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Abstract 
 

 Sr-Nd-Os isotopic analyses are presented for peridotite xenoliths from Tertiary alkali 

basalts in Yangyuan and Fansi with the aim of identifying and characterizing the relics of 

ancient lithospheric mantle that survived lithospheric removal in the western North China 

Craton (NCC). The analyzed samples are residual lherzolites and harzburgites, ranging from 

fertile to highly depleted (0.36-4.0 wt% Al2O3) composition. Some LREE-enriched samples 

are characterized by moderate 87Sr/86Sr (0.7044 to 0.7047) and low εNd (–6.9 to –10.6), 

pointing to an EMI-type signature. This is distinct from the predominant depleted isotopic 

composition in mantle xenoliths from eastern China. Os isotopic ratios range from 0.1106 to 

0.1325. The lower limit is the most unradiogenic value measured so far for Cenozoic 

basalt-borne xenoliths from eastern China. Two samples show radiogenic Os ratios higher 

than that of the primitive upper mantle, one sample has an anomalously high Os 

concentration (>9 ppb). These samples also show high La/Yb, consistent with the addition of 

radiogenic components during the infiltration of asthenosphere-derived and/or 

subduction-related melts in the lithospheric mantle. The remaining samples define positive 

correlations between 187Os/188Os and indices of melt extraction, which yield model ages of 

2.4-2.8 Ga. This age of melt extraction overlaps with the Nd model age of the overlying crust, 

indicating a coupled crust-mantle system in the western NCC. This contrasts with the 

decoupled nature in the eastern NCC, suggesting distinct mantle domains underneath the 

NCC. Such a heterogeneous age structure of the upper mantle is compatible with the view that 

the lithospheric removal was largely limited to the eastern NCC. 

Keywords: Sr-Nd-Os isotopes, peridotite xenolith, lithospheric mantle, age, Yangyuan and 

Fansi, western North China Craton 
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1. Introduction 

 

The North China Craton (NCC) experienced widespread lithospheric extension during 

the late Mesozoic and Cenozoic, whichresulted in the removal of a large portion (>100 km) 

of mantle lithosphere (Menzies et al., 1993; Griffin et al., 1998; Xu, 2001; Gao et al., 2002). 

This lithospheric thinning was accompanied by a change in mantle composition, probably 

due to the replacement of the thick, old, cold and refractory lithospheric keel by thin, young, 

hot and fertile mantle. In recent years, the timing, mechanisms and tectonic driving forces 

responsible for lithospheric removal have been intensely debated. For instance, two 

end-member models have been proposed as mechanisms of lithospheric thinning, i.e., 

delamination versus thermo-mechanical erosion. Different physical mechanisms involved in 

lithospheric thinning have distinct implications for the vertical extent of lithospheric removal 

(Reisberg et al., 2005). Delamination would probably result in the removal of the entire 

mantle lithosphere and part of the lower crust (Wu et al., 2003; Gao et al., 2004). 

Geophysical data indicate that the current lithospheric thickness beneath eastern China is 

60-100 km, thus the lithosphere may have been re-thickened by conductive cooling 

subsequent to the removal processes (Menzies and Xu, 1998; Xu, 2001). In this sense, the 

mantle lithosphere is young. In contrast, thermal erosion may remove only part of the mantle 

lithosphere, leading to the co-existence of old and young mantle lithosphere. If thermal 

erosion of the lithosphere induced by the upwelling of asthenosphere took place gradually 

from the base of the lithosphere, a stratified architecture is envisaged with the old lithospheric 

relict overlying the newly accreted one (Griffin et al., 1998; Menzies and Xu, 1998; Xu, 

2001). If mantle upwelling preferentially focused along weak zones in the Archean 
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lithospheric root (Yuan, 1996), dispersal of the ancient lithosphere in newly formed mantle 

will result. 

The lateral extent of lithospheric thinning in the NCC is equally poorly constrained. The 

contrast in crustal and lithospheric thickness, topographic height and gravity anomaly across 

the Daxin’anling-Taihang Gravity Lineament (DTGL, Fig. 1) suggests that lithospheric 

removal may be largely limited to the region east of the DTGL (Griffin et al., 1998; Menzies 

and Xu, 1998). Temporal and spatial evolution of Cenozoic volcanism further reveals that 

lithospheric thinning was probably diachronous with that in the western NCC being later than 

in the eastern NCC (Xu et al., 2004b). If thermo-mechanical erosion is the main mechanism 

of lithospheric thinning (Griffin et al., 1998; Xu, 2001; Xu et al., 2004a), and assuming that 

the lithospheric protolith under the NCC was entirely ancient prior to the Mesozoic, one can 

speculate that the present lithosphere mantle under the western NCC consists mostly of the 

relics of ancient mantle, in contrast to the co-existence of ancient mantle and newly accreted 

mantle in the eastern NCC. Clearly, the age of mantle samples from throughout the NCC will 

be needed to ultimately understand the nature of the thinning event. 

The Re-Os isotopic system has proven useful in constraining the age of lithospheric 

mantle formation (Walker et al., 1989; Carlson and Irving, 1994; Pearson et al., 1995; 

Pearson, 1999; Reisberg and Lorand, 1995; Peslier et al., 2000a, b; Handler et al., 2003; Gao 

et al., 2002; Wu et al., 2003, 2006; Reisberg et al., 2005). This is because Os has a highly 

compatible nature and Re is incompatible during mantle melting. Therefore, depleted 

peridotites have high Os contents and low Re/Os ratios. Melting residue, if isolated in the 

lithosphere, will develop low time-integrated 187Os/188Os relative to the convective mantle. 

