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ABSTRACT

The concentrations and isotopic compositions of helium have been
measured in a number of mantle derived oceanic basalts. The goal of this
research is to use the helium isotopic systematics to constrain the
nature and origin of mantie heterogeneity in the oceanic mantle.

Studies of helium partitioning in mid-ocean ridge basalt (MORB)
glass, performed by crushing and melting in vacuo, show that a
significant fraction of the helium resides within vesicles. Measured
concentrations are therefore a function of original helium content,
magmatic history, vesicle size and guantity, and grain size analyzed.
The helium solubility inferred from the results is 3.7 x 104 c¢
STP/g-atm), which is significantly higher (by a factor of 5) than the
enstatite value (Kirsten, 1968) most often used in the literature.
Concentrations obtained from basaltic phenocrysts and glasses suggest
that helium behaves as an incompatible element with respect to olivine,
clinopyroxene, and plagioclase.

Diffusion rates for helium in basaltic glass (in the temperature
range 125-4007C), determined using the method of stepwise heating,
yielded an activation energy of 19.9 = 1 Kcal/mole and InD, = -2.7 =%

.6 (cgs units). Extrapolation of these results to ocean f?oo
temperatures (0°C) gives a diffusivity of 1.0 £ .6 x 10-17 cm?/sec,
indicating that diffusion is an insignificant mechanism for helium loss
from fresh basaltic glasses.

The diffusion and partitioning studies suggest that these processes
will not alter the heljum isotopic ratios in basaltic melts. Therefore,
the isotopic composition of the oceanic mantle can be inferred by
extracting the helium from basaltic glasses and phenocrysts.

A survey of the helium isotopic ratios in MORB glasses from all over
the mid-ocean ridge system shows that there is considerable variation;
the 3He/4He ratios range from 6.5 to 14.2 x atmospheric. The results
from a number of oceanic island basalts show even more variability, with
the 3He/4He ratios ranging from 5.0 x atmospheric (for alkali islands
such as Gough and Tristan da Cunha) to 31.9 x atmospheric (for Loihi
Seamount). The regional variability, and the correlations with
875r/86Sr can best be explained by the presence of three distinct
reservoirs in the mantle which mix with one another. The three mantle
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source regions are believed to be 1) the depleted source for normal MORB
(with 3He/%He ~8.4 x atmospheric), presumed to be in the upper
mantle; 2) an undepleted mantle reservoir with 3He/4He > 8.4 x
atmospheric; and 3) a recycled oceanic crust reservoir with 3He/%He <
8.4 x atmospheric. A model for mantle structure that is consistent with
ghe observations is proposed and discussed in light of the geophysical
ata.

3He concentrations for the different mantle reservoirs are
inferred from the measurements, and suggest that the present-day 3He
flux, and the 3He in MORB glasses, is ultimately derived from the lower
mantle. Consideration of the 3He flux, available 3He/36Ar
measurements, and the atmospheric 36pr inventory, shows that
present-day degassing rates are insufficient to generate the atmospheric
argon. It is suggested that an episode of more rapid mantle outgassing
occurred in the past.

Thesis Supervisor: William J. Jenkins
Title: Associate Scientist
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CHAPTER 1

INTRODUCT ION

The origin of the atmosphere is a fundamental problem in earth
science. Although it is generally agreed that the atmosphere formed by
degassing of the earth's interior, the time dependence and physical
nature of the degassing processes are controversial. The approach
taken in this thesis is to use observable present-day degassing to
constrain this problem. As the most voluminous volcanic rock on earth,
oceanic basalts represent a major mechanism for degassing. In addition
to carrying gases to the surface, the basalts carry information
regarding the nature of their mantle source regions. Recent studies
have-shown that the mantle is heterogeneous, but models to explain the
origin of the heterogeneities are diverse.

Helium is ideally suited to studying both mantle heterogeneity and
degassing, since it has a primordial isotope, 3He, and a radiogenic
isotope 4He, which is produced by decay of uranium and thorium. Thus
the 3He/4He ratio is a measure of the relative proportion of
primordial and radiogenic helium. In addition, helium escapes from the
atmosphere, resu]ting in low atmospheric abundances, so that helium is
the only noble gas for which a mantle flux can be measured. The goal
of this thesis is to use the unique properties of helium to trace past
and present mantle degassing processes.

A.. Helium Isotope Geochemistry and Atmospheric Inventory

Although YHe was isolated by Ramsay in 1895 (from the radioactive

mineral cleveite; Ramsay, 1895), 3He was not discovered until much
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later, due to its low atmospheric abundance. 1In 1939, Alvarez and
Cornog (1939a,b) used a cyclotron to discover 3He in air and in well
gas. They observed a difference of ~12 in the 3He/4He ratios of
the two sources of heljum, but could not accurately determine the
absolute ratios. The presence of 3He in the atmosphere and the
isotopic variations were initially attributed to cosmic ray production
(e.g. Hi11, 1941). Using a gas-source mass spectrometer, Aldrich and
Nier (1946) more accurately determined the atmospheric 3He/%e to
be 1.2 £ .3 x 10‘6, and confirmed that gas well helium typically has
ratios lower by a factor of 10. The presently accepted value for
atmospheric 3He/4He is 1.38 x 1070 (Mamyrin et al., 1970; Clarke
et al., 1976). In a subsequent study, Aldrich and Nier (1948)
performed analyses on a number of mineral specimens, including beryl,
uraninite, and spodumene. The Li-rich mineral spodumene had the
highest 3He/4He ratio (~1O"5), while the other minerals had
ratios closer to well gas (~1O'7). Morrison and Pine (1955) showed
that the 3He/4He in the minerals could be explained by the
production ratios of the two isotopes. 3He is produced by the
reaction:

6Li(n,a)3H > 3He
8

where the neutrons are provided by (a,n) reactions. Radiogenic 4He

is produced by decay of U and Th:

238U N 206Pb + 84He
235U s 207Pb + 74He
232 207 4

Th > Pb + 6 He .
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For a rock of granitic ﬁomposition, Morrison and Pine (1955) calculated '
a 3He/%e production ratio of ~1O“7, in reasonable agreement with
the well gas measurements. While recognizing that helium escaped from
the atmosphere, they suggested that the atmosphere had a 3He/4He
ratio higher than the production ratio due to cosmic ray production.
Consideration of the mechanisms by which helium escapes from the
exosphere led to attempts at constructing mass-balance inventories for
the atmosphere. Since the residence times of 3He and *He are on
the order of 10° years, it should be possible to balance the
production and loss mechanisms, if the atmosphere.js viewed as a steady
state system. Each of the isotopes presents a different problem. For
4He, the thermal loss rate is much lower than the crustal input rate,
which led to the suggestion of nonthermal loss mechanisms (Nicolet,
1957; Kockarts and Nicolet, 1962; MacDonald, 1963). A number of
mechanisms have been suggested, including loss of helium ions near the
magnetic poles (Axford, 1968), and episodic loss during geomagnetic
reversals (Sheldon and Kern, 1972). The escape of photoionized helium
has now been experimentally verified (Raitt et al., 1978) and seems the
most feasible loss mechanism.
The 3He budget has been considered in the most detail by Johnson
and Axford (1969). Using measured exospheric temperatures during one
solar cycle (from 1947 to 1968), they calculated a mean 3He thermal

escape flux of 6 atoms cm2 sec‘]

, which is significantly greater
than the estimated nonthermal escape flux of 1 atom cm=2 sec™! for
that isotope. Since the crustal and cosmogenic 3He production rates

(Morrison and Pine, 1955; Craig and Lal, 1961) are too low to balance
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this total escape flux, Johnson and Axford (1969) showed that an
additional 3He source must be found; they favored auroral
precipitation of solar wind 3He at the earth's poles.

However, a previously unknown terrestrial 3He source was
indicated by the discovery of high 3He/4He ratios (relative to
atmospheric) in Pacific deep water (Clarke et al., 1969) and in hot
springs (Mamyrin et al., 1969). Clarke et al. (1969) suggested that
the oceanic excess of SHe was due to a primordial component leaking

out of the ocean floor, and that this could balance the 3He budget.

Alternative inﬁgrpretations included: 1in situ decay of cosmogenic
tritium (Fairhall, 1969); spallation generated 3He (Takagi, 1969);
and helium leaking out of sedimentary cosmic dust on the sea floor
(Krylov et al., 1973). Subsequent oceanographic studies have shown
that excess 3He is a general feature that is best explained by
injection at mid-ocean ridges (Craig and Clarke, 1970; Craig et al.,
1975; Jenkins et al., 1976; Lupton et al., 1980). Further proof has
come from excess SHe observed in oceanic basalt glasses (Krylov et
al., 1974; Lupton and Craig, 1975) and in ocean floor hot springs
(Lupton et al., 1976; Lupton et al., 1977; Jenkins et al., 1978)
Craig and Clarke (1970) used upwelling rates and the excess 3He
in the deep water to calculate an oceanic flux of 6 atoms em—2
sec!, Using the 3He/heat ratio from sea-floor hot springs and the
oceanic heat flow deficit (Williams and von Herzen, 1974), Jenkins et
al. (1978) showed that this flux is readily achieved by hydrothermal
activity. Therefore, the oceanic 3He flux approximately balances the

exospheric escape rate. However, it should be noted that these rates
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are probably uncertain to about a factor of two, and that the apparent
balance does not preclude new refinements in the inventory.

B. Helijum in Mantle Derived Rocks

Given the compelling evidence that the oceanic 3He is derived
from mantle sources, the oceanic basalts provide us with samples that
can yield information about the mantle. Prior to the discovery of
excess SHe in oceanic basalts (Krylov et al., 1974; Lupton and Craig,
1975), a number of studies indicated that these rocks contained
non-atmospheric gases. The first evidence came from attempts to use
K-Ar dating on young basalts, which indicated the presence of excess
40pp (Dalrymple and Moore, 1968; Funkhouser et al., 1968). Fisher
(1971, 1973) suggested that the glassy rims of oceanic basalts were
"quenched" rapidly enough (on the ocean floor) to trap the magmatic
gases derived from the mantle. In this now widely accepted scenario,
the ho1ocryst511ine interiors of basalts cool more slowly, lose most of .
the magmatic gas, and interact more extensively with seawater (see also
Dymond and Hogan, 1978). Dymond and Hogan (1973) measured the noble
gases in several glasses, and interpreted the abundance patterns as
being similar to "solar" gases found in meteorites (Pepin and Signer,
1967). This view was challenged by Fisher (1975), who éhowed that the
relative abundance patterns could also be "planetary," and by Ozima and
Alexander (1976), who suggested that magmatic fractionation processes
may alter the abundance patterns. A potentially important mechanism
for altering the noble gas abundances, which has largely been ignored,
is the formation of vesicles in oceanic basalt glasses. ‘As discussed

by Moore et al. (1977), these vesicles are present in most glasses
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(even those that are erupted at great depth on the ocean floor) and
contain primarily C02. The removal of a gas phase will clearly

alter the abundance pattern, since the noble gas abundances remaining
in the glass (after removal) will be determined by their relative
solubility, as well as the initial "mantle" concentrations.

The helium concentrations in these basaltic glasses are of
importance to the helium budget described above. For example, Lupton
and Craig (1975) observed‘he1ium concentrations of roughly
10"6ccSTP/gram. Using a mean crustal production rate of 2 km2/yr,
they noted that if this were representative of the oceanic crust,
degassing of a layer 50 km thick would be required to produce the
observed oceanic 3He flux. Since the oceanic crust reaches a maximum
thickness of only 7 km, this concentration must be somewhat low, or an
additional source of helium must be found. Fisher (1975) reported
helium concentrations a factor of ten higher in glasses from a
different part of the ocean ridge. However, it is not clear whether
this difference is due to regional variability, or an analytical
artifact. Lupton and Craig (1975) and Craig and Lupton (1976) crushed
their samples before analysis; if a large part of the helium resides
within the vesicles, their values may be low due to gas loss prior to
analysis.

There is also considerable regional variation in the 3He/4He
ratio. Krylov et al. (1974) measured av3He/4He ratio of 8 x
atmospheric (Ratm) in a MORB glass from the Indian Ocean. Lupton
and Craig (1975) and Craig and Lupton (1976) reported 3He /%He

ratios of 8.9 to 10.9 x Ratm in seven MORB glass samples from the
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AtTantic and Pacific Oceans. Although this total variation is roughly
25 percent (and the quoted uncertainties are ~5 percent), Lupton and
Craig (1976, 1981) have suggested that MORB glasses have uniform
3He/%He ratios. 3He/He fatios higher than these MORB values
have been observed in thermal spring and basalt samples from Iceland
(Polak et al., 1976; Poreda et al., 1980), Hawaii (Craig and Lupton,
1976; Jenkins et al., 1978; Kaneoka and Takaoka, 1978, 1980), and
Yellowstone National Park (Craig et al., 1978). Excess 3l4e has also
been reported for diamonds (Takaoka and Kaneoka, 1978), kaersutite from
Kakanui, New Zealand (Saito et al., 1978), and Josephenite (Bochsler et
al., 1976; Downing et al., 1977). However, several studies have shown
that terrestrial samples can be contaminated in the laboratory by
residual gases from previously analyzed meteorite samples (see Craig et
al, 1979; Bernatowicz et al., 1979; Smith and Reynolds, 1981). It
therefore seems likely that high vé]ues reported for Josephenite and
Kakanui kaersutite reflect meteoritic contamination. Nevertheless, the
available data show that there is considerable local and global
variation in the 3He/4He ratios of volcanic gases. Recent reviews
of the field have been given Tolstikhin (1978) and Craig and Lupton
(1981).
C. Objectives

Relating helium isotopic variations to models of the mantle is of
fundamental importance. In particular, Sr, Nd, and Pb isotopic studies
of oceanic volcanic rocks have shown that the mantle has been
heterogeneous for long periods of time (e.g., Allegre et al., 1979;

Wasserburg and DePaulo, 1979; O'Nions et al., 1980; Sun, 1980; Hart and
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Brooks, 1981). The models to explain these variations are clearly
important to deciphering the terrestrial degassing history (and vice
versa), since any mantle fractionation process that can alter the
Rb/Sr, Sm/Nd, and U/Pb ratios will also affect the gases. One model to
explain these variations is a layered mantle, with the upper mantle
having been fractionated (or depleted) to produce the continents
(Jacobsen and Wasserburg, 1979; 0'Nions et al., 1979). The lower
mantle would then be relatively undepleted, and would supply the source
of oceanic islands or mantle plume volcanics (Morgan, 1971; Schilling,
‘1973; Sun and Hanson, 1975; Wasserburg and DePaulo, 1979). The
striking anti-correlation between 87Sr/865r and 143Nd/]44Nd is
consistent with this two Tayer model, and allows the prediction of
undepleted, or "bulk earth" isotopic composition (DePaulo and
Wasserburg, 1976; Richard et al., 1976, O'Nions et al., 1977).

However, Anderson (1982a) has shown that the Nd-Sr correlation
could also be produced by mixing of ancient depleted and enriched
reservoirs. In this case, the samples that have isotopic compositions
similar to bulk earth may not be derived from an unfractionated mantle
source. An alternate model, that would be consistent with this, would
explain the isotopic variation by recycling of oceanic crust into the
mantle (Armstrong, 1968; Hofmann and White, 1980, 1982). Thus, the
isotopic variations of Sr, Nd, and Pb show that mantle is
heterogeneous, but the origins of the heterogeneities are not uniquely
determined by the data.

Several important questions are brought to mind by relating the

helium data to these mantle models. First, if the upper mantle is
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truly depleted, having been through a fractionation process that
produced the continents, then why do MORB glasses have 3He/4He

ratios higher than atmospheric helium. Second, the hot spring helium,
from Hawaii and Iceland, has even higher 3He/4He ratios than MORB,
which is, at first glance, consistent with the mantie plume

hypothesis. However, both Hawaii and Iceland have Sr and Nd isotopic
compositions that are close to those of MORB, implying Tong-term
depletion (0'Nions et al., 1977). Finally, if recycling of oceanic
crust is an important process (Hofmann and White, 1980), then one might
expect 3He/4He ratios lower than atmospheric.

Helium differs from the other isotopes in one very important
respect: its volatility. Like the other isotopes, the rate of change
of the isotopic ratio is controlled by the stable daughter/radiocactive
parent ratio, which is in this case 3He/(Th + U). Due to the
voiati]ity of helium, any degassing event will lower thfs ratio in the
residual mantle, and result, with time, in a decrease in 3He/4He
ratio. Therefore, heljum isotopes should provide an important means of
distinguishing undeplieted mantle reservoirs from those that are recyled
(Hofmann and White, 1982) or ancient enriched reservoirs.

The objectives of this research are to 1) establish the possible
causes of helium concentration and isotopic variations in oceanic
basalts; 2) use the isotopic systematics to constrain the nature and
origin of mantle heterogeneity; and 3) relate mantle evolution to
degassing history.

Chapter 3 addresses the first of these objectives, and discusses

the effects that diffusion, melt-vesicle partitioning, and melt-crystal
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partitioning have on helium concentrations and isotopic ratios. It is
found that vesiculation can strongly affect the observed concentration,
but has 1ittle effect on the isotopic ratio. Thus the helium
concentrations reported in the literature are at best lower limits to
the original magmatic concentration. Diffusion experiments on basaltic
glass show that at ocean floor temperatures, diffusion is an
insignificant process in altering helium concentrations or isotopic
ratios. Glass-plagioclase partitioning for one sample suggests that
helium behaves as an incompatible element, which is supported by
further analyses reported in chapter 5. To summarize, shallow and
post-eruptive processes do not affect the 3He/4He ratios, which can
therefore be interpreted as reflecting mantle source regions.

In chapters 4 and 5, helium isotopic analyses are reported for a
wide variety of ocean floor and ocean island rocks. The helium and
strontium isotopic systematics of these samples can best be explained
by mixing between three distinct mantle sources, which are referred to
here as depleted, undepleted, and recycled. The depleted source is
characterized by 3He/4He of ~8.4 x atmospheric and 87Sr/86$r of
~.7023-.7028. The undepleted source has higher 3He/4He and
87Sr/86Sr ratios, while the recycled source has lower 3He/4He
and higher 87Sr/865r. While the end-members for these two distinct
mantle reservoirs cannot be identified, the recycled source is best
explained by subducted oceanic c¢rust that is remixed with the mantle.
Undepleted mantle is presumed to be that reservoir which has remained

-least degassed over the age of the earth.

A model to explain the existence of these three mantle reservoirs



~24-

is proposed in chapter 6. The model consists of a mantle with two‘
layers, the upper depleted layer (above 700 km) underlain by undepleted
layer. The recycled oceanic crust is restricted to the upper mantle by
the 700 km barrier, and either accumulates at this level, or mixes back
into the upper layer. This accounts for the diverse isotopic chemistry
of oceanic islands, in addition to the relative abundance of basalts
bearing the isotopic signature of each mantle type.

Using mantle 3He concentrations inferred from the measurements,
it is concluded that the present-day oceanic 34e is ultimately
derived from the lower mantle. Consideration of the present-day 3He
degassing rate, available 3He/36Ar' measurements, and the
atmospheric 36Af inventory, shows that a catastrophic degassing event
or episode may have occurred in the past. This conclusion is
consistent with the proposed mantle model because the Tower mantle
contains most of the 3Hé and is kept from degassing by the insulating
effect of the upper mantle.

In summary, the helium isotopes are shown to be an extremely useful
tracer of mantle processes. Parts of chapters 3, 4, and 5 have been
published in Kurz and Jenkins (1981), Kurz, Jenkins, Schilling, and
Hart (1982a) and Kurz, Jenkins, and Hart (1982a), respectively.
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CHAPTER 2
EXPERIMENTAL METHODS

A. Introduction

The experimental methods described in this chapter changed slightly
during the course of the thesis work. The first helium analyses
(chapters 3 and 4) were performed using the extraction line discussed
in section 3 and the first WHOI branch tube mass spectrometer (referred
to as MS-1). When the construction of the second branch tube mass
spectrometer (referred to as MS-2) was completed, the extraction line
was rebuilt as described in section 4, and connected directly to the
mass spectrometer.

B. Sample Preparation

The glass fragments or phenocrysts were hand-picked under a
binocular microscope to avoid contaminants, and sonically cleaned in
acetone or methanol. In some cases, the samples were sonically cleaned
in distilled water to facilitate picking. A1l of the ocean island
basalts and xenoliths were coarsely crushed in a steel anvil mill and
sieved (using stainless steel ASTM sieves). If the phenocryst sizes
were greater than 1 mm, the 10-18 mesh (1-2 mm) size fraction was then
hand-picked. If the phenocryst grain sizes were smaller than 1 mm, the
18-35 mesh fraction (.5-1 mm) was run through the Franz isodynamic
separator, and then hand-picked. In general, the largest grain size
was used, as long as no contaminants were introduced. If the crystal
grains of a given size fraction were not clear and free of cracks or

grain boundaries, a smaller size was used.

P
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The basaltic glasses from the ocean floor were chosen on the basis
of freshness, and hand-picking was only necessary to eliminate oxide
coatings, spherulitic grains, and phenocrysts. Due to the ubiquitous
presence of vesicles in these glasses (see chapter 3), chunks larger
than 2 mm were chosen for analysis.

A portion of each sample was selected for petrographic thin section
to allow examination in transmitted Tight. Doubly polished thin
sections of the ocean island basalts and xenoliths were prepared using
standard techniques. The glass-vesicle partitioning study described in
chapter 3 required thin sections of the same size glass chips that were
analyzed for helium. The thin sections of these glass chips were
prepared by mounting the grains (in epoxy) on a slide, grinding to
flatness, and polishing, followed by remounting on another slide and
repeating the grinding and polishing steps.

Major element analyses of some of the samples were performed using
the MIT MAC 15K e.v. electron microprobe. The instrument was
calibrated using appropriate standards (for basaltic glasses: Kakanui
hornblende, apatite, orthoclase, Mn-ilmenite, and basaltic glass VG-2),
and corrected for instrumental drift by periodically analyzing a
replicate standard (VG-2). At least two grains of each sample were
probed, including a total of at least seven different spot checks.

C. Extraction Methods

A1l of the extractions reported in this thesis were performed using
metal, high-vacuum apparati; the only glass section of the extraction
line consisted of a high-vacuum glass stopcock, and parts of the

toepler pump (described below). At the outset, the emphasis was on
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maintaining low helium blanks while extracting (and saving) the other
noble gasés at the same time. Since the first processing line was not
connected directly to the mass spectrometer, the helium samples were
saved in 1720 (Corning aluminum-silicate) or Pb glass breakseal tubes.
The chemical composition of these glass types greatly reduces the rate
of helium diffusion, making them suitable for storage of helium samples
(see chapter 3).

Since part of the goal of this thesis was to further the
understanding of noble gas distribution in igneous rocks, two
extraction methods were used. Gases residing within vesicles and fluid
inclusions were extracted using a stainless steel crushing vessel (the
crusher). The gases dissolved within the rocks' silicate structure
were extracted using a resistively heated, ultra-high vacuum furnace.

1. The crusher

The crusher was designed to allow crushing of rocks in vacuo; the
essential details are shown in figure 2.1. The interior end walls of
the cylindrical vessel were rounded, so that when a stainless steel
ball bearing was placed inside with a rock sample and agitated, the
rock chips were completely crushed. The "plug insert" confines the
rock powder to the vessel, but allows transfer of gases through two
stainless steel screens. The vessel was connected to the vacuum
processing line via two mated conflat flanges, two valves, and a Nupro
"VCR" nickel gasket coupling. The system was readily detachable from
the Tine using the VCR coupling. The first crusher differed from the
one shown in figure 2.1 only in that a single vessel (rather than

three) was used, and also that the insert was threaded.
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The first step of the procedure involved placing the rock sample in
the vessel with a stainless steel ball bearing, mating the conflat
flanges with a copper gasket, and coupling the VCR fitting to the
processing line. When suitable vacuum was indicated by the ionization
gauge, both valves were closed, the crusher was detached from the line
and shaken, using a shaker table, for a period of 30 minutes. After
reattachment and pump-out, the released gases were processed in the
manner described below (section 3).

Initially, the vessels were cleaned between samples with 50 percent
HF, which dissolved the silicates; this process was found to be
cumbersome and unnecessary; stainless steel brushes attached to the end
of a hand drill were more effective. After removing the previous
sample, cleaning was completed with stainless stell brushes, washing
with soap and water, and rinsing with distilled water, acetone, and
methanol. A clean, new ball bearing was used for each sample.

Numerous procedural blanks confirmed that cleaning was effective, that
there was no "memory" of previous samples, and that the blank was
reproducible.

The "efficiency" of the technique was tested by sieving several of
the samples after crushing, to establish the grain size. For the MORB
glasses diécussed in chapter 3, 99 percent of the powder was smaller
than 120u and 70 percent smaller than 63u. An additional test was
performed by re-crushing several of the MORB glasses; in each case an
insignificant amount of helium was released.

2. The furnace

The essential details of the high-temperature furnace used are

L.
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shown in figures 2.2 and 2.3. The tantalum crucible (Schwarzkopf Inc.)
was resistively heated by current passing through the tungsten mesh
heating element (GTE Sylvania). The current is delivered to the
heating element via stainless-ceramic-copper feedthroughs (Ceramaseal)
and the stainless posts shown in figure 2.2 (bottom). The layered
tungsten heat shield insures that radiative losses from the hot zone
are not serious. The necessary current was supplied by a 25:1 (10KVA)
step—down transformer connected to the feedthrough (shown in figure
2.2) by copper bars and supplied by a 0-208V motor driven variac.

The sample loading mechanism and cooling jacket shown in figure 2.3
fit over the heater assembly shown in figure 2.2, and were connected
with conflat knife-edge flanges. The bellows movement mechanism allows
sample delivery without breaking vacuum for up to six samples (two
sample holders are shown in figure 2.3). Rock chips are placed
directly into the sample holders, and are dropped into the crucible
when the sample holder aligns with the axis of the sample container.
Aluminum foil boats were used to keep the powder samples in place.

Temperature calibration was accomplished by focusing an optical
pyrometer on the crucible through the pyrex window. The
temperature-power relationship was established with the window in place
and the window was replaced by a stainless flange for sample analysis.
The temperature was measured by the current and voltage across the
tungsten heating element. In general, measuring the current flow was
sufficient to infer a temperature, since the current-voltage-
temperature relationship was stable. In only one case during the

course of this study did the current-volitage-temperature
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Simplified sketch of the furnace "hot zone." The
crucible support and heat shield (top) attach to the
conflat flange shown at the bottom. When assembled, the
crucible is centered within the tungsten heating element,
but the crucible and heat shield are electrically
isolated from the heating element.

o,
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relationship change during analysis (due to a heating element-heat
shield short). Recalibration was only necessary when the furnace was
dismantled. Typically, 400 amps at 3.5V was necessary to raise the
crucible to 1400°C. Frequent recalibration showed that in the range of
800-1500°C, the temperatures estimated in this manner were accurate to
£20°C.

3. The first processing line

Most of the mid-ocean ridge basalt samples discussed in chapters 3
and 4 were processed using the extraction line shown in figure 2.4.
The gases released by crushing or melting were passed through a dry ice
acetone U-tube trap (-70°C) to remove H,0, and a charcoal trap cooled
with Tiquid nitrogen to trap CO, and the heavy noble gases. Hydrogen
was removed using a Ti sponge operated at room temperature. The He and
Ne were collected in 1720 or Pb glass breakseal tubes using the toepler
pump. After the He-Ne fraction was removed, the gases trapped on the
charcoal trap were transferred to the charcoal-pyrex breakseal tube by
heating the former and cooling the latter to -195°C. The heavy noble
gases were then saved in the pyrex breakseal tube. After completing
this step, new breakseaT tubes were glass-blown onto the line, the
whole system was briefly heated to ~200°C and the Ti sponge was heated
to ~800°C for a minimum of 2 hours. |

The timing of the various steps differed slightly for the crushing
and melting extractions, which led to different helium blanks. In the
case of the melting extractions, the furnace was raised to 1400°C and
exposed to the Ti and charcoal traps for a period of 1-1/2 hours.

During this time, the toepler section was open to the diffusion pump,
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the stopcock was worked to pump away any gas dissolved in the stopcock
grease, and the mercury was raised and lowered several times to remove
any possible contaminant trapped in the mercury. After the 1-1/2 hour
period, the valve to the diffusion pump was closed, and the He-Ne split
of the sample was toepler-pumped into the breakseal (total pumpihg time
was 30 minutes). The long heating cycle was chosen to insure complete
extraction of the heavy noble gases; the large concentrations of helium
present in most MORB glasses allow the slightly higher blanks without
sacrificing precision. When low concentration samples that required
low blanks were encountered, this long procedure was abandoned.

In the crushing procedure, "the crusher" was attached to the line,
pumped out, removed and agitated to crush the rock sample, and then
re-attached to the processing line. During the steps that required
coupling and decoupling from the line, nitrogen gas was introduced to
minimize atmospheric contamination. After the final re-attachment, and
after suitable vacuum was attained (determined by ionization gauge),
the gas inside the crusher was exposed to the charcoal and Ti traps for
10 minutes via the same path as the gases released by melting (see
figure 2.4). This was followed by toepler pumping the He-Ne fraction,
and transfer of the heavy noble gases in exactly the fashion described
above.

4, The second extraction line

When the new multiple collection mass spectrometer (MS-2) was
nearing completion, the first extraction line was modified to serve as
an inlet line to the mass spectrometer. This modified second

processing-inlet line is shown in figure 2.5. Several improvements
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were implemented: a) The helium samples could be directly inlet into
the mass spectrometer, resulting in lower blanks. b) The two three-way
stopcocks gave the option of saving a sample in a breakseal tube, or of
letting part of a sample into the mass spectrometer and saving the
remainder in the breakseal tube.
c) Glass-blowing through the rough pump valve (RP near Sl in figure
2.5) did not expose the rest of the extraction line to atmosphere. The
charcoal trap (CT2) protected the heavy noble gas section of the line
from backstreaming and from mercury. d) There were two completely
separate inlet paths to the mass spectrometer, one for He or Ne, and
one for the heavy noble gases.

The helium extraction procedure was much the same as described in
section 3, with the exception that the samples were expanded directly
into the mass spectrometer via the pneumatic valve (PV1). As is

discussed in the next section, the blanks are significantly lower than

the earlier procedure. The additional Ti sponges (Til and Ti3 in
figure 2.5) give greater capacity for removing Hp, requiring less
frequent recycling of the traps.

Since the helium concentrations in igneous rocks vary by four
orders of magnitude (from 1072 to 10'5 cc/g), it was often
necessary to split samplies before inlet, due to the pressure dependence
of the measured 3He/4He_rat1’o. In general, this was only necessary
for the basaltic glass samples. Splitting was accomplished by
adjusting the mercury level on the toepler pump. First, 1 percent of
the sample was expanded into the mass spectrometer by Towering the

mercury to the lowest "splitter level" (see figure 2.5), and closing
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The second processing line. The standard reservoir system
is somewhat simplified: separate ports to the pumps and to
a breakseal port are not shown.

Key: Bl - 1720 glass breakseal for He-Ne fraction

B2 - pyrex breakseal for heavy noble gases
CT - charcoal trap

DP ~ diffusion pump (Varian HS-2)

RP - rough pump

Ti - titanium sponge trap

Tl - U tube trap to remove Hg

PV - pneumatic valve.
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the stopcock. Only the fraction of the gas above the stopcock was
inlet. The %He peak height of this fraction of the sample was then
used to calculate the total sample size (to within 10 percent), and to
determine if a reduction in size was necessary. The mercury level was
then adjusted to the appropriate splitter level. The volume reduction
was determined by the ratio of the volume between stopcock S1 and valve
PV1l, and the volume between stopcock S1 and the mercury level. The
mercury levels indicated by marks on the glass tube were calibrated
using air standard peak intensities. They were reproducible to better
than ~1 percent above the neck of the mercury reservoir (volume
reductions up to a factor of 3), and ~5 percent below the neck. This
difference is due to the varying diameter of the reservoir, and the
resulting uncertainty in volume that an uncertainty in the mercury
level implies. After inlet, the remaining gas could be saved in
breakseal Bl by raising the mercury through stopcock S2.

