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Rac1 modulates TGF-pB1-mediated epithelial cell plasticity and MMP9 production
in transformed keratinocytes
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Transforming growth factor-g1 (TGF-g1) activates Rac1 GTPase in mouse transformed keratinocytes.
Expression of a constitutively active Q61LRac1 mutant induced an epithelial to mesenchymal tran-
sition (EMT) linked to stimulation of cell migration and invasion. On the contrary, expression of a
dominant-negative N17TRac1 abolished TGF-p1-induced cell scattering, migration and invasion.
Moreover, Q61LRac1 enhanced metalloproteinase-9 (MMP9) production to levels comparable to
those induced by TGF-p1, while N17TRac1 was inhibitory. TGF-p1-mediated EMT involves the expres-
sion of the E-cadherin repressor Snail1, regulated by the Rac1 and mitogen-activated protein kinase
(MAPK) pathways. Furthermore, MMP9 production was MAPK-dependent, as the MEK inhibitor
PD98059 decreased TGF-g1-induced MMP9 expression and secretion in Q61LRac1 expressing cells.
We propose that regulation of TGF-f1-mediated plasticity of transformed keratinocytes requires
the cooperation between the Racl and MAPK signalling pathways.

© 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Transforming growth factor-p1 (TGF-B1) is a potent inducer of
epithelial-mesenchymal transition (EMT) [1], a phenotypic conver-
sion by which epithelial cells lose their polarity and cohesiveness
acquiring the morphology and migratory properties of fibroblasts.
EMT is important in malignancy as it implies a profound rearrange-
ment of the cytoskeleton that favours tumor cell invasion and
metastasis [2]. Thus, it is not surprising that small GTPases of the
Rho subfamily have been involved in TGF-pB1-induced EMT [3].
Rho, Rac and Cdc42 members of small GTPases have been
implicated in many cellular processes that contribute to tumor
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progression, including cytoskeletal remodelling, cell adhesion,
transcriptional regulation and cell cycle progression [4].

In a previous work, we found that TGF-B1 promoted cell scatter-
ing and EMT of mouse transformed keratinocytes (PDV cells) [5].
This TGF-B1-mediated phenotypic conversion was associated with
the development of highly aggressive spindle cell carcinomas [5-7]
and expression/secretion of extracellular matrix proteinases, such
as urokinase and metalloproteinase-9 (MMP9) gelatinase [8-10].
Increased synthesis and activation of gelatinases leads to degrada-
tion of collagen IV, a main component of the basement membrane,
and favours vascularization since tumor angiogenesis depends on
the activity of metalloproteinases, particularly that of MMP9
[11]. In addition, MMP9 proteolytically activates several members
of the TGF-p family of growth factors [12], contributing to enhance
the pool of active TGF-B in the tumor microenvironment.

In the current study, we show that Rac1 and mitogen-activated
protein kinase (MAPK) signalling are important mediators of TGF-
B1-induced EMT in transformed keratinocytes, as both pathways
appear to regulate the expression of Snaill. Rac1 and MAPK signal-
ling activity are also involved in TGF-B1-mediated production of
MMP9.
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2. Materials and methods
2.1. Plasmids and antibodies

Dominant-negative (N17T) and constitutively active (Q61L)
constructs of Rac1 [13] were kindly provided by ]. Silvio Gutkind
(National Institute of Health, Bethesda, USA). The reporter con-
struct containing 1300 bp of the 5'-flanking region of the mouse
MMP9 gene has been previously described [14]. Monoclonal anti-
bodies (mAbs) for Racl, E-cadherin (ECCD2) and B-actin (clone
AC-15) were from Cytoskeleton (Denver CO, USA), Zymed laborato-
ries (San Francisco CA, USA) and Sigma (Saint Louis MO, USA),
respectively. Phospho-p44/42 ERK1,2 MAPK (Thr202/Tyr204)
mAb was from Cell Signalling Technology Inc (Danvers, MA,
USA). Antibodies for ERK1,2 (C-16), phospho-Akt (11E6), phos-
pho-Smad2/3 (Ser 423/425) and Smad2/3 (FL-425) were from San-
ta Cruz Biotechnology (CA, USA). Appropriate secondary antibodies
coupled to horseradish peroxidase or FITC were purchased from
Sigma.

