancer patients 
in comparison with breast cancer (Rossnagl et al., 
2018). SDF-1 chemokine gradient is one of the most 
described explanations for tumor-to-BM homing and 
MSC-derived osteoblasts produce SDF-1, creating 
a chemo-attractant gradient for CXCR4-expressing 
cancer cells (Amend et al., 2016; Devignes et al., 2018). 
In vitro and in vivo migration assays have revealed 
that MSCs have tropism toward multiple myeloma 
cells, where MSCs promote multiple myeloma 
progression (Xu et al., 2012). Although tumor-
homing ability of MSCs suggests their utilization 
in anti-tumor strategies, it is still unknown how 
MSCs in the metastatic niche of the BM contribute 
to graft versus tumor reaction, one of the currently 
most investigated anti-tumor approaches. Exosomal 
transfer of miRNAs from MSCs to breast DCCs (Ono 
et al., 2014) induces MSCs dormancy in the BM niche. 
Moreover, multiple-myeloma-cell-derived exosome 
miRNA promotes a phenotype switch of MSCs 
towards a cancer-associated fibroblast state (Cheng 
et al., 2017). Concerning tumor persistence, there is a 
complex bidirectional crosstalk of MSCs and cancer 
cells involving various mechanisms which are still 
unclear but important for the understanding of 
peculiarities of normal and stem cell niche in tumors.

ECM dynamics
Although the crucial importance of cellular 
interactions with surrounding elements is recognized, 
a major challenge is still to understand how the 
chemical composition and mechanical properties 
of the ECM can functionally influence tissue 
homeostasis under physiological and pathological 
conditions.
	 Particularly, a better understanding on how 
disruption of ECM dynamics, i.e., both biochemical 
signaling and physical cues, contributes to 
progression of complex diseases will be important 
towards the development of new therapeutic targets 
in regenerative medicine.

Biochemical interactions
Microenvironmental cues, such as cellular 
interactions, the paracrine environment and ECM-
associated proteins, critically influence MSC behavior 
via biochemical pathways. This is suggested by 
plenty of studies demonstrating that MSCs acquire 
tissue-specific characteristics when co-cultured with 
mature cells types (Csaki et al., 2009; Deng et al., 2008; 
Plotnikov et al., 2008; Schneider et al., 2011; Strassburg 
et al., 2010) or in complex biological substrates in vitro 
(Bosnakovski et al., 2006; Datta et al., 2005; Hoch et al., 
2016; Suzuki et al., 2010).
	 The oxygen tension applied to the in vitro culture 
also significantly influences both MSC proliferation 
and differention potential in a lineage-specific matter. 
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Although the published literature is quite diverse 
and occasionally contraditory, some studies have 
reported that reduced oxygen tension attenuates 
the MSC differentiation capacity into the osteogenic 
lineage (D’Ippolito et al., 2006) whilst promoting 
adipogenic (Fink et al., 2004) and chondrogenic 
differentiation (Kanichai et al., 2008; Robins et al., 
2005). This correlates with the in vivo situation where 
chondrocytes and adipoctes reside in more hypoxic 
environments. Low oxygen tension also regulates 
MSC paracrine activity. An induced hypoxic in vitro 
culture stimulates an upregulation of angiogenic 
genes, such as VEGF and IL-6 (Hu et al., 2008). 
Furthermore, in hypoxia, large amounts of SDF-1, 
along with its receptor CXCR4, are expressed and 
secreted by MSCs, stimulating their mobilization 
and, thus, promoting MSC-homing toward damaged 
tissue (Liu et al., 2012; Rosenkranz et al., 2010). 
Likewise, tissue-specific ECM proteins have an 
important role as a supportive scaffold, exposing 
binding sites for growth factors, cell receptors 
ligands, proteases, etc.. In the context of bone, a 
type I collagen-rich ECM is required to regulate 
local availability of BMPs in a spatio-temporal 
manner and, therefore, controls osteoblast lineage 
progression. Specifically, integrin binding of ECM-
released BMPs to osteoblastic precursor cells initiates 
a MAPK-dependent signaling cascade that leads to 
the phosphorylation and activation of Runx2 (Yang et 
al., 2003), the master transcriptional regulator of the 
osteoblastic differentiation. Noteworthy, the ECM-
MSC dynamic is rather a bidirectional system, where 
the lineage commitment process of MSCs also induces 
a remodeling of the microenvironment’s chemical 
and mechanical characteristics. Manduca et al. (2009) 
have investigated the role of MMPs in osteogenic 
differentiation, demonstrating that preosteoblastic 
cells sense the microenvironment through binding 
of β1 integrins to fibronectin and collagen type I in 
the ECM, resulting in the formation of a complex 
with MMP-1. This complex initiates the expression 
of proMMP-2, required for type-I collagen and ALP 
proteolysis, which is involved in mineral deposition 
during osteogenic differentiation.
	 These studies emphasize the crucial role of cell-
matrix interactions as highly instructive elements 
for stem cell biologic functions including growth, 
differentiation, apoptosis, and, ultimately, tissue 
remodeling.