D. Helium Blanks

As discussed in the previous sections, the extraction procedures
changed during the course of this study, resulting in changes in the
helium blanks. The first procedure (described in section C.4), which
involved saving the helium in breakseal tubes and splitting to allow
later neon analysis, had distinctly higher blanks. For a 120-minute
furnace heating cycle, the blank was typically 1.0 £ .2 x 1078 cc
YHe with atmospheric 3He/4He ratio. The different contributions
to the blank are listed in table 2.1. The total blank of ~1 x 1078
was generally less than 1 percent of the sample size for mid-ocean

ridge basalt glasses, and is applicable to most of the samples
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discussed in chapters 3 and 4. The crusher blank was 5 £ 2 x 10“9,
and consisted primarily of the processing line, toepler pump components
in table 2.1. The crushing vessel contributed less than 1 x 10~ cc
%He to the blank.

When low concentration samples were encountered and the extraction
line was attached directly to MS-2, several steps were taken to lower
the blank:

i. The helium samples were inlet directly into the mass

spectrometer,

ii. The original, in-line diffusion pump was replaced by an
all-metal diffusion pump with a conflat flange seal (copper
gasket between two knife edges).

iii. The overall heating time for the furnace extractions was
reduced to 45 minutes (20 minutes to reach 1400°C, 25 minutes
at temperature).

iv. The pyrex "splitter" section of the toepler pump was replaced
with 1720 glass.

These changes significantly lowered the blank. For crushing or
melting, the blank was 1-2 x 1079 cc 4He, most of which was
contributed by the toepler section of the Tine. The extraction
efficiency of these procedures was tested by performing procedural
blanks immediately after a sample.

E. Mass Spectrometry

The 90° sector, 25.4 cm radius-of-curvature mass spectrometers
(MS-1 and MS-2) used for this study are similar in design to the one

described by Jenkins (1974) and Clarke et al. (1976). The branch tube
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Table 2.1: Components of the helium blank for melting rocks

using the first extraction procedure

cc STP 4He
Furnace (120 minutes) 5 x 10-9
Processing line 1-2 x 10-9
Toeppler pump + stopcock - 1-2 x 10-9
Mass spectrometer inlet .1-2 x 10-9
Total .8-1.1 x 10-8

Splitting (optional) 2-3 x 10-9
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allows simultaneous measurement of SHe and %He: 3He is collected

on a Johnston 20-stage focused mesh electron multiplier (model MM-2),
while *He is collected on a faraday cup. The primary difference
between MS-1 and MS-2 flight tubes is that MS-1 has a single moveable
faraday cup, while MS-2 has three faraday cups (see figure 2.6), all of
which can be moved with respect to one another without breaking
vacuum. When helium analyses are performed using MS-2, e is
collected on the center faraday cup. The resolution (approximately
1:600) is adequate to completely resolve the 3He*-HDT peak from

the 3He peak. Figure 2.7 shows a mass scan in the vicinity of 3He
and 4He, for an air helium standard aliquot.

The mass spectrometers were operated in the "static mode" (i.e.,
with the valve to the ion pump closed). Typical sensitivities for
helium and argon were 1.4 x 10-4 amps/torr and 1.0 x 10-3
amps/torr, respectively. Typical source conditions were: filament
current, 6 amps; emission current, 5 mA; and trap current 400 uA.

1. Helium procedure

The He-Ne fraction was toepler-pumped into the feproducib]e volume
between the stopcock and pneumatic valve (S1 and P1l, respectively, in
figure 2.5). Opening Pl allowed the gas to expand in the mass
spectrometer through the traps (CT3 and T1). The U-tube trap at liquid
nitrogen temperature (T1l) kept mercury vapor from entering the mass
spectrometer, and the charcoal trap (CT3, also at liquid nitrogen
temperature) allowed partial separation of He from Ne by slowing Ne
relative to He. The trap characteristics and inlet timing were

carefully chosen to allow inlet of 70 percent of the He and 1 percent
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He

Figure-2.7: Magnet scan of air helium aliquot (1.8 x 10-6 cc
4He), showing chart trace of %#He (faraday cup) and
3He plus HD-H3 (electron multiplier) peaks.
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of the Ne before closing the valve, minimizing the effect of potential
variation in Ne contents. After inlet, several minutes were allowed
for the titanium sponge traps (attached»to the flight tube) to remove
Hy, reducing the H;-HD+ peak. The magnet current was

adjusted to center the 34e beam on the collector, and the analysis

was begun. The analysis typically consisted of 12 integrations on the
3He and 4He peaks, separated by baseline measurements (made by
increasing the acceleration potential 10V). In the case of MORB
glasses (~1 x 100 cc He), the baseline integrations were 10 seconds,
while the peak integrations were 90 seconds. For smaller samples (<1 x
10~/ cc He) the baseline and peak integrations were 50 seconds. The
samples were preceded and followed by air standards of equivalent
size. The HX-HD™ peak height was monitored before each sample

and standard to assure that conditions were identical. Due to the
different isotopic ratio between the sample and air standards, it was
necessary to run line blanks between them to reduce "memory" in the
Tine. Experience has shown that memory is primarily due to the
stopcock plus toepler section of the Tine. It could be reduced by
working the stopcock and the mercufy between samp]es, but between
samples of different isotopic ratio it was necessary to run line
blanks. For very small samples (see chapter 5), air is inappropriate
as a standard, and aliquots of the "replicate standard" rock were used
(see below).

2. Standardization

The atmospheric standards used for the helium analyses were

collected in 10 1iter stainless steel reservoirs. The temperature,
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barometric pressure, and relative humidity were used to correct to
standard temperature and pressure. All standards were collected on the
balcony of the Clark laboratory by pointing the evacuated reservoir
into the on-shore wind (to avoid contamination from any tank helium in
the laboratory). Standard aliquots were then taken by equilibrating
calibrated volumes with the standard reservoir. The aliquot volumes
(see figure 2.5) were calibrated by peak height comparison with glass
standard volumes that were in turn calibrated gravimetrically (with
mercury). The estimated relative uncertainty for the total calibration
procedure was .5 percent.

Due to the dependence of the measured 3He/4He ratio upon sample
size, it was necessary to generate a standard curve for each set of
samples and source configurations. It was found that the shape of the
curve, and its stability as a function of time, were strongly dependent
on the source settings: in particular, the repeller voltage had a
large effect. Several authors have noted that high magnetic fields in
the Nier type ion source can lead to mass discrimination for jons of
small mass (Naidu and Westphal, 1966). It is also well known that the
repeller voltage has a strong effect on the efficiency of Nier type ion
sources (Naidu and Westphal, 1966; Wallington, 1971; Mark and
Castleman, 1980). Experience with our ion source suggests that the gas
pressure also has an effect on the mass discrimination. This can be
intuitively understood as a result of changing the shape and size of
the field of ions that can be extracted from the ionization region.
Since the trajectories of mass 3 and 4 ions within the ionization

e,

region can be different, the mass discrimination may be a result of
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different transmission efficiencies for these two trajectories.
However, since the theory has not adequately described the behavior of
commonly used jon sources (Ozard and Russell, 1969; Mark and Castleman,
1980), there is at present no satisfactory explanation for the pressure
dependence of this mass discrimination.

A typical size vs. ratio standard curve for air standards is shown
in figure 2.8. The curves were found to be stable over long periods of
time, as long as there were no perturbations to the system (such as
power failure, etc.). The mass discrimination was shown to be a
function purely of sample size by using standards of different isotopic
ratio (both higher and lower than atmospheric). Also, the shapes of
the curves were shown not to be a result of electron multiplier
non-linearity by reproducing them for different electron multiplier
voltages, and for the different isotopic ratio standards.

At the beginning of a series of samples, a number of air standards
of varying size were analyzed to determine the general nature of the
size dependence, and whether it was reproducible. The air standards of
different size were generated by using the splitting technique
described earlier. While running samplies, the curve was then
periodically checked and verified for the sizes of the samples run on
any particular day. The curve shown in figure 2.8 was typical for the
MORB samples. With these large helijum samples, it was possible to
carefully gauge the concentration by inletting 1 percent of the sample,
and then splitting the sample down to allow inlet of a sample size that
was well calibrated. Using this technique, the uncertainty due to this

correction could be minimized to roughly 1 percent. For small samples,
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such as the gases contained in phenocrysts, no splitting was necessary.

3.) Precision and Reproducibility

The precision of an individual isotopic ratio analysis was
calculated as the sum of the estimated uncertainties for all the steps
in the analysis:

o = (cb2 + og + c?)]lz

where o, 6., and o7 are the estimated uncertainties due to the

blank, standard ratio (determined by reproducibility), and linearity
curve, respectively. Typical values for the components in these
estimates are shown in table 2.2. For large samples such as typical
MORB glasses, the uncertainty was on the order of 1 percent. For the
smaller samples the blank becomes a significant factor in calculating
the isotopic ratio, and the uncertainties involved in standardization
become slightly larger due to 3He ion counting statistics. Where
possible, these Tlatter difficulties were alleviated by extracfing
helium from large sample sizes.

To check the reproducibility of the helium isotope ratio analysis
procedure (extraction, blanks, and mass spectrometry), one MORB glass
sample (Alv 519 2-1-b) was used as a "replicate standard" rock. Table
2.3 shows the results for analyses of this standard rock, which span
the time period of this study. The standard deviation for the
replicate analyses are quite close to the estimated uncertainties,
suggesting that the estimates are valid. The analyses after 10 July 81
in table 2.2 were performed using MS-2 and illustrate that the two mass

spectrometers yield similar results.
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Typical contributions to the uncertainty

of helium isotope ratio measurements (all in percent)

Large samples
(10-5-10-6¢cc/gram)

Small samples
(10-7-10-9cc/gram)

Blank uncertainty

Standard
Reproducibility

Size effect
Correction

Total

.2 - 10
5 -2
7 -2
9 -10
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Table 2.3: Reproducibility of the replicate standard rock

Alv 519 2-1-b
Date , SHe/%e (R/Ry)
18 May 79 8.18
8.01
8.06

16 October 79

30 December 79
3 January 80
6 January 80

7 January 80 82
11 March 80 .79
12 March 80

29 July 80 .97

2 November 80

10 July 81

18 September 81
22 September 81
30 September 81

NOOONNOONSNSNNNNNN
. . . PR
~
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Mean

Standard deviation .12 (1.5 percent)
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CHAPTER 3

DISTRIBUTION OF HELIUM IN MID-OCEAN RIDGE BASALT GLASSES

A. Introduction

Mid-ocean ridge basalts (MORB) glasses provide unique samples of
magmatic gases. These basalts are extruded on the ocean floor at great
pressure (typically 3 km water depth) and Tow temperature, which
results in rapid quenching, the formation of glass, and trapping of
some of the original volatiles (e.g. see Fisher, 1971). Since basalts
are derived by partial melting of the mantle, the trapped gases must
inherit some of the mantle source characteristics.

However, before the relation between an erupted basalt and its
mantle source can be studied, any potentially fractionating processes
must be understood and accounted for. As an example, vesicles are
present in almost all MORB g]asseg, and are evidence that a volatile
phase is saturated at ocean floor pressures (Moore, 1979).
Experimental evidence suggests that the vesicles are primarily filled
with CO2 (Moore et al., 1977). While available partitioning data
suggest that all the noble gases will partition favorably into the
vesicles (e.g. see Kirsten, 1968), the possible effect of vesiculation
on the measurements has largely been ignored. It is conceivable that
vesiculation could be mass fractionating, in which case the helium
isotopic ratios in the glasses could be altered. Other processes that
can pbssib]y have an impact on the helium concentrations and isotopic
ratios in the gases are diffusion and fractional crystallization,

neither of which has been studied for basaltic melts. Therefore, these
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potentially fractionating mechanisms are of considerable importance to
the use of helium concentrations and isotopic composition in studying
the mantle, and are the subject of this chapter.

As discussed 'in the introduction, the helium concentration in
oceanic.basalt glass is of interest not only in understanding mantle
evolution, but also in balancing the atmospheric helium budget. If the
helium resides within the vesicles, any concentration measurements will
be strongly affected by the extent to which these vesicles have been
opened. The experimental work of Kirsten (1968) showed that helium
partitions favorably into a gas phase from a silicate melt. For
example, using Kirsten's partition coefficient (for enstatite melt K =
1.4 x 10~% ccSTP/ gram-atm; Kirsten, 1968) and assuming that 2
percent vesicles exist within the melt (at quenching), more than 98
percent of the helium should be in the vesicles. Several authors have
noted this possibility (Lupton and Craig, 1975; Jambon and Shelby,
1979), but the systematics have never been studied. In particular, it
is not clear whether enstatite partitioning experiments are applicable
to oceanic basalts, since the partition coefficient may vary
significantly with composition (Kirsten, 1968).

An additional problem in the interpretation of the helium results
is a lack of diffusivity measurements on natural glasses. Synthetic
glasses have been studied extensively (cf. Doremus, 1973), and these
results are often applied to natural samples (e.g., Craig and Lupton,
1976). Since helium has significant diffusivities in glasses, even at
Tow temperatures, this parameter is vital in evaluating the amount of

post-eruptive degassing that has taken place for any given sample.
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Using Craig and Lupton's estimate for the diffusion coefficient at 2°C
(5 x 10-15 cmz/sec; Craig and Lupton, 1976), we can calculate that
helium will diffuse a characteristic length of 8 millimeters in five
million years. Glassy rims of basalts extruded on the ocean floor are
typically less than 1 cm in thickness, suggesting that diffusion may
have important effects on helium measurements of older samples. Craig
and Lupton developed a model to explain their measurements of lower
3He/4He ratios (~6 x atmospheric) in older samples by diffusion
coupled with production of 4He from decay of U and Th. However, this
calculation is dependent upon a diffusion coefficient obtained by
extrapolation from measurements on synthetic glasses, and is a
parameter that has not been gxperimenta]]y verified.

| Another process that can potentially alter the basaltic helium
concentration is fractional crystallization. While it is reasonable to
assume that helium would favorably partition into the ﬁe]t rather than
crystal phase, there is no direct experimental evidence for this. In
fact, helium has a quite small atomic radius (~1& ) and could
conceivably fit into defects and voids in crystal structures.

Available helium isotopic measurements on MORB glasses do not allow
an evaluation of the range of values, or of any potential fractionation
mechanisms. Craig and Lupton (1976, 1981) have suggested that the
3He/4He ratio is "uniform" for mid-ocean ridge basalts. As
discussed in the introduction, however, their results for tholeiites,
combined with the one tholeiite glass sample reported by Krylov et al.
(1974), suggest a 25 percent variation.

The objectives of this research are to 1) determine the effect of
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vesiculation and crystallization on helium concentrations and isotopic
ratios; 2) measure helium diffusivity in basaltic glass; and 3) search
for 3He/4He variations on a global scale. To this end, we have
measured SHe and %He concentrations, glass-vesicle and
glass-plagioclase partitioning, and some helium diffusivities 1in
basaltic glasses from the Mid-Atlantic Ridge, the Juan de Fuca Ridge,
Galapagos Spreading Center, the Mid-Cayman Rise, and the Central Indian
Ocean Ridge.

B. Experimental

1. Methods

In order to evaluate partitioning, samples were both crushed and
melted, using the methods described in the previous chapter. The
hand-picked glass chips were divided into several splits, allowing
tests of experimental reproducibility and sample heterogeneity. A
portion of each sample was used to make a polished thin section for
electron microprobe analysis (see table 3.1) and examination under
petrographic microscope. This insured that the petrographic point
counts (for vesicularity) and major element analyses were
representative of the samples for helium analysis. Electron microprqbe
analyses for major elements were performed on the MAC (15 Kev) facility
in the Department of Earth and Planetary Science at MIT (unless
otherwise noted). The conditions have been described in the previous
chapter.

Petrographic point counts were used to determine sizes and amounts
of vesicles present, and phenocryst assemblages. Since point counts of

objects smaller than the thickness of the section (such as small
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Table 3.1: Major Element Chemistry of Glasses

A11 92 KNR ALV ALV ALV ALV ALY ALV

31-31 5447 714 735 714 892 519 518 JF1 JF2
(1) 24 6-1 6-1 6-4 2 2-1 3-1
(2) (3)

sio, 50.68 51.02 51.45 51.49 51.34 51,50 49.18  51.26  50.37 50.88
A10, 15.73  15.83 13.43 13.51 13.59 14.57 16.47  14.93  13.89 14.01
Fe0 9.96 9.89 12.40 12.56 12.64 10.49  9.16 9.65 11.92 11.82
Mgo0 7.52 6.99 6.60 6.59  6.55 8.11  9.19 8.18 6.77  6.71
Ca0 17.01 10.15 11.08 11.04 10.94 12.24 12,70 11.39 11.62 11.1
Na,0 2.85 3.79 2.27 2.5 2.2 1.90  1.97 2.50 2.67  2.73
K50 .1 .28 .08 .08 .08 .04 .08 a8 .13 .20
MnO -— - .23 .20 .23 .15 a7 .15 .27 .27
Ti0, 1.47  1.98 175 1,70 1.69 1.1 .70 1.30 1.86  1.87
P,0g 15 .20 .04 .02 .04 - — - .10 12

(1) From Bryan and Sargent (1978).
(2) From Thompson et al. (1980).
(3) From Bryan and Moore (1977).



58—

vesicles) can result in erroneously high modal analyses (Chayes, 1956),
the results were corrected for this effect where necessary. Chayes
(1956) has shown that for the present case, the volume percent vesicles
must be multiplied by a correction factor:

C = 4r/(4r + 3k)
where r is the vesicle radius, and k is the section thickness. The
modal counts were performed using a mechanical stage, with count
spacing less than the size of the vesicles. When this was not
possible, due to very small vesicles (see below), the volume percent
vesicles was estimated by counting vesicles, measuring their diameters,
and comparing their summed area to the total area of the thin section.
In order to insure that the vesicle size determinations (obtained using
a Leitz "stage micrometer") were representative, the sections were cut
to a thickness larger than the vesicle diameter. If the section was
infinitely thin with respect to the vesicle diameter, the observed
diameter would depend on the place that the surface intersected the
vesicles, and will generally be smaller than the true diameter. This
effect was minimized by measuring 50-100 vesicle diameters, and
insuring that the sections were "thick" relative to the vesicle
diameter.

The diffusion experiments were performed using stepwise heating. A
sieved sampie (~400 mg) of glass grains was placed in a small,
stainless steel, resistively heated furnace attached directly to the
inlet Tine of the mass spectrometer. The temperature (measured using a
chromel-alumel thermocoUp]e to an accuracy within 5-10°C) was increased

in a stepwise manner (from 125° to 400°C, in roughly 50° steps), and
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the successive fractions were introduced into the mass spectrometer.
The thermal mass of the furnace is sufficiently small to insure rapid
temperature equilibration. The diffusion coefficient for each
temperature can ‘then be calculated from the fraction of helium released
(F), the elapsed time (t), and the diffusion equation for spherical
particles. The solution of the differential equations for diffusion

from a sphere can be expressed as:

2 2
T n=1 n R

where R is the spherical radius. In the present case, in which the
sequential temperature steps result in significant losses, the
diffusion coefficient at the i + 1 temperature step may be approximated
by the following equations, for F < .10, .10 < F < .90, and F > .90,

respectively (cf. Fechtig and Kalbitzer, 1966):

2 2 2

0 (Fj+]— Fi) m R
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T (t1+] - ti) i+]

Where F. is the total fraction of gas released during the i + n
step. The main assumptions involved are that the gas is homogeneously

distributed in the particles (at t = o), that there is no back-diffusion -
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into the particles during the experiment, and that the particles can be
described as spheres of some known diameter (R).

2. Samples

The samples used for this study were selected because they provided
adequate quantities of extremely fresh glass, from a variety of locales
on the oceanic ridge system. The microprobe analyses presented in
table 3.1 reveal that this small group of basalts represents a large
variation in major element chemistry. A1l the samples were collected
from mid-ocean ridge axes, which assures that their ages are less than
50,000 years, but each locale differs in spreading rate, bulk
chemistry, and water depth. All are greater than 96 percent vitreous
glass, with phenocrysts and microphenocrysts occurring only as minor
phases.

FAMOUS Area. Alv 519 2-1-b is an olivine phyric basalt from
36°49'N, 33°16'W on the central rift valley of the Mid-Atlantic Ridge
(2700 m depth). It is among the least "fractionated" basalts ever
recovered from the ocean floor (Bryan and Moore, 1977), and is
classified as "high Mg-Ca" according to the scheme of Melson et al.
(1976). O0livine occurs as euhedral microphenocrysts, and rarely as
phenocrysts with spinel inclusions. Alv 518 3-1 is also from the
central rift valley, but has olivine, plagioclase, and pyroxene as
phenocrysts. It would be considered more fractionated, on the basis of
major element chemistry and petrography. The ridge morphology,
petrography, and geochemistry of the FAMOUS area have been extensively
described elsewhere (Ballard and van Andel, 1977; Bryan and Moore,

1977; White and Bryan, 1977). Geochemically, the FAMOUS basalts are



transitional between the enriched and normal ridge segments between 50°
and 30° N, having slightly higher 87Sr/865r ratios and
large~ion-1ithophile concentrations than the normal ridge (White and
Bryan, 1977).

Mid-Atlantic Ridge. AII 92-31-31A was dredged from the floor

of the rift valley (23°01.8'N, 44°55.44'W) at a depth of 3500 meters
(Bryanvand Sargent, 1978). It contains olivine and plagioclase as
microphenocrysts, and occasionally plagioclase phenocrysts. This sample
would be classified as a normal MORB that has undergone some fractional
crystallization.

TR138 811D-1 was dredged from 52.01°N on the mid-Atlantic ridge
(Schilling, 1975), and is described further in chapter 4.

Juan de Fuca Ridge. The samples labeled "JF" are pillow fragments

subsampled from a dredge on the southern end of the Juan de Fuca Ridge
at a depth of 2220 m (USNM 111240/0, 44°40'N, 130°20'W; Melson, 1969).
These samples would be classified as "high Fe-Ti" basalts. They
contain phenocryéts of olivine, plagioclase, and clinopyroxene, which
sometimes occur as glomerocrysts. Quench microphenocrysts were
identified as plagioclase and olivine. Using the major element
classification scheme of Melson et al. (1976), these samples are Fe-Ti
rich basalts, which are typical of the Juan de Fuca Ridge. The
isotopic composition of lead and strontium in basalts from the Juan de
Fuca ridge (Church and Tatsumoto, 1975; Hedge and Peterman, 1970) is
consistent with a normal (i.e., depleted) source region.

Galapagos Spreading Center. Alv 714 G-1, 714 G-4, 735 G-1, and Alv

892-2 are submersible samples from the Galapagos Spreading Center
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(0°49'N, 86°08'W, depth 2750 m). The morphology of this area is
distinguished from the slower spreading ridges by the presence of sheet
flows (pahoehoe), and has been mapped by van Andel and Ballard (1979).
Alv- 714 G-1, 714 G-4, and 892-2 are pahoehoe, while Alv 735 G-1 is a
pillow fragment. Alv 714 G-4 is devoid of microphenocrysts, and
contains only an occasional plagioclase phenocryst. Alv 714 G-1 and
Alv 735 G-1 contain plagioclase and (rarely) olivine as
microphenocrysts; plagioclase phenocrysts also occur infrequently. All
of these samples would be classified as Fe-Ti rich basalts, which are
typical of relatively fast spreading ridges (Byerly et al., 1976). The
major element chemistry of the basalts, regional topography, and the
discovery of hot springs at the ridge axis are all consistent with the
existence of shallow magma chambers (Byerly et al., 1976; Bryan and
Sargent, 1978; Corliss et al., 1979); These samples were obtained from
a section of the ridge for which Schilling et al.(1976) report La/Sm
ratios similar to normal MORB.

Mid-Cayman Rise. Knr 54 47-24 was dredged from 5400 meters depth

on the Mid-Cayman Rise (18°6'N, 81°47'W), which differs from the
typical mid-ocean ridge because of its great depth and because it is
bordered by a transform fault (Thompson et al., 1980). The major
element chemistry is also quite different, having greater quantities of

NaZO, Ti0,, and K,0. Thompson et al. (1980) showed that

2 2
major element variations within the suite of samples they studied could
be accounted for by moderate amounts of fractional crystallization but
suggested that the source region must be different from normal MORB to

account for all of the trace element results.
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Central Indian Ridge. AII 93-11 54 was dredged from the Central

Indian Ridge (24°59'S, 69°59'E) at 3500 m depth (Hoskins et al., 1977).
It contains olivine and plagioclase as microphenocrysts, and olivine as
phenocrysts. Major element analysis for this sample is not available,
but on the basis of petrography, it would be classified as a typical
mid-ocean ridge basalt.
C. Results

Results of the helium measurements, for both crushing and fusion
extractions, are listed in table 3.2. Replicate ané]yses of several
samples demonstrates that the reproducibility for the entire procedure
(extraction and mass spectrometry) is within fhe éstimated uncertainty
(see table 3.2). For the most part, the samples that underwent
replicate analyses appear to be quite homogeneous. For one sample (Alv
519 2-1), the inner 5 mm of the glassy rim yielded a sligntly Tower
total concentration than the outer 5 mm of the rim. Although such
gradients within single samples have been observed by other workers
(Dymond and Hogan, 1978), the present difference in helium
concentration is just slightly outside of experimental uncertainty, and
must therefore be confirmed by further analysis. However, replicate
analyses of the Mid-Cayman rise sample (Knr 54 47-24) yielded
substantially different concentrations; we believe that this can be
explained by heterogeneous vesicle distributions within the glass,
which is discussed below.

1. Glass-Melt Partitioning

As mentioned earlier, experimental partitioning studies suggest .

that most of the helium in oceanic basalts should exist within the



654~

vesicles. Results from melting and crushing experiments on the same
vsamp]es (table 3.2) allow an evaluation of this partitioning. The
percentage of helium in vesicles was calculated as the difference
between total helium and helium released by crushing. For several
samples, this was also determined by crushing and then melting the
remaining powder (see table 3.2); the two methods yield identical
results. As shown in table 3.3, in most cases a significant fraction
of the helium does reside within the vesicles, but the relative amounts
are a strong function of volume percent vesicles. This is to be
expected from equilibrium partitioning, since the fraction of helium
dissolved in the glass should be a function of the partial pressure Qf
gas present (i.e., vesicularity). According to Henry's law, the amount
of helium dissolved in the glass is directly proportional to partial
pressure of helium and a solubility constant (K); i.e.:

C =K x Py
where C is the concentration in the glass (cc/g) and the units of K are

cc STP/g-atm. Rearranging this expression, the fraction of the helium

in the vesicles (HeV/Heg) can be calculated from:

He ) 1
H‘X' ) "Vi ( oK )
e
g g °
Where
Hey = helium in vesicles

Heg = helium dissolved in the glass

= density of the glass (3 g/cc)
= Henry's law coefficient (cc STP/g-atm)

= volume of vesicles (cc)
Vg = volume of glass (cc)
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Table 3.2: Helium Concentrations and Isotopic Ratios
for Basaltic Glasses

4He Concentration

Location (cc STP/gram x 106) 3He/4He x 10
ALV 519 2-1-b FAMOUS

Quter 5 mm of rim 5.7 = .1 1.08 = .02

X 2.7 £ .1 1.10 £ .02

x 2.7 £ .1 1.09 = .01

Inner 5 mm of rim 4.5 £ ] 1.07 £ .02
4,9 £ 1 1.08 = .01

X 4.0 £ ] 1.10 = .01

ALV 518 3-1 FAMOUS b= L] 1.13 £ .02
AII 92 31-31a 23°N M.A.R. 27.3 £ .9 1.13 = .02
x22.0 £ 2.0 1.13 = .01

* 5,4 .3 1.13 = .02

JF 1 Juan de Fuca Ridge x16.4 £ 4.0 1.08 = .01
* 4.8« .3 1.07 = .01

JF 2 x 5.8+ .3 1.15 £ .01
ALY 735 G-1 Galapagos Spreading 11.6 £ .8 1.13 £ .01
Center 11.5 = .8 1.13 = .01

10.6 = .4 1.10 = .01

x 4.7 £ .3 1.14 £ .01

* 4,3 £ .3 1.13 = .01

ALV 714 G-1 Galapagos Spreading 12.5 = .4 1.12 = ,01
' Center 11.9 = .2 1.10 = .01
12.9 = .8 1.13 = .01

x 3.9 = .1 1.08 = .01

ALYV 714 G-4 11.2 £ .6 1.13 = .01
x 1.7 £ .2 1.12 = .02

ALV 892-2 7.7 £ .2 1.14 = .01
x 0.3 .05 1.08 £ ,08

KNR 54 47-24 Mid Cayman Rise 8= ] 1.07 = .02
4,7 £ .1 1.06 = .02

x 0.08 = .01 1.03 = .25

AIT 93-11 54 Central Indian Ridge 12.8 £ .2 1.07 = .02
x 5.0 = .1 1.07 = .01

X
*

Il

gas released upon crushing
melting of powder remaining after crushing
Analyses without symbols refer to melting of 2 mm chips.

S
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Fraction of 4He Contained in Vesicles,
Volume Percent Vesicles and Mean Vesicle Sizes

4 Vesicle
Sample Percent of "He in  Volume (percent) Mean Vesicle Size Range
Vesicles Vesicles (1) Size (mm) (mm)

Quter 5 mm 47 = 3 2.0 = .4 .3 .02 - .4
(FAMOUS area)
ALV 519 2-1-b

Inner 5 mm 85 % 9 2.2 = .4 .3 02 - .4

JF 1 77 £ 20 1.0 £ .3 .1

(Juan de Fuca Ridge)
AIl 92 31-31la 80 = 8 1.6 = .3 .15 .005 -.3
(M.A.R) 80 = 2
AIl 93 11-54 39 =1 7 £ .2 .08 02 - .22
(Central Indian)
ALY 735 G-1 42 = 4 3+ .05 .03 .01 - .07
(Galapagos) 52 = 4
ALY 714 G-1 31 =2 2 = .1 .02 .005 -.03
(Galapagos)
ALV 714 G-4 15 % 2 1+ .05 .01 .005 ~.03
(Galapagos)
ALV 892-2 4 =1 .02 £ .01 .01 .005 -.015
(Galapagos)
KNR 54 47-24 32 3= .15 — .01 -1.1
(Cayman)

(1) As determined by petrographic point count
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Therefore, from a plot of volume percent vesicles (VV/Vg) and
fraction of helium in the vesicles (HeV/Heg), and an assumed
glass density, the Henry's law coefficient can be calculated (see
figure 3.1).

However, when comparing the MORB glass results to Henry's law
coefficients determined at standard temperature and pressure, several
corrections must be made for the conditions at which the glasses
formed. As noted by Poreda (1982), the glasses are "frozen" at some
temperature above 273°K (ST), and according to the ideal gas law, K

must be corrected by:

where: T* = 273°K
TR = rigid temperature of the glass

The rigid temperature for helium will be the temperature at which the
vesicles and the glass stop equilibrating. Moore et al. (1977)
estimated that glasses become rigid at 800-1000°C. While the helium
may equilibrate until lower temperatures are reached (making the
correction smaller), the rigid temperature will be assumed to be 900°C
(see also Poreda, 1982).

Another correction that must be considered when comparing the MORB
partitioning data to experimentally determined partitioning is the
temperature dependence of Henry's law coefficient (K). For example,
Kirsten's (1968) enstatite data was obtained at 1500°C, which is
signfficant]y higher than the assumed rigid temperature of 900°C.

