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A B S T R A C T

Transforming growth factor-b1 (TGF-b1) stimulates the extracellular matrix degrading pro-

teases expression and cell migration in order to enhance cancer cells malignancy. In the

present study, we analysed the role of TGF-b1-induced Smad3 activation in the urokinase

type plasminogen activator (uPA) production, as well as in cell migration and E-cadherin

downregulation in transformed PDV keratinocyte cell line. TGF-b1 signalling was interfered

by the chemical inhibitor of the TGF-b1-receptor 1 (ALK5), SB505124, and the specific Smad3

inhibitor, SiS3. Our results showed that TGF-b1 stimulates uPA expression directly through

ALK5 activation. The inhibition of Smad3 strongly reduced the capacity of TGF-b1 to stim-

ulate uPA expression, in parallel decreasing the uPA inhibitor plasminogen activator inhib-

itor type 1 (PAI-1) expression. In addition, the transient expression of dominant negative

Smad3 mutant inhibited the TGF-b1-induced uPA promoter transactivation. Moreover,

Smad3)/) mouse embryonic fibroblasts were refractory to the induction of uPA by TGF-

b1. The inhibition of both ALK5 and Smad3 dramatically blocked the TGF-b1-stimulated

E-cadherin downregulation, F-actin reorganisation and migration of PDV cells. Taken

together, our results suggest that the TGF-b1-induced activation of Smad3 is the critical

step for the uPA upregulation and E-cadherin downregulation, which are the key events

preceding the induction of cell migration by TGF-b1 in transformed cells.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction receptors to activate Smads and non-Smads dependent sig-
Transforming growth factor-b1 (TGF-b1) has been postulated

to have a dual role in tumour progression, acting as a tu-

mour suppressor in early stages of carcinogenesis, and

exerting a pro-oncogenic role in the last steps of the meta-

static disease.1 TGF-b1 induces the epithelial mesenchymal

transition (EMT) of transformed cells, which contributes to

tumour invasion and metastasis, and is frequently over-ex-

pressed in carcinoma cells.2–5 TGF-b1 binds at cell surface
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nal pathways.6

To invade and metastasise, cancer cells traverse the sur-

rounding extracellular matrix (ECM) expressing a set of ECM

degrading proteases, such as urokinase type plasminogen

activator (uPA), which play a key role in cells’ invasion and

metastasis. uPA converts plasminogen to plasmin, which in

turn can degrade a wide variety of ECM components and

enable the tumour cells to penetrate the basement

membrane.7,8 In addition, uPA also modulates cell adhesion,
.
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proliferation and migration.9,10 Consistent with their role in

cancer dissemination, a high level of uPA correlates with the

adverse patient outcome.11,12

The signalling pathways through which TGF-b exerts its ef-

fects on cancer cell migration and invasion are gradually being

elucidated. As previously reported, both Smad2 and Smad4 act

as dominant tumour suppressive factors in skin carcinogene-

sis. Smad3 is implicated in both EMT induction and pro-meta-

static effects of TGF-b1 through facilitating TGF-b1-induced

activation of ERK1,2 and JNK, and participating in TGF-b1-in-

duced keratinocytes migration.13–15 Although it has been

reported that TGF-b1 stimulates uPA expression through a ple-

thoric set of signal transduction pathways, such as ILK, NFkB,

ERK1,2 and JNK,16–19 the involvement of Smad signalling is not

well elucidated yet. There is divergent information about the

participation of Smad4 in the regulation of uPA expression

by TGF-b1. In breast cancer cells, Smad4 is required for TGF-

b1-induced uPA, whereas exogenous expression of Smad4 in

colon cancer cells reduces uPA production.20,21

We investigated the signalling events involved in the re-

sponse of transformed epidermal keratinocytes (PDV cell line)

to TGF-b1. In contrast to normal keratinocytes, PDV cells are

refractory to TGF-b1-induced terminal differentiation. Under

chronic TGF-b1 exposure, PDV cells undergo an epithelial–

mesenchymal conversion, which can be associated with the

transition to a poorly differentiated tumour phenotype and

its increased metastatic ability in vivo.2 The early response

of PDV cells to TGF-b1 is enhanced expression/secretion of

uPA, concomitant with the increment in cell migration and

invasion.18,22 In this report, we examined whether ALK5/

Smad3 axis mediates the stimulation of uPA synthesis, E-cad-

herin expression and cell migration by TGF-b1 in transformed

PDV keratinocytes.

