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ABSTRACT

DISSOLVED INORGANIC AND

PARTICULATE IODINE IN THE OCEANS

GEORGE TIN FUK WONG

Submi tted to the Department of Earth and
Planetary Sciences on February 20, 1976 in
partial fulfillment of the requirements for

the degree of Doctor of Philosophy

Analytical methods have been developed for the
determination of iodate, iodide and particulate iodine in
sea water. Iodate is converted to tri-iodide and the absor-
bance of tri-iodide at )53 nra is measured. The precision of
this method is ca. z3%. Iodide is first separated from most
other anions by an AG 1-x8 anion exchange colunin and then
precipi tated as palladous iodide with elemental palladium
as the carrier. The precipitate is analyzed by neutron acti-
vation analysis. The precision of the method is :t5~~ a."1d the
reagent blank is 0.005 uM. Marine suspended matter is col-
lected by passing sea water under pressure through a 0.6 u
(37 mm diameter) Nuclepore filter. The iodine content of the
particles is determined by neutron activation analysis. The
method has excellent reproducibility and the filter blank is
ca. ) ng.

I oda te is deple ted in the surface waters of the
Equatorial Atlantic. The depletion is more pronounced than
in the Argentine Basin and possibly reflects the higher pro-
ductivi ty in the equatorial area. Superimposed on this fea-
ture, a thin lens of water, of a few tens of meters thick and
wi th high iodate concentrations, can be traced across the
Atlantic. Along the equator, this lens occurs at 80 il at )30W
and rises upwards to 55 m at 100W and it coincides with a
core of highly saline water which is characteristic of the
Equatorial Undercurrent. Longitudinal sections reflect the
complexi ty of the equatorial current system . At least three
cores of water with high iodate concentrations may be iden-
tified. These waters may be transported to the equatorial
region from the highly productive areas along the north-west-
ern and western African coasts and the Amazon plume ~

In anoxic basins, the concentration of iodide in-
creases rapidly in the mixing zone from 0.02 uM to 0.44 uM
in the Cariaco Trench and from 0.01 ll'\ to 0.23 uti in the
Black Sea. The iodate concentration, meanwhile. decreases to
zero. A maximum in the total iodine to salini ty ratio is ob-
served just above the oxygen-sulfide interface (15 to 17

-18-



nmoles/g); it is suggestive of particle dissolution in a
strong pycnocline. Below the interface, the total iodine to
salini ty ratio is constant at 12.) nmoles/g in the anoxic
zone of the Cariaco Trench, whereas, in the Black Sea, it
increases with depth from 10.0 to 19.4 nmoles/g and suggests
a possible flux of iodide from the sediments. By considering
the distribution of iodate and iodide in oxic and anoxic
basins and our present analytical capability, the lower limit
of the pE of the oceans is estimated to be 10.7. Thermodyna-
mic considerations further suggest that the iodide-iodate
couple is a poor indica tor for the pE of the oceans with a
limited usable range of 10.0 to 10.7.

In the Gulf of Maine during the winter of 1974 to
1975. the effect of winter mixing was conspicuous. Uniform
concentrations of iodide and iodate were observed in the
mixed layer above the sill. The absence of a depletion of
iodate and the low iodide concentration (0.04 uM) in the sur-
face waters reflect the low biological activity in this re-
gion during winters.

Profiles of particulate iodine are characterized
by high concentrations in the euphotic zone (/5 ng/kg), and
lower concentrations (( 2 ng/kg) at greater depths. Occasion-
ally, high concentrations have also been observed in the
nepheloid layer. The iodine-containing particles are probably
biogenic. A section in the Western Atlantic from 75°N to 550S
shows evidence of the transport of particles along isopycnals
and the re-suspension of surface sediments to considerable
distance from the bottom. The standing crops in the top 200
m may be qualitatively correlated with the primary producti-vi ty . .

Thermodynamic considerations show that iodide is a
metastable form at the pH of sea water. Laboratory studies
fail to show the oxidation of iodide at measurable rates.
Elemental iodine is unstable in sea water and undergoes hydro-
lysis to form hypoiodous acid in seconds. H~~oiodous acid is
also unstable ~1d has a life time of minutes to hours. It may
react with organic compounds to form iodinated derivatives or
it may be reduced to iodide by a reducing agent. The dispro-
portionation of hypoiodi te to form iodate seems to be a
slower process. A possible chemical cycle for iodine in the
marine environment is proposed.

Thesis Supervisor: Peter G. Brewer
Ti tle: Associate Scientist

Department of Chemistry
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts.
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I .1 Introduction

This thesis presents an investigation on the mar-

ine chemistry of the element iodine, a roul ti-oxidation-state
element known to be in redox dis-equilibrium, in an attempt

to gain a better understanding concerning biological-chemi-

cal interactions in the ocean.

Ever since Sillen' s classic paper on ' the physi-
cal chemistry of sea water' (1961), many attempts have been

made "CO examine the controls on the chemical composition of

the oceans by computing the composition of an equilibrium

mixture from the existing thermodynamic information (Garrels

and Thompson, 1962; Sillen, 196): Holland, 1965; Kramer,

1965; Zirino and Yamamoto, 1972). There are two basic assum-

ptions in this model. First, that the ocean is a closed sys-

tam and secondly, that sufficient time is available for the

attainment of a chemical equilibrium. However, the ocean in

reality is not a closed system as there are frequent exchan-

ges of both energy and matter among the atmosphere, hydrOS-

phere and the lithosphere. Moreover, since different ele-

ments have different residence times in the ocean varying

from 100 years for aluminum to 108 years for chloride (

Brewer, 1975 and referencesci tad therein) l it is unclear

that there is sufficient time for all elements to reach a

chemical equilibrium. Thus, it is not surprising that 'ex-

ceptions' are often observed and, even in his classic paper,

Sillen (1961) has noted that gross dis-equilibrium does

-21-



occur in some elements.

Dis-equili bria are especially noticeable in the
bio-acti va a"1d mul ti-oxidation-stati; elements. Some of the

better known examples are i iodide-iodate. ammonia-ni trogen-

nitrite-nitrate and arsenite-arsenate (Goldberg, 196): Riley

and Chester. 1971: Johnson and Pilson, 1972). Under the

oceanic conditions of a pH of 8 and a pE of 12.5 (Sillen.

1961), the reduced species in all these systems should be

undetectable wi thin the limits of our present analytical

capabili ties. However, significant quantities of these re-

duced species are often found. The predicted and observed

concentrations of the different species in these systems

are summarized in table I-1-1.

A t least two processes are involved in maintaining

an observed redox die-equilibrium. The first one is the per-

turbation of a stable system to produce the unstable species.

This reaction will be thermodynamically unfavorable. The

production of these unstable species such as iodide, arsenite

and ni tri te has often been attributed to biological acti vi ty
(Tsunogaiand Sase, 1969: Johnson, 1972: Fiadeiro and Strick-
land, 1968) for a number of reasons. First, organisms can

utilize solar energy through photosynthetic processes and

they may subsequently use this energy, directly or indirect-

ly, to drive these thermodynamically unfavorable reactions.

Secondly, organisms possess complicated enzyme systems which

can be used as catalysts to lower the activation energies
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of these reactions. Thirdly, organisms need an electron

acceptor during their metabolic processes. The primary elec-

tron acceptor for aerobic organisms is oxygen. In the absence

of oxygen, some organisms may use in succession nitrate,

sulfate and carbon dioxide as the terminal electron acceptor.

During such processes t other species may be directly or in-

directly reduced.

The second process is the tendency to re-esta-

blish the stable system. The rate of this thermodyna.mically

favorable process will determine the persistence of the dis-

equilibrium. For example, although molecular nitrogen is

unstable relative to nitrate (table I-L-1), it amounts to

78% of our atmosphere and its presence is ubiqui toiis in our

oceans. Sillen (1961) suggested that its presence is due to

the high internal energy barrier of the N-N bond which

greatly reduces its rate of oxidation. However, although

this step is thermodyn~~ically favorable, the possibility

of biological mediations such as nitrification is not ruled

out, and. in such cases, the rate of the reaction may either

be enhanced or retarûed.

In this study, I have chosen to use the iodine

system to illustrate some of the implications of' these con-

cepts on the chemistry of the oceans.
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I.2 A brief review of some aspects of the geochemistry of

iodine

I.2.1 Occurrence

Iodine, as an element, was not recognized until

the early nineteenth century when Courtois isolated elemen-

tal iodine from seaweed (Courtois, 1813). Elemental iodine

has not been detected in the lithosphere, except as small

traces in certain mineral springs. However, as iodide and

iodate, it occurs widely as a trace constituent (Anonymous,

19511 Sneed et al., 1954; Hills, 1956: Fuge, 1974). Table

I-2-1 summarizes the iodine contents of various rocks and

minerals. Minerals having iodine as an essential consti-

tuent are rare although dietzei te and lautari te have been

found in the Chilean saltpetre deposits. A list of the

known iodine-containing minerals is presented in table I-

2-2.

The history of investigations on the chemistry of

iodine in marine environments has been briefly reviewed by

Riley (1965a). He traced the first study to 1825 when Pfaff

detected iodine in Baltic Sea water. This report was later

confirmed by Laurens (1835) who found iodine in French

coastal water. Early investigators reported a wide range of

concentrations from 0.017 ug/i (Macadam, 1852) to 8000 ug/l

(Marchand, 1855). Since then, a series of measurements have

been made (Reith. 1930; Skopintsev and Michailovskaya, 1933;

Dubravcic, 1955; Sugawara et al., 1955: Sugawara and Terada,

-25-



Table I-2-1 Iodine content of rocks and minerals*

Rock Iodine Mineral Iodine
Type Content Type Content

( ppm) (ppm)

Amphiboli te 0.25-0.38 Apati te 0.2)-0.44
Basal t 0.31-0.80 Bioti te 0.50

Diabase 0.49-1.04 Calci te 0.2)
Gneiss 0.38 C inna bar 0.50

Grani te 0.20-1.25 Cupri te ) .8-4000
Limes tone 0.44 Dolomi te 0.)2
Marble 0.07-1.98 Fluori te 0.55
Mica Schist 0.54 Gypsum 0.25-0.27
Porphyry o . 38- 0 . 54 L imoni te 0.75

Pumice 0.25 Pi tchblende 0.94

Quartzi te 1.10-).70 Pyr i te 0.20

Serpentine 0.)8
Wulfeni toe 8.56

* Data from Hills (1956).
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Table I-Z-Z Iodine containing minerals*

Mineral Name Formula
Coccini te

Iodobromi te

HgzIz

(Ag, Cu)I

Ag (Br. I. Cl)

ZAgCl, ZAgBr, AgI

AgI

CuzIz

4AgI , CuI

Cuproiodargyri te

I odemboli te

I odargyri te

Marshi te

Miers i te

Salesi te

Dietzei te

CuIO)OH

Pb(I. Cl)z, ZPbO

(Ag, Hg)I

7Ca(IO))z, 8CaCr04

Ca(io))z

Schwarzembergite

Tocornali te

Lautari te

* Data from Hills (1956).
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1957; Barkley and Thompson, 1960a, 196ob; Voipio, 1961;

Kappana et al., 1962; Tsunogai, 1971a, 1971b; Tsunogai and

Henmi, 1971; Liss et al., 1973; Wong and Brewer, 1974), and,

presently, most investigators agree that the concentration

of total dissolved iodine in sea water is abou'c 60 to 70

ug/l (0.5 ll~) (Goldberg et al., 1971).

Relative to sea salt, iodine is more concentrated

in the atmosphere, in rain, in river waters and in inter-

sti tiai waters. Surface sediments also have high iodine

concentrations. The concentrations of' iodine in natural
wa ters, sediments and the atmosphere are surnmari zed in

table I-2-).
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1.2.2 The speciation of dissolved iodine in sea water

ThermodYnamic calculations show that iodate should

be the only detectable iodine species in the sea (Sillen,
1961). However, it has been long recognized that at least

two species of iodine are present. Winkler (1916) suggested

that they are iodate and iodide. The identity of the oxid-

ized species later developed into a controversial subject.

Sugawara (1957) supported Winkler's view of iodate as the

oxidized species while Shaw and Cooper (1957) thought that

hypoiodous acid mi~~t be the dominant oxidized species ins-

tead. Later investigations by Sugawara and Terada (1958) and

Johanneson (1958) confirmed the presence of iodate and Shaw

and Cooper (1958) subsequently retracted their hypothesise

The fraction of the inorganic iodide that may be present as

ion pairs with the major ions can be estimated from partial

molal volumes (Millero, 1969). It is negligible (table I-2-

4). Recently, the possibility of the presence of 'organic

iodine' has been proposed by Truesdale (1975). He claimed

concentrations of up to 5% of the total dissolved iodine in

the surface waters of the Irish Sea. Lovelock et alo (197))

detected the presence of methyl iodide. However, its kinetic

stabili ty in sea water is low and it is susceptible -to ex-

change reactions with chloride ions to form iodide ions ins-

tead (Zafiriou, 1975). The present discussion will deal only

wi th the inorganic species.
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Table I-2-4 Ion pairing of the iodide ion with the major
*

ions in the ocean

r Z2/r
(A) (A-i)

-0V
( cal c)

(ml/mole)

-0 swV (meas)

(ml/mole)

2.16 0.46 41.8 41.4

-0 sw 21 IV (elect) = -7.5 x Z r = -) .45 ml mole

% contact ion-pair:

-0 sw -0 swVÇmeas~ - V(calcL = 41.4 - 41.8 =

-0 swV(elect) -).45 1.2%

r - Pauling crystal radius

Z - Charge of ion

-0 swV(calc) - Partial molal volume calculated

V(m:~s) - Partial molal volume measured

V(e~:ct) - Electrostriction partial molal volume

* Data from Millero (1969).
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1.2.) The distribution of iodine in the oceans

The average concentration of total dissolved iod-

ine in the oceans is a.bout 0.5 uM (64 ug/l) (Goldberg et

al., 1971). The ratio of iodide to iodate varies with depth

and with geographical locality. The concentration ranges of

iodide and iodate in the open oceans are ~ 0 .01 uM to 0.2 ulV

and 0.2 uM to 0.5 uM respectively (Tsunogai and Henmi, 1971).

Iodide maxima and corresponding iodate minima are often

found in surface w'aters. Below the euphotic z.onep iodide

decreases to below the detection limit of about 0.01 Ui'V

while iodate increases to an approximately constant level.

Low but significant iodide concentrations have been observed

in bottom waters (Tsunogai, 1971b; Tsunogai and Henmi, 1971).

Typical profiles of iodide and iodate are shown in figure

I-2-1. The distribution of organic iodine in the water col-

umn is unknown. The concentration of iodine in marine sus-

pended matter has not previously been measured.
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Fig. I-2-1 The vertical distribution of iodine at 12001'N,

158002 'E in the North Pacific where the depth is

5855 m. (Tsunogai, 1971b)
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I.2.4 The biogeochemistry of iodine

The presence of measurable amounts of iodide in

the oceans implies that the iodine system in the sea is not

at chemical equilibrium with the 02-H20 system. Sugawara and

Terada (1967) found that the alga Navicula can interconvert

iodate and iodide. Tsunogai and Sase (1969) demonstrated

that bacteria that are capable of reducing nitrate to ni t-
rite, or their enzyme extracts, can also reduce iodate to

iodide. Thus t they proposed the enzymatic reduction of iod-
ate to iodide using nitrate-reductase as the catalyst.

Tsunogai and Henmi (1971) later observed that the

concentrations of iodide in the surface waters of various

parts of the Pacific can be qualitatively correlated to

their primary productivity. Wong and Brewer (197L~) reported

that in the Argentine Basin, iodate is linearly related to

the micronutrients phosphate and nitrate, and consequently

to apparent oxygen

the molar ratios of

utilization (AOU) as

- -) -AOU iNO) :PO 4 : iO)

well. They obtained

of 2440')5712):1.

These relationships and the recent detection of methyl

iodide (Lovelock at al.. 1973), which is a possible metabo-

li te, in sea water, suggest that iodine may be in-timately

involved in the marine biochemical cycles.

Indeed. iodine can be found in the body tissue of

all marine species (Hansen, 1963). (The concentrations of

iodine in various organisms are sho\~ in tables 1-2-5 and

I-2-6.) It is an essential nutrient for red and brown
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Table 1-2-5 The concentration of' iodine in marine organisms

Iodine Reference
Content
(ppm dry
weight)

I. Plant

Plankton 300

1500Bro'tm algae

Marine algae 4- 500

Indian sea weed 104

II. Animals

Coelenterata 15

Mollusca 4
Echinoderma ta 6

Crustacea 1
III. Hard tissues

Red als-ae
(Caco))

Porifera
(CaC03)

Porifera
(Si02 )

Corals
(CaCû))

55

4800

2100

5000

Vinogradov (1953)

Vinogradov (1953)
Young and Langille (1958)

Young and Langille (1958)

Pillai (1956)

Vinogradov (195))

Vinogradov (195))

Vinogradov (195))

Vinogradov (1953)

Vinogradov (195))

Low (1949)

Low (1949)

Vinogradov (195))
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Table I-2-6 Concentration factor of iodine in marine

organisms

I. Plant
Plankton

Brown algae

Brown algae

Algae

Marine algae

Gracilaria
foliifera

II. Animal

Fish

Shr imp

Sea urchin

Shell fish
III. Hard tissue

Shell fish
shell

C oncen-
tra tion
"Factor

1200

6200

3000-
10000

184

500-
60000

150

Reference

Bowen (1966)

Bowen (1966)

Mauchline and Templeton (1964)

Hiyama and Khan (1964)

Young and Langille (1958)

US Dept. of Interior (1966)

4 Hiyama. and Khan ( 1964 )

30 Hiyama and Khan (1964 )

39 Hiyama and Khan (1964)

1 Hiyama and Khan (1964 )

2 Hiyama and Khan (1964)
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algae (Bowen, 1966) and Shaw (1959, 1962) reported that only

iodide can be absorbed. Marine ulankton also take in and..

excrete iodine, mostly in the form of iodide (Kolemainen,

1969; Kuenzler. 1969). For land plants, a suitable amount

of iodine is actually necessary for optimal growth (Hanson,

196)) and it is also essential for mammals (Bowen, 1966).

However, although iodine has long been classified as a bio-

phile (Goldschmidt, 1954) and its metabolic pathways in the

higher mammals have already been intensively studied (Gross,

1962), its physiological functions in marine organisms in

general are not well documented. Thus. the link between

iodine and biological activity in the sea is still based

on indirect observations.
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1.2.5 Iodine in the sediments and interstitial waters

Price and co-workers (Price et al., 1970; Price

and Calvert. 1973) have studied the distribution of iodine

in sediments. They observed high iodine content in surface

sediments which decreased rapidly with depth and also

decreased from oxidizing to reducing sediments. A linear

relationship between iodine and organic carbon content was

shown. Shishkina and Pavlova (1965) have also reported

enrichment of iodine in sediments and the iodine content

was found to increase with increasing organic content and

the degree of fineness of the sediments. Bojanowski and

Paslawska (1970) measured iodine in interstitial \ITa ters
and reported the range of iodine concentrations to be 0.35

to 1.9 mg/kg. Recently. Pavlova and Shishkina (1973) further

reported that the concentration of iodine in intersi ti tal
waters increases with depth. These observations suggest

intense diagenesis and post-depositional migration of iodine

in recent sediments and indicate a possible flux of iodine

from the sediments into the ocean. This was proposed by

Tsunogai (1971 b) who observed a low but significant excess

of iodide in the bottom waters.
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1.2.7 The marine geochemical cycle of iodine

Since iodine is involved in many geochemical pro-

cesses as described earlier, its geochemical cycle will no

doubt be complex. Miyake and Tsunogai (1963) presented a

scheme for the cycling of iodine in the oceans and it has

subsequently been modified twice (Tsunogai and Sasep 1969;

Tsunogai, 1971b). The latest version is sho\~ in figure 1-2

-2. Many of the values of the fluxes involved are specula-

tive and unconfirmed. However, the relative magnitudes of

the processes in the cycle are worth noting. .

The permanent loss of iodine to the sediments by

burial is the smallest flux. It is at least three orders of

magni tude smaller than other fluxes and suggests the cyclic

nature of iodine in the water column. Three cycles can be

readily identified. By far, the most important cycle quanti-

tatively is the incorporation of iodine into the organisms

in the surface layers and subsequent re-mineralization at

depth. The regenerated iodine is transported back to the

euphotic zone by advection and diffusion. A secondary, and

possibly significant, cycle is the sedimentation of iodine

containing particles which Q~dergo diagenesis in the sedi-

ments. The dissolved iodine thus formed diffuses back into

the water column. The quantitatively almost insignificant

cycle is the input of iodine from river runoff and fallout

and the removal by transferring iodine from the oceans to

the atmosphere.
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Fig. I-2-2 The cycle of iodine in the ocean. The figures

indicated are the annual rates in a unit of 10-4

g at/m2-yr or 3.6 x 1010 g ~).t/yr in the whole ocean.

(Tsunogai. 1971b)
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I.2.6 Iodine in the atmosphere

Since the report of an enrichment of iodine in the

atmosphere and especially in the marine atmosphere (Ran~ama

and Sahama, 1949; Goldschmidt, 1954; Duce et al., 196)),

much effort has been devoted to study the atmospheric chem-

istry of iodine. It is generally accepted that the ocean

is the most likely source of the excess iodine in the atmos-

phere. However, the mechanism for the transfer of iodine

from the ocean into the atmosphere is still unclear. Miyake

and Tsunogai (196)) suggested that the transfer is accom-

plished by the evaporation of the volatile elemental iodine

which may be formed by the photo-oxidation of iodide accord-

ing to the reac'cion

2I- +toz + 2lII- + hv =: I2 + H20 (1-2-1)
Others (Bolin, 1959; Dean, 196)) favored the transfer of

organic iodine into the atmosphere by a bubble bursting

mechanism. The volatile methyl iodide has been suggested

as a possible candidate (Lovelock at al., 197)). Seto and

Duce (1972) found in their laboratory experiments that both

the organic and the gaseous iodine are important in dater-

mining the total iodine enrichment on marine atmospheric

particles.
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1.3 The scope and organization of the research

My efforts in studying the marine chemistry of

iodine can be sub-divided into three sections. First, tech.-

niques were developed for the analysis of dissolved iodine

in both oxidation states, namely, iodate and iOdide. and

also for particulate iod.ine with improvements in simplicity,

sensitivity and precision over the existing methods. Then,

samples were collected for analysis from specific geogra-

phical areas with distinct characteristics in their produc-

tivity or oxidation potential. Data for dissolved iodine

have been obtained from the Equatorial Atlantic, the Black

Sea, the Cariaco Trench, the Venezuela Basin and the Gulf

of Maine. Samples of marine suspended matter were obtained

from the Atlantic through the GEOSECS (GeOChemical Ocean

Sections Study) program. Laboratory experiments have also

been designed to study the stability, and the mech~~isms

for the interconversion, of the iodine species in sea water.
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CHAPTER II. THE ANALYTICAL CHEMISTRY OF IODINE IN SEA WATER

-4)-



11.1 Introduction
Since iodine is present in the oceans at the uM

level tit is considered a trace element. The concentration

ranges of iodate and iodide in the open oceans are usually

0.2 to 0.5 uM and ~0.01 to 0.2 uM respectively. With such

low abundances and narrow ranges of concentrations, precise

and sensitive analytical techniques are absolutely necessary

for reliable quantitative studies. I have developed a suit-

able method for measuring iodate in the oceans with a preci-

sion of better than 1% in an earlier study (Wong, 1973; Wong

and Brewer, 1974). In ~his chapter. I shall report on methods

for measuring iodide and particulate iodine in sea water.

Moreover, the method for the determination of iodate has been

modified. This modified version is simpler and more suitable

for rapid surveys although the precision may be slightly

poorer.
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11.2 Historical review

Riley (1965) has reviewed the earlier literature

through 1962. A few more methods have been reported since

then. They are all summarized in table II-2-1.

Analytical schemes for the determination of iodate

can be categorized into three groups according to their

methodologies: ti trimetry (Skopintsev and Ivikhailovskaya,

1933; Barkley and Thompson, 1960a, 1960b; Matthews and

Riley, 1970; Wong and Brewer, 1974; Truesdale and Spencer,

1974), photometry (Reith, 1930; Dubravcic, 1955; Sugawara

at al., 1955; Voipio, 1961; Kappanna et al., 1962; Tsunogai,

1971a; Schnepfe, 1972; Truesdale and Spencer, 1974) and

polarography (Petek and Branica, 1968, 1969; Herring and

Liss, 1973). The titrimetric methods involve the titration

of liberated iodine using the starch-iodine or the tri-

iodide ion color as the end point indicator. Amperometric

end point detection has also been used. The photometric pro-

cedures may depend on: (1) the catalytic action of iodide on

the oxidation of arsenic (III) by cerium (iV); (2) the color

intensi ty of the extracted iOdine; or (3) the color intensity
of the iodine-starch complex. Some of the procedures require

tedious initial concentration and separation steps (for

example, Reith, 1930; Skopintsev and Mikhailovskaya, 1933:

Sugawara et aI, 1955; Matthews and Riley, 1970; Tsunogai,

1971a). Others may require stringent control of experimental

-L~5-
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conditions (Dubravcic, 1955: Barkley and Thompson, 1960a;

Voipio, 1961; Kappanna et al., 1962; Truesdale and Spencer,

1974). Some of the earlier methods (Reith, 19)0; Skopintsev

and Mikhailovskaya, 19)): Dubravcic, 1955) do not distin-

guish between the oxidation states and may not have suffi-

cient precision and sensitivity to detail the variations of

iodate in the oceans.