Dymond and Hogan (1978) used the temperature dependence of noble gas
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Volume fraction vesicles vs. gas-melt He partitioning.
Solid lines were calculated from experimental results

of (1) Kirsten (1968), (2) Mulfinger and Scholze (1962),
(3) Gerling (1940), assuming a density of 3 gram/cc (see
text). The points are results taken from tables 3.2 and
3.3
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solubility in fluoride melts, observed by Blander et al. (1959), to

derive the following relationship:

~

where Tl is 1173 K, T2 is 1773 K, K1 and Ko are the Henry's

law coefficients at these temperatures, b is a melt constant with units
of °K A2, and r is the atomic radius of the gas in A. If we follow
Dymond and Hogan (1978) by using .93 A for the helium atomic radius,
and Kirsten's value of 1.15/A=2 for b/T,, we must correct Kirsten's
Henry's law coefficient by almost a factor of two, from 1.2 x 1074 to
X 10‘4. This is in the opposite sense to the correction for the
rigid temperature. There are two uncertainties in this calculation:
first, the constant b may differ for basaltic melts; and second it is
not clear what the appropriate atomic radius should be. Blander et al.
(1959) used 1.2 A for the atomfc radius of helium, which when used 1in
the above calculation, yields an even lower value of .5 x 1074 for
Kirsten's extrapolated enstatite Henry's law constant. The required
correction for the Na-Ca silicate and gabbroic melts will be Tess
extreme, since the experimental temperatures were 1200° and 1300° C
respectively.

The MORB glass partitioning results are plotted in figure 3.1, and
the corrected (to 900°C) experimental partitioning data are shown for
comparison. From the slope of the MORB points, it would appear that
equilibrium pértitioning is applicable under natural conditions.
However, the data suggest that helium solubility in basaltic melt is e

significantly higher than the value obtained by Kirsten (1968) for
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enstatite melt (the value most often used in the literature). This is
consistent with the hypothesis that the solubility of helium 1ncreaées
with the complexity of the melt, as suggested by Kirsten (1968). The
value obtained from a linear regression through the points is 1.6 = .8
x 1073 cc STP/g-atm. Applying the two corrections discussed above,
the MORB Henry's law constant is 3.7 x 1074 cc STP/g-atm, compared to
.7 x 107% for enstatite melt.

Since this value is calculated from crushing experiments, it is
conceivable that the apparent solubility is raised by the 1os§ of gas
from vesicles before analysis (i.e., during preparations of the 2 mm
chips). This is unlikely to affect most of ouf results since the
vesicles are small relative to the size of the glass chips; the
probability of vesicle rupture by fracturing is therefore Tow. The two
samples that 1lie off the solubility trend would be most likely to be
affected by this gas loss mechanism. One of them (Alv 519 é—] outer
5 mm) has the largest vesicles and the highest vesicularity, while the
other (Knr 54 47-24) has the largest size distribution (discussed
below). For this reason, the low value for Knr 54 47-24 was excluded
from the linear regression used to estimate the basaltic melt Henry's
law coefficient. The Tow value for Alv 519 2-1 was included because
replicate crushing experiments yielded similar partitioning results.
Inclusion of either result changes the calculated so1ubi11ty by less
than the stated uncertainty.

These results clearly illustrate that vesicles are an important
reservoir for the helium in ocganic basalt glass. The equilibrium

partitioning of the heavier noble gases should favor the vesicles even
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more, because of the expected lower solubilities with respect to helium
(Kirsten,']968). However, the diffusion rates of these gases will be
lower, making equilibration, between vesicle and melt, slower. The
vesicle size and size frequency distribution will therefore be
important controls on the concentration measured in the laboratory,
particularly if the glasses are crushed prior to analysis. In the
case in which the vesicles are comparable in size to the grains
analyzed, a significant fraction of the helium can be Tost simply by
sample preparation. We cannot eliminate the possibility that some gas
loss by this mechanism has occurred in the present’study, even though
2 mm chips were used for both the crushing and melting experiments.
However, this should only have an effect upon the samples mentioned
above.

Another difficulty Arises when vesicle size distribution is very
broad and vesicularity is Tow. Since volume of vesicles (and therefore
gas content) will be a function of (radius)3, heterogeneities within
single samples are possible. The Mid-Cayman Rise sample (Knr 54 47-24)
represents such a case, with a vesicle size range of .0l to 1.0 mm.,
and a fairly Tow vesicularity (.3 percent). In the thin section
examined, only one vesicle of 1 mm diameter was present, but this would
lead to large variability in helium concentration within the sample,
both due to the statistical likelihood of finding such a vesicle in a
given sample, and the possibility that large vesicles will be fractured
during sample preparation. Since our methods are quite reproducible
for the other samples, this is the most 1ikely éxp]anation for the

different concentrations obtained by replicate analyses in this case.
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The other samples contain roughly gaussian size distributions
(approximately centered about the size labelled "mean size" in

table 3.2). Several samples (Alv 519 2-1-b, AII 93 11-54, and AII 92
31-31a) contain bimodal size distributions; in these cases the "mean
size" reflects the size that contributes most of the volume of
vesicles. Knr 54 47-24 differs in that there is a continuous size
variation, and would require analysis of a very large sample to average
out simple statistical variation. It is also noteworthy that this
sample lies outside of the partitioning trend displayed by the other
samples in figure 3.1.

These results make evident the difficulty in interpreting published
concentrations. The measured value will be a function of original e
content of the magma, extent of pre-quenching degassing, vesicle size,
and grain size analyzed. Since these last two parameters are rarely
documented, published results are difficult to compare, and must often
be taken as minimum values.

2. Glass—phenocryst partitioning

Varying degrees of fractional crystallization may also change
apparent gas concentrations in evoived melts. While crystal-melt
partition coefficients for the noble gases have not been extensively
studied, it is quite reasonable to assume that helium favors the melt
(and the vesicles) relative to crystalline phases. This is supported
by helium analyses of olivine phenocrysts in Kilauea Tavas by Kaneoka
et al. (1978). They obtained quite low concentrations (4 x 1078
ccSTP/gram), suggesting that helium is not favorably partitioned into

the olivine structure. If the Kilauea phenocrysts grew in a melt with
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a helium concentration typical of ocean-floor glasses (lO‘6 to 1072
ccSTP/gram), the implied olivine-melt partition coefficient would be
between .04 and .004. However, since sub-aerial lavas are more
completely degassed relative to submarine basalt glasses, it is
difficult to infer a melt concentration, so these values are somewhat
speculative.

The generally incompatible behavior of helium is also supported by
the analysis of handpicked plagioclase phenocrysts from TR 138 11D-1
(see table 3.4). The phenocrysts were first crushed in vacuo for
extraction, and then the powder was melted in the manner described
above. Comparison of the total (crushed and melted) concentrations for_
plagioclase (1.2 +.1 x 10~/ cc/gram) to those of glass (11.9 *+.3 x
10-6 cc/gram, table 3.1) allows the calculation of an effective
plagioclase/melt partition coefficient for hejium of .01. This is
probably an upper 1imit to the true partitioning value, since most of
the helium (92 percent) in the plagioclase was released by crushing.
Undoubtedly, the helium released by crushing is due to vesicles in melt
inclusions, which are common in plagioclase, and vesicles trapped
during crystal growth. Therefore, the equilibrium partition
coefficient is more appropriately calculated from the helium
concentration in the plagioclase powder (after crushing to < 120 u),
which yields a value of KD = .0008. The actual partition
coefficient may be even lower than this, if some of the helijum released
by melting the powder was dissolved in the melt inclusions. In either
case, crystallization of plagioclase will increase the helium |

concentration in the melt. However, even 50 percent crystallization
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Table 3.4: Plagioclase-Glass Partitioning for Sample TR 138 11D-1

4He (x 10° cc/g) K* 3He/4He
Glass 11.9 + .3 -— 1.35 + .01 x 10-5
Plagioclase 1+ .01 .01 1.31 + .10 x 10-5
(crushed) _
Plagioclase .01 + .003 .0008 1.38 + .35 x 10-3
(powder melted)
*K = concentration

concentration in glass
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will not affect the concentrations as much as loss of two volume
percent vesicles.

Despite the uncertainties, the currently available information
strongly suggests that helium behaves as an incompatible element with
respect to the phases commonly crystallizing from basalt. Additional
results, described in chapter 5, support this conclusion.

3. Determination of diffusion rates by stepwise heating

Using the method of stepwise heating, diffusion coefficients were
determined for a temperature range of 125° to 400°C. Alv 519 2-1-b was
chosen for these experiments because it had the fewest vesicles smaller
than the grain size to be heated. To confirm that the results were
unaffected by the presence of small vesicles, the sample containing the
smallest volume percent vesicles (Alv 892-2) was also used. Results of
several different stepwise heating experiments are shpwn in figure.3.2,
using the conventional Arrhenius plot (the data are listed in appendix
1.1). In general, fractions taken at one temperature agree within the
experimental uncertainty, confirming that volume diffusion is
occurring. In addition, there is quite good agreement between the
different grain sizes, and between the two samples, indicating that
vesicles do not affect the results.

In calculating diffusion coefficients, we have assumed that the
"effective" radius is one-half the mean sieve diameter. Although there
is undoubtedly a size distribution, even the maximum range (the
difference between adjacent sieve sizes) will have an insignificant
effect on these estimates (Gallagher, 1965). The deviation from

sphericity should also have a negligible effect, as long as the
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particles are not needle-shaped (Jain, 1958; Lin and Yund, 1972) and
are not made of aggregated small particles. The absence of these
conditions was confirmed by microscopic examination both before and
after heating.

Assuming volume diffusion is taking place, we can fit the results
to the relation:

D = Do exp (-E/RT)

where D is the diffusion coefficient at a temperature T, E is the
activation energy, R is the gas constant, and DO is the diffusivity
at infinite temperature. We obtain E = -19.9 £ 1 Kcal/mole, and 1In

Do = -2.7 £ .6. These uncertainties reflect one standard deviation

about the linear regression line.

Using these values, we can calculate the diffusion coefficient of
helium in basaltic glass at ocean floor temperatures (0°C) to be 1.0 #
.6 x 10717 cm2/sec. This Tow diffusivity implies that significant
diffusion will not take place in less than a hundred million years (for
a .5 cm glassy rim of oceanic basalt). Clearly, weathering of the
glass will be a greater problem than diffusion.

Unfortunately, there are no other experimental diffusion data for
natural basalts to allow comparison, and most estimates have been based
on data for synthetic glasses. Current glass structure models suggest
that gas diffusion rates are primarily controlled by the mole
percentage of "network formers" and "network modifiers" (cf. Doremus,
1973). The network formers (5102 in this case) create the
polymeric structural framework, the holes in which provide diffusion

paths for small atoms such as helium. On the other hand, the network
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modifiers plug up these holes and impede diffusion. A number of -
experimental studies have qualitatively verified this model (Norton,
1957; Altemose, 1961), leading to its use in extrapolation to basaltic
composition. Jambon and Shelby (1979) estimated the diffusion
parameters from permeation rate measurements on basaltic glass combined
with literature values for diffusion in Na-Aluminosilicate glass. Their
values for E and Do are 14 = 2 and ~ 7 x 10'3, respectively, a
significant difference from those reported here. (Extrapolation to 0°C
gives a diffusion coefficient of 4 x 10‘]4 cm2/sec). However,

since diffusion rates are strongly dependent upon chemical composition
(Shelby, 1976), such a comparison is questionable.

Craig and Lupton (1976) used weight percent SiO2 to scale pyrex
diffusivities to basaltic composition, and estimated the activation
energy using the same assumption.. Their estimate of DHe in
basaltic glass at ocean floor temperatures (0°C) is 5 x 1012
cm2/sec, which differs significantly from our value. It is more
correct, however, to scale diffusivity as a function of mole percent
5102, as noted by Altemose (1961). Using this assumption (and the
dependence of permeation rate on mole percent 5102 given by
Altemose), we obtain Dhe (at 0°C) of 4 x 10717 cm2/sec, in
better agreement with our experimental results. However, this
calculation assumes that the activation energies and compositional
dependencies for diffusion and permeability are the same, which is not
strictly valid, since solubility's dependence on both temperature and
composition may be significant (permeation rate is equal to the product

of solubility and diffusivity). The overall solubility dependence upon
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composition (cf. Altemose, 1961; Shelby, 1976) tends to make this
estimate a lower 1imit, but the total effect should be less than an
order of magnitude (for extrapolation from pyrex to basalt
compositions). It is not clear, on the basis of previous studies, what
the temperature dependence of solubility for basaltic glass will be
(Doremus, 1973; Shelby, 1976), and hence whether the activation
energies used are too high or too low. Therefore, considering the lack
of information, the estimates of D(0°C) for He in basaltic glass made
on the basis of synthetic glass data, give values which are not
inconsistent with our results.

Thus, the diffusion model proposed by Craig and Lupton (1976, 1981)
to explain their Tow 3He/4He samples (6 x’atmospheric, for 5 m.y.
old basalt) would seem unlikely, since the diffusion rates required for
their calculations are too high. It is conceivable that weathering and
devitrification enhance the diffusion rates, leading to more rapid
exchange with time for these older samples; but if the samples were
chosen on the basis of freshness, this would be uniikely. Since
typical U and Th concentrations in oceanic basalts are not high enough
to account for this ratio change by production of radiogenic Yie in
such short times, it is alsd passible that the low ratios observed are
characteristic of the source regions for these samples. The resolution
of these possibilities must await further studies of old basaltic glass
samples.

It is also important to note that the diffusion rates reported here
indicate that significant diffusion can occur at moderate temperatures.

For example, it is common practice to crush samples before analysis,
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and to heat them to remove adsorbed atmospheric gases. In the case of
basaltic glass, this procedure can lead to significant helium loss (in
addition to helium loss from the vesicles), if the grain size is
sufficiently small, and the temperatures sufficiently high. If 50
micron grains are heated for 30 minutes at 200°C, roughly 30 percent of
the helium will be lost by diffusion.

4. 3He/4He Ratios

Reproducibility of ratio measurements is confirmed by complete
replicate analyses of several samples, and is within the range of the
estimated uncertainties. The 3He/4He ratios for this set of
samples, excluding TR 138 11D-1, are remarkably constant at 1.10 £ .03
x 1072 (see figure 3.3). However, the 3He/4He ratio for TR138
110-1 is quite close to 10 x atmospheric, a value that differs from the
other samples by 20 percent. This difference is well outside the
experimental uncertainty, and shows that there are significant helium
isotopic variations on the mid-ocean ridge. These results are compared
to those of Craig and Lupton (1976) in figure 3.3. Also shown for
reference are the results obtained by Jenkins et al. (1978) for the
hydrothermal effluent at the Galapagos spreading center. The
3He/4He of the glass samples and the hydrothermal effluent from the
same area are identical, within the uncertainty of the measurements.

The 3He/4He ratio results from the glass-vesicle and
glass—phenocryst partitioning experiments illustrate that there is no
significant isotopic fractionation between the vesicles, phenocrysts,
and glass. This suggests equilibrium partiticning, since diffusion is

expected to be mass fractionating. Further, the close agreement with
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the Galapagos hydrothermal effluent is consistent with the idea that
the macroscopic transport of helium in these systems is only weakly
mass dependent (if at all).
D. Discussion

The importance of vesicles in determining the He concentration (and
potentially the concentrations of all the gases) in oceanic basalt glass
is illustrated by our crushing experiments. Several authors have noted
the importance of accurate cdncentration measurements in modeling the
degassing of the crust (Lupton and Craig, 1975; Corliss et al., 1979;
Hart et al., 1979). Hart et al. (1979) suggest that the least degassed
melt will be that which has erupted under the greatest hydrostatic
pressure (e.g. the Cayman Trough). Our results support this contention
in the sense that the sample from the Cayman Trough (Knr 54 47-24) had
a small amount of heljum in the vesicles. However, the mere presence
of vesicles in this sample suggests that pre-eruptive degassing cannot
be totally ruled out, and that hydrostatic pressure may not be the only
variable to be considered.

Lupton and Craig (1975) noted that their observed helium
concentrations were much too low to account for the oceanic SHe
flux. The concentrations presented here are typically a factor of ten
higher, and suggest that their results may have been affected by gas
loss from the vesicles. Using the highest helium concentration
obtained (2.7 x 1072 cc STP/gram for AII92 31-31), degassing the
oceanic crust to a thickness of only 2.5 km will produce the 3He flux

(assuming a crustal production rate of 2 kmz/yr). Therefore, the
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helium results do not necessarily indicate that the whole oceanic crust

is degassed.

The important parameters in controlling the extent of degassing of
a melt will be depth of the magma chamber, residence time, and
conditions under which C02 saturation occurs. If supersaturation
of thé major gas phase (COZ) does occur, vesicles can escape by
rising through the melt (Delaney et al., 1978). Measurements of
CO2 ;n basalts vary between 800 and 2300 ppm (Moore et al., 1977;
Moore, 1979; Delaney et al., 1978), which would place the depth of
COZ saturation between 1 and 2 km below the average ridge crest
(3 km water depth), so that degassing may occur during residence time
in a magma chamber. Clearly, vesicularity (and gas loss) would a]éo be
affected by initial CO, content, residence in a magma chamber,
depth of the magma chamber, and ascent velocity. Thus, great care must
be taken in using the noble gas content of oceanic basalt glass to
estimate mantle concentrations. An important first step in unraveling
a sample's magmatic history is to document the volume and the size of
the vesicles, and the gas-meit partitioning.

It is interesting to note that the the vesicle sizes, size
distributions, and total vesicularity seem to vary systematically
between the different locales on the oceanic ridge studied here. The
fast spreading ridge samples are characterized by small vesicles, small
vesicle size distributions, and low vesicularity, while the slow
spreading ridge samples contain larger vesicles, broader size
distributions, and higher vesicularity. The deepest sample (Mid-Cayman

Rise) contains the largest range of sizes. This general trend in total
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vesicularity has also been observed by Moore (1979) for a much more
extensive set of oceanic basalts from varidus ridges. While the
present set of samples is much too small to allow any generalizations,
these differences presumably reflect the different magma chamber depth
and possibly different decompression histories for the different ridge
systems.

The vesiculation process can also fractionate the relative
abundances of the noble gases. Fisher (1975) used the He/Ar ratios
from oceanic basalts to estimate a "minimum" K/U ratio for the oceanic
mantle. As pointed out by Schwartzman (1978), however, partitioning
between melt and gas phase can separate He from Ar. OQur results
indicate that the He concentration is a function of the magmatic
processes mentioned above, the vesicle size distribution, and the grain
size of the sample analyzed. Thus, unless the experimentalist
documents these last two parameters, He concentrations (and possibly
He/Ar ratios) are difficult to interpret.

The jsotopic results show that vesiculation and crystallization do
not affect the magmatic 3He/4He ratios. This, coupled with the low
diffusion coefficient for heljum at 0°C (~1O']7 cm2/sec), suggests
that glass measurements reflect the characteristics of the mantle
source regions for the basalt. Interpreted in this way, the isotopic
variations show that the oceanic mantle is heterogeneous with respect
to helium isotopes. However, only one sample (TR138 11D-1) differs by
more than 3¢ from the rest of the samples. Schilling (1975) and White
and Schilling (1978) showed that the trace element and 87Sr/865r

characteristics of this sample are quite similar to "normal" MORB. On
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the other hand, the rest of the samples have diverse geochemical
characteristics, but are identical with respect to 3He/4He. For
example, the two samples Alv 892-2 and AII 93 11-54 have 87Sr/868r
ratios of ~.70256 and .70320, respectively (S. Hart, personal
communication). Therefore, the relationship between 3He/4He and
87Sr/86Sr is not simple; this is discussed in greater detail in
chapter 4,

E. Summary

To summarize the results described in this chapter:

1. Crushing and melting experiments suggest that helium in MORB
glasses obeys equilibrium partitioning between vesicles and glass. The
partitioning results for samples with a large range of vesicularities
allows estimation of the helium solubility in basaltic melts. The
calculated Henry's law coefficient is 3.7 x 1074 cc STP/g-atm, which
is significantly higher (by a factor of 5) than the value reported by
Kirsten (1968) for enstatite melt. However, the comparison between
these two values is dependent on two corrections: one for the "rigid"
temperature of the glass, and one for the temperature dependence of the
Henry's law coefficient.

2. The helium glass-vesicle partitioning can strongly affect
determinations of helium concentrations, depending upon vesicularity,
vesicle size, and grain size analyzed. Many of the concentration
measurements in the literature must therefore be viewed as minimum
values. By inference, this is also true for other noble gas

concentrations and noble gas abundance patterns.



-86—

3. Plagioclase-melt partitioning, obtained by extracting helium
from coexisting phenocrysts and glass, indicates that helium behaves as
an incompatible element. The values obtained for KD (.01 to .007)
are probably an upper limit, since some of the helium in the
phenocrysts may reside within melt inclusions.

4. Diffusion rates, determined using the method of stepwise heating
(for the temperature range of 150-500°C) yielded an activation energy
for helium diffusion in basalt glass of 19.9 * 1.0 Kcal/mole.
Extrapolation of these results to 0°C shows that helium diffusion will
be insignificant for unaltered glasses less than 50 million years old.

5. There is no isotopic fractionation, within the uncertainty of
the measurements, between glass and vesicles or glass and phenocrysts.
These results, and the lTow helium diffusion rate suggests that the
isotopic composition of the glasses reflects the isotopic composition
of the mantle source.

6. Most of the samples described in this study have 3He/4He
ratios remarkably close to 1.10 x 1075 (or 8 x atmospheric). One
sample from near 52°N on the mid-Atlantic ridge has a 3He/4He ratio
of ~10 x atmospheric, which shows that there are significant helium

isotopic variations in the oceanic mantle.
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CHAPTER 4
HELIUM ISOTOPIC VARIATIONS IN MID-OCEAN RIDGE BASALTS

A. Introduction

Basalt erupted at the mid-ocean ridges is the most voluminous
volcanic rock on the face of the earth. The first studies of mid-ocean
ridge basalts (MORB) resulted in the hypothesis thaﬁ they represent a
"window" to the mantle: an indicator of the mantle composition
unaffected by continental contamination (Engel et al., 1965; Gast,
1965). Although these early studies emphasized the compositional
uniformity of MORB, more extensive sampling has revealed considerable
compositional variability, both locally and regionally (Schilling,
1973; Frey et al., 1974; Blanchard et al., 1976; Bryan et al., 1976;
White et al., 1976). In particular, there are systematic trace element
and isotopic gradients along the ridge_crest near islands such as
Iceland and the Azores (Schilling, 1973; Hart et al., 1973; Sun et al.,
1976; Schilling, 1975; White and Schilling, 1978). In general, the
basalts erupted near islands are enriched in large ion Tithophile
elements and the radiogenic isotopes of Sr and Pb. The isotopic
variations show that the mantle heterogeneities have existed for long
time periods (Hofmann and Hart, 1978).

One interpretation of the geochemical gradients that occur along
the mid-ocean ridge is mixing between a "plume" source and the normal
depleted upper mantle (Schilling, 1973, 1975). This hypothesis
requires that oceanic islands are produced by upwelling mantle plumes

(Wilson, 1963; Morgan, 1972), and that these plumes consist of o~
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geochemically undepleted material from the lower mantle. The terms
“depleted" and "undepleted" are used in the manner defined by Hart and
Brooks (1981): depleted refers to a system that has evolved with
parent/daughter ratios that are lower than a closed (or undepleted)
system. In the case of helium, an undepleted reservoir is one that has
had unchanged 3He/(Th+U) since the formation of the earth, and would
have a higher present-day 3He/4He ratio. Since such mantle

reservoirs may no longer exist, undepleted is used here as a relative
term. As shown in this chapter, normal MORB g]asées appear to have a
relatively constant 3He/4He ratio of ~8.4 x atmospheric. For
consistency with other geochemical studies, normal MORB will be assumed
to be derived from a depleted source. Therefore, any sample with
3He/4He ratio greater than 8.4 x atmospheric is derived from a
relatively undepleted source.

Normal MORB can be characterized by low abundances of 1ncompétib1e
trace elements (relative to alkali basalts or chondritic meteorites),
as indicated by low Rb/Sr, Sm/Nd, La/Sm, and Nb/Zr ratios (Schilling,
1975b; Erlank and Kable, 1976; Kay and Hubbard, 1978; Hanéon, 1977; Suh
et al., 1979). Low 875r/805r and nigh 143nd/144Nd ratios
indicate that the depletion has existed for long time periods (DePaolo
and Wasserburg, 19763 Richard et al., 1976; O'Nions et al., 1977). For
the purboses of this study, normal MORB will be defined as having
875r/80sr < .7028, La/Sm < 1.0, and Zr/Nb > 20.

Some of the basalts erupted near islands such as Iceland and the
Azores have significantly higher 87Sr/865r ratios and incompatible

element abundances (e.g. Sun et al., 1976; White and Schilling, 1978).
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These have commonly been referred to as "enriched" or "plume" type MORB
to distinguish them from normal MORB. The goal of this study is to use
the helium isotopic information to characterize the mantle source
regions for enriched MORB. If these basalts are derived from sources
that are undepleted (relative to normal MORB), then significantly
higher 3He/4He ratios should be observed.

Published values of 3He/4He ratios for mid-ocean ridge basalt
glasses vary from roughly 8 x atmospheric (Krylov et al., 1974; Poreda
and Craig, 1979; Kurz and Jenkins, 1981) to 10 x atmospheric (Lupton
and Craig, 1975; Craig and Lupton, 1976). While one of the objectives
of this study is to determine what is "typical" with respect to MORB
3He/4He, it is possible to contrast these values with those
obtained for some oceanic islands. 3He/4He ratios reported for
Icelandic hot springs (as high as 20 x atmospheric; Polak et al., 1975)
and Kilauea fumaroles (15 to 18 x atmospheric; Craig and Lupton, 1976;
Jenkins et al., 1978) are significantly higher than the MORB values.
The 3He/4He ratio will decrease with time most rapidiy for the
source regions that have the lowest 3He/(U+Th), since e s
produced by decay of U and Th. It is therefore quite reasonable to
infer that the mantle tapped by Hawaii and Iceland has had a higher
time integrated 3He/(U+Th) ratio relative to MORB. In a general way,
these results are consistent with the mantle "plume" models that have
been proposed to explain other isotopic variations (e.g. Sun and
Hanson, 1975; Schilling, 1973). For example, Hart et al. (1979) have
suggested that the atmosphere has been formed by preferential degassing

of the upper mantle, leaving the Tower mantle relatively undegassed.
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If so, the upper mantle source regions for oceanic basalts with Towest
87Sr/86Sr ratios correspond to the most depleted, degassed mantle,
and should also have the lowest 3He/4He ratios.

The goal of this study is to determine the helium isotopic ratios
of normal and enriched type MORB, and to use this information to
identify those basalts derived from undepleted mantle sources. For
this reason, an attempt was made to select samples that were well
documented with respect to trace element and isotope geochemistry,
while also providing a global representation; the locations of the
samples studied are shown in figure 4.1. The ridge segment discussed
fn the most detail is between 27 and 52°N on the Mid-Atlantic Ridge.
Dredged basalts fom this transect have been particularly well studied
with respect to Sr isotopes, trace elements, and some volatile elements
(Schilling, 1975; White et al., 1976; White and Schilling, 1978;
Schilling et al., 1980) These data indicate large variations in the
region, with high values for 87Sr/865r, La/Sm, K, Rb, Cs, F, Br,
and C1, reaching two broad maxima at 45°N and 38°N latitude. Similar
variations have been observed along the Reykjanes Ridge, with the Sr
énd Pb isotopes becoming more radiogenic toward Iceland (Hart et al.,
1973; Sun et al., 1975). It is important to note that the maximum
87Sr/863r values near the Reykjanes Ridge (.70306) are much Tower
than those observed near the Azores Platform (up to .70359), while both
of these regions are higher than normal MORB values (.7023 to .7028).

Dredged basalts from the South Atlantic, the Indian Ocean, East

Pacific Rise, and the Galapagos spreading center (in addition to the

samples discussed in chapter 3) allow an evaluation of global



Figure 4.1
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Sketch map of the mid-ocean ridges with the locations of
the basaltic glass samples described in this study
(indicated by stars).
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variability. Many of these samples come from ridge segments that would
be considered normal, such as the East Pacific Rise and the Carlsberg
Ridge, others, such as those from the Bouvet triple junction, are
classified as enriched type MORB (Dickey et al., 1977). Although it is
impossible to characterize the world ridges on the basis of a single
study, these samples provide an opportunity to compare normal and
enriched type MORB from a number of localities.

B. Results and Discussion: Global Variations

1. Overall variations

The helium concentrations and isotopic compositions of basaltic
glasses analyzed in this study are listed in tables 4.1, 4.2, and 4.3.
Since the intent was to document global variations, most of these
analyses were performed by crushing in vacuo. As discussed earlier,
there is no isotopic fractionation between vesicles and glass, and the
ease of the crushing extraction allowed more analyses to be performed.
Some of the North Atlantic samples were crushed and melted to confirm
that there is no isotopic fractionation between vesicles and melt. In
agreement with the conclusions reached in chapter 3, the partitioning
experiments between glass-vesicle indicate that no isotopic
fractionation is involved in these processes. For the sixteen glass
samples analyzed by more than one extraction method (see table 4.1),
the "crushed" and the "melt" helium are isotopically indistinguishable
at the .5 percent level, which is within the experimental uncertainty.

Although the geographic sample coverage is biased in favor of those
regions that have been studied in the most detail (i.e., North and

South Atlantic), these data allow some qualitative statements about
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Table 4.2: Helium results:

Dredged Glasses from the Atlantic, Indian, and Pacific Oceans

e 3he /e
. -6 __STP
Sample Location x107" cc /gram g R/RA o
North Atlantic
AII 20 3-2 ~11°N . 9.2 2 9.20 13
AII 96 18-1 23°31.5'N, 44°49.1'W 9.4 .3 8.40 12
G104 25-2 23°32.0'N, 44°57.4'W 13.4 .5 8.35 11
South-Atlantic
AIT 107-7 2-38 46°12.8'S, 14°02.8'W 5.5 6 7.75 .16
AII 107-7 4-4 42254.9'5, 16:22.2'w 5.5 1 8.37 .12
AIT 107-7 6-20 41°14.9'S, 16_36.2'W .75 01 8.08 .14
AIT 107-7 7-10  40°26.3'S, 16 44.9'W 9.9 4 7.71 J11
AIl 107-7 10-1  38°52.9'S, 16°14.4'W 1.76 04 8.16 .18
AIl 107-7 13-1  37750.0'S, 17:08.5'W 12.5 5 8.07 .10
AII 107-7 17-71 35°16.7'S, 15°44.1'W 7.6 3 8.31 .10
Carlsherg Ridge
NOAA M79 2-53  9°49,5'N, 57°56.7'E .41 .01 8.58 .17
8.11*
M79 3-10 9°49.9'N, 57°57.6'E .393 8.00 .16
M79 6-9 3°47.0'N, 63:52.0'E 13.3 .6 8.48 .10
M79 7-57 3°41.9'N, 63°53.5'E 11.9 .6 8.49 .1
M79 9-96 1°39.0'S, 67°46.4'E 11.6 .6 8.66 .1
LAl* .01 8.22 .25
M79 11-5 5°21.3'S, 68°37.2'E 10.1 1.0 8.89 .18
M79 12-3 5°17.0'S, 68°31.9'E .70 .02 8.36 .18
Pacific Ocean
USNM 1113157-D805 Galapagos S.OC. ————— —_— 65.85 .09
2.60'N, 95.33°W
USNM 1113157-D557 Galapagos S. C. 2.87 .08 7.00 .08
(VG DO8) 2.44°N, 95.62°W
G79-4 D1-4 East Pacific Rise 8.5 .10 8.31 12
22°50'N, 108°08'W
G79-4 D 14 East Pacific Rise 9.5 .1 8.49 12
22°26'N, 108°23'W 13.4* .5 8.35 .12
Alv 972-1 Fast Pacific Rise 7.0 .1 8.24 .12
22°55.5'N, 108°05.5'W  13.4* .6 8.31 .12

A11 extractions performed by crushing, except those denoted by (*), which
were powders melted, after crushing.
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Dredged glasses from the Bouvet triple junction

Sample
CH 115 37 1D-1

CH 115 37 1D-11
AIT 107-6 33-1
AII 107-6 47-11
CH 115 508D-1

AIl 107-6 56-21
AIl 107-6 56-27
AIT 107-6 57-5
AII 107-6 57-25

*Locations from

Location*

54°35
54°35
54° 38

54°01

54°13.