2. Material and methods

2.1. Plasmids and antibodies

The p-4.8 uPA–Luc luciferase reporter plasmid ()4.8 kb of mur-

ine uPA promoter) was provided by Dr. Munoz-Canoves (CRG,

Spain). The proximal mouse E-cadherin–Luc ()178 to +92)

promoter was kindly provided by Dr. Cano (IIB–CSIC, Spain).

Dominant negative mutant Smad3 was kindly provided by

Dr. Bishop (University of Auckland, New Zealand). Dominant

negative Smad2 was kindly provided by Dr. Balmain (Cancer

Research Institute, UCLA, United States of America). Anti-E-

cadherin, anti-tubulin and secondary antibodies coupled with

HPO or FITC were from Sigma (St. Louis, Mo). Anti-p-Smad2 and

anti-p-Smad3 were purchased from Calbiochem (Darmstadt,

Germany). Anti Smad2,3 (sc-8332) was from Santa Cruz Bio-

technology (CA, USA). Phalloidin-coupled to Alexa Fluor 594

to detect F-actin was from Molecular Probes (Eugene, OR, USA).

2.2. Cell culture and transfection procedures

PDV cells, kindly provided by Dr. Quintanilla (IIB–CSIC, Spain),

were cultured in Ham’s F-12 medium in the presence of 10%

foetal bovine serum (FBS) and antibiotics. For TGF-b treat-

ments, human recombinant TGF-b1 (R&D Systems GmbH,

Germany) was used as described. The Smad3 inhibitor, SiS3,
and ALK5 inhibitor, SB505124 from Sigma–Aldrich (St. Louis,

Mo) were dissolved in DMSO and used at 2.5 and 1.0 lm,

respectively. Wild-type and Smad3-deficient (Smad3)/))

mouse embryonic fibroblasts (MEFs)23 were cultured in DMEM

with 10% FBS and antibiotics. Transient transfections to ana-

lyse uPA and E-cadherin promoters’ transactivation were per-

formed as previously described.24 Firefly luciferase activity

(Promega, Adison, WI, USA) was standardised for b-galactosi-

dase activity (Tropix, Bedford, MA, USA).

2.3. Migration and zymography assays

The motility of PDV cells was analysed by in vitro wound heal-

ing assay. ‘Wounded’ cell cultures were allowed to grow for

24 h in the absence or presence of TGF-b1, SiS3 and

SB505124. uPA activity was assayed in serum-free medium

conditioned for 24 h in cell cultures treated or not with

TGF-b1, SiS3 and SB505124, subjected to SDS–PAGE and case-

in–zymography, as reported.18,22

2.4. Immunofluorescence and immunoblotting

Detection of E-cadherin and F-actin by fluorescence analysis

was performed as previously reported.24,25 E-cadherin expres-

sion and Smad3 activation were analysed by Western blot as-

says as previously described.24

2.5. RT-PCR

Two micrograms total RNA isolated from PDV cells was re-

verse transcribed with Superscript II (Invitrogen, Carlsbad,

Ca). PCR products were obtained after 30–35 cycles of amplifi-

cation with an annealing temperature of 55–60 �C. uPA, PAI-1,

E-cadherin, Snail1 and GAPDH primer sets were reported pre-

viously.24 Smad2 and Smad3 primers sets were reported.26

2.6. Densitometry analysis

The gels bands obtained by Zymography, Western blot and

RT-PCR were quantified using NIH-Image J software. Values

expressed are relative to untreated cells, to which an arbitrary

value of one was given.

