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   Abstract 

 Transforming growth factor- β    (TGF- β ) family members, 
including TGF- β s and bone morphogenetic proteins (BMPs), 
play important roles in directing the fate of stem cells. In 
embryonic stem cells, the TGF- β  superfamily participates in 
almost all stages of cell development, such as cell mainte-
nance, lineage selection, and progression of differentiation. In 
adult mesenchymal stem cells (MSCs), TGF- β s   can provide 
competence for early stages of chondroblastic and osteoblas-
tic differentiation, but they inhibit myogenesis, adipogenesis, 
and late-stage osteoblast differentiation. BMPs also inhibit 
adipogenesis and myogenesis, but they strongly promote 
osteoblast differentiation. The TGF- β    superfamily members 
signal via specifi c serine/threonine kinase receptors and their 
nuclear effectors termed Smad proteins as well as through 
non-Smad pathways, which explain their pleiotropic effects 
in self-renewal and differentiation of stem cells. This review 
summarizes the current knowledge on the pleiotropic effects 
of the TGF- β  superfamily of growth factors on the fate of 
stem cells and also discusses the mechanisms by which the 
TGF- β  superfamily members control embryonic and MSCs 
differentiation.  

   Keywords:    BMP;   differentiation;   signaling;   stem cells; 
  TGF- β .     

  Introduction 

 The transforming growth factor  β  (TGF- β ) superfamily 
involves a large number of factors related both structurally and 
functionally, which act as multifunctional regulators of diverse 
biological processes. The members of the TGF- β  superfamily 
are implicated in morphogenesis, embryonic development, 
immune regulation, wound healing, infl ammation, and cancer 
 (1, 2) . In the last decade, the TGF- β  superfamily has been 
described as a main component of the regulatory network that 
modulates lineage commitment and differentiation of stem 
cells. The pleiotropic effects of the TGF- β  superfamily mem-
bers are part of a fi nely orchestrated signaling activity, which 
correlates with tempo-spatial regulation of ligands, receptors, 

and intracellular signal transducers, each tightly regulated 
during embryonic and adult stem cell differentiation  (3) . 

 In the present review, fi rst, the molecular components 
involved in the TGF- β  family signaling, such as ligands, 
receptors, as well as Smads and non-Smad signaling pathways, 
which collectively clarify the plethoric diversity of functions 
of the TGF- β  superfamily, will be described. Second, the 
diverse roles of the TGF- β  family members in the regulation 
of embryonic stem cells (ESCs) and adult mesenchymal stem 
cells (MSCs) behavior, mainly focusing on the process of cell 
differentiation will be described.  

  TGF- β  superfamily 

 The TGF- β  superfamily of secreted growth factors comprises 
more than 40 ligands that, despite exhibiting pronounced 
structural similarities (such as their dimeric structure and 
presence of a cysteine knot motif), function as regulators of 
a variety of divergent processes both during embryogenesis 
and later on in adult homeostasis  (2, 4, 5) . These proteins can 
be classifi ed into subfamilies, such as TGF- β s, bone morpho-
genetic proteins (BMPs), growth and differentiation factors 
(GDFs), M ü llerian inhibitory factor (MIF), and activins/
inhibins (Table  1  )  (2) . 

 Transforming growth factors were discovered in stud-
ies of platelet-derived growth factor (PDGF) and epidermal 
growth factors (EGF/TGF α ) and were named according to 
their capacity to  ‘ transform ’  fi broblast rat cells  in vitro   (6) . 
Six distinct isoforms of TGF- β  with a degree of homology 
of 64 – 82 %  have been discovered, although only the TGF-
 β 1, - β 2, and - β 3 isoforms are expressed in mammals  (7) . The 
expression of the three isoforms is differently regulated at the 
transcriptional level due to different promoter sequences. The 
TGF- β 1 promoter lacks the classic TATAA box but possesses 
multiple regulatory sites that can be activated by a number 
of immediate early genes and oncogenes and is inhibited by 
tumor suppressors  (8, 9) . The TGF- β 2 and - β 3 promoters 
each contain TATAA boxes and a common proximal CRE-
ATF site, suggesting their role in hormonal and developmen-
tal control  (10 – 12) . 

 The three TGF- β s:  β 1,  β 2, and  β 3 isoforms are synthesized 
as pro-peptide precursors with a signal domain followed by 
the prodomain [also named latency-associated peptide (LAP)] 
and the mature domain  (13) . The signal domain is removed 
in the endoplasmic reticulum, and then, a new cleavage by 
the convertase family of endoproteases occurs between the 
LAP and the mature peptide  (14) . After cleavage, the LAP 
remains associated with the mature domain forming a small 
latent complex (SLC) until dissociation to release bioactive 
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TGF- β . After secretion, the SLC is covalently associated with 
the latent TGF- β 1-binding proteins (LTBPs) through the LAP 
forming the large latent complex (LLC), which is also bound 
to the extracellular matrix proteins, such as fi bronectin and 
fi brillin  (13, 15) . Different mechanisms, which depend on the 
cell type and context, have been proposed for the release of 
the TGF- β  from LLC, including trombospondin interaction 
with LAP  (16) , proteolitic cleavage of LAP by matrix metal-
loproteinases and urokinase-type plasminogen activator/plas-
min system  (17, 18) . Although all components of the TGF- β  
family are synthesized as precursor proteins containing a 
LAP, the capacity of the LAP to maintain the TGF- β  ligand in 
latent form is not conserved among all proteins  (13) . 

 BMPs were originally identifi ed as factor(s) that induce the 
formation of bone and cartilage when implanted at ectopic sites 
 (19) . BMP-like molecules have been found in vertebrates as 
well as in invertebrates. BMPs are now well known to exhibit 
a wide range of biological effects on various cell types  (20, 
21) . Nine different types of BMPs have been described and 
can be further classifi ed into several subgroups, including the 
BMP-2/4 group, the BMP-5/6/7/8 group (OP-1 [osteogenic 
protein-1] group), and the BMP-9/10 group  (21) . 

 Dissimilar to the TGF- β s, the BMPs are mainly secreted 
in active form, and their activities are regulated by BMP 
antagonists, which can bind the BMPs directly to prevent 
them from interacting with their respective membrane recep-
tors. Four subfamilies of the BMP antagonists have been 
described based on the size of their cysteine knot (a com-
mon arrangement of six half cystine residues to three intrac-
hain disulfi de bonds)  (22) : 1) the Dan family, 2) the chordin 
family, 3) twisted gastrulation, and 4) the Noggin family 
 (23, 24) . These BMP antagonists have differential affi nities 
for different BMPs. Interestingly, positive regulators of the 
BMP have also been described; for example, kielin/chordin-
like protein (KCP), a secreted protein with 18 CR domains 
increases the binding of BMP7 to its receptor and enhances 
downstream signaling pathways  (25) . Conversely, the KCP 
can inhibit both activin-A and the TGF- β 1-induced activation 
of Smad2/3 pathway. In addition, crossveinless 2 (Cv2) is a 
pro-BMP factor during embryogenesis  (26) . 