54°22
54°22
54°01
54°01

.9'sS,
.9'sS,
.9'S,
.3'S,
7'S,

9'S,
9'S,
.5'S,
.5'S,

00°58
00°58
00° 04
03°32

04°03

05°12.

05°12
07°15
07°15

Helium results:
4He 3He/4He
%1070 ccSTP/gram o R/RA o
2N 176 007 7.11 4
2N b2 .03 7.66 .4
8'W .70 .01 7.44 .10
0'E .218 .004 9.98 4
A'E 121 .002 12.9 4
.053 .008 11.9 .0
0'E 1.08 .02 7.45 .13
.Q'E 2.22 .03 7.12 .10
JA'E 3.09 .07 7.46 .19
LA'E 3.49 .09 14.3 .3
3.58 .05 14.1 .2

Dickey et al. (1977) and Farmer and Dick (1981)
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global variations in MORB (all the analyses reported in this chapter
and in chapter 3 are displayed in histogram form in figure 4.2) The
3He/4He ratio varies from 6.8 to 14.2 x atmospheric. On the basis
of presently available data, this appears to characterize the range of
values for MORB. Slightly higher 3He/4He ratios have been reported
for Reykjanes Ridge basalts (up to 15.0 x atmospheric; Poreda et al.,
1980), which are clearly related to Icelandic volcanism (see chapter 5).
The histogram shows that most MORB glasses have 3He/4He ratios
between 7.0 and 9.0; higher values are quite rare. It is also clear
that the sample population does not form a symmetric distribution about
a mean value. Based on other geochemical evidence, this could be due
to the superimposition, or perhaps mixing, of several sample
populations. For example, most the samples in figure 4.2 with
3He/4He ratios less than 7.8 x atmospheric are basalts with
incompatible trace element enrichments and high 87Sr/865r ratios
(i.e., samples from 33-50°N in the North Atlantic, and the South
Atlantic near Bouvet Island). Several samples from the western end of
the Galapagos spreading center (95°W) also have low 3He/4He ratios,
but may not be enriched to the same extent. Clague et al. (1981) have
described major and trace element geochemistry of samples from the same
dredges; they found that these basalts are distinct from those samp]ed'
from és“w, and are slightly enriched in light rare earths with respect
to normal MORB.

2. Helium in normal MORB

Using the trace element and isotopic criteria described above, the

samples that could be considered normal MORB were selected from those
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listed tables 4.1, 4.2, and 4.3, and in chapter 3. The 3He/*He

ratios from these normal MORB samples are plotted on the histogram in
figure 4.3, and appear to form a normal distribution about a mean value
of 8.4 x atmospheric (with 1o = .3). While trace element or isotopic
data from various sources (see figure 4.3) is available for most of the
samples, no data was available for the Carlsberg Ridge samples, and
they were assumed to be normal MORB. It is also important to note that
several samples that would be classified as normal MORB by most
criteria have higher 3He/4He ratios. The most notable example is
AII1107-6 57-25, which is discussed in more detail below. Nevertheless,
the apparent gaussian distribution shown in figure 4.3 allows the
choice of a normal MORB 3He/4He ratio of 8.4 x atmospheric.

Although this must be confirmed by more analyses, it provides a useful
value with which we can compare the other results.

It is also important to establish the range of concentrations in
MORB glasses. As discussed in chapters 1 and 3, the concentration of
helium in oceanic crust has implications for the atmospheric 3He
budget. Additionally, if a "typical" pre-eruptive magmatic
concentration can be estimated, it may be possible to infer
concentration. The total helium concentrations for the normal MORB
samples are plotted as a histogram in figure 4.4. The common
occurrence of samples with He concentrations greater than 107° cc
STP/gram supports the conclusions of chapter 3. While vesiculation and
posteruptive degassing clearly can have important effects on these
concentrations, these data suggest that typical MORB concentrations are

~1to 3 x 10"5 cc STP/gram. Concentrations lower than this (e.g.
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* | NORTH ATLANTIC (11-24°N)
NORTH ATLANTIC
SOUTH ATLANTIC

"NORMAL"
MORB CARLSBERG RIDGE
EAST PACIFIC RISE
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Figure'4.3:‘ Histogram plot of 3He/%He measurements on all glasses

that could be classified as normal MORB, based on trace
“element and isotopic criteria (see text). Trace element
and isotopic date for these samples from: North Atlantic
(11-24°N): Machado et al. (1982), Bryan et al., 1981;
North Atlantic: White and Schilling (7978); East Pacific
. Rise: J. Bender (personal communication); Galapagos:
S.R. Hart (personal communication).
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Figure 4.4: Histogram of helium concentrations for normal MORB
samples (only those for which total He was determined).
Symbols as in figure 4.3.
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Craig and Lupton, 1976, 1981) may be a result of gas loss (see below).

C. Results and Discussion: Central North Atlantic

1. Helium isotopic variations

The dredge Tocations of the North Atlantic samples, from 28° to
52°N latitude, are shown with respect to the major tectonic features in
figure 4.5. Helium isotopic results for these samples are listed in
tab]é 4.1 and plotted with respect to latitude in 4.6. Also shown for
comparison are the published 87Sr/865r variations for the
mid-Atlantic ridge (Hart et al., 1973; White et al., 1976), and helium
isotopic results for the Reykjanes Ridge reported by Poreda et al.
(1980). The maxima in 87Sr/80Syr at 45°, 39° and 35°N are also
observed in La/Sm, Rb, Cs, Sr, C1, Br, and F (Schilling, 1975; White et
al., 1976; Schilling et al., 1980). These geochemical variations have
been interpreted as evidence for a mantle plume (Schilling, 1975), or
an upper mant]evenrichment event such as metasomatism (Schilling et |
al., 1980). If such a mantle reservoir were less degassed, one might
expect it to have had a higher time-integrated 3He/(Th+U) ratio and
hence a higher present day 3He/4He ratio. As shown in figures 4.6
and 4.7, however, there is no association between high 3He/4He and
high 87Sr/865r. In fact, there is an overall negative correlation
between 3He/4He and 87Sr/865r, in the sense that the maxima at
45° and 37°N are accompanied by relatively low values in 3He/4He.

Using the normal MORB value of 8.4 x atmospheric (1.16 x 10'5)
defined in the previous section, the values obtained at these locations
are significant]y Jlower; the lowest value being 9.36 X 107® (6.76 x

atmospheric, for TRL38 2D-3 at 47.05°N).
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Figure 4.5: Dredge locations along the mid-Atlantic ridge (27-53°N)
that are discussed in this section.
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(a) Helium isotopic variations in basaltic glasses along
the mid-Atlantic ridge. Different symbols denote
different extraction methods used in this study: (&) =
melting in vacuo; (®) = crushing in vacuo, and (m) =
melting of powder that was previously extracted by
crushing (see text). Solid lines connect different
extractions of the same sample. Where error bars are not
shown for these 3He/%He analyses, they are within the
field of the symbol. Points denoted by (e) were taken
from Poreda et al. (1981).

(b) Strontium isotopic variations along the Mid-Atlantic
Ridge [from White and Schilling (1978), and Hart et al.
(1973)].
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In detail, the geographical variability reveals two distinct
provinces. The samples between 50° and 53°N show guite a good positive
correiation between 3He/4He and 87Sr/863r, in addition to an
increase in SHe/*He ratio with latitude (see figure 4.7). It
appears that these relatively high 3He/4He ratios (8.5-11.1 x
atmospheric) extend to the entire ridge nofth of 50°N, as suggested by
published values for Reykjanes Ridge basalts (Poreda et al., 1980) and
hot springs in the neo-volcanic zone of Iceland (Polak et al., 1975).
The value reported by Poreda et al. (1980) for glass from 55°N is close
to our result for 52.5°N (11.1 x atmospheric, see figure 4.6).

South of 33°N, the 3He/4He ratios are also relatively high
(8.6-9.0 x atmospheric) for the samples with low 87Sr/865r ratios.
While we do not have Sr isotopic ratios for four of the five samples
south of 33°N, the values reported by White and Schilling (1978; figure
4.6b) should be applicable. Sun et al. (1979) have also reported
similar 87Sr/865r ratios from this part of the ridge. There
appears to be a distinct break at 33°N rather than the gradient that is
evident near 50°N (see figure 4.6a). This may, however, be an artifact
of the sample distributions.

In contrast, the samples from 33-50°N do not reveal a positive
correlation between Sr and He isotopes (see figure 4.7). For a fairly
large range in 87Sr/86Sr for MORB (.7027 to .7035), there is a
relatively small variation in 3He/4He (6.9-8.1 x atmospheric),
which results in the scattered field shown in figure 4.7. This has
important implications for characterization of the mantle source

regions for oceanic basalts, since the two provinces require distinctly



Figure 4.7:
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3He/4He vs. 875Sr/86Sr for the mid-Atlantic ridge,
30-52.5°N latitude. Symbols and error bars are the same
as in figure 4.6.



-108-

(UDY/Y)
H, /)

So5 /%548
GE0L €0 1§0L 620L° L20L° G20L €200

T

106
10}
JOV}

<
e}

06 No0G-€¢ Oc

1027}
O Olf 10t}
0 it NoZ¢ 40 °S 106G}

NoG'2G-0G ooy

(01X
o,/ Wy




-109-

different sources. The larger amounts of radiogenic 87Sr in the
30-50°N samples are apparently associated with Tow 3He/4He ratios,
whereas north of 50°N and south of 33°N there is an association between
radiogenic 875 and higher 3He/4He ratios. Possible mechanisms

for this are discussed below.

2. Concentration variations and glass-vesicle partitioning

Given the 3He/4He variation, and the implied He/U variation in
the source regions, one might expect systematic He concentration
variations for these samples. However, there are several processes
that make the "mantle" concentration difficult to infer from
measurements on the glasses. The most important is gas-melt
partitioning, since helium is quite favorably partitioned into the
vesicles that are ubiquitous in oceanic basalt glasses (see chapter
3). This process is important to the present study, because the
vesicularities are quite variable and range up to 24 volume percent
(Schilling et al., 1980). Following the procedure discussed earlier,
the helium was extracted from relatively large grains of glass (larger
than 2mm in size) to minimize the opening of vesicles before analysis.
The total concentration can be determined from the heljum released by
melting a representative sample of the chips (column 1 of table 4.1),
or melting the powder rehaining after crushing (column 3 of table 4.1)
and adding it to the helium released by crushing (column 2 of table
4.1). Comparison of total concentrations obtained by these two methods
shows that they agree within the experiﬁenta] uncertainty.

The latitudinal variation in total *He concentration and

vesicularity is shown in figure 4.8a. The vesicularities shown in
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Figure 4.8: (a) Total He concentration variations (in cc STP/g) along

the mid-Atlantic ridge.
(b) Vesicularity variations along the mid-Atlantic ridge

from (Schilling et al., 1980)].
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figure 4.8b (from Schilling et al., 1980) were determined by point
counting thin sections that included the glassy rim and variolitic zone
of the samples. Although these vesicularity values were not obtained
from the same sample split analyzed for He (for detailed studies of
partitioning, see chapter 3), we can use these results to examine
geographic variations in heljum conceqtrations. The maximum
vesicularity near the Azores Platform (35°N) is presumably due to the
shallow depth of the ridge crest, and larger guantities of volatiles
present in the mantle (Schilling et al., 1980). A partial explanation
for low He concentrations in samples from this region may be that
vesiculation has stripped the helium out of the melt. Loss of e

can take place either by pre-quenching degassing of the magma, or by
loss during fracturing of the glass (on the sea floor, during the
dredging process, or if the vesicles are large, when the glass is
removed from the rock in the laboratory).

As seen from the latitudinal variations in total helium
concentrations and vesicularities (figure 4.8), there is good evidence
that helium has been lost from some of the sam§1es by sea-floor
degassing. This is further illustrated by the negative correlations
between total He and vesicles (figure 4.9a), and total He and Cl
(figure 4.9b). The negative correlation betwéen vesicularity and e
is to be expected, since the samples with the most vesicles have
undergone the most gas loss.

As shown by Unni and Schilling (1978), C1 and Br are not
partitioned favorably into a gas phase until extremely high

vesicularities are attained (~50 percent). Rowe and Schilling (1979)
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further suggested that these elements are not partitioned favorably
into COZ—rich vesicles, but do partition into HZO—rich

vesicles, thus explaining Tack of degassing until extremely shallow
depths on the Reykjanes Ridge. This hypothesis was supported by the
study of the present samples for Cl, Br, and F by Schilling et al.
(1980). The negative correlation between %4e and C1 (figure 4.9b)

can therefore be partially explained by different partitioning
behavior: He is favorably partititioned into CO2 vesicles, while C1

is not. Therefore, if the maxima in volatile concentrations (C1, Br,
and F) near the Azores Platform (Schilling et al., 1980) were
accompanied by large mantle helium concentrations, sea-floor degassing
has erased the evidence. Unfortunately, it is not clear how much He
and C1 may covary in the mantle before being affected by vesiculation,
so the negative correlation shown in figure 4.9b may simply reflect
partitioning during gas loss.

Given the complications in interpreting He concentrations, it is
nevertheless important to examine any possible relationship between He
and 3He/4He. As shown 1in figure 4.10, samples with higher
3He/4He ratios generally have higher total “He concentrations.
However, there are two distinct groups that correspond to the same
groupings shown in the 3He/4He Vs 87Sr/865r diagram (figure
4.7). This relationship can be the result of several different
causes. First, it is possible that thé concentrations in the glasses
reflect, to some extent, the mantle concentrations. In this case, the
association between the high 3He/4He ratios and the higher

concentrations is due to a higher time-integrated He/(Th*U) ratio in
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the source region. Unfortunately, we cannot ignore the effects of gas
Toss (by vesiculation) and fractional crystallization upon the apparent
concentrations. Clearly, the samples with the Towest concentrations
are also highly vesicular (see figures 4.8 and 4.9). Since these
vesicular samples occur pkedominant]y near the Azores Platform, the two

groups in figure 4.10 must also reflect this effect.

3. Isotope systematics

Before discussing possible mechanisms for the helium isotopic
variations, previous studies of the region should be reviewed,
particularly since the isotopic variations are well documented with
respect to Sr, Nd, and Pb isotopes. The general negative correlation
between ]43Nd/]44Nd and 87Sr/865r observed for oceanic basalts
(DePaulo and Wasserburg, 1976; Richard et al., 1976; 0'Nions et al.,
1977) has been shown to apply to the North Atlantic, including the
region studied here (0'Nions et al., 1979). In addition, North
Atlantic MORB display a striking correlation between radiogenic Sr and
Pb (Cohen et al., 1980; Dupre and Allegre, 1980), lending further
credence to coherent fractionations in U/Pb, R/Sr and Nd/Sm. The Nd-Sr
inverse correlation has allowed the estimation of "bulk earth" values
for closed system chondritic evolution (c.f. O'Nions et al., 1977;
Allegre et al., 1979). If this is interpreted in the simplest manner,
basalts with 87Sr/865r ratios closest to the bulk earth value
(~.7047) are the least depleted or the most "primitive." Oceanic
island basalts (0IB) fall on the same trend, but lie closest to bulk
earth values, defining a field with higher 87Sr/865r and Tower

]43Nd/]44Nd than MORB. In contrast to the Nd and Sr systematics,
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the Pb isotopes do not display a simple relation between MORB and OIB
(Allegre et al., 1980; Sun, 1980). This has recently led several
authors to suggest that to explain all the isotopes, the addition of a
subducted crustal component into the mantle is required (Hofmann and
White, 1980; Chase, 1981; Zindler, 1981).

If the enriched MORB that lies closest to bulk earth on the Nd-Sr
diagram is more primitive with repect to helium, one would expect
higher 3He/4He ratios near the Azores Platform and 45°N. The |
helium results (figure 4.6) show that this is not the case; the
observed 3He/4He ratios for these regions are among the lowest
reported in the literature, suggesting a lower 3He/(Th+U) ratio than

typical MORB. On the other hand, the basalts from 50-52.5°N and

 27-33°N have 87805y ratios that range from low to slightly higher

than normal MORB, but are characterized by higher 3He/*He ratios.
These two distinct trends are illustrated by the two fields in figure
4.7, and the geographic variability shown in figure 4.6. While Poreda
et al. (1980) noted that their helium results from the Reykjanes Ridge
(plotted as diamonds in figure 4.6) show no local correlation with
87Sr/868r, these data support the existence of a high 3He/4He

province that extends north of the region studied here.

- The helium isotopic variations for the North Atlantic illustrate
that there are distinct provinces, each with unique isotopic
characteristics:

Type A: The high 3He/4He regions north of 50°N
which have fow to slightly enriched 87Sr/865r

[.7026-.7030, (Hart et al., 1973)].
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Type B: The low 3He/4He regions near the Azores Platform and
45°N which have high 875r/80Sr [5 7030 (White et al.,
1976)].

Type C: The samples from 27-33°N, which have 3He/4He of ~8-9 x
atmospheric and 87Sr/863r between .7023 and .7028
(Hoffman and Hart, 1978).

The unique characteristics of these provinces, and the systematics
illustrated in figure 4.10, are best explained by three-component
mixing. Thus, the basalts from each of the provinces are mixtures of
the different mantle sources. Based on the definition of normal MORB
given earlier, and the trends in figure 4.10, one of these sources is
inferred to be the depleted upper mantle. All the iostopic variations
can then be explained by mixing between two other mantle sources, one
with higher 3He/4He, and one with Tower 3He/4He. For example,
the type A province would be produced by mixing between the depleted
upper mantle and an undepleted end-member, to generate higher
3He/4He ratios.

In this mixing model, the type B characteristics would be produced
by mixing between the depleted upper mantle and a source with lower
3He/4He and higher 87Sr/863r. This requires the presence of a
mantle source region that has had Tower 3He/(Th+U) ratios for time
periods Tong enough to lower the 3H'e/4He ratios while also having
higher Rb/Sr. This component requires some mechanism to Tower the
3He/(Th+U) ratio while raising the Rb/Sr ratio. Since helium differs
from U and Th in volatility, it is reasonable to assume that the

mechanism for lowering 3He/(Th+U) is degassing. Therefore, the type
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B component will be referred to as recycled, since any degassed mantle
reservoir has, at some point in the past, seen the earth's surface.
Several specific mechanisms can produce the helium and strontium
isotopic composition of this recycled reservoir; among the
possibilities are 1) contamination of the melts during ascent to the
surface; 2) remelting of mantle that has experienced metasomatic
events; and 3) remelting of subducted oceanic crust.

O'Hara (1980) has suggested that many of the isotopic variations
within oceanic basalts can be explained by contamination from the crust
through which they are erupted. While oceanic crust can be expected to
have Tow 3He/(Th+U) ratios due to degassing, this seems unlikely to
explain the low helium isotopic ratios for several reasons. The
oceanic crust at mid-ocean ridges is very young, which means that there
has not been much time to accumulate radiogenic %4e. Even in 1
million years, only 10"8ccSTP/gram of 4He will accumulate in normal
mid-ocean ridge basalt, which is insiénificant compared to the
concentrations in most glasses. In addition, the crust is very thin,
making any interaction least ]5ke1y at mid-ocean ridges. Finally,
seawater cannot produce the variations because the He/Sr ratio in
seawater is so low that a very small interaction would produce littie
change in the 3He/4He ratio but Very large variations in the
87Sr/865r.

Another a]fernative is that the isotopic variations may be caused
by metasomatic events in the mantle, or similariy, multipie melting
events in which the mantle is enriched by the addition of melt and

Tater remelted (e.g. Erlank and Rickard, 1977). Both these processes
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require that helium be separated from Th and U to produce the type B
mantle. It is possible that He would be lost by degassing during the
metasomatic or melting process, leaving a residue that is relatively
enriched in Th and U. However, the precise mechanism of this degassing
is unclear. Partial melting alone cannot effectively separate He from
U and Th, since He behaves as an incompatibie element (see chapters 3
and 5). As was shown by Gast (1968), melting is only effective for
separating lithophilic elements from one another in the residue.

We prefer to explain the type B mantle characteristics by the
addition of subducted crust into the mantle, which adds sediments or
altered crust. This hypothesis is more attractive for several
reasons. First, He and Th+U are easily separated by subduction.

Helium is lost to the atmosphere, while Th and U are added by
hydrothermal alteration, and by the addition of sediments or seawater.
Support for this hypothesis is given by other isotopic observations,
e.g. basalts from Sao Miguel Island in the Azores island group that lie
off the Sr-Nd correlation trend. Hawkesworth et al. (1979) interpreted
this as evidence of a recently added sediment component in the mantle.
In addition, this model agrees with models suggested by several authors
to account for Pb isotope variations (Hofmann and White, 1980; Chase,
1981). Details of possible recycling models are further discussed
below, and in chapter 6.

In summary, the observed isotopic variations can be explained by
mixing between three distinct mantle reservoirs. The high 3He/4He
ratios of the type A basalts are consistent with the presence of an

undepleted mantle reservoir, which mixes with the normal MORB mantle
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source. The lower 3He/4He and higher 87Sr/865r ratios of type

B discussed above are best expliained by the presence of recycled
oceanic crust in the mantle. The end-members for the two distinct
trends that mixing produces on the 3He/4He vs. 87Sr/86Sr

diagram (figure 4.7) cannot be conclusively idéntified on the basis of
this data, and are discussed further in chapter 6.

Significantly, basa]ts'from both the Azores Platform (type B) and
the Reykjanes Ridge (type A) would be classified as enriched or plume
type MORB on the basis of trace element and other isotopic data (e.g.
Sun et al., 1977; White and Schilling, 1978). Therefore, the helijum
isotopes provide an important new way to determine the possible origins
for enriched type MORB, and reveal new complexities in the mantle.

It is important to note that several other studies have aiso
documented the existence of distinct geochemical "provinces" in the
region discussed here. Schilling (1975) and Bougault and Treuil (1981)
observed distinctly different trace element abundance patterns north
and south of the Hayes fracture zone (~33°N). Basalts from north of
33°N were characterized by flat to light rare earth enriched abundance
patterns, while those from south of 33°N displayed rare earth patterns
that were predominantly light rare earth depleted. Melson and O'Hearn
(1979), Morel and Hekinian (1980), Sigurdsson (1981), Schilling et al.
(1982), and Bryan and Dick (1982) have used major element variations to
define geographic groupings that roughly correspond to the provinces
observed for the helium isotopes. Sigurdsson (1981) has shown that
glasses erupted between 35-53°N have higher total silica and alkalis,

while the ridge segments‘between 29-33°N and 54-70°N are characterized



-121-

by Fe enrichment and Al depletion. As shown in the plot of KZO VS,
3He/4He (figure 4.11), the 3He/4He results correspond closely

with these major element groups identified by Sigurdsson. Therefore,
the low 3He/4He, high 87Sr/86Sr province (type B or recycled

mantle) is also characterized by light rare earth enrichment, and
relatively high silica and alkali contents. The type A province is
characterized by high 3He/4He, Tow 87Sr/868r, Fe enrichment,

and Al depletion.

C. Results and Discussion: South Atlantic near the Bouvet Triple

Junction

Given the geochemical provinces that occur in the North Atlantic,
it is of considerable importance to document whether the different
basalt types are globally represented, and to ascertain the origins of
the variations. The MORB glass samples discussed in this section were
obtained from the South Atlantic near the Bouvet triple junction, the
region where the Antarctic, African, and South American plates join
(see figure 4.12). Sclater et al. (1976) have discussed the geophysics
of this ridge-fracture-fracture type triple junction and the
surrounding area. The short ridge segments to the east and west are
offset by large fracture zones (see figure 4.12).

Dickey et al. (1977) studied the geochemistry of dredged basalts
from the region, and showed that their mantle sources are distinct from
those of normal MORB. In particular, they observed high 87Sr/86Sr
ratios, and enrichments in the light rare earth elements. Based on
these parameters, basalts erupted near the Bouvet triple junction have _
affinities t6 those erupted between 33 and 50°N on the Mid-Atlantic

Ridge.
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The samples discussed here include several of those studied by
Dickey et al. (1977, collected during cruise 115 of R/V Chain), -in

addition to samples recently collected during cruise 107-6 of R/V

Atlantis II by Dr. H. Dick and associates. Dredge locations are shown

in figure 4.12, and helium isotopic results are listed in table 4.3.
Strontium isotopic analyses of several of the AII107-6 samples were
performed at MIT by Dr. Anton Le Roex as part of a collaborative study;
this data is presented here in graphic form only.

A cursory examination of table 4.3 reveals two important aspects of
the data. First, there is a Targer range of 3He/4He ratios within
this small set of samples (7.1 to 14.2 x atmospheric) than in the much
larger suites of samples described earlier. In addition, large
variability exists within a single dredge from the Islas Orcadas-Shaka
Ridge (AIl 107-6 dredge 57). This is also illustrated by the
3He/4He vs. 87Sr/863r diagram (see figure 4.13). Most of the
samples have 3He/4He ratios lower than 8.0 x atmospheric, and plot
within the same field as the 33-50°N samples. The two samples from the
ridge segment just north of Bouvet Island have distinctly higher
3He/4He and 87Sr/86Sr ratios. Also plotted for reference is a
single analysis of plagioclase phenocrysts in a Bouvet Island Hawaiite
(see chapter 5); the 87Sr/865r range for Bouvet was taken from
O0'Nions et al. (1974). 1In contrast, sample 57-25 has the Towest
87Sr/863r ratio and would be classified as normal MORB on the basis
of trace elements (i.e., La/Sm, Zr/Nb; le Roex, personal
communication), but has the highest 3He/4He ratio.

The high 3He/4He ratios observed for the two dredges north of
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Bouvet Island support the hypothesis that the ridge crest eruptives are
related to the Bouvet lavas, as suggested by Dickey et al. (1977). 1In
a general way, this also supports Schilling's (1973) plume-MORB mixing
model for the geochemical gradients along mid-ocean ridges near
islands. In its simplest form, this model requires that the mantle
source for island basalts be a rising plume of primitive mantle, which
mixes with the depleted source for normal MORB. Within the present set
of samples, the Bouvet Island and ridge rocks do have relatively higher
3He/4He ratios.

As shown in figure 4.13, all the South Atlantic samples, except
57-25, can be intermediate compositions caused by two-component mixing,
with the two end-members most closely approximated by the Bouvet Island
sample, and the sample 57-5. As discussed by Volimer (1976) and
Langmuir et al. (1978), two-component mixing on a ratio-ratio plot will
result in a hyperbola with the form:

Ax + Bxy *Cy + D = 0

where:

I
I

= 301y - aybyy

B = albz- azb1

C = azblxl— aleXZ

D = 31byx5y1 = ;b1 %1y,

and:

a] = 4He content in component 1
by = 86Sr content in component 1
y1 = 3ﬁe/4He in component 1

x] = 875r/80Sr in component 1

The shape of the hyperbola is related to the ratio:



*(fL = ¥ pue y = y) saut| Buixiw ayy 4o UOLSSNISLP

e J04 3X33 93 *(E£/61) *Le 39 3d4eH pue (086L) °Le I3 epadod woul
elep abpiy sauelyAay I/ p 2unbLy wouy 3ae gyoW dLFue|Iy YJUON By
404 umoys spiat4 - (uolLjedrunumod jeuossad) xa0y 3| pue (//61) °Le
19 A90l(Q wo4) SISA|RUR WNLIUOALS “Q°p D|qe] WOL) SasA|eue wnt|ay
*sa|dwes uoriounf 3|dLa3 33AN0g 404 ASgg/4S,g “SA BHy [3Hg

15 98 /15 L8

-126-

ANV S
13ANn08

}-080S 1

T T T L

0golL’ G2oL’
_ T

T T T

39401y
SANVICAMAIY

+$-162-48

'€1°p 24nbi4

09

o8 “
&
N
N

00t &
~
X
AN
N

o2k ™

R



-127-

4, 86
- alb2 ) Hel Srz
a,b 4. 86
271 He2 Srl

and for R = 1 the mixing curve will be a straight line (see also
Langmuir et al., 1978).

If the variations in this set of samples are caused by mixing, with
the end-members shown .in figure 4.13, then the curvature of the mixing
lines requires that R ~4-16. However, if the three mantle types
described above are globally represented, these two end-members must
have experienced an earlier mixing event, given their position on the
diagram. For example, if there are three discrete, world-wide mantle
types, the Bouvet Island sample must have been intermediate between
them before mixing with 57-5. This is not entirely clear from figure
4.13, but results from oceanic islands (presented in chapter 5) support
the existence of three global reservoirs, and show that Bouvet Island
lies in the middle of the three-component mixing diagram. Similarly,
the mantle source of 57-5 must have been intermediate between the MORB
and recycled end-member before the most racent mixing event. It is
clear that the mixing 1ine shown in figure 4.13 cannot extend to the
hypothetical normal MORB source (86sr/87sr ~,7025, 3He/*He ~8.4
x atmospheric). The necessity for three mantle reservoirs in any
mixing model is further illustrated by the position of sample 57-25 on
the diagram.

The samples from the Bouvet ridge have unique He and Sr isotopic

signatures that were not observed for any samples in the North
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Atlantic. If the mixing hypothesis is accepted to explain the
variations, then the North Atlantic basalts are the result of mixing
between the normal basalt reservoir and one of the other two
reservoirs, but never both. This is illustrated by the absence of
samples falling in between the two fields in figure 4.7. In contrast,
by the mixing hypothesis, the Bouvet ridge samples appear to have
undergone mixing between all three reservoirs.

D. 1Isotopic Variations and Mantle Heterogeneity

The isotopic systematics of helium and strontium, taken together,
require the existence of three distinct mantle reservoirs. Detailed
studies of the Central North Atlantic and the South Atlantic near the
Bouvet triple junction suggest that the reservoirs are spatially close
énough to allow Jocal inter-mixing. Although the overall variations,
illustrated in figure 4.2, may not necessarily be an accurate
representation of the world basalt population, it seems clear that the
high 3He/4He basalts (referred to as type A above) are much rarer
than the normal MORB or low 3He/4He basalts (type B). Given these
generalizations, it is important to evaluate models for mantle
structure and evolution.

As discussed in the introduction, one explanation for the
geochemical variations along the ridge segments near islands is mixing
between an upwelling mantle plume and the depleted upper mantie.
Clearly, the helium results also show evidence for mixing near islands,
but show that more than two mixing end-members are required. The
samples with Tow 3He/4He ratios and high 87Sr/865r ratios are

not derived from a primitive mantle source. Compared to a normal MORB
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3He/4He ratio of 8.4 x atmospheric, these low 3He/4He samples

must be derived from a mantle source that has had a lower
time-integrated 3He/Th+U ratio. In general these low 3He/4He

samples are characterized by enrichments in alkali elements (e.g. K)
and incompatible trace elements. These geochemical properties can be
attributed to a recycled component in the mantle, since lowering the
3He/(Th+U) ratio requires either 3He loss (degassing) or U and Th

gain. The re-~introduction of subducted crust is the favored hypothesis
to generate these characteristics.

The high 3He/4He samples (i.e., > 8.4‘x atmospheric) are also
ovserved near islands, but are not characterized by the extreme
enrichments in incompatibie elements. In fact, many of these samples,
such as those from 50-53°N in the Atlantic, would be classified as
normal MORB. The two distinct enrichment trends are illustrated in
figures 4.7, 4.11, and 4.13. Source regions for high 3He/4He
samples have had a higher 3He/(Th+U) ratio than either normal MORB or
Tow 3He/4He MORB. Based on simple closed system evolution, this
reservoir is therefore less degassed, or more primitive.

Based on the observed trends, particularly between 3He/4He and
87Sr/863r, it would appear that these different components have
interacted by mixing. Since the range of 3He/4He and 87Sr/86$r
values observed for MORB is not as large as is observed for islands
(see chapter 5), possible end-members are discussed in chapter 6.
However, several important constraints are implied by the MORB data.
In accordance with mantie models that call for a global (and uniform)

depleted upper mantle source for normal MORB (e.g., Schilling, 1975b),
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3He/4He ratios for "normal" MORB from all over the world form a

roughly gaussian distribution about a mean value of 8.4 x atmospheric.
The histogram plot of all the MORB analyses (figure 4.2) shows that the
high and Tow 3He/4He basalts are also globally distributed, but

that the Tow 3He/4He samples are more coﬁmon.