The Re-Os isotopic system was originally considered to be immune from disturbance due to 

metasomatic alteration, because common mantle metasomatic agents (e.g., silicate and 

carbonatitic melt) are low in Os (Handler et al., 1997). Recent studies, however, have 

revealed a more complex response of the Re-Os system to metasomatic processes (Alard et 

al., 2002; Widom et al., 2003; Chesley et al., 2004; Griffin et al., 2004). A careful evaluation 

of the effect of metasomatism on the Re-Os system in peridotites is therefore necessary. 

When the effect of metasomatic sulfide addition is minimal, Re-Os isotope systematics 
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remain a powerful tool to date the lithospheric mantle (Pearson et al., 2004). 

In this study, analyses of major and trace element abundances and Sr-Nd-Os isotopic 

compositions have been carried out on a suite of peridotite xenoliths collected from Tertiary 

alkali basalts in Yangyuan (Hebei Province) and Fansi (Shanxi Province), western NCC. 

These data will be used to explore the effect of metasomatsim on the composition of highly 

siderophile elements and to determine the age of the lithospheric mantle in the western NCC. 

Coupled with available data, the implications for the extent and nature of lithospheric 

removal in the NCC will be discussed.  

 

2 Geologic background and petrographic characteristics 

 

The NCC can be separated into two different tectonic domains by the N-S trend 

Daxinganling-Taihangshan gravity lineament (DTGL) (Ma, 1989; Menzies and Xu, 1998). 

The region located west to the DTGL is characterized by thick crust (>40 km), large negative 

Bouguer gravity anomalies, low heat flow and a thick (> 150 km) lithosphere (Fig. 1). In 

contrast, the crust beneath eastern NCC is thin (<35 km), the regional Bouguer gravity 

anomaly is weakly negative to positive, heat flow is high and lithosphere is inferred to be thin. 

Compilation of Sm-Nd isotopic data on crustal rocks led Wu et al. (2005) to argue that the 

crust was largely formed during the early Proterozoic and late Archean. It has been recently 

suggested that the DTGL was formed by diachronous lithospheric extension/thinning in the 

NCC, with that in eastern NCC taking place during the Late Mesozoic and that in western 

NCC during the Cenozoic (Xu, 2007).  

Samples analyzed in this study were collected from alkali basalts at Yangyuan (western 

Hebei Province; 30-35 Ma, Liu et al., 1992) and Fansi (northern Shanxi Province; 38-40 Ma). 

Both localities are situated adjacent to the northern part of the S-shape Cenozoic 

Shaanxi-Shanxi Rift system which extends from the southern margin of the Loess Plateau 

north-northeastward across the plateau (Fig. 1). Oligocene to Quaternary basalts are 

distributed in this region. The xenoliths from Yangyuan are large and fresh with maximum 

diameters of over 50 cm. The dominant xenoliths are spinel peridotites with subordinate 

pyroxenites. Xenoliths from Fanshi are generally small (mostly ~1-5 cm) and are loose. 
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Pyroxenites are rare in this locality.  

Peridotites from this region are similar to Group I peridotites (Frey and Prinz, 1978) with 

textural variation from protogranular to porphyroclastic (Mercier and Nicolas, 1975). Both 

lherzolite and harzburgite are present (Fig. 2a). The typical mineral assemblage is olivine (ol, 

50–81%), orthopyroxene (opx, 20-34%), clinopyroxene (cpx, 1.4–16.7%) and spinel (sp, 

0.8–3.8%). Volatile-bearing accessory minerals such as amphibole and carbonate are not 

observed. In a plot of modal olivine versus Fo (Fig. 2b), most samples plot in the Phanerozoic 

and Proterozoic domains, with only a few samples located marginally within the Archean 

field.  

 

3. Analytical methods 

 

Major and trace element compositions were determined using an X-ray fluorescence 

spectrometer (XRF) and inductively coupled plasma-mass spectrometry (ICP-MS), 

respectively, at the Guangzhou Institute of Geochemistry, Chinese Academy of Sciences 

(GIGCAS). Analytical procedures are described by Goto and Tatsumi (1996) and Xu (2002). 

For Sr-Nd isotopic analyses, cpx separates (~50 mg) of a subset of samples were dissolved in 

distilled HF-HNO3 Savillex screwtop Teflon beakers at 150 ºC overnight. Sr and REE were 

separated on columns made of Sr and REE resins of the Eichrom Company using 0.1% HNO3 

as elutant. Separation of Nd from the REE fractions was carried out on HDEHP columns with 

a 0.18N HCl elutant. The isotopic analyses were performed using a Micromass Isoprobe 

Multi-Collector ICPMS at GIGCAS. Measured Sr and Nd isotopic ratios were normalized 

using a 86Sr/88Sr value of 0.1194 and a 146Nd/144Nd value of 0.7219, respectively. The Sr and 

Nd blanks during the period of analyses were 0.5 ng and 0.3 ng, respectively. Analyses of 

standards during the period of analysis are as follows: NBS987 gave 87Sr/86Sr = 0.710243 ± 

14 (2σ); Shin Etou gave 143Nd/144Nd = 0.512124 ± 11 (2σ), equivalent to a value of 0.511860 

for the La Jolla international standard (Tanaka et al., 2000).  