2.2. Cell culture and transfection procedures

PDV cells were cultured in Ham’s F-12 medium supplemented
with amino acids and vitamins in the presence of 10% fetal bovine
serum and antibiotics, as described [5]. For TGF-p treatments, hu-
man recombinant TGF-B1 (R&D Systems GmbH, Germany) was
used at 10 ng/ml.

For stable transfections, ~10° cells seeded on 60 mm plates
were transfected with 2 pg of the pcDNA3-N17TRac1, -Q61LRac1
plasmids or the empty pcDNA3 vector using Superfect (Qiagen, Hil-
den, Germany) following the manufacturer’s instructions. Trans-
fected cells were selected by growing in medium containing 10%
fetal bovine serum and 400 pg/ml of G418 for two weeks. Individ-
ual clones were isolated by cloning rings.

Transient transfections to analyze MMP9 promoter activity
were performed as previously described [10,14]. Firefly luciferase
activity (Promega, Addison WI, USA) was standardized for p-galac-
tosidase activity (Tropix, Bedford MA, USA).

The MEK inhibitor PD98059 (25 uM as final concentration)
was added to the cells 30 min before stimulation for 48 h with
TGF-B1.

2.3. RNA isolation and RT-PCR assays

Total RNA was obtained using Trizol and complementary DNA
was generated by the SuperScript First-Strand Synthesis System
for RT-PCR (Invitrogen, Carlsbad, CA, USA) using oligo (dT) as a pri-
mer. Primer sequences for E-Cadherin, Snaill, Snail2 and E12/E47
have been previously described [15]. For murine MMP9 the follow-
ing oligonucleotides were used: 5-ACC-ACC-ACA-ACT-GAA-CCA-
CA-3' and 5-ACC-AAC-CGT-CCT-TGA-AGA-AA-3' (amplifies a
fragment of 304 bp), and for murine GAPDH: 5-ACC-ACA-GTC-
CAT-GCC-ATC-AC-3' and 5'-TCC-ACC-ACC-CTG-TTG-CTG-TA-3’
(amplifies a fragment of 450 bp). PCR products were obtained after
30-35 cycles of amplification with an annealing temperature of
60-65 °C.

2.4. Pull down, Western blot, zymographic and immunofluorescence
assays

Western blots were performed as described elsewhere [10]. The
level of active Rac1 (Rac1-GTP) in the cell lysates was measured
using a glutathione-S-transferase (GST) fusion protein with the
Rac1 binding domain of p21-activated kinase (PAK) (GST-PAK). As-
says were performed as previously described [16].

Gelatinase activity was assayed in serum-free medium condi-
tioned for 24 h in cell cultures treated or not with TGF-B1 subjected
to SDS-PAGE zymography in gels containing 1 mg/ml of gelatine, as
reported [9].

Detection of E-cadherin and actin filaments (F-actin) by immu-
nofluorescence was performed in cells grown on glass coverslips
fixed in cold methanol or with 3.7% formaldehyde in phosphate
buffered saline and permeabilized with 0.1% Triton-X100 for
2 min at room temperature, respectively. For F-actin staining, phal-
loidin coupled to Alexa Fluor 594 (Molecular Probes, Eugene OR,
USA) was used. Images were taken in a microscope equipped with
epifluorescence using 400X magnification.

2.5. Migration and invasion assays

The motility properties of cell transfectants was analyzed in an
in vitro wound healing assay [9]. Wounded cell cultures were al-
lowed to grow for 24 h in the absence or presence of TGF-p1. The
capacity of the cells to migrate through Matrigel-coated filters
was assayed as described elsewhere [8].

2.6. Statistics

Data are given as means * S.D. from at least three independent
experiments. When necessary, statistical significance was evalu-
ated using the Students’ t-test. Differences were considered to be
significant at a value of P <0.05 (*&).

3. Results and discussion
3.1. Rac1 controls cell morphology in transformed keratinocytes

TGF-B1 was able to increase the level of active Rac1-GTP in PDV
cells without affecting Rac1 protein expression (Fig. 1A). Rac1 acti-
vation was visible at 5 min but raised a maximum (~3.5-fold) at
15-30 min of treatment which coincides with that of Smad2/
Smad3 [17], suggesting that upregulation of Racl activity by
TGF-B1 in PDV cells is Smad-independent.