2.7. Statistics

Data are given as means (±SEM) from at least three indepen-

dent experiments. Asterisks (*) denote significant differences

at a value of p < 0.05 for experimental groups being compared

with control in the absence of TGF-b1, while (#) denote signif-

icant differences at value p < 0.05 for experimental groups

being compared with cells in the presence of TGF-b1 only,

as determined by student’s t-test.

3. Results

3.1. TGF-b1 enhances uPA expression and activates
Smad3 in PDV cells

We previously demonstrated that TGF-b1 potently stimulates

uPA production in PDV cells after 48 h22 by transcriptional
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activation of the uPA mRNA. It is shown in Fig. 1A that

TGF-b1 provokes a rapid increment of uPA mRNA, visible

already after 6 h of treatment, as determined by RT-PCR.

Since the mRNA expression remained high up to 4 d after

TGF-b1 treatment (data not shown), we chose a 24 h TGF-

b1 treatment to determine uPA mRNA in the subsequent

experiments.

Next, we determined the capacity of TGF-b1 to activate

Smad2 and Smad3 in our cell model. Western blot analysis re-

vealed that TGF-b1 induces the phosphorylation of both

Smad2 and Smad3 15 min after treatment onwards (Fig. 1B).

Activation of Smad3 in response to TGF-b1 was strongly
Fig. 1 – Transforming growth factor-b1 (TGF-b1) induces

urokinase type plasminogen activator (uPA) expression and

activates Smad2, 3 in PDV cells. (A) Expression of uPA mRNA

determined by RT-PCR after treatment with TGF-b1 at 5 ng/ml

at times indicated, (h) hours. GAPDH was used as a control

for mRNA loading. (B) Western blot analysis of the Smad2

and Smad3 activation by TGF-b1. Cells were treated with

5 ng/ml of TGF-b1 during times indicated. Total Smad2, 3 was

used to confirm the same amount of protein in each sample.

(C) Western blot analysis of Smad2 and Smad3 activation in

PDV cells treated with TGF-b1 for 30 min in the presence or

absence of Smad3 inhibitor, SiS3, or ALK5 inhibitor,

SB505124 (SB).
inhibited by the Smad3 inhibitor (SiS3), while Smad2 phos-

phorylation was not affected. The treatment with ALK5 inhib-

itor (SB505124) provoked a dramatic inhibition of TGF-b1-

induced Smad2 and Smad3 activation (Fig. 1C).
3.2. Smad3 and ALK5 mediate TGF-b1-induced uPA
expression

Since Smad3 plays a critical role in the cells malignance in-

duced by TGF-b, we further analysed whether ALK5–Smad3

axis modulates uPA expression induced by TGF-b1.

PDV cells were therefore treated with SiS3 and SB505124. As

shown in Fig. 2A and B, TGF-b1-induced uPA activity and

mRNA production were highly reduced in the presence of

Smad3 or ALK5 inhibitor. Interestingly, the expression of uPA

inhibitor PAI-1 mRNA was also inhibited by both inhibitors.

Additionally, the transactivation of the uPA promoter was also

reduced by both mentioned inhibitors, as well as by transient

ectopic expression of the Smad3 dominant negative mutant,

while Smad2 negative mutant did not modify TGF-b1-induced

uPA transactivity (Fig. 2C). Finally, the requirement of Smad3

for TGF-b1-induced uPA expression was confirmed by using

Smad3)/) MEFs (Fig. 3B). No uPA expression was noticed in

Smad3)/) cells in response to TGF-b1 when compared to nor-

mal MEFs (Fig. 3A).
3.3. Cell migration and E-cadherin delocalisation/
downregulation are Smad3 dependent

Considering that uPA improves the capacity of tumour

cells to penetrate the basement membrane, and then facil-

itates migration and invasiveness of cancer cells,8 we next

tested whether Smad3 signalling is required for TGF-b1-in-

duced cell motility, using a wound healing assay. TGF-b1-

stimulated control cells to almost completely close the

‘wound’ made 24 h before, whereas TGF-b1-stimulated cell

motility was strongly inhibited by SiS3 or SB505124 (Fig. 4A

and B).