Because of its low abundance, the measurement of

iodide in sea water is even more difficult. In most cases i

iodide is measured as the difference between iodate and total

iOdine. Consequently l the precision and sensi tivi ty, and

thus the usefulness, of such methods are much reduced. The

only known direct method is SugawaraVs method and its later

modifications (Sugawara et al., 1955: Matthews and Riley,

1970; Tsunogai, 1971a). In these methods, iodide is first

concentrated from sea water by precipitating mixed silver

halides. The precipitate is treated with bromine water to

oxidize iodide to iodate. The excess bromine and hypobro-

mi te are carefully removed and the iodate is determined by

iodometric titration. This method is time consuming and

considerable manipulative skill is required to remove the

bromine compounds quantitatively. Moreover, the use of

rather large amounts of the obnoxious bromine water can

become a problem especially on board ship where fume hood

facili ties may 'not be available.

Most of the presently available data were mea-
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sured by Sugawara l s method and its modifications (Sugawara

~~d Terada, 1957; Sugawara, 1957; Sugawara et al., 1962;

Tsunogai,. 1971b; Tsunogai and Henmi, 1971). Few of the re-

maining methods have been tested by measuring natural sam-

ples from the open oce~UlS. Representative profiles of iodide

and iodate are shown in figure 1-2-1. Although the claimed

precision of the analytical methods used is ~)% for iodide

and :!6% for iodate, large haphazard variations are found in

these profiles and they are almost certainly due to analyti-

cal uncertainties.

In light of the above, the precision and reliabi-

lity of the existing analytical methods seemed inappropriate

for this study. Consequently, I have developed new schemes

for the analysis of iodide, iodate and particulate iodine

in the oceans.
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II ..3

II.3.1
The determination of iodate in sea wa"car

Introduction

In my earlier work, I have reported a method for

the determination of iodate in sea water by spectrophoto-

metric micro-titration (Wong, 1973 i Wong and Brewer, 19'14)..

The precision of this method is better than 1%. I also found

that the iodate can be determined colorimetrically by measu-

ring at 353 nrn the absorbance of the tri-iodide ions gener-

ated by the addition of acid and excess potassium iodide to

the sample using a scheme of standard addi tiors. The precision
is about :t3% (Wong, 1973). Al though its precision is poorer,

this method is simpler and wiii be most appropriate for

surveying the large variations (up to 50%) of the iodate

concentrations in the surface layers. The addition method

has been modified and the resu.l ts will be reported in this

section.
My previous data (Wong a."'d Brewer, 197L¡.) were

obtained from frozen samples analyzed in my laboratory at

Woods Hole. There was some concern about the possible

interference by ni tri te. I have tested the sea-worthiness

of the titration method and designed schemes to remove

ni tri te from the samples and the results will also be
included in this section.
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II.).2
II.)..2.1

Experimental

Reagents

All reagents used were of theanalytlcal reagent

grade.
Standard potassium iodate solution (8 ~1).. Dissolve

0.856 g (4 mmoles) of potassium iodate in distilled water

and dilute to 500 mI. The resulting solution is 8 ~l.

Prepare an 8 uM solution from this stock solution by suc-

cessive dilutions..
Potassium iodide solution (10% w/v).. Dissolve

2.5 g of potassium iodide in distilled water and dilute to

25 ml. This solution should be prepared daily.

Sulfuric acid (0.1 M). Add 25 ml of concentrated

sulfuric acid (18 M) to 400 ml of distilled water in small

increments with intermittent swirling and cooling in an

ice-water slush bath. Add 25 ml of distilled water. The

resulting solution is approximately 1 M. Prepare a O.lM

solution from this stock solution by a ten-fold dilution.

Sulfamic acid solution (0.1 % w/v). Dissolve 0.1 g

of sulfamic acid in distilled water and dilute to 100 ml.
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II.).2.2 Procedure

Pil tar about 250 ml of surface sea water through
a. Whatman 40 filter paper. Pipette 40 ml of' the filtered

sea water into each of a set of four 50 ml volinnetric

flasks and mark them 0 l 1 ~ 2 and ). Add 1 ml of 0.1 N.

sulfuric acid and 1 ml of 0.1% sul.famic acid to each flask 0

Swirl each flasl\: and allow the solutions to sit :for 15

minutes with occasional shaking. Pipette 1,2 and 3 ml of

8 w'iI potassium iodate solution to the flasks marked 1, 2

and 3 respectively. Add 1 ml of the 10% potassium iodide

solution and dilute to volume with distilled water. Again,

allow the solutions to 8i t with occasional swirling for 15

minutes. Then, measure the absorbance of the solution in

each flask at 35) nm in a 10 em cell. Repeat the procedure

twice for the same surface sea water. Plot absorbance

against the amount of iodate-iodine added and compute the

slope (S) of the graph.

Treat each sample in the same ina!L"òer except

omi tting the addition of iodate. No.te the absorbance (A) of

each sample. The concentration of iodate in the samples c~~

be calculated from the formula

(10) -) = (A/S) x 0.197 uM (II-)-l)
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II.).) Results and discussions

Sea water samples were collected in the Equatorial

Atlantic during cruise Aii-8) and were analyzed for iodate

on board ship by the colorimetric method. Table II-)-l

shows the raw data for constructing the calibration curves

through out the entire cruise. Figure II-)-l shows one of

the calibration curves. The slopes of the calibration curves

were calculated by a linear least square fi:t. Wi thin each

day, the uncertainty of the slope varies from :to. 2% to

t1.)%. The average slope for the calibration curves in six

weeks has 1 cr of +2.3%. The precision of the colorimetric

method relies heavily on the consistency of the slope of

the calibration curve as shown in equation II-)-l. Thus, it

is comforting to observe such reproducible results and the

uncertainty of the method ca."' be estimated to be about

:t% ·

In order to further check the reliability of the

colorimetric method, I have attempted to intercalibrate

resul ts from this method and the titration method. Figure

II-)-2 shows the data from GEOSECS station 109 (20S, 4°3)'W)

and the nearby station AII-8)-2052 (2oS, 100W). The GEOSECS

samples were analyzed by the ti trimetric method while

station AII-8)-2052 samples were analyzed by the coiori~

metric method. The profiles of Ge of these stations are

indistinguishable below 40 m while the profiles of salinity

and potential temperature become identical below 500 m. The
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iodate profiles, wi thin the precision of the analytical
methods, are indistinguishable throughout the entire depth.

This agreement indicates that there is no systematic dif-

ference between these two methods.

I have also measured iodate in the Venezuela

Basin on board ship during cruise AII-79 by the spectropho-

tometric micro-titration method. No special difficulties

were encountered and the method seems to be sea-worthy.

This profile of iodate is shown in figure II-)-). The profile

is remarkably smooth and the variation in the deep water is

only +2%. A few of the samples were frozen and analyzed in

the laboratory four months later. The stored samples give

absolute concentrations that are slightly lower than those

nearby samples analyzed on board ship as shown in figure

II-)-). However, this difference is insignificant wi thin

the uncertainty of the analytical method and may be due to

a slight error in calibrating the strength of the sodium

thiosulfate titrant, as different titrant solutions have

been used. Thus, it is apparently safe to freeze sea water

for an extended period of time for the analysis of iodate

on a later date. A more detailed study on the effect of

storage on iodate analysis has been reported in Wong (197)).

The interference of ni tri te on iodometric ti tra-
tions is well known. The reaction involved is

- 2 +2I + HN02 + 2H = 2ND + IZ + 2H20(II-)-Z)

Thus, in an acidic solution, ni tri te may oxidize the
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excess potassium iodide added to produce additional tri-

iodide ions and yield high results. Furthermore, nitrite can

be regenerated from nitric oxide by the reactions

2NO +02 := 21'02 (II-)-))
2N02 + H20 = HN02 + HNO) (I1-)-4)

Ni trogen dioxide can also oxidize iodide to iodine in an

acidic solution according to the equation

N02 + 21- + 2H+ ; I2 + NO + H20 (II-J-5)

Thus, theoretically, in the presence of acid a~d even a

trace of ni tri te, iodide may be continuously oxidized to
iodine until it is exhausted. Methods for the removal of

this interference have been well studied (Kol thoff and

Belcher, 195"1). Cohen and Ruchhoi't (1941) proposed the use

of sulfamic acid for removing nitrite in the Winl~ler

titrations for dissolved oxygen by the reaction

NH2S020H + HN02 = H2S04 + N2 + H20 (II-J-6)

This reaction is rapid and quantitative and the products

do not react with any iodine species. Thus, I have adopted

the use of sulfamic acid as a precaution against the

interference by ni tri te.
Ni tri te occurs at very low concentrations in the

open oceans. In deep waters, its concentration is less than

0.024 uM (Wada and Hattori, 1972). In the surface layers,

the concentration is quite variable. I have tested for

possible interference in the oxic zone of the Cariaco

Trench. .I chose two close by samples that were about 100 m

-59-



above the oxic-anoxic inter.face at 158 m and 162 m. Sul.famic

acid was added only to the sample at 158 m. The concentrations

of iodate of these two samples were found to be 0 .46) w~ and

0.462 uM respectively and should be considered indistin-

guishable within the analytical u.Ylcertainties. The maximum

ni tri te concentration in the Cariaco Trench was reported
to be 0.6 w"V and occurs at a slightly shallower depth

(Okuda et al., 1969). It seems likely that the nitrite,

because of its extremely low concentrations in the open

oceans, will not significantly affect the analysis. However,

in the surf'ace layers ,ni trite concentrations in excess o.f

5 uM have been observed (Fiadeiro and Strickland, 1968).

Thus, it would be advisable to take proper precautions

against an interferenc'3 :from ni tri te by destroying it with
sulfamic acid.
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11.4 ~he determination of iodide in sea water by instru-
mental neutron activation analysis

II.4.1 Introduction

I have previously reported on the distribution of

iodate in sea water (Wong, 1973). In this section, I shall

describe a simple and sensitive method for the determina-

tion of iodide.

The nuclear characteristics of iodine make it a

particularly favorablc~ candidate for instrumental n8utron

activation analysis. It occurs in nature as the mono-iso-

topic I-127 with a rather large (n,~) cross section of 5.6

barns. Upon bombardment with thermal neutrons, I-128 is

formed. It has a half life of 25 minutes and undergoes 13-

decay emitting r rays with energies of 442.7 KeV, 526.3 KeV

and 74).5 KeV and relative intensities of 100:9:1 (Adams

and Dams, 1969), and ß-particles with energies of 1.1) MeV,

1.67 MeV and 2.12 MeV and relative intensities of 2:16:76

(Wilson, 1966). Instrumental neutron activation analysis

has been used extensively to determine the total iodine

content of biological (Bowen, 1959r Ohno, 1971; Heurtebise,

1971; Malvano et alq 1972), industrial (Cosgrove et al.,

1958; Ballaux et r, "1
0..1 . , 1969) and some meteorological (

Duce et al., 1965 r Owens and Warburton. 197); Moyers and

Duce. 1974) materials. However, all of these methods

involve a post-irradiation separation of iodine from

the sample matrix, and because of the short half life
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of 1-128, the usefulness of' the methods is much reduced. I

have applied neutron activation analysis to the determination

of iodide in sea water. Post-irradiational chemical manipu-

lations of the samples have been eliminated in favor of a

simple pre-irradiation separation step. The simplicity and

higher sensi tivi ty of this method yield distinct advantages
over the existing methods.

The procedure involves a separation of iodide

in the sample from iodate, other halides and most other

anions by passing sea water through an ion exchange column

containing the strongly basic AG l-x8 resin in the nitrate

form. IOdide, being retained in the column, is recovered by

eluting the column with a 2 M sodium nitrate solution. The

iodide is selectively precipitated from the eluate as palla-

dons iodide in the presence of excess pailadous ions using

elemental palladium as a carrier. The elemental palladium

is produced by reducing some of' the excess palladous ions

wi th sodium thiosulfate (! The precipitate is filtered æ"ld

analyzed by instrumental neutron acti va tion analysis.
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II.4.2 Experimental

II .4.2.1 Reagents

All reagents used were of the analytical reagent

grade.
Sodium nitrate solution (2 M). The reagent shoiÜd

be recrystallized so as to be free from iodine . Dissolve

3LW g of sodium nitrate in distilled water to form 2 1

of solution.

Sodium thiosulfate solution (1.5mM).. Dissolve

0.37 g of sodit~ thiosulfate pentahydrate and 0.1 g of

sodium carbonate in freshly boiled, distilled water -to make

1 1 of solution.

Standard palladium solution (1 mg Pd+2/ml).

Dissolve 0..67 g of amrnonium chloropaiiadite in about 150 ml

of distilled water. Add 41.7 Ill of concentrated hydro-

chioric acid and dilute to 250 ml.

standard rubidium sulfate solution (1000 ppm Rb+) 8

Dissolve 0.78 g of rubidiu~ sulfate in distilled water and

~ilute to 500 ml e

Standard potassium iodate solution (10 ug 1/100 ul).

Dissolve 0.1687 g of potassium iodate in distilled water

and dilute to 1 i.

Bio-rad AG l-x8 resin, 100 - 200 mesh in chloride

form.
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II.lr.2.2 Preparation of the ion-exchange column

Transfer about 100 g of the AG 1-x8 resin to an

erlenmeyer flask. Add 150 ml of 1;4 (v/v) hydrochloric acid.

Swirl the mixture vigorously. Allow the resin to settle

a.'1d deca."ît the supernatant liquid. Repeat this procedure

wi th 150 ill of distilled water, then 150 ml of 0.5 M sodium

hydroxide solution and then with 150 Ill of distillød water

again. Repeat this cycle three ti.mes. Wash the resin once

with 150 ml 2 l/ sodium nitrate solution and store it in 2 M

sodium nitrate solution overnight. PacIe the resin into glass

columns ~ with an internal diameter of 1 cm, to a length of

11 to 12 em.

II .4.2.3 Flux monitor

Pipette 100 ul of the standard rubidium suL.fate

solution onto a 0.45 u 47 mI diameter Nuclepore iil tar. Dry

the :filter under an infrared laiup. Press the ill tel' into a
pellet of size approximately 8 mm in diameter in a stainless

stell pellet press as described by Spencer at ale (1972).

One of these pellets will accompa.'1Y each sample or standard

throughout the irradiation and counting procedure.
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11.4.2.4 Standard

Pipette 100 ul of the standard potassium iodate

solution onto a 0.45 u L~7 ro dia.meter Nuclepore filter. Dry

it under an infrared lamp and then press it into a pellet.

Treat the standard exactly the same as a sample pellet

11.4.2.5 Procedure

Pass 250 inl of a sea wat:Jr sample through the

ion-exchange column at a rate of 2 Inl/minute using a peris-

tal tic pump to control the flow rate. Wash the column with

approximately 5 ml of distilled water. Discard the eluate.

Elute the column with a 2 M sodium nitrate solution at the

same rate. Discard the first 30 m.l of the eluate. Collect

the next 80 m1 in a 125 ml ørlenmeyer flask.. Add 1 ml of

the standard palladitm solution and 2.5 ml of the 1.5 roM

sodium thiosulfate solution. Swirl the mixture Vigorously

and le"b i t sit for 5 minutes. Place the flask in a hot
water bath at 800C for )0 minuteSt then allow the mixture

to cool. Collect thø pred.pi ta.te by í'il tering the mixture
through a 0.45 u l~7 mm diameter Nuclepore filter. Wash the

filter with distillod wa-cere Dry the :filter in (;. dessicator

for at least tv'l( hou:cs. Press "the f'i1 tar into the :form of

a pellet to give it desirable physical characteristics for

neutron irradiation and counting.

Irradia te the sample together with a rubidium

flux monitor for 5 minutes in a thermal neutron flux of
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4 12 -2 -1about x 10 n cm sec . Let the pellets cool for 30
minutes. Count both pellets for 800 seconds on a Ge(Li)

detector coupled with a pulse height analyzer.

A schematic presentation of the procedure. is
shown in figure ii-4-1.
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11.4.3 Results and discussion

Strongly basic anion exchange columns such as

AG 1-x8 have been shown to be a very effective means to

separate the halide elements p chloride, bromide and iodide,

from each other (Atteberry and Boyd, 1950; Degeiso et al.,

1954; Zalevskaya and Starobinetsl 1969). Recently, this

technique has been used to concentrate iodide from malted

snow (Owens and Warburton, 197)). The affinities of the

various anions for the resin are in the order (Wheaton and

Bauman, 1951):

1-) phenolate" HS04-,. Cl03-) N03-) Br-

,. CN- ~ HSO) - ,. 1'°2- ) Cl -)- HC03 -,. 10)

., HCOO- ~ Ac- ~ OH- ,. F-.

Thus, when sea water is passed through the coiu~~ with the

resin in the nitrate form, few anions other than iodide

will be retained.

I have followed the behavior of iodide during

column loading and elution by using both an iodide specific

electrode and the radioactive isotope I-125. Figure ii-4-2

summarizes the behavior of the halides during the loading

and elution of the column. The electrode potential produced

by each halide at the concentration used in the experiment

differs. Bromide and chloride give a positive electrode

potential, whereas iodide at a concentration of 10-6 M or
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above gives a negative electrode potential. By making use

of this property, one can readily identify the peaks in the

elution diagram. The iodide peak was later further confirmed

by radioisotopic studies. As reported in previous work

(Atteberry and Boyd, 1950; DeGeiso et al., 1954; Zalevskaya

and Starobinets, 1969), chloride and bromide are eluted

earlier than iodide. In fact, since the resin is in the

ni trate form, a large portion of the chloride and bromide

is not retained in the loading process. I have followed the

changes in total halide concentration during the loading of

250 ml of sea water onto the column, and the subsequent

elution, by potentiometric titration of fractions of the

eluate with silver nitrate using the iodide electrode to

detect the end-point. The results are summarized in figure

II-4-3. Again, they show that most of the chloride and

bromide escapes from the calumn prior to elution. The

residual amount is eluted after passing 20 ml of 2 M

sodium nitrate solution through the colum. I have also

used I-125 to study the elution behavior of iodide. I-125

has a half life of 60 days and is a pure 0 emitter, emitting

o rays of 35 and 27 KeV. The half life is convenient for

tracer use, however, the low ¥ ray energies cause some

counting problems. Figure II~4-4 summarizes the results of

such a study. The major portion of the activity is confined

to the 10 ml fractions of 6 to 10. Quantitative recovery is

ensured by collecting fractions 4 to 11.
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I have also studied the ion exchange capacity of

the column for iodide. The results are shown in figure

II-4-5. After passing 1 1 of sea water (four times the

sample size) through the column, the capacity has not yet

been reached and break through does not occur.

Palladous ion is a well known selective precipi-

tant for iodide (Winkler, 1918; Vogel, 195)) in the presence

of bromide and chloride. However, in producing elemental

palladium as the co-precipitant, care must be taken to

control the amo~~t of reducing agent used. Excess thio-

sulfate will slowly reduce palladous iodide causing poor

and variable yield. Thus, an excess of palladous ions should

always be maintained and this is evident from the persis-

tence of the slight straw yellow color in the supernatant

liquid. The elemental palladium thus produced forms large

spongy clumps and is ideal for separation by filtration.

I have tested the yield of this procedure using

the radioactive isotope by comparing the activities in

sample pellets and in standards. The standard is prepared

by adding carrier iodide to the same amount of tracer and

then precipi ta ting the iodide as palladous iodide with
excess palladous ions. Table ii-4-1 shows the results of

the study. The three samples gave activities that, within

the counting and handling Uncertainties, were indistin-

guiShable from the standards.

Since palladium is used as the precipitant and
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'lable 11-4-1 Check of recovery of added radiotracer from

sea water

*Activi ty ( cpm) Mean A..D.
Vi oods Hole Surface 1. 2010 l 2059, 2012 2027 21
Wa"ter 2. 19'79, 1951, 2072 2001 48

3. 2001, 1990. 2008 2000 6
Mean of 3 sample s 2009 26

Standards 1. 20L~5 , 1980. 1968 1998 32
2. 1929, 1942, 1918 1930 8

3. 1918, 1932. 1970 1940 20
Mean of 3 standards 1956 31

% Recovery 103%

.¡~ The figures for each sample represent three consecutive
one-minu.te counts.

A.D. - Average deviation.
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one of its stable isotope (Pd-l08) has a large thermal

neutron cross section of 12 barns, dead time can present a

serious counting problem. Natural palladium contains 26.7%

of Pd-l08. During neutron activation, Pd-l0S is tra."lsformed

to Pd-l09m or Pd"~109. Pd-l09m decays to Pd-109 with a half

life of 4.75 minutes by emitting Y-rays of 188e9 KeV (Adams

and Dams, 1969). Pd-l09 in turn decays to Ag-l09 with a

half life of 13.5 hours via ~-døcay and emits 'ó-rays of 88

KeV and 311.5 KeN in the process. I have minimized the

amount of palladium in the precipi ta te "to the least amount

that can be easily handled. A relatively long cooling period

of )0 minutes is used. In addition, I have used pellets

containing a rubidium standard for each sample or iodide

standard as a dead time and neutron flux moni tor~

Figure ii~4-6 shows the Y -ray spectra. of a blank
fil ter, a standard iodate-iodine sample and a Woods Hole

surface water sample. The major b peaks are identified on

the spectra. The region around the iodine Y peak of 442..7

KeY is expanded in figure 11-4-7 e The blap~ is insignificant

and for all practical purposes can be ignored. In the sample.

the pealt shows no shoulder, sugges ting no spectral inter-

ferences within the resolution of the detec.¡:;or (2..5 KeV

FWHM for Co-60 1.33 MeV gammas). The ratio of the photo-

peaks at 442.7 KeVt 526.) KeV and 74).5 KeV in the stw1dard

and the sea water sample are 100:7.4:0.7 and 100:7.6:0.5

respectively. They agree with each other well. This further
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Fig. II-4-6 The Y -ray spectra of a standard iodate-

iodine sample (I), a Woods Hole surface water
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suggests that there are no spectral interferences.

The reagent blank from the sodium nitrate solution

has been deterrn.ined five times. The results are shown in

table i1-I_i--2. 'llhe average reagent blank is 0.0046 uM with a

standard deviation of 0.00145 uM.

The iodide concentrations in three sub-samples

from one sample of surface Vlater collHctecl near Woods Hole

were determined by this method. The results are shOvlin in

table II~4-3. The average concentration including the reag-

ent blank is 0.123 tÜ~ and the standard deviation is 0.006 ll~.
This precision is better than or comparable to the precision

of the presently available methods (for example, Tsunogai,

1971b).

Figure 11-4-8 shows a profile of dissolved iodide

from near surface waters in the Equatorial Atlantic" As in

oth~r parts of the oceans (Tsunogai, 1971 b; Tsunogai and

Henmi, 1971), the iodide concentration is highest at the

surface and decreases rapidly with depth to an almost cons-

tant level of less than 0.01 uM. The absolute concentrations

agree well with others reported in the Ii terature (Tsunogai,

1971b; Tsunogai and Henmi, 1971). The smoothness of the pro-

file is as expected and gives confidence in the reliability

of the method. The data presented here have not been cor-

rected for the reagent blank. The three data points from 400

m to 750 m have an average concentration of 0.007 w~ which

is indistinguishable from the blank of 0.005 uM. This shows
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Table 11-4-2 Reagent blanlr of the instrumental neutron
activation analysis of iodide in sea water

Trial

3

Blank Concentration
(uM)

0.0037

0..0068

0.. 0052

0.. 0042

0.00)1

0.0046 S.D. (lv): 0.00145 uM

1

2

l~

5

Average blank
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Table II-4-) Precision of repeated analysis of Woods Hole

Surface Water

Trial

3

Concentration*
( uI )

0.116

0.125

0.127

0.123 SoD. (1 (J ): 0.006 uM

1

2

Average concentration

* The concentl"a tion includes the reagent blank.
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profile represent 5% uncertainty.
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that there is no serious contamination problem during the

pre-irradiation manipulations.
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II.5 The determination of iodine in marine suspended matter

11.5.1 Introduction
Previous studies have demonstrated the bio-active

nature of iodine (Bowen, 1966; Sugawara and Terada, 1967;

Tsunogai and Sase, 1969) and I have briefly discussed its

biogeochemistry in section I.2 .L~. My own study also indi-

cates a slight depletion of total dissolved iodine in sur-

face waters of the oceans. This evidence suggests that a

significant portion of iodine may be present in the parti-

culate form like the other micro-nutrients such as nitrogen

and phosphorus (Mønzel and Ryther, 1964; Holm-H..J.'1sen at al.,

1966; Hobson and Menzel, 1969; Holm-Hansen, 1972). Thus, a

knowledge of the heretofore unknown distribution of parti-

culate iodine may be essential for a better understanding

of the geochemical cycling of iodine in the oceans.

Neutron activation analysis has frequently been

used for the determination of the bulk chemical composition

of suspended matter because it is non-destructive; it has

high sensi tivi ty for many elements; and it gives a mul ti-
element analysis (Spencer et a1.. 1972) ~ I have extended

this method to the determination of iodine in marine sus-

pended matter as iodine also has many favorable nuclear

characteristics for neutron activation analysis as described

in section 11-4-1.
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11.5.2 Experimental

11.5.2.1 Reagents

All reagents used were analytical reagent grade.

Standard potassium iodate solution (1 ug 1/100

ul) . Dissolve 0.1687 g of potassium iodate in distilled

water and dilute to one liter. Further dilute this stock

solution ten fold to form the ritandard solution.