In order to study the involvement of Rac1l in TGF-B1-induced
cell migration, we transfected PDV cells with either a constitutively
active (Q61L) or a dominant-negative (N17T) mutant form of Rac1
[13]. Cell clones expressing either Q61LRac1 or N17TRac1, desig-
nated as CAR and DNR, respectively, were selected as well as con-
trol cells transfected with the empty vector (designated as PDV/M).
A total of three CAR and four DNR cell clones were isolated that
exhibited each a similar morphology and behaviour. Expression
of dominant-negative Rac1l blocked TGF-B1-mediated enhance-
ment of Rac1-GTP levels in DNR cells (Fig. 1B). In contrast, CAR
cells displayed increased basal Rac1-GTP levels with respect to
control cells (Fig. 1B). Expression of the mutant forms of Racl
had a profound effect on PDV cell morphology. PDV keratinocytes
grow as cohesive islands forming stable cell-cell contacts [5].
These compact cell-cell junctions were disrupted in CAR cells that
exhibited increased membrane extensions and ruffling activity
compared to control cells (Fig. 1C). On the contrary, DNR cells were
rounded and grew as tightly packed islands with strong cell-cell
contacts (Fig. 1C).

Chronic exposure of PDV keratinocytes to TGF-B1 induces cell
scattering during the first week of treatment followed by a com-
plete EMT [5]. As shown in Fig. 2, a 48 h exposure of PDV/M cells
to TGF-B1 induced the delocalization/downregulation of E-cad-
herin (Fig. 2A panels a and b) linked to the loss of cortical F-actin
and induction of plasma membrane extensions (Fig. 2A, panels g
and h). TGF-B1-mediated downregulation of E-cadherin was
blocked in DNR cells (Fig. 2A panels e and f), while untreated
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Fig. 1. TGF-B1 activates Rac1 in PDV cells and effects of Rac1 mutant forms on PDV cell morphology. (A) Active Rac1-GTP levels at different times of treatment with TGF-p1
were determined by a pull-down assay with GST-PAK beads. Quantification of Rac1-GTP levels relative to total Rac1 levels was performed by densitometric analysis. (B)
Effects of dominant-negative (DNR) and constitutively active (CAR) Rac1 mutant forms in TGF-p1-induced upregulation of Rac1 activity. Levels of Rac1-GTP were determined
in the cell transfectants as above. The total levels of Rac1 and B-actin (used as a control for protein loading) were determined by Western blotting. Note increased levels of
Rac1 due to expression of exogenous mutant proteins in CAR and DNR cells with respect to control (PDV/M) cells. (C) Phase contrast micrographs of PDV/M, CAR and DNR
cells.

A TGF-p1 B
E & e
58 z §
E-cadherin
i “—u-luhulin
E-cadherin
+
C PDV/M CAR DNR
-actin
GAPDH
+

Fig. 2. Racl-mediated EMT is associated with downregulation of E-cadherin and upregulation of Snaill expression. (A) Immunofluorescence analysis of E-cadherin and F-
actin in the cell transfectants before and after stimulation (48 h) with TGF-B1. Note that TGF-B1 promotes a reduction of E-cadherin staining at cell-cell contacts in control
cells (a and b) that is blocked in DNR cells (e and f). Note also that CAR cells have wide lamellipodia (arrows) and that cell-cell junctions are severely disrupted (c and d).
Increased number of cell-surface protrusions (arrowheads) can be seen in DNR cells (k) and TGF-B1-treated control cells (h) with respect to untreated control cells (g). (B)
Western blot analysis of E-cadherin expression in the cell transfectants. a-tubulin was used as a control of protein loading. (C) Expression of E-cadherin, Snail1, Snail2 and
E12/E47 mRNA transcripts by RT-PCR in the cell transfectants before and after stimulation (48 h) with TGF-pB1. GAPDH was amplified as control for the amount of cDNA
present in each sample.