 GDFs were discovered searching for additional members 
of the TGF- β  superfamily and are classifi ed as a group in the 
BMP subfamily, together forming a single family of cystine-
knot cytokines, which in itself constitute the largest subfam-
ily of the TGF- β  superfamily  (27) . At least 11 components of 
GDFs have been described: GDF1-3, GDF5-11, and GDF15 
 (28) . 

 The MIF, also known as anti-M ü llerian hormone (AMH), 
has been mainly studied for its regulatory role in male sex dif-
ferentiation  (29) . The MIF is implicated in the regression of 
M ü llerian ducts in male fetuses during development as well 
as in the function of the gonads of both sexes  (30) . 

 Activins (ACVs) are structurally related proteins involved 
in the control of cell proliferation, differentiation, apoptosis, 
metabolism, homeostasis, differentiation, immune response, 
and endocrine function  (31) . Activins possess a cysteine knot 
scaffold and are secreted as homodimers or heterodimers 
of inhibin b subunits. Although four b-subunit genes ( β A, 
 β B,  β C, and  β E) have been described in humans, only dim-
ers composed of  β A/ β A (activin A),  β B/ β B (activin B), and 
 β A/ β B (activin AB) subunits have been shown to be biologi-
cally active  (32) . 

 Inhibins are peptide hormones originally characterized as 
proteins produced by the gonads that act in an endocrine man-
ner to negatively regulate follicle-stimulating hormone (FSH) 
synthesis and secretion from the anterior pituitary. As such, 
inhibins are essential for normal reproductive and endocrine 
function  (33) . Additionally, inhibins are closely related to 
activins. Inhibins are disulfi de-linked heterodimers compris-
ing an  α -subunit and either a  β A or  β B subunit to form inhibin 
A and inhibin B, respectively (Table 1).  

  The TGF- β  receptors 

 Both the TGF- β s and BMPs bind to their cell surface recep-
tors to form heteromeric complexes. Dimers of types I and 
II serine/threonine kinase receptors interact with the dimeric 
ligand (Table  2   and Figure  1  ). Seven type I [activin-like 
kinase (ALK1 – 7)] and fi ve type II receptors [TGF- β  receptor 
(TGFBR2), bone morphogenetic protein receptor 2 (BMPR2), 
activin receptor 2 (ACVR2), ACVR2B, and AMHR2] have 
been described where the differential affi nities for the indi-
vidual ligand contribute to signaling specifi city (Table 2)  (2, 
34) . Crystal structures of the respective ternary complexes 
reveal notable differences regarding the topology of these 
complexes between the TGF- β s and the BMPs  (35) . The 
TGF- β s and BMPs can also bind to preformed complexes of 
type I and II receptors  (4, 36)  In addition, the TGF- β  ligands 
can interact with the co-receptors, type III receptor, endoglin 
and betaglican, which both drive ligand binding and modulate 
the receptor kinase transduction  (1, 37) . 

 The ligand fi rst binds to the type I receptor, which is then 
phosphorylated at the  ‘ GS ’  domain by the constitutively 

 Table 1      Members of the mammalian TGF- β  superfamily.  

 TGF - β s BMP and GDF Activins, inhibins MIF

TGF- β 1,  
TGF- β 2,  
TGF- β 3

BMP2, BMP3b/GDF10, BMP4, BMP5, BMP6, BMP7, BMP8a, 
BMP8b, BMP9/GDF2, BMP10, BMP11/GDF11, BMP12/GDF7, 
BMP13/GDF6, BMP14/GDF5, BMP15/GDF9b, BMP16/Nodal, 
GDF1, GDF3, GDF8/myostatin, GDF9, GDF15

Activin A, Activin B, Activin 
AB, Activin C, Activin E  
Inhibin A, Inhibin B, Inhibin C

MIF/AMH

   The four majors groups of TGF- β  superfamily are represented. Adapted from  (2) .   



Role of TGF- β  superfamily in stem cell differentiation  431

active type II receptor producing a ligand-receptor complex 
in activated state  (38) . Phosphorylation of the type I recep-
tor disrupts the interaction between the kinase domain and 

a TGF- β  signaling inhibitor, FKBP12  (39) . In addition, the 
phosphorylation of the GS domain changes to more acidic 
surface ambient, allowing the recruitment of the downstream 

 Table 2      TGF- β  superfamily, overview of their binding specifi city and ligand-receptor-Smad relationships  (162) .  

Ligands Type I receptor Type II receptor R-Smads

TGF- β ALK1/ACVRLI TGFBR2/TBRII Smad1,5,8
BMP9, 10 BMPR2/BMPRII, ACVR2/ActRIIA
BMPS/GDFS ALK2/ACVRI BMPR2, ACVR2

ALK6/BMPRIB BMPR2, ACVR2, ACVR2B/ActRIIB
ALK3/BMPRIA BMPR2

MIF/AMH AMHR2/AMHRII
Nodal/GDF16 ALK4/ACVRIB ACVR2, ACVR2A Smad2,3
Activins
Myostatin/GDF8, GDF11 ALK5/TGFBRI
TGF-β  TGFBR2
Nodal/GDF16 ALK7/ACVRIC ACVR2, ACVR2B

-TGF-βs,
-Activins
-GDF8/Myostatin
-Nodal/GDF8

-BMPs
-GDFs
-MIF

BMPR2
AMHR2 Extracellular

Cytoplasm

I-Smad6
I-Smad7

R-Smad2/3

Transcription
factors

Transcription
factors

Target genes
transcription

Target genes
transcription

Nucleus

Stem cells proliferation,
self-renewal
and differentiation.

R-Smad1/5/8Co-Smad4

ALK4/5/7
TGFBR2
ACVR2/2B ALK1/2/3/6

 Figure 1    The TGF- β  superfamily signal transduction through Smads pathways. 
 Binding of different TGF- β  superfamily ligands to receptors triggers the heterodimeric formation of active receptor complexes. Type I recep-
tor is activated by type II receptor and phosphorylated R-Smads (red circles), then activated R-Smads are released from the inner face of the 
cytoplasmic membrane to associate with Co-Smad4, and are translocated and accumulated inside the nucleus. Smad complexes interact with 
other transcription factors to bind specifi c DNA domains in the promoters of target genes to modulate cell responses.    
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effectors Smads, which are then phosphorylated by the type I 
receptor through the interaction with the Smads ’  basic domain 
 (40) . 

 The TGF- β  super family of receptors is subjected to post-
translational modifi cations, such as phosphorylation/dephos-
phorylation, sumoylation, and ubiquitylation, which regulate 
the TGF- β  receptor stability and availability. These modi-
fi cations are part of the fi ne tuning involved in the TGF- β  
superfamily signal transduction modulation, resulting as key 
determinants in the TGF- β  cellular responses  (41) . 

 The phosphorylation of the receptors is important for the 
activation of the signal transduction by the TGF- β  superfam-
ily, while the dephosphorylation of the receptors is an impor-
tant event in the regulation of their activity. In mammalian 
cells, Smad7 (an inhibitory Smad, described below) has been 
shown to recruit a phosphatase complex of GADD34 and pro-
tein phosphatase PP1c to the activated TGF- β  type I receptor 
(ALK5), in order to dephosphorylate and inactivate the recep-
tor  (42) . Dullard, a protein involved in neural induction, neg-
atively regulates BMP signaling by promoting proteosomal 
degradation of BMP type II receptor and repressing BMP type 
I receptor phosphorylation, where the phosphatase domain in 
Dullard is indispensable for its ability to degrade the BMP 
receptor complex  (43) . 