Osmium concentration and isotopic ratios were measured at Woods Hole Oceanographic 

Institution following the techniques described by Hassler et al. (2000). Powdered whole rock 

samples (about 1.5 g) were spiked with an in-house mixed spike enriched in 190Os. The 
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sample and spike mixtures were mechanically mixed in a ceramic crucible and were then 

combined with a ~5 g of flux consisting of sulfur, nickel and Na-borate with 1:2:15 

proportions. Whole rock crucibles were fused at 1000 oC for 1.5 hours. The NIS beads from 

the whole rocks were dissolved in 6.2 N HCl at ~150 C and filtered through a 0.45 um 

cellulose filter. The filter paper was then dissolved in 1 ml concentrated HNO3, in a Teflon 

screw-cap beaker on hot plate at 100 oC for 45 min before sparging, during which oxidation 

of Os to OsO4 was achieved. The acid solution was then diluted ~5-fold with ultrapure water 

and a screw cap with inflow and outflow tubes was placed on the breaker. This cap allowed 

argon to bubble through the solution, via perforated tubing, thereby carrying the volatile 

OsO4 into the torch for analyses (Hassler et al. 2000). Measurement of Os composition and 

concentration was carried out on a Finnigan Element 2 ICP-MS with argon flow rates being 

adjusted to around 1.35 L/min. Each analysis consisted of 30 runs. During the course of this 

study the whole chemistry Os blank was about 0.93 pg/g with 187Os/188Os of 0.64. In-run 2 

sigma precision for 187Os/188Os measurement was about 0.5 %-1%. Repeated analyses of 1.25 

ng and 400 pg in-house Os standard solution yielded an average 187Os/188Os =0.17399±0.29% 

and 187Os/188Os =0.17432±0.55%, respectively. 

 

4. Results 

 

4.1 Major and trace elements 

 

 Whole rock geochemical data are listed in Table 1 and a brief summary is presented here. 

Al2O3 and CaO are negatively correlated with MgO (Fig. 3). The most fertile lherzolite 

sample (e.g., FS-1) is compositionally similar to the primitive mantle (Jagoutz et al., 1979; 

Hart and Zindler, 1985). Specifically, harzburgites have higher MgO contents and lower 

Al2O3 and CaO contents than lherzolites indicating a higher degree of partial melting for the 

harzburgites (Table 1; Fig. 3). The MgO content of the most refractory sample (YG-19) is 

50%. Al2O3 and CaO contents in this sample are down to 0.36% and 0.12%, respectively.  

 Similar compositional distinction between lherzolites and harzburgites is also reflected in 

mineral chemistry (Table 2). For example, Cr# values of spinel (0.096-0.22) in lherzolites are 
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lower than those in harzburgites (0.23-0.58). As Cr#Sp is positively proportional to the 

degrees of partial melting, this implies that harzburgites underwent a higher degrees of melt 

extraction compared with lherzolites. Equilibrium temperatures for the Yangyuan peridotites, 

estimated using Ca-in-Opx thermobarometer of Brey and Kohler (1990), range from 916oC to 

1050oC (Table 2). No difference in equilibrium temperature is observed between harzburgites 

and lherzolites. 

The Yangyuan and Fansi peridotites exhibit substantial variations in both absolute 

concentration of trace elements (Table 1) and chondrite-normalized REE patterns. Three REE 

patterns for Cpx separates can be distinguished (Fig. 4). The first type is characterized by a 

flat HREE [(Ho/Yb)n=1.03-1.15] pattern and a LREE-depleted pattern [(La/Yb)n=0.34-0.58]. 

Primitive mantle-normalized element abundances gradually decrease from MREE to Rb 

forming a smooth trend line. This pattern shows a pronounced negative Ti anomaly but no Nb 

and Ta anomalies (Fig. 4a, b). The second type pattern is characterized by relatively flat REE 

pattern (Fig. 3c). YYB-5 and YYB-7 possess a weak HREE fractionation with the apex at Nd. 

YYB-8 exhibits a weak LREE-enrichment. These samples exhibit negative Zr, Hf and Ti 

anomalies but no Nb and Ta anomalies (Fig. 3d). The third type pattern is characterized by 

LREE-enrichment [(La/Yb)n = 2.7-110] and pronounced negative HFSE anomalies (Fig. 4e, 

f). 

 

4.2 Sr-Nd isotope 

 
87Sr/86Sr ratio of Cpx in the Yangyuan peridotites ranges from 0.7031 to 0.7047. 

143Nd/144Nd ratios have a wide variation from 0.5121 to 0.5136 (Table 2). These isotopic 

compositions are distinctly different from that of the host basalts (Fig. 5a). εNd values of the 

LREE-enriched samples YYB-3 and YYB-9 are –10.6 and -6.9, respectively. However, their 
87Sr/86Sr ratios are only moderately enriched (0.7044-0.7047). This may indicate a 

contribution from an EMI-type component (Fig. 5a). Although YYB-1 is also LREE-enriched, 

it has a positive εNd value, and plots well within the Nd isotopic range of the LREE-depleted 

samples (εNd = +5 to +8). The εNd values of the samples with the second type of REE pattern 

(εNd = 1.2) are between those of the LREE-depleted and the LREE-enriched samples. Nd 
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model ages range from future ages to older than that of the Earth (Table 2). However, most of 

LREE-depleted samples have Nd model ages between 2.0-2.8 Ga. 