The disruption of cell–cell contacts, such as E-cadherin

dependent cell interaction occurring during cell spreading,3

is strongly induced by TGF-b1, and interestingly uPA has also

been implicated in EMT and in E-cadherin shedding from

extracellular cell membranes.27,28 We finally investigated

whether Smad3 is required for E-cadherin dowregulation in-

duced by TGF-b1. As shown in Fig. 4C, TGF-b1 provoked E-cad-

herin loss in cell–cell contacts while Smad3 and ALK5

inhibitors blocked this effect of TGF-b1 as demonstrated by

strongly visible E-cadherin immunostaining. In addition,

TGF-b1-induced F-actin reorganisation to transcellular stress

fibers was strongly disabled by Smad3 inhibitor and ALK5

inhibitor, as cells displayed cortical actin similar to control

cells. Furthermore, both E-cadherin promoter transactivity,

mRNA and protein expression inhibited by TGF-b1 were coun-

teracted by both SiS3 and SB505124 (Fig. 4D–F). Moreover, the

expression of E-cadherin transcriptional repressor Snail1,29

which is highly expressed in PDV cells alongside, and con-

comitant with the reduced expression of E-cadherin in re-

sponse to TGF-b1, was strongly inhibited by both inhibitors

(Fig. 4E).



Fig. 2 – Smad3 mediates TGF-b1-induced uPA expression. (A) uPA activity determined by zymography in the serum-free

conditioned media of cells treated or not with TGF-b1 for 48 h in the presence or absence of Smad3 inhibitor SiS3 or ALK5

inhibitor SB505124 (SB). (B) Expression of uPA and PAI-1 mRNA in cells treated for 24 h with TGF-b1, determined by RT-PCR. (C)

uPA promoter transactivity in transiently transfected PDV cells treated with TGF-b1 for 48 h, in the presence of SiS3 or

SB505124 (SB), or cotransfected with plasmids encoding Smad3 or Smad2 dominant negative mutants (DN Smad3 or DN

Smad2).
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Fig. 3 – Smad3 knockout cells do not increase uPA expres-

sion in response to TGF-b1. (A) Zymography and RT-PCR

analysis of uPA expression in Smad3+/+ or Smad3)/) MEFs.

Cells were treated with TGF-b1 for 24 h. GAPDH was used as

a control of mRNA loading. (B) Characterisation of MEFs. The

expression of Smad2 and Smad3 mRNA was determined in

Smad3+/+ or Smad3)/) MEFs. GADPH was used as a control

for mRNA loading.
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4. Discussion

We have previously demonstrated that TGF-b1 increases

migration, invasiveness and EMT of transformed PDV kerati-

nocytes, concomitantly with the stimulation of uPA expres-

sion and secretion18,19,22 and this report. The present study

examines the role of Smad3 activation, through TGF-b1 recep-

tor (ALK5), on the induction of uPA expression by TGF-b1.

The individual roles of Smads in skin cancer have been re-

cently documented. Smad4 deletion in keratinocytes results

in spontaneous SCC formation, whereas mice with keratino-

cytes-specific Smad2 deletion exhibited accelerated forma-

tion and malignant progression of chemically induced skin

tumours associated with an enhancement of EMT.13,14 These

data indicate a dominant tumour suppressive effect of Smad4

and Smad2 in skin carcinogenesis. However, Smad3-knockout

mice are resistant to skin chemical carcinogenesis due to

abrogation of TGF-b1-mediated inflammation and gene

expression critical for tumour promotion.15 Intriguingly,

Smad2 has been implicated in the expression of matrix

metalloproteinase (MMP) type 2 by TGF-b1 in human ovarian

cancer SKOV3 cells.16 P-Smad2 also has been associated to

malignant phenotype of advanced gastric cancer,30 as well

as in advanced breast cancer where knockdown of Smad2

can reverse the EMT phenotype.31 These data suggest that

activated Smad2 may be involved in the malignance of cancer

types other than skin cancer.