If this population is representative of the parent population, the
relative frequency of each basalt type must reflect the proximity of
the reservoirs to one another. For example, the recycled component
interacts with the normal MORB source to a greater extent than does the
undepleted resérvoir. If the recycled component is generated by mixing
of subducted cfust into the mantle, this supports the notion that the
mantle is layered and that the upper layer is the source for normal
MORB, which interacts with recycled crust. Similarly, the relative
rarity of the high 3He/4He samples can be explained by the
insu]atingvnature of the upper layer. Of course, helium isotopes alone
cannot constrain the relative depths of these reservoirs, as discussed
in more detail below. However, the compelling evidence for three
mantle reservoirs is more consistent with a lTayered mantle than one
which is convecting from top to bottom.

Although the results indicate the presence of three mantle
reservoirs, and indicate that they interact, the mechanism of mixing
cannot be constrained by the helium data. Mixing can occur between
melts derived from different sources (magma mixing) or between the
sources themselves (i.e., solid state mixing). Langmuir et al. (1978)
have Shown that the mixing trends produced by these two processes are

sometimes different, when elemental-ratio mixing diagrams are
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constructed. Unfortunately, the helium concentrations are not amenable
to this approach, since vesiculation clearly alters the concentrations.
E. Conclusions

The present study of helium isotopic variations confirms that the
mantle is regionally heterogeneous. The different regional
relationships between the 3He/4He and 87Sr/865r ratijos add
another constraint to models for the evolution of these
heterogeneities, and provides another geochemical tracer for mantle
processes. In detail, we can make several conclusions.

1. The crushing and melting experiments on a number of samples
from the Central North Atlantic confirm that there is no
isotopic fractionation between vesicles and melt for oceanic
basalts. This, and the lack of any other fractionating
process, allows an interpretation of the isotopic variations
as reflecting the mantle source regions.

2. There are significant variations in total helium concentration
in the glasses, with the lowest values observed near 45°N and
the Azores Platform. Much of this variation can be attributed
to near-surface processes (i.e., vesiculation), hampering
estimates of the concentration variations in the mantle. This
is particularly true for those samples with very high
vesicularities (>5 percent by volume).

3. The MORB samples having trace element and strontium isotopic
characteristics of normal MORB define a crude gaussian
distribution of 3He/4He ratios, with a mean value of 8.4 x

atmospheric and a standard deviation of .3. These samples
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come from all over the world ridge system, suggesting that the

mantle source is global in extent.
Based on the He and Sr isotopic variations, three distinct,
globally represented basalt types can be recognized:
- Normal MORB with 3He/4He ~8.4 x atmospheric and

875r/805p ~,7023-.7025.
- ﬂigﬂ_3He/4He MORB with He/*He > 8.4 x atmospheric

and 875r/865r ~.7025-.7030.
~ Low 3He/*He MORB with 3He/*He < 8.0 x atmospheric

and 87sr/80sr 5 7030.
The variations suggest that these three basalt types are
produced by mixing between three different mantle sources.
The data presented here cannot distinguish between mixing of
sources or mixing of melts.
Based on the classification scheme described above, the high
3He/4He basalts are much Tess common that normal MORB or
the Tow 3He/4He MORB, within the set of samples studied.
If this is representative of the parent population, the mantle
sources for normal MORB and low 3He/4He MORB interact much
more with one another than with the source for high
3He/*He MORB.
The regional distribution of the three basalt types in the
North Atlantic Ocean suggests that there are distinct
geochemical provinces. Basalts erupted near the Azores
Platform between 33-50°N have Tow SHe/*He ratios. South

of 33°N the basalts have the isotopic characteristics of
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normal MORB, while north of 50°N (extending to Iceland) the
basalts have high 3He/4He ratios. The trace element and

major element differences between the provinces support these
distinctions. The samples from 33-50°N ake enriched in the
alkali elements, in incompatible trace elements, and have high
87Sr/86Sr ratios. In contrast, samples from south of 33°N

and north of 50°N are depleted to slightly enriched with
respect to incompatible trace elements, have relatively high
FeO contents, and have low to moderate 87Sr/865r ratios.
Isotopic variations in a suite of dredged basalts from near
the Bouvet triple junction also require the presence of all
three mantle types. This small group of samples has as large
a range of 3He/4He ratios as the rest of the world ocean
(7.0-14.2 x atmospheric). Two samples from the same dredge
have 3He/4He ratios that differ by a factor of 2. In

contrast to the broader geographic trends seen in the North
Atlantic, the isotopic variations suggest that all three
mantle types have intermixed on a local scale.

Constraints on the origins of the three mantle end-members can
be derived from the helium and strontium isotope systematics.
The Tow 3He/4He, high 87Sr/868r basalts have been

derived from a mantle source that has had Tower 3He/(Th+U)

and higher Rb/Sr than normal MORB. The most geochemically
consistent mechanism for producing this component is recycling
of oceanic crust back into the mantle by subduction. The high

3He/4He basalts are partially derived from an undepleted
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source that has had time integrated 3He/(Th+U) ratios higher
than MORB.
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CHAPTER 5

HELIUM ISOTOPIC SYSTEMATICS OF OCEANIC ISLANDS

A. Introduction

Despite the small erupted volume of oceanic island basalt compared
to ocean ridge basalt, the volcanic islands have traditionally figured
prominently in models of oceanic mantle structure. Before the advent
of sampling by dredging and submersible, the islands represented the
only available samples of oceanic crust. Early studies used major
element and petrographic data to characterize the rock types that were
present; it was immediately realized that there is wide compositional
diversity, and that most volcanic ié]ands consist primarily of alkali
basalt suites (e.g. Baker, 1973). Based on these studies, Kennedy
(1933) suggested that tholeiites were absent from oceanic islands.
Following the detailed study of Hawaiian volcanoes, which are primarily
tholeiitic with a thin cap of alkali basalt, it became evident that
tholeiitic basalts are also present (MacDonald, 1949). The prevailing
view was that alkali basalts were derived from a tholeiitic parent by
fractional crystallization (e.g. Tilley, 1950).

Although many of these major element variations can be explained by
variable degrees of partial melting (Gast et al., 1964; Gast, 1968),
the questions raised by these early studies have carried over to the
present day. In particular, it is now clear that some of geochemical
diversity in oceanic rocks is caused by primary heterogeneity within
the oceanic mantle. Beginning with the pioneering work of Gast (1964,

1968), isotopes and trace elements have become powerful tools for
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elucidating the mantle origins of basaltic rocks. Gast (1968) showed
that the incompatible trace element ratios could not be extensively

altered by different degrees of partial melting, and that there must be

~heterogeneities in the oceanic mantle. The isotopic differences

between the mid-ocean ridge basalt (MORB) and the ocean island basalts,
as well as between different islands, cannot be explained by any
feasible combination of fractional crystallization, partial melting, or
disequilibrium melting (Sun and Hanson, 1975; Brooks et al., 1976;
Hofmann and Hart, 1978). These isotopic differences require that the
heterogeneities have existed, in some cases, for time periods in excess
of 1 billion years.

To some extent these heterogeneities are also reflected in the
major element characteristics of the basalts. The alkali basalts from
islands have typically higher and more variable 87Sr/865r ratios
than MORB (Peterman and Hedge, 1970; 0'Nions and Pankhurst, 1974;
Brooks et al. 1976; Sun and Hanson, 1975). Langmuir and Hanson (1980)
have shown that there are significant differences in Fe0/Mg0 between
the Azores, Hawaii and Iceland that cannot be explained by fractional
crystallization or melting processes.

Plate tectonic theory has provided an important framework for
interpreting the geochemical data. Noting the linearity of the
Hawaiian-Emperor seamount chain, Wilson (1963) suggested that the
volcanoes in the chain were formed by a stationary mantle "hot spot”
beneath the moving Tithospheric plate. Morgan (1971) developed this
idea further by suggesting that the heat source is provided by an

upwelling "deep mantle plume," and that such plumes are responsible for



-137-

the formation of most oceanic islands. Morgan also pointed out that
the geochemical differences between MORB and ocean island basalts (as
discussed by Gast, 1968) cou]d‘be explained by this hypothesis, if the
mantle is heterogeneous. This concept found wide acceptance with
geochemists. Schilling and co-workers applied the plume model to the
geochemical gradients observed along the mid-Atlantic ridge near -
Iceland and the Azores (Schilling, 1973, 1975; Hart et al., 1973; White
and Scilling, 1978). In this model, a rising mantle plume beneath the
Azores and Iceland, which is relatively enriched in incompatible
elements, would mix with the depleted upper mantle source for MORB,
producing gradients near the islands (see also chapter 4). Sun and
Hanson (1975) suggested that alkali basalts erupted on oceanic islands
were derived from such an undepleted mantle source that is deeper than
the source for MORB.

The first Nd isotopic measurements lent credence to the two-layer
model, and an observed global negative correlation between
87Sr/865r and 143Nd/l44Nd allowed estimation of "bulk earth"
values for these ratios (DePaulo and Wasserburg, 1976; 0'Nions et al.,
19775 Richard et al., 1976). Several authors have suggested that the
upper mantle had been depleted by the formation of the continents, and
used Sr and Nd mass balances to calculate the mass of the mantle that
has been depleted (Jacobsen and Wasserburg, 1979; 0'Nions et al.,
1980). The results suggest that about one third of the mantle would be
depleted in forming the continents; this would correspond to a depleted
'1ayer about 700 km thick. These calculations were based on the

assumption that the lower mantle is represented by the "bulk earth”

P
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values.

There aré several problems with this simple two layer model.

First, many islands that are depleted relative to bulk earth Sr and Nd
isotope values have rare earth abundances that are enriched. This has
led many workers to suggest that the mantle source region for these
islands has experienced a recent metasomatic event (e.g. Erlank and
Rickard, 1977), which has changed the trace element abundances. In
addition, the Pb isotopic composition of all oceanic basalts is too
radiogenic to have been derived from a chondritic bulk earth (Hofmann
and White, 1980; Chase, 1981). On the basis of the Pb data, Hofmann
and White (1980) proﬁosed that oceanic islands (i.e., plumes) are
derived by remelting of old subducted oceanic crust. This is
qualititavely similar to the recycling models originally suggested by
Armstrong (1968,1981) except that the subduction of sediments is not an
assumed condition. Depending upon the timing and exact nature of the
"recycling," it is possible to obtain isotopic signatures {(of Sr and
Nd) that are similar to bulk earth by this mechanism. Anderson (1982a;
see also DePaolo and Wasserburg, 1979) has shown that the Nd-Sr
correlation could be produced by mixing ancient depleted and enriched
reservoirs. )

The MORB helium results, discussed in chapter 4, imply the presence
of three mantle reservoirs, which is of obvious importance to choosing
between the various proposed models. However, the isotopic variability
withiﬁ MORB is quite limited compared to island basalts (Hofmann and

Hart, 1978). The goal of this study is to use helium isotopes to

~distinguish between undepleted mantle sources and those that have some
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contribution from recycled material by studying oceanic island
basalts. As discussed earlier, high 3He/4He ratios indicate the
presence of primordial helium from a relatively undepleted source. In
contrast, any recycled component would be expected to have been
partially degassed, leading to lower 3He/(Th+U) ratios, and given
enough time, Tower 3He/4He ratios. The nelium results for the
mid-Atlantic ridge presented in chapter 4 (Kurz et al., 1982a) show
that a convenient way to discriminate between these two mantle sources
is to plot 3He/4He VS, 8ZSr/86Sr. Based on the data plotted in

figure 4.7, 3He/4He ratios higher than ~ 8.4 x atmospheric are

indicative of a greater proportion of primordial helium, while recycled

(degassed) material has characteristically lower 3He/4He ratios.
Therefore, the results from the North Atlantic provide a useful
empirical scale that can be applied to the 3He/4He data from

oceanic islands. In this chapter, the terms "high" and "low"
3He/4He ratios will imply values relative to the dividing Tine
between the two groups in figure 4.7, and will be used to indicate
undepleted and recycled mantle characteristics. The term undepleted
will again be used in a relative sense, since the 3He/4He ratio of
pristine-undepleted earth is unknown (see chapter 6).

Several studies have reported 3He/4He analyses from oceanic
islands, primarily Hawaii and Iceland (Polak et al., 1976; Craig and
Lupton, 1976; Kaneoka and Takaoka, 1978, 1980 Poreda et al., 1980;).
The results show that the 3He/4He ratios are characteristically
higher than the MORB values, which is, in a general sense, consistent

with the mantle plume model. However, most of these analyses were
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carried out on the gases in fumaroies and hot springs, which makes
comparison to isotope work on volcanic rocks difficult. Only the work
of Kaneoka et al. (1978; Kaneoka and Takaoka, 1980), on several
Hawaiian rocks, involves samples of reasonably well-documented field
locations. Further, prior to the initiation of this work, no helium
isotopic analyses had been performed on samples from islands that are
considered to represent "bulk earth” (0'Nions et al., 1977) in terms of
Sr and Nd isotopic composition.

Given the small number of noble gas analyses on oceanic islands,
this study represents an attempt to characterize both global and local
helium isotopic variations. In order to document the global
variations, samples of oceanic islands that represent the range of Sr,
Nd, and Pb isotopic compositions were selected. Where possible,
samples that have been analyzed for these isotopes, by other
laboratories, were used. The islands discussed in this study are shown
in figure 5.1. To properly interpret any global variations, it is also
necessary to document and understand any local isotopic variations. To
this end, a somewhat more detailed study of two islands, Hawaii and
Iceland, was performed.

The discussion of the helium isotopic results presented in this
chapter is aivided into four parts: a survey of islands in the
Atlantic and Indian Oceans; variations within the island of Iceland;
variations within a single shield volcano (Loini seamount); and
variations within the island of Hawaii. It is clear from the results
that there are large variations between islands, within islands, within

individual volcanoes, and that helium isotopes provide new insight into
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Figure 5.1:

Map of the Indian and Atlantic Oceans showing the islands
with respect to the mid-ocean ridges. Samples from the

islands that are underlined have been studied in this
chapter.
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the causes of the variations.
B. Samples

Numerous studies have shown that the glassy rims of submarine
basalts trap significant quantities of magmatic gases (Funkhouser et
al., 1968; Fisher, 1971). Since the results discussed in chapters 3
and 4 show that vesiculation and crystallization do not change the
isotopic composition of helium within the glass, such samples are ideal
for noble gas analysis. Although quenched glass may exist on the
submerged flanks of many oceanic islands, samples of this nature have
only been observed near Hawaii (Moore and Fiske, 1969). A number of
the samples from Hawaii discussed below are dredged basaltic glasses.
Several of the samples from Iceland are guenched sub-glacial glasses
that were erupted during the last glacial period (10-12,000 year
b.p.). The ice and ice-melt cover were thick enough to cool the magma
quickly, as in the submarine samples (discussed further below).
However, aside from these two islands (Iceland and Hawaii), glasses
were unavailable.

An alternate sampling approach, described by Anderson (1974) and
Kaneoka and Takaoka (1978), is to extract the gases trapped within
basaitic phenocrysts. One must assume that the gas within these
phenocrysts is in equilibrium with the surrounding magma, and that
there are no xenocrysts derived from other sources. Several
petrographic criteria can be used to evaluate the validity of these
assumptions. First, one must know the site of gas residence within the
crystals to document its magmatic origin. Second, xenocrysts that are

out of equilibrium with the host magma can be distinguished by optical
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strain features (deformation lamellae), compositional zoning, and
corrosion textures. For these reasons, a doubly polished thin section
of each of’the samples analyzed was examined using a petrographic
microscope. Descriptions of the samples and their locations are given
in Appendix II. The Loihi Seamount glasses have been described by
Moore et al. (1982); relevent details of their work are discussed along
with the results.

Within this set of samples, phenocrystic melt inclusions are
ubiquitous, and are the probable site of residence for the gases. As
discussed below, crushing experiments support this hypothesis.

Although the melt inclusions may not be identical to the magmas
containing the phenocrysts (due to post entrapment magmatic evoiution),
they should be isotopically identical as long as the crystals are not
xenocrysts. Examination of the olivine phenocrysts in thin section,
and also in reflected light during hand picking, often shows that the
melt inclusions are aligned along crystal boundaries, implying that
they are incorporated during particular episodes of crystal growth.
Examples of typical inclusions within olivine phenocrysts are shown in
figure AII.1

In all cases, an attempt was made to choose samples that were
relatively unfractionated and also porphyritic; therefore, the samples
were primarily picrites, ankaramites, and olivine rich basalts. In
chdosing porphyritic samples with large phenocrysts for analysis, it is
always possible that one generation of crystals grew from several
different magma batches. In the case of the alkali basalts (from

Tristan da Cunha, Gough, Jan Mayen, La Palma, ahd Prince Edward
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Islands), zoning within the clinopyroxene can be observed in thin
section (see descriptions in Appendix II). The crystals therefore
should provide an "integrated" history of the melts they have grown
from. Trace element studies of the zoning in pyroxenes from alkali
basalts (using the ion probe) have shown that in some cases the magma
batches may have been derived from different sources (N. Shimizu,
personal communication), so phenocrysts must not be viewed
simplistically.
For the present set of samples, xenocrysts were identified in thin
section by the following criteria:
1. Non-uniform extinction of olivine in crossed polarized
light, which is indicative of a deformation history. An
example of these "kink bands" is shown in figure AII-2. These
structures are ubiquitous in metamorphic dunites (see section
on Hawaii). The presence of kink bands in a basaltic crystal

requires that it existed in a solid environment, since
deformation is not possible for a crystal floating in a melt.

2. ' Subhedral or anhedral crystal morphology, which may
indicate reaction with the surrounding melt (disequilibrium),
or disaggregation from a wall rock or xenolith.

3. The presence of fluid inclusions aligned in bands and rows
that appear in metamorphic dunites, but are rare in basaltic
phenocrysts (Roedder, 1965).

Crystals with these characteristics were for the most part not
found. However, in several Hawaiian samples some xenocrysts were
present and, as discussed below, the helium within the fluid inclusions
may "dominate" the helium within true phenocrysts. Since the helium
contents of phenocrysts are extremely Tow (< 4 X 108 cc/gram), one

must be particularly cautious in checking for the presence of

xenocrysts. The helium concentration in dunite and gabbro xenoliths is
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typically 10 to 100 times higher (see below), so even a small
percentage of xenocrysts can have an important effect.
C. Results

1. Istands of the Atlantic and Indian Oceans

The concentrations and isotopic compositions of the helium
contained in basaltic phenocrysts from a number of oceanic islands are
given in table 5.1. In agreement with the hypothesis that helium
behaves as an incompatible element (see chapter 4), the phenocryst
helium concentrations are extremely low (< 3 X 108 ccSTP/gram).

This leads to larger uncertainty in the 3He/4He ratio measurement,

due to greater importance of the blank correction, and larger
uncertainty in the standard (see chapter 2). Where large samples were
available, this could be compensated for by extracting the he11hm out
of a large quantity of phenocrysts (up to 3 grams in some cases);
variable uncertainties in table 5.1 partially reflect this.

The isotopic measurements were confirmed to be reproducible within
the stated uncertainty by duplicate analyses of several samples by both
“crushing and melting (ALR416, ALR266, JMI51A, TK26). In cases in which
no ratio is reported and only an upper 1imit to the concentration is
given, the helium released was not significant1y greater than the
procedural blank. The Targe isotopic variations displayed by this data
set are far outside the uncertainty introduced by the analytical
procedure.

2. Iceland

The helium results for samples from the island of Iceland are

presented in table 5.2. As with the phenocryst samples, these
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Table 5.1: Helium resulfs: Atlantic ahd Indjan Ocean islands

Extraction

Sample Method 4He ccSTP/Qram o 3He/4He
(R/Ratm)

Reunion

R4 Oliv. Crush 1.21 x 1078 .03 13.3

R36  Oliv. Crush 7.1 x 1072 .6 13.5

Bouvet

WJ8B  Plag. Crush 1.4 x 107 .2 12.4

Mauritius

M68  Oldv. Crush 5.2 x 1072 3 11.4

Gough

ALR26G cpx Crush 3.93 x 1078 .09 6.17
Oliv. Crush 1.53 x 1078 .06 6.2

ALRA1G cpx Crush 1.3 x 1072 4.9
cpx Melt <7 X 10710 _—
cpx Crush 5.8 x 10710 9 5.5

Tristan ,

TK 46A O1iv. Crush 7.3 x 1072 8 6.3
0liv. Melt 1.0 x 1072 5.6
cpx Crush 3.5 X 1078 2 5.1

TK 26 Amph. Crush 3.3 x 107/ . 5.20
Amph. Melt 1.3 x 107/ N 1.70

Prince Edward

WJ 21E Oliv. Crush 2.33 x 1078 .05 7.4

Jan Mayen

M 151 07iv. Melt 6.3
Cpx Crush 9.7 x 1072 4 6.8

La Palma

LP 249 cpx Crush 3.4 x 1078 1 7.5

St Helena

SH 13 0ldv. Crush < 1.0 x 107 e
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Table 5.2: Helium results* for Icelandic samples

Samples zz:?;zed 4He ccSTP/gram o 3?§;§2§ o
HS782 Glass <1x107? - — —
HS806 Glass 1.54 x 107/ .06 8.67 .09
HS785 Glass 3.0 x 1078 .2 15.2 4
£7274 Oliv. 1.1 x 1078 N 14.0 .3

Glass 9.3 x 1070 1.0 13.9 .2
EZ 1498 Glass 1.3 x 1078 .1 18.0 .5
FZ 1258 Glass 6.2 x 107° .3 22.2 .3

* ATl samples crushed in vacuo.
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sub-glacial glasses have guite low helium contents, making blank

correction important. In this instance, the concentrations are low due

to extreme vesicularity and probable gas loss by vesicle opening.

Since sub-glacial glasses have not been previously analyzed for
volatiles, the olivine phenocrysts from one of the samples (EZ274) were
extracted for comparison with the glass analysis. The isotopic results
were identical, sdggesting that sub-glacial glasses can be used for
helium isotopic measurements, if they are not completely degassed.

3. Loihi Seamount and the island of Hawaii

Helium analyses of basaltic glasses, phenocrysts, and xenoliths
from the Loihi Seamount and four of the five volcanoes on the island of
Hawaii are listed in tables 5.3, 5.4, and 5.5. In selecting sampies,
an attempt was made to obtain recent eruptives from each volcano. As
shown in tables 5.5 (and Appendix II), the Kilauea and Mauna Loa
samples are reasonably well documented in terms of age.- The four
Kilauea samples were collected from different places on the east rift
of the volcano, and yield isotopic ratios that agree within 2¢. Since
the two Puna Ridge samples were submarine glasses and the other two
were phenocryst separates, this agreement confirms that phenocrysts can
be used to indicate the magmatic 3He/4He. Similarly, phenocrysts
and glasses from Mauna Loa yield identical isotopic ratios.

In contrast, the phenocryst and glass analyses from the Hualalai
dredged samples show significant isotopic variations. However,
petrographic examination reveals the presence of xenocrysts among the

olivines in sample KK 10-1, containing abundant fluid inclusions (see

figure AII.T).
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Table 5.3: Helium Analyses of Loihi Seamount Glasses
Crushed Powder melted
4He 3He/4He o 4He o 3He/4He o
(x10—7ccSTP/g) (x10_5) (x10_7ccSTP/g) (x10"5)
Glasses
KK 23-3 .61 .04 3.20 .12 .65 .01 3.57 .10
29-10 6.21 .1 3.81 .08 1.03 .03 3.71 .14
18-8 2.71 .06 4.41 .09 .17 .03 4.84 .42
2.92 05 4.47 .08
20-14 3.25 .10 3.70 .07
16-1 8.47 .10 4,17 .07
78 H-W2-16 3.79 .10 3.38 .07
24-7 .21 .04 3.14 .30 .99 .05 3.02 .17
25-4. 5.4 .1 3.13 .07 .41 .02 3.24 .13
20-4 5.20 .14 3.33 .10 .056 .006 3.39 .15
17-2 2.78 .08 3.33 .07 .036 .007 3.46 .28
21-2 .29 .01 .639 .03 <.02 - — -

- 27-4 4,01 .1 3.34 .07 .419 .02 3.35 .15
31-12 13.0 .5 2.89 .07 .88 .04 2.84 .08
17-5 3.64 .08  2.77 .07 <.015 ———  —mem -
15-4 .50 .03 2.93 .07

.45 .01 2.81 .07 <.010 -——- — -
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Table 5.4: Helium Analyses of Loihi Dunite Xenoliths*

4

Sample Grain Size _He o
(mm.) (x107ccSTP/g)

KK 27-9A 1-2 13.3 .5

27-98 .5-1.0 18.8 .6
17-5W .5-1.0 3.75 .07
31-12W <.5 2.12 .06

* A1 extractions performed by crushing in vacuo.

3He/4He o
(x107°)
3.31 .07
3.32 .08
2.93 .07
2.98 .07
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Table 5.5: Helium analyses of glasses, phenocrysts, and xenoliths
from the Hawaiian volcanoesd

Location A%g%égéd éﬂg - 3He/4He
- (ccSTP/gram) (R/Ratm)
KiTlauea _ _7
T *Puna 2 East Rift glass 1.51x10 .03 14.7 .5
2 *Puna 678 East Rift  glass 1.88x10~ .04 14.5 .3
3 *66055 crater wall olivine 5.8x10_9 .3 14.0 A
4 57370 1840 lava olivine 1.l4x10_8 .06 13.4 .7
Mauna Loa
5 ML84 1868 flow olivine 1.39x10—8 .05 8.02 .75
6 ML55 1950 Tava olivine 1.15x10—8 .06 8.6 .40
7 185 Kealakekua glass 1.O8x10'7 .03 8.16 .20
8 187 Kealakekua glass 2.37x10 | .09 8.20 .15
9 203-1 Kealakekua glass 2.56x10°% .05 8.26 .21
Hualalai '
Dredged tholeiites
10 KK 9-14  West flank  glass 1.51x107® .03 17.6
11 KK 14=7  West flank glass 2.60x10°% .05 15.2
12 KK 10-1 West flank olivine 5.65x10_9 11 14.4
Xenoliths 1801 flow ,

13 11387-107 dunite. olivine 2.85x10_7 .06 8.99 .18
14 -11  dunite olivine 3.44x10"7 .14 8.91 .18
15 -104 gabbro olivine 3.44x1077 .14 9.15 .18
16 -54  gabbro CPX 1.88x10~ .09 8.67 .25
17 111815 dunite olivine 1.09x10_7 .09 8.60 .25
Mauna Kea
18 48593 Qakala olivine 6.79x10_9 .3 7.90 .46

aan analyses performed by crushing in-vacuo.

*From Kurz et al., 1982b
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4. Evaluation of the Method

From the results presented in tables 5.1-5.5, it would appear that
basaltic phenocrysts can be used to indicate the magmatic 3He/4He
ratio. Several different attempts were made to verify this approach,
each of which gave a positive result:

i) Analyses of phenocrysts and submarine glasses from the same

volcanic center, at Kilauea and Mauna Loa, yielded the same
isotopic results.

ii) Analysis of phenocrysts and glasses from the same sample
(EZ274 from Iceland) also yielded identical results.

iii) Analyses of different phenocrysts from the same sample
(clinopyroxene and olivine from ALRZ26G and TK46A) yielded
identical results.

However, as noted earlier, the success of this method depends

critically on the absence of xenocrysts, and requires careful
petrographic examination of the samples to be analyzed. In several
cases, which are discussed further below, the presence of xenocrysts in
thin section and the high concentration of helium in the xenoliths
(table 5.4) illustrate the importance of petrographic examination.

D. Discussion

1. Crystal-melt partitioning

The low helium contents of the basaltic phenocrysts confirm that
helium is not favorably partitioned into olivine, clinopyroxene, or
plagioclase. Unfortunately, we cannot determine precise partitioning
coefficients (KD). First, it is impossible to know the helium
content of the magma from which the crystals formed, even if it were
assumed to be homogeneous during crystal growth (which is unlikely,
given the common presence of zoned crystals). In addition,

petrographic evidence suggests that the helium resides within melt
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inclusions, rather than within the crystal lattice, so most of the gas
within these crystals is not truly dissolved. Finally, most of the
analyses presented in tables 5.1-5.5 were performed by crushing. It is
possible, however, to set reasonable upper Timits for the values of

KD for clinopyroxene, olivine, and plagioclase. In all the cases
where crushing and melting extractions were performed on the same
sample, more than 85 percent of the helium was released by crushing.
Assuming this is true for all the samples stugied here, and that the
range of helium concentrations in the parental melts were 1070 to

1070 ccSTP/gram, it is quite reasonable to conclude that KD <<.0]1

for all the crystals. This upper limit is further validated by the
fact that the helium measured resides within the melt inclusions. The
petrogenetic implications of this partitioning behavior are discussed
in greater detail in chapter 6.

2. Overall 3He/4He variations

The observed 3He/4He varies from ~5 x atmospheric, for Gough
and Tristan da Cunha ankaramites, to 32 x atmospheric, for the
tholeiites from Loihi seamount. To determine the possibie causes for
the Targe vafiations, it is informative to plot 3He/4He VS.
87Sr/86Sr, as shown in figure 5.2. The two groups that were
observed on this diagram for MORB from the North Atlantic are also
observed in the data from the oceanic islands, but with a much greater
range of values. Samples from Hawaii, Iceland, Bouvet, and Reunion all
have 3He/4He ratios and 87Sr/865r ratios that are higher than
MORB. The trend created by the points from MORB, Reykjanes Ridge,

Iceland, and Loihi seamount are consistent with mixing between an
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undepleted mantle and the depleted MORB reservoir. However, there is
considerable variation within Iceland and Hawaii. In the case of
Iceland, 87Sr/865r data for these samples are not available, so the
3He/4He values are plotted in the center of the range of published
87Sr/865r values. Without this information, it is impossible to
properly evaluate whether the variations within Iceland are consistent
with this mixing hypothesis. Several mixing lines, for different He
and Sr concentrations in the end-members are shown in figure 5.2
(assuming Loihi and MORB are mixing end-members).

In contrast to these "high 3He/4He islands" Tristan da Cunha,
Gough, Prince Edward, La Palma, and Jan Mayen all have 3He/4He
ratios that are lower than MORB but 87Sr/865r ratios that are
higher. These isotopic characteristics require a mantle source that
has had lower time 1htegrated 3He/(Th + U) and higher Rb/Sr ratios
than MORB. The most p]ausib]e mechanism for lowering the 3He/(Th +
U) ratio of a mantle reservoir is degassing. This component will be
referred to as "recycled" because it has presumably been degassed at
some time in the past. Therefore, the overall variations on this
diagram could be explained by mixing of three components: MORB,
undepleted mantle, and a recycled component. The recycled component
could be generated by remelting of subducted oceanic crust, melting of
old metasomatized mantle that has become enriched in U with respect the
He, or contamination of the magmas during their passage through old
crust.

In identifying the origins of these distinctly different helium

isotopic characteristics for the various islands, it is important to
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Figure 5.2:  3He/%He vs 87Sr/86Sy for oceanic rocks.
Locations for which helium and strontium analyses were
performed on the same sample:
MORB (see chapter 4)
Reykja?es Ridge (Poreda et al., 1980; Hart et al.,
1973
Loihi seamount (this study and Staudigel et al., 1981)
Kilauea (this study and Hart, 1973)
Hualalai (this study and D. Clague, personal
communication)
Gough and Prince Edward (this study and Kurz et al.,
1982)

For some of the samples, strontium analyses were taken

from the literature, and the references are listed

below (all helium data from this study):

Jan Mayen, La Palma, Bouvet, and Tristan da Cunha
0'Nions and Pankhurst, 1974

Mauna Loa: O'Nions et al., 1977

Reunion: Ludden, 1978

Iceland: Hart et al., 1973; 0'Nions and Pankhurst,
1974; Sun and Jahn, 1975; 0'Nions et al., 1976

Two mixing lines are shown for compar1son, and were
drawn assum1ng that component 1 has 3He/4He = 8.5

X Ry, 87Sr/86Sr = .7023 and component 2 has
3HeldHe = 32.0 x Ry, 8/5r/86Sr = .70358.