 

4.3 Os concentration and isotopic composition 

 

 Osmium concentrations in all but one sample range between 0.3 ppb and 2.8 ppb (Table 

2; Fig. 6). These Os concentrations are similar to off-cratonic spinel peridotites from around 

the world (Handler et al., 1997; Meisel et al., 2001; Peslier et al., 2000a; Pearson et al., 2004; 

Reisberg et al., 2005), but are lower than Os concentrations in peridotite massifs. The most 

refractory sample YG-19 is characterized by anomalously high Os content (9 ppb). No clear 

correlation is found between 187Os/188Os and Os and La/Yb for the whole suite (Fig. 7a, b). 

 Whole rock 187Os/188Os isotopic compositions measured by ICP-MS at WHOI range 

from 0.1106 and 0.1325, with a large number of samples having very unradiogenic Os 

isotopic ratios (<0.12; Table 2). The sample YYB-7 has an 187Os/188Os ratio of 0.1106, which 

is among the lowest values measured so far for the Chinese mantle xenoliths in Cenozoic 

basalts (Wu et al., 2006; X. Xu et al., this volume). The most refractory sample YG-19 and a 

LREE-enriched sample YYB-3 have 187Os/188Os higher than that of the present-day primitive 

upper mantle (PUM) value (0.129±1, Meisel et al., 2001). In the plot of 187Os/188Os against 

Al2O3, these two samples and another very refractory sample (YYB-1) plot off the positive 

correlation defined by remaining samples (Fig. 7a). All three samples show evidence for melt 

percolation given their high La/Yb (Table 1) and LREE-enriched pattern (Fig. 4). According 

to the 187Os/188Os-Al correlation trend, the Os composition of the fertile lherzolite at 4.2 wt% 

Al2O3 is 0.128, which agrees well with the PUM values of Meisel et al. (2001). 

 

5. Discussion 

 

5.1 Depletion and enrichment events 

 

 Modal compositions (Fig. 2) reveal that the Yangyuan-Fansi peridotite xenoliths range 

from primitive lherzolite via clinopyroxene-poor lherzolites to strongly refractory 
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harzburgites. Such modal variation is accompanied by mineral and whole rock composition 

changes. In particular, the inverse correlations between CaO (and Al2O3) and MgO (Fig. 3) 

are similar to those observed for xenoliths from worldwide occurrences (Frey and Prinz, 1978; 

Xu et al., 1998; Takazawa et al., 2000). This indicates that the Yangyuan-Fansi peridotites 

represent the refractory residues left after extraction of the basalts by variable degrees of 

partial melting. Applying the method of Norman et al. (1998), we have estimated the degrees 

of partial melting for the Yangyuan samples. Comparison of Y and Yb contents in lherzolite 

cpx and the modeled melting trend (Fig. 8) further indicates that the degrees of melting for 

the Yangyuan lherzolites and harzburgite varied between 0-5% and 6-20%, respectively. Nd 

model ages of LREE-depleted samples (2.0-2.8 Ga) suggest that melt extraction took place 

during late Archean and early Proterozoic. 

 LREE-enrichment associated with some moderately to highly refractory samples 

indicates mantle metasomatism. Chromatographic-type migration of LREE-enriched 

melts/fluids through LREE-depleted peridotites is an efficient metasomatic mechanism 

(Navon and Stolper, 1987; Bodinier et al., 1990). This type of melt-rock interaction produces 

REE patterns with extremely variable LREE enrichment and almost intact HREE, which is 

typical of that observed in the cpx studied in this paper (Fig. 4). Incipient metasomatism is 

associated with the samples with relatively flat REE patterns (YYB-5, 7, 8; Fig. 3c). High Nb 

abundance in cpx from YYB-8 indicates that the metasomatic agent was capable of carrying 

this element. This, the positive εNd values and relatively low Sr/Nd and Ba/La ratios suggest 

that the metasomatism in these samples was probably related to small degree melts from an 

asthenospheric source during intraplate volcanism. 

 A different metasomatic agent for LREE-enriched samples (YYB-1, 3, 9) could be 

invoked given the strong HFSE depletion (Fig. 4e, f). Carbonatite, subduction-released 

fluid/melt and evolved asthenosphere-derived melt (Menzies, 1990; Ionov et al., 1993; Bedini 

et al., 1997) are potential agents because they can all produce a high La/Yb and a marked 

HFSE depletion. Discrimination between these alternatives is not an easy task. Nevertheless, 

carbonatite metasomatism is not favored given the lack of the features typical of carbonate 

metasomatism in the xenoliths (e.g., presence of apatite, high Na in cpx, Yaxley et al., 1998). 

With the exception of YYB-1, the Yangyuan samples define a roughly positive correlation 
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between εNd and Sm/Nd (Fig. 5b). This can be explained either by mixing between a depleted 

endmember and an enriched component or by time-integrated radiogenic decay.  