Although the importance of Smad3 in TGF-b1-induced cell

malignance is known, its role on uPA expression is still not
elucidated. Our results demonstrate that in PDV cells, TGF-

b1 greatly induces the activation of both Smad2 and Smad3

(Fig. 1B). To determine the role of Smad3, we used SiS3, a po-

tent selective inhibitor of Smad3 function with no effect on

Smad2 activation, in parallel with ALK5 kinase inhibitor,

SB431542, which strongly blocked the activation of both

Smad2 and Smad3, showing the functionality of both inhibi-

tors (Fig. 1C).

Furthermore, Smad3 or ALK5 inhibition, by SiS3 and

SB505124 respectively, decreased TGF-b1-induced uPA expres-

sion (Fig. 2A). Also, Smad3 knockout mouse embryonic fibro-

blasts were refractory to the induction of uPA by TGF-b1

(Fig. 3A), suggesting the essential requirement of the Smad3

signal in TGF-b1-induced uPA expression. Although TGF-b1

also activates Smad2, our results suggest that this signalling

protein is not implicated in the TGF-b1-induced uPA expres-

sion (Fig. 2C).

In addition to Smads, TGF-b1 activates other intracellular

signalling pathways, such as ILK, ERK1,2 and JNK,6 the last

two also being implicated in the elevation of uPA expression

in PDV cells.18,19 Moreover, Smad3 deficiency suppresses

TGF-b1 activation of ERK1,2 and JNK.32 At this point, the pos-

sibility that Smad3 inhibition may disturb the activation of

ERK1,2 and JNK in PDV cells, thus allowing a broader inhibi-

tion of TGF-b1 signalling involved in the reduction of uPA

expression, can not be excluded.

The enhancement of uPA production improves the capacity

of cancer cells to migrate and invade surrounding tissues and

organs. uPA activates the latent zymogen plasminogen by con-

verting it to plasmin, this way enormously enhancing the pro-

teolytic machinery of cancer cells, as plasmin can cleave a

wide variety of ECM components and also activate MMPs pro-

moting matrix degradation, cell migration and invasion.7,8

Previous in vitro analysis showed reduced migration of

Smad3)/) keratinocytes,33 suggesting a pivotal role of Smad3

in the induction of cell migration by TGF-b1. Current study

demonstrates that Smad3 is required for the TGF-b1-induced

cell motility, as the inhibition of ALK5–Smad3 axis reduced

the migration of PDV cells. Furthermore, our results imply

the possibility that this reduction in cell migration may also

be due to the impairment of uPA production. By binding to

its receptor at the cell surface, uPA triggers signals which en-

hance cell migration,34 required for TGF-b1-induced PDV cells

migration as well.22 Additionally, PAI-1)/) keratinocytes have

been shown to lose their ability to migrate in an in vitro scratch

assay, while TGF-b1 has been shown to stimulate the attach-

ment and invasion of cells by up-regulating PAI-1.35,36 Thus,

our results imply that Smad3 inhibition may produce a general

decrease in TGF-b1-induced uPA system with profound effects

on cell migration. It was recently reported that TGF-b-1-

induced migration of breast cancer MDA-MB-231 cells is also

dependent of Smad2 activation.37 As we cannot exclude a pos-

sible participation of Smad2 in the migration of PDV cells in

response to TGF-b1, further experimental analysis is required

to determine the role of Smad2 in the increment of PDV cell

malignance by TGF-b1.

Cell migration is also a consequence of the transition of

epithelial cells to a more mesenchymal phenotype during

tumourigenesis.3 In this aspect, TGF-b1 strongly induces

EMTof PDV cells.2 TGF-b1-induced E-cadherin downregulation



Fig. 4 – Smad3 and ALK5 inhibition impairs TGF-b1-induced cell migration, E-cadherin downregulation and F-actin

reorganisation. (A) Wound healing assay. Areas free of cells were examined after 24 h of TGF-b1 treatment in the presence of