The importance of the environmental mechanical properties
In the context of bone, collagen fibrils comprise 
binding sites for mineral deposition while still 
keeping the structural flexibility for a tissue that 
would otherwise be overly rigid. Alongside, there 
is evidence showing that ECM physical cues not 
only provide support and anchorage for the cells 
but strongly elicit changes in gene expression and, 
ultimately, affect cell fate and tissue development 
(Chen, 2008; Engler et al., 2006; Lutolf and Hubbell, 
2005). Biologically, osteocytes trapped within the 

matrix are the principal sensors of mechanical forces 
applied to the bone, with a crucial role in local mineral 
deposition regulation (Klein-Nulend et al., 2013). 
Likewise, for tissue engineering approaches, MSCs 
are sensitive to their substrate stiffness and able to 
detect its nano- and micro-topography or porosity 
(reviewed by Sun et al., 2012a). The transduction 
of these mechanical stimuli into cellular processes, 
otherwise known as a mechanotransduction, is 
accomplished through direct or indirect processes 
(described in detail by Sun et al., 2012a; Yim and 
Sheetz, 2012). Briefly, direct mechanotransduction 
occurs when forces applied to integrins, which 
are linked to the nucleus through focal adhesion 
interactions with the cytoskeletal protein filaments 
(e.g., actin and vimentin), lead to changes in 
gene expression through chromatin remodeling. 
Indirect mechanotransduction occurs either through 
mechanosensitive ion channels, mainly from TRP 
family (Ranade et al., 2015), or through integrin-
mediated signal pathways (Jalali et al., 2001; Schwartz, 
2010), which internally couple with other growth 
factor pathways to regulate stem cell fate. Even with 
all the recent discoveries on how MSC behavior can 
be tailored by artificial mechanic features (refer to 
the next section for MSC environment modelling 
applications), there is still a poor understanding of 
the underlying mechanisms of biophysically-induced 
stem cell differentiation and how these dynamic 
complex feedbacks can be manipulated towards a 
therapeutic application.

Modelling MSC niche complexity

The extensive presence of MSC-like progenitor cells 
throughout the vascularized organs raises a wide 
range of possible therapeutic strategies intending to 
accelerate the tissue regenerative capacity following 
injury. The up-to-date therapeutic applications, either 
based on the stem-properties or on the paracrine 
and immunomodulatory competence of these cells, 
are highlighted in recent reviews (Matsumoto et al., 
2016; Park et al., 2011; Peired et al., 2016; Yousefi et 
al., 2016). Nevertheless, in most cases, MSC-based 
clinical trials occur in an early phase (phase I or II) 
according to FDA guidelines, where the long-term 
safety and treatment efficacy is not yet conclusively 
established (Squillaro et al., 2016). Regardless of the 
extensive effort and advances made in MSC identity 
and experimental handling, there are still substantial 
ambiguities about their integrative functions in vivo 
and long-term safety, which continues to pose a 
major limitation on their envisioned therapeutic 
use. An extensive scientific knowledge of each 
MSC subpopulation and their interaction with 
the environment is still necessary to successfully 
translate them to the clinic. The more recent and 
relevant illustrative examples of novel bioengineering 
approaches to mimic biological, chemical, and 
mechanical microenvironmental signals present in 
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the MSC niche are summarized in this section (see 
Table 1). Furthermore, the current limitations are 
highlighted and potential opportunities to fill the 
bridge between fundamental science and clinical 
application discussed.

Monolayer culture: an in vitro mechanistic tool
Culture of an adherent cell monolayer on flat and rigid 
2D substrates is a well-established straightforward 
technique by which cells of interest can be maintained 
outside the body and observed over time with a good 
viability of cells in culture.