The ratio R is defined as:

4, 86
R o= e

4He

Sr
36

2
Sr

2 1
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examine compositional variations. It is clear from figure 5.3 that all
the Tow 3He/4He islands are primarily alkaline in nature. All of

the exposed volcanic rocks on Tristan da Cunha, Gough, Jan Mayen, La
Palma, and Prince Edward are alkali basalts, whereas Reunion, Hawaii,
and Iceland are primarily tholeiitic. This is illustrated by the plot
of 3He/*He weight percent Ky0 (see figure 5.3). A similar trend,

over a smaller compositional range is observed in the suite of dredged
MORB from the North Atlantic. Although the present data set does not
necessarily characterize all oceanic islands, it seems that alkali
basalts have generally lower 3He/4He ratios. Bouvet and Mauritius
islands are considered to have rock suites that are intermediate
between alkaline and tholeiitic trends (Baker, 1973). Le Roex (1980)
showed that the exposed rocks on Bouvet couid have evolved from a
tholeiitic parental melt by extreme fractional crystallization. In
agreement with the 1ntefmed1ate compositional trends, the samples from
these islands also have intermediate 3He/4He (see figures 5.2 and
5.3).

These results have important implications for models of the origin
of alkali basalt and the structure of the oceanic mantle. The low
3He/4He ratios observed for some alkali basalts shows that they
cannot be derived from undepleted mantle. - The terms "undepleted" and
"undegassed" will be used interchangeably here, which implicitly
assumes that the degassing history and hence the helium isotopic
evolution is related to the fractionation mechanisms for the Rb-Sr,
U-Pb, and Sr-Nd isotopic systems. The isotopic characteristics of

truly undepleted mantle would be 87Sr/868r, ]43Nd/]44Nd, and
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Figure 5.3:  3He/%He vs. Kp0 for oceanic rocks. Localities for
- which K20 and helium analyses were performed on the
same samples:
MORB: see chapter 4
Loihi seamount: this study and Moore et al., 1982
Mauna Loa: this study and Fornari et al., 1980
Kilauea: this study and Moore, 1965
Prince Edward: this study and Voerwoerd, 197L
Bouvet: this study and le Roex, 1980
Reykjanes Ridge: Poreda et al., 1980; Schilling,
1973
Jan Mayen: this study and S. Maaloe (personal
communication)

Where K20 analyses were not available for the
same samples, data for similar rock types from the
same locality were taken from the Titerature:
Gough: Le Maitre, 1962
Tristan da Cunha: Raker et al., 1964
; Iceland: this study Jakobbson, 1972; Sigurdsson et
al.
- 1978; Sigvaldason et al., 1974
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3He/4He ratios close to those expected for closed system
evolution. Unfortunately, it is at present impossible to specify what
the 3He/4He for such a mantle reservoir would be, since the details
of early earth history are unknown (a discussion of the possibilities
is given in chapter 6). However, the highest 3He/4He ratio
identifies the volcanism that is derived from the most undepleted
source. Therefore, the tholeiites from the Loihi seamount are derived
from the most undepleted mantle presently sampled by terrestrial
volcanism, in agreement with the Wilson-Morgan hot spot hypothesis. 1In
contrast, the alkaline islands are not derived from an undegassed
source.

3. Iceland

Although the number of samples analyzed from Iceland is quite small
(see table 5.2), the large isotopic variations correlate with other
geochemical information, and therefore merit é detailed discussion.
Iceland is a volcanic island situated directly on the mid-Atlantic
ridge (see figure 5.1), and has been vigorously studied in the past
decade.. Although the volcanic rocks are as old as tertiary, most of
the work has focussed on the well-defined zones of recent activity,
which are in a general sense extensions of mid-ocean ridge volcanism
(see figure 5.4). Geophysical studies have shown that Iceland differs
from the adjacent ridge segments in several respects: thicker crust,
anomalous topography, higher heat flow to the base of the crust,
anomalous seismic velocities associated with partial melting, and

larger eruptive volume (Palmason, 1971; Vogt, 1974; Saemundsson,

1979). Schilling (1973) proposed that these geophysical anomalies, and
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Figure 5.4: Map of Iceland with sample localities, and 3He /4He
ratios (relative to atmospheric, in parentheses). After
Jakobsson (1972, 1979).
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the geochemistry of the basalts erupted along the Reykjanes Ridge could
be explained by the presence of a mantle plume beneath Iceland. A
number of isotopic studies have confirmed that the mantle beneath
Iceland is heterogeneous (Hart et al., 1973; Sun et al., 1975; 0'Nions
and Pankhurst, 1974; 0'Nions et al., 1976), but suggest that
Schilling's (1973) two end-member mixing model is somewhat
oversimplified (Langmuir et al., 1978; Zindler et al., 1979).

There are also definite major element and petrographic variations
within the rift zones of Iceland (Jakobsson, 1972, 1979; Sigvaldason,
1969; Sigvaldason et al., 1974). Jakobsson (1972) showed that basalts
erupted along the eastern and middie volcanic zones are primarily
tholeiitic, while the Snaefellses zone and southern part of the eastern
zone are primarily alkali basalt. Sigvaldason et al.(1974) showed that
are significant alkali element variations within the tholeiite suites,
with central Ice]ana having the most K rich basalts. Jakobsson (1979)
has shown that Icelands' active rift zones are divided into discreet
dike swarms, whose orientations define the rift direction; each swarm
is geochemically and geologically distinct from its neighbors. Several
studies have also shown that there are isotopic variations within a
single swarm (Zindler et al. 1979; Wood et al., 1979)

Given these important geochemical variations, the helium isotope
measurements were intended to help determine the location and nature of
any mantle plume beneath Iceland. Poreda et al. (1981) have reported
high 3He/4He ratios from dredged basalts from the Reykjanes Ridge
(11-14 x atmospheric). Even higher 3He/4He ratios have been

reported from the helium in hot springs on the island itself (20-22 x
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atmospheric; Polak et al., 1975; Poreda et al., 1980). However, the
highest values were obtained from hot springs between the eastern and
middle zones, making any connection to the geochemistry of the rift
zones tenuous. The only helium analyses of Icelandic rift rocks
yielded ratios much lower than the hot springs (.1-10 x atmospheric;
Mamyrin et al., 1974). HoweVer, these analyses were of bulk rock
samples, rather than phenocrysts or subglacial glasses, and the low
helium concentrations (10"9 to 1078 cc/gram) strongly suggest that
any initially trapped mantle helium has been “swamped out" by
atmospheric or radiogenic helium.

The results reported in table 5.2 and displayed in figure 5.4 show
that there are isotopic differences between the eastern and middle
volcanic zones, and within each zone. The use of subglacial glasses to
indicate magmatic isotopic ratios appears to be valid; the results for
olivine and giass from the same sample confirm this, and allow the
isotopic variations to be interpreted as the result of mantle
heterogeneity. Therefore, the high 3He/4He ratios observed for the
two samples near the central eastern zone (18 and 22 x atmospheric)
imply the presence of an undepleted mantle source beneath this part of
Iceland. The results from the middle volcanic zone also indicate
3He/4He ratios primarily higher -than MORB, but significantly
different from the eastern zone. Based on this limited data set, there
is no apparent "gradient" along the middle zone, which suggests that
simple mixing between the highest eastern zone source and some MORB
type source does not necessarily explain the difference.

The one sample with a Tower 3He/%He ratio (8.67 x Ras
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HS806), indicates the presence of MORB type mantle beneath Iceland,
near Langjokull, and should be characterized by depleted rare earth
element patterns and 87Sr/86Sr ratios <.7030. This particular
sample is, in fact, depleted in the light rare earth elements (La/Sm <
1; P. Meyér, personal communication), and reported 87Sr/865r values
from Langjokull are among'the lowest on Iceland (~.7030; Hart et al.,
1973). Therefore, based upon the classification system delineated in
chapter 4, normal MORB type mantle is present beneath Iceland.

In contrast, the samples from the central part of the eastern
volcanic zone have 3He/4He ratios up to a factor of 2.5 times
higher than the Langjokull sample. It is therefore important to
compare other geochemical studies of this region, to determine the
characteristics of plume-type basalts. In this connection, it is
important to note that the basaltic eruption rate near the central
eastern zone has been higher than the res£ of Iceland during recent
times (Jakobsson, 1972; Saemundsson, 1979). These basalts are quartz
normative tholeiites, which differ from the olivine tholeiites erupted
on the middle volcanic zone (Jakobsson, 1972), and also have higher K
contents (Sigvaldason et al. 1974). The sample with the highest
3He/4He is slightly enriched in the light rare earth elements
(La/Sm > 1.5, P. Meyer personal communication). A number of
laboratories have also reported that the 87Sr/863r ratios of the
tholeiites from central Iceland are higher than those from the other
zones (Hart et al. 1973; 0'Nions and Gronvold, 1973; Wood et al.,
1979). However, Wood et al. (1979) has showed that the 87Sr/86Sr

ratio can vary significantly over a very small geographic area, SO
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these values cannot necessarily be applied to the samples analyzed in
this study.

Despite the uncertainties, several generalizations can be made with
regard to the overall geochemical variations. First, the trace element
and isotopic geochemistry of the Langjokull region is consistent with
the presence of normal MORB type mantle beneath Iceland. The higher
3He/4He ratios, enrichments in incompatiblie trace elements (i.e.,

La), and higher 87Sr/87Sr ratios from central Iceland are

consistent with the presence of more undepleted mantle beneath this
region. The overall trends are consistent with the classification
scheme discussed in chapter 4, and illustrated in figures 4.7 and 5.2.

Muehlenbachs et al. (1974) have reported 580 measurements from
the central eastern zone that are. lower than MORB (~3 permil as
compared to 5.5-6.00 permil). Condomines et al. (1981) showed that the
sampies with low 6]80 values also have higher 230Th/232Th than
other parts of Iceland. They suggested that these results could either
be explained by primary mantle heterogeneity (i.e., differences in Th/U
ratio), or by differences in transit time to the surface. In the
latter case, the residence times would have to be on the order of
10,000 years, and could explain the low 5180 by the consequently
increased probability of interaction with groundwater. The helium
isotope results are more consistent with mantle heterogeneity, since
one would expect groundwater interaction to lower the 3He/4He
ratio. However, the Tow helium content of groundwater, with respect to
most igneous rocks, implies that it would be possible to alter the

magmatic §180 without altering 3He/4He, so this evidence is not
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conclusive. It should be noted that the '30 values for the Loihi
seamount samples that have the highest 3He/4He ratios are also
somewhat Tow (6180 4,5-5.0 per mil; Kyzer and Jévoy, 1981); data from
Hawaii and Iceland suggest a relationship between low §180 and
3He/4He. Confirmation of this will require further analyses of the
central eastern volcanic zone of Iceland.

It is also of interest to note that Jan Mayen has distinctly
different isotopic characteristics, but is geographically quite close
to Iceland.

4, Loihi Seamount and the island of Hawaii

a. Background

As discussed in the introduction, the Hawaiian-Emperor seamount
chain is the classic hot spot locality that led to the Wilson-Morgan
plume model. The hypothesis that mantle plumes near Hawaii and other
linear volcanic chains are fixed in space and time has given plate
tectonics an absolute reference frame {Morgan, 1972). The best
evidence for this model of the Hawaiian Islands is the systematic
increase in age to the northwestern end of the chain (Dana, 1890;
MacDougall, 1964; Jarrard and Clague, 1977), and the geochemical
affinities of the basalts along the chain (Jackson et al., 1980).
Unfortﬁnate]y, detailed geochemical studies of the Hawaiian rocks have
not helped constrain the details of models. For example, an
alternative theory is that the melting and volcanism along the Hawaiian
chain are caused by linear lithospheric fractures (Turcotte and
Oxburgh, 1978). Wnile isotopic and trace element studies have shown

that each volcano on the jsland of Hawaii is chemically distinct
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(0'Nions et al., 1977; Tatsumoto, 1978; Leeman et al., 1980), the
variation cannot be simply related to the age of the volcano, or to the
plume model. The purpose of this study is to use helium isotopes to
trace the contribution of deep mantle material to the volcanic rocks on
the island of Hawaii, and to provide a further test of the piume model.

The age trend on the island is similar to the rest of the chain,
with the ages of the volcanoces increasing to the north (see figure 5.5)
in this order: Loihi seamount, Kilauea, Mauna Loa, Hualalai, Mauna Kea
and Kohala. As the youngest island in one of the most well studied
island chains, Hawaii provides a unique opportunity to study the
isotopic variations between volcanoes in an age sequence, as well as
during the evolution of a single volcano.

Field studies of the exposed (subaerial) areas of the Hawaiian
islands Ted to a general model for the evolutionary stages that each
Hawaiian volcano passes through (Macdonald and Katsura, 1964;
Macdonald, 1968). In this model, the bulk of the volcano is contructed
during a "shield building" stage, which is characterized by voluminous
(non-explosive) eruption of tholeiitic basalt. It is generally agreed
that this requires less than 100 years (Jackson et al., 1972). In
the final stages of the shield building phase, when the eruptive volume
is decreasing, the central caldera collapses and is filled with
eruptives of interbedded tholeiitic and alkalic compositions.

Following caldera filling, the vclcano erupts primarily alkali
basalts. Finally, in the "post erosional stages" after significant
time has passed, the volcano may intermittently erupt nephelinitic

basalts. Gabbroic and ultramafic xenoliths are primarily found in
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these last alkalic and nephelinitic stages (Jackson and Fiske, 1972).
Citing the timing of this sequence and the field relationships,
Macdonald (1968) suggested that the alkali basalts were derived from a
tholeiitic parent by fractional crystallization.. -

Recent studies of the youngest Hawaiian volcano, the Loihi
seamount, have added a complication to this model (Moore et al.,
1982). The summit of the Loihi seamount lies 1 km below sea level, and
dredging has provided the first opportunity to sample the early stages
of Hawaiian volcanism. Moore et al. (1982) have shown that both
tholeiitic and alkali basalts are present.

Helium isotopic analyses of fumarole gases from Kilauea showed that
3He/4He was higher than that observed for most mid-ocean ridge
basalts (Craig and Lupton, 1976). This has now been confirmed by
analyses of phenocrysts from subaerial flows on Kilauea as well as
dredged submarine glasses from the east rift (Kaneoka et al., 1978;
Kurz et al., 1982b). As noted earlier, this conforms with the plume
hypothesis since higher 3He/4He ratios should be observed for
volcanic rocks derived from a deeper, more primitive mantle source.
Kaneoka and Takaoka (1980) reported even higher 3He/4He ratios in
megacrysts from Haleakala volcano (Maui), which showed that there are
helium isotopic variations within the Hawaiian islands. In addition,
two different flows from Haleakala had significantly different
3He/4He ratios (Kaneoka and Takaoka, 1980), which implies that
there are variations within a single volcano. The present study was
intended to characterize the helium isotopic variability both between

and within the most recent Hawaiian volcanic eruptives.



-170-

In selecting samples, emphasis was placed on the most recent
tholeiitic eruptions of each volcano (where possibie), allowing the
comparison of volicanoes which represent the different stages. In
addition, a more detailed survey was performed on dredged glasses from
the Loihi seamount in order to help understand variations within a
single volcano. The results presented here confirm that there are
variations between the volcanoes on Hawaii. The variations can be
interpreted in terms of changing mantle source chemistry during
evolution of the volcano, and provide strong confirmation of the mantle
plume hypothesis. The results from the Loihi seamount and Hualalai
show that there are also variations within a single volcano that can be
related to rock type and petrography.

b. Loihi Seamount - partitioning

The remarkable diversity of basalt types dredged from the Loihi
seamount, ranging from differentiated alkali basalts to tholeiites, has
been described by Moore et al. (1982). The concentration and isotopic
composition of the helium within 15 of the Loihi glasses, selected to
span this compositional range, are presented in tabie 5.3. Since the
vesicularities range from .1 to 41 volume percent (see table 5.6), the
helium was extracted both by crushing and by melting in vacuo, to (1)
compare the glass-melt partitioning with mid-ocean ridge basalts, (2)
determine whether any isotopic fractionation occurs, and (3) determine
the extent to which the highly vesicular samples have degassed.

Kurz and Jenkins (1981) showed that MORB glasses obey equilibrium
glass-melt partitioning between .0l and 3 volume percent vesicles. The

helium partitioning results for Loihi glasses (from tables 5.3 and 5.6)
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Table 5.6: Partitioning values and vesicularities

(from Moore et al., 1982) for Loihi Seamount glasses

Sample Rock Type volume o/o Total 4He vesicles
» vesicles He4 4He glass

KK 23-3 tholeijite 1.3 1.25 .938
29-10 tholeiite 4.2 7.24 6.03
18-8 tholeiite 6.0 2.88 15.94
20-14  tholeiite 5.8 4,12
16-1 tholeiite 2.5 5.0a

78 HW 2-16 tholeiite <.5 6.02
24-7 transitional .1 1.22 .21
25-4 transitional 2.1 5.78 13.19
20-4 alkali basalt 5.6 5.16 91.1
17-2 differentiated 5.7 2.81 81.8

alkali basalt
21-2 differentiated 24.9 .29 >14.5
27-4 * alkali basalt 27.0 4,42 9.57
31-12 * alkali basalt 27.9 14.8 7.18
17-5 * basanite 41.4 3.64 >243.0
14-4 alkali basalt 18 .50
.45 >48

*sample from a xenolith bearing flow (see table 5.4).

aTotal helium calculated from vesicularity, crushed concentration,
and the equilibrium partitioning curve.
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are compared to the MORB results in figure 5.6. Loihi samples with
vesicularities in the range .1 to 5 volume percent lie within the MORB
partitioning field, while there is considerably more scatter for the
samples with higher vesicle contents. Assuming that the partitioning
is not strongly composition dependant, the samples that lie below the
MORB field in figure 5.6 (KK31-12, KK27-4) have probably experienced
gas loss, an'explanation that is consistent with the high-
vesicularities.

Similarly, samples that 1ie above the MORB field must have gained
gas by some mechanism. It is quite possible that the glasses are
heterogeneous on a small scale, leading to different vesicularites
between the sub-samples that are used for this section (point counts)
and for gas extraction. Petrographic evidence supports this hypothesis
for at least one sample (KK 15-4), in which the vesicles are elongated,
indicating active volatile movement before quenching of the glass.

Vesicle heterogeneities on the scale of a single sample cannot,
however, explain the high parititioning value for sample 17-5. First,
this sample had 41 percent vesicles, both in thin section and in the
sample analyzed, which shows that it would be difficult for any part of
the sample to have more vesicles without disaggregating. In addition,
visual examination (under the binocular microscope) shows that the
vesicles are quite large (up to 1 mm), and that most of them are open,
implying that substantial gas loss has taken place. If so, the
partitioning value should plot below the MORB field in figure 5.6.

In this case, it is likely that fluid inclusions within olivine

xenocrysts contribute significant quantities of helium to crushing
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extraction, elevating the apparent gas-melt partitioning. Petrographic
examination of KK 17-5 supports this conclusion, since many of the
olivines within the glass have kink bands and rows of fluid inclusions,
and show evidence of dissolution, suggesting that they are xenocrysts.
The helium analyses of several Loihi dunite xenoliths illustrate
the potential importance of xenocrysts to glass measurements, since the
observed concentrations are higher than the total concentrations in
many of the glasses (see table 5.4). This result is clearly related to
the high abundance of fluid inclusions within the dunite, as is
illustrated in the photomicrographs (see Appendix II). Using phase
equilibria, Roedder (1981) has shown that these fluid inclusions
consist primarily of CO2 that has been trapped at pressures of 3-5
kbar. Given the high trapping pressure, and high abundance of the
inclusions within the xenoliths, it is not surprising that they contain
signficant quantities of helium. In their petrogréphic point counts of
the xenolith bearing glasses (KK17-5, 31-12, and 27-4), Moore et al.
(1982) found between 18-22 volume percent olivine phenocrysts within
the glass. Examination of sample 17-5 in thin section (see Appendix
II) shows that many of these olivines within the glass contain kink
bands and fluid inclusions, and are probably xenocrysts formed by
disaggregation of the xenoliths. Therefore, the analysis of 17-5
probably reflects the helium in the xenocrysts rather than the glass.
Further, the xenoliths must be considered as a source of gas (to the
glasses) that is not necessarily related to the mantle source region.
It is also important to note that the concentration of heljum in

the xenoliths is to some extent a function of grain size (see table
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5.4), with higher concentrations observed in the larger grains. This
is consistent with the petrography of the samplies, since most of these
xenoliths have porphyroclastic texture. The larger olivine grains have
a greater abundance of fluid inclusions than the small grains, making
them appear darker (see Appendix II). One model for the origin of this
texture is that the original coarse grained rock has been partially
recrystallized, resulting in large grains surrounded by the younger
recrystaliized grains. The distribution of helium in these xenoliths
is consistent with this scenario, if the gas was present before the
recrystallization, and hence is more abundant in the original grains.

c. Loihi - isotopic variations

For the samples where it was possible to analyze the helium by
crushing and by melting (of the same sample), there appears to be no
significant isotopic fractionation between vesicles and glass, in
agreement with earlier partitioning étudies (Kurz and Jenkins, 1981;
Kurz et al., 1982a). This is illustrated by the histogram plot of the
difference between 3He/4He ratio in glass and vesicles (figure
5.7). For comparision, the MORB samples, for which crushing and
melting extractions were performed on the same sub-sample (see chapters
3 and 4), are also plotted. The data forms a normal distribution about
zero, with a range of roughly #3 percent. Since the uncertainty of the
3He/4He measurement for MORB glasses is roughly 1-2 percent, and
the uncertainty of the Loihi measurements is 1-3 percent (see table
5.3), this range is within two standard deviations of the uncertainty.
Several of the vesiculated samples (KK 21-2, 17-5, 15-4) had no

detectable helium left in the g]ass,'due to efficient degassing, and
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Figure 5.7: Histogram plot of the difference between 3He/4He
ratio in glass and in vesicles, for Loihi and MORB
glasses. Loihi data from table 5.3, MORB data from
chapters 3 and 4.
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could not be plotted on this diagram.

As discussed by Kurz et al (1982b), the 3He/4He ratios in the
Loihi seamount glasses are among the highest reported for any presently
erupting terrestrial volcano. However, the three analyses reported
earlier (KK20-4, KK23-3, KK18-8) did not span the compositional range
of erupted basalts, and as shown in Table 5.3, do not characterize the
variation in 3He/4He ratio. The 3He/4He ranges from
2.77 x 1070 (20.0 x atmospheric) for an alkali basalt (KK 17-5) to
4.41 x 107° (31.9 x atmospheric) for a tholeiite (KK 18-8). One
sample (KK21-2, a differentiated alkali basalt) has a 3He/4He ratio
significantly lower than this range (4.6 x atmospheric). However,
there is petrographic evidence that KK 21-2 has interacted with
seawater or atmosphere, rendering the isotopic ratio unrepresentative
of the mantie source. Although the glass is fresh and unaltered, this
sample's extreme vesicularity (25 percent by volume), coupled with
small cracks that permeate the glass, suggest that any gas remaining is
no longer representative of the pre-eruptive magma. Since there is
good evidence that vesiculation is not isotopically fractionating
(figure 5.7), the Tow ratio observed for this sample must be a result
of contamination by the atmosphere. The narrow boundary between
adjoining vesicles (typically less than .1 mm) and cracks provide
effective pathways both for gas loss from the vesicles and diffusive
atmospheric contamination. Cracks are lined with clay minerals, which
shows that they were formed during quenching on the ocean fioor. The
efficiency of the degassing is illustrated by the small helium content

of the glass (<1 x 1079 cc/g) and the small quantity of gas relased
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by crushing in vacuo (2.9 x 10-8 cc/g). Given the small boundary
between adjoining vesicles,and the presence of cracks, it therefore
seems 1ikely that this sample has been contaminated.

It is noteworthy that among the other fourteen samples, the
tholeiites have significantly higher 3He/*He ratios. This is
clearly illustrated in the plot of 87Sr/865r VS, 3He/4He
(figure 5.8). The strontium isotopic analyses for these samples have
been taken from Staudigel et al. (1981); the Sr, Nd and Pb isotopic
variations will be discussed in detail elsewhere. It is also important
to note that the xenolith-bearing alkali basalts define a separate
field in this diagram. As discussed earlier, the extremely high helium
concentrations within the dunite xenoliths, and the high abundance of
xenocrysts within the glass, suggest that the mantle source of the
xenoliths must be considered as a possible mixing end-member. The
samples KK 18-8 and KK 31-12 define the extremes not only on the
87Sr‘/86Sr VS, 3He/4He plot, but also on the Sr vs. Nd and Sr.
vs. Pb isotope plots, which lends credence to this argument. However,
it is not clear to what extent the xenolith helium has contributed to
the helium in the glass.

If we assume that all of the modal olivine in these three glasses
are xenocrysts (~20 percent for KK 31-12, 27-4, 17-5) and that the
nelium concentration in the xenocrysts was originally similar to the
highest observed for the xenoliths (KK 27-9A and B:

1.5 x 1070 cc/gm), a maximum of 3 x 10_7 cc STP/gram helium in
these samples would be xenolith-derived. In all three cases, this

could account for a significant percentage of the observed helium
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Figure 5.8:  3He/%He vs 87Sr/86Sr for the Loihi seamount
samples. Helium data is from table 5.3 and the strontium
data is from Staudigel et al., 1981.



-181-

YAAOVA

15987 199

9¢0L Ge0L 17450V ¢e0L
| I _ _
G-} [m] {002
2i-1¢ (m]
e
-5z ¢ NN
®
-0z N hz-0 p-22 [M] N
e-e2” 10GS &
]
oi-62 N 2
N\
S
- 00¢ I
g-81 M |
INIAYIE HLITON3X (]
1TVSYq 11YXTV =
17vSvYq TVNOILISNV AL e - 0G¢

ILITT0HL M



-182-

content (20 percent for 31-12, 68 percent for 27-4, and 82 percent for
17-5). Since the xenocrysts are typically .1 to 1 mm in size, it is
impossible to separate them from the glass without crushing the glass
and hence opening the vesicles. However, we cannot assess the relative
contribution this would make to magmatic helium because all three
samples have greater than 27 percent vesicles, and have therefore lost
much of this original helium. In addition, there appears to be
considerable variation, in concentration and isotopic ratio, within the
xenoliths themselves (see table 5.4).

Finally, it is possible that the mantle source for the xenoliths
has contributed gas to the magma before eruption by interaction in a
magma chamber, or during ascent. Since the xenoliths contain liquid
CO2 inclusions trapped at 3-5 kbar pressure (Roedder, 1981), the
parental source for the xenoliths can provide significant quantities of
COZ‘to account for the extreme vesicularities of these samples.
Therefore, the xenoliths represent a plausible explanation for the
anomalous vesicularity in addition to the distinct 3He/4He ratios.

It can a]so be argued that the xenoliths are in isotopic
equilibrium with their hosts because they are genetically related, and
the mantle source for the alkali basalts is isotopically distinct from
that of the thoeliites. Given the equivocal nature of the evidence
described above, we cannot discount this hypothesis. If the tholeiites
and alkali basalts were derived from the same source, very special
conditions are required to generate the observed 3He/4He
variations. In particular, the alkali basalts must have interacted

with another source of helium, perhaps represented by the xenoliths.
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fn the case of the helium isotopes, the possiblity that "xenolithic
helium" has been added to the Loihi samples and/or magmas cannot be
ruled out.

It is also noteworthy that there are significant variatfons among
the tholeiites, which could also be explained by interaction with
"xenolithic" helium. Since xenocrysts and xenoliths are ﬁot present
within the tholeiites, any such interaction must have taken place in
the magma chamber, or during melting. The isotopic variations require
that the tholeiites are derived from different sources, or that they
have interacted with another source; it is impossible at present to
distinguish between these possibi]itiés.

d. Helium results for Hawaiian volcanoes

The helium measurements on glasses, phenocrysts, and xenoliths from
Kilauea, Mauna Loa, Hualalai and Mauna Kea are presented in table 5.5
and are plotted with the Loihi results in figure 5.9. Since
significant differences between alkali basalts and tholeiites were
observed for the Loihi Seamount and the goal of this study was to
compare the different volcanoes, tholeiites from each volcano were
analyzed Wherever possible. In the case of Mauna Kea, this was not
possible, so the helium was extracted from the phenocrysts within
alkali olivine basalt. As shown in figure 5.9, the 3He/4He ratio
roughly decreases with age of the volcano. Possible explanations for
these variations are:

1. Mantle heterogeneity beneath Hawaii, with each volcano tapping

a different source (or combination of sources) at different stages of

evolution.
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2. Production of radiogenic 4ﬂg during the life of a single

magma chamber, resulting in lower 3He/4 ratios with time.

3. Disequilibrium melting, with the earlier stages of volcanism

representing melting of the helium rich phases.

4. Interaction with seawater, resulting in lower 3He/4He

ratios with time.

We can immediately eliminate recent production of e (point 2
above), since the tholeiites contain so Tittle U and Th, and all of the
rocks discussed here are very young (< 10° years). Using Tatsumoto's
(1978) U and Th contents for Hawaiian tholeiites (~ 200 ppb), only 2 x
1079 cc/gram radiogenic *He would be produced in 10° years. Even
for this maximum time, radiogenic production of helijum in a magma

chamber (or in situ) will be insignificant compared to the helium

contents in the glasses.

As has been discussed by Hofmann and Hart (1978), disequilibrium
melting is unlikely as Tong as enough time is available for local
diffusive equilibrium, and that diffusion rates of cations insure
equilibrium. Given the rapid diffusion rate of helium in silicate
melts, any disequi1ibrium process is least likely for helium.

Finally, interaction with seawater is unlikely because there is so
1ittle helium in seawater (~ 4 x 10"8cc/gram). In order to slightly
modify the magmatic 3He/4He ratio, such a large volume would be
required that drastic increases in 87Sr/86Sr would be observed.

Therefore, the most reasonable expianation for the helium isotopic
variations must involve mantle heterogeneities beneath Hawaii. Since

the Loihi samples have the highest 3Hé/4He ratios, we may infer
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that its mantle source has the highest proportion of primordial

helium. The decrease in 3He/4He with the relative age of the

volcano implies that the relative contribution of primordial helium
decreases as the volcano evolves. This is consistent with the idea
that the heat source for the Hawaiian melting anomaly is derived from a
primordial mantle plume, and that high 3He/4He ratios are

associated with this mantle source. The 3He/4He ratios are also
related to plate motions since once the volcano moves off the "hot
spot," the source of primoridal helium is removed and therefore the
source changes.

A clue to the physical nature of the change in source chemistry
with time may be derived from the vertical trend, defined by the
Hawaiian basalts, on the 87Sr/86Sr'—3He/4He diagram. The trend
indicates that the later stages involve mantle sources with 3He/4He
ratios close to, or lower than MORB (8-9 x atmospheric), with
87Sr/865r ratios similar to the earlier stages. The 87Sr/865r
ratio of Mauna Loa (.7038; 0'Nions et al., 1977) makes it difficult to
explain the variations by mixing between 'a Loihi-type source and a
normal MORB source. If this evolution were due to greater involvement
(by melting) of typical upper mantle, the 87Sr/868f would be
exbected to decrease due to the depleted nature of the MORB source.

e. A model for the Hawaiian Islands

Any plausible model for the helium and strontium isotopic
variations shown in figures 5.2 and 5.9 must also incorporate the field
observations (e.g. MacDonald, 1968), and the geophysical studies of the

area. The sea floor near Hawaii is characterized by a broad region of
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unusually shallow depths associated with heat flow and gravity
anomalies (Watts and Cochran, 1974; Detrick and-Crough, 1978; Detrick
et al. 1981). Detrick and Crough (1978) and Crough (1979) have
suggested that this "Hawaiian swell" is produced by heating of the
lithosphere from below. In their model, the cool lithosphere is
uplifted by the\heating near Hawaii, and as it moves away the sea floor
subsides according to the normal crustal thickness-age relation.
Detrick and Crough (1978) also suggest that the lithosphere is thinnest
beneath Hawaii, and that heat conduction rates suggest that heat must
be delivered by magma transport.