 Despite the contrast in εNd (Table 2), YYB-1 (εNd=+5), YYB-3 and YYB-9 (εNd =-6~-10) 

have similar trace element compositions. It is thus possible that the associated metasomatic 

agents were likely derived from the asthenosphere by small degrees of partial melting, but 

metasomatism took place at a different time. The LREE enrichment associated with YYB-1 is 

a recent event so that the time elapsed was not sufficiently long to create low, unradiogenic 
143Nd/144Nd. In contrast, those associated with YYB-3 and YYB-9 must be old. The 

calculation suggests that the enrichment must have taken place at least 1000 Ma ago so that 

radiogenic decay subsequent to LREE enrichment can produce low εNd observed in these 

samples. A weakness with this interpretation comes from Os data. As will be discussed later, 

YYB-3, which is only moderately depleted in terms of Al2O3, likely contains a mixture of 

primary and secondary sulfides, whereas highly refractory YYB-1 is likely dominated by 

metasomatic sulfides. If both samples were metasomatized by a similar melt, then a higher 
187Os/188Os ratio is expected for YYB-1 that has relatively higher Os abundances (1.6 ppb) 

compared to YYB-3 (~0.5 ppb). However an opposite is observed (Table 2).  

 Although the above mentioned problem can be explained if the enrichment of lithophile 

elements and the introduction of Os took place by separated processes, a more plausible 

interpretation is that LREE-enriched samples with negative εNd were affected by a 

metasomtatic agent that is different from the asthenospheric melts invoked for the samples 

with positive εNd. Subduction-related melts are the likely candidate. This suggestion is 

consistent with the fact that studied area is located within the Central Orogenic belt of the 

NCC, formed as a result of collision between the western Block and eastern Block during the 

Proterozoic (Zhao et al., 2001).  

 

5.2 Effect of metasomatism on Re-Os system 
 

A number of the Yangyuan-Fansi samples show signs of mantle metasomatism (e.g., 

LREE-enrichment). However, only three of them plot off the general trend in the 
187Os/188Os-Al plot (Fig. 7a) due to their relatively high 187Os/188Os, whereas remaining 
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metasomatized samples and unmetasomatized define a coherent correlation between 
187Os/188Os and Al2O3. This correlation may be of age significance (see next section for age 

determination), or represent a mixing line reflecting refertilisation of the lithosphere (Beyer et 

al. 2006) and/or by metasomatism of a sulfide-saturated silicate melt that introduced silicate 

phases (Pearson et al., 2004). However this interpretation is problematic for the following 

reasons: (a) There is no correlation between 187Os/188Os and Os for the studied samples, as 

would be expected with a mixing trend. Moreover, Os addition through lithospheric 

refertilisation or metasomatism would produce a curved array (Reisberg and Lorand, 1995), 

rather than the linear correlation observed in Yangyuan-Fansi samples; (b) Metasomatic 

enrichment tends to be involved to a greater degree in more refractory samples than in more 

fertile samples (Frey and Prinze, 1978; Xu et al., 1998; this study), which is the opposite 

required to explain the positive 187Os/188Os-Al2O3 correlation. There is no petrographic and 

geochemical evidence for a large-scale metasomatism that affected the whole sample suite, as 

the presence of LREE-depleted and high εNd peridotites (Table 1 and Fig. 4-5) reflects a 

long-term isolation from the convecting mantle since the melting event. In fact, Al2O3 

contents in peridotites, which are negatively correlated with MgO, are most likely controlled 

by depletion event; and (c) the extension of the 187Os/188Os-Al2O3 correlation overlaps with 

the PUM Os isotopic composition of Meisel et al. (2001). Similar trends have been observed 

in peridotite xenoliths worldwide (e.g., Meisel et al., 2001; Peslier et al., 2001a; Handler et al., 

2003; Wu et al., 2003, 2006; Reisberg et al., 2005), and in peridotite massifs (Reisberg and 

Lorand, 1995, 2005). These trends most likely resulted from radiogenic ingrowth of 187Os 

subsequent to an ancient melt extraction event during which different degrees of melt 

extraction led to different degrees of Re-Os fractionation.  

If the positive 187Os/188Os-Al2O3 correlation is not a mixing line, it follows that the major 

Os modification affected only three samples (YYB-1, YYB-3 and YG-19) that deviate from 

the trend (Fig. 7a). Because of the extremely high partition coefficients for Os in sulfides, 

metasomatic sulfides can contain 1-10 ppm Os. Consequently, addition of metasomatic 

sulfides to mantle residues is an effective way to disturb both the Os abundance and Os 

isotopic ratios of the host peridotites. Recent investigation using the in-situ techniques 

revealed multiple generations of sulfides in mantle peridotites. For instance, Alard et al. 
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(2002) reported two types of sulfides in peridotite xenoliths: the “original” type was included 

in silicate phases and the secondary type was interstitial along silicate boundaries. Osmium 

abundances in interstitial sulfides are significantly lower than those of the primary sulfides 

(Alard et al., 2002). The whole rock analyses integrate these different generations of sulfides. 

Whether its Re-Os composition is affected by metasomatism depends upon the proportion 

between primary sulfides and secondary sulfides. Specifically, the effect of such metasomatic 

sulfide addition on the whole rock Os isotopic systematics is only significant when the 

primary sulfides have been completely removed in the peridotites (Handler et al., 2003).  

The fact that LREE-enriched samples (YYB-5, YYB-7, YG-5) do not display high 
187Os/188Os ratio and plot along the correlation suggests that not all metasomatism can affect 

Re-Os isotopic system of the mantle. Such a decoupling between enrichment of lithophile and 

siderophile elements may be due to the relatively high proportion between primary sulfides 

and metasomatic sulfides in these samples. As indicated previously, these samples were 

affected by chromatographic metasomatism at very low melt/rock ratio. In this case, the 

percolating melts may be evolved thus having high concentration of LILE but low contents of 

siderophile elements due to sulfide segregation during precedent evolution. As a consequence, 

metasomatism cannot introduce a significant amount of siderophile elements, consequently 

the residual primary sulfides in these peridotites still dominate the Os budget. 