Paracrine factors
To date, the simplest models for examining biological 
behavior of MSCs in response to microenvironmental 
factors are conduced by direct exposition to soluble 
factors (Celil and Campbell, 2005; Indrawattana et al., 
2004; Kratchmarova et al., 2005; Luo et al., 2010) and 
conditioned media from either other cell type cultures 
(Chowdhury et al., 2015; Menon et al., 2007; Siciliano 
et al., 2015) or from tissue extracts (Chen et al., 2002). 
In the strictest sense, the conditioned medium 
refers to the cell secretome, which encompasses 
proteins shed from the cell surface and intracellular 
proteins released through non-classical secretion 
pathway or exosomes, including numerous enzymes, 
growth factors, cytokines and hormones, or other 
soluble mediators (Veronesi et al., 2017). Therefore, 
conditioned medium approaches offer the possibility 
of studying the paracrine interactions of complex 
combinations of factors, in a specific physiological 
or pathological environment.

Co-cultures
Co-culture techniques find countless applications 
in biology for studying interactions between cell 
populations. Overall, the co-culture systems can be 
set-up either by direct co-culture of both cell types or 

using compartmented systems, such as trans-wells or 
microfluidic chambers, to study solely the paracrine 
crosstalk and not the cell-cell signaling pathways 
that may occur. Many studies have explored this 
approach by co-culturing MSCs with mature cells 
in direct (Aguirre et al., 2010; Ball et al., 2004; Csaki 
et al., 2009; Deng et al., 2008; Strassburg et al., 2010; 
Takigawa et al., 2017; Wang et al., 2007) and indirect 
contact (Li et al., 2011; Luo et al., 2009; Wei et al., 2010). 
When comparing cultures of MSCs and osteoblasts 
alone with MSC/osteoblast co-cultures, for example, 
an increase in calcification over time is observed in 
co-culture. These results suggest the idea of a positive 
augmentation of the MSC differentiation process by 
osteoblast-secreted factors (Glueck et al., 2015).

Protein-coating
The native ECM is essentially a 3D network 
of fibrillar and non-fibrillar proteins, such as 
collagens, fibronectin, elastin, laminin, vitronectin, 
glycosaminoglycans, such as hyaluronan or heparin, 
and proteoglycans (Bason et al., 2018). Many of 
these ECM components are commercially available, 
either as complex mixtures (e.g., matrigel) or as 
purified proteins and are extensively applied 
to guide MSC differentiation in vitro (Curran et 
al., 2006; Phillips et al., 2010; Qian and Saltzman, 
2004; Rojo et al., 2016). To achieve a high chemical 
complexity, MSCs are also cultured on decellularized 
extracellular 2D coatings, i.e., matrix produced by 
cells in vitro, resulting in a composition of cell-secreted 
components without the potentially antigenic cellular 
structures or contaminating DNA after collection and 
processing (Hoshiba et al., 2010). The enhancement 
of proliferation and stemness maintenance of naïve 
MSCs is verified in cells cultured on a basal-cultured 
MSC-derived decellularized ECM; while, when 
cultured on decellularized ECM deposited by MSCs 
under osteogenic differentiation, an osteogenic 

Fig. 2. Comparison of morphology and spatial organization of MSC in vitro cultures with the MSC 
perivascular niche in vivo. When cultured on a 2D monolayer culture of standard tissue culture polystyrene 
(a) MSCs acquire a stretched and flattened morphology. On the other hand, when a 3D decellularized 
bone scaffold is used to physically support MSC culture, (b) the cell-matrix interactions induce a different 
cellular distribution and arrangement which closely mimics the niche organization observed in (c) an in 
vivo perivascular niche [600× magnification (with permission of Crisan et al., 2008)].
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lineage differentiation is observed in seeded MSCs 
cultured in the absence of dexamethasone (Rao et 
al., 2014).

Limitations
Although very convenient and effective for 
mechanistic purposes, the results from 2D cell culture 
models may not be representative of essential and 
complex features of native microenvironments. A 
main limitation of in vitro studies in 2D monolayer 
cultures is the lack of spatial and temporal control of 
multiple signals, similar to what happens in a native 
3D context. Furthermore, a significant limitation 
of 2D cell cultures is that diffusion and transport 
conditions do not reflect the in vivo situation – cells 
grown in monolayers are exposed to a uniform 
environment with constant supply of oxygen, 
nutrients or metabolic products, which can lead 
to significant deviations in cellular function and 
response (Baker et al., 2012).