Standard rubidium sulfate solution (100 ppm Rb+) e

Dissolve 0.78 g of rubidium sulfate in distilled water and

dilute to 500 reI. Dilute 25 mi of this stock solution to

250 ml.

I I . 5 . 2 . 2 Sampl ing

For each sample, about 10 i of sea water was fil-

tered by air pressure through a pre-vieighed Nuclepore fil-

ter (0.6 u pore size, 37 mm in diameter) immediately after

sample collection. Incoming air was filtered and passed

through non-metallic lines to avoid contamination. The f'il-
ter was carefully rinsed with distilled water to remove sea

sal t and then stored in a clean plastic box.
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11.5.2.) Sample preparation for irradiation

The filter is equiL.ibrated in a room at constant

humidi ty. Then, it is pressed into a pellet by using a hand

press in order to minimize geometry problems and to increase

its resistance to irradiation damage and fragmentation

during analysis. The resulting pellet is approximately 4 mm

x 1 ro. Filter blanks are prepared identically.

11.5.2. i.L Standard

Pipette 100 ul of' the standard potassium iodate

solution onto a 0.6 u 37 rom diameter Nuclepore £i1 ter. Dry

it under an infrared lamp and then press it into a pellet.

Treat the s'tanclard exactly the same as a sample pellet.

II.5.2.5 Flux monitor

Pipette 100 ul of' the standard rubidium sulfate

solution onto a 0.6 u )'7 mm diameter Nuclepore filter. Dry

the filter under an infrared lamp. Press the í'il ter into a

pelleot. One of these pellets will accompany each sample or

standard throughout the irradiation and counting procedure.

-86-



11.5.2.6 Irradiation and data processing

Irra.diate the sample together with a. rubidium

flux monitor for 10 minutes in a thermal neutron flux of

12 -~2-1about 4 x 10 n em see c Let the pellets cool for 5
minutes. COlint both pellets simultaneously for 800 seconds

on a. Ge (Li) detector coupled with a pulse height analyzer.

Analyses of the spectra are carried out via ma.gnetic tape

and the computer program GAl',ltl.NJJo Upon irradiation, the

radioactive I-1Z8 is formed from the 1.onoisotopic stable

natural 1-127. It decays with a half life of 25 minutes and

its gamma reLY with an energy of 443 KeV is used for analysese
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II.5.3 Results and discussion

The spectra of a standard pellet and a sample are

shown in figures II-5-1 and II-5-2. The major photopeaks are

identified on the spectra. The ratios of the major photopeaks

of I-128 at 44) KeY, 526 KeY and 744 KeY in the standard and

the sample are 100:7:1 and 100:6:1 respectively. The peak at

44) KeV which is used for calculating the iodine concentra-

tions shows no shoulder. This evidence suggests that there

are no detectable spectral interferences wi thin the resolu-
tion of the detector (2.5 KeV FWHM for Co-60 1.)) MeV gamma~.

Since neutron activation analysis is such a sensi-

tive method, blanks may constitute a serious problem. For

analyses of suspended matter, the filter blank is the major

source of uncertainty. Since no chemical treatment is invol-

ved, there is no reagent blank. In the method reported here,

iodine impurities in the rubidium sulfate which acts as the

flux monitor will be included as a blank too. The results of

a series of tests are shown in table II-5-2. The bi~~ for

iodine is quite variable even wi thin one batch of filters.

The average blank for batch #2718 is about ) ng with a stand-

ard deviation of 51%. Since about 10 1 of sea water was pro-

cessed for each sample, this blan is equivalent to about

0.) ng-I/kg. In an earlier batch I observed no detectable

blank from the f il ters. The magnitude of the blank is small
relative to the sample concentrations in surface waters

where concentrations above 10 ng~cg are frequently encount-
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ered. However, in deep waters, the blank may be significant

since the concentrations in the samples drop to about 1 ng/

kg. Thus, proper cautions must be taken in interpreting

small changes in concentration in the deep waters.

As a short cooling time is used, dead time is

another possible problem. Residual sea salt on the filter

can cause high dead time and consequently high counting

uncertainties. Countings were made based on clock time . At

first, dead time corrections were calculated from the mean

value by the dead time meter. Later on, the pulser counts

accumulated in channel 4000 which also served as an energy

calibration was used. The pulser gives a signal fed into the

analyzer at the rate of 60 cps. The difference between the

observed and preset counts will be the sum of the dead time

losses. A further improvement was made by using the area of

the major peak of the rubidium sulfate flux monitor. Since

the same amount of rubidium is used each time, the difference

in counts between samples and standards can be used to cor-

rect for dead time losses as well as geometry differences

and flux variations.

Since the half life of I-128 (25 minutes) is

short, the irradiation technique used permits the irradi-

ation of only one sample at a time. Standards were irra-

diated periodically each day and the iodine contents in

the samples are calculated by comparing their activities to

those of the standards. This procedure assumes a constant

neutron flux and negligible geometry differences between
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standards and samples. The consistency of the neutron flux

is checked by the Rb flux monitor which accompanies each

sarnple during irradiation and the results are shown in table

11-5-2. Over a six months period, the fluctuations were of

the order of' :t4%. Most of this variation can probably be
attributed to counting errors.

The reproducibility of the method has also been

checked by repeated analyses of one set of samples over a

one year time span. The results are presented in raw counts

in table 11-5- 3. The agreement is excellent with a corre-

lation coefficient of 0.97 and a slope of 1.00.

The contribution of residual sea salt to the mea-

sured concentrations of particulate iodine can be easily

es.eima ted. The iodine to sal inity ratio in sea wa tar is

1.7 x 10-6 (w/w) (Brewer, 1975) . Total suspended matter in

the oceans measured by the present collection method is

usually less than 0.03 mg/kg. Even if it is 100% sea saltt

the iodine content will only correspond to 0.05 ng/lcg

which is much lower than the observed concentrations of

)0 1 ng/kg. Since the residual sea salt should only be a

minor portion of the total suspended matter, the contri-

bu-l:ion from sea salt should be minimal and the iodine

con.tent of the material retained on the í'il ter should

represent the true concentration of iodine in marine

suspended ma tter ~

Figure II-5-) shows a profile of particulate
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Table 11-5-) Heproducibili ty of' samplE.~ counts+

DE:~pth (m)!1

40
lOl
152
202

30)
395
.sL~9

622

787
1100
1401+

2712
2906

3102
3295

*
197L~

2707
2831
27'71

34'(2

5867
5699
3066
3463
1944
1890
1219
1751
1492
1549
1610

"*

1975

2508

311+4-

2606
4292

5518
6206

3525
4061
1999
2182
1671
1 7 5L~

1753
1552
1916

Correlation coefficient 0.97Slope 1.00
Intercept 232

+ Counts are raw counts per 800 seconds.

# Samples from GEOSECS station 17.

* First irradiation was performed in April/May 197Lr (x)

and re-irradiation was performed in Jano/Feb. 1975 (y).
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iodine in the North Atlantic. A concentration maximum is

observed in the surface waters. Below this maximum, the con-

centration decreases rapidly v.¡ith depth to a baclcground

level in the deep water of about 1 to 2 ng/kg. A slight

increase in concentration is also observed in the bottom

water. Duplicate samples obtained at 2890 m give con(~en-

trations of 1.1 and 0.9 ng/lcg. The average deviation of

these two samples (+0.1 ng/kg) is small and is well wi thin

the variabiLi.t;y of the blank. The profile is remarkably'
smooth and all the features can be explained with our

present oceanographic knowledge as discussed in section

III.lr.
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CHAPTER III. FIELD OBSERVATIONS
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111.1 The distribution of iodine in the upper layers of
the Equatorial Atlantic

III.1.1 Introduction

The marine biogeochemistry of iodine has been

briefly discussed in section of I.2. In this section, I

shall report the distribution of iodate and iodide in the

Equatorial Atlantic. The Equatorial Atlantic is one of the

more productive regions in the open oceans (Ryther, 196);

Koblentz-Mishke at ale ~ 1970). The primary productivity is

generally in the range of 150 to 500 mg C/rn2/day. In the

upwelling areas along the African coast, values above 1000

mg C/m2/day have been reported (Corcoran and Mahnken, 1969).

This region is also characterized by large salinity arid
temperature gradients in the upper layers and is thus

strongly stratified (Metcalf at al., 1962; Metcalf and

Stalcup, 1967). Consequently. vertical mixing is much res-

tricted and the char'acteristics resulting from biological-

chemical interactions may be amplified and preserved. With

closely spaced samples and closely spaced stations. I have

attempted to study the finer structure in the distribution

of iodine in the upper layers of the oceans.
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IIi. i .2 Sampling and analytical method
Sea water samples were collected from the Equa-

torial Atlantic during cruise AI1- 83 of the R/V .A tlarrtis II
during the GARP (Global Atmospheric Research Program) Atlan-

tic Tropical Experiment (gate). Five transects were made

between 20N and 2°8 along the longitudes J3°W, 2Sow 1 220W,

16°w and 100W. The cruise track and the locations of the

stations are shoy-m in figure III-l~l. Samples .:rom stations

2044-2046 l 2048. 2050-2052 J 2056-2060, 2062-2064, 2066-

2071, 2073-2081 and 1083-2089 were analyzed for iodate.

Samples from stations 20Lr8, 2068~ 2078 and 2086 were analJr-

zed for iodide as well.

The samples were analyzed for iodate on board

ship by a coloriroetric meth.od modified from the titration

method (Wong and Brewer, 1974) as described in section II.3.

The precision of the method is about +3%. Samples :for

iodide analysis were frozen immediately after sampling

and were shipped to Woods Hole for later analysis by neu-

tron activation analysis as described in Wong and Brewer

(1976) and in section II ò4. The precision of the method

is :t5% and the reagent blank is about 0.005 uNI.. The iodid.e

data reported here have not been blank corrected. The com-

plete listing of iodate and iodide measurements is compiled

in Appendix A. Detailed hydrographic data may be obtained

from Bruce and Katz (1976).

-101-



l ¡. o N I

O
T

/5
Z 1
4
:
z
 
I
 
I
 
1
2
2
2
 
Z

~
~
7
3
 
i
 
~
2
8

Z
.
N
 
'
l
"
 
i
 
?
 
2
0
5
6

"
-
 
I
0
4
0
Z
 
\
"
 
I
 
1
\
'
0

,
\
"
,
 
2
4
 
E
1
 
\
 
\
 
I
 
i
 
\

"
 
\
 
8
7
 
\
 
\
 
J
 
\

)
2
0
8
.
 
\
 
\
 
I
 
1
~
9
\

1
4
0
 
5
3
 
\
 
'
(
2
0
5
7
\

i ;
r-

--
--

-y
 ~

 ~
~

74
? 

\ 0
05

5Z
 1

'1
 \

\ ~
 i 

" 
¡ 

\ !
 ~

 "
 2

0 
f! 

36
 ~

i
 
:
f
 
~
,
,
3
 
~
 
(
'
-
2
,
0
6
1
 
i

1
 
0
6
 
~
 
¡
 
-
 
J
 
5
4
 
\
 
I
 
/
/
;
 
1
'
,
9
 
I
 
I
 
\

b
 
~
?
8
8
 
E
 
,
l
 
'
-
 
5
5
 
J
,
 
~
?
7
5
 
\
 
I
 
.
/
 
~
 
~
 
\
 
"
 
1
 
3
0
 
i
 
\
,
 
g
I
 
1
3

_
 
1
;
;
:
J
 
~
 
'
1
-
:
 
=
G
~
~
 
\
 
.
.
1
 
-
 
1
3
7
'
,
 
I
 
9
~
~
5
8
 
'
1
-
 
2
3
/
5
Z
 
i
2
0
~
6

_
 
1
;
5
 
i
 
(
~
.
0
 
ì
.
9
 
%
 
.
.
 
~
4
9
 
t
t
~
O
G
7
,
 
/
'
 
1
 
J
j
 
¡
T
I
l
 
3

'
?
 
:
0
8
7
 
'
c
O
T
l
O
 
Z
 
7
0
6
 
-
 
i
 
"
ê
 
"
"
 
i
 
(
.
 
-
 
I
 
,
0
 
\
 
I
 
\
 
I
 
1
 
2
0
 
1
5
 
/
 
'
4
 
~
 
4

-
 
1
,
8
 
'
É
 
2
1
:
z
 
=
=
,
 
'
0
 
I
 
:
'
1
 
~
 
¡
 
-
 
!
 
~
~
 
I
 
I
 
\
 
~
=
 
=
=
'
l
-
-
-
-
-
-
l
=
 
'
;
2
0
4
7

_
 
1
,
0
4
 
§
'
(
'
5
 
6
8
 
c
¡
 
=
=
 
\
 
5
6
 
~
 
~
 
1
 
'
,
8
 
1
 
'
8
 
~
 
~
 
1
5
2
4
Z
 
I
 
\
 
!
 
_
 
-
I
 
~
5
 
I
 
I
"
 
5
 
~
 
-

0
.
-
l
;
0
3
6
-
r
=
-
2
0
6
2
~
.
.
"
 
f
2
0
7
G
-
-
!
~
~
'
:
'
~
 
~
 
"
O
O
-
.
,
;
-
4
,
;
t
,
.
2
5
E
'
1
;
2
õ
6
5
-
\
a
o
5
9
 
I
 
,
2
0
5
5
-
-
'
6
~
2
C
5
3
-
2
0
4
'
~
-
0
°

i
 
;
,
7
 
0
 
~
 
-
 
~
 
ì
 
=
 
i
 
~
;
,
 
É
 
w
.
 
¡
 
\
 
,
"
 
j
 
è
 
1
 
S
.
 
!
J
 
L
 
i
 
-
 
\
 
3
1
 
I
 
1
3
 
r
 
-
-
 
1
 
:
:
'
4
 
I
 
~
 
5
 
I
 
G
 
-

+
 
2
0
8
5
 
~
 
7
7
 
_
 
'
r
 
9
 
2
0
r
7
 
~
,
 
'
"
 
I
 
?
 
=
 
i
 
,
 
1
\
,
 
¿
Ë
 
~
 
'
?
!
 
\
 
~
O
G
O
 
4
 
I
 
F
=
 
J
i
 
1
7
 
?
 
~
 
r
t
 
2
0
4
3
 
-

1 
J6

 h
 ~

 a
, ~

 i 
""

 ~
j -

i i
 i 

_ 
\ ¡

¿
G

9 
êl

 f¡
f ,

%
, f

f \
 1

4 
i 3

' J
J 

- 
i =

 -
 6

_
i
 
"
?
 
I
 
_
 
6
4
 
'
í
 
"
'
8
 
i
 
:
'
=
 
:
:
:
:
 
¡
 
,
l
 
4
0
 
ì
 
2
2
 
_
.
.
 
:
:
.
,
 
:
;
~
.
;
.
.
 
;
:
 
2
3
 
1
8
 
I
 
,
.
 
.
,

H
Õ
S
4
 
l
 
~
 
=
=
 
?
 
%
o
n
B
;
 
P
7
 
~
 
~
 
i
 
i
 
=
 
J
,
 
4
0
 
~
 
i
f
 
I
I
 
t
 
/
t
 
\
?
 
~
Š
6
'
 
~
 
=
 
?
 
=
 
~
 
~
 
?
 
2
0
5
0
 
-

I 
" 

r 
- 

i _
 "

0,
 ó

S 
~ 

'Ë
 i 

; ~
 T

 =
 ~

 2
! 

"!
g'

 \;
 3

3 
I 

II
 i 

7
1
.
 
i
 
)
,
8
0
-
0
6
'
 
+
2
(
.
7
9
 
7
'
 
'
=
 
I
 
i
;
_
 
f
l
 
-
-
1
 
~
 
\
 
1
f
2
0
6
~
 
n
-
t
'
9
_
1
E
&
 
'

, _
, _

 "
, ,

.; 
_ 

I '
 ¿

~
70

 'i
 -

 \'
 '6

 i 
tJ

- 
' -

 -
 "

 I
i '

" 
-'i

 i 
' ~

 ~
: 2

, 1
 ' 

- 
- 

"\
I
 
/
/
 
_
_
,
 
+
 
C
O
 
'
"
 
'
"
 
)
.
 
4
4
 
I
 
I
 
\
 
,
 
3
4
 
I
 
I
 
0
2
1
0
Z
 
\
 
l

i
.
 
/
'
 
~
~
 
.
 
2
0
8
0
 
~
 
_
-
"
"
-
 
I
 
~
=
 
,
 
.
 
\
 
'
f
"
2
0
6
3
 
2
1
 
i
 
!
 
~
 
1
1
E
'
 
l
'
 
~
0
5
1

i
-
 
"
 
r
~
:
.
.
 
3
2
 
.
.
,
.
~
 
I
,
 
i
 
4
2
 
\
 
1
7
 
=
8
-
-
-
-
-
-
-
8
_
 
-

_
 
~
 
8
1
 
0
3
4
5
 
Z
 
"
,
 
I
 
'
 
0
0
5
5
 
Z
 
f
'
 
2
0
7
1
 
\
 
i
"
 
1
 
I
 
3

_ 
r/

,0
0"

3 
19

"2
1 

',_
 I 

I I
' 1

0J
Z

 / 
t 2

4 
\ I

 2
3J

6Z
 \ 

II
~

3.
;~

L.
 ~

4 
!..

.. 
i /

/ 0
22

0Z
 \ 

I 1
8 

J/
1 

\
_ 

_2
;; 

ì "
 i 

6'
 / 

~O
 'Z

 \ 
\ \

 I
 9

 -
2
'
S
 
'
"
 
2
0
8
'
 
I
 
'
 
,
 
\
.
1
-
 
\
 
'
0
5
2
-
 
"
.
S

I
 
3
3
 
;
'
 
/
 
I
 
'
ö
 
~
6
6
4
 
9
 
~

,
 
/
 
/
 
i
 
1
8

i
 
/
 
/

I
 
i
 
I
 
i
 
L
 
1
/
/
 
i
 
i
 
I
 
I
 
I
 
i
 
i
 
i
 
i
 
I
 
I
 
i
 
i
 
i

3
0
.
 
V
I
 
2
5
°
 
r
 
Z
O
.
 
1
5
.
 
1
0
°
 
V
I

\ ~ \ i
1
0
3
4
Z
 
\
1
,
 
-

"Z
1:

~'
-:

"

ì
 
~
0
4
5
 
=

1.

1°

1.

A
tla

nt
is

 1
I.

 c
ru

is
e 

83

Ju
ne

, J
ul

y 
19

74

L
eg

en
d

tS
T

D
 s

ta
tio

n 
nu

m
be

r

o
 
H
y
d
r
o
g
r
a
p
h
i
c
 
s
t
a
t
i
o
n
 
n
u
m
b
e
r

C
ur

re
nt

 m
et

er
 s

ta
tio

n 
nu

m
be

r

. n
ot

e:
 D

as
h 

in
di

ca
te

s 
no

 s
to

tlo
r,

H
iti

H
iiH

t T
ow

ed
 S

T
D

F
i
g
.
 
I
I
I
-
l
-
1
 
T
h
e
 
c
r
u
i
s
e
 
t
r
a
c
k
 
a
n
d
 
s
t
a
t
i
o
n
 
l
o
c
a
t
i
o
n
s
 
o
f
 
c
r
u
i
s
e
 
A
i
r
-
8
)
.
 
S
o
l
i
d
 
c
i
r
c
l
e
s

d
e
n
o
t
e
 
s
t
a
t
i
o
n
s
 
w
i
t
h
 
i
o
d
a
t
e
 
d
a
t
a
.
 
S
o
l
i
d
 
s
q
u
a
r
e
s
 
d
e
n
o
t
e
 
s
t
a
t
i
o
n
s
 
w
i
t
h
 
b
o
t
h
 
i
o
d
a
t
e

an
d 

io
di

de
 d

at
a.



III.l.3 Results and discussion

Figure III-1-2 shows the distribution of iodate

from the surface to 200 m depth in a zonal section along

the equator. The most prominent feature is the low iodate

concentration in the upper 30 to 40 m. The iodate concen-

tration in this region is less than 0 .30 in~. A concentra-

tion less than 0.10 uM was observed at station 2079 (ioS,

28oW). Below 140 m; the iodate concentration is uniformly.. 0higher at about 0.40 to 0.45 uM. At 33 W the concentration

below 120 m approaches 0.50 .uM, similar to deep water con-

centrations in the South Atlantic (Wong and Brewer, 1974).

The lower iodate concentrations in the surface waters of

the Equatorial Atlantic, relative to that in the Argentine

Basin (0.39 to 0.40 uM, Wong and Brewer, 1974), probably

reflect the higher productivity in this region.

Superimposed on these features, figure III-1-2

shows a lens of water with high iodate concentration

extending across the Atlantic. It occurs at 80 m at 330W

and rises upwards to 55 m at 10oW. The con~entration in the

core of this lens ranges from 0.45 to 0.60 uM, generally

higher than the concentra tions at grea tar depths. Thus,

thi.s feature appears as a maximum between the iodate-poor

surface water and the less iodate-rich deeper waters. This

core of high iodate water correlates with the Equatorial

Undercurrent as defined by its salinity (Metcalf et al.,

1962; Metcalf and Stalcup, 1967; Neuman, 1969). Figure

-10)-
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III-1-) shows the corresponding distribution of salinity

along the equator. Å core of high salinity water can be

readily identified. It is located at about 75 to 95 m at

3)oW and again rises upwards to 50 m at 100W. The striking

similari ty tends to ~uggest that high iodate concentration
is a significant property of this advecti ve core

Sharp maxima in iodate concentrations have not

been previously reported. One reason may be inadequate

sampling coverage. The lens of high iodate water reported

here has a thickness of only ten to twenty meters and can

easily be missed. During the GEOSECS (Geochemical Ocean

Sections Studies), a station (station 109, 2000'S, 40 ))'W)

was occupied in this region and a profile of iodate was

obtained (Wong and Brewer, 1974). Figure 1II-1-4 shows that

profile and a profile from a closeby station occupied

during the present cruise (station AII-8)-2052, 20 00 IS,

100 00 'W). In GEOSECS station 109, the iodate maximum was

not observed because of poor sample coverage in that depth

interval. Even in this study, with samples 10 m apart, one

may still miss the depth with even higher iodate concen-

tration.
The longitudinal sections of iodate along ))oW,

280W, 220W, 160W and 100W show the complexity of the cir-

culation in the Equatorial Atlantic. Along ))oW (figure

III-1-5), there is a high iodate core at 80 m centered

around the equator. This feature coincides with a high

-105-
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salinity (~36.2 %o)p high oxygen (~l~ ml/l) and eastward

flowing core, and represents the Equatorial Undercurrent.

There is a second I'\;)gion of. high iodate concentration at

100 In at 10 32'N" r):his northern core is associated \'lth

lower salinity and oxygen content and is flowing westwards"

Sections of salinity, oxygen and current o
spoed along 33 W

are shovm in :figU.i"ElS 111=1,.6 to 111-1-8.

Along 280W t the picture is more complex.. ir'hree

cores wi.th high iodat~ concentrations can now be identified

(figure 111-1-9). Between o and 
LroIN, a core at 60 Hi is

associated with high oxygeri, high salinity and an eastward

f 1.0....". At ? O\\,.T. a cor~-: . . t., . t' 1 1-', ~ n. ~ . ~ is associa ,eu wi' n _ ower oxygen. ower

salini tyand a westward flow & These two cores correspond to

those twodescr:ibed prøviously. However, the northern co:l:e

has apparently int;ruded into the equatorial core and some

mixing may have occurred. Moreover, there is evidence of a

parcel of water with 10.w iodate concentration at 18'S

mixing with the equatorial core and it is associated with

a corresponding o:.rygen m.a.ximuil and a westward flow. The

third core is around 10S.. Relative to the equatorial core,

thi.s southern core has lower salinity p lower oxygen content

and a slower eastward fIoV'i. Sections of' salini ty ~ ox;ygen

axid ci.::cren't velocity along 2SoW are shown in figures

III-l-10 to 111-1-12 v

Along 220W t one can identify the equatorial and the

southern cores by their association with higher salinity,

-108-
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higher oxygen, fast east\vard flow and lower salinity, lO'Ncr

oxygen and slower eastward flow l respectively. The Equator-

ial Undercurrent is centered a.t 70 m and 2~: tS. ApparentlYF

there is mixing between the Undercurrent and the southern

core. The data are summarized in figures 111-1-13 to III~1-16

Along 160W (figures 111-1-17 to 111-1-20), these

three cores of water are discretely separated from one an-

other. Their relative magnitudes in salinity, oxygen and

direction of flow are the same as previously described. In

between the cores are regions of lower iodate concentration

which are associated with oxygen maxima. Here the Equator-

ial Undercurrent is at 00 and at a depth of 50 In

At 10oW. (figures 1II-1-21 to 111-1-24), these

three cores of "m.ter with high iodate concentrations can

again be identified although their properties have become

much more uniform than before. Among these three cores, the

equatorial core, which supposedly represents the Undercur-

rent, still has the highest salinity and oxygen content, and

an eastward flo'N and it i.s centered at 40 IN and at 70 il

depth. However, it does not coincide with the region wi'l;h

the highest salinity and highest eastward flow in this sec-

tion anymore. Instea.d, this regions corresponds to a region
of higher oxygen content and lo\ver iodate at about 20'S

and 50 m depth where the iodate maximum is absent. The

northern core still maintains its characteristically low

salini ty and oxygen content. However, instead of moving

-110-
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wÐ~:itwardt it if: ¡lovti.ng toward~ì the east at a slow ~,peed of

o to 10 em/see. rI'here is a fourth røgion of high iodate at

2°1' a.nd 120 m døpth. Thørø . !- .iG a sugges\.J.on of such a core

at 280W and. 2oN. However~ with the limited data, its r61a-

tionship to the other cores is unclear at this point The

properties of the northern, equatorial and ~1outhe:c:n cores

of water with high lodf),tü concE;ntrations at various "l .J~011gi~.-

tude:.~ ti.:ce sirmma:cized in table 111-1-1.