Feigenson et al.(1981) performed a detailed geochemical study of

Kohala volcano on Hawaii, and showed that the eruption rate, and degree

of partial melting decrease with time. They suggested that this could
best be explained by stress induced melting coupled with viscous
dissipation (i.e., melt removal). However, this model does not account
for the geophysical observations, and cannot explain the 3He/4He
variations in figure 5.9. However, their observations are of
fundamental importance.

In Tight of the helijum data, and the geophysical evidence for an
asthenospheric heat source, a hot spot model which involves melting of
the lithosphere is most feasible. In this model, melting is induced
within an upwelling mantle diapir by adiabatic expansion. The plume
becomes partially molten, and the heat is transferred into the
overlying oceanic lithosphere by melt migrat{on, which in turn produces
melting within the Tithosphere. During the initial stages of Hawaiian

volcanism, the volcano is directly over the plume, there is a high
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input of heat, a high degree of partial melting, and high 3He/4He
ratios. The magma that is erupted at the surface is a hybrid produced
by melting within the Tithosphere and asthenosphere (plume) type

melts. After the volcano moves off the plume, the Tithosphere is still
removing the heat by producing melt, but the material transfer from
below is decreased. At this stage, the degree of partial melting,
eruption rate, and 3He/4He ratio all begin to decrease.

An additional constraint is the decrease in 3He/4He with
increasing volcano volume shown in figure 5.10. The model described
above can explain this relationship, if the samples from the smaller
volume volcanoes are the product of higher degrees of partial melting.
The higher degree of partial melting would then be the result of a
greater involvement of melt from the plume, and would consequently have
higher 3He/4He ratios. This is in qualitative agreement with a
decrease in extent of partial melting with volcano evolution (Feigenson
et al., 1981).

In addition to accounting for the time dependence of the helium and
strontium isotopic variations on Hawaii, this model can also explain
the variations within Hualalai and Loihi seamount, since the variations
in helium and strontium isotopes require the presence of mantle
heterogeneity beneath é single volcano. It is quite reasonablie to
expect that the lithosphere and upwelling asthenosphere should have
different 3He/4He ratios, and therefore could expain this variation.

Several important problems arise from this model. First, since
Hualalai has a low volume, is now quiescent, and has a high 3He/4He

ratio (in the tholeiites), extinction must not occur at the same
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evolutionary stage for all Hawaiian volcanoes. This possibility has
previously been implied by Shaw et al. (1980), who showed that there
has been episodicity along the Hawaiian chain, both in eruption rates
and erupted volumes. There is, at present, no physical mechanism to
explain this‘episodicity. An additional problem is that the chemical
and isotopic composition of the lithosphere is unknown, and depends to
a great extent on the details of oceanic crustal formation. For
example, it is not clear if the Tithosphere (below the crust) is made
of lherzolite that has been depleted by extraction of basalt at the
mid-ocean ridge. If it were, it would be doubly depleted, due to the
initially depleted nature of the upper mantle before melt extraction.
This doubly depleted material would not necessarily yield basalt upon
melting, and would not necessarily have any helium left. However, the
higher 87Sr/865r ratio in the Mauna Loa basalts would argue against
involvement of normal MORB type mantle.

Finally, the results from Haleakala volcano (Kaneoka and Takaoka,
1980) do not necessarily conform to the simple model, since extremely
high 3He/4He ratios (up to 37 x atmospheric) were observed in
phenocrysts from alkali basalits. Although the younger of the two
samples analyzed by Kaneoka and Takaoka (1980) had a lower 3He/4He
ratio (C. Chen, F. Frey, personal communicafion) as predicted, the
alkali basalts were erupted late in the voicanoe's evolution and have
3He/4He ratios higher than the Loihi tholeiites.

5. Implications for mantle heterogeneity

a. The mantle plume model

The mantle plume model as envisioned by Wilson (1963) and Morgan



-191-

(1971), is a dynamical explanation for linear island chains. It only
requires that the heat source for the island basalt volcanism be
derived from a mantle upwelling phenomenon. The association with
primitive undepleted mantle has primarily been inferred by geochemists
(Schilling, 1973, 1975; Sun and Hanson, 1975). However, as pointed out
by Hofmann and White (1980), the dynamic aspects of mantle plumes need
not imply the presence of undepleted mantle. They suggest that
subducted oceanic crust that remains within the mantle for long time
periods (1 b.y.) can produce both the heat necessary for upwelling and
the isotopic anomalies.

The helium isotopic results presented in this chapter show that
there are two groups of islands: Tlow 3He/4He and high 3He/4He
islands. The 1ow\3He/4He samples are primarily from islands with
alkaline compositional affinity: Tristan da Cunha, Gough, Jan Mayen,
La Palma, and Prince Edward. The low 3He/4He ratios for these
samples (< 8 x atmospheric) are clearly inconsistent with theif
derivation from undepleted mantle, which is a strong argument against
the presence of geochemically primitive mantle plumes beneath these
islands. These results are not necessarily inconsistent with the
dyhamic aspects of mantle plumes. However, if mantle plumes are
present beneath the Tow 3He/4He islands, they must derive their
heat from non-primitive sources (i.e., low 3He/(Th+U).

[t should also be noted that the subaerial part of each volcano
comprises a small fraction of the total erupted volume. For example,
in the case of Tristan da Cunha, only 4 percent of the volcano lies

above sea level. It is conceivable that the alkali basalts are

o
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underlain by tholeiitic shields. The results from Hawaii show that the
3He/4He decreases as the age -of the volcano increases, and that the
alkali basalts have Tower 3He/4He ratios. However, it is not clear
how these relationships apply to other islands or whether all islands
have tholeiitic shields. Regardless of these uncertainties, the alkali
basalts are not derived from a undepleted source.

The islands with high 3He/4He ratios are tholeiitic in
composition. Hawaii and Iceland display the highest 3He/4He
ratios, and in these two cases, there is good evidence for the presence
of primitive, undepleted mantle. Further, there are significant
variations on a local scale (~30 km) that imply helium isotopes can be
used to trace undepleted mantle. In both Hawaiian and Icelandic
samples, the locally highest 3He/4He ratios are associated with the
youngest, most active volcanism. These results are entirely consistent
with the presence of primitive undepleted mantle beneath these two
islands, and therefore with the plume model.

The helium isotopic variations within the island of Hawaii provide
the most convincing evidence for the plume model. The highest
3He/4He ratios are observed for tholeiite samples of the youngest
volcano (Loihi seamount) and decrease in the older volcances (Kilauea
and Mauna Loa; see figure 5.9). Using high 3He/4He ratios as a’
tracer of primitive mantle, this variation can be readily explained by
the plume model. The plume location is fixed (Morgan, 1981), and is at
present directly below the Loihi Seamount. As the Pacific plate moves,
the volcano slowly moves farther away from the hot spot, in a pattern

that has been occurring for at least 70 million years (Jarrard and
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Clague, 1977). As the volcano moves away, the helium isotope ratio
decreases due to the waning influence of the primordial helium from the
hot spot. As this occurs, the volcano nears extinction, because the
heat source is also removed. Since the samples analyzed in this study
are, for the most part, recent eruptives of each volcano, the observed
variations reflect the aging process that any Hawaiian volcano passes
through. In this model, the Hawaiian volcanoes each represent these
different stages:

1. In the early stages of volcanism, the plume influence is

strong, which leads to high 3He/#He ratios (Loihi

seamount).

2. At the intermediate stages, the 3He/%He ratios are

slightly Tower than the early stages, due to increased

involvement of "normal" upper mantle helium (Kilauea).

3. At the end of shield building, the 3He/4He ratios are

more typical of upper mantle helium (~8 x atmospheric); Mauna

Loa).

4. The final stages of volcanism also have low 3He/4He

ratios, characteristic of the normal upper mantle (Mauna Kea).

b. The layered mantie

The 1isotopic variations in oceanic basalts are of fundamental
importance to structural models of the earth's mantie. In particular,
the proven presence of heterogeneities helps to constrain possible
modes of mantle convection. Although it is generally agreed that
convection is the major mechanism of terrestrial heat loss
geophysicists.are presently debating whether convection is mantle-wide
(Elsasser et al., 1979) or layered (Richter and McKenzie, 1981). An
example of the interrelation between geochemistry and convection models

has been presented by Richter and Ribe (1979), who modeled the effect
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of shallow mantle convection on Sr isotopic variations in the south
Pacific islands. Clearly, to evaluate the geochemical constraints on
these convection models, it is necessary to understand the origin of
the chemical heterogeneities. The helium isotope variations offer new
clues regarding both the nature and the origin of the chemical
heterogeneities.

One of the most important results obtained in this study is that
basalts from Tristan da Cunha and Gough islands have Tlow 3He/4He
ratios. Samples from both these islands have Sr and Nd isotopic
compositions close to "bulk earth" (0'Nions et al., 1977). The low
3He/4He ratios show that these islands cannot be derived from
primitive undepleted mantle, and that the negative ]43Nd/]44Nd -
87Sr/865r correlation must not be viewed simp]istica]1yQ The
helium results suggest that these islands are derived from a recycled
mantie source, that is, one which has had the 3He/Th+U lowered by
degassing in the past. If this recycled source is old oceanic crust,
the Nd-Sr anti-correlation may be partially produced by mixing. This
has been suggested independently by Anderson (1982a), who also points
out that a third mantle reservoir can explain the "Pb paradox" and the
trace element variations.

In contrast to the Tow 3He/4He - high 87Sr/86Sr islands,

Iceland and Hawaii have somewhat lower 87Sr/868r ratios and up to
four times higher 3He/4He ratios. Thus the most primitive islands,
in terms of helium isotopic composition, are depleted with respect to
“bulk earth" Sr and Nd isotopic compositions. This also suggests a

mixing origin for the Nd-Sr correlation.
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These distinct jsotopic trends (illustrated in figure 5.2) are
reflected in the major and trace element compositions of the basalts.
The samples with lower 3He/4He ratios in general héve higher K50
contents (see figure 5.3). This is true within individual suites of
samples (from Loihi seamount and MORB from the North Atiantic), and in
the global variations. Since the 3He/4He islands are tholeiitic in
character, they generally have higher Fe0/Mg0 ratios. The islands with
intermediate 3He/4He ratios (Bouvet, Reunion, and Mauritius) have
overall major element chemistry that is transitional between tholeiitic
and alkalic (Upton and Wadsworth, 1972; Baker, 1973; le Roex, 1980).

As has been discussed by Langmuir and Hanson (1980), not all the
differences in Fe0/Mg0 between islands can be explained by
fractionation processes, and mantle heterogeneity must also explain
some of the major element differences. The correlations between
3He/4He and maj&r elements lend support to this argument.

In view of these data, any mantle model must contain three
different reservoirs having distinct isotopic, trace element, and major
element characteristics. In.agreement with the classifications based
on the MORB data (chapter 4), these three types can be summarized as
follows:

1. Undepleted mantle has 3He/%He ratios >9.0 x atmospheric, low

alkali abundances, relatively high iron contents, 875r/86sr

ratios »>.7030, and rare earth patterns that are depleted to
enriched in light rare earths.

2. Depleted mantle has 3He/%He ratios between 8.0 - 9.0 x
atmosgher1c, Tow alkali abundances, high iron contents,
875r/86Sr ratios <.7030, rare earth patterns that are depleted
in 1ight rare earths.
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3. Recycled mantle has 3He/4He ratios <8.0 x atmospheric, low
FeO/Mg0 ratios, 8/5r/806Sr ratios >.7030, high alkali
abundances, and light rare earth enriched abundance patterns.
The geographic distributions suggest that all three mantle

reservoirs are global in extent, but must be able to interact with one
another. This is consistent with, but does not prove the existence of,
a layered mantle. The helium data cannot allow a distinctfon between
mixing of melts of of mantle sources (see also chapter 4). The origins r
of the three mantle types will be further discussed, in conjunction
with geophysical data, in chapter 6.
E. Conclusions

The principal conclusions that can be derived.from this study of
oceanic islands are summarized below. A more detailed discussion of
the implications to mantle geochemistry and degassing is given in
chapter 6.

1. The use of the helium trapped within phenocrysts to indicate

magmatic 3He/4He ratios is valid, as long as the petrography is

carefully examined. In particu]af, xenocrysts must not be present,

since they can contain significant quantities of helium that is

unrelated to the host magma.

2. Extractions performed on phenocrysts confirm that helium behaves

as an incompatible element. Although it is impossible to

quantitatively calculate the partitioning value, we can estimate an

extreme upper limit (KD <</.Ol).

3. The glass-vesicle helium partitioning can be used to identify

samples that have gained or lost gas. When the Loihi seamount

samples are compared to the MORB equilibrium partitioning, several
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samples lie above or below the trend. The samples that lie below
the trend have lost gas by vesicle-opening. Those that lie above
the trend have gained gas, either by pre-quenching migration, or by
the addition of gas-rich xenocrysts.

4, Within the experimental uncertainty of the measurements, there
is no isotopic difference between the glass and the vesicles for
the Loihi samples, in agreement with MORB results (see chapters 3
and 4).

5. There are significant global variations in mantle 3He/4He
ratios that require the presence of at least three different
reservoirs within the oceanic mantle. The variations observed for
ocean island basalts can be explained if island basalts are
mixtures of the different sources. While the range of 3He/4He
values for ocean island basalts is much larger than for MORB, this
explanation can apply to both ba§a1t populations (see chapter 4).
6. The most undepleted sources (i.e., highest 3He/4He ratios)

are sampled by volicanism on Iceland and Hawaii, which suggests that
the Nd-Sr correlation alone cannot be used to judge which source
regions are primitive. All of the islands that have high

3He/4He ratios consist primarily of basalts with tholeiitic
affinities: Hawaii, Iceland, Bouvet, Reunion, and Mauritius.

7. There are significant variations within Hawaii and Iceland that
must be explained by local mantie heterogeneities. On Hawaii, the
3He/4He decreases with the age of the volcano, and with with
increasing volcano volume. These variations are consistent with

the plume model, if the plume is at present directly below Loihi
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Seamount and if the lithosphere is involved in producing Hawaiian
magmatism. On Iceland, the helium isotopic variations are also
consistent with the plume model, since the highest 3He/4He

ratio is observed for central Iceland, where the eruptive rate is
presently the highest.

8. The lowest 3He/4He samples are alkali basalts from Tristan

da Cunha and Gough, which shows that these islands are not
representative of primitive mantle. The lowest 3He/4He samples
are the most enriched in alkalis; this is true for the overall
global variations as well as within individual rock suites (Loihi
and North Atlantic MORB). Within the Loihi suite, the alkali
basalts have the lowest 3He/4He ratios, but are still

significantly higher than alkali basalts from Gough and Tristan.
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CHAPTER 6
IMPLICATIONS FOR MANTLE HETEROGENEITY AND DEGASSING t

A. Introduction

Theories describing the origin of the atmosphere and the
geochemical evolution of the mantle are inextricably linked to the
earth's thermal history. Since the influential papers by Brown (1949)
and Suess (1949), it has generally been recognized that the atmosphere
was formed by degassing of the solid earth. Delivery of heat and gases
to the earth's surface is, at present, accomplished by mantle
convection and ultimately volcanism. It is therefore reasonable to
assume that the histories of both processes have been related;
however, there is Tittle agreement as to the time dependence of either
mantle convection or geochemical evolution. The approach taken in the
preceding chapters has been to study the present-day staie of the
mantle, and to ascertain the origins of‘geochemical heterogeneities in
the mantle. In this chapter, I attempt to relate the helium isotopic
results to models of the structure and evolution of the mantle, and
hence the degassing history of the earth. As discussed in previous
chapters, the helium data suggest the existence of three different
mantle reservoirs, and can therefore provide important constraints on
mantle models.

While it is generally agreed that the mantle is convecting
(Stevenson and Turner, 1979), there is no consensus as to the details
of the convection. One set of models calls for convection cells

extending throughout the whole mantle (Davies, 1977; 0'Connell, 1977;
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Elsasser, 1979), while another set of models calls for layered
convection, with each Tayer containing cells of a different scale
(Richter, 1973; McKenzie and Weiss, 1975; Richter and McKenzie, 1981).
The mode of convection is criticially dependent upon the depth
variation of density, viscosity, and temperature, which are in turn
controlled by the chemical composition and initial thermal state of the
earth. At present, it is impossible to unequivocally choose a single
model, but we can use available geochemical and geophysical
observations to choose a viable working hypothesis. As discussed
below, the model that seems most consistent with all the evidence is
one with a two Tayer mantle,.

The most convincing evidence for a layered mantie comes from
isotope geochemistry. The Sr, Nd and Pb variations show that different
mantle reservoirs must have been separated for long periods of time
(0'Nions et al., 1977; Hofmann and Hart, 1978; Sun, 1980). Mass
ba]ante calculations (using Nd) have shown that if the continents were
derived from an undepleted reservoir (resulting in MORB type depeleted
mantle), 30-50 percent of the mantle is required (0'Nions et al., 1979;
Jacobsen and Wasserburg, 1979). While the He and Pb isotopic
variations show that this is somewhat oversimplified, and that more
than two mantle types are required, this calculation is useful with
regard to mantie models: it suggests that a significant part of the
mantle could be undepleted. This conclusion is supported by the high
3He/4He ratios (compared to normal MORB) observed for Hawaii and
Iceland (see chapter 5). However, the low 3He/4He samples obtained

from other islands show that the continents are not the only enriched
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reservoir. This may affect the Nd mass balance calculations, depending
on the volume of recycled maferia] stored in the mantle.

To keep large parts of the mantle separate for long periods of time
in the presence of convection, requires either a layered mantle or one
which has large Tump-like heterogeneities (Hofmann et al., 1978). A
lumpy mantle model, which involves whole mantle convection, has been
proposed by Davies (1981). One important problem with such a model is
that convection tends to homogenize and distort any lumps (McKenzie,
1979). Further, the lumps must account for the ocean island volcanism,
which is undepleted, long lived, and spatially fixed. For example, the
Hawaiian-Emperor seamount chain has been erupting lavas of similar
composition for the last 70 m.y. (Jackson et al., 1981), and, as shown
by the helium data, is tapping a undepleted source. If this type of
volcanism is to be explained by a Tumpy mantle, the advection
velocities must be much lower than recent estimates (Elsasser et al.,
1979) and some means of accounting for the uniform eruptive
compositions must be found (see also Hofmann et al., 1978).

A good deal of geophysical evidence for a layered mantle exists.
Seismic studies have revealed a prominent velocity discontinuity at 650
km depth that was initially attributed to the effect of higher iron
content and density below this depth (Birch, 1961; Anderson, 1967;
Press, 1972). Recent work has shown that this discontinuity does not
necessitate compositional differences, but can also be explained by
phase changes due to increasing pressure (Anderson, 1976; Lieberman,
1978; Liu, 1978). Richter and McKenzie (1981) have pointed out that

either compositional differences or phase changes can inhibit
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convection through this discontinuity, depending on the thermodynamics
of the phase change, and the magnitude of the density contrast. ~Some
evidence for a barrier to convection comes from the Tack of éubduction
zone earthquakes below 700 km (Isacks and Molnar, 1971; Richter, 1979),
which suggests that the downgoing slab does not penetrate the
discontinuity.

A particularly important and promising geophysical observation
involves the use of gravity anomalies. When long wavelength gravity
anomalies are correlated with long wavelength bathymetry, isostatic
causes can be ruled out, and the most likely explanation is convection
in the upper mantle (McKenzie, 1977; McKenzie et al., 1980; Watts and
Daly, 1981). McKenzie et al. (1980), using this approach in the
Pacific, found good correlation between Tong wavelength gravity and
bathymetry, and observed a characteristic wavelength of 1500-2000 km
that was coﬁsistent with convection cells aligned parallel to the plate
motion. This type of convection has been observed in experiments
involving two layer convection (Richter and Parsons, 1975; Richter,
1978). While this observation does not prove the existence of
two-Tlayer convection, such a small wavelength would be very difficult
to produce with'who1e mantle convection (i.e., extending to 2900 km
depth).

Another argument concerns the earth's thermal budget. The
abundance of K, U, and Th in most oceanic basalts suggests that their
mantle source regions do not contain enough of these heat producing
elements to generate the observed surface heat flow (Clark and

Turekian, 1979; O'Nions et al., 1979). One possible explanation is
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that the lower mantle contains more heat, and that there is a thermal
boundary layer between the upper and lower mantle. This arrangement
could Tead to Tayered convection cells (e.g. Richter and Parsons, 1975).

The effects that layered convection would have on the terrestrial
heat budget have been discussed by McKenzie and Weiss (1975) and
McKenzie and Richter (1982). McKenzie and Richter (1982) have
performed model calculations showing that the present day heat
flow/heat production ratio (rough]y;Z) can best be attained by a mantle
that is layered, with each layer having its own convection scale. If
the convection extended from the core to the surface, the heat
flow/heat produced ratio would be closer to 1. The primary uncertainty
in this argument is the estimate of heat production in the earth, which
is strongly composition dependent. If current estimates of the mantle
K content are correct (~200-400 ppm; Hurley, 1968; 0'Nions et al.,
1979), then this is reasonable. However, it should be noted that a
chondritic earth would have a K content of 800 ppm.

In summary, the weight of evidence seems to favor a layered mantle,
although none of the arguments discussed above can alone prove the
layered mantle hypothesis. Since the helium data are more consistent
with a layered mantle, this will be a starting assumption for
constructing a model.

The helium data presented in chapters 4 and 5 strongly suggest the
presence of three distinct mantle reservoirs, which must be included in
any mantle model. The basaltic isotopic variations were interpreted to
be the result of mixing between three "end-members,"” but aside from the

depleted reservoir, the end-members are not uniquely defined by the
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data. Before constructing a model, it is therefore necessary to
describe potential end-members.

B. Mantle Models: Constraints from the Helium Isotopes

1. Identification of the undepleted end-member

Helium isotopes are useful in identifying which mantle sources are
undepleted (or undegassed) relative to one another. However, the
question naturally arises as to the identity of the most primitive
mantle reservoir, i.e., the one that has remained most unfractionated
(i.e., undegassed) since the earth's formation. Given the
three-component mixing diagram described above, it is important to
constrain the possibilities for this potential end-member. It should
be noted at the outset that such a "closed" reservoir may no longer
exist. Since a chondritic, bulk earth, reference model is often used
to discuss Sr and Nd isotopic evolution (DePaulo and Wasserburg, 1976;
Richard et al., 1976; 0'Nions et.al., 1977), the helium isotopic
evolution will be evaluated in such a case. This exercise assumes that
the material that formed the earth was somehow related to the
meteorites that are now available for study.

Three noble gas components are generally recognized in stony
meteorites: trapped, radiogenic, and cosmogenic (Heymann, 1972). In
gas rich meteorites that allow the relative characterization of these
components (by stepwise heating), the trapped gases have been divided
into "solar" and "planetary" (see for example Pepin, 1968; Black,
1972a, 1972b). The He/(Th+U) ratio of gas rich meteorites is high
enough that it is not necessary to correct for radiogenic 4He. The

solar gases have 3He/4He ratios of ~4 x 10‘4, which is very
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similar to the present day solar wind (Geiss et al., 1972; Warasila and
Schaeffer, 1974), and are generally thought to result from solar wind
implantation in space (Heymann, 1972). The planetary gases have
3He/4He ratios near 1.4 x 1074 and have noble gas abundance

patterns similar to earth's atmosphere (hence the name "planetary").
The present day solar wind 3He/4He ratio is probably not
representative of the initial value for the earth since deuterium’
burning in the sun has been increasing the solar 3He/4He. Using
estimates for primordial He/H and D/H, Trimble (1975) suggested that
the early sun had a 3He/4He ratio <2 x 10'4. Therefore, for the
present discussion, the planetary 3He/4He of 1.4 x 107% will be
adopted as an initial value for the earth.

Given the assumed initial 3He/4He ratio, it is now necessary to
choose initial U, Th, and 3He contents for the earth. Chondritic
meteorites have relatively constant present day U and Th contents: 15
and 45 ppb, respectively (Morgan, 1971). These values are somewhat
lower than, but not totally inconsistent with estimates based on
terrestrial rocks and heat flow (Hurley, 1968a,b; Jacobsen and
Wasserburg, 1979; 0'Nions et al, 1979). Unfortunately, choosing an
initial 3He content is not as straightforward because of the large
observed range and the often dominating effect of spa]]dtion and solar
helium. Nevertheless, a reasonable range for planetary chondritic
3He concentration is 10‘10 to 10‘7 cc STP/g (Mazor et al.,

1970). However, gas rich meteorites often have 3He concentrations in
excess of 10~/ cc STP/gram, and several authors have shown that most

'of the planetary trapped gases are contained in minor mineral phases
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(Reynolds et al., 1978; Srinivason et al., 1978). With these
uncertainties in mind, when one attempts to calculate 3He/4He
evolution for a closed system chondritic earth, the results depend
primarily upon the initial 34e content. Several evolution lines for
the assumed initial 3He/4He, U, and Th and various initial 3He

contents are displayed in figure 6.1.

Clearly, if the earth had 3He contents > 10‘8 cc/gram, any
unfractionated reservoir would retain its initial 3He/4He ratio
(assumed to be 1.4 x 10~% or 100 x atmospheric). This suggests that
mantie reservoirs with 3He/4He ratios higher than those observed to
date are theoretically possible (i.e., > 37 x atmospheric; Kaneoka and
Takaoka, 1980). On the other hand, this calculation illustrates why
helium isotopes alone cannot constrain the extent to which the earth is
degassed: 1if the earth originated with a 3He content‘of ~1078
cc/gram, it could be 90 percent degassed and would still have
reservoirs with 3He/4He ratios higher than 20 x atmospheric.

Therefore, since the jnitial 3He content is unknown, the presence of
high 3He/4He ratios or present day outgassing (e.g. Jenkins et al.,
1977) does not prove the existence of "pristine" mantle.

Assuming a normal MORB concentration of 1.2 x 1070 cc 4He/gr‘am
(see chapter 4) and that MORB is generated by 20 percent partial
melting, the 34e content of "normal® oceanic mantle is 2.8 x 10"‘11
cc STP/g. At this concentration, it would only take 700 million years
for the initial 3He/*He of 1.4 x 10~% to change to the MORB
3He/4He (see figure 6.1). In a qualitative sense this confirms

that the mantle source for MORB is depleted with Eespect to 3He. In
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Figure 6.1: Closed system 3He/%He evolution for an assumed
chondritic earth with U = 15 ppb, Th = 45 ppb, and
initial 3He/%He = 1.4 x 10-%4. The curves are
calculated with these conditions and different initial
3He concentrations.
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contrast, the highest observed 3He/4He ratios (Loihi Seamount for
example) show that the mantle source regions for these samples must

have had a time integrated 3He content greater than 1079 cc

STP/gram (see figure 6.1). These concentration estimates have
important implications for the earth's helium budget, and are discussed
in greater detail beiow.

Another way of evaluating the potential end-member is to see if the
observed 3He/4He and 87Sr/865r variations can be explained by
mixing. Figure 6.2 shows the range of terrestrial 3He/4He and
87Sr/86Sr values for comparison (on a semi-log scale). The bulk
earth Sr isotopic value has been derived from the Sr-Nd
anti-correiation by a number of authors (e.g., O'Nions et al., 1977).
It is assumed, for the purposes of this discussion, that this
hypothetical bulk earth also had planetary 3He/4He ratios. As
illustrated in ffgure 6.3, much of the observed variation (in the high
3He/4He isTands) could be explained by mixing between a normal MORB
reservoir and this undepleted bulk earth reservoir. This does not
prove the existence of such a reservoir, but only shows that it could
explain observed variations. Indeed, this bulk earth reservoir is not
necessary since many of the observed variations can be explained by
mixing between observed isotopic extremes, as described earlier (see
chapter 5).

2. ldentification of the recycled end-member

The 3He/4He and 87Sr/865r data presented in chapters 4 and
5 argue strongly for a recycied component within the mant]e. The

question at hand is to ascertain the origin of this recycled mantie
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Figure 6.2:

3He/%He plotted against 87Sr/86Sr for terrestrial

materials and meteorites.

Data sources:

—ch?ndriges: Mittlefehld and Wetherill (1979); Heymann
1971

-bulk earth: O0'Nions et al. (1977)

-seawater: Clarke et al. (1976); Faure and Powell (1972)

~continental shield: Tolstikhin (1978); McColloch and
Wasserburg (1978)

-oceanic detrital sediments: Dasch (1969)

-average)crust: O0'Nions et al., 1979; Hart and Allegre
(1980

Oceanic detr1ta1 sediments are assumed to have the same
range of 3He/ He ratios as continental gases. Bulk
earth 3He/4He values are plotted between planetary

and solar meteoritic gases (see text) Meteorite
spallation helium, which can have 3He/4He > 10-4,

has been ignored.
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- BULK EARTH" o

Two-comoonent mixing lines on the 3He/%He vs.
875¢ /865y diagram. Data fields are from figure 5.2
(only islands with 3He/ He ratios greater than 8 x
atmospheric). The m1x1ng curves were calculated assuming
that component 1 has 3He/4%He = 8.4 x atmospheric,
87Sr/ 6Sr = .7023 (MORB) and component 2 has
3He/%e = 100 x atmospheric, 8/Sr/86Sr = .705
("bulk earth," see text).
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type, an endeavor necessarily somewhat speculative. As discussed
earlier, possibilities for lowering the 3He/4He while raising the
87Sr/86Sr of the basalts are:

1) Contamination of the magmas by seawater addition near the
surface.

2) Contamination of the magmas by interaction with the crust through
which they must pass.

3) Metasomat1sm in the mantle, involving separation of He from U and
Th. X

4) Recycling of oceanic crust into the mantle via subduction.

Since seawater's He/Sr ratio is much lower than that of the
basalts, possibility No. 1 can be e]iminéted; addition of seawater
would have little effect on the 3He/4He but would drastically
increase the 87Sr/86Sr. Contamination by interaction with the
crust (No. 2) is unlikely in Tight of the MORB results. The oceanic
crust at spreading centers is young and also thin, making any decrease
in 3He/4He ratio very unlikely, yet Tow 3He/4He are aiso
observed in some MORB. Therefore, the low 3He/4He ratios probably
reflect the characteristics of the mantle.

On the basis of presently available data it is not possible to
completely rule out metasomatism as a mechanism for Towering
3He/4He. However, the crystal-melt partitioﬁing results (see
chapters 3 and 5) suggest that helium behaves as an incompatible
element with respect to plagioclase, clinopyroxene, and olivine. This
impiies that melting processes alone are not effective at altering the
3He/(Th+U) ratio, since Th and U are also incompatible elements

(Tatsumoto, 1978). It is possible to change this ratio by selective



-213-

retention of Th and U in minerals such as apatite, but phases such as
this have not been identified in the oceanic mantle. Given the ad-hoc
nature of this fractionating mechanism, metasomatism cannot be even
qua]ifatively evaluated.

The most feasible source of the recycled component is subducted
oceanic crust that is mixed back into the mantle. A simple mass
balance calculation illustrates the volumetric importance of this
process. Assuming the subduction rate is equal to the crustal
production rate (3 km2/yr, Williams and von Herzen, 1974), and that
the subducted oceanic crust is 7 km thick, roughly
6.3 x 1016grams/year is subducted at present. Only 3 percent of this
rate is sufficient to produce the total present day accretion rate of
island arcs (using the estimate of Karig and Kay, 1981). If we
extrapolate this subduction rate back through the age of the earth,
2.8 x 1020 grams will have been added to the mantle, which is ~30
percent of the mass of the upper mantle (shallower than 650 km). This
should be a minimum value since the subduction rate may have been much
faster in the past, due to greater heat production and faster mantle
convection (Dickinson and Luth, 1971; Bickle, 1978).

The 3He/4He of the subducted material, and its effect upon
mantle geochemistry, depends to a great extent upon the composition and
fate of the downgoing slab. Armstrong (1968) was the first to point
out the potential importance of subducted material to geochemical
mantie evolution. He emphasized the role of recycled continental
material as sediments (see also Armstrong, 1981), although the amount

of sediment actually subducted is a controversial issUe (Karig and Kay,
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1981). Dickinson and Luth (1971) showed that the large volume of
subducted material could have an important effect on mantle
geochemistry regardless of the amount of recycled sediment.