Paradigm shift: mimicking MSC niche environment 
through third dimension
Due to the lack of structural architecture, 2D cell 
culture models are substantially diverging from the in 
vivo state (Fig. 2). Accordingly, many research groups 
apply a 3D culture environment that aims to better 
resemble the native tissue organization.

Spheroids culture
Since the observation that chondrocytes lose their 
phenotype quickly in monolayer culture (Caron et 
al., 2012; Thompson et al., 2017), micromasses and 
pellet in vitro cultures have been established, allowing 
cells to aggregate in high densities and create their 
own 3D cartilaginous matrix (Cottrill et al., 1987; 
Johnstone et al., 1998). In addition, using a simple 
3D scaffold-free spheroid culture system, Wang et 
al. (2009) have demonstrated that MSC multipotency 
can be significantly increased for both osteogenic 
and adipogenic lineage when compared with the 
conventional 2D monolayer culture. Moreover, 
using a perivascular-like in vitro 3D spheroid co-
culture system, Saleh et al. (2011) have shown that 
endothelial cells regulate MSC activity by maintaining 
quiescence and facilitating niche exit by osteogenic 
differentiation through activation of endogenous 
Wnt and BMP signaling. Other studies have reported 
enhanced anti-inflammatory properties after a short 
period of spheroid culture by increased expression 
of genes, such as CXCR4, which promotes adhesion, 
or IL-24, with tumor-suppressing properties (Bartosh 
et al., 2010; Potapova et al., 2008; Ylöstalo et al., 2012).

Micropatterning
A different approach being adopted is the creation 
of a pseudo-3D environment for MSCs using soft 
lithography techniques to imprint a topography-
patterning in the culture substrates. This is rather a 
bottom-up organization approach, with cells being 
instructed at the molecular level. Several studies have 

shown increased mineralization during osteogenesis 
induction on micro- and/or nano-patterning growth 
surfaces (McNamara et al., 2010; Oh et al., 2009; Yim 
et al., 2007; Zhao et al., 2012). Differences in groove 
size as well as their geometric arrangement dictate the 
matrix alignment and cell morphology, resulting in a 
strong effect on cell proliferation and gene expression 
and eventually induction of bone nodules formation. 
Dalby et al. (2007) have shown that MSC osteogenic 
differentiation can be initiated with a nanopitted 
topographical pattern in a square geometry with a 
moderate level of disorder embossed into PMMA 
surfaces; while, on the other hand, an ordered square 
nanopit-pattern is proposed to mediate retention 
of MSC stemness (McMurray, 2011). Also, Stanciuc 
et al. (2018) have shown an accelerated maturation 
of human osteoblast maturation on micro-rough 
surfaces of zirconia-toughened alumina with nano-
porosity obtained by selective chemical etching.

Substrate stiffness
Engler et al. (2006) have demonstrated for the first 
time that the substrate stiffness itself can direct 
MSC lineage fate. Subsequently, Pek et al. (2010) 
have optimized a 3D hydrogel system to guide 
MSC differentiation either to neural, myogenic, 
or osteogenic phenotypes depending on whether 
they are cultured in gels of elastic moduli in the 
lower (7 Pa), intermediate (25 Pa), or higher range 
(75  Pa), respectively. Interestingly, the matrix that 
optimally drives MSC differentiation to specific 
lineages corresponds to the stiffness of the relevant 
target tissue. Accordingly, tuning the elasticity of the 
culture material is a common strategy, adopted to 
control MSC fate (Du et al., 2016; Huebsch et al., 2015; 
Kuboki and Kidoaki, 2016; Seib et al., 2009; Wingate 
et al., 2012).

The influence of the chemical and physical 
biomaterial properties
Progress in the development of biomimetic materials 
have lately been chasing the complexity of the 
mechanical and physical-chemistry arrangement of 
the biomaterial itself, such as a scaffold, commonly 
used for tissue engineering applications. Such tissue-
engineered constructs not only represent potential 
therapeutic options for the treatment of bone defects 
but may also serve as a model system of the MSC 
naïve environment in the bone and facilitate our 
understanding of the interactions within the niche.