 Sumoylation, the covalent attachment of a SUMO poly-
peptide by sequential actions of E1, E2, and E3 SUMO 
ligases, is an important mechanism of the TGF- β  receptor 
regulation  (44) . ALK5 can be sumoylated by a yet unknown 
sumoligase in mammalian cells, which requires the kinase 
activities of both type I and II receptors. ALK5 sumoyla-
tion enhances TGF- β -Smads signaling  (45) . These studies 
have mainly been done using the TGF- β  receptors, and 
further studies are necessary to elucidate the BMP receptor 
modifi cations. 

 Another point of modulation is the regulation of the level 
of the TGF- β  receptors. The ligand/receptor complexes can 
be internalized via lipid rafts/caveolae to be degraded inside 
a proteosome  (46) . The TGF- β  receptor degradation is depen-
dent on their association with inhibitory Smads (I-Smads; 
Smad6 and Smad7) and homologous to E6-AP carboxyl ter-
minus (HECT)-type E3 ligases Smurf1 and Smurf2 (Smurf 
ubiquitin ligases). Thus, Smurfs/I-Smads regulate the intra-
cellular pool of the TGF- β  receptors and inhibit the TGF- β  
superfamily signaling. Smad6 and Smad7 recruit Smurf ubiq-
uitin ligases to induce ubiquitination and degradation of the 
TGF- β  receptors  (47, 48) .  

  TGF- β  superfamily signal transduction 

  Smads-dependent signaling 

 The fi rst described member of Smads is  M others  A gainst 
 D ecapentaplegic (MAD), identifi ed from genetic screens in 
 Drosophila melanogaster . Three  Caenorhabditis elegans  
MAD homologs are named sma2, sma-3, and sma-4. The 
Mammalian homolog Smad is a combination/contraction of 
Sma and MAD  (49) . 

 The activated receptor complexes transduce intracellular 
signaling by the type I receptor phosphorylation of Smads 
in their carboxy-terminal domains  (50) . In unphosphorylated 
form, the Smads are transcriptionally inactive and sequestered 
by the cytoplasmic retention proteins such as Smad anchor for 
receptor activation (SARA)  (51) . 

 In humans, eight different types of well-conserved Smads 
are described (Smad1 – 8). These Smads are classifi ed into 
three sub groups: i) receptor associated-Smads (R-Smads); 
ii) common Smad (Co-Smad); and iii) inhibitory Smads 
(I-Smads). 

 The fi ve R-Smads that have been described (Smad1, 2, 3, 
5, and 8), are substrates for activated TGF- β  receptors. Smad2 
and Smad3 are mainly substrates for the TGF- β  and ACVs, 
whereas Smad1, 5, and 8 are mainly substrates for BMP, 
GDF, and MIF receptors  (2, 4, 21)  (Table 2 and Figure1). 

 R-Smad proteins consist of three domains: two highly 
conserved domains at the N-terminus and at the C-terminus, 
the Mad homology domain 1 (MH1) and the Mad homology 
domain 2 (MH2), respectively; 1) MH1 interacts with spe-
cifi c domains in the DNA as well as with other proteins and 
also has a nuclear localization signal (NLS), and 2) MH2 that 
mediates the homo- or hetero-oligomerization of the Smads 
and the transactivation of Smads nuclear complexes. The third 
domain is the highly variable linker region existing between 
MH1 and MH2 domains, which is enriched in prolines and 
is a potential serine/theronine substrate for phosphorylation 
 (2, 52) . 

 All activated R-Smads, after the phosphorylation of the 
TGF- β  receptors, are released from the cytoplasmic mem-
brane and interact with the Co-Smad (Smad4). Smad4 has 
an insertion in the MH2 motif and lacks the C-terminal 
motif for type I receptor phosphorylation  (53) . The activated 
Smads complex, a trimer consisting of a single Co-Smad and 
homo or heterodimer of R-Smads, is then shuttled into the 
nucleus where it binds to promoters of the target genes with 
other transcription factors  (50) . Two of these genes are the 
third component of Smads, the I-Smads: Smad6 and Smad7. 
I-Smads expression produces a negative feedback regula-
tion of TGF- β  signaling  (54) . These I-Smad proteins contain 
a characteristic C-terminal MH2 domain, but they lack the 
conserved MH1 domain. SMAD6 preferentially inhibits BMP 
signaling displacing Smad1-Co-Smad interaction and forms 
an inactive Smad1-Smad6 complex. Smad7 inhibits R-Smad 
phosphorylation by binding the TGF- β , activin, and the BMP 
type I receptors  (55) . 

 In the nucleus, Smad protein complexes can bind directly 
to DNA with weak affi nity to Smad-binding elements (SBEs) 
to regulate the transcription of target genes. Smad3/Smad4 
complexes recognize a fi ve-base pair -GTCTG- or -CAGAC- 
sequence, whereas Smad1, -5, and 8 bind to the AGAC/GTCT 
sequence only weakly and also recognize GC-rich regions 
(such as GGCGCC) in some target genes  (2, 56, 57) . 

 In Smad2, a 30-amino acid insertion encoded by exon 3 in 
the MH1 domain disables its binding to DNA. The binding of 
Smad complexes to DNA, although at a low affi nity, has been 
shown to be crucial for the transcriptional activation of Smad 
target genes; it is certain that binding to chromatin, to form 
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transcriptional complex with high-affi nity to DNA, requires 
interactions with different transcription factors  (50) . 

 In addition, and in relation to R-Smad types, the TGF- β  
superfamily ligand can be classifi ed into two main branches: 
TGF- β /activin branch that signals to the nucleus through 
Smads2/3 and the BMP/GDF branch that signals through 
Smads 1/5/8  (21) .  

  Non-Smad pathways 

 The relative simplicity of the Smads signaling model pro-
duces a dilemma in the understanding of the plethoric diver-
sity of functions of the TGF- β . In fact, is it well known that 
the TGF- β  superfamily signaling pathways are not limited to 
Smad-mediated pathways, but can be determined by a cross-
talk of non-Smad intracellular signal pathways, which may, in 
alternate way, modulate cellular responses. These non-Smad 
pathways include mitogen-activated protein kinase (MAPK) 
pathways, NF- κ B pathway, Rho-like GTPase signaling 

pathways, and phosphatidylinositol-3-kinase (PI3K)/AKT 
pathways (Figure  2  )  (58) . Briefl y, one of the fi rst indications 
that the TGF- β  activates a pathway different than Smads 
came from the observation of Ras activation by TGF- β 1 in 
epithelial cells  (59) , allowing the possibility that the TGF- β  
may also activate ERK MAPK. Recently, Lee et al.  (60)  
demonstrated that the TGF- β  receptor type I/ALK5 can also 
be tyrosine phosphorylated after TGF- β  stimulation, when 
activated ALK5 recruits and phosphorylates both serine and 
tyrosine residues in the ShcA adaptor, thus promoting the for-
mation of a ShcA/Grb2/Sos complex. This triggers the activa-
tion of Ras-Raf-ERK MAPK cascade, which can regulate cell 
growth, proliferation, or migration. 