CAR cells showed reduced E-cadherin staining (Fig. 2A panels c and
d) and loss of cortical F-actin associated with the induction of
extensive lamellipodia (Fig. 2A panels i and j). Intriguingly, un-
treated DNR cells showed a large number of long filopodia in the

periphery of the colonies (Fig. 2A panel k), suggesting that mutant
N17TRac1, which is thought to competitively inhibit the interac-
tion of Racl with guanine-nucleotide exchange factors [13] in-
duces membrane protrusions at the front of leading edge cells
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which might involve the local activation of Cdc42 [18]. Both E-cad-
herin protein and mRNA expression were indeed slightly reduced,
as shown by Western blotting (Fig. 2B) and RT-PCR assays (Fig. 2C).
Since E-cadherin transcriptional repressors have also been found to
be involved in EMT [19], we analyzed the expression of Snaill,
Snail2 (also called Slug) and E12/E47 in our transfectants before
and after TGF-B1 stimulation. Only Snail1l expression that was in-
duced by TGF-B1 in PDV/M, but not in DNR cells, was constitutively
upregulated in CAR cells (Fig. 2C). Snail2 was undetectable and the
levels of E12/E47 did not change in the transfectants even after
treatment with TGF-B1 (Fig. 2C). These results indicate that Rac1
mediates TGF-B1-induced expression of Snaill in transformed
keratinocytes.

3.2. Racl is required for TGF-p1-induced cell migration/invasion and
MMP9 expression/secretion

We next tested whether Racl was necessary for TGF-p1-in-
duced cell motility using a scratch wound assay. Untreated control
cells were unable to close a wound made 24 h before, while un-
treated CAR cells and TGF-B1-stimulated control cells did it com-
pletely (Fig. 3A). In contrast, TGF-B1-stimulated cell motility was
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strongly inhibited (80-90%) in DNR cells (Fig. 3A). When the ability
of the cell lines to migrate through Matrigel-coated filters was
measured, similar results to those of the wound assay were ob-
tained (Fig. 3B).

We have reported that dominant-negative inhibition of RhoA
function in PDV cells induced a change towards a fibroblastic mor-
phology while constitutive activation of RhoA promoted a more
cohesive phenotype, the opposite effects to those seen with Racl
mutant constructs [20]. Altogether, these results suggest that
TGF-B1-mediated epithelial plasticity in transformed keratinocytes
requires upregulation of Rac1 concomitantly to downregulation of
RhoA activity. Nevertheless, a number of reports point to RhoA
activation (sometimes in cooperation with Cdc42) as an essential
requirement for TGF-B1-induced EMT [21-23]. These discrepancies
might be cell type- or context-dependent and likely reflect a partic-
ular organization of the cytoskeleton and a different way for Rho
GTPases to coordinately regulate cell migration [16,18]. Interest-
ingly, Rac1 activation has been associated with a mesenchymal-
type of movement of tumor cells characterized by focalized extra-
cellular proteolysis at cell-surface protrusions in contrast to the
amoeboid mode of tumor cell movement which is independent
of proteinases and depends on RhoA activation [24].
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Fig. 3. Effect of TGF-B1 on the migratory and invasive abilities of the cell transfectants and on MMP9 production. (A) Scratch wound assay. Areas free of cells were examined
24 h after wounding in the absence or presence of TGF-B1. Cells were fixed and stained with crystal violet. (B) Invasion assay through Matrigel-coated filters. The percentage
of migrated cells was calculated with respect to the total viable cells seeded on the upper chamber at the end of the incubation period (72 h) in the absence or presence of
TGF-B1. (C) MMP9 gelatinase activity was determined by zymography in the conditioned media of cell transfectants untreated or treated with TGF-B1 for 48 h. Quantification
of MMP9 activity levels was performed by densitometric analysis. (D) MMP9 promoter activity was assayed in cells unstimulated and stimulated with TGF-p1 for

48 h. ~*Statistically significant differences (P < 0.05).
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We have previously shown that TGF-B1 promotes the expres-
sion of MMP9 associated with the stimulation of invasive proper-
ties in PDV cells [10]. In order to analyze whether Racl is
involved in TGF-B1-induced MMP9 production, we studied the
secretion of MMP9 gelatinase activity in the conditioned media
of the cell lines. As shown in Fig. 3C, stimulation of MMP9 produc-
tion by TGF-B1 was strongly inhibited in DNR cells, while substan-
tial MMP9 levels were secreted by CAR cells in basal conditions
that were further enhanced by TGF-B1. On the other hand, stimu-
lation of MMP9 production by TGF-p1 was strongly inhibited in
DNR cells. The ability of TGF-B1 to transcriptionally stimulate
MMP9 expression was also evaluated in the cell lines expressing
a reporter construct containing the luciferase gene under the con-
trol of the MMP9 promoter [14]. The results obtained paralleled
those of the zymography (Fig. 3D).