3D gel matrices/scaffolds
For tissue engineering applications, the culture 
substrate should not only provide physical support 
but also present a functional surface chemistry 
compliant with the biological purpose. Noteworthy, 
the chemical composition as well as the fabrication 
process itself determine the final geometry, porosity, 
and roughness of the bulk material (Akbarzadeh 
and Yousefi, 2014; Loh and Choong, 2013; Pina et al., 
2016). The macroporosity (pores > 50 μm) of a scaffold 
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contributes to osteogenesis by facilitating cell and ion 
transport (Bignon et al., 2003), while microporosity 
(pores < 20 μm) augments bone growth by providing 
attachment points for osteoblasts (Bignon et al., 2003) 
and increasing growth factors retention upon which 
bone formation depends in ectopic sites (Hing et al., 
2005; Woodard et al., 2007).
	 Commonly used natural polymers for bone 
tissue engineering are collagen, fibrin, alginate, silk, 
hyaluronic acid, and chitosan. They provide high 
biological recognition that may positively support cell 
adhesion and function, yet often lack the mechanical 
strength required by bone (reviewed by O’brien, 
2011). Synthetic biodegradable polymers, such as 
PLA, PGA, and PCL are widely used due to their 
reproducible large-scale production, with controlled 
properties of strength, degradation rate, and 
microstructure (reviewed by O’brien, 2011). Calcium-
phosphate-based materials, such as hydroxyapatite 
and beta-tricalcium phosphate, are widely used 
ceramics that often shape the inorganic-phase of bone 
graft substitutes. Their non-toxic, non-inflammatory, 
non-immunogenic properties and their biological 
affinity (i.e., ability to form direct chemical bonds 
with the surrounding environment) direct tissue 
integration when implanted in bone defects (Ambard 
and Mueninghoff, 2006; Venkatesan and Kim, 2014). 
Besides, extensive studies of organic modifications 
of hydroxyapatite-based composites show the 
enhancement of the osteoconductive properties of the 
material (review by Swetha et al., 2010). For example, 
Zhao et al. (2006) have investigated two types of 
biomimetic composite materials, chitosan-gelatin and 
hydroxyapatite/chitosan-gelatin. They have shown 
that hydroxyapatite enhances protein and calcium 
ion adsorption – which in turn improves i) initial cell-
adhesion and long-term growth, ii) maintains MSC 
stemness and iii) upon induction enhances osteogenic 
differentiation (Zhao et al., 2006). 

Engineered substrates
The tissue engineering field provides valuable 
knowledge for modeling the MSC niche in vitro. 
Moreover, advances in protein engineering and 
synthetic chemistry of peptide-conjugated polymers 
allow the fabrication of the so-called artificial ECM 
constructs, which can respond to cell-secreted 
signals and enable proteolytic matrix remodeling 
(Lutolf and Hubbell, 2005). These synthetic networks 
are typically achieved by crosslinking of specific 
bioactive components in a structural mesh – e.g., 
(1) cell-adhesive ligands, such as integrin-binding 
peptides of the prototypical RGD family, resulting 
in an increased cell growth efficiency (Chang et al., 
2009; Maia et al., 2014); (2) domains with susceptibility 
to degradation by cell-secreted proteases to facilitate 
bidirectional cell-matrix interactions (Lutolf et al., 
2003); (3) binding sites for growth factor matching the 
pretended application (Madl et al., 2014; Park et al., 
2009). Thevenot et al. (2010) have developed a PLGA 

scaffold with incorporated SDF-1 to enhance the 
recruitment of endogenous MSCs to the injury site. 
Likewise, Phillippi et al. (2008) have created spatially 
defined patterns of immobilized BMP-2 using 
inkjet bioprinting technology to modulate the cell 
organization and, consequently, their differentiation 
toward the osteogenic lineage.
	 As another powerful element, synthetic biology has 
recently been applied to tissue engineering modeling. 
Encapsulated modified cells with sophisticated 
tunable modular genetic switches that couple 
repressor proteins with an RNAi can be controlled 
by an external factor or specific microenvironment 
changes (Saxena et al., 2016; Weber and Fussenegger, 
2012).