YYB-3 has Os abundances (0.55 ppb) that are significantly lower than those of the other 

peridotites from the same locality, making it more susceptible to metasomatic Os addition. 

Hence, a straightforward explanation is that the high 187Os/188Os ratios in YYB-3 could have 

developed as a result of addition of a radiogenic Os component to the peridotites. The 

measured high 187Os/188Os reflects the mixing between primary sulfide and a metasomatic 

component which has more radiogenic composition. So far, radiogenic Os combined with 

low Os abundances has been documented in peridotite xenoliths from subduction setting 

(Brandon et al. 1996) and peridotites that have been modified by plume-derived melts 

(Handler et al., 2003). Given the Nb-Ta depletion and negative εNd value for YYB-3, an 

interpretation involving supra-subduction zone processes is likely. Alternatively, high 
187Os/188Os ratio was developed as a result of radiogenic ingrowth subsequent to metasomatic 

enrichment of Re/Os. 
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A similar explanation may be put forward for YYB-1, but the positive εNd observed in 

this sample requires a different and recent metasomatic event. YG-19 and YYB-1 are highly 

refractory with Al2O3 of 0.36 and 0.63%, respectively. It is possible that the original Os 

component in these rocks may have been largely removed during melt extraction, allowing 

the secondary Os to dominate its current Os budget. Lithophile element compositions suggest 

that the metasomatic agent has a geochemical affinity with asthenospheric melts. 

Asthenosphere-derived melts are generally more radiogenic than most peridotites, thus 

accounting for the high 187Os/188Os ratios observed in these two refractory samples. The 

effect of radioactive decay is negligible given the recent melt infiltration processes. YG-19 

has anomalously high Os concentration (>9 ppb), while the Os concentration in YYB-1 (1.6 

ppb) is typical of those observed in other samples from the same localities. This may be 

related to the sulfide saturation of percolating melt during its passage in the lithosphere. The 

percolating melt associated with YG-19 probably deposited sulfides in peridotites, whereas 

the melts percolating YYB-1 may be relatively depleted in Os due to previous loss of 

sulfides. 

 

5.3 Ages of the lithospheric mantle beneath the western NCC 

 

 The Re-depletion ages (TRD) for the Yangyuan samples (except for YG-19), assuming a 

Re/Os of zero (Walker et al., 1989), range from 0.33 to 2.69 Ga (Table 1). Because 

Re-contents in peridotites are certainly higher than zero after melt extraction, TRD may 

underestimate the true ages of melting events, and are considered as minimum model ages 

(Walker et al., 1989). Only the Re-depletion age of the most refractory samples may approach 

that of the true age. In this sense, 2.7 Ga may represent the age of melt extraction although 

this is still a minimum estimate given the presence of more refractory samples. 

 Another method to obtain the melt-depletion age is to use Al2O3 as proxy of Re/Os 

because Al2O3 are positively correlated with Re/Os (e.g., Reisberg and Lorand, 1995). The 
187Os/188Os-Al2O3 correlation is interpreted as a result of radiogenic ingrowth of 187Os 

subsequent to an ancient melt extraction event. The age of this event can be estimated by 

comparing the y-intercept of the correlation with the mantle evolution curve assuming the 
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Re/Os of the PUM (Meisel et al., 2001). Because in refractory peridotites, Al2O3 contents 

rarely reach zero, consequently the Al-model age may overestimate the true depletion age 

(Pearson, 1999; Peslier et al., 2000). Handler and Bennett (1999) argued that extrapolation to 

of 0.7 wt% is warranted because in most peridotite suites worldwide Re/Os approaches zero 

at that approximate level of depletion. YG-19, YYB-1 and YYB-3 are not used in model age 

determination because their Os isotopic compositions have been modified during melt 

percolation processes. The remaining samples define a positive 187Os/188Os-Al2O3 correlation 

with the y-intercept (at Al2O3 = 0.7 wt%) at ~0.110, yielding a model age of 2.8 Ga (Fig. 7c). 

This age is in agreement with the TRD of the most refractory samples and the Nd model ages 

of the LREE-depleted samples (2.0-2.8 Ga, Table 1), suggesting a long-term isolation of the 

lithospheric mantle from the convective asthenosphere. All the model ages (2.4-2.6 Ga) of 

melt extraction are virtually identical to the Nd model age of overlying crust (Wu et al., 2005), 

suggesting an essentially coupled crust-mantle in the western NCC. 

The antiquity of the lithospheric mantle under the western NCC is also consistent with 

the unusual EM1 type Sr-Nd isotope composition of some LREE-enriched samples. Similar 

isotopic characteristics have been observed in garnet inclusion from south Africa and 

xenoliths and megacrysts from Outer Hebrides from Scotland, which have been interpreted as 

a result of radiogenic decay after a LREE-enrichment (Richardson et al., 1984; Menzies and 

Halliday, 1988). 