 The TGF- β s, independent of the receptor ’ s kinase activities 
 (61) , are also enable to activate the p38 and c-Jun N-terminal 
kinase (JNK) MAPKs, by the recruitment of the ubiquitin 
ligase tumor necrosis factor  α  receptor-associated factor 6 
(TRAF6) to the ALK5 cytoplasmic domain, which in turn 
activates transforming-growth-factor- β -activated kinase1 

 Figure 2    Non-Smad TGF- β  superfamily signal transduction. 
 Upon TGF- β  binding, activated receptors interact with TRAF6, which recruits TAB1 and TAK1 to activate p38, JNK, and NF- κ B pathways. 
Also, TGF- β  binding induces ALK5 phosphorylation in serine and/or tyrosine residues, then TGFBRs/Shc/Grb2/SoS complex is formed to, in 
turn, activate Ras/Raf1/MEK1,2/ERK1,2 signaling. On the other hand, BMPs bound to receptors also trigger the recruitment of XIAP, TAB1, 
and TAK1 to activate p38 and JNK signaling; also, in a non-elucidated way, BMPs can activate ERK1,2 signaling. Both TGF- β  and BMPs can 
activate PI3K to regulate the activity of AKT and small Rho GTPases. The activation of non-Smad signal pathways, in turn, initiates transcrip-
tional or nontranscriptional activities to regulate cellular responses.    
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(TAK1), MEKK4, and MEKK3/6 to produce the activation of 
JNK and p38, respectively, and further on regulate apoptosis, 
differentiation, or cell migration  (61, 62) . BMPs also activate 
MAPK cascades, mediated by XIAP/TAK-binding protein 1 
(TAB1)/TAK1, leading to the activation of p38 and JNK  (4) . 
Although BMPs also activate ERK signaling  (4) , the mecha-
nisms have not been elucidated so far. 

 Like MAPK pathways, the Rho-like GTPases, including 
RhoA, Rac, and Cdc42 are also key players in TGF- β  signal-
ing. TBRII phosphorylates the polarity protein PAR6, which 
regulates the local degradation of RhoA, that in turn pro-
duces a tight junction dissemble and a rearrangement of actin 
cytoskeleton with the consequence of epithelial architecture 
disintegration to fi nally induce the epithelial mesenchymal 
transition (EMT), an important developmental and disease-
associated process that is regulated by TGF- β  signaling  (63, 
64) . BMPs are also able to activate Rho-like GTPases, with 
BMP2 activating Cdc42 in neurons and myoblasts, and BMP7 
activate RhoA in fi broblasts  (65, 66).  

 As a fi nal example and similar to various growth factors, 
TGF- β  has been shown to rapidly activate PI3 kinase, lead-
ing to activation of the Akt kinase, in diverse cell systems. 
This activation appears to be independent of Smad2/3 activa-
tion  (67) , whereas the kinase activities of the TGF- β  recep-
tors are required for TGF- β -induced PI3K activation  (68) . 
Interestingly, the PI3K/Akt pathway may antagonize Smad-
mediated effects and protect cells from TGF- β -induced apop-
tosis and growth inhibition  (69, 70)   .

  TGF- β  superfamily in development 

and differentiation of stem cells 

 The TGF- β  superfamily has been implicated in the develop-
ment and maintenance of various organs in which stem cells 
play important roles. Stem cells are characterized by their 
ability to self-renew and to generate differentiated cells of 
a particular tissue and can be classifi ed into embryonic and 
adult stem cells. The TGF- β s have emerged as key players in 
self-renewal and maintenance of ESCs and adult stem cells in 
their undifferentiated state, the selection of cell fate, and the 
progression of differentiation along a lineage  (71) .  

  TGF- β  family signaling during  in vitro  

differentiation of embryonic stem cells 

 ESCs are derived from inner mass of blastocysts, multicel-
lular structures originating from four (human) to fi ve (mouse) 
cleavages of fertilized oocytes. The ESCs retain their capacity 
of self-renewal (symmetric division without differentiation to 
produce identical daughter cells) and the potential to be com-
mitted and to differentiate into all three germ layers, namely, 
the ectoderm, the mesoderm, and the endoderm and then into 
diverse cell types of the organism  (72 – 75) . 

 During  in vitro  differentiation, both murine and human 
ESCs can recapitulate embryonic development at early stages 
and can undergo multilineage differentiation to generate cells 
with well-differentiated phenotypes  (76) . This makes ESCs a 
unique model for understanding and studying early embryonic 

development of mammalian cells  in vitro  and opens new 
routes in pathophysiological biology and therapeutic applica-
tion in regenerative medicine.  

  TGF- β s in germ layer specifi cation 

 The TGF- β  superfamily plays a major role in the biology of 
development. These proteins are broadly expressed through-
out the body and regulate many cellular physiological pro-
cesses including cell fate, cell proliferation, cell senescence, 
and tissue repair  (77, 78) . The TGF- β  ligands are implicated 
in the self-renewal, maintenance, and regulation of differ-
entiation of ESCs  (78) . Differentiation of the three germ 
layers from ESCs is regulated by a combination of TGF- β  
superfamily ligands  (79) . Ectoderm specifi cation requires the 
TGF- β  response to be attenuated  (80)  and is differentiated 
from mouse and human ESCs in the absence of TGF- β  family 
signals, while primitive streak differentiation is induced by 
BMP and activin/Nodal  (81, 82) . Mesoderm is differentiated 
from the primitive streak region in the presence of BMP, and 
a medium level of activin/Nodal signals, and is enhanced by 
inhibition of TGF- β  signaling  (83, 84).  Differentiation into 
endoderm is induced by a high level of activin/Nodal signals 
in the absence of serum, whereas BMPs inhibit endoderm dif-
ferentiation induction  (85, 86)  (Figure  3  ) .

 Mesodermal derivatives are the hematopoietic, vascular, 
cardiac, myogenic, adipogenic, and chondrogenic cell lin-
eages developed from the mesoderm in embryos  (77) . Some 
examples of the involvement of TGF- β s in the differentiation 
of different mesodermal derivatives will be described next. 

  Cardiomyogenesis     TGF- β , BMP2, and BMP4 are all 
able to trigger expression of mesodermal and cardiac-
specifi c genes in mouse ESCs, such as Brachyury and Mef2c, 
respectively  (77) . Generation of cardiomyocytes from ESCs 
has been of interest for the treatment of cardiac diseases and 
hearth regeneration. ESC differentiation to cardiomyocytes 
has been done using embryonic body (EB) formation under 
a low concentration of activin (10 ng/ml)  (81) . In human 
ESCs, the treatment with activin followed by BMP4 was 
used to induce the differentiation into cardiomyocytes  (87) . 
BMP2-induced mesodermal and cardiac specifi cation is 
translated into a full cardiogenic differentiation program 
leading to an enrichment of cardiomyocytes within EB. The 
BMP-dependent cardiogenesis was observed when TGF- β  or 
BMP2 was added to ESCs prior to differentiation or in the 
early step of EB formation  (88) . Interestingly, a transient 
inhibition of BMP signaling by Noggin, between mesodermal 
induction and cardiomyocyte differentiation stages, appears 
to be a critical step for cardiomyogenesis determination  (89) . 
These observations suggested that a temporal and spatial 
BMP expression and signaling regulation are critical for 
cardiomyocyte induction.  