3D biofabrication
Combined knowledge of material science and 3D 
fabrication principles results in the advent of additive 
manufacturing techniques as a complex innovative 
approach to generate complex 3D environments with 
a designed and controlled arrangement of tissue 
morphology features and spatial distribution of cells 
(Bose et al., 2013; Malda et al., 2013). 3D biofabrication 
is becoming popular due to the ability to directly print 
porous scaffolds with designed shape, controlled 
chemistry, and interconnected porosity. Apart 
from inorganic scaffold manufacturing, additive 
manufacturing approaches are also used to explore 
the possibilities in fabricating scaffolds with live 
cells and tissues. Levato et al. (2014) have shown a 
combined method where MSC-laden polylactic acid 
microcarriers are printed by encapsulation in gelatin 
methacrylamide-gellan. This combined bioprinting 
approach allows for the improvement of the elastic 
modulus of the hydrogel construct, facilitating cell 
adhesion and survival, while supporting osteogenic 
differentiation and bone matrix deposition (Levato 
et al., 2014). Alternatively, Gurkan et al. (2014) have 
used another interesting approach where MSCs 
are encapsulated in a gelatin-based metacrylated 
hydrogel with addiction of BMP-2 and TGF-β1 
mimicking the fibrocartilage phase of the bone. 
Incorporating bioprinting technology with a nanoliter 
gel droplet system, this model can induce the 
upregulation of osteogenesis and chondrogenesis, 
thus making this approach a functional tissue model 
system (Gurkan et al., 2014).

Decellularized tissue
Although a variety of different materials and 
composites are available, to achieve a physiologically 
relevant protein and structural complexity, whole 
organ or tissue decellularization techniques are 
investigated. These natural scaffolds preserve 
the complex biochemical and biomechanical 
ultrastructure of the native tissue and can be 
recellularized to generate a new functional tissue or 
organ (Crapo et al., 2011; Lund et al., 2017). Particularly, 
decellularized bone is used as a scaffold for bone 
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tissue engineering or bone in vitro modelling due to 
its 3D porous structure and its natural biochemical 
component arrangement, providing osteoinductive 
properties that are not fully resembled by synthetic 
polymers or hydrogels (Nyberg et al., 2017). However, 
the current challenge of working with decellularized 
matrices and their translation to clinics is to balance 
the decellularization methods in order to maintain 
the specific epitopes that will have a positive impact 
on cell functions but eliminate any component that 
could cause an immunogenic response (Gilpin and 
Yang, 2017; Keane et al., 2016).

The dynamic dimension
Biomechanical stimuli caused by physical deformation 
and fluid shear stress generated by interstitial fluid 
movement through bone lacunae are recognized as 
a significant part of in vivo bone remodeling (Carter, 
1984; Duncan and Turner, 1995). Therefore, to better 
reassemble the in vivo counterpart, in vitro models for 
skeletal progenitors may likewise be integrated in an 
intrinsic dynamic environment.

Dynamic bioreactors
Dynamic culture of MSCs has expanded greatly in the 
last 15 years and dynamic optimized bioreactors are 
now widely used to provide the technological means 
to achieve both improved nutrient transportation 
and mechanical stimulation. A variety of dynamic 
3D bioreactor concepts mimicking the native 
microenvironment of bone tissues have been 
developed – e.g., perfusion chambers (Dahlin et al., 
2012; Hosseinkhani et al., 2006; Kleinhans et al., 2015; 
Porter et al., 2005; Yeatts and Fisher, 2010), stirred tanks 
(Eibes et al., 2010; King and Miller, 2007), rotating wall 
vessels (Nishi et al., 2013; Song et al., 2008), mechanical 
loading chambers (Altman et al., 2002; Baker et al., 
2011; Pelaez et al., 2012; Sittichockechaiwut et al., 
2009), and, more recently, nanovibrational reactors 
(Tsimbouri et al., 2017). MSCs cultured under those 
dynamic cultures are subjected to mechanical shear 
created by fluid flow, which promotes osteogenesis 
via the ERK1/2 pathway through upregulation of 
Runx2 (Yeatts et al., 2013) and, therefore, provides 
the right microenvironmental setup to augment bone 
formation (David et al., 2007; McCoy and O’Brien, 
2010; Stiehler et al., 2009).