 

5.4 Lateral variation in age structure of the upper mantle beneath the NCC 
 

A number of Os isotope studies are now available on mantle xenoliths from eastern 

China, thus enabling us to gain insights into the lateral variation in the age structure of the 

upper mantle in this region. In the following, we compare the mantle domains across the 

DTGL as this lineament may represent a fundamental boundary in eastern China and its 

formation may be genetically related to the lithospheric removal (Xu, 2007). 

Gao et al. (2002) reported a Re-Os isochron age of 1.9 Ga for selected xenoliths from 

Hannuoba, which is also located to the west of the DTGL. This age is significantly younger 

than the Nd model age of the overlying crust, suggesting a decoupled crust and mantle at 
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Hannuoba. These authors suggested that some portion of the original Archean lithospheric 

mantle underlying Hannuoba was removed during the Proterozoic, and was replaced with 

new lithosphere derived from the convective mantle. The decoupled crust-mantle at 

Hannuoba contrasts with the coupled crust-mantle at Yangyuan although the two localities are 

geographically proximal (Fig. 1). It is interesting to note that both Hannuoba and Yangyuan 

xenoliths define the same trend in the 187Os/188Os-Al2O3 plot (Fig. 7b). We thus suggest that 

the mantle xenoliths from western NCC record the same stabilization age (i.e., very early 

Proterozoic). The assessment of the Early Proterozoic mantle at Yangyuan and Fansi suggests 

that fertile mantle can persist for a prolonged time (Lee et al., 2001). The contrast in 

composition between Archean and Proterozoic mantle implies a dramatic change in thermal 

condition from the Archean to the Proterozoic (Menzies, 1990; Griffin et al., 1998). 

A complex age structure is found for the lithospheric mantle beneath the eastern NCC. 

For instance, some highly refractory samples from Longgang (Jilin Province) and Qixia 

(Shandong Province) have TRD age of 1-1.2 Ga, suggesting a minimum Mesoproterozoic 

model age for melt depletion of the SCLM underlying some portions of the eastern NCC 

(Gao et al., 2002; Wu et al., 2003). Reisberg et al. (2005) reported Re-Os isotopic data on 

peridotite xenoliths from Subei basin (east Central China) and suggested the mantle 

underneath this region were affected by an early Proterozoic (~1.8 Ga) melt extraction event. 

More recently, Wu et al. (2006) obtained a model age of ~2.3 Ga for Kuandian peridotites. 

All these data point to the presence of ancient mantle residues in the eastern NCC. On the 

other hand, a number of samples from the eastern NCC show Os isotopic data overlapping 

that of the modern convecting upper mantle defined by abyssal peridotites and ophiolites, and 

their TRD ages range from 0.4 to 0 Ga (Gao et al., 2002; Wu et al., 2003). This may indicate 

the presence of much younger portion of the lithospheric mantle. It is possible that the upper 

mantle beneath the eastern NCC comprises both ancient melting residues and newly accreted 

material (e.g., Gao et al., 2002; Wu et al., 2003, 2006), although their spatial resolution is 

unclear.  

The Os model ages for the upper mantle from the eastern NCC are significantly younger 

than the formation age of the overlying crust (Wu et al., 2005), suggesting a decoupled 

crust-mantle system in this region. This contrasts with the coupled crust-mantle system in the 
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western NCC, thereby outlining the lateral heterogeneity of the lithospheric mantle beneath 

the NCC. This is consistent with the view that lithospheric removal was largely limited to the 

eastern NCC. The different lithospheric structure in the western and eastern NCC could be 

due to the diachronous extension history that resulted from interaction of two tectonic 

regimes (Xu et al., 2004b). While the extension in the Shanxi graben was likely related to the 

Indo-Eurasian collision (Ye et al., 1987), the NNE-trending basins in the eastern NCC may be 

induced by subduction of the Pacific plate underneath the Asian continent (Griffin et al., 1998; 

Wu et al., 2003; Xu et al., 2004b), which started probably since the end of the Mesozoic 

(Engebretson et al., 1985). On the other hand, the co-existence of new and old mantle in the 

eastern NCC is not consistent with the delamination model in which the removal of the entire 

old mantle is expected (Reisberg et al., 2005). 

Available Os isotopic data point to the presence of Archean mantle residues prior to the 

lithospheric thinning (Gao et al., 2002; Wu et al., 2006). If the thermal erosion model applies, 

the co-existence of Archean relicts and new mantle components is expected. However, 

Cenozoic basalts essentially sampled both Proterozoic mantle and newly accreted mantle 

with 187Os/188Os consistent with those of modern convecting mantle (Gao et al., 2002; Wu et 

al., 2003; 2006). A key issue needs to address why there is no sign of Archean mantle under 

the eastern NCC. This has been discussed in detail by Wu et al. (2006) who considered three 

possibilities: inverted age stratigraphy in the lithospheric mantle during the Paleozoic, 

preferential sampling of Proterozoic and modern age mantle by Cenozoic volcanism, and 

replacement of Archean mantle during thinning by Proterozoic-Phanerozoic mantle that 

formed underneath the Yangtze craton. Testing of these alternatives requires information 

about the spatial variation in age structure of the lithosphere prior to thinning. This is, 

however, hampered by limited and geographically restricted occurrences of pre-Mesozoic, 

xenolith-bearing volcanism. Nevertheless, the “exotic” Proterozoic mantle as implied by the 

third alternative is not consistent with the accumulating evidence for an intense and 

widespread Paleoproterozoic mantle melting event in the eastern NCC. For instance, the 

granulite xenoliths in the Fuxian kimberlites were formed at 2.5 Ga and represent underplates 