The rWUT'C;0S of these high iodate cores are i.mclear

at this point. The iodate maxima observed in this region

are situatød in the pycnocline as shown in typical profiles

in figures :(iI~1'M25 to 111-1.-28" If iodate is being deple-ted

in the surfa.ce water by organir:;ms then, upon death, a major
portion of the:i0 organisms may sink an.d re-mineralize at

this pyc:nocline since the high density stratification tends

to decrease the sinking speed of the particles ~ ~Phis is

also evident :from the cOl"responding phosphate profiles

(figures III-1-25 to 111-1-28) where a sharp increase in

phosphate is observed in the Harne depth interval. However,

the phosphate profile does not show a maximum. This may be

due to the di:fferences in phosphate and iodate regeneration

an.d utilization rates ~ If the major portion of the re-

mineralization process occurs within a depth of few -'ens

of meters. iodate concentrations higher than those observed

in deep water will be found~

The high iodate concentration observed in this

-11ll--



Table III.~l~.l Properties at th(-; iodate concentration maxima
*

Station Latitude

.1:2 0\.1.

i. ':H 2089
II. 2086

~~085

280W

II"

2073
2 0 '7 14-

2075
20'76

20'78

2079
2080

III.

2Z°v.

II. 2067

2068
2069

III. 2070

2071

16°w

I" 2056
II. 2059

III. 206Li-

10°,\1

I. 2044
II. 2046
III. 2051

1í-

01°3? 1 ~--.,. _..N

OOo02.0tN
OOo19.0~S

02()r)7",?'N

01022.4lN
OOOL~). 6'N

aOOO? 2 Jr.'10- . ".. ;:

000Jii f' ~C'"i . J ,.)
00058.9'S
OlOOO..2!S

1°3 -

(uM)

Salinity Depth Current O2

(%) (rn) (em/sec) (nil/i)

0.530 35. 56ll-
0.560 )6.2)2
o 563 36...381

0.66) 35.559

0.607 35.85ll
0.495 36.100

0.1+62 36.283
0..550 36.106
0.523 35.900

0,,537 35.753

00031.3lN 0.514 36.033

oooOO.OlN 0.534 36.190

00°28.9'8 0.694 36.196

01°00.3'S 0.577 35.855

01029.9'S 0.550 35.709

02003.4CN 0.580 35.683

00oOO.2PN 0.514 36.0)2

02°01.2 IS 0.500 35.661

97

77

75

63

57

56
78
67

67

67

55
59
69
68

59

59
50
40

01°58.6~N 0.588 35.678 78

00037.1'N 0.513 35.990 59
01°21.0'8 0.664 35.800 39

ll-O-50W 2.59
90-100E 4.1)
60-?OE 1t.13

6o-70Vl

20-30W
20- 301~

80-90l~

30-LiOV, ...1

10-20E
0-10 E

20-)OE
70-S0E
70- BOE

)O_14-0E

0-10E

20-30W

90- i OGE

0-10.E

3.94
3~78
l~.28
L~~19

3.93
3.53
2.99

L~.18

Ih)l
4.18
3.1.1-7

3..49

3.45
5.16
3.22

O-lOE 3.20
40-50E 3.35
10-20E 3,,3.5

Oxygen. salinity and current data from Bruce and
Kat~ (1975).
I - Northeni core. II - Equatorial core.
III - Southern core.

.i~*

-115~
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study may be caused either by advection or in-8i tu produc-
tion. Based on the present data~ in-situ production seems

less likely. First, the profiles of iodide (figures 111-1-

25 to 111-1-28) do not ShOVl any extraordinary features at

the iodate maximum. If iodide is the intermediate in the

formation of iodate by re-mineralization, one would expect

to see a corresponding maximum close to that depth. Second~

ly, there is no systematic east to \'lest variation in the
iodate concentrations although it is knoym that producti~

vi ty increases towards the Africa-"1 coast (Corcoran and

rllahnken, 1969); however, alternatively, this may be ex-

plained by the inability to sample at exactly the depth

with the highest iodate concentration at every station.

Advection can qualitatively describe these obser-

vations Productivity is l~nown to be high along the north-

western and western coastal regions of African due to up-

'welling (Ryther, 1963; Corcoran a.-rd Mahnken, 1969). Waters

wi th high iodate concentration may be formed here. These
waters are swept towards the equator by the North and South

Equatorial Currents * Metcalf and Stalcup (1967) (produced

in graphic form by Philander, 1973) showed that the Under-

current is sandwiched between two branches of the South

Equatorial Current. The edges of these Currents may form

the northern and s Quthern cores of high iodate via ters. High

produ.ctivi ty has also been observed along the north eastern

Brazilian coast around the mouth of the Amazon (Zei tschelg
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1969) and thus high iodate water may also be found there.

The Equatorial UndercuJ.:rent is an extension of the Northern

Braz.ilian Current (Metcalf and Stalcup, 1967). Some of the
water :from the SOl..lth Equatorial Current may be entrained

too. Consequently, it can also have high iodate concentra~

tions. There are regions with no iodate maxima in bc-:tween

the cores. These may be waters untouched by these currents

and subsequently show the norm::i. distribution of iodate in

the water column. Part of the high variability of iodate

concentrations in the Undercurrent may also be contributed

to the meandering of the Undercurrent" The core of the

Undercurren"c oscillates in both the vertical and horiz.ontal

planes (Rinkel. 1969; reviewed in Philander, 197.3) with a

periodicity of weeks (Duing et al.. 1975). Consequently,

in a longitudinal section, one may be sampling the Under-

current atdi:lferent phases repeatedly. However, present

evidence suggests that the meandering of the Undercurrent

is confined bet~ween loN and 10S (Duing et a1., 1975). Thus.

the cores observed at ZON an,d 20S cannot be part of this

system.

These obst~rvations raise some questions concern-

ing the marine geochemistry of iodine. First $ these surface

water masses are relatively young. If iodate is generated

by the re-mineraliza"tion of organisms, the rate of' oxidation

of iodi.d(~.wiii have to be high if iodine occurs in organisms
as iodide (Shaw, 1962). I have not been able to demonstrate

-121-



the oxidation of iodide chemically in sea water in the lab-

oratory at any measurable rate (see chapter iv for details).

A biologically catalyzed oxidation of iodide is one of the

possibilities. Sugawara. and Terada (1967) have suggested

such a mechanism based on their labore.tory experiments with

algae. Furthermore J the exact source of the watfJr masses

with high iodate cannot be established until a better under-

standing of the circulation in the Equatorial it tlantic can
be obtained and a study of the distribution of iodine in

the highly producti va areas is made.

-122-



111.2 The marine chemistry of iodine in anoxic basins
111.2.1 Introduction

Anoxic conditions in natural \vaters are generated

when vertical mixing and advective t:canspo::tp usually in
restricted basins ~ are insufficient to replenish the oxygen

consumed by organisms. A.11 the anoxlc basins have strong

pycnoclines which h:J.rnper vertical mixing and shallow sills

which effectively minimize the renewal of -the anoxic deep

waters by advection. t11he strong pycnocline rriay be main..,

tained either by a sharp temperature gx'adie.rit or a sharp

s8.1.inity g:r:adient. As a result of inhibited mixing, the
residence time of the anoxic water is long 8.nd~ consequentlyp

the changes caused by biological-chemical interactions are

large. Thus t although anoxic ba:;dns, by volume f constitute

an insigni.ficant portion of' "the world oceans, they have

attracted much attention from chemical and biological ocean-

ographers (Richards t 1965; Spencer and Brewer. 1971; Tuttle

and Jannasch, 1.9"13; Brev¡er and Murray, 1973; Jannasch et

131. t 197'+) and they open up nevi routes to an understanding

of basic biological-chemical interactions in the sea.

Biochemical processes often involve electron trans-

fers (Lehninger, 1965). rrhe tern1Ìl1al electron acceptor under

oxic conditions is oxygen and the end product is water. As

oxygen is depleted, some organisms may use ni tratet sulfate

and eventually carbon dioxide in succession as alternate

terminal electron acceptors (Richards, 1965). Consequently.

-123-



reduced forms of nitrogen, sulfur and carbon such as nitrite,

molecular nitrogen, ammonia, thiosulfate, sulfide and methane

may be formed. Since the pE of the open oceans is prl':ìsumably

poised by thE- oxygen.-water couple at 12.5 (Sillen, 1961)

according to the equation

O ( 7) , L.,'H"¡" + I.('eZ f. ~
:; 2HZO log K :-.: 8).1 (111-2-1 )

the l~emovË'.l of o:~:ygen causes t:t dras'tie drop in pE. i.rhors~

tfmson (1970) and Brewer and i:i1tir-ray (1973) estimated that

in anoxic basins, the sulfate"sul.fide couple has thø largest
redox buffer capacity. Thus, the pE will be poised at -4 by

this couple in the absence of oxygen according to the equa-

tioD

804= ..~ 9.i-'i+ .L. 8 H- I H 0 i 7 33 0. 1- e -::: ~- -: .1, -2 og 11..:: . . (III.~2-2)
This large, biologically induced change in redox:

potential brings about accompanying changes in the specia-

tion and distribution of multi-oxidation-state elements

such as iron and manganese (Spencer and Brewer, 1971). The

presence of sulfide also causes a re-parti tion of many

trace element~-3 (for example p zinc and copper) between the

dissolved and particulate phases as most sulfides are highly

insoluble (Spencer et al. t 1972).

Anoxic basins are also well knmim nutrient traps

(Fanning and Pilson, 1972; Brev/sr and Murr'ay, 1973). Nutri-

ents are transported into the deep anoxic layer by biogenic

particles and re-mineralization may occur wi thin the water

column or in the sediments. Physical removal of the re-gen-
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erated dissolved nutrients is prevented by the weak mixing

processes. However, some microbes live close to the oxic-

c:u10xic tnter:t:;we. They deriv~; their energy by chernosynthe-

sis (Sorokinp 196LH Tuttle, priva:te coml1lUnication). Conse~.

qw~nt:lyp th(1Y ma.y romove sema of the nutrients at such

depi:h~ (B...,."HI.f.r ':¡y,rl l;1i.q~'l".'~r... .. i- .!.i ~.. l' .. G",.. .~\. .. Á .t,,", k ~v P lo,-,r,),,(.J ·

In thia section~ I shall report the distribution

of dissolved iodinE. in two anoxic b~winst the Black Sea and

the Cariaco ~.irenchf and in the o:1'ic Venezuela Basin which

serves as a comparison for normal ocøanic conditions. The

diGtribution of iodine in anoxic basins is hey'etofore un-

known. However, since iodine is bioactive and since the

iodate~iodicle transition occurs at a i)E between the oxygen,=

water and the sulfate-sulfid€~ couples, iodine. lTay exhi hi t

a combination of the behaviors cl(~seribed above. Moreover,

." . d ' d . .' 1 -" i . '¡':f . .,ii io i l.8 18 H1C eeU. a:i.i 'using 1.n1:;0 the bot"t:om \va'-ceris from.

the sediments as suggested by Tsunogai (1971b), this pro-

cess should be most conspi.cuous in the anoxic basins where

the residence time of the deep water is long and the secU-

ments are rich in organic material and strongly reducing.
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rl1he Black Sea

rlhe Black Sea is the world's largest anoxic basin.

It is connected only to the Mediterranean Sea via the 308-

porus t the Ser~:i of Marmara and the Dard.anelles. 'ii-ie maxinrum

sill depth in the Bosporus is Jl+ m (Gunnerson and Ozturgutl'

19'"111) .A numb""¥' o.c- '~J""QY's i"nc'liid'i"r''' ':'ho Dr"i"be ;:V)cl -tJ:1P('y tt.. ... .. t.. _. ~L.L __ v C.l~ ~ ~ '.l . L b l... '__ "ç,.J. . \,,Ã - c..J.... ~.. ""

Hnepr, ivhìch have average flov¡s oJ: 6200 and 1'700 m3/see

Ci,eopold, 1960) t flow into the Black Sea and create a light p

less saline surface layer on. a subsu:cface out:flovi rI'he

deep inflow of saline Mediterranean water is sporadic (Bog-

danova, 1961) with estimates of the annual flow ranging

from 328 km3/yr O/le:t:z and Moller, 1928) to negligible (

lJll 0 0+ d Ila~ ~l .oli6) ThA 9 Q- a_ fJ o~ · 0 ~~ 'o+od. . y '" an _ bcL~~ ;; ¡ . v o.v,,'l.abe _.v J.o 0." (,en qu V'.~

as about 190 km3/yr (Spencer and Brewerp 1971; Brewer a."1d

Murray. 1973; Ostlund, 1974). Thus i whereas the surface

salinity of the Black Sea may vary from 17.2 %0 to 18.3 %0

depending on the proximity to terrestrial runoffs t in the

deep water the salinity is relatively constant at 22.4 %0

(Brewer, 1971). The potential temperature is also quite

variable at the surface and in winter the surface waters

are cooler than the deep waters, though vertical mixing is

inhi hi ted by the strong salinity gradient. The strong verti-
cal stratification is thus maintained solely by the salin-

i ty difference between the surface and the deep waters. The
absolute level of the salinity of the Black Sea is much

lower than that of the open oceans, consequently, it should
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not be classified as a typical marine basin. Profiles of

the salinity and potential temperature of the Black Sea are

f3hovm i.n figure I:LI..2-1.

The maximum depth of the Black Sea is about 2200 m

(r'osC! c,+ '''J-\ "- \::) t. li c... f' , 19Y7tt) ",',(l thA o"y,-,'pn' -"'1) -!'1' r1n b01'11-l"ry 0" ccl',~C'i c.L...1..~ .. "," A £':"'.. i: \. ,._.L.. ,).,-, \.A l...G.."~ l;.t~ t.J

at about 150 to 250 m (Brewer, 1971) The anoxic zone can

be further subdivided according to the radiocarbon ages

1'he formal 0-14 age of the water betvN.:~en 300 a.nd 1700 m 1.S

about 1000 years f wherear3, below 1'700 D1t the age may well

exceed 2000 years old and the water is probably renewed

only by eddy diffusion (Ostlund. 197/+). r11he deep inflow of

Mediterranean water may occur at various depths, although,

based on the formal radiocarbon ages and the temperature-

salinity relationship~ it has to occur above 1700 m (Ost-

J uncl 19'711. ì~r""w')r r'r'(l l'/¡'i'rr'''y 1 C'73) riii, "" ver-'-j c'~' .. d"ec-'i" VB"" t. -l,.l. t: c Ç.L 1 .. .~. c.. l . ': . !.i. ." . G.-_ d..L o. _" _ G

velocity and eddy diffusion coefficient in the mixing zone

between about 100 m and 300 m have been estimated to be

0.5 m/yr and o. 01Ji- cm2 /Sf;;C respectively (Spencer and Brewerf

1971) .

The Cariaco Trench

The Cariaco 1\rench, the second largest kno'/m

anoxic basin of the world, is a dep:cr~ssion situated on the

northern Venezuelan continental margin at roughly 10°)0 eN

and 65°JllW. It is approximately 100 miles long and 40 miles

wide and has a maximum depth of about i1lOO m. I t is separ-
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ated from the Caribbean Sea by a sill at a depth of about

150 m. Above this sill depth, the waters of the Cariaco

Trench mix freely with the surface waters of the open sea.

The Trench is subdivided into two deep basins (eastern and

western) with a saddle at about 900 m below sea level in

between (Maloney, 1966). The salinity decreases from about

36.8 %oat the surface to 36.185 %oin the deep water and

the potential temperature decreases from about 26°C to

16.750c. Thus, unlike the Black Sea, the Cariaco Trench is

a true marine basin and its vertical stratification is main-

tained solely by the strong thermal gradient instead of by

a salinity gradient. Profiles of salinity and potential

temperature are shown in figure III-2-2.

The deep water of the Cariaco Trench is renewed

by slow flushing. Estimates of the residence time of the

anoxic water vary widely. Fanning and Pilson (1972) supdi-

vided the anoxic zone into two layers and suggested that

advective renewal only occurs from 300 m to 1000 m. Below

1000 m, eddy diffusion is the only means for mixing. They

suggested the residence time of the water in the upper layer

to be 800 years on the basis of a silicate balance. Richards

and Vaccaro (1956) and Richards (1975) reported a residence

time of 70,years by using phosphate as the tracer. Deuser

(1973) estimated a range of 22 years to 570 years with a

geometric mean of 112 years based upon estimates of the

rate of oxidation of organic matter; Presley (1974) sug-
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,

gested a range o~ 50 to 100 years from the sulfur accumula-

tion rate in the sediments. Radiocarbon dating gives a

residence time of about 100 years (Ostlund, private co~~un-

ica tion) .

The shorter residence time o~ the anoxic waters

in the Cariaco Trench, relative to the Black Sea, suggests

that it may be a less stable system. The potential density

(Ge) o~ the deep water is about 26.50. At the oxygen-sul~ide

boundary at about 300 m, Oõ is 26.46 and at the sill depth

at 150 m, ~ is 26.35. Thus, the overall density gradient

o~ the Cariaco Trench is only 0.15 in oe whereas in the

Black Sea it is about 1.0 in GO .
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III.2 .2 Sampling and analytical methods
~

Samples were obtained from one station in each of

the two basins of the Cariaco Trench, one station in the

Venezuela Basin and one station in the Black Sea during

cruises AII-79 and CHAIN-120. The locations of the stations

are shown in figure III-2-3. Samples were either analyzed

on board for iodate or frozen at -5°C in polyethylene bot-

tles immediately after collection and transferred back to

Woods Hole for analysis. This method for the storage of

samples has been shown to be reliable (Wong, 1973). All

samples were analyzed for iodate by photometric micro-

ti tration with a precision of better than 1% (Wong and

Brewer, 1974). Iodide profiles were obtained from the east-

ern basin of the Cariaco Trench, the Venezuela Basin and

the Black Sea. The samples were analyzed by neutron acti-

vation analysis as described in section ii.4 with a preci-

sion of +5% and a reagent blank of about O. 005 w~. The

data from these cruises are compiled in Appendices Band C.
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III.2.) Results and discussion

Iodine in oxic and anoxic basins

The distribution~ of iodate and iodide in the oxic

Venezuela Basin (figure III-2-4) are similar to previous

observations from other parts of the open oceans (Tsuno-

gai, 1971b; Tsunogai and Henmi, 1971; Wong and Brewer.

1974). The iodate concentration is lowest at the surface

(0.) uM) and it increases with depth to about 0.5 ilÆ. A mid-

depth maximum is also observed. It corresponds with a phos-

phate maximum and a oxygen minimum and may be the result

of the re-mineralization of organisms (Wong and Brewer,

1974). In constrast, the iodide concentration is highest

in the surface waters and decreases rapidly with depth to

below the detection limit (0.005 uM) below the euphotic

zone. A thin sub-surface iodide maximum is observed at

100 m with a concentration of about 0.)8 uM. corresponding

wi th a sub-surface salinity maximum. A sub-surface iodide

maximum of such magnitude has not been documented before

and the present data are insufficient for a detailed dis-

cussion of its origin.

In the anoxic basins, as a result of the drastic

drop in pE, iodineexhi bi ts markedly different behavior

below the oxic zone. The profiles are shown in figures IlI-

z- 5 to LII-2-7. The oxygen-sulfide boundaries occur at 150 m

in the Black Sea and 265 m in the Cariaco Trench. In the

-13L¡.-
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oxic zone, an iodate minimum (0.88 uM in the Black Sea;

0.340 and 0.369 uM in the eastern and western basins of

the Cariaco Trench) is again present at the surface t and

the concentration increases with depth to 0.146 uM in the

Black Sea, and 0.431 uM and 0 .469 in~ in the two basins of

the Cariaco Trench. However, at about 100 m in the Black

Sea and 180 m in the Cariaco Trench, the concentration

starts to drop sharply and reaches zero at approximately

the oxygen-sulfide boundary. In constrast, the concentra-

tions of iodide are high at the surface (0.047 uM in the

Black Sea; 0.086 uM in the Cariaco Trench) and they de-

crease to minimum concentrations at 75 m (0 .011 W~) and

160 m (0. 019 w~) in the Black Sea and the Cariaco Trench

respectively. Below these depths, the concentrations in-

crease rapidly. Below the oxygen-sulfide boundary, the

iodide concentration remains approximately constant at

about 0.44 uM in the Cariaco Trench. In the Black Sea,

there is a clear general increasing trend towards the bot-

tom from 0.22 uM to 0.43 uM.

The interconversion of iodide and iodate is

represented by the equation

103- + 6H+ +- 6e-'= I- + 3H20 log K = 110.1 (III-2-3)

The change in the speciation of iodine in the anoxic zone

can be predicted from the thermodynamic properties of this

reaction. A concentration diagram of the iodine system at
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a pH of 8.1 and a total iodine concentration of 0.5 uM is

shown in figure III-2-8. In the oxic layer where the pE is

12.5 (Sillen, 1961) iodate will be the dominant form. By

constrast, the pE in the anoxic zone is -4 (Spencer and

Brewer, 1971) and iodide will be the predominating species.

The conversion of iodate to iodide occurs between

100 m and 150 m in the Black Sea and 160 m and 265 m in the

Cariaco Trench. Between these depths, oxygen and sulfide

co-exist at low concentrations and their combined redox

buffer capacity at most depths is between +1 meq/kg and -1

meq/kg as shown in table III-2-1. In comparison with the

redox buffer capacities in truly oxic or anoxic waters,

this is remarkably low (~20%) and suggests a chemical insta-

bili ty in this zone where the redox potential may fluctuate

wi th the degree of mixing between oxic and anoxic waters.

The pE of a body of natural water is calculated from the

couple having the highest redox buffer capacity to poise

the system. In this mixing zone, the picture seems unclear.

If iodide and iodate are at chemical equilibrium so that

they may be used as indicators, the pE will be between 10.0

and 10.7 and suggest that neither the oxygen-water couple

nor the sulfate-sulfi.de couple is poising the pE.

The profiles of specific total iodine, which is

defined as the ratio of total iodine to salinity, of the

three basins are shown in figure III-2-9. In all cases,

there is a slight depletion in the surface waters with

-140-
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value of 7.) nmoles/g and 11.6 nmoles/g in the Black Sea

and the Cariaco Trench respectively. This depletion may be

caused by the uptake of iodine by organisms.

In the anoxic zone of the Cariaco Trench, wi thin

the noise of the data, specific total iodine may be consi-

dered constant at 12.) nmoles/g. However, in the Black Sea

there is an increasing trend with depth from 10.0 to 19.4

nmoles/ g. This may be caused either by the advection of

water of high iodine content into the Black Sea, or a dif-

fusion of iodine into the bottom water from the underlying

sediments. The specific total iodine in the deep Venezuela

Basin is only about 14 nmoles/g, and there is no a priori

reason to suppose that the inflowing Mediterranean water

should be much different from other oceans. Thus, an advec-

tive source for this increased iodine seems unlikely al-

though it cannot yet be completely ruled out. There is

however ample evidence suggesting a flux of iodide out of

the sediments. In addition to Tsunogai ' s observation (1971)

of excess iodide in the deep Pacific, Price and co-workers

(Price et al., 1970; Price and Calvert, 197)) have reported

an enrichment of iodine in surface sediments. The concen-

trations correlated linearly with the organic carbon content

and decreased exponentially with depth. Iodine is also

enriched in interstitial waters and concentrations up to

150 uM have been reported (Bojanowski and Paslawska, 1970).

Pavlova and Shiskina (197)) further showed that the concen-
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tration increases with depth. These observations suggest a

possible post-depositional diagenetic remobilization of

iodine from organic-rich sediments in reducing environments.

Thus, diffusion of iodine into the bottom water appears to

be a plausible explanation for the high specific total

iodine in the Black Sea. The difference between the Cariaco

Trench and the Black Sea in this respect may be due to the

longer residence time of the water in the latter. Other

factors. such as the iodine concentration gradient in the

intersti tial waters and the composition of the sediments

will certainly affect the distribution too, however, there

are no available data at the presen't time for a more detailed

assessment.

The distributions of iodide, iodate and total

iodine in the mixing zones of the Black Sea and the Cariaco

Trench are shown in figures III-2-10 and III-2-11. These

data are compared with the profiles expected from simple

mixing between two boundary eondi tions by vertical advec-

tion and diffusion as described in Spencer and Brewer

(1971). This steady state one dimensional model is formu-

la ted as

2de K d ~ _ w dc -_ 0
dt = dz2 dz (III-2-4 )

where K is the vertical eddy diffusi vi ty and w is the ver-

tical advective velocity. The solution of this equation is
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(eZ/Z* -1)(C - CO) = (Cm - Co) z /z*

(e m - 1)
(III-2-S)

where Co is the concentration at the lower boundary zo' em

is the concentration at the upper boundary zm' and z* is

the ratio of K/w (Craig, 1969). The model is applicable only

over linear regions of the e-s diagram where horizontal

veloci ties and concentration gradients may be neglected.