Microfluidic chips
The advances in microfluidic technology brought 
great progresses in the field of dynamic in vitro 
models, mainly regarding the spatiotemporal control 
of gradients and the introduction of individual or 
combination of factors with low volumes and low 
cell suspension density requirements (Sart et al., 
2016; Sun et al., 2012b; Tatárová et al., 2016). Recently, 
Marturano-Kruik et al. (2018) have developed a 
perivascular model containing ECs and MSCs seeded 
on a bone matrix, forming a bone perivascular niche-
on-a-chip, which allows following slow-cycling 
metastatic cancer cells in a BM niche.

Smart materials
Meanwhile, advances in the material science field 
have been made with the development of the so-
called ‘smart’ materials – i.e., biomaterials specifically 
designed to allow dynamic changes in their structure 
in response to an external stimulus (Kaliva et al., 
2017). These materials can be metals or polymers 
sensitive either to temperature (Dessì et al., 2013; Roy 
et al., 2013), pH (Wang et al., 2004), magnetic (Ribeiro 
et al., 2016) or electrical fields (Balint et al., 2014), light 
(Muraoka et al., 2009; Zhao, 2012), or lytic-enzymes 
(Hu et al., 2012; Todd et al., 2007). The concept of a 
dynamic 4th dimension is also being explored in 3D 
printing approaches for tissue engineering (reviewed 
by Gladman et al. , 2016; Khoo et al., 2015). The 
development of new tailored inks capable of adapting 
their shape or functionalities to external stimuli will 
surely be a pivotal milestone in achieving reliable 
and close to in vivo MSC niche models.

In vivo models
Animal models are a vital part of MSC biology research 
and MSC-based therapeutic approaches, enabling 
investigations at the systemic level in a physiological 
environment. Nevertheless, the prediction of 
effectiveness of a therapeutic approach in preclinical 
models can be highly inaccurate, resulting in hurdles 
upon translation of results in clinics. This frequent 
discrepancy happens mainly due to (1) intrinsic 
divergence of molecular mechanisms between 
species and the non-human stromal component of 
the ECM, or (2) anatomic discrepancies particularly in 
orthopedic applications. These facts, along with high 
costs of maintenance, need for qualified expertise, 
limited output analysis, and ethical concerns about 
animal experimentation are motivating governments 
and regulatory organizations to limit their use 
and support the implementation of alternative 
methods following the 3R’s principles – firstly 
established by Russell in 1959 (Russell et al., 1959). 
Yet, improvements in modeling the complex bone 
environment (as discussed in the present review) 
present promising options to provide tissue grafts 
for regenerative medicine in large bone fractures and, 
also, to screen with precision therapeutic agents that 
may facilitate bone repair.

Final remarks
In vitro models should not be confined to single 
stationary conditions; i.e., an individual architecture 
or a particular chemical functionalization with a 
specific biological function. Instead, it is desirable 
that the emerging constructs should comprise 
complex combinatorial signals with tunable cues, 
to support stemness maintenance or direct stem 
cell differentiation with spatiotemporal control. 
Nevertheless, successes in various aspects of the 
tissue engineering assure a bright future for the 
development of models that mimic the relevant 
properties of naïve tissues. The progressive increase 
in complexity of in vitro models that is been 
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witnessed is surely paving the way towards a better 
understanding of the detailed biological events 
involved in tissue homeostasis and related disorders 
in vivo.

Further perspectives

The localization, identification, and regenerative 
potential of MSCs is under controversial discussion 
in the stem cell community. This is mainly attributed 
to the lack of distinct surface markers for the 
identification and prospective isolation of naïve MSC/
tissue-specific progenitor cells in vivo in mouse and 
human, resulting in inconsistences of the studied 
cell population, and the restriction of many studies 
to the assessment of the cell regenerative potential 
in vitro. The in vitro MSC characterization methods 
are highly artificial and do not proof the function of 
MSC/tissue-specific progenitor cells in vivo. Indeed, 
there is an ambiguous distinction between the 
physiological function of isolated MSCs in culture 
and their presumed in vivo counterpart – i.e., MSCs 
isolated from the BM give rise to all the mesenchymal 
cell lineages (Pittenger et al., 1999) and even 
transdifferentiate into cells from the central nervous 
system (Wislet‐Gendebien et al., 2005), the skeletal 
muscle system (Ferrari et al., 1998), the hepatic system 
(Lee et al., 2004), and the cardiac system (Toma et 
al., 2002) when exogenously stimulated; whereas 
naïve non-stimulated BM-MSCs do not share the 
same phenotypic plasticity (Bara et al., 2014). In 
fact, robust in vivo assays of progenitor cells from 
other tissues, all sharing the in vitro characteristics 
attributed to MSCs (Dominici et al., 2006), suggest 
that distinct tissue-specific stem/progenitor cells 
with distinct regenerative capacity exist throughout 
the body (Robey, 2017; Sipp et al., 2018), specifically 
settled in a specific environment which control 
either the maintenance of their stemness or the 
orchestration of tissue modulation activities. This, 
along with the increasing amount of data showing 
a microenvironmental-dependent behavior of 
MSCs, as reviewed in the present article, highlights 
the importance of considering and implementing 
microenvironmental cues upon assessment of the 
MSC regenerative potential.
	 Although substantial advances have already been 
made in the field, the recapitulation of the complex 
biological recognition and signaling functions, 
e.g., between cells and ECM, is still crucial and 
controlling the dynamics and spatial organization 
of multiple signals remains a current challenge. 
Substantial testing and optimization is still required 
to ensure that the 3D constructs realistically mimic 
the native tissue counterparts. Accordingly, despite 
the unquestionable value of MSCs for clinical 
applications, comprehensive studies of fundamental 
mechanisms triggered by microenvironmental cues 