  Endothelial and hematopoietic differentiation     During 
embryonic development, the endothelial and hematopoietic 
lineages are derived from the yolk sac mesoderm  (77) . The 
hematopoietic cells and vascular endothelium cell progenitors 
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 Figure 3    Role of the TGF- β  superfamily in ESC germ layer specifi cation and maintenance. Adapted from  (78) .    

express Flk1 (vascular endothelial growth factor receptor-2, 
VEGFR2) and are called hemangioblast  (90) . In mouse ESCs, 
BMP4 in combination with VEGF induces hematopoietic 
differentiation  (82) . Endothelial differentiation has also 
been demonstrated in human ESC differentiation under 
BMP4 treatment  (91, 92) . TGF- β  inhibited the expression of 
endodermal, endothelial, and hematopoietic markers in human 
ESCs, in contrast to mouse ESCs in which TGF- β  reduced the 
level of endodermal markers but increased endothelial marker 
expression  (93) .  

  Endodermal derivatives     During gastrulation, under the 
infl uence of Nodal/Cripto and Wnt, primitive ectoderm cells 
migrate toward the primitive streak to form mesendoderm 
and subsequently defi nitive endoderm  (78) . Generation of 
endodermal derivatives from ESCs, as pancreatic and hepatic 
cells, have opened great expectations for the treatment of 
type I diabetes and liver diseases, respectively. In mouse 
ESCs, hepatic differentiation was developed by the treatment 
with activin alone to defi ne the endoderm committed, and 
specifi cation progenitors with BMP4, activin, and fi broblast 
growth factor were followed  (94) . In addition, the addition 
of hepatocyte growth factor (HGF), a general hepatotropic 
cytokine, may guide fi nal maturation of differentiated 
hepatocytes  (95) .  

  Ectodermal derivatives     Neural lineages and skin are 
derived from the ectoderm. ESC-derived ectoderm can give 
rise to neural (neurons, oligodendrocytes, and astrocytes) and 
epidermal lineage cells. The neural differentiation of mouse 
ESCs required the inhibition of BMP signaling in the ectoderm, 
whereas BMP stimulated the formation of epidermis. Moreover, 
activation of Nodal signals suppresses neural differentiation 

from mouse ESCs  (96) . Interestingly, the dual inhibition of 
Smads by using a combination of Noggin, a BMP antagonist 
usually involved in the induction of neural lineages  (97, 98) , 
and SB431542, a chemical inhibitor of Lefty/activin/TGF- β  
pathways by blocking phosphorylation of the ALK4, ALK5, 
and ALK7 receptors, promotes neural conversion of human 
ESCs and induced pluripotent stem cells  (99) . 

 Thus, these fi ndings suggest that TGF- β  family inhibits 
the commitment of ESCs to neuroectoderm. Interestingly, 
although BMP signals inhibit neural differentiation at the 
early gastrula stages, the same signals induce differentia-
tion of neural crest cells at the later stages in embryos  (100) . 
These fi ndings show that BMP signals induce the differentia-
tion of multiple types of ectodermic cells in a stage-dependent 
fashion. 

 Extensive studies in  Xenopus  and mouse established the 
TGF- β  signaling pathway as a major regulator during embry-
onic development. More recent studies have demonstrated the 
importance of this pathway in maintaining pluripotency and 
self-renewal in human ESCs  (78, 101) .   

  TGF- β  superfamily in adult mesenchymal stem cell 

differentiation 

 The TGF- β  family signaling is of special relevance in cell 
differentiation of adult MSCs. The TGF- β  family signaling 
directs mesenchymal differentiation, e.g., to muscle, bone, 
cartilage, and fat differentiation, and are important mediators 
in the maintenance of stem cell pluripotency and the engage-
ment and selection of differentiation pathways. The TGF- β  
ligands are also important in determining the direction and 
extent of mesenchymal differentiation  (3, 79) . 

 MSCs are an attractive cell source for application in regen-
erative medicine due to their excellent proliferation and 
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differentiation capacities. MSCs are present in various tissues 
like bone marrow [bone marrow mesenchymal stem cells 
(BMMSCs)], adipose tissue, muscle, synovial tissue, liver, 
dermis, and others  (102) . 

 TGF- β  is considered as a mitogenic factor for MSCs with a 
role in the maintenance of self-renewal and their undifferenti-
ated and multipotent stem state, although in some conditions, 
it can induce differentiation. On the other hand, BMPs are 
considered as differentiation factors due to their capacity to 
induce MSC differentiation and/or redirect the differentiation 
commitment of MSCs  (3, 79) . 

 Human MSCs derived from bone marrow can be expanded 
more than a billion-fold in culture without losing their stem 
cell capacity. However, as the molecular mechanisms govern-
ing proliferation and differentiation of MSCs are not fully 
understood, their practical use is currently limited  (79) . 

 Next, we will describe the role of the TGF- β  superfamily 
in differentiation toward myogenesis, chondrogenesis, osteo-
genesis, and adipogenesis of adult MSCs (Figure  4  ). 

  Myogenesis     Skeletal muscle cells differentiate from 
uncommitted mesenchymal cells through a complex set of 
differentiation steps that involve commitment to the myoblast 
lineage, progression of differentiation with expression 
of muscle cell-specifi c proteins, and fusion of myoblasts 

into multinucleated myocytes or myofi ber  (103, 104) . 
TGF- β  has been shown as a potent inhibitor of myogenic 
differentiation. TGF- β  inhibits myotube formation without 
affecting cell proliferation or inducing osteoblastogenesis. It 
has been demonstrated that TGF- β  inhibits muscle formation 
via direct interaction of Smad3 with MyoD transcription 
factor  (105, 106) . Myostatin/growth development factor 8 
(GDF-8), which is expressed in the myotome layer during 
development and then is primarily expressed in muscle cells, 
strongly negatively regulates muscle differentiation  (107) . 
Targeted deletion of the GDF-8 gene in mice provokes both 
hypertrophy and hyperplasia of muscle fi bers resulting in 
a  > 200 %  increase in skeletal-muscle mass  (107) . Consistent 
with these phenotypes, myostatin inhibits the proliferation 
and differentiation of myoblasts, and Gdf8-/- myoblasts and 
satellite cells (muscle progenitor cells interspersed between 
myofi bers) proliferate and differentiate more rapidly than 
wild-type cells  (3) . Similar to TGF- β , GDF8 exerts its effect in 
myogenesis through Smad3-dependent intracellular signaling 
cascade  (107, 108) . 

 Interestingly, BMPs are also potent inhibitory molecules 
of myogenesis, but conversely to TGF- β  and GDF8, they 
provoke growth inhibition accompanied with differentiation 
toward osteoblast lineage  (3, 105) . BMP signaling activates 
the expression of inhibitor of DNA binding 1 (Id1), and Id1 
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inhibits the activity of myogenic basic helix-loop-helix tran-
scription factors  (3) . After intramuscular injection of BMP, 
ectopic cartilage and bone tissue is formed, and in this context, 
it is thought that BMP induces satellite cells and myogenic 
precursors to differentiate into chondrocytes or osteoblasts 
 (109) . Intriguingly, BMP4 is secreted by myogenic precursor 
cells; the secreted BMP4 is functional and induces the expres-
sion of BMP targets Id1 and Id3  (110, 111) . 