The assumption of a true steady state in the Cariaco Trench

is questionable. It may however closely approach a steady

state in short time intervals. z* can be estimated from

the profiles of salinity or potential temperature. The

val ues used here are 0.23 km and 0.09 km for the Cariaco
Trench and the Black Sea respectively. Iodate appears to

be consumed over the entire depth interval of the mixing

zone in both basins, reflecting the chemical reduction of

iodate to iOdide. Iodide is produced in the same intervals l

which may be the result of the combined effects of the

reduction of iodate and the re-mineraliza~ion of particles.

In the Black Sea, there is some consumption below 200 m

which may possibly be attributed to biological activity

(Brewer and Murray, 1973). For total iOdine, there is pro-

duction above the interface and slight oonsumption below

it. Spencer and co-workers (Spencer and Brewer, 1971;

Spencer et al., 1972) have observed similar features in

dissolved manganese and iron. They suggested the localized

dissolution of the mineral oxides in a strong pycnocline
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as an explanation. A similar mechanism may also be operat-

ing in the iodine system, whereby iodine-rich biogenic

particles may preferentially re-mineralize in the pycno-

cline. In the lower mixed layer t "the consumption may again

be explained by chemosynthesis. The interconversion of

iodine between iodate and iodide will not a:tfect the dis-

tri bution of total iodine. A more rigorous model is in-

appropriate at the present time because it calls for a

priori knowledge of the functionality of the production

and constiiiption term with depth as in Spencer and Brewer

(1971). Since the distribution of.' iodine in the mixed layer
is controlled by a host of processes as described earlier,

quantification of such a term will be difficult. Moreover,

t.he growing complexity of this term niay prohi bi't; an analy-

tical solution of the advection-diffusion equation vlÏ th

the limited known boundary conditions.

In general, the profiles of iodate, iodide and

total iodine in the mixed layer of the Cariaco Trench show

features similar to the Black Sea, however, they are usu.al-

ly more subdued. This may reflect the fact that the Black

Sea is a more stable system with longer residence time and

a stronger pycnocline.
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The redox potential of the oceans

The common oxidation states of iodine are: (1)

-1 as hydroiodic acid and iodides; (2) 0 as elemental iodine ~

(3) +1 as hypoiodous acid and hypoiodites; and (4) +5 as

iodic acid and iodates. The distribution of iodine ff~ong

these species as a function of pE at a pH of 8.1 and a total

iodine concentration of 0.5 ulll is shown in figure 111-2-8.
A more detailed discussion on the thermodynamics of the

iodine system is given in section IV.2.

In oxic waters, if the pE is poised by the 02/HZO

couple, its value .will be 12.5 (Sillen, 1961) and iodate

will be the only measurable species. Brewer and Nlurray (1973)

suggested that the pE is poised by the 304:: /HS- couple in

anoxic waters so that the pE will be -4. At such apE,

iodide will be the only detectable iodine species. The

present analytical capability has a detection limit for

iodate or iodide of about 0.005 1.00. My observations from

the anoxic and oxic basins confirm these predictions except

in the surface waters where the disequilibrium is attri-

buted to biological perturbation (Tsunogai and Sase, 1969).

Breck (1974) has recently suggested that the pE

of the oceans is poised by the 02/H202 couple. He calcu-

lated the lower limit of the pE of the ocean to be 8.5 and

proceeded to use this value for the prediction of chemical

speciations in the oceans. However, this pE value is incon-

sistent with the observed distribution of the iodine
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species. Figure 111-2-8 shows that at a pE of 8.5, the con-

centrations of iodate and iodide will be 10-17 M and 10-6.3

M respectively. This implies that iodate should not be

detectable with the presently available analytical methods

and this is contrary to the fact that iodate is ubiquitous

in the open oceans and it is the predominant species 0 In

oxic deep waters where biological perturbations of chemical

equilibria may be minimal, the iodide concentration is

indistinguishable from the blank of 0.005 uM and iodate

constitutes all the measurable iodine (figure III-2-L~).

This observation is more consistent with a pE of 12.5 as

calculated from the 02/H20 couple. If one takes the upper

1imi t of the iodide concentration in the deep waters as

0.005 uM, one can calculate the lower limit of the pE of

the oceans to be 10.7.

Liss at al. (1973) suggested that the iodate-

iodide couple may act as a sensor for the effective pE

level in the oceans. The interconversion between iodide

and iodate involves the transfer of six electrons. Conse-

quently, the concentration ratio of these two species' will'
be extremely sensitive to pE changes. Given the detection

limi ts of iodate and iodide to be both at about 0.005 tùd

(10-8.3 iv), one can calculate the usable range of this
sensor to be 10.0 to 10.7 as shown in figure 111-2-8. Thus,

it is apparent that at least at the present timet the

iodate-iodide couple is not a desirable tool for measuring
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pE in the oceans which may have a range of 12.5 to -4.
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III.) The distribution of iodine in a coastal basin, the

Gulf of Maine

III . J .1 Introduction

If the distribution of the dissolved iodine

species in the surface waters of the oce&~s is controlled

by biological activity (Tsunogai and Sase~ 1969; Tsunogai

and HenD1i, 1971; Tsunogai, 1971b; Woxig and Brewer, 1974) p

seasonal effects may indirectly induce changes in this

distribution. These seasonal effects are probably more

prominent in the coastal waters of the temperate zone where

seasonal changes in productivity are more pronounced. In

this section, I shall present data on the distribution of

iodine in the winter of 1974-1975 in a coastal basin, the

Gulf of Maine.
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III..3.2 Sampling and analytical methods

I have occupied three stations in the Gulf of

Maine, two i.n the Wilkinson Basin (A1I-86-2122 and A1I-

86-2138) and one in the Murray Basin (AI1-86-2151 l during

cruise AII-86 within the period of January 4 - llt 1975.

The locations of the stations are shown in figtire 111-3-1..

Samples were frozen immediately after collection anci were

shipped back to \'oods Hole for a.vialys is .. Samples from

stati.on 2122 were analyze d for both iodate and iodide while

samples from stations 21.38 and 2151 were analyzed for

iodate only. Iodate was analyzed by photometric micro-

ti tration with a precision of better than ~1% (Wong and

Brewer, 1974) while iodide was analyzed by instrumental

neutron activation analysis with a precision of ~5%

(Wong and Brewer, 1976).. The reagent blank of the activa-

tion analysis is about 0.005 tùA and the data reported here

have not been blank corrected. The complete data set is

shown in Appendix D.
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III.3.) The Gulf of Maine and the Murray-Wilkinson Basin

The Gulf of Maine is a semi-enclosed basin bounded

by Maine to the north~ Massachusetts to the westp Georges

Baru~ to the south, and Browns Bank and Nova Scotia to the

east. The Murray-Wilkinson Basin is one of the depressions

in the Gulf' and it is situated between 420N and 4)oN t and

690W and 70o~v. It is elongated (NNV1-SSE) and is about 80

miles long. It has a maximum depth of about 285 meters and

is surrounded by a sill at about 150 meters depth. It is

connected to the Rogers Basin to the eastt the Franklin

Basin to the southeast and the Platts Basin to the north

by passages at depths of about 185 m, 185 il and 170 In res-

pectively. The deep part of the lIurray"øWilkinson Basin is

subdivided by the Wilkinson Divide at about 250 m into the

Wilkinson Basin and the Murray Basin. .

The surface layers of the Gulf mix freely with

coastal waters and their properties are probably signifi-

cantly influenced by local events. Among aii the basins in

the Gulf ~ the Murray-Wilkinson Basin has the most stable

deep water and it is renewed by slope and coastal waters of

Labrador origin (Galton, 1968). A more detailed description

of' the hydrography of' the Basin has been prepared by Spencex.'

and Brewer (1975).
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111.3.4 Results and discussion

Al though the winter of 1974 to 1975 was not a

particularly severe one, the effect of overturn in the water

column is clearly ev ident. There is only a weak thermocline

between 140 m and 200 m 'Nhere the potential temperature

drops about 10C and the GO of the bottom water is only

about 0.8 Ge units higher than that of the surface water.

The sill is also situated at about 150 m. Above 140 il, the

wa ter is well mixed and none of the properties (8alini ty,

potential temperature, ve ' oxygen, silicate and phosphate)

measured show any significant gradient (figure 111-3-3 to

111-3-8) although sometimes there are differences in the

absolute values between one station and another. The stations

were occupied in the order of 2122, 2138 and 2151. Between

station~ 2122 and 2138, there was a severe winter storm

wi th snow and freezing rain and its effects on the proper-

ties of the surface waters are difficult to assess quanti-

ta ti vely. However, most of the properties (sa.lini ty, e , v¡ ,

and oxygen) in the top 70 m of station 21)8 do exhibit

noticeable deviations from the other stations.
Productivi ty at this time of the year: is probably

low. Although no C-11l. uptake measurements were made, the

nutrient values in the surface waters seem to be consistent

with this interpretation. Phosphate and silicate in the

surface waters are about 0.9 uN and 9 uN respectively. Such

values are exceedingly high. In typical open oce~~ surface.
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waters with a moderate productivi tY9 phosphate and silicate

are usually only about 0.1 uM in both cases (GEOSECS

preliminary reports). The high nutrient levels observed

here imply low surface productivity.

The prOfiles of iodate and iodide are shovm in

figures 111-)-2, 111-)-6 and 111-)-8 for stations 2122,

21)8 and 2151 respectively. The iodate concentrations in

the top 100 m of stations 2122 and 2151 are rather uniform

with minor variations be~Neen 0.40 and 0.44 w~. This uniform-

i ty is common to all properties and reflects vigorous winter

mixing. Station 21)8 seems to be anomalous and considerably

larger variations in the concentrations of iodate in the

surface layers can be observed. A much lower concentration

is found in the top 50 il with a minimum concentration of

0.)5 uM at 25 m. Between 50 m and 100 ilt the concentration

is similar to the other stations. Salinity, e and phosphate

also exhibit deviations from uniformity in the top 50 il of
the same station. Actually, the salinity and 9 of' the

surface waters of this station are the lowest and give

rise to a distinct surface minimum. This anomalY may be

caused by dilution of the surface waters by rain and snow

during the storm.

Below 100 rot considerable variation can be

observed in all properties wi thin each station and from

station to station. A sharp break can be observed in the

prOfiles of all properties between 120 m and 150 il where
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the sill situates. This break in the iodate profiles seems

to occur at slightly shallower depths than the other pro-

perties. Iodate increases smoothly with depth from about

150 to 200 m at stations 2122 and 2138 . At station 2151, the

profile exhibits complex fine structures between 1)0 and 200

m. Similar features are found in profiles of phosphate.

silicatet oxygent salinity and at and may represent mixing

between different water types.

Below 200 m. all the other properties show only

subtle variations. However, a distinct iodate minimum is

observed at; all three stations at about 225 m. In the pro-

files of the other properties, there is no or occasionally a

weak suggestion of an inflexion at this depth. The present

data are insufficient for making a more detailed assessment

of the cause of this minimum 0

The most striking, although not unexpected, obser-

vation is the absence of the marked depletion of iodate (up

to 50%) in the surface waters which has frequently been

reported (Tsunogai and Henmi, 1971; Tsunogait 1971b; Wong

and Brewer. 1974). In this wintert in the Gulf of Maine,

any depletion of iodate (if one is present at all) is hidden

wi thin the variations t real or experimental, of the profiles.
This behavior of iodate seems to support the proposal that

iodate is removed by its reduction to iodide through bio-

logical agents (Tsiinogai and Sase, 1969). Consequently,

during winters, when productivity is low, the depletion of
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iodate will be least pronounced.

The profile of iodide from station 2122 (figure

III-1-2) is consistent with this interpretation of the

distribution of iodate. Iodide is also rather uniform in the

top 150 m as a result of vigorous vertical mixing. However,

its absolute concentration of 0.04 uM is only about 40% of

the nearby Woods Hole surface water (0.12) w~J Wong and

Brewer, 1975) and ~50% of the moderately productive Ea-uator-

ial Atl~~tic waters (0.10 W~t Wong, 1976; see also section

111.1) probably as a result of a lower biological activity

in the winter time 0

The iodide concentration decreases noticeably below

150 m to a minimum of about 0.02 uJI.. However, i ts conc(~ntra-

tion even below the thermocline is always significantly above

the blank of 0.005 uM. There are three possible sources for

this iodide which is thermodynamically unstable and is pro.-

bably produced only in surface waters or reducing environ-

ments: (1) the sinking and subsequent advection of iodide

rich surface waters along isopycnals; (2) the dovvnward diffu-

sion of iodide f'rom the surface waters through the thermo-

cline; and (3) the diffusion of iodide from the underlying

sediments. All three mechanisms seem to be possible here 0 The

first mechanism implies that the deep water is young so tha"t

the iodide has not been completely removed by oxidationB. The

deep water of this Basin is probably young as it originates

from the nearby Labrador slope water (Colton, 1968) 0 The
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thermocline is also weak as a result of winter mixing with

a Cì difference between the surface and deep water of only

0.6 to 0.7 ~ unit. Thus, diffusion through the thermocline

cannot be ruled out. Moreover, below 200 m, there is also a

general trend of increasing iodide concentration towards the

bottom. Although this increase in concentration is small and

is within the analytical uncertainty , it points to the passi-

bili ty of a flux of iodide from the sediments as suggested

by Tsunogai (1971b).
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111.4 The distribution of iodine in marine suspended matter

III .4.1 Introduction

The present status of our knowledge on the geo-

chemistry of the marine iodine system has been briefly re-

viewed in section 1.2. This evidence suggests that particu-

late iodine is likely to be important in the cycling of

iodine in the ocean. In this section~ I shall report mea-

surements of particulate iodixi8 in samples obtained from

the Atlantic during the GEOSECS (Geochemical Ocean. Sections

Study) expedition.

..
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III .4.2 Sampling and analytical method

Samples were obtained from 13 stations of the

GEOSECS (Geochemical Ocean Sections Study) expeditiono The

cruise track and the positions of the stations are shovm

in figure 111-4-1. Stations where particulate iodine data

are available are max-Ired as solid triangles. The analyti-

cal method has been described in detail in section 11350

Brieflyo for each sample, about lO 1 of sea water is pres-

sure filtered through a 006 u (37 ¡nm in diameter) Nuclepore

fll ter. The sea salts are carefully washed awayo The fil tor

is dried and then pressed into a pellet (4 rom x 1 mm). The

pellets are analyzed by neutron activation analysis using

the facilities at the Rhode Island Nuclear Science Center

at Narragansett~ Rhode Island. A listing of the data is

shown in Appendix E.
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III .4.3 Results and discussion

Most of the particles in the surface waters are

likely to be biogenic. Consequently & the particulate compo"~

si tien may be close to that of marine organisms. On the

other hand~ particles close to the bottom of the ocean may

have a composition similar to surface sediments 0 Iodine

concentrations usually range bet\'¡E'~en 100 and 300 ppm in

ma.rine organisms (Bo',/en, 1966) and between 60 and 800 ppm in

surface sediments (Price at alo t 197:1; Price and Calvert~

1973). Table 111-4-1 shows the iodine content of suspended

matter coiir::cted closest to the surface and the bottom of
the Atlantic at thirteen stations. lJ:he concentrations are

normalized to the dry \'lelght of t~he total suspended mattere
The ranges of concentrations of iodine in the particulate

matter from the surface and the bottom waters are )2 to

1256 ppm and 19 to 22.5 ppm with mean concentrations of 271

ppm and 112 ppm respectively. These thirteen stations cover

a large geographical area (7SoN to 5SoS). The wide ranges

of the concentrations of particulate iodine in the surface

and bottom waters probably reflect real geographical varia-

tions. However, the means of these values are vlÌthin the

f d ~... . d"range 0'. io ins con 68!rC in maruie organ:i.sms aue sur:i:ace

sediments. Thus p although no previous data are available

for a direct comparison, the values reported here seem to

be reasonable.
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Table 111-4-1 Iodine content of particulate matter collected
closest to the surface and the bottom of the Atlantic

during the GEOSECS expedition

Station Distance
Number from

Bottom
(m)

Iodine
Content*

( ppm )

Distance
from
Surface
(m)

Iodine
Content-;¡

( ppm )

11

62

228

156

179

74

2

100

54

87

71

80

194

138

118

19

7

150

81

3

5

7 259

17

18

L~O 73

23

27

29

31

40

18

1

1256

117

60

7~'

10

19

116

225

179

7

150

29

1

8

2

8

186

75

679

662

106 571

176

125

5Lr 208 242

257

31 71 )2

Mean 112 271

* Relative to the dry we ight of total suspended matter.
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Figure 111-4-2 shows typical profilæ of parti-

culate iodine and tot;al particulate matter. The most pro-

minent feature in particulate iodine is the sharp maximum

in the surface waters. The highest concentration observed

is 127 ng/kg (relative to the weight of sea water :fil tared)
at 18 m in station :L8. The maximum may OCCì,¡r at the surface

or at a few tens of' meters below the surface 0 In all cases ~

the maximum occurs v:i thin the euphotic zone. Belov'l this

zone, the concentration drops sharply to about 1 to 2 ng/kg

and it remains approximately constant with depth until the

nepheloid layer, where an increase in concentration toV'mrds

the bottom is frequently observed. Total particulate matter

shows similar features although the increase in concentration

in the nepheloid layer is more marked.

The sharp maximum in the euphotic zone i.s

probably caused by a high rate of fixation of iodine by

biological activity. The sharp drop of concentration at

about the thermael iiis implies a rapid cycling of iodine
bet'ween its dissolved and particulate phases within the

euphotic zone as a large portion of the biogenic particles

is re-mineralized& The concentration of total suspended

r'i~ .t'¡'er alc'o a'ec"'''=-ac:',-"s cha"'ply J"11. ¡'-hO C~1'tie ds"'p"-h ~n+erval¡i"C.. v ~ ...1. \:; ~...,.. Q..L ...... ~ i..lC",:¡ .. (-I ..,.. \l. (~_

and this seems to ind.icate a dissolution of particulate

material. This distribution of particulate iodine in the

surface layers is similar to particu.late organic carbon,

phosphorus and nitrogen (Menzel and Rytherf 1961H Holm-
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Hansen et al ø, 1966; Hobson a.nd Menzel, 1969; Holm-Hansen~

1972) and it suggests that they may be controlled by similar

processes 0 Rapid cycling of biological material within the

euphotic zone is 1,'1e11 known& Williarrs at ale (1969) estimated

that only o. 57~ of the photosynt.hetically fixed carbon enters
the deep sea. In the bottom water, the increase in parti-

cul::itl;9 iodin,:= concentration is possibly caused by the re-

suspension of' surface sediments as the "total particulate

concentration also increases markeciiyo

Inorganit: detrital contribution to particulate

iodine is probably insignificant. In mai"ine suspended matteX'g

the iodine content is always a fev! t(~ns of pprn or higher

throughout the entire water columno This is about two orders

of inagni tude highex' than the concentration in rocks 0 Pro-

:files of particulate iodine in units normalized to the dry

weight of total partieula:te matter are much noisier than

those normalized to a unit weight of sea water. This is pro-

bably due to the larger uncertainty in the determination of

total particulate weight. However ~ there is still a tendency

of higher particulate iodine content in surface waters with

an average of about 200 ppm. Below the euphotic zone, the

concentration is approxi.mately constant at aroun.d ioa ppm

even in the nepheloid layer. Table 111-4-1 seems to bear out

this relationship a1 though com~.iderable variations may occur

from station to station. Since clay detrital particles

are usually resistant to dissolution, this oannot be

-1'7'+-



used to explain these variations in concentration with

depth.

A profile of the ratio of particulate iodine to

particulate scandium (r/sc) is shown in figure irr-L~-3 (.

Particulate scandium has a detrital origin and is likely

to be related to the clay fraction. The profile shows high

TIs.... l_ C in the surface waters. It decreases rapidly with depth

to a baclcground level which X"emains low even in the nephe-

laid layer. In the surface waters f the particles are mostly

biogenic. Consequently ~ iodine concentration is high and

the scandium concentration is low and thus r/sc is high.

In deep waters f the degradable biogenic particles have

already bee!l decomposed leaving only a residual amount of

iodine behind. As a resultp r/Se is low. In the bottom

waters. only particles most resistarit to degradation

remain. A significant or even major portion of them may

have a detrital origin. The increase in particulate iodine

probably reflects only the increase in total suspended

matter. Thus p the accompanying increase in particulate

scandium concentration is sufficient to compensate for

this effect and the r/Se therefore remains low.

Figure 111-4-4 shows a section of particulate

iodine in the Western Atlantic from 750N to 5SoS. The

surface waters seem to be characterized by concentrations

above 5 ng/J\:g. The higher concentrations (above 10 ng/kg)

are confined to the higher latitudes where biological
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activity is highest ft In th,e . deep v¡ater¡;:; ~ the concentrations

are generally below 2 ng/kg ft

There is evidence suggesting the -t;ransport of

particles with ~he water masses along isopycnals. At station

17"0 ~J.t 7 50N, the thermocline is weak. The Gê surfaces are

almost vertical. a r'esul tp particulate iodine is unif()rm~'

ly high down to about 2)00 m. This distribution suggests

downward mixing. 'lhere is al~30 a tongue of water wii;h high

particulate iodine concentration that extends down to about

2000 m between JOoN and 500N and this may re:present the

sinking of the J,.abrado):: Sea Vlater. The \Jg surfaces also

show an accompanying sharp dip in this regiono Station )1

at 27°N is in the middle of thÆ~ North ,Atlantic gyre 0 The

p:r.:"oductivity of this region is lovi (Koblentz-I'ilishk¡~ et a1 ø ~

19'70) and this is reflected in the low particulate iodine

concentrations throughout the entire water colurnn~ In this

station9 below 900 m, the concentration never exceeds 1 ng/

kg. the lowest level observed in the entire Atlantic. Higher

particulate iodine concen"tra'tions are observed in the nephe-

loid layer at stations 3, 29, 54, 60 and 74.

The s-tanding crop of' particulate iodine in the

top 200 m of the viater column of each station has been esti-

mated and tabulated in table 111-4-2. The map of the distri--
bution of priml.'J:'Y p:i::"oductivi ty compiled by Koblentz-N1ishk(~

et al e (1970) is shown in figur,e iii.~4-5 and the approxi-
mate positions of the stations are marked on the map e Al-
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(fable III'~¿t-2 Standing crops of particulate iodine in

the top 200 m of the Atlantic

Station J.ia ti tude Longi tud.e Standing Crop
Number (mg-I/ sq. m)----.
.3 51050'N 4)°07 vw 2.1
5 56°56 UN ¿I20)48"1 0.8i.. i,
11 63 °32 aN )501l¡' oW 2.8
17 74°55 

ON 01 °11 oW 0.6
1. 8 69°59 ON 00°07 ow 6.Lt
23 6002L¡. IN 180il- oW 1.7
27 4i057'N 41 °59 ow 2. .3

29 36°00 lN 47°00 ow 100

31 27°00 IN 5.3°.31 '\' 1.3
40 03° 55 tiN 38032 tvi 100

54 15°02 tis 29032 'W 1.5
60 32°58'3 420)01vi 3. .3

71-i 55°000 s 50007 ,v¡ 1.7
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Fig. 111-4-5 The distribution of primary p:t:oductivity in
the Atlantic Ocean (Koblentz-Mishke at al ~, 1970).

l' 1 ~ 250 mg C/m2/yr 1 1150~250 mg c/m2/yr
~ 100-150 mg C/m2/yr ~'(100 rng C/m2/yr

.; - Station with standing crop of /2'~0 rng 11m2 0

~ _ station with standing crop of 1.5 to 2 eO mg 11m2"

A - station with standing crop of (1,,5 mg l/m2.
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though this map of productivity is rather crude, a qualita-

tive correlation between the standing crops of particulate

iodine and productivity is still apparentQ Standing crops

above 2 mg-I/m2 in stations ), 11, 18~ 27 and 60 are all

2ì.ssociated with high productivity l,vhereas in the middle of

the gyreg stations 29r- 31. and 54, the standing crops are

below 1.5 mg~.i/:l1? Finer details can be obseï:'ved vd.th the

help of more refined maps of productivitYe The marked dif-

ference i:l:l -I;he standing crops betw8;en stations 17 and 18

probably reflects the large difference in productivity

betvleen the No!"",iegian Sea and the Greenland Sea as shol'm by

the more detailed map by Berge (1958). Zones of high pro-

ductivity also hug the coasts of the southern tip of Green-

land and the north-eastern coasts of Canadaø whereas ~ in

between these zones in the Labrador SIi,a, the producti vi ty

is lower (Steeman Nielse.nø 1958) a :lhe distribution of the

standing crop of particulate iodine in this area is con-

sistent with this pattern with higher concentrations at

statio:n l1p 3 and 27 and lower concentration at station 5.
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CHAPTER iv. THE IN~:ERCONVERSION OF THE DISSOLVED IODINE

SPECIES IN THE OCK~N
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IV.L Introduction
In this section, our present understanding on the

effects of thermodynamics, chemical kinetics and biological

acti vi ty on the interconversion of dissolved iodine species
will be reviewed. Based on this information and data from

further laboratory studies, the relative stability and the

fate of the various species of dissolved iodine will be

assessed. The plausibility of invoking these species as

agents in geochemical processes will be examined.
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iv 02 The thermodynamic properties O.r -Chi:; aqueous iodin,s

system

rodin(~ shows :five principal oxidation states:

(1) -1 as hydroiodic acid and iodides; (2) 0 as elemental

iOdine; (3) +1 as hypoiodous acid and hypoiodites; (J~) +.5

as iadic acid and iOdates; arid (5) +7 as periodic acid and

periodates 0 Other oxidation states (.¡-1.i- and +3) haV'3 been

reported but they are treated merely as chemical curiosi-

ties (Latimer? 1952) 0 Some thermodynamic properties of the

iodine system are summarized in tables rV"~2-1 and IV-2-2 G

The relative abundances of the various species

at equilibrium, at a total iodine concentration of 5 x lO-'7M,

as a function of pE and the detection limits of our present

analytical capability are shown :in figure IV-2-1. Above a

pE of 10.7p iodate is the dominant form, whilep below a

pE of 10.0. iodide will be dominant. Iodate &"1d iodide co-

exist in measurable quanti ties only wi thin the pE range of

10.0 to 10.7. All the other species are presently undetect-

able. The concent:cation diagram does not show the ralati va

stabilities of all the species. It only presents the compo-

sition of the mixture at equilibriuIDe The relative stabili-

ties of the different species of a single element may b,~

better shown by an oxidation state diagram (Johnsonp

1968) which has not yet been used by oceanographers. r-c
is a plot of' the electrode potential for the conversion
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Table iv -2-1 The thermod.ynamic properties of' some

iodine species

Formula

I
I -

.3

15 -

12
T
~-2
12
10,) -

.J +
HZ10

HIO

10-
111°4

IOJ.~-

Hi~I06 -

lIro 5--
105---
re1
iei)
HIO)
rC1

State H 0f
K.cal

F 0f
Kcal

SO

cal/deg

aq 13..37
-12,,4

26..14
41.5

-12..35
-12,,31
-6.9
J-~.63

aq
aq
g 14,,876

o

5.0
- 55.0

62.280
27.9 o

.3" 926

-)2 )-~

M.25.1,i-

-2305

c

aq
aq
aq
aq
aq

2'7..7

- 38 (?)
- 3L~ ( ? ) -8.5

-15002
-12.. '7

-12).. 88
-58011
_1i-.3,,11

-.3 . 2J+

- 5.36
-33..3L¡.
-400

aq
aq
aq
aq
aq
c -8.03

-21 .1
21+ . 5

L~l .1c

aq
aq

.);~ Garrels and Christ (1965)
:J Hossini~ Wagrnan9 EvansÐ Levine Ð.nd Jaffe (1952)

2 Latimer (1952)

.3 Anonymous (1960)

aq - aqueous; g - gaseous ~ c - crystalline
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Fig. iv -2.~1 A concerrc:i"'ation diagram of the iodine system in
an aqueous solution at pH of 8.1 a.nd total iodine --
concentration of 5. x 10-7M..
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of an element from a certain oxidation state to its standard.

state against the oxidation t~tate. It shows the stability

of a certain oxidation state towards oxidation, reduction

and disproportionation. It also points out the possibility

of the existence of metastable species. Oxidation potentials

are usually given in two sets in standard textbooksp with

one set determined in 1 N acid and the other in 1 N base

(Douglas and McDaniel, 1965). rlhe refer¡:;nce stat.e used by

chemists is the hydrogen-hydronium ion couple 0 In natural

waters p hydrogen does not occur in signi:ticant q'uantities.

rj:J:ie oxygen-water or the oxygen-hydroxide ion couple seems

to be the more appropriate reference state. Thus v in acid~

the reference couple will be

02 + 4H+ + '+8.' :: 2H20 log K == 8).1 (iv ~2-1)

and. in base, the reference couple will be

02 + 2H20 + 4e~ = 40H- log K = 1).56 (IV-2-2)
i:i.he oxidation state diagx'am of th(¿) iodine system is shO\ff

in figure iv -2-2 and the thermodynamic parameters used

in the construction of the diagram are shown in table iV-

2-. J .