are critical before moving to regenerative medicine 
cell therapy applications.
	 The future holds great potential for 3D/4D models 
for studying tissue dynamics in health and disease as 
well as for tissue engineering applications. Progress 
in engineering, technology, biomaterials, and 
imaging will surely be at the forefront of the MSC 
niche model revolution.
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Discussion with Reviewer

Reviewer: Given the wide distribution of MSCs and 
their diversity, there are likely to be a multitude of 
niches. Will each need to be analyzed separately or 
will there be common features?
Authors: Stem cells, including MSCs, require 
particular microenvironments to maintain themselves 
in vivo, otherwise known as niches (Schofield, 1978), 
where their stemness is protected and the stimulus 
for differentiation is triggered by cellular signaling 
with either tissue-adjacent cells, paracrine and 
endocrine signals from local or systemic sources, or 
external mechanical forces. Given the theoretically 
wide distribution of MSCs through several connective 
tissues in the organism (Crisan et al., 2008), it is 
reasonable to assume that the inherent chemistry, 
mechanical structure, and function of different tissues 
may influence the single MSC entity. Since native 
stem cell niches at distinct anatomical locations and 
developmental stages have remained a theoretical 
construct and criteria for the in vitro characterization 
of MSCs weakly delineate MSCs from other cell 
types, it remains challenging to compare naïve cells 
from different niches. However, increasing evidences 
indicate different transcriptome and differentiation 
capacity of MSCs-like cells obtained from diverse 
tissues (Sacchetti et al., 2016), while tissue-specific 
elements involved in MSC lineage decision still 
have to be revealed. Based on current knowledge, it 
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can be assumed that both tissue-specific as well as 
common mechanisms control MSC fate in distinct 
niches. However, future research will be required to 
unravel these mechanisms, which will be also critical 
to resemble specific niche features in in vitro models. 
Recent technical advances in niche in vitro modelling 
will certainly play a pivotal role in understanding 
and elucidation of MSC physiology and regulation 
within different locations.

Reviewer: Are MSCs an in vitro artefact?
Authors: Most of the knowledge on MSC biology 
derives from in vitro studies, due to the current lack 
of sophisticated methods allowing to specifically 
track MSCs in vivo. As discussed in the article, in 
vitro cultures, despite being great mechanistic tools, 
can often manipulate the cell phenotype in favor 
of specific differentiation events, by exposing them 
to highly artificial situations, such as the unnatural 
2D environment in monolayer cultures or chemical 
stimulation. These potentially stressful in vitro 
conditions provoke subcultured MSCs to adjust their 
physiology (Bara et al., 2014), while their stem cell 
features, inherent to rare cell population only, may 
disappear. Thus, regenerative properties of in vitro 
described MSCs are required to be validated in vivo 
with appropriate controls and reproducible protocols, 
which indeed only some studies have demonstrated 

until now. Nevertheless, in vitro amplified MSCs 
show therapeutic potential for certain clinical 
application, e.g. the treatment of graft-versus-host 
disease (Le Blanc et al., 2008; Ringdén et al., 2006; 
additional references), indicating therapeutic value 
of these cells independent of the fact that they might 
be an in vitro artefact.
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