 Inappropriate BMP signaling, resulting in ectopic osteo-
genesis may also provide the cellular basis for fi brodysplasia 
ossifi cans progressiva, a rare genetic disorder of connective 
tissue characterized by progressive postnatal endochondral 
ossifi cation of tendons, ligaments, fascia, and striated muscle. 
In affected individuals, osteogenic lesions often arise spon-
taneously, but they can also be induced by surgery, trauma, 
or intramuscular injections  (3) . Some evidence suggests that 
increased BMP signaling is at the basis of this disease as a 
result of either increased BMP4 expression  (111)  or caused by 
activating mutation in the BMP receptor ALK-2 gene  (2) .  

  Chondrogenesis     Cartilage formation is a strictly regulated 
process. Differentiation of pre-chondrocytes into differentiated 
chondrocytes involves a chondroblast phase characterized by 
high cell proliferation and deposition of cartilage-specifi c 
molecules, such as type II collagen and aggrecan. The stage 
of differentiated chondrocytes is in the growth plate followed 
by chondrocyte terminal differentiation and endochondral 
ossifi cation  (112) . 

 TGF- β  plays a role in all phases of chondrogenesis, mes-
enchymal condensation, chondrocyte proliferation, extracel-
lular matrix deposition, and fi nally in terminal differentiation. 
TGF- β  is the key initiator of chondrogenesis by mesenchy-
mal precursor cells  (112) . In the early stages of chondrocyte 
differentiation, TGF- β  appears to be mainly a stimulator. 
However, this is in contrast with the actions of this growth 
factor in the late stages of chondrocyte differentiation, when 
TGF- β  inhibits chondrocyte terminal differentiation. TGF- β  
has been shown to stabilize the phenotype of the prehyper-
trophic chondrocytes  (113) . Withdrawal of TGF- β  from the 
culture medium is essential to further differentiate human 
MSCs to hypertrophic chondrocytes  (114) . TGF- β  treatment 
initiates and maintains chondrogenesis of mesenchymal pre-
cursor cells through the stimulatory activities on MAPKs and 
modulation of Wnt signaling  (115) . Conversely, Smad signal-
ing seems to be essential for the inhibition of terminal differ-
entiation of chondrocytes by TGF- β   (116) . 

 Chondrogenic differentiation  in vitro  is often achieved in 
three-dimensional or in high-density culture conditions, in a 
defi ned serum-free medium containing TGF- β s to express the 
chondrogenic potential of MSCs. TGF- β 2 and - β 3 have been 
known to be superior to TGF- β 1 in promoting chondrogen-
esis, as is achieved by higher accumulation of glycosamino-
glycans  (117, 118) . 

 The BMPs also modulate MSC chondrogenesis; they can 
induce or enhance differentiation by synergizing with other 
growth factors and cytokines  (119) . In combination with TGF-
 β 3, BMP2 was shown to be more effective to enhance MSC 
chondrogenesis than BMP4 and -6  (120) . Short treatment 

of MSCs with BMP2 stimulated Runt-related transcription 
factor 2 (Runx2) and osteopontin expression. Interestingly, 
chondrogenic differentiation induced by BMP2 was inhibited 
by TGF- β 1 co-treatment, suggesting that an appropriate com-
bination of treatment between TGF- β  family members might 
achieve a proper differentiation phenotype  (119, 121) . 

 BMP4 stimulates chondrogenesis, both  in vitro  and  in vivo  
and is a potential therapeutic agent for cartilage regeneration. 
The use of BMP4 can successfully induce chondrogenesis 
 in vitro  in both embryonic and adult stem cell populations 
derived from bone marrow, periosteum, adipose tissue, and 
muscle, particularly in a three-dimensional pellet culture sys-
tem  (122) . It has recently been reported that BMP7 can also 
induce the differentiation of BMMSCs into cartilage cells 
 (123) . 

 Osteogenesis Osteogenesis is a well-orchestrated set 
of cellular processes, which are strictly directed by various 
soluble factors such as cytokines and extracellular matrix 
molecules  (116) . The  in vitro  osteogenic differentiation of 
MSCs is achieved using  β -glycerophosphate as a soluble 
component of the culture medium  (124) . A monolayer 
of MSCs cultured in serum-rich medium containing  β -
glycerophosphate and ascorbic acid-2-phosphate exhibits 
an upregulation of alkaline phosphatase (ALP) activity and 
deposition of mineralized matrix  (124) . 

 TGF- β  has been reported to exhibit both positive and nega-
tive effects on bone differentiation. Exogenously injected 
TGF- β  induced bone formation in periosteum  (125, 126) , 
whereas transgenic mice overexpressing TGF- β 2 in bone 
exhibited an osteoporotic phenotype characterized by increased 
activities of osteoblasts and osteoclasts and impaired matrix 
mineralization by osteoblasts  (127) ; TGF- β  inhibits osteo-
blast differentiation through modulation of the expression and 
transcriptional activity of Runx2  (128) . Conversely, TGF- β  
cooperates with Wnt signaling and promotes osteogenesis of 
human MSCs. Knockdown of  β -catenin with siRNA stimu-
lated ALP activity and antagonized the inhibitory effects of 
TGF- β 1 on bone sialoprotein expression. TGF- β 1 activates 
 β -catenin signaling via ALK5, Smad3, PKA, and PI3K path-
ways and modulates osteoblastogenesis via ALK5, PKA, and 
JNK pathways in human MSCs  (129) . 

 BMPs, especially BMP2, BMP4 BMP6, BMP7, and 
BMP9, have been shown to enhance osteogenic differen-
tiation of MSCs  (21, 130) . Recombinant human BMP2 and 
BMP7 are used clinically to augment bone formation in spinal 
fusion and many other applications in which bone induction 
is desired  (2, 131) . BMP6 circulates in the normal human 
plasma and is produced by BM-MSCs prior to differentia-
tion into osteoblasts  (132) . BMP7 induced the expression of 
osteoblastic differentiation markers such as ALP activity 
and accelerated calcium mineralization  (133) . Wnt3A and 
BMP9 enhanced each other ’ s ability to induce ALP in MSCs. 
Interactions between  β -catenin and Runx2 play an important 
role in BMP9-induced osteogenic differentiation of MSCs 
 (133) . 

 Contrary to other BMPs, BMP3 and BMP 13/GDF6 have 
been shown to inhibit bone formation. BMP3, by inhibiting 
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the activity of BMP2, has been suggested as useful for the 
treatment of osteopetrosis and other diseases characterized by 
bone hypermineralization, while BMP13 demonstrated decel-
eration of calcium mineralization of the extracellular matrix 
and reduced ALP induction in BMMSCs  (122, 134) . 