In an acidic solutionv iodate is the most stable

form. Iodide will be oxidized to elemental iodine which is

metastable. Hypoiodite will disproportionate to form iodate

and elemental iodine vihereas periodate will be red.uced to

iodate. Al though elemental iodine is less stable than

iodate v it is a metastable form and it will not be oxidized
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3rr
The Oxidation State Diagram

of the Aqueous Iodine Systern

°
\

\~~ Ic:: \\ I\ I\ 1°"' /
t' \.~-+" " / i .. i
:: â Ll17~~~~-:'t'7I;,"~3:;~:-!';~:J,;"'.?~,=Jl~~""'l'.~;~'I:;;l"'?'~~M'~~Y;¿~.í".~':.~..;::.~"'~~;;~"WilI /0 2 '\ / 6 8+ '0

°
/

I
Acid I

Oxidation
State

oli
c:

~r-c: j
i

3J_
1

-+

Fig., iv -2M2 The oxidation state diagram of the iodine
system in aii aqueous solution. In acidp the 0Z-HZO

couple is used as a reference. In basei, the 0Z-OH'.

couple is used as the reference Ð
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Table IV-2-) Data for the const:cuction of the oxidation
state diagram of the aqueous iodine system*

Reaction l¡Eo(a) nEo(b) nEo(c)
vol ts vol ts voi.ts----

In cwid
1~~ -) 12 -0,,54 +0(/69
Ero -- 12 +1,JJ.5 +0,,22
1°3

.~
12 +6.00 -0,,15--)

HSI06 n--Ì" 12 +9,,1+1 .irO,,80

In base
._- 12 - 0 " 5~L -0,,14.L -)-
10- n_)- 12 +0 "ItS -',.0.05

10) -
12 + 1.01 ,-0,,99--ry

1í3106
--

12 .J..2 "L¡'l -0,,39--
",~~~_......_---------.,,--

Standard half-cell emf' (in volts)
In acid

1- .n:-~~ 12 ..~-1~~L~5~ HIO -~IO?-
L_u ""-~P-::i:2O--- J

H20 _:1; .Zt_? 02

-1 ,,1 ---- ¡¡HL,106:J /

In base

I- -0.. ~4 . i -0.45 0-~ 2-~~IL,,, __...~
-0.t-r9

O - -O.)¡'O 0H -_._~ 2

.~O.lLt 10 - -007,- H 10 n~_=-JO :3 -r J:3 6

* Data from Latimer (1952)

(a) Relative to the Hz-i-r couple"

(b) nelative to the 0Z-HZû couple"

(c) Relative to the 0z-OH- coupleo
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to loda't;e unless it is first oxidized to hy-poiodite and

this step is thermodynamically unfavorable. Thus ~ a solution

of iodide in an acidic medium will be oxidized to aleman.tal

iodine which will persist in such an oxidation state.

In a basic solution~ iodate is still the most

stable form~ However, iodide is now the metastable species 0

Both elemental iodine and hypoiodite ax'e subject to dis-

p:c'oportionation giving iodide ancl iodate as the final pro-

ducts. PEeriodate 'will again be reduced to iodate 0 Thus,

iodide will persist in a basic solution and its oxidation

to iodate may be initiated only if it is first oxidized

to elemental iodine e lÜthough the ocean is neither 1 N in

acid. :n.or 1 N in base F one may expect iodine to e:i~hibi t

behaviors 11l0re similar to those in a basic solution since

sea water has a pH of 8.1 (Sillent 1961).

The sti"ibility of the iodine system relative to
the other more common redox couples in the ocean is shown

in the electron free energy level di~gram in figure IV -2-30

The d.ata a,re compiled in tables IV~.2-1 and IV-2-J.-. In this

diagTam~ the oxidized species of a couple lower dovm in the

energy scale will oxidize the reduced member of a couple

higher up when all spec::..€~s are in their standard states 0

Thus F in an acidic solution~ oxygen will oxidize iodide to

iodine according to the equation

J.¡i- + J.¡H+ -I 02 =: 212 + 2H20 . (IV-2-3)

whereas F in a basic solution, the corresponding reaction
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41- + 02 + 2H20 - 212 + 40H- (iV -2--4 )

will not occur.

The other redox couples presented in the figure

are frequently involved in biochemical reactions. Reduced

species such as sulfide, nitrite, ammonÜtp methane and me-

t;halî3"i p which may be produced as m8taboli(~ byproducts pall

have the potential o:f changing the oxidation state of iodine"

A particularly interesting redox couple is the NADPH (re..

ducecl n.icotil1ai:nidi~-adenine~clinucle otide phosphate) and the
.1.NADP' couple. The interconversion betiiieen these two specie~3

is a v/ell knov,t1ci i:,oute :for electron tra.nsfer in biochemical

processes (IJehrÜngerp 1965) '" The electron free energy level

of this couple is high a."1d it implies that biological pro-

C0sses involving tlH.: .:Ln'terconversion between N,ADPH and

NADP+ may induce the in.terconversion between iodide ancl

ioda te if theae tV!O :i'eactions can be coupled together Ð

-19L~-



IV.3 The complexa-cìon of' iodide in sea '\vater

Since sea water is a complex mixture of ions p the

association of ions to form complexes and i.on-pairs such as

MgSû4(GarrelS and Thompson, 1962) is well recognizedø The

formation o:f complexes wiii change the chemical behavior of'

an (:;Ùement 0 illhus p in considering the physical chømistry of

iodide Ð the possibility of complexat;ion must be exai'1inedo

I have studied the complexation of iodide by po-

tentionH~tric titrations of solutions with standard iodide

solu"tions using an iodide specific electrode as a detector 0

The electrode potential is given by the Nernstian equation

E ~ EO - 59.16 log C1 (IV-3-1)
at 25°0 where E is the observed elec'trade potential in mV ~

EO is a characteristic empirical constaYlt and C1 is the

activity of the iodid.e ions 0 Ii' CT is the to'~al concentra.-

tioD of iodide and C is the concentration that has under-c
gone complexation; then

01 := Ci:e - Cc (IV-)-2)
and E:: EO - 59016 log (CT - Co) a (IV-3-))

If :no complexation occurs ø C C :: 0 and log CT will be a.

linear function of Eo On the other handp in the presfance of

complex1;¡:ig ag€:l:nts ¡\ a plo't; of E against log CT will 110 longer

be linear unless Co is a linear function of CT so tha.t Cc

=: k CT where k is a constant 0 Howeverp as such a titration

pi"'oceeds p the compløxing capacity of the solution is reduced

and may finally be eJtliausted. Consequently; C will probably
c
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be more depend¡;:mt on the complexing capac:i ty than on the

amount of iodide added to the solution.

Figure IV-)-l shows the potentiometric titration

of 21of a 0.01 M Na2B407.10H20 and 0.5 M NaCl solution

with standard iodide solutions at 25°0. The borate acts as a

pH buffer~ poising the pH of the solution at EJ.bout 9. The

sodium chloride sets the ionic strength of the solution which

will be about 0.53 molal. The iodide concentration in the

solution after each addition of the standard iodide solution

is calculated from the concentration and the volume of the

titrant added. The electrode .potential is linearly related

.- c.to the log of the concentrations above 10 JM with a slope

of -54 mV per concentration decade. Figure IV-)-l also

shows the results of a similar titration of 2 1 of Woods

Hole surface water (salinity /")4 to 35%,,) v/hich has a com-

parable ionic strength of 0.67 molal (Kester and Pytkowicz p

1969). The electrode potential is again linearly related

to the log of the concentrations above 10'~5M with a slope

of -52 mV per concentration decade.

The linear relationships and similar slopes sug-

gest that iodide behaves identically in sea water and in

sodium chloride solution. Rechnitz at ale (1966) reported

a range of the slope of -53 to -59 mV per concentration

decade for the calibration of an iodide electrode in care-

fully prepared standard iodide solutions using sodium

nitrate as the ionic strength adjuster andundermeticu-
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lously controlled experimental conditions. The agreement

bet1Neen the reported slopes and those determined in this

study also suggests that the complexation of iodide in sea

water is 'linlikely. This interpretation also agrees '.,ith -the.;
calculation in table 1-2-4 'which shows that the perci?nt of

contact ion-pairs of iodide estimated f:i:Oill partial molal

volumes is negligible withiti. the unce:t'tainty of the cal(;u-
lationo
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IV.lt Chemical kinetics in the interconversion of aqueous

iodine species

The oxidation of iodide to iodate has not been

studied previously. A study of the Ii teratu.re showed that
experiments w(~re designed mainly to observe the oxidation

to adjacent oxidation states 0 Past efforts were focused on

three reactions:

61- +. O2 Lm+ 21) .-
+ 2H2O~i- --

12 + Ote £ilo . I.._- -l

(iv _L~-l)

(IV-4-2)

)£I10 + 30H- = 103- + 2i- + JH20 (IV-4-J)
Studies on reaction (IV.-4~1) were always done in

strongly acidic medium. The results of earlier investigators

(Plotnikov, 1907, 1908; Winther, 1921~lt 1926; Berthoud a.:n.d

Nicolet, 1927 p 1928) contradict each other. More recently,

careful investigations from two different groups (Abel p

1952, 195L¡., 1958a, 1958b; Sigalla and Herbo, 1957 p 1958)

finally yielded consistent results. They suggested the rate

law

d(I3-)/dt:: k (02) (1-) (H+)

Sigalla and Herbo (1957) reported-2 . -1 .M nun and Abel also reported k of similar magnituctt::

(iv _1.¡,-L¡.)

k at 25°C to be 8 x 10-3

(1952, 1958a). A summary of the available data is shown in

table 1V-4--1. However, vihile Abel favored a mechanism

involving a series of reactions with one electron t:cansfers.
the formation of free radicals and chain reactions, Sigalla

and Herbo proposed a series of reactions with tv¥'o electron
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transfers and without the produc'tion 0:(' free radicals or the

initiation of a chain reaction. Alridge (1966) studied the

reaction again and arrived at the saine rate law but he failød

to further clarify the mechanisms. Howeverv all the proposed

mechanisms involve intermediates such as 10- e HIO or atomic

iodine although their stability in aqueous solutions has

not been thoroughly investigated.
Appropriate precautions should be taken in extra-

polating these observations to natural conditions as these

experiments were all performed in artificial medium with an

acid concentration of no less than 0.1 N F iodide concentra..

tion of no lower than 0" 06 1'í1 and plentiful supply of oxygen.

Catalysis by trace constituents has been carefully and

intentionally removed" In the ocean~ the pH is 8J the iodide

concentration is less than 0.5 wÌ'l and the oxygen concentra-

tion is usuaiiy less than 225 uM. Moreovern sea water con-

tains numerous trace constituents and some of them may

catalyze the reaction. Some of the known catalysts are

cupric ion (Sigaiia and Harbon 1958) and iron (..¡j~lridgei'

1966). If indeed the rate lavi can be extrapolated to the

ocean, the rate of formation of elemental iodine from iodicle
2'-0C . -21. -1 -11 - -1at -) \nll be 9 x 10 . M nun or 1.3 x 10' uwI day ~

an undetectable rate indeed.

The hydrolysis of elemental iodine in basic

solution is extremely :fast. Earlier chemists flassumed that

the speed with which equilibrium is establIshed precludes
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any adequate investigation" (Morgan, 1954) e Most of the

reactions involved in the hydrolysis of the halogens, with

the exception of chlorine, occur in about 10-3 second or less.

Eigen and Kustin (1962) were able to study these reactions

by using a T- jump relaxation technique. For the overall

reaction (IV_L~-2), they determined the rate constant k to-1 ¿ - ~ -3be 3 see . with (HI) of 10 -M, (12) of 10 M and an ionic

strength (u) of 0.1 molal. Thus, the rate law is

( )/ ( -1) ( )d HIO dt = 3 sec' 12 (IV-4-5)
and the half life of elemental iodine will be less than 0.5

second. Again, the experimental conditions are appreciably

different from the oceanic conditions. However, if their

study can be used as an indication of what is happening in

nature, it implies that the life time of elemental iodine in

the ocean will be extremely short. This seems to corroborate

the field observations since elemental iodine has never been

detected although its formation has been proposed (Shaw,

1959; Miyake and Tsunogai, 1963). The mechanism for the

hydrolysis of elemental iodine is complicated and Eigen and

Kustin suggested the following scheme

I2.j+r H20 ~ _ +~ ~
~~ I20H ..¡. H r- HIO + HI + I

I + OH- + H+ ~2

Hoviever, this mechanism has not yet been verified by other

investigators.
The disproportionation of hypoiodite to form

-202-



iodate in a basic solution has been studied by a number of

chemists since the turn of the century 0 Forster (1903)

proposed the first rate law and Skrabal and coworkers (19079

1908, 1911, 1914, 1916, 1934) followed with a series of

reports. The historical development has been reviewed by

Morgan (1954) and the proposed rate laws are sumrnarized in

table iV-4-2. The most recent repor'c by Li and White (1943)

gave the rate law as

-d(IO-)/dt ~ k1 (10-)2 + k2(IO-)2(I-)/(OH-) (IV-4-6)._1 . -1 4 -1 . -1 .
where k1 = 2.9 M - min and k2 = 10 M min . This rate

law was obtained from strongly alkaline solution. The

hydroxide ion concentration varied from 0.923 l1 to 0.177 li

and the iodide concentration varied from 00085 M to 0.015 M.

I ( -) . -6 ( -) . .n the ocean, OH is about 10 M and I 18 less than
0.1 uM. (10-) must be less than the total iodine concent;ra-

tion of 0.5 uM. If this rate lavi is assumed to be applicable

to sea water, then~ as an upper limit, -d(IO-)/dt is 3,,3 x
10-12 M min-l or 5 x 10-9 M day-l e This rate is slow and

l'Jiay not be measurable in the laboratory easily 0
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IV.5 Biologically mediated interconversion of the iodine
species

That iodine is concentrated in some marine organ-

isms has been known for a long time. Bowen (1966) gave

concentration factors of 1200 and 6200 for mixed plankton

and brO'V'fl algae respectively Ð Enrichment factors as high as4 (10 have been reported for some brown algae lVauchline and

lJ.empleton, 196Ll.). A summary of the existing data is shown

in section I.2.Lt. Early studies (Bailey and Kelly, 1955;

Tong and Chaikoff, 1955; Klemperer, 195'7) focused on the

mechanism for attaining and sustaining such high concentra-

tion gradients betvieen the cell and its surrounding medium.

A common conclusion of these studies is that only iodide

is removed from sea water into the cell. Inside the cell,

iodine occurs mainly as iodide. although a fraction of it

may occur in organic forms. However, upon hydrolysis, only

a trace of the organic iodine is left. The major portion of

it is converted into inorganic iodide. Shaw (1959. 1960)

investigated the possibility of accompanying changes in the

speciation of iodine during iodide accumulation by the brown

sea weed Laminaria digitata. He reported that f in agreement

with some earlier studies (DangearCi, 1928a, 1928b, 1930 i

Kylin, 1930; Roche et ale f 1949) p iodide can be oxidized

to iodine by marine algae and the oxidation can proceed in

the dark. The elemental iodine then quickly undergoes hydro-

lysis to form hypoiodous acid, which, being a neutral mole-
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eule at the pH of sea water~ can easily diffuse into the

tissues. Inside the tissues ~ hypoiodous acid may either be

reduced back to iodide or be converted into organic iodine.

Since the tissues have a lower permeability to ions than to

neutral molecules ~ iodide is retained inside the tissues.

He presented a scheme as sho'vm in figure IV-5-1 (Shaw~ 1959v

1962). More recently, Gozlan (1968) also reported the occur-

rence of iodine-producing bacteria.

Sugawara and Terada (1967) studied the assimila-

tion of iodine by a species of the marine alga, Navicula.

ry.lhey reported that the alga preferentially assimilated

iodide ions. Little or no uptake of iodate ions occurred.

In fact, excessive amounts of iodate can hamper the growth

of the algae. There is evidence indicating the conversion

of iodide to iodate and vice versa during the growth of the

algae.
The :ceduction of iodate to iodide by bacteria

has been reported by Tsunogai and Sase (1969) é They con-

cluded that bacteria that are capable of reducing nitrate

to nitrite, using nitrate reductase as the enzyme, can also

reduce iodate to iodide. They also claimed the detection

of the formation of elemental iodine in the process.

These studies indicate that biological activity

is important in the inter-conversion of the iodine species.,

Both the oxidation of iodide and the reduction of iodate can

be induced by such processes. However, since these studies
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sea \'i3.ter

°tl

12 HI 0

H,~L¿',i'

Fig. iV.- 5-1 A possible mechanism of iodide absorption
by brown algae proposed by Shaw (1959).

"

-20'1-



are limited to a few species of algae and bacteria, it is

as yet unclear whethel." these processes are quantitatively

important in affecting the oceanic distributions.
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IV.6 Previous laboratory studies
Sugaw"ara and Terada (1958) were the earliest

investigators to study the stability of various species of

iodine in sea water. They added in excess of 50 mg of ele-

mental iodine to a liter of sea water and observed a gradual

decrease in the elemental iodine concentration and a corres-

ponding increase in the iodate concentration. Less than

40% of the elemental iodine added was left after 25 days.

This rate is substantially slower than those determined in

artificial media (see section iv. 4). Nonetheless, this

experiment shows that elemental iodine is unstable in sea

water and Sugawara and Terada favored the hydrolysis of

elemental iodine to hypoiodite and its subsequent dispro-

portionation to iodate and iodide as an explanation for

their observations according to the reactions

12 + OH- -- I + 10- + H+ (iv..6-1)
and 310- = 21- + 103 (1V-6-2)
They also suggested that the direct oxidation of iodide to

a higher oxidation state r such as hypoiodite t is difficult.

Recently, Truesdale (1974) has re-examined this

problem. He suggested that elemental iodine in sea water

may behave differently at trace concentrations" He limited

the addition of elemental iodine to less than lL~OO ug I2~~I/L.

He also observed a rapid disappearance of elemental iodine

in sea water. Less than 15% of the added elemental iodine

is left after 24 hours. In low iodine concentration (260
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ug 12-1/1) p all the elemental iodine disappears after .30

minutes. The rate of' the reaction decreases with time. How-

ever, in the first half an hourv the rate is alv.iays a1)out

2LH) uM/day. H.e suggested that the elemental iodine initial-~

ly reacts with orgxìic compounds ~d.ther by reduction to

form iodide or by iodination to form iodinated derivatives.

At low ele:mental iodine concentrations 9 the org;;i.nic com-

pounds in sea water may be able to consume all the element-

al iodine. At higher elemental iodine conc.entrations ~ after
these organic compounds are exhaustedø the slower reactions~

the hydrolysis and subsequent disproportionation of' element-

al iodine to form iodate, may then proceed$ Thusø 8.Gcording

to ':Pruesdale (197l~) Ð the fate of elemental iodine in sea

.wa ter will mainly be

I + 2R -- 2R12

and 12 ~~.. 2R -~ 21- .J 2R+.

(rv-6-))
(IV-6-4)

where R is an un.known orgai1.ic compound. There are some

doubts about the reliability of these results" Truesdale

purged all the oxygen from his reaction mixture with nitro-

gen before initiating his experiments beeause oxygen is an

interferent in his analytical method 0 The effect of the

absence of oxygen on the reaction pathwa.ys is not known" An

inert nitrogen atmosphere instead of' the natural oxidizing

atmosphere may suppress oxidation and thus favor the reduct-

ion of iodine.. Consequently t his conclusions should. be

treated with caution.
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IV.7 Laboratory studies

iv 07.1 The oxidation of iodide in an aqueous solution

iv .7 .1 .1 Experimental

Potassium iodide is added to solutions with known

pH and ionic strengths so that the final concentration is

about 1 mlVí in iodide. The medium may be filtered Woods Hole

surface water or an artificial solution. Two liters of the

solution are quickly transferred into a reaction vessel in

a constant temperature water bath. Air or oxygen is bubbled

through the solution. The pH, temperature and iodide con-

centration inside the reaction vessel are monitored by a

combination pH electrode t a thermometer and an iodide ion

specific electrode. The temperature bath is covered with

styrofoam sheets to minimize heat loss and direct light 0
A sketch of the apparatus is shovm in figure IV~'7-1.

IV.7.1.2 Results and discussion

Figures IV-7-2 and IV-7-) show the rasul ts from
five experiments in various solutions at different pH

values. In the first three experiments (figure IV-7-2) 9 a

medium 'which is 0.1 M in potassium nitrate and 1 mM in

potassium iodide was used. The pH was buffered at 9, 12 and

6.7 respectively and the temperatur(~ was maintained at 490C 0

A decrease in electrode potential will indicate an increase

in the iodide concent:r'ation. Thus 9 as the oxidation of

iodide proceeds 9 the electrode potential should increase in

-211-



11

~'''o
r"j'¡ 0' ' '4 ¡ ~_,~

l/ /~(( ,.~.-~-
f ..o/~Õ¡q I!
. (1 .. ~.. -~.~ .":~~

r~,
1

r
2

12

. i .

i-

~:
h 5

6

7

8.

9

13

~::~~r' -~%1 10~.~~~
IV--7-1 An apparatus for studying the interconversion of
iodine species. 1 reference electrode; 2 iodide electrode i
3 pH eleêtrode; L~ constant temperature bath; .5 reaction
vessel; 6 reaction mixture; 7 plexiglass water bath; 8
stirring bar; 9 styrofoam sheet; 10 magnetic stirrer; 11
thermometer; 12 to temperature regulator; 13 wooden block.

-212-

:'-,

/;
Fig.



::
t:

-0
Ct (Q..~ ~
'1 0
c:
(l

" '1
o
Q. "
(l
'"
o
..

"'1
I:
(l g
- "-
Li '

,,-
I
.. " Exp. 1

Á Exp. 2

1

Á & M Ò Ò Ò Ò ,,~ "

" . "
~ ..,p"'

....