3.3. Rac1-mediated cell plasticity and MMP9 production require MAPK
signalling activity

MMP9 has been found to play an important role in cell migra-
tion and tumor progression [11]. Expression of MMP9 in tissues
is generally low but it is transcriptionally activated by different
cytokines and growth factors, including TGF-B. TGF-B1 has been re-
ported to induce MMP9 expression in keratinocytes [10,25] and
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other cell types [26-28] by a variety of mechanisms. Thus, for
example, the Smad pathway has been involved in TGF-B1-induced
MMP9 expression in human breast and head and neck carcinoma
cell lines [26,27], while in oral carcinoma cells MMP9 induction ap-
pears to depend on SNAI1 and Ets-1 transcription factors [28]. We
also have shown that the Ras/mitogen-activated protein kinase
(MAPK) pathway mediates MMP9 induction by TGF-B1 in PDV
transformed keratinocytes [10]. Therefore, we studied the activa-
tion of Smad, MAPK and phosphatidylinositol-3-OH kinase (PI3 K)
pathways in our cell transfectants by analyzing the levels of phos-
phorylated Smad2,3, ERK1,2 and AKT. All these pathways were
stimulated by TGF-B1 in transformed keratinocytes (Fig. 4A). How-
ever, whereas basal levels of p-AKT and p-Smad2,3 were low in
CAR and DNR cells and increased after TGF-B1 treatment, p-
ERK1,2 levels were already constitutively upregulated in untreated
CAR cells. In addition, TGF-p1-induced ERK1,2 activation was sub-
stantially inhibited in DNR cells, suggesting that besides Ras [17]
Rac1 mediates TGF-B1 activation of ERK1,2 in transformed kerati-
nocytes. This is not surprising since Ras/Raf and Rac/Raf show syn-
ergism in both ERK1,2 activation and cell transformation [29].
Finally, we analyzed the effect of inhibiting the MAPK pathway
on the expression of Snaill, E-cadherin and MMP9 in PDV/M and
CAR cells. The MEK inhibitor PD98059 impaired induction of Snaill
by TGF-B1 in PDV/M cells (Fig. 4B), which is in accordance with our

RT-PCR <
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Fig. 4. Rac1-mediated epithelial cell plasticity requires MAPK signalling activity. (A) Western blot analysis of phospho-Erk1,2, phospho-Akt and phospho-Smad2,3 levels
relative to the total Erk1,2. Akt and Smad3 expression protein levels in the cell transfectants before and after stimulation for 30 min with TGF-B1. (B and C) Effect of PD98059
on E-cadherin, Snail1 and MMP9 expression in PDV/M control cells unstimulated and stimulated (48 h) with TGF-p1 (B) and CAR cells (C). Expression of E-cadherin, Snaill and
MMP9 mRNA transcripts was determined by RT-PCR. MMP9 gelatinase activity was determined by zymography in the conditioned media. (D) Immunofluorescence analysis

of E-cadherin in CAR cells untreated and treated with PD98059.
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previous finding that TGF-B1-mediated Snaill expression in epi-
thelial cells is Smad-independent and involves MAPK signalling
[30]. PD98059 also blocked TGF-B1 induction of MMP9 in PDV/M
cells (Fig. 4B), as previously reported [10]. The MEK inhibitor re-
duced MMP9 expression/secretion and Snaill levels in CAR cells
(Fig. 4C), the latter allowing the restoration of E-cadherin expres-
sion at cell-cell contacts (Fig. 4C and D). Therefore, TGF-B1-medi-
ated cell plasticity and MMP9 production requires the
cooperation between MAPK and Rac1 signalling activity. As Racl
can be activated by Ras [18], and TGF-B1 activates Ras much earlier
than Rac1 in PDV cells: maximal Ras activation occurred at 2 min
with a rapid decay at 10 min [17], it remains to be determined
whether activation of Rac1 by TGF-B1 in PDV cells involves Ras.
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