 Interestingly, inhibition of TGF- β  signaling by the small 
chemical inhibitor SB431542 promotes osteoblastic differen-
tiation of MSCs induced by BMP-4, suggesting that inhibition 
of endogenous TGF- β  signaling with activated BMP signaling 
directs differentiation of human MSCs to osteoblasts  (135) . 
However, TGF- β 1 was shown to enhance BMP2-induced 
ectopic bone formation, probably by the increment of BMP 
receptor BMPR-IB/ALK6 as suggested by  in vitro  stud-
ies  (136) . These observations indicate a strong and intricate 
interplay between TGF- β  and BMP signaling in osteoblast 
differentiation  (133) . 

 Finally, the pharmacological inhibition of Rho-ROCK1 
enhances BMP induction of osteogenesis both  in vivo  and 
 in vitro , suggesting its clinical applicability for stimulating 
bone formation  (137) .  

  Adipogenesis     Adipocytes arise from MSCs, originally 
derived from pluripotent ESCs. Progenitor cells do not 
accumulate lipids but express the transcription factor 
peroxisome proliferator-activated receptor  γ  (PPAR γ ), an 
early marker and key modulator of adipogenesis. Adipogenic 
differentiation of mesenchymal cells into fully differentiated 
adipocytes is driven by the cooperation of PPAR γ  with Ccaat-
enhancer-binding proteins (C/EBP α ) to express proteins that 
allow adipocyte differentiation, including those involved in 
lipid drop cytoplasmic accumulation  (138 – 140) . 

 TGF- β 1 exerts a great infl uence in adipogenesis  (140) .  In 
vitro  studies show that TGF- β 1 inhibits the early stages of 
3T3-L1 (mouse cells that resemble preadipocytes) differen-
tiation into mature adipocytes  (141) , promotes the prolifera-
tion of progenitor cells  (142) , and hampers lipid accumulation 
 (143) . The inhibition of differentiation by TGF- β 1 is mainly 
mediated by Smad3. Increased activity of Smad3 inhibits adi-
pogenic conversion, whereas interfering with Smad3 function 
enhances and accelerates adipose conversion in culture and 
confers resistance to inhibition of adipogenic differentiation 
by TGF- β  (3, 103, and 142). 

 The effects of BMPs on adipogenesis appear to depend 
on the stage of cell development and the dosage of differ-
ent BMP ligands  (141, 144) . BMP2 was shown to inhibit 
adipocyte differentiation of bone marrow stroma cell lines 
and 3T3-F442A preadipocyte cells, while stimulating adipo-
genesis in 3T3-L1 preadipocyte cells by induction of PPAR γ  
mainly mediated by Smad-1/5/8 and p38 signal pathways 
 (145, 146) . This discrepancy may relate to differences in 
cell systems and/or culture conditions, for example, relative 
levels of ligand for PPAR γ , the central transcription factor in 
the adipocyte differentiation pathway, in the culture medium 
 (145) . Adipogenic effects of BMP2 are mediated by the tran-
scriptional coactivator Schnurri-2 (Shn-2). In experiments 
with Shn-2-null mice and consequently reduced BMP2 sig-
naling, there was a poor differentiation of embryo fi broblasts 
into adipocytes and reduced adipose mass. Upon BMP2 

treatment, Shn-2, in cooperation with Smad1/4 and C/EBP α , 
induced the expression of PPAR γ 2, a key transcription fac-
tor for adipocyte differentiation  (147) . BMP4 promotes MSC 
commitment to the adipose lineage and induces adipogenesis 
in a dose-dependent manner. This was demonstrated by treat-
ing C3H10T1/2 cells with recombinant human BMP4  (148) . 
BMP3 is known as a negative regulator of osteogenesis.  In 
vitro  models revealed that BMP3 stimulates the proliferation 
of both C3H10T1/2 and 3T3-L1 preadipocytes via the TGF- β /
activin pathway, while it does not promote the commitment of 
MSCs or the differentiation of preadipocytes  (149) . BMP7 
via p38 MAPK activates a full program of brown adipogen-
esis including increased expression of UCP-1, C/EBPs, and 
PPAR γ  and blockade of adipogenic inhibitors such as necdin, 
preadipocyte factor-1 (Pref-1), and Wnt10a. It also induces 
early modulators of adipogenesis, such as PPAR γ  coactiva-
tor 1 (PGC-1) and mitochondrial biogenesis  (140, 150) .  In 
vivo , the BMP7-expressing adenoviruses injection signifi -
cantly increased brown adipose tissue, concomitantly with an 
increase in energy expenditure and weight loss. Conversely, 
BMP7 knockout mice developed 50 – 70 %  less brown adipose 
tissue. BMP7 was shown to induce the generation of brown, 
but not white, adipose tissue from MSCs in the absence of the 
normally required hormonal induction cocktail  (150) . 

 GDF8/myostatin competitively inhibits BMP7 and blocks 
the expression of late differentiation markers  (151) . MSCs 
in mice treated with GDF8 exhibit a gene profi le consistent 
with immature adipocytes, with increased insulin sensitiv-
ity, glucose oxidation, and resistance to diet-induced obesity 
 (152) . GDF8 inhibits MSCs and preadipocyte differentiation 
through Smad3  (153) . BMP3b/GDF10 suppresses adipogen-
esis in 3T3-L1 cells. Studies in these cells demonstrated that 
BMP3b/GDF10 is expressed at higher levels in preadipo-
cytes than in mature adipocytes. Knockdown of endogenous 
BMP3b/GDF10 enhances adipogenesis, while addition of 
exogenous BMP3b/GDF10 inhibits adipocyte differentiation 
by suppressing the expression of PPAR γ  and C/EBPs. Also, 
the increased levels of BMP3b/GDF10 in mesenteric adipose 
tissue of mice in diet-induced obesity indicate that BMP3b/
GDF10 may function as a feedback mechanism to inhibit adi-
pogenesis in abdominal obesity  (154) . 

 In addition to their effect on MSCs, BMPs can also redirect 
cells that have initiated differentiation along the adipogenic 
lineage to osteoblastic differentiation. This raises the possi-
bility that adipose stroma cells could be used for cell-based 
therapy in bone repair  (3) . 

 It is generally accepted that TGF- β  inhibits MSC differen-
tiation along the osteoblast, skeletal myoblast, and adipocyte 
lineages and stimulates the proliferation and maintenance of 
stem cells, whereas BMPs stimulate the selection and progres-
sion of differentiation along defi ned mesenchymal lineages 
as well as redirection of MSCs differentiation toward bone, 
i.e., inhibiting myogenesis or adipogenesis differentiation and 
redirecting cells toward the osteoblast lineage. 

 Interestingly, TGF- β  is a potent inductor of epithelial-
mesenchymal transition (EMT), a biological process that 
allows a polarized epithelial cell to undergo multiple bio-
chemical changes that enable it to assume a mesenchymal 
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cell phenotype  (155) . EMT has been associated with embryo 
implantation, embryogenesis, and organ development, as 
well as chronic infl ammation, organ fi brosis, and cancer. 
Recently, it has been described that EMT-derived cells also 
have a functional resemblance to MSCs derived from human 
bone marrow, including a similar antigenic phenotype and 
the ability to differentiate into multiple cell lineages  (156) . 
This process can be antagonized by BMP, as demonstrated 
in mouse models of fi brosis  (155) . In addition, TGF- β  can 
induce endothelial cells associated with microvasculature to 
contribute to the formation of mesenchymal cells, through the 
endothelial mesenchymal transition (ENdMT), process that 
can occur during pathological situations and during devel-
opment as well  (155, 157) . However, the EndMT-derived 
mesenchymal cell ability to differentiate into different lin-
eages, like MSCs, remains to be elucidated. Future studies 
may consider using the EMT and EndMT cellular processes, 
by modulating TGF- β , in the development of therapeutics 
aimed at the regeneration of damaged tissues. However, as 
these processes are also involved in pathological circum-
stances, several cautions are necessary to be considered prior 
to future use in regenerative medicine.    