(εHf(t) = 2.4-8.4) of a significant magmatic event (Zheng et al., 2004). Similar 2.5 Ga zircons 

with positive Hf composition are preserved in the Mesozoic intrusions in Shandong province 
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(Xu et al., 2007), suggesting that the Proterozoic mantle is indeed an intrinsic component of 

the lithospheric mantle under the eastern NCC. It is likely that the upper mantle prior to the 

lithospheric thinning was composed of both Archean and Proterozoic residues, although the 

spatial relation of these two components is unclear yet. The Phanerozoic mantle may have 

formed as a result of conductive cooling of upwelled asthenosphere that emplaced at the 

space left by the thinning of pre-existing lithospheric keel (Xu, 2001).  

 

6. Conclusions 

 

(1) The lithospheric mantle sampled by the Yangyuan and Fansi Cenozoic volcanism 

(western NCC) is chemically and isotopically heterogeneous. Parts of the lithospheric mantle 

are characterized by moderately to strongly refractory mantle with variable enrichment in 

LILE. The Yangyuan samples show a wide range in Sr-Nd isotopic composition from DMM 

to EM-1 like component. The lithospheric mantle beneath the western NCC experienced 

multiple metasomatic enrichments involving small melt fractions derived from the 

asthenosphere and melts related to a supra-subduction setting.  

(2) The Yangyuan-Fansi peridotites are characterized by a wide range in Os isotopic ratio 

(0.110-0.133). The unradiogentic Os isotopic ratios in some refractory samples provide 

evidence for the existence of ancient lithosphere under the western NCC. Correlations 

between 187Os/188Os and Al2O3 (and Lu) yield a model age of 2.4-2.8 Ga, suggesting that the 

lithospheric mantle beneath the western NCC was stabilized in the late Archean or very early 

Proterozoic. This model age overlaps the Nd modal age of overlying crust, reflecting a 

coupled crust-mantle beneath the western NCC.  

(3) The coupled crust-mantle in the western NCC contrasts with the decoupled nature in 

the eastern NCC. This confirms that the notion that the lithospheric removal was largely 

limited to the eastern NCC. The co-existence of new and old mantle in the eastern NCC is not 

consistent with the delamination model in which the removal of the entire old mantle is 

expected. The different lithospheric structure in the western and eastern NCC could be due to 

the diachronous extension history that resulted from interaction of the Pacific 

subduction-controlled regime and Indo-Euroasian collision regimes. 
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Figure captions 
 
Fig. 1 (a) Simplified tectonic map of the North China Craton. Note that the North China 

Craton is cut by two major geological and geophysical linear zones – Tan-Lu fault 
zone (TLFZ) to the east and Daxinganlin-Taihangshan gravity lineament (DTGL) to 
the west. Two shaded and dashed lines outline the Trans North China Orogen which 
separates western and eastern Blocks of the North China Craton (after Zhao et al., 
2001). The Shaanxi-Shanxi rift system occurs in the Trans-North China Orogen. (b) 
Distribution of the Cenozoic basalts in the western North China Craton. 

 
Fig. 2 (a) Modal composition of the peridotite xenoliths from Yangyuan and Fansi. (b) Modal 

orthopyroxene versus forsterite content in olivine. Complied fields for xenoliths found 
in Archean, Proterozoic and Phanerozoic crust are from Menzies (1990). 

 
Fig. 3 Plots of CaO and Al2O3 against MgO for peridotite xenoliths from Yangyuan and 

Fansi. Diagonally hatched areas are primitive mantle compositions (Jagoutz et al., 
1979; Hart and Zindler, 1986). 

 
Fig. 4 REE and trace element abundances in clinopyroxenes from Yangyuan peridotites. On 

the left, the REE patterns normalized by chondrite values (Sun and McDonough, 1989). 
On the right hand are spiderdiagrams with trace elements normalized to primitive 
mantle values (Sun and McDonough, 1989).  

 
Fig. 5 (a) 143Nd/144Nd versus 87Sr/86Sr of clinopyroxene separates from the Yangyuan 

peridotites. Isotope data of peridotite xenoliths from eastern China (Fan et al., 2000; 
Song and Frey, 1989; Tatsumoto et al., 1992; Xu et al., 1998, 2003; Rudnick et al., 
2004) and of the host basalts (Ma, 2004) are shown for comparison. (b) εNd versus 
Sm/Nd diagram.  

 
Fig. 6 187Os/188Os versus Os and La/Yb 
 
Fig. 7 (a) Left: whole 187Os/188Os ratios plotted against Al2O3 and model age determination. 

(b) Right: whole 187Os/188Os ratios plotted against Lu and model age determination. Os 
mantle evolution curve is calculated using the Os isotopic composition of the 
present-day PUM of Meisel et al. (2001) and initial 187Os/188Os ratio (0.09531) used by 
Shirey and Walker (1998). The model ages obtained for Yangyuan and Fanxi 
peridotites range between 2.4-2.8 Ga.  

 
Fig. 8 Comparison of Y and Yb contents of clinopyroxenes in peridotite xenoliths from south 

China with the calculated melting trend using fractional melting model within spinel 
stability field (Norman, 1998). The subscript n in (a) indicates that the Yb and Y 
concentrations are normalized to primitive mantle (Sun and McDonough, 1989).  