" " " o 0 0 0 0

I I2 4
Time hour

-i1

6

Exp. 3

"

.. ....
o .

o

0&00 0 ~
". .. o "

" " "

o
(Q"-'0 6 8

Time hour
Fig. IV-7-2 Dark auto...oxldation of iodid.e. Exp. 1:' pH 9.1;

49°C; a.OiM Na2BL~07.10H20, Exp. 2: pH 12.0; L~90C; satur-

ated with Ca(OH)2" Exp. 3: pH 6.7; 49°C; a.o25M Na2HP04"

7H20 and a. a25IV KH2POL~ ~

-213-





the positive direction. No consistent trend was observed~

A t pH 9, there was in fact a de crease in electrode poten-

tial of 6 mV in 6t hours. No electrode potential changes

could be detected at pH 12 in 6 hours, while at pH 6.7,it

increased in a haphazard manner for about 9 mV in 2) hours.

(The sharp change in electrode potential in the initial )0

to 60 minutes was caused by the temperature equilibration

between the reaction mixture and the temperature bath",)

In the fourth experiment (figure IV-7-3), a 0.5 M

sodium chloride and 0.1 M hydrochloric acid solution \'laS

used. The iodide concentration was 0.5 mM and the pH was 1.

The bath temperature was maintained at 25°C. The variations

in electrode potential were only about 1 to 2 mV in 53 hours

and should be considered constant wi thin the experimental

uncertainties. No change could be observed even when oxygen

instead of air was bubbled through the solution. A similar

experiment was done using sea water which had been titrated

to a pH of 0.9 with hydrochloric acid (figure IV-7-J). The

electrode potential dropped 2.5 mV in the first J hours. It

then drifted downwards slowly for the next 95 hours. The

total drop in electrode potential in the entire experiment

of 98 hours was only 4 mV.

These experiments did not provide any conclusive

information. In retrospect, the use of an electrode as a

sensor for the disappearance of iodide in this study is

actually a poor choice. The change in electrode potential

-215-



(ÔE) is a logarithmic function of the change in iodide con--

centration since

L\E :: 59016 log (ait/aiO) (iv -7-1)

where alt is the aetivity of iodide at time to 8.ro is the

ini tial iodide acti vit;y and l.E is in mV. 9:husp with slow

reactions which do not go to completionp obseJ.:vations will

be made in a region where the elec"'crode response is least

sensitive to concentration changes. In this series of exper.-

iments, the maximum change in electr~ode potential was an

increase of 9 mV in 13 hours in exp8riment ). This jE cor-

responds to a )0"/0 decrease in the 5.ni tia,l concentration..

In the other experiments, ßE tmElS less than 2 mV bU.t it may

still represent a 9~¡; decrease in concentration. However9

over such a long time span for the experiments (7 to 97

hours) 9 other factors, such as electrode drift~ may be suf-

ficient to account :tor these changes in electrode potentials

too. Moreover, there is no systematic change in the rate of

disappearance of iodide with varying pH. Even, within an.

experiment at constant pH, the chaiì.ge in electrode potential

with time is often haphazard. In one of the experiments,

the change in electrode potential would actually suggest an

increase in the iodicle concentrationQ This is physically

impossible. The only generalization that may be derived from

these data is perhaps that iodide is not easily oxidized in

aqueous solutions. The rate of the reaction is too slow to

be observed with the teChniques used here ~
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IV.7.2 The change in iodate concentration in sea water

wi th time

IV.7 02. i Experimental

Woods Hole surface water is collected and filtered

through Whatman 40 filter papers. The filtered sea water is

divided into sub-samples which are stored in 250 ml poly-

ethylene bottles at room temperature (about 25°C). A sample

is transferred to the freezer after each preset time inter-

val. All the samples are analyzed for iodate at the end of

the experiment by the colorimetric method as described in

section II.). The initial sea water frozen immediately

after collection is used for the construction of a calibra-

tion curve.

IV.7.2.2 Results and discussion

Figure IV-7,-:I-l shows the results from an experi-

ment for a duration of 52 days. The sea water has been

analyzed before the experiment was started and it was found

to contain 22.) ug/l of iodate-iodine and 15.7 ug/l of

iodide-iodine. Wi thin the error bar (+ 5%) l no change in

iodate concentration could be observed after 52 days of

storage at room temperature. The best fit by the linear

least square method gives

(10)-) = 0.002 t + 22.)4 (1V-7-2)

where t is time in days. The correlation coefficient is

0.05 and the standard deviation of the slope is +0.547.
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Thus ~ if indeed iodate has been produced by the oxidation of

iodide within the period of 52 days p it is undetectable with

this method and the change is less than the experimental

uncertainty of +1 ug-i/i.
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IV.7.3 The stability of elemental iodine in an aqueous

solution
IV.7 .3 .1 Experimental

Standard iodine solution (3% w/v in potassium iodide)

10 g of distilled water and 7.5 g of potassium

iodide are transferred into a stoppered weighing bottle.

0.0317 g of elemental iodine (~ mmole 12-1) is added to the

solution. The mixture is gently swirled until the elemental

iodine is completely dissolved. The solution is transferred

into a 250 ml volumetric flask. ¡rhe weighing bottle is

washed three times with small amounts of distilled water and

the washings are also added to the volumetric flask. The

solution is then diluted to volume. Thc~ conci:mtration of

iodine is determined by titrating 25 ml of this iodine solu-

tion with a standard sodium thiosulfate solution (4.0356

mOO) using the starch-iodine color for the detection of the

end-point. The amount of iodate present in the iodine solu-

tion as 8.rl impurity is determined from the difference in
the amount of thiosulfate consumed between an unacidified

and an acidified sample of the iodine solution.. /lhe co11ce11--

trations of iodine and iodate in the standard iodine solu-

tion are 0.9243 ruM 12-1 and 0.02588 mM 1°3--1 from the

average of two determinations.
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Procedure

Two liters of an artificial solution or sea water

are transferred into a reaction vessel in a constant teripc-3r-

atur(~ bath. fI'he ~H)lutÜm is stirred at a constant rate ó The

pH of the solution, is monitored v'/ith a combination pH elec-

trode. After the reaction mixture has thermally equilibra-

tecl vlÌth the water bathv 5 ml of the standard iodine.; solu-
tion is added. Forty ml of this mixture is pipett;ed into

e, '~c'n o,p _!.t",O 50 1'11 -"oll"tne+",'ic .ola£~'.rs a-I- oP'¡ ved ....¡ "'0 ; y '1-c.,,,'tf~JJ sç,L , .. (íVi j" V..,. 4.. V.. .l ..L.. ).1\. u J,~ .ó".k l...i!.t_ ."",-ill1v.L \f G\-__ ø

In one flask, the solution is diluted to volume and its

absorbance is measured as quickly as possible in a 1.0 cm

cell at 353 nm. i:r:o the other flask, which contains 1 ml of

0..1 11 sulfuric acid before the addition of' the sample, 2 ml
of a 5% (w/v) potassium iodide solution added and the

mixture is diluted to volume.. ..~~f'ter l;1.1Iowing the mixture to

staiî.d for 5 minutes with occasional sha1ting~ its absorbance
at 353 nm is measured.

In the first two experiments p the medium was Vloods

Hole surface water fil tøred through a Whatman l¡.a filter

paper. The third one was distilled water titrated to a pH

of 8.2 with a 0.1 M sodium hydroxide solution. The fourth

one was a 0.5 M sodium chloride and 2.25 ruM sodium bicar-

bonate solu't;ion. 1111e pH was adjusted to 8.. 2 by titrating

the solution with a 0.1 M sodium hydroxid(~ solution"
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IV.7.3.2 Results and discussion

The inorganic iodine species added to the medium

gave the following concentrations: 292.5 ug I2'~I/lf 8.2 ug
103 - -1/1 and 57 mg 1-.-1/1. :Phe amount of elemental iodine

added is at the lower end of the concentration range used

by Truesdale (1975) and should not mask his proposed reac-

tions with the organic compounds. The amount of elemental

iodine in the solution was monitored by measuring the absor-

bance of the solution at 353 nm in a 10 em cell. At this

v/avelength, both elemental iodine and the tri-iodide ion

absorb strongly (Awtrey and Connick, 1951) while the othf3r

iodine species do not absorb significantly.

Some of the reactions that may be involved in the

experiments are

2R + 12 == 2RI

310- = 103 + 21-

R + HI 0 -~ RI

(iv -7,- 3 )

(iv -7-ll-)

(iV -7-5)

(iV -7-6)

(IV-7-7)

(IV-7-8)

(iV -'1'.9)

(IV'-7-10)

12 -I I ;~ 13

12 + H20 ~ i + HIO + H-I

HI ° ~ H+ + 10

10- -I reducing agent --r I

103 - + 6H+ + 51- == 312 + 3H20

R rep:r"esents some unknown organic compounds.

Figure IV-7-5 shows the results from four experi-

ments in various media. If elemental iodine is stable in an

aqueous solution at a pH of around 8, only reaction IV-7-)
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will occur and it will yield a constant absorbance with time

in both the acidified and the unacidified samples. In reality~

in the unacidified samples. the absorbance is only about

0.01 to 0.03. Although it is rather constant with time. it

is much lower than the expected value of 0.22. (This value

is estimated from the amount of elemental iodine present

and a calibration curve obtained by generating known amounts

of elemental iodine through the reaction of iodate with

excess iodide in an acidic solution.) This consumption of

elemental iodine occurs within a minute or two - the short-

est time within which an absorbance reading can be made -

and supports the prev ious reports that iodine is unstable

in sea water (Sugawara and Ter8.da, 1958; Truesdale, 1974-).

Since the reaction occurs in both sea water and d.istilled
water, the reaction seems to be only pH dependent and is

likely to be ~he hydrolysis of elemental iodine.

Upon acidification, the absorbance increases

sharply. In sea wat€~rf part of this absorbance is due to

the iodate present as shown by reaction IV.-?~.10. llhis back-

ground absorbance is denoted as a broken line in figure

IV-7-6. The restoration of the absorbance by acidification

implies that the reaction that consumes elemental iodine is

a reversible one. Thus r reactions such as reaction IV-7-6,

which is favored by Truesdale (1974), are not likely to

occur since such reactions are usually irreversible.

The absorbance of the acidified samples decreases
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slowly long after th(;; initial elemental iodine has been

consumed, as suggested by the constant and 10'" absorbances

of the unacidified samples. This implies the presence of an

intermediate \'¡hich ca..l be converted back to elemental iodine

upon acidification as discussed previously 3 Moreove:c~ this

intermediate has to bC-: reactive and it is this intermedlate

rather tha:"' elemental iodine that is irreversibly consumed

"'lith time.

The most likely candidate for this intermediate

is hypoiodous acid since earlier studies have shc)\'ln that

"t;he hydrolysis of iodine to form h¿rpoiodous acid is rapid

in an alkaline solution and this reaction ( ..'reac i.ion IV-7-~')

is reversible (see sections iv 02 and iV ~4 for a more detail-

eel discussion).. It is also a very reactive species and it

can undergo reactions such as IV-7-7, IV-7-8 and IV-7-90

The disproportionation of hypoiodi te to form iodate (reac-

tion IV-7-7) cannot account for the observed decrease in

absorbance with time in the acidified samples since one

mole of HIO will prOduce two moles of IZ-I either through

reaction IV-7-4 or through the combination of reactions IV-

7-7 and IV-7-10. Since iodate is stable in an aqueous solu-

tion, if reaction IV-7-7 is the only reaction occurred, there

will be no change in absorbance with time. The other routes

for the removal of hypoiodite will be its reduction to iodide

by an organic or an inorganic i"'educing agent (reaction IVø.7

-9) or the iodination of organic species (reaction IV-7-8) e
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Neither route can be ruled out at the present time.

In sea waterp the absorbance of the acidified

samples drops to the background level within 2 hours. This

level is slightly higher than the absorbance from the iodate

initially present in the sea water and this excess (0.015

absorbance unit) is probably caused by the trace of iodate

in the standard iodine solution. For practical purposes pone

may probably assume that all the hypoiodi te is consumed

within 2 hours. Thus p the reaction that consumes hypoiodi te

seems to occur much faster than the disproportionation of

hypoiodi te to form iodate (reaction IV..7'-7). In the artifi...
cial media prepared with distilled water, less than 40% of

the initial absorbance is lost in 2 hours and this implies

that hypoiodite is consumed at a much slower rate in these

solutions. The presence of sodium chloride or changes in

ionic strength cannot be the cause since the reaction occurs

equally slowly in the 0.5 I'll sodi urn chloride solution (figure

IV-7-6). 11 major difference between distilled water and the

coastal surface sea water is in their organic contents. It

is possible that the much lower concentration of organic

compounds in distilled water is limiting reactions IV-7-8

and IV-7-9 which are suggested earlier as the routes for

the removal of hypoiodite. Alternatively, one may attribute

the difference in reaction rate to the possible absence of

catalysts in trace quanti ties in the artificial media.

The loss of iodine from the solution by volatili-
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zation is unimpo:r~tant in this study. T:cm:;sclale (1971+) has

examined this possibility and found that the volatilization

()f iodine does not occur at the pH of sea water. I have also
avoided the bubbling of gases through the reaction ilJ_xture g

kept the reaction temperature low (25°C) and finished each

experiment; within 3 hours in order to further minimiz.e 'chis

problem. Thus p no elemental iodine should have been lost

during the experiments from the reaction mi:irture. 110SB by

volatilization may also occur in the acidified samples in

the volume'llric flasks. Hovieverp I have checked the stabi..

lity o:f the absorbc:mce of the tri...iodide ion in aeidified

samples with tiIne and found that; there is no observable

change in absorbance in over an hour. In my experiments,

the absorbance of each acidified sample was rn(~asured iNithin

half an hour after the generation of the tri-iodide ions.

Thus, the decrease .in absorbance with time cannot be ex-

plained by this mechanism.

In summary. my experiments have shown that ele-

mental iodine is unstable in sea water. Its maj or decompo-

sition route is probably not by its direct reaction with

organic compounds. Iodine probably undergoes hydrolysis to

fo:cm hypoiodous acid which further reacts with either re-

ducing agents to form iodide or organic molecules to form

iodinated compounds. These reactions seem to occur much

:faster than -Chi:: disproportionation of hypoiodite to form

iodate.
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iv 08 A possible oceanic iodine cycle

A tentative cycle of iodine in the ocean is shov'm

in figure IV-8-1. Only elemental iodine and hypoiodite are

included as poøsible intermediates between. iodide and iodate

because they are the only remaining iodine species that show

significant stability in aqueous solutions. The oxidation of

iodide to ioda.t;e does not necessarily have to go through
these species. However, since my experiments suggest that

.this reaction occurs \"Ii th difficulty if it occurs at aii~

this implies the presence of intermediate species which act

as energy barriers. Elemental iodine and hypoiodite are

possibilities.
The oxidation of iodide to elemental iodine is

thermodynamicaiiy unfavorable in a basic solution (sections

IV.2 and iv .l~), but there is evidence s ugge L? t ing that

organisms can use enzymes. such as iodide oxidase ~ to cata-

lyze the reaction (Shaw, 1959; section iv ,,5). If elemental
iodine is formed, it may be transformed to iodate chemically

via h:'l.poiodite by hyd:i'olysis and d.isproportionation. However,

other molecules may compete for hypoiodi te and reduce it to

the -1. oxidation state. Thus v two cycles may be involved

(1) i- -). 12 -+ 10 -). r- (rV-8-1)
(2) 1- -;. 12 _._,. 10 ~ 103- -)- i (IV-8-2)

Apparently, cycle (1) proceeds much faster than cycle (2).

However. once iodate is formed through cycle (2) pit will

remain stable in sea water. The only known way to remove
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Q).reduction or
iodination fast

disproport(ona tion
slow

(+7) 10-
?l

(j 2 r + (oj + 2H+ -- 12+- H20

ø 12 + H20:( ). r+ HIO +H+

Q) 10- + red u c in gag en t --)- r; 10- + R -- R I

q) 310-' -- 10j + 2r

- - - thermodynamically unfavorable reactions

Fig. IV-8-1 A possible oceanic iodine cycle.
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iodate in the open ocean is by bacterial reduction to form

iodide (Tsunogai and Sase p 1969) & This reduction of iodate

is thermodynamically unfavorable and a biological ìn,sicliation

must be invokedn
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CHAPTER V. CONCLUDING REMARKS
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Reliable analytical methods have been developed

for the determination of ioda.:tep iodide and particulate
iodine in sea water. i:f.hese techniques are straightforward

and their :precisions are sufficient for studying the varia.-

tions in the marine envi:i:onm'ants.

In addition to physical process'Bs such as advec...

-Cion mid diffusionp the distribution and speciation of

dissolved iodine in the ocean se9m to be controlled by

redox potential changes and biological activity also. The

drastic shift in redox potential from oxygenated to sulfide-

bearing water in anoxic basins brings about accompanying

reduction of iodate to iodide as predicted from thermody-

namic considerations. In the open oceans 0 the occurrence of

iodide is confined to the euphotic zone and the iodate co1'--

centra-tions at corresponding depths are low.. This distri-

bu.tion is consistent vii th the suggestion that iodide is

produced by the enzymatic reduction of iodate by organisms

(Tsunogai and Sase, 1969). In coastal watersø the speciation

~:3"nd distribution of iodine ma.y also be affected by the sea-

sonal changes in prOductivity. Particulate iodine also

plays an importm~t role in the cycling of iodine in the

ocean. Helative to rocks and minerals, marine suspended

matter has much. higher iodine content. The iodine-contain-

ing particles seem to be biogenic. The concentration of

particulate iodine is highest in the euphotic zone and it

drops sharply with depth to a background level. This dis-

-232--



tribution is similar to the distributions of bioactive ele-

ments such as phosphorus and nitrogen in marine suspended

matter. The standing crops of particulate iodine in the top

200 m also seem to correlate with surface productivity. The

t):ceferential dissolution of particles in strOl'1g pycnocline

also affects the distribution of dissolved iodine in the

w;;i:ter column. :Phe thermodynamically favorable autoxida'-

tion of iodide to i.odate in sea'water may also be mediated

by biological activity. Iodide seems to be quite stable in

sea water. I was not able to show the o:ddation of iodide

to iodatø at a measurable rate. On the other hand~ elemental

iodine is extremely unstable with a life time of seconds to

minutes in sea water ~ Thus p elemental iodine must be pro-

duced at a very fast rate if it is the vehicle for the

transfer of iodine from the oceans to the atmosphere as sug-

gested by Miyake and Tsunogai (1963). The diffusion of

iodine from the sediments into the water cOll..mn probably

occurs in the Black Sea. Howevør, in the open ocean, this

process is not cløarly evident from the distribution of'
iodide in the bottom water.

There are still discrepancies in oUX' understanding

of the marine geochemistry o:f iodine. Some of the major

gaps in our ltnowledge are: (1) the form and physiological

fU.nctions of iodine in marine organisms; (2) the rate and

products of the re-mineralization of iodine in organisms 3

(3) the possible diagensis of iodine in the sediments and
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subsequent diffusion of iodine into the bottom water: (4)

the agent for the transfer of iodine from the ocean into

the atmosphere; and (5) the interconversion among the oxi-

dized and reduced species of iodine via biological and

chemical processes. This study has defined the importance

of, pointed out the possible answers to and provided some

of the necessary tools I~or future investigations of these

questions.
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APPENDIX A. DISSOLVED IODINE MEASUREMENTS IN THE EQUN.lORIAl)

ATLANTIC DURING CRUISE AII-83 (JUNE, JULY. 1974)
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Station 20J+4 Station 20Jl5 Station 2046 Station 2048

1°58.6'N 10°00.7'1' 1021.6'N 10°02,2'1' 0037.1'N 10°00.5'1' 0001.3'N 9°58.2'1'

Depth lodato Depth Iodate Depth Iodate Depth Iodate
(m) (ul~) (m) (uM) (m) (uM) (m) (uM)

1 0.249 1 0.21,4 1 0.24? 1 0.257
29 0.235 30 0.249 30 0.273 29 0.27)
39 0.231 Ira 0.266 40 0.302 39 '0.293
49 0.226 50 0.264 50 0.373 1,9 0.486

59 0.302 59 59 0.513 59 0.366
69 0.1+57 69 0.1,22 69 0.495 69 0.)66
78 0.588 79 0.453 79 0.431 78 0.402

98 0.437 99 o .lf22 99 0.422 98 0.397
123 0.575 124 0.470 124 0.42~ 123 0.419
147 0.470 149 0.417 149 0.439 11,7 0.417
196 0.435 198 0.448 198 0./.51 196 0.417
294 0.448 297 0.4)9 297 0.448 294 0.415

392 0./,46 396 0.431 396 0.393 392 0.408

588 0.435 594 0.4)7 594 0.451 588 0.413

784 0.4)) 792 0.444 792 0.455 784 0.43)
980 0.437 990 0.444 990 0.453 980 0.433
1170 0.437 1176 0,444 1188 0.457 1176 0.4)3
1455 0.4)1 1455 0.437 1/.85 0.451 1470 0.419

Station 2050 Station 2051 Station 2052 Station 2056

0040.2'S 10°04.2'1' 1021,O'S 10°01.8'1' 2000.2'S 10°00.0'1' 200).4'N 16°04,4'1'

Depth Iodate Depth I oda te Depth Iodate Dopth Iodate
(m) (uM) (m) (uM) (m) (uM) (m) (uM)

1 0.282 1 0.277 1 0.262 1 0.220
23 0.304 30 0.306 30 0.300 29 0.176
30 0.342 39 0.66/f 40 0.435 39 0.214

38 0.386 49 0.557 50 0.lf84 49 0.236
'53 0.371 .69 0.446 59 0.477 59 o . 580

61 0.393 78 0.419 69 0.4)) 69 0.469

76 0./;26 98 0.410 79 0.446 78 0.443

96 0.437 123 0.399 99 0.415 98 0.409
117 0.444 196 0.435 124 0.415 12) 0.42)
160 0.431 294 0./,48 149 0.41) 144 0.411
252 0.446 392 0.4)7 198 0.408 180 0.425

340 0.435 588 0./f28 298 0./+3) 280 0.398

522 0.4)) 784 0.419 595 0.446 366 0.425
696 0.444 980 0.451 79J+ 0.lf46 528 0.427
870 0.444 1080 0./_53 992 0.423 700 0.427
1044 0.453 1170 0.1;/,8 1190 0.408 864 0.)lf2
1305 0.4)9 1488 0.4)1 1095 0.42)
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Station 2057 Station 2058 Station 2059 Station 2060

lo26.3'N 16°04.9'W 0040.J'N 16°01.2'W 0000.2'N 16°02.0'W 0019.9'S 16°01.9'W

Depth Iodate Depth Iodate Depth Iodate Dopth Iodate

1 0.171 1 0.249 1 0.222 1 0.262
29 0.185 30 0.358 30 0.27/' 30 0.338

38 0.218 40 0.320 36 0.)8) )9 0.494
48 0.211 50 0.llÜ9 42 0.411 49 0.451

60 50 0.514 \0.42958 0.211 0.)09 59

67 0.403 70 0.)8) 55 0.4)8 69 0.429

77 0.)76 80 0.396 61 0.400 79 0.414

96 0.)14 100 0.)69 69 0.409 99 0.414
120 0,)91 125 0.360 79 0.380 12) 0.)85
144 0.)87 149 0.405 99 0.405 148 0.407
192 0.)98 199 0.)98 124 0.la8 197 0.)65
288 0.398 299 0./+27 149 0.403 296 0.416

)84 0.418 398 0.425 198 0.414 394 0.407

576 0.398 598 0.409 297 0.423 493 0.383

768 0.367 797 0.427 396 0.436

960 0.)27 996 0.358 594- 0.431

1152 0.Lf18 1195 0.400 792 0.425
1440 0.403 1494 0.378 990 0.1+23

1188 0.438
1485 0.431

,

"
Station 2061 Sta tion 2062 Station 2063 Station 2064

0038.2'S 16°00.7'W 0057.0'S 16°05.1'W 1019.6'S 16°03.4'W 2010.2'S 15059.9'W

Depth Iodate Depth Iodate Depth Iodate Depth Iodate
(m) (uM) (m) (ut~) (m) (uM) (m) (uM)

1 0.207 1 0.298 1 0.280 1 0.311f
25 0.274 29 0.)07 30 0.294 30 0.300
33 0.311 39 0.320 39 0.311 40 0.500
42 0.256 49 0.385 49 0.409 50 0.460
50 0.262 58 0.1+34 59 0.394 60 0.451
58 0.256 68 0.431 69 0.416 69 0.449
66 0.342 78 0.445 79 ~.425 79 0.434
83 0.365 98 0.443 99 0.429 99 0.42)
104 0.398 122 0.1.43 124 0.429 124 0.445
125 0.398 147 0.443 148 0.431 149 0.445
166 0.400 196 0.447 198 0.429 198 0.1+58

252 0.403 295 0.445 298 0.436 298 0.447
340 0.403 395 0.443 398 0.434 397 0.4L'3

528 0.407 495 0.445 599 0.436 595 0.465
712 0.414 799 0.436 794- 0.465
890 0.391 999 0.431 992 0.476
1068 0.IW9 1198 0.431 1190 0.447
1)35 0.IW9 149'1 0.1,20 1488 0.46)

.. Post-tripped
Data discarded.
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Station 2066 Station 2067 Station 2068 Station 2069

1000.4'N 21059.5'W 0031.3'N 21056.5'W OOOO.O'S 210S3.9'W 0°28.9'8 21058.S'W

Depth 1 oda te Depth Iodate Depth Iodate Depth Iodato
(m) (uM) (rn ) (uM) (m) (ulr.) (rn) (uM)