SiS3 or SB505124. White dashed line shows the wound area at zero time. Magnifications 250·. (B) Quantitative analysis of cell

migration shown in (A). Areas free of cells were measured and expressed as the mean (±SEM) percentage of the area at zero

time (n = 9). (C) Immunofluorescence analysis of E-cadherin and F-actin cytoskeleton in PDV cells after stimulation (72 h) with

TGF-b1 and SiS3 or SB505124. Scale bar represents 10 lm. (D) Luciferase inducible activity determined in PDV cells transfected

with E-cadherin promoter treated for 48 h with TGF-b1 in the presence of Smad3 inhibitor SiS3 or ALK5 inhibitor SB505124

(SB). (E) and (F) Expression of E-cadherin and Snail1 mRNAs determined by RT-PCR, and E-cadherin by Western blot, (ND) not

detected. Cells were treated as above except the TGF-b1 treatment for the RT-PCR lasted 24 h. GAPDH and alpha-tubulin (a-

tub) were used as controls for mRNA and protein loading, respectively.
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and F-actin reorganisation are blocked by ALK5/Smad3 inhibi-

tion (Fig. 4C). The repression of E-cadherin by Snail1 in PDV

cells was previously documented,29 and here the expression

of Snail1 was inversed after Smad3 or ALK5 inhibition (Fig. 4E).

Intriguingly, we observed Snail expression without full

E-cadherin downregulation at the protein and mRNA level.
In PDV cells full E-cadherin downregulation, at protein and

mRNA level, requires a chronic treatment, necessary to stabi-

lise the mesenchymal phenotype.2 Several mechanisms have

been implicated in the regulation of E-cadherin expression

during tumour progression, including epigenetic, such as

hypermethylation of E-cadherin promoter, and transcrip-



Fig 4. (continued)
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tional changes, including the zinc finger factor Snail,

beta-catenin and Smad3.38,39 We found that, in PDV cells,

E-cadherin expression after TGF-b1 treatment is approxi-

mately 30% of that expressed by control cells (Fig. 4E and F).

This amount of E-cadherin appears to be enough to enhance

cell migration (Fig. 4A, B, D and E). These results are in agree-

ment with those reported by Vicente et al.39 where even

though Snail is increased by TGF-b1, E-cadherin is not totally

repressed, as shown in NMuMG cells. Additionally, the

expression of Snail protein, which was not determined in this

study, could be helpful in the understanding of E-cadherin

and Snail coexistence in PDV cells.

The regulation of E-cadherin is complex; several events are

needed in order to culminate the repression of E-cadherin
gene, involving several repressor complexes and/or promoter

gene hypermethylation.38 In addition, the stabilisation of

Snail by GSK-3b inhibition may play a role, which in conjunc-

tion with beta-catenin, Smad3 and other transcription factors

may produce a strong repression of E-cadherin expression.39

In PDV cells, a full repression of E-cadherin expression may

require sequential processes and increased duration of TGF-

b1 treatment to fully produce the mesenchymal phenotype

of the cells. Further research is necessary to elucidate the

mechanisms implicated in the downregulation of E-cadherin

by TGF-b1 in PDV cells.

In addition, it was recently demonstrated that the blockage

of Snail1 reduces the expression of uPA/uPA-receptor and PAI-1

in breast cancer cells,40 suggesting Smad3 and Snail1 as strate-

gic components in TGF-b-induced uPA expression system.

The expression of uPA has also been implicated in EMT as

well as in the E-cadherin shedding.27,28 We may speculate

that the elevation of uPA is necessary not only for TGF-b1-in-

duced cell migration, but may also participate in the enhance-

ment of E-cadherin downregulation, thus facilitating the

development of EMT stimulated by TGF-b1. Further studies

are required to elucidate the collaboration of uPA in TGF-b1-

induced EMT in transformed cells.

The present work demonstrates that the TGF-b1 signalling

through ALK5–Smad3 axis is crucial for the induction of uPA

expression and cell migration by TGF-b1, with important

implications in the TGF-b1-dependent E-cadherin downregu-

lation in PDV cells. Additionally, our data support Smad3 as a

therapeutic target in the regulation of cell malignancy by TGF-

b1 in transformed cells.
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