  Expert opinion 

 The biology of both embryonic stem and adult MSCs has 
opened new avenues and tremendous expectations both in the 
biology of development of human diseases and in tissue engi-
neering for regenerative medicine. From the last two decades, 
an increasing number of laboratories are making efforts to 
reveal the biochemical, molecular, and cellular regulatory 
mechanisms that underlie the renewal and differentiation 
of stem cells. It is now established that TGF- β  superfamily 
members participate in almost all steps of the fate decision 
of stem cells. The family comprises a variety of growth fac-
tors that feature disparate functions in the biology of ESCs. 
These factors regulate both the maintenance of stem cells in 
their undifferentiated and multipotent stem state,  ‘ stemness ’  
 (158) , and various cell differentiation pathways. The remark-
able efforts made by researches using a combination of cel-
lular and molecular systems have contributed to our current 
knowledge of the modulatory mechanisms that provide the 
diversity of TGF- β  signaling system. Using this information, 
we will be able to control stem cell growth, differentiation, 
expansion, and plasticity, which in combination with other 
growth factors and cytokines may improve cellular therapy 
and regenerative medicine for human diseases. Although 
extraordinary advances in the understanding of TGF- β  sig-
naling have been done, it is still necessary to specify the indi-
vidual role of many of the members of the family, as well 
as the transcriptional activities triggered by Smad and non-
Smad pathways in the maintenance of  ‘ stemness. ’  In addition, 
TGF- β /BMP pathways have now been shown to directly infl u-
ence microRNA (miRNA) biogenesis to mediate substantial 
cellular phenotypes  (159) . The miRNAs are crucial for self-
renewal and behavior of ESCs and MSCs  (160, 161) . This 
opened a new line of studies and expanded the possibilities 

for the understanding of the regulation of stem cell function 
and fate by the TGF- β  superfamily. 

 High-throughput drug screening has been used to fi nd 
chemical compounds that selectively regulate the TGF- β  
family system, and some of them are currently being used 
in clinical trials to treat TGF- β -implicated human diseases. A 
crucial discovery of new compounds with high specifi city has 
made it possible to fi nely target TGF- β s expression, receptor 
binding and kinase activities, intracellular signal transduction 
and gene transcription to modulate the TGF- β  family effects 
on stem cell biology and differentiation. This may allow the 
development of new therapeutic approaches for the treatment 
of diseases involving cellular, tissue, and organic disorders. 
Such are developmental diseases and degenerative disor-
ders: muscular dystrophy, arthritis, which could be treated by 
fomenting new cartilage formation; osteoporosis, by prevent-
ing bone loss and stimulating local osteogenesis; obesity, by 
stimulating brown adipose differentiation or preventing white 
adipose tissue formation, among a number of other impair-
ments and conditions. Also, by controlling the TGF- β  activi-
ties, it might be possible to drive stem cell differentiation to 
produce desirable cell types, tissues, and organs to use in 
tissue engineering for regenerative medicine and to improve 
human health and quality of life. Considering the number of 
members of the TGF- β  superfamily, their receptors, different 
signaling pathways, as well as the possibilities to exploit this 
superfamily in the use of stem cells in all states of human 
body development and in a number of diseases, an integration 
of all statements of biology, medicine, and bioengineering 
is essential to address different questions and to gain under-
standing for the use of stem cells and the TGF- β  superfamily 
in the treatment of diseases and human body regeneration.  

  Outlook 

 Although it is diffi cult to predict the ultimate utility of stem 
cell-based therapy, it is possible to speculate that by manipu-
lating the TGF- β  superfamily system and in concordance with 
other growth factors, cytokines, and surgical regulation of 
intracellular signaling and gene expression, it may be that the 
future will hold a revolutionary new medicine in the form of 
specifi c on-demand MSC cell therapies for particular human 
diseases and regenerative medicine.  

  Highlights 

    The members of the TGF- • β  superfamily are implicated in 
morphogenesis, embryonic development, MSC differen-
tiation, immune regulation, wound healing, infl ammation, 
and cancer.  
  The TGF- • β  superfamily of secreted growth factors com-
prises more than 40 ligands including TGF- β s, BMPs, 
GDFs, and MIFs.  
  The TGF- • β  superfamily members bind to their cell sur-
face receptors to form heteromeric complexes. Dimers of 
type I (ALK1-7) and type II receptors (TGFBR2, BMPR2, 
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ACVR2, ACVR2B, and AMHR2) serine/threonine kinase 
receptors interact with the dimeric ligands.  
  The TGF- • β  superfamily-activated receptor complexes 
transduce intracellular signaling by the type I receptor 
phosphorylation of Smads in their carboxy-terminal do-
mains. The TGF- β /activin branch signals to the nucleus 
mainly through Smad 2, 3, and the BMP/GDF branch sig-
nals through Smad 1, 5, and 8.  
  TGF- • β  and BMP activate intracellular signaling named 
as non-Smad pathways, such as ERK1, 2, p38, and JNK 
MAPKs.  
  The TGF- • β  superfamily members are key players in the 
self-renewal and maintenance of ESCs and somatic stem 
cells in their undifferentiated state, the selection of cell fate, 
and the progression of differentiation along a lineage.  
  The TGF- • β  ligands play an important role in the self-
renewal, maintenance, and regulation of differentiation of 
ESCs. Differentiation of the three germ layers (mesoderm, 
endoderm, and ectoderm) from ESCs is regulated by a 
combination of the TGF- β  superfamily ligands.  
  TGF- • β  is considered as a mitogenic factor for MSCs with a 
role in the maintenance of self-renewal of MSCs, although 
in some conditions, it can induce differentiation. On the 
other hand, BMPs are considered as differentiation factors 
due to their capacity to induce MSC differentiation and/or 
redirect the differentiation commitment of MSCs.  
  TGF- • β  is a potent inductor of EMT, a biological process that 
allows differentiated cells to undergo multiple biochemical 
changes that enable them to assume a mesenchymal cell 
phenotype, similar to MSCs derived from human bone 
marrow, including a similar antigenic phenotype and the 
ability of differentiation into multiple cell lineages. The 
EMT process can be antagonized by BMPs. These fi ndings 
propose EMT as a new way and source to produce MSCs 
for use in regenerative medicine.  
  It is necessary to specify the individual role of many of the • 
members of the TGF- β  family, as well as the transcriptional 
activities triggered by Smad and non-Smad pathways in the 
maintenance of  ‘ stemness ’  of MSCs.  
  The modulation of microRNA biogenesis by the TGF- • β  
superfamily members opened a new line of studies and 
expanded the possibilities for the understanding of the 
regu lation of stem cell function and fate.      
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