1 0.)07 1 0.293 1 0.286 1 0.257
29 0.286 28 0.293 29 0.311 30 0.277

39 0.318 37 0.302 39 0.379 40 \ 0 ~ 322

49 0.487 46 0.394- 49 0.415 50 0.41.9

59 0.469 55 0.514 59 0.534- 59 0.687
69 0.1,28 64 0.471 69 0.460 69 0.694
79 0.437 71. 0.440 78 0.431 79 0.595
99 0.433 92 0.394 98 0.401 99 0.385
123 OA33 115 0.401 12) 0.354 124 0.397
148 0.433 139 0.381 11.8 0.412 149 0.392
198 0.426 186 0.379 197 0.419 198 0.399
297 0.43'1 280 0.417 296 0.388 297 0.403

396 0.397 376 0.410 394 0.356 397 0.412
595 0.367 473 0.424 592 0.383 498 0.412
793 0.397 791 0.442
991 0.392 990 0.357
1189 0.433 1188 0.421
1487 0.338 1485 0.401

Station 2070 Station 2071 Station 2073 Station 2074

1°00.4'8 22001.4'W 1029.9'S 22°02.9'. 2007.8'N 28009.0'W 1022.4'N 28000.4'w

Depth Iodate Depth Iodate Depth Iodate Depth Iodate
(m) (uM) (m) (uM) (m) (uM) (m) (uM)

1 0.266 1 0.279 1. 0.286 1 0.295
29 0.275 30 0.277 27 0.303 29 0.298
39 o . 347 40 0.289 36 0.303 38 0.333
49 0.3)6 49 0.329 45 0.)00 48 0.577
59 0.482 59 0.550 54 0.331 57 0.607
68 0.577 69 0.431 63 0.66) 67 0.455
78 0.449 79 0.412 72 0.52) 76 0.413
98 0.426 99 0.442 90 0.440 95 0.448
123 0.421 124 0.442 113 0.464 119 0.455
147 0.1,24 148 0.442 135 0.464 143 0.460
196 0.424 198 0.446 180 0.1.74 191 0.)35
296 0.426 297 0.419 270 0.464 288 0.382
396 0.1,26 396 0.455 360 0.420 386 0.)85
596 O.i,)? 495 0.455 540 0.1.64 58) 0.)if2
797 0.401 720 0.471 771 0.375
996 0.412 900 0.424 957 0.415
1195 0.440 1092 0.478 1145 0.488
1494 0.440 1)80 0.464
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Station 2075 Station 2076 Station 2077 Station 20'18

001~3.6'N 28004.3'IQ 0°02.2'5 2So00.5'W 0°16.5'5 28°01.9'W 0°41.5'5 27°S8.1'W

Depth Iodate Depth Iodate Depth Iodate Dopth I oda te

(m) (uM) (rn) (uM) (m) (u!l. ) (m) (uM)

1 0,291 1 0,170 1 0,254 1 0.290

28 0.286 29 0.163 27 0.254 29 0.290

38 0.288 39 0.265 36 0.254 38 ,0.278
47 0.298 49 0.317 1~5 0.263 48 0.256

56 0.495 58 0.455 53 0.326 58 0.417

66 0.340 68 0.Jl62 62 0.333 67 0.550

75 0.371 78 0.1,46 71 0.419 77 0.437

94 0.422 97 0.398 90 0.Jl01 96 0.426
118 0.436 121 o ,J,26 113 0.398 120 0.414
141 0.399 146 0.414 136 0.401 144 O.J+1I~

189 0.422 195 o ,1f17 182 0.401 191~ 0.435
285 O.lf)+1 591 0.417 276 0.IW7 294 0.444

380 o .1~!~6 786 0.)'39 371 0.423 392 0.451

570 0.429 979 O,3'? 469 0.414 588 0.455

760 0.410 1470 0.403 784 0.446

950 0.389 980 0.441

1142 0,460 1176 0.451

1433 0.453 1470 0.446

Station 2079 Station 2080 Station 2081 Station 2083

0°58.8'5 28°02.8'W 1020.2'S 28001.7'W 2°00.7'5 28001.0'W 1027.5'S 33002.2'W

Depth 10da'te Depth Iodate Depth Iodate Depth Iodate
(rn) (uM) (m) (uM) (m) (uM) (m) ( uil)

1 0.057 1 0.204 1 0.213 1 0.286
29 0.125 29 0.211 29 0.229 29 0.291

38 0.158 38 0.229 38 0.240 38 0.295

58 0.197 48 0.272 48 0.265 48 0.288
67 0.523 58 0.426 57 0.469 58 0.288

77 0.453 '67 0.537 67 0.401 67 0.291

96 0.328 77 0.362 76 0.428 77 0.303
120 0.335 96 0.367 95 0.437 96 0.460
144 0.337 120 0.369 119 0.410 120 0.467
194 0.344 144 0.374 143 0.428 11t4 0.467
291 0.360 193 0.365 192 0.435 193 0.481
493 0.353 292 0.3'16 293 0.1~35 292 0.1~76

390 0.383 392 0.482 390 0.476

587 0.40) 590 0.1~35 587 0.495
784 0.401 783 0.441, 781 0.497

980 0.392 978 0.444 971, 0.488
11,/6 0.318 1169 0.426 1169 0.497
11,,/0 0.394 1464 0.455 1461 0.lf95
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Station 208/. Station 2085 Station 2086 Station 2087

0040.6'S 32°59.1 'W 0019.0iS 33000.8'W 0°02.0 'N 320S8. 8 'W 0026.4'N 32oS7.3'W

Depth Iodate Depth Iodate Depth Iodate Depth Iodate

(m) (uM) (m) (uM) (m) (ilY, ) (m) (uM)

1 0.279 1 0.281. 1 0.281 1 0.293

29 0.277 28 0.295 29 0.291 29 0.293

39 0.281 38 0.312 38 0.298 38 ,0.298

49 0.277 47 0.310 48 0.317 48 0.307

59 0.295 66 0.434 58 0.356 58 0.324

69 0.410 75 0.563 67 0.413 67 0.1.50

78 0.461. 94 o. If 34 77 0.560 77 o .ll48

98 0.1.10 118 0.ll62 96 0.399 96 0.422

123 o . 1f24 141 0.lf64 120 0.1.60 120 0.485

147 0.431 191 0.470 l'l4 o . 1f62 14lt o .lf67

196 0.460 290 o . 1f62 193 0.462 193 o .46lt

294 0.460 388 0.467 291 o .lt60 292 0.459

392 0.lfS5 488 o . 46lt 389 o .lt67 391 0.474

588 0.467 587 o. If 39 492 0.399

784 0.448 774 0.453

980 0.464 958 0.1.57

1176 0.460 1124 0.469
1470 0.457 1395 0.474

Station 2088 Station 2089

0046.0'N 32058.0'W 1°32.1 'N 33°02. 9'W

Depth Iodate Depth Iodate
(m) (uM) (m) (uN)

1 0.225 1 0.267
28 0.265 29 0.324
38 0.274 39 0.295
47 0.274 49 0.298
56 0.272 58 0.366
66 0.293 68 0.361
75 0.307 78 0.394
94 0.356 97 0.530
118 0.394 121 0.460
141 0.469 146 0.478
190 0.469 193 0.467
287 0.1.53 289 0.481
386 0.1.50 582 0.502
590 0.453 774 0.502
974 0.485 1160 0.504

; 1170 0.464 1449 0.490
i. 1464 0.488
¡
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Station 204.8 Station 2068 Station 2078 Station 2086

000l.3'N 9OS8.2'W OoOO.O'S 210S3.9'W 0041.S'S 27°S8.1'W OOOl.l'N 32059.8'W
* * * "

Depth Iodide Dopth IodidCl Depth Iodide Depth Iodide
(m) (uM) (m) (uM) (m) (uM) (m) (uM)

1 0.070 1 0.101 1 0.100 1 0.114
25 0.083 24 0.091 29 0.110 24 0.112

50 0.055 ¡f8 0.083 38 0.108 48 '0.111
'14 0.052 71 0.01;8 1;8 0.112 'l 0.098
83 0.033 95 0.032 58 0.071 97 0.057

99 0.018 143 0.013 67 0.086 11l5 0.013
149 0.007 190 0.008 '17 0.018 193 0.006
198 0.008 285 0.003 96 0.022 290 0.005
396 0.002 380 0.001 144 0.027 387 0.002
594 0.004 575 0.001 19!¡ 0.003 580 0.005
'11;3 0.001 1013 -0.001 29!¡ 0.003 1021 0.001
1040 -0.001 1!¡52 -0.002 588 0.002 1315 0.001
1337 -0.002 980 0.002

1470 0.000

.. The data tabulated here have been corrected for the reagent blank which is
0.001;6 uM:t 0.00145 uM.

-257-



APPENDIX B. DISSOLVED IODINE MEASUREMENTS AND HYDROGRAPHIC

DATA FROM THE VENEZUELA BASIN AND THE CARIACO TRENCH

DURING CRUISE AII-79
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"

Station AII-79-203) Venezuela Basin. 13°22'N 6404)'W. Total Dopth i 41fOO m.

Depth SaI. e O2 PO -) _Si02 1-* 10)- LI n/Sal
4

(m) (~. ) (oC) (ml/l) (uM) (uM) (uM) ( u~\) (uM) (nmole/g)

0 )If.828 26.401 4.54 0 0 0.098 0.)25 0.1.2) 12.1
25 35.658 1..55 0 0 0.124 0.)18 0.442 12.lf
51 36. )41 25.768 ).93 0.035 0 0.370
76 )6.678 4.11 0.039 0 0.116 0.342 0.458 12.5
100 )6.906 ).88 0.170 0 0.)77 0.4)8 0.815 22.1
148 )6.685 ).45 0.228 0 0.151 0.1.69 0.620 16.9
196 )6.)22 17 .309 ).)4 0.276 1.)0 0.007 0.460 0.467 12.9

17.299
0.469246 )6.080 15.857 ).46 0.42/, ).)5

15.81,4
0.004 0.464 0.468296 )5.865 3.)7 0.491 3.)5 1).0

)94 )5.))4 11 .127 2.94 0.475 7.73 0.007 0.lf46 0.1.5) 12.8
11.101

492 )4.9)0 2.77 1.04 12.57 0,497
589 )4.760 6.898 2.87 1.16 14.53 0.492

6.888
14.4688 )4.751 3.09 1.18 17.2) 0.00) 0.498 0.501

7)7 )4 754 5.809 3.18 1.17 17.88 0.492
5.795 0.467780 )4.774 5.565 ).46 1.15 18.81
5.557 0.4808)8 )4.816 ).65 1.10 18.90

878 34.876 ).75 1.04 17.2) 0.1f'1
948 --- 4.901
976 34.918 5.169 4.17 0.966 17.60 0.001 0.476 0.477 1).7
1460 )4.956 4.099 5.07 0.87) 18.62 0.002 0.4)0 0.4)2 12.4

4.114
1706 )4.964 5.1) 0.851 19.09 0.004 0.444 0.448 12.8
1955 )4.991 ).919 5.20 0.825 20.)0 0.000 0.462 0.462 1).2

).915

Station AII-79-20)) (continued)

2167 )4.974 ).890 5.22 0.815 20.11 0.466

2425 )4. 975
).871

5.24 0.819 18.72 0.006 0.476 0.482 1).8
2478 )4.979 5.00 0.812 17.88 0.471
266) )4.977 ).81,8 4.94 0.799 20.02 0.474

2692
).873

)4.976 3.8)2 5.41 0.812 19.65 0.473
).842

2810 34.979 3.867 5.00 0.860 19.83 0.001 0.462 0.46) 1).2
3.855

2925 34.977 5.)2 0.819 19.93 0.488
3156 34.976 3.82) 5 .J~ 0.8)1 19.09 0.001 0.465 0.466 1).)

3.837
3383 34.981 5.01 0.812 21.69 0.460
)409 34.978 5.14 0.825 19.65 -0.000 0.471 0.471 1).5
)666 )1..978 ).84) 5.14 0.815 21.23 0.481

)670
3.827

34.980 3.824 5.03 0.819 19.27 0.000 0.476 0.476 1).6
3.821

3915 31..981 5.09 0.80) 20.39 -0.000 0.1.84 0.1.84 13.8
4209 34.9'79 3.81f4 4.90 0.812 21.)2 0.000 O,l75 0.475 13.6

).824

* Iodide concen-trations hav8~cBrrected :for the reagent blank which iß 0.0046 uM.
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Station AII-79-20)0 Cariaco l'r()nch Eastern Basin. 100)1 'N 64°45'11.

Depth Sal. e PO -) NH4+ i-* 103 - n LI/Sal4
(m) (i;;. ) (oC) (u¡~) (uM) (uM) (uM) (u¡~) (ninole/ g)

0 )6.758 0.086 0.)1.0 0.1;26 11.6
J;9 )6.822 2).180 0.098 0.051 0.)95 0.446 12.1
54 )6.817 0.108 0.045 0.400 a.ltl'5 12.1
69 )6.018 0.131 0.01+2 O./Hl 0.453 12.3
83 36.833 0.151 O.lfÜl ---
98 36.1343 22.173 O.llfl 0.056 0.IH2 0.468 12.7
12) 36.632 0.31l1 0.033 o./no 0.41;3 12.1
123 36.537 0.479 0.024 o ./fol+ o ./f2 8 11.7
133 36./;92 0.532 0.027 0.Lr14 0.41rl 12.1
157 )6.41;5 18.399 0.630 0.019 0.431 0./.50 12.3

36.423 0.669 0.208 0./n5 0.623 17.1
176 36.375 0.81rO 0.069 0.lr20 0.1r89 13.4
196 36.355 17.689 0.925 0.271 0.270 0.541 14.9
206 36.331 0.991 0.178 0.209 0.255 0.464 12.8

36.333 1.001 --- 0.297 0.228 0.525 14.4
221 36.320 0.948 0.167 0.357 0.213 0.570 15.7
246 )6.301 17.)70 1.332 0.)80 0.054 0.434 12.0

17.375
270 36.292 1.371 0.237 0.000
295 36.277 1.414 0.587 0.413 0.000 0.lfl3 H.1t

445
36.262 17.086 1.1t83 0.999 0.509 0.000 0.509 ilt.O

18 36.209 1.608 1.810
442 36.2)3 1.604 2.003 0.)21 0.000 0.321 8.9
491 36.223 16.900 1.6)7 2.)85 0.416 0./r16 11.5
5lfl )6.227 1.667 2.797 0.1;78 0.478 1).2
587 )6.211 16.8L¡1 1.680 ).734 0./+37 0.437 12.1

16.8))
0.463600 36.191 1.667 3.)L¡6 0./;6) 0.000 12.8

688 36.202 1.657 3.612 0./+65 0.465 12.8
7)7 36.252 16.799 1.572 2.991 0./1-34 0.434 12.0

Station AII-79-20)8 (continued)

786 )6.199 1.782 4.656 0.)22 0.322 8.9
796 36.202 1.693 3.997

~ j
882 )6.196 16.795 1.791 5.096 0.376 0.)76 10.4

16.800
931; 36.195 1. 791 5.263 0.461 0.461 12.7
1031 36.193 16.772 1.7/;5 4.330 0.456 0.456 12.6
1081 36.196 16.770 1.798 5.092 ---
117) 36.197 16.756 1.824 5.775 0.409 0.409 11.)

16.758

* Iodide concentrations have been corrected for the reagent blank which is 0.0046 uM.
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Lat. 10-32N Long. 64-46W

All 79 Sta. 2031

Eastern Basin

Corr. S 01 Pot. Temp. o m11 Sulf.(lJt.1) Si02
Depth 00

8oC
2 1

0 36.725 25.153 4.56
24 .738 4.52
72 .826 22.639 3.52

120 .611 2.52 4.84
14"1 .531 19.112 2.16 6.33
168 .474 1.82 9.68
192 .391 18.001 .67 18.72
214 .348 17.679 . 16 2Lk 77

233 .328 .27.93
246 .310 17.397 32.50
263 .300 17 . 368 .07 .08 33.43
281 .294 1.04 35.94
304 .277 1 7 . 1 99 3.24 37 .52
313 .274 3.08 39.57
323 .272 17 . 179 3 .l~9 40.03
3il2 ..263 .8.86 44. 13
361 .258 17 .096 9.61 44 . 88

356 .256 9.21 44.79
374 .251 10.88 45.72
405 .247 12.96 46.93
433 .238 16.990 16.43 49.63
482 .227 16.930 11.47
492 .224. 16.922 14.53 53. 17

530 .219 1 6.888 14.67
541 .219 '18.96 53.17
580 .215 16.859 16.75
590 .215 16.832 22.82 56.98
679 .208 16.816 21. 03 .

689 .208 26. 50 57.73
777 .207 16.789 23.69
l)"- . 206 16.799 28.35 58.94OJ
876 .203 16.784 27 . 26

885 .205 3'1.78 61. 64

976 .201 16.772 31.95
98"1 .200 16.793 44.93 62.38

1147 .190 16.761 35.39 64.43

1196 .194 35.39 p 35.39 64.43

1296 . 195 16.756 35.84 65. 18

1330 .197 37 .09,37 . 22 65. Llr6

1364 .195 16.766 37.50 65.64
1383 .196 37.38,37,34 65.36

1391 .196 16.772 37.02 66.01
,
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APPENDIX C. DISSOLVED IODINE NllASURE~llNTS AND HYDROGRAPHIC

DATA FROM THE BLACK SEA DVRING CRUISE Cll\IN-120
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Station CHAlN-120-1)55 l:lack Sea. 42050'N ))oOO'E. Total Depth i 2160 m.

Depth Sal. e 02 H2S r-* r03- a n/Sal
(m) (%. ) (oC) (ml/l) (uM) (uM) (uM) (uM) (nmolel e;)

10 18.)71 0.047 0.088 0.1)5 7.)
10 18.37!.
10 18.376
31 18.483 7.858
38 18.526
43 18.562 7 .6!~2
49 18.777
68 19.654 7.992
75 19.785 2.29 0.011 0.1)5 0.146 7.4
91 20.240 8.310
95 20.599 8.11-)8
97 20.627
98 20.!~)1 0.41 0.015 0.146 0.161 7.9
101 20.6)) 8.467
102 20.690 0.34 ).28 0.060 0.1)9 0.199 9.6
102 20.732 8.495
107 20.782
108 20.829 0.)4 0.50 0.088 .0.05) 0.141 6.8
114 20.850 8.546
117 20.907 8.545
120 20.913 0.27 28.0) 0.150 0.081 0.2)1 11.1
12) 20.975 0.39 0.200 0.104 0.)04 14.5
1)6 21.036 8.553
1)7 21 .092 8.597
14) 21.114
143 21..156 8.652
144 21.140 0.2)2 0.055 0.287 1).6
149 21.191 12.57
157 21.281 8.665

Station CrV.IN-120-1355 (continued)

165 21.325 28.0)
178 21.392 8.711
180 21.!i-5 8.744
184 21.lri6
186 21.1¡.40
194 21.460 8.704
201 21.488
203 21.506 8.745
209 21.533 7.90 0.216 0.000 0.216 10.0
223 21.583 8.775
230 21.620
237 21.638 8.789
243 21.653
255 21.675 8.825
260 21. 703
281 21. 742 8.881
286 21.773 151.3 0.267 0.000 0.267 12.3
297 21.784
304 21.802
323 21.836 8.843
)28 21.843 215.2 0.276 0.276 12.6
))5 21. 864 8.867
343 21. 850
395 21. 894 8.822
366 21.903
382 21. 948 8.870
)88 21.950 292.0 0.287 . 0.287 13.1
444 22.004 8.873
450 22.010
482 22.053 8.886
11-83 22.054 8.865
490 22.058 359.3 0.300 0.000 0.300 1).6
490 22.225
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Stution CHAIN-120-1355 (continued)

580 22.131 8.900
588 22.13'1
726 22.216 8.895
735 22.222 496.2 0.366 0.366 16.5
9'1 22.300 8.91~8
980 22 . nl,

967 22.228 8.963
973 22.295 525.0 0.357 0.000 0.357, 16.0
1365 22.335 8.981
1371 22.328 510.6 0.303 0.000 0.303 13.6
1472 22.335 8.934
1478 22.336
1740 22.3h2 9.069
1746 22.338 545.0 0.4-33 0.000 0.433 19.4
1794 22.31,1 9.085
1800 22.343
1937 22.336 9.116
1943 22.31''1 522.8 0.432 0.000 0.l~32 19.3
2042 22.31fO 9.105
2048 22.31.3

* Iodide concentrutions have been corrected for the reagent blan which is 0.0046 \1.
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APPENDIX D. DISSOLVED IODINE MEASURENilNTS AND HYDROGRAHIC

DATA FROM THE GULF OF MAINE DURING CRUISE AII-86.
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Station A11-86-2122 h2035.5'N 6901f1.5'1,
Depth Pres. Temp. Sùl. °2 Sil. Thetù 10 -

-*
Sigth PO Oy nh t I

II db °C %0 ¡,tV I °C
4 uilJ uM

ni1/1 ¡ltV1
i:¡

0 33.464 6.25 10.20 .87 0.402 0.038

5 5 7.690 33.'76 6.47 9.13 7.690 26.144 .82 .009 0.lf07 0.040

10 10 7.710 33. t.G8 6.24 8.84 7.709 26.135 .82 .019 O.hOB 0.0)9
20 20 7.730 33.463 6.19 9.52 7.728 26.129 .89 .038 0.406 0.0)8
35 35 7.690 33.465 6.16 . .066

\
8.93 7.687 26.136 .91 0.405 0.0)7

50 50 7.740 33 . 4§ 5 6.18 8.84 7.735 26.129 .92 .ri95 0.419 0.01.4

74 74 7.720 33.471 6.17 9.13 7.713 26.137 1.0 .141 o .h15 0.0)5"-
93 33.441 6..14 9.22 L02 0.41)
99 ioa 7.770 33.484 6.18 8.84 7.760 26.141 .95 .189 0.ll22 0.040

121 122 7.670 33.460 8.8.. 7.658 26.136 1.05 .231 0.39)
124 125 7.760 33.486 6.15 8.54 7.748 26.144 .95 .236 0.393 0.032

144 145 7.800 33.495 6.10 .ß.5t1f 7.786 26.145 3.05 .275 0.)98 0.0)5

149 150 7.920 33.637 5.02 12.53 7.905 26.239 1.14 .284 0.383 ---

168 169 7.570 33.671 4.76 13.40 7.554 26.317 1.3 .318 0.416 0.019.

189 190 6.920 33.746 4.68 15.34 6.903 26.466 1.25 .354 0.425 ---

204 205 7JJ80 34.026 4.24 19.23 7.ri51 2fi.665 1.48 .376 0.4)4 0.014

223 224 7.260 34.112 4.19 18.64 7.239 26.708 1.56 ,tf03 0.344 0.012

232 234 7.350 34.178 4.09 18.55 7.338 26.746 1.5.9 .416 0.4)4 0.016

242 34.184 4.04 18.74 1.63 0.419 0.015

251 253 7.380 34.183 3.94 18.64 7.356 26.751 1.67 .441 0.461 0.016

.. Iodide con centra tiona have been corrected for reagent blank whic ia o .00!l6 uN.

station AII-86-21.8 42032.O'N 69O)1.0'W

Depth Pres. Temp. Sùl. °2 Sil. Thetù S i 9 th P04 Dynht 10 -
m db °C %0 mlLl \11VI °C \1rvi

ni . uM3---
2 2 7.104 33.200 6.42 8.84 7.104 26.010 1.05 . .000 0.39)

12 . 12 7.090 33.200 6.59 8.84 7.039 26.012 .9t, .020 0.393

25 25 7.100 33.201 6.40 8.84 7.098 25.012 .95 .046 0.347

48 48 7.340 33.321 6.46 8.84 7.336 26.073 .95 .092 0.391

66 66 7.800 33.'510 6.38 8.7rf 7.794 26.156 .88 .127 0.451

84 85 7.790 33. 515 6.19 8.64 7.782 26.162. 1.00 .161 0.4)0

102 103 7.7t.0 33. 512 6.16 8.64 7.730 26.167 .98 .195 0.437

120 33.523 6.13 8.54 .97 0.353

136 137 7.730 33.517 6.03 8.16 7.717 26.173 .87 .259 .0.404

140 ir 1 7.600 33.726 4.72 14.27 7.586 26 . 355 1.26 .266 0.407

154 155 7.730 33.687 4.96 13.50 7.715 26.3ri6 1.28 .291 0.416

169 170 . 6.930 33.803 4.50 15.99 6.915 26.510 1.36 .316 0.433

173 174 7.180 33.793 4.43 14.57 7.164 26.468 1.42 . .322 0.421

191 .192 7.030 33.924, 4.43 17.19 7.012 26.591 1.39 .350 0.4)4

209 210 7.150 34.049 4.34 17.77 7.1.30 26.673 1.47 .376 0.43)

218 219 7.190 34.083 4.19 18.35 7.169 26.695 1.45 .389 0.455

227 229 7.270 34.077 4.18 18.35 7.248 26.(;79 1.40 .402 0.374

236 34. 160 4.12 18.35 1.47 0.454

245 247 7.360 34.182 4.08 18.64 7.336 26.749 1.47 .427 0.462

250 252 7.370 34. 187 4.07 18.64 7.346 26.751 1.52 .(,34 0,454
--_.._--_._- --' +----,..----- ._--- ._-_.. ~,,'--" ----"
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APPENDIX E. IODINE CONTENT OF SUSPENDED PARTICULATE MATTER

COLLECTED DURING THE GEOSECS ATL~NTIC EXPEDITION
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