Until recently, geochemists could not distinguish the isotopic
signature of recycled mantle from that of undepleted mantie. Based
primarily on Pb isotopes, Hofmann and White (1980) and Chase (1981)
have shown the need for a third mantle reservoir, aside from the
depleted and undepleted ones. Hofmann and White (1980) suggest that
mantle plumes (i.e., oceanic islands) are produced by remelting of old
subducted crust that has been stored at the core-mantle boundary.
Ringwood (1975) also suggested that subducted material penetrates to
the base of the mantle, but implies that it is never re-enters the
convecting system. However, Hofmann and White (1980) pointed out that
the oceanic crust can contain enough K, U, and Th to produce thermal
anomalies, and thereby induce density instability. Anderson (1979a,b)
suggested that the recycled oceanic crust is restricted to the upper
700 km of the manf]e.

The possible effects of recycling on the mantle 3He/4He ratios
depend critically on the extent to which the slab is degassed. For
examplie, assuming a mean helium content for the oceanic crust is
1.2 x 1072 cc STP/gram (see chapter 4), then to generate the oceanic
3He flux (4 atoms/cmz/sec; Craig et al., 1975; Jenkins et al.,

1978) requires degassing of 5 km of the crust. If we take the highest
observed MORB concentration as the crustal helium content
(2.5 x 1070 cc/g), only 2.5 km of degassed crust is required. This

degassing is an efficient way to separate He from Th and U in the
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crust, since neither Th or U will be lost, and U may be added by
interaction with seawater (Mitchell and Aumento, 1976; MacDougal,
1977). The helium isotopic evolution of the slab depends on the extent
of the degassing. The change in 3He/4He with time is shown in
figure 6.5 for several different cases, all starting with normal MORB
3He/4He, using minimum U and Th concentrations, and assuming that
the 7 km thick cruét attains internal equilibrium (i.e., the oceanic
crust is not heterogeneous). If the crust is 90 percent degassed (case
D in figure 6.5), the 3He/4He decreases to 10‘6 in less than 300
million years. On the other hand, if the crust is degassed to 2.5 km
or 5 km depth, the 3He/4He will decrease much more slowly.

An additional uncertainty in evaluating the rate at which
3He/4He will decrease is the fate of the oceanic crust in the
subduction zone (see figure 6.4). Many models for the initiation of
island arc volcanism have been proposed, among them are melting of the
oceanic crust on the downgoing slab (Marsh and Carmichael, 1974),
melting on the mantle just above the slab (Kushiro, 1973), and a
mixture of the two {(e.g Kay, 1980). The choice of melting mechanism
can affect the subsegent helium isotopic evolution., Taking an extreme
example, if the entire downgoing oceanic crust is me]fed, most of the U
and Th in the crust will be removed with the melt. Therefore, the slab
will have lost the source of radiogenic 4He. The small volume of
island arc volcanic rocks relative to the volume of subducted oceanic
crust (~3 percent) shows that this is unrealistic, but melting at the

subduction zone can result in some loss of Th and U. Studies of Pb, Sr

and Nd isotopes in some island arc volcanics strongly suggest the

s N
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Figure 6.5:
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Helium isotopic evolution for oceanic crust as a function
of time, assuming initial 3He/%He = 8.4 x atmospheric,
U=.1ppm, and Th = .3 ppm. Each curve assumes different
4He concentration in the oceanic crust. MORB
concentrations taken from figure 4.4.

4He concentration
(10-5 cc STP/gram)

case A 2.5 (highest MORB
concentration, undegassed)

case B .75 ("normal" MORB, degassed to
2.5 km)

case C .34 ("normal" MORB, degassed to
5.0 km

case D 12 . ("normal" MORB, degassed to

6.3 km)
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1nv61vement of a seawater altered oceanic crust component (DePaulo and
Wasserburg, 1977; Hawkesworth et al., 1977; Kay et al., 1978).
However, the extent of mass transfer cannot be inferred from these
studies, and not all island arc volcanics have the isotopic

“fingerprint" of oceanic crust.

Several helium isotopic studies of island arc systems have been
performed (Kamenskii et al., 1974; Craig et al., 1978; Poreda et al.,
1981; Torgerson et al., 1982). Craig et al. (1978) measured
3He/4He ratios of 5.3 to 8.1 in hot springs from Hakone (Japan),
Marianas, and Mt. Lassen. From these results, they concluded that
oceanic crust is not extensively involved in arc volcanism, or that the
helium content of the subducted oceanic crust is higher than their
measurements on MORB (1.e;, > 1 x 1070 cc/gram). The measurements
presented in chapter 4, show fhat MORB concentrations are significantly
higher. Therefore it is quite possible that the helium in several of
the hot springs was actually derived from melting of the slab.
Torgerson et al. (1982) reported 3He/4He ratios of 3.6 to 8.2 x
atmospheric from New Zealand hot springs; Although both Craig et al.
(1978) and Torgerson et al. (1982) used measured He/Ne ratios to
eliminate the effects of atmospheric contamination in lowering the
3He/4He ratios, Torgerson et al. (1982) concluded that near-surface
"crustal" gases were important to the results. If such near-surface
gases are negligible, the Tow 3He/4He ratios (i.e., < 8.0 x
atmospheric) from a number of arc hot springs do suggest some
involvement of the downgoing slab. However, some of the observed

3He/4He ratios are quite close to MORB measurements and may reflect
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mixing between radiogenic slab helium and helium from the overlying
mantle.

In summary, the uncertainties regarding the recycled end-member
primarily relate to oceanic crust formatioh and degassing. If the
crust is extensively degassed during formation, the resultant low
3He/(Th+U) will yield a rapid decrease in the 3He/4He of this
material. Further studies of the gases island arc rocks are required
to constrain the actual conditioﬁs within the downgoing slab. However,
consideration of the oceanic 3He budget and the 3He/4He results
from island arc hot springs suggests that the subducted slab can
feasibly provide the Tow 3He/4He component required by the MORB and
oceanic island results.

3. Possible mantle models

Any plausible model. for the mantle must accomodate the three
reservoirs that have been identified using the helium isotope
systematics. Previous attempts to use geochemistry as a constraint on
mantle structure have generally been limited to tWo reservoirs. One
model consists of a depleted Tayer (source of MORB) underlain by an
undepleted Tayer (Schilling, 1973; Sun and Hanson, 1974; Wasserburg and
DePaulo, 1979). The opposite geometry, with the undepleted (or
enriched) layer on top, has also been advocated by a number of workers
(Dickinson and Luth, 1971; Green and Lieberman, 1976; Tatsumoto, 1978;
Anderson, 1981). Davies (1981) suggested a two-reservoir lumpy model,

where the Tumps of undepleted mantle are suspended in depleted mantle.
In their recycling model, Hofmann and White (1980) also implicitly

assume two layers; in this case the recycled oceanic crust (i.e.,
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enriched mantle) collects at the base of the (depleted) mantle.

This diversity is partially the result of the inability to
distinguish between undepleted and recycled mantle reservoirs. As
pointed out by Anderson (1982) and Kurz et al. (1982b), the basalts
that appear to be most "primitive" in terms of Sr/Nd isotopic
composition could also be a mixture of ancient depleted and enriched
(i.e., recycled) reservoirs. Results presented in chapters 4 and 5
show that helium isotopic information quite effectively distinguishes
undepleted from recycled mantle sources. Armed with this new data, the
models for mantle structure will now be re-evaluated. It should be
emphasized that our knowledge of mantle chemistry is not advanced
enough to allow definitive answers and that such models should be
viewed as working hypotheses or targets for criticism.

As discussed in the introduction to this chapte}, the geophysicé]
and geochemical evidence favor a layered mantle, and this will be an
assumed condition. The first question is the relative position of the
depleted and undepleted reservoirs. The highest terrestrial
3He/4He ratios are observed for basalts from the islands of Hawaii
and Iceland (see chapter 5), which therefore are the most
representative of the undepleted reservoir. An important constraint on
mantle structure is the rarity of such volcanics relative to MORB.
Additionally, undepleted 3He/4He isotopic signatures are observed
in localities far removed from one another: Hawaii, Iceland,
Yellowstone, Reunion, and Bouvet (in order of decreaéing 3He/4He).

A model that has the undepleted reservoir below the depleted reservoir

best explains these observations for several reasons. First, the
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depleted MORB source is most commonly sampled because it is most
accessible. The rarity of volcanism representative of the deeper
undepleted source can then be expliained by the "insulation" provided by
the depleted layer. Secondly, the higher 3He/(Th+U) of the

undepleted layer requires that jt be undegassed, which is also best
explained by its Tong term isolation from the surface. As discussed
earler, a lumpy mantle does not account for the long lived volcanism in
places such as Hawaii.

An additional advantage of such a layered mantle model is that it
can readily explain the relative abundance of the different types of
MORB. It was found (see chapter 4) that samples with 3He/4He
ratios lower than normal MORB (i.e., < 8.4 x atmospheric) were more
common that those with higher ratios (>8.4 x atmospheric). Since we
have just argued that the MORB reservoir is in the upper mantle, this
suggests that the recycled reservoir is also in the upper mantle.
Assuming that the subducted slab does not penetrate into the lower
mantle (Richter, 1979), the recycled oceanic crust will 1nferact ﬁore
extensively with the upper mantle than with the lower mantie.

The recycled reservoir can either exist as a discrete layer at the
base of the depleted reservoir, of as “"sheets" of oceanic crust that ‘
are re;incorporated into the upper mantle. The validity of either, or
both, of these cases depends on the style of mantle convection, and the
ultimate fate of the subducted slab. McKenzie (1979) has shown that
the deformation effect of mantle convection will effectively stir
chemical heterogeneities; for reasonable Rayleigh numbers, a spherical

heterogeneity will deform into an elongated ellipse after oniy one
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convective overturn. If the subducted slab is returned to the mantle
circulation system, it will tend to mix (or stir) with the ambient
mantle. The helium results do not necessarily rule out such a case,
since melting of a small percentage of the recycled crust plus the
ambient mantle can produce the low 3He/4He ratio samples (depending
upon the 3He/(Th+U) ratio of the slab). However, a consequence of
effective mixing for the recycled material is that most of the upper
mantle could have been through one cycle. If we lump the oceanic crust
with the residual mantle (from which the oceanic crust was derived),
then a 50 km layer of degassed material is presently subducted
(assuming 20 percent partial meiting). Using the present-day crustal
production rate (3 km2/yr), and assuming it has been constant through
time, 25 percent of the mantle has been recyled over the age of earth.
If the subduction réte was faster in the past, due to greater heat
production (Dickinson and Luth, 1971), then more than 50 percent of the
mantle may have been recycled. This would amount to the entire mantle
above the 700 km boundary.

The alternative to continuous recycling is to store the oceanic
crust somewhere in the mantle out of the convective region. One
possible storage site is at the 700 km boundary (Anderson, 1979a);
other possibilities include the core-mantle boundary (Hofmann and
White, 1980) or the shallow mantle above 220 km (Anderson, 1982).
Storage of the crust alone presumes that there is a mechanism for
separation from the adjacent slab and mantle. Although Hofmann and
White (1982) point out that oceanic crust may be slightly denser, it is

not clear that such a mechanism exists. Regardless of the exact
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storage site or recycling mechanism, the large volume of material
presently subducted is clearly an important means of degassing and
"processing" large portions of the mantle.

Another constraint that must be placed on a mantle model is the
existence and geochemistry of mantie plumes. The best example is the
Hawaiian-Emperor seamount chain, although most of the islands in the
oceans have been attributed to plumes or hot spots (Crough, 1978).
Hawaii is characterized by gravity and bathymetry anomalies that would
be expected from upwelling mantle (Watt and Daly, 1981) and also has
3He/4He ratios cHaracteristic of the most undepleted mantle (see
chapter 5). However, the Azores Platform also has correlated gravity
and bathymetry anomalies (Sclater et al., 1975), but is characterized
by lower 3He/4He ratios (i.e., recycled material). Tristan da
Cunha é]so has the gravity anomaly expected of a mantle upwelling
region (D. McKenzie, personal communication), but is associated with
Tow 3He/4He ratios. If we accept the geophysical evidence for
upwelling (see McKenzie, 1977) and the premise that the basaltic
isotopic results fepresent their mantle source, then both undepleted
and_recyc]ed material must be contained in plumes. As discussed
earlier, localities with undepleted helium jsotopic signatures are
tholeiitic islands suéh as Hawaii, Iceland, and Reunion, whereas the
alkali islands have the generally lower isotopic ratios classified here
as recyled.

A model that seems most consistent with the geochemical and
geophysical constraints is presented in figure 6.6. In accordance with

the assumption of a layered mantle, there are two separate convecting
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regions: the upper and lower mantle. The boundary is a§sumed to be
the 700 km seismic discontinuity, with the upper layer consisting of
the depleted MORB reservoir plus recycled oceanic crust. As discussed
above, the recycled crust in figure 6.5 is stored in a layer at 700 km
and/or mixed into the upper mantle convection cell. The model accounts
for plumes (of both recycled and undepleted chemistry) by upwelling
from, and through, the 700 km boundary. This is consistent with the
experimental and observational evidence for two scales of convection
within the upper mantle (Richter and Parsons, 1975; McKenzie et al.,
1980). As shown in figure 6.5b, the convection cells at right angles
to the plate motion can thus allow upwelling mantle to reach the
surface from the boundary, despite the overall circulation.

The overall geometry in figure 6.6a is similar to previous models
(Schilling, 1973; Sun and Hanson, 1975; Wasserburg and DePaolo, 1979)
in having the undepleted mantle below the depleted MORB source region.
The subducted slab is assumed to stop at the 700 km boundary, and
accumulate or re-mix. Anderson (1979b) has suggested that the basalt
would convert to eclogite faster than the surrounding mantle due to its
lower temperature, and would therefore sink faster. When this material
reaches the 700 Km discontinuity, its greater A]ZO3 content
inhibits the phase transition to perovskite, thus stopping it at this
level. The density contrast between eclogite and peridotite (~ .1
g/cc; Anderson, 1982) may also provide a mechanism for separating a
layer of eclogite.

The helium data presented in chapters 4 and 5 cannot distinguish

between mixing of melts, and mixing of mantle sources. Therefore,
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Figure 6.6: Cartoon showing the proposed mantle structure.
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although the mixing of mantle sources is implicitly included in figure
6.6, the role of magma mixing is difficult to evaluate, and could alter
the proposed model. For example, Anderson (1982b) has suggested that
the enriched reservoir is shallower than ~200 km, and has formed by
metasomatism. If this region has had Tower 3He/(Th+U) ratios than
MORB, then it could also produce the "recycled" isotopic
characteristics. Such a situation cannot be ruled out, but the large
volume of material presently subducted makes the model shown in figure
6.6 more likely, and less ad hoc.

4. Geochemical consistency of the model

The proposed model must also explain trace element and other
isotopic evidence. A key question is whether Pb isotopic variations
are consistent with the recycling model, since Pb isotopes provide
independent evidence for a third component in thé mantle (Sun, 1980;
Anderson, 1982a; Zindler et al., 1982). Although Pb isotopic
measurements were not performed on the samples presented in this thesis
(with the exception of the Loihi Seamount samples), it is possible to
construct a 3He/4He Vs, 206Pb/204Pb diagram using data from.the
literature (see figure 6.7). The resultant plot bears some resemblance
to the 3He/4He.vs. 87Sr/865r plot in that the most radiogenic
Pb samples also have the most radiogenic (i.e., lower) 3He/4He
ratio. The Loihi Seamount samples have relatively Tow 206Pb/204Pb
and 87Sr/86Sr, but high 3He/4He. The relative positions of
many islands on the two diagrams are also quite similar. Two notable

exceptions are Gough and Tristan .da Cunha, which have relatively

unradiogenic Pb but radiogenic 3He/4He and 87Sr/86Sr ratios.
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This is not simply explained by the recycling hypothesis. For example,
if the higher 206Pb/204Pb of the Canary Island source were
generated by a longer "isolation" (i.e., it was subducted eariier) than
the Tristan and Gough sources, then it should also have Tower
3He/4He. It therefore seems that 3He/(Th+U) is not necessarily
related to U/Pb. However, the presently available Pb and He data are
not inconsistent with the mixing hypothesis.

Recycled oceanic crust can generate the enrichments in K, Rb, Cs,
Cr, Br, and F that have been observed in the Azores Platform samples
(White, 1977; Schilling et al., 1980) by the presence of small amounts
of seawater alteration or sediments. In this regard, it is interesting
to note that the C1/Br and C1/F ratios are quite similar to seawater
values. The low Zr/Nb ratios associated with Tow 3He/4He ratios
(see chapter 4) can also be explained, since the high water content ih
the slab may stabiiize Ti rich minerals (e.g., sphene, ilmenite), which
concentrate Nb relative to Zr (Wood et al., 1979). This is supported
by the Tow Ti contents of many island arc volcanics (Kay, 1980).

The major element 3He/4He correlations can also be explained by
the subduction-recycling hypothesis. Since there are a number of
processes that alter basaltic major. element chemistry, these
correlations are the most difficult to constrain. Therefore,
discussion of the major element correlations is best restricted to
suites of samples that have been well studied. The best cases, for
which there is helium data, are tholeiite samples from Iceland, Hawaii,
and the Azores Platform. Langmuir and Hanson (1980) studied the major

element variations between these suites and concluded that they could
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not be explained by partial melting or fractional crystallization. On
the Reykjanes Ridge, they found a positive correlation between FeQ and
La/Sm, whereas in the Azores Platform samples, the reverse is true.
Further, Iceland and Hawaii have systematically higher FeO contents
than the Azores Platform. They suggested that these differences could
best be explained by major element heterogeneity in the mantle. As
illustrated by figures 4.3 and 5.2, the "Fe rich provinces" (see also
chapter 4) are also characterized by higher 3He/4He ratios. These
observations are consistent with the model, since melting of eclogite
should yield more Mg rich liquids than melting of an olivine rich
mantle (Yoder, 1976). If the subducted slab consists of eclogite that
collects in the base of the upper mantle, melting may yield Mg rich
liquids, as observed in Azores Platform basalts. In the context of the
mixing model, the erupted basalt could then be a mixture of this
eclogite source plus the normal (peridotite) mantle; as discussed
earlier, it not possible to distinguish between mixing of mantle (solid

state) or of melts.

C. Implications for mantle degassing

1. Catastrophic or continuous degassing

Models for mantle degassing have traditiona]]y attempted to explain
atmospheric evo]ution in terms of either continuous or catastrophic
processes. Catéstrophic models hold that the atmosphere was formed
very early in earth history, while continuous models hold that the
outgassing has been continuous and perhaps incomplete. The first
efforts to evaluate these two possibilities were primarily based on gas

abundances in the atmosphere. Brown (1949) and Suess (1949) compared
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the terrestrial atmospheric nob1e'gas inventories to cosmic abundances,
and showed that the earth was deficient. They concluded that the
earth's atmosphere was secondary, having evolved after formation. In
his classic paper, Rubey (1952) compared contemporary volcanic effluent
to "excess volatiles" (volatiles that could not be accounted for by
rock weathering), and concluded that the compositional similarity was
good evidence for continuous degassing. He was unaware of plate
tectonics, or the possibility that many of the volcanic gases were
recycled atmospheric gases, but this became the foundation for
continuous degassing models. Turekian (1959) used the 40pr abundance
in the atmosphere to construct a first order continuous degassing
modei. The results were dependent upon the K content of the earth (a
controversial issue to the present day): if the earth originally had a
chondritic K content, only 10 percent degassing could produce all the
atmospheric 40Ar. Holland (1962) assumed that the earth was formed

by cold accretion and also constructed a model in which the atmosphere
subsequentiy evolved with time. However, cold accretion seems
inconsistent with the evidence for early formation of the core (Allegre
et al., 1980).

Fanale (1971) reviewed these studies and concluded that the
evidence for continuous degassing was circumstantial; in his view, the
atmosphere was formed early and the noble gas abundances were explained
by solubility equilibrium with a molten earth. Ringwood (1966, 1975)
also favored catastrophic degassing, but suggested that the early dense
atmosphere was "blown away" by the T-tauri phase of the sun. In a

recent review of these conflicting opinions, Bernatowicz and Podosek
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(1978) concluded that it was not possible to rule out either
catastrophic or continuous degassing, and that a combination of the two
may be more reascnable.

Isotopic evidence provides better constraints than the abundance
arguments because, in general, it requires fewer assumptions regarding
initial conditions. Argon is of interest because it is retained by the
atmosphere (unlike helium) and has a primordial (36Ar) as well as a
radiogenic (40Ar) isotope. A number of studies have used
4OAr‘/36Ar ratios to study possible degassing histories (e.g. Ozima,
1975; Fisher, 1978; Hamano and Ozima, 1978). Since primordial
4OAr/36Ar ratios are < 10'3, and the half life of 40K is short
relative to the age of the earth, this ratio can place strong
constraints on the timing and magnitude of degassing. If the whole
mantle has 4OAr/36Ar > 104, then for terrestrial K contents less
than 400 ppm., catastrophic degassing is most likely. Based on argon
measurements on MORB glasses, this view was adopted by Fisher (1978)
and Hamano and Ozima (1978). However, Tolstikhin (1978) and Hart et
al. (1979) have pointed out that the measurements, on which their
conc]usions.are based, are not necessarily representative of the whole
mantle, and that 4OAr/36Ar ratios of < 400 in volcanic rocks have
been commonly observed. In many cases, the low 4OAr/36Ar ratios
were obtained for samples with high 3He/4He ratios (Hart et al.,
1979). However, there are several insidious sources of contamination
that must be remembered. First, the atmosphere contains ~ 1 percent
argon, with 4OAr/36Ar of 296, which can lower the observed ratio,

and have Tittle effect on 3He/4He (air has 5.24 ppm He). Even
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worse than this, a common contaminant of terrestrial samples (which are
analyzed on mass spectrometers previously used for meteorites) is
“memory" of meteoritic solar or planetary noble gas, which can have Tow
40Ar/36Ar and high 3He/4He (see Craig et al., 1979; Rison,
1980; Smith, 1981). Therefore, the argon results are not yet
unambiguous, and require careful analysis of samples that have well
documented 3He/4He ratios, using mass spectrometers that have not
been used for meteorites.

Perhaps the best evidence now available comes from the xenon
isotopes. 129¢¢ is the daughter of extinct 1291 (half life = 17
m.y.), which was present in the early solar system (Butler et al.,
1963; Reynolds, 1963). Due to the short half life of 1291, any
differences between terrestrial samples must have been produced very
early in earth history. Excess ]29Xe (over atmospheric) haé been
observed in Hawaiian xenoliths (Kaneoka et al., 1978), MORB glasses
(Staudacher and Allegre, 1980), and CO2 gas wells (Boulos and
Manuel, 1971; Smith, 1981). As pointed out by Thomsen (1980), these
data strongly suggest early (i.e., >4.0 b.y. ago) separation between
the mantle sources (of these samples) and the atmosphere, and provide a
strong argument for early formation of the atmosphere. However,
Thomsen (1980) used a single 129Xe/]30Xe ratio for the earth's
"interior," a clearly oversimplified assumption, particularly in 1ighf
of the data presented here. Therefore, the xenon results must be
viewed with the same caution as the argon data: the constraints are
only as valid as the data are representative of the mantle.

One way of reconciling the evidence for incomplete degassing (i.e.,
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the noble gas and the 3He flux) with the evidence for catastrophic
degassing is to assume that the mantle is heterogeneous. Hart et al.
(1979) have proposed such a case, in which the upper mantle is
preferentially degassed, leaving the Tower mantile relatively
undegassed. The helium results, and the cartoon model shown in figure
6.5, are entirely consistent with this notion. This would predict that
the lower mantle has high 3He/4He and Tow 40Ar/36Ar (< 1000).
Available argon data support this: Kaneoka and Takaoka (1978, 1980)
reported 4OAr/36Ar‘ lower than 700 for Hawaii samples that had

3He/4He higher than 20 x atmospheric. Fisher (1975) has measured
40Ar/36Ar ratios greater than 10,000 in MORB‘glasses. The

129Xe/]30Xe ratio of the Tower mantle could be either close to, or
quite different from the atmosphere, depending on a) the 1291/]29Xe
ratio of the earth, b) the age of the "separation" between the two
reservoirs, and c) the extent of Xe recycling into the mantle.

2. Origin of the 3He flux

If the upper mantlie has been extensively degassed (see figure 6.6
and Hart et al., 1979), then an important problem is the origin of the
3He in MORB glasses. If the convective overturn has ventilated this
reservoir, the 3He/4He ratio should be close to 10'7, the
production ratio of 3he to e by U, Th decay and 6 (na)3H >
3He, respectively (Morrison and Pine, 1955). This ratio was
calculated by Morrison and Pine (1955) for granitic rocks, which have
much higher Li, but should be similar for basalitic sources, wiich have
more Mg (the [a,n] target element). According to the model, the lower

mantle can supply 3He to the upper mantle, since it is relatively
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gas-rich. Using the closed system 3He/4He evolution described
earlier, a minimum 3He content of 10'9 cc STP/gram was estimated
for the lower mantle. If we take the highest Ye cbncentration
observed for MORB glass (2.7 x 107 cc STP/gram), and assume 20
percent partial melting, the maximum 3He content of the MORB mantle
source is 6.3 x 10711 cc STP/gram. The ]argé concentration
difference between these two reservoirs suggests that the lower mantle
can serve as a source of SHe.

Diffusive transport alone is decidedly too siow to allow
communication between upper and Tower mantle: for a D of 107°
cmzlsec, helium will only diffuse 6 km in 109 years. However, for

mantle viscosity of 1029 o 1022 poise (Cathles, 1975), the

advective velocity is on the order of centimeters per year, which
yields mantle overturn in ~ 2-3 x 108 years (see Davies, 1977;
Elsasser et al., 1979). This suggests that transport from the lower
layer can produce the 3He in the upper mantle, depending on the scale
of convection. For example, assuming that the mantle is in steady
state, and the concentrations described above, to produce the oceaniﬁ
3He flux (4 atoms/cm2 sec; Craig et al., 1975; dJenkins et a],,
1978) requires degassing of the lower mantle at 2.4 x 1O]6g/year.
This is equivalent to a global layer of less than .1 mm thickness (at
700 km depth).

If the upper and lower mantle are both convecting and there is a
Tayer of stagnant recycled oceanic crust at the boundary, as shown in
figure 6.5, then diffusion across the layer becomes the rate limiting

step. The physical situation of two well-mixed layers separated by a
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stagnant film resembles that of gas exchange between the air-sea
boundary (Broecker and Peng, 1974). To a first approximation the flux
(F) is described by

Fabll-G)

Z
where D is the diffusion coefficient in the fiim, Z is the depth of the

stagnant film, and C, and C; are the concentrations in the two

layers. Assuming a D of 107° cm2/sec and 4 atoms/cm2 sec for the

flux, the mean film thickness is 2 kilometers. This shows that even
with a stagnant layer, transport is feasible if the the upper mantle is
convecting on rapid time scale. Most of the transport would occur in
places where the film is very thin.

By this reasoning, mantle plume volcanism could also account for a
significant 3He flux, since the source is theoretically within the
lower mantle. It is possible to crudely evaluate the 3He flux from
this process, using estimates of island basalt eruption rates. Only
those islands or hot spots that are tholeiitic, or have been shown to
have high 3He/4He ratios will be considered, since the results
reported in chapter 5 suggest that alkali island basalts are derived
from recycled sources. For Hawaii and Ice]and, the eruption rates of
.11 and .06 km3/year, respective]y, will be used (Swanson, 1973;
Schilling et al., 1978). For the remaining hot spots (Reunion, Bouvet,
Galapagos, Yellowstone), a mean rate of .1 km3/year will be assumed
(in the absence of better estimates), yielding a total of ~ .6
km3/year. This is a factor of 2 lower than the rate used by

Schilling et al. (1978) for the tholeiitic hot spots. If we assume



-238-

that these basalts were produced by 20 percent partial meliting, and
that the mantle source had 10~° cc STP/gram 3He, then hot-spot
volcanism will produce a present-day flux equivalent to ~ 1.5
atoms/cm? sec, or roughly 40 percent of the observed oceanic flux.
Clearly, if these assumptions are valid, the plume 3He flux is a
significant portion of the terrestrial budget.

The major uncertainties in these feasibility calculations are the
estimates of the mantle SHe concentrations. The observed SHe
concentrations in the Loihi Seamount glasses are always less than 5 x
10-11 cc STP/gram, which corresponds to a lower mantle concentration
of T x 10711 cc/gram (for 20 percent partial me]ting). This is a
factor of 100 lower than the estimate based on closed system

evolution. However, given the abundant evidence for gas loss by
vesiculation, it would be.unreasonab1e to expect the Loihi glasses to
reflect their source concentrations. Even at the greater depth (i.e.,
higher quenching pressure) of the mid-ocean ridges, the glasses display
34e concentrations varying from 3.6 x 10710 t0 2 x 10“13 cc
STP/gram. For this reason, the highest MORB concentration was used to
estimate a mantle SHe content for the calculations.

The closed system evolution estimate for. the minimum 3He mantle
concentrations is valid even if the earth had an initial 3He/4He
ratio closer to solar gas (~ 4.0 x 10'4) and does not depend on an
assumed initial SHe concentration. If the earth's initial
3He/4He was much greater than 10"3, as would be produced by
spallation helium, then the minimum 3He concentration could be much

Tower than 1077 cc STP/gram. However, most classes of meteorites
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have a small proportion of spallation helium relative to solar and
planetary helium. If the lower mantle has higher concentrationé of U
and Th (higher than 15 and 45 ppb), as has been suggested on the basis
of heat budget considerations (Clark and Turekian, 1979; 0'Nions et
al., 1979), the minimum mantle 3He concentration will be even higher
than 1079 cc STP/gram. Therefore, the concentrations used above seem
entirely reasonable, and strongly suggest that the lower mantle is the
ultimate source of 3He observed in MORB type glasses, and in the
submarine hydrothermal emanations.

Similar conclusions have been reached by several authors with
respect to the earth's heat budget (Clark and Turekian, 1978; 0'Nions
et al., 1978). The mantle source of oceanic basalts is too depleted in
heat producing elements to generate the heat flux observed at mid-ocean
ridges. 0'Nions et al. (1978) have suggested that the required heat
source resides in the lower mantle, and that the heat flux is not
necessarily accompanied by a chemical flux. This hypothesis is
entirely consistent with the proposed model, and with estimated 3He
abundances in the mantle.

3. Implications for degassing history

The proposed mantle structure, with the lower mantle relatively
rich in SHe (and presumably other primordial gases), has important
implications for degassing models. If the upper mantle is, in fact,
depleted, it serves as an insulating layer, inhibiting the deeper
gas-rich layer from releasing volatiles. Therefore, the extent of
terrestrial degassing is a strong function of mantle convection. At

present, the most obvious expression of mantle convection is plate
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motion. However, the validity of extrapolating plate tectonic
principles back in time is a controversial issue, and like degassing
history, has fueled a debate between uniformitarians and catastrophists
(c.f. Glikson, 1981). |

Since the geological record is the best evidence regarding the
nistory of convection and therefore deassing, some important aspects of
continental geology must be mentioned. The oldest known rocks are 3.8
billion years old (Moorbath et al., 1975) and are metasediments, which
strongly suggests the presence of liquid water at this time. The lack
of older rocks makes statements regarding the first 800 m.y. of earth
history speculative and dependent on the accretion mechanism (Smith,
1980). Tarling (1980) has suggested that during that time the earth
was covered by a thin lithosphere, similar to oceanic crust, which
could not be subducted, due to the high temperéture and ease of
dehydration. By this reasoning, continental crust could not be formed,
since andesitic rocks and their differentiates could not be produced.

In contrast, the archaean (3.6 to 2.5 billion years ago) was a time
of rapid continental growth (Windley, 1977; Dewey and Windley, 1987).
Dewey and Windley (1981) estimated that 70 percent of the present
continental mass was formed during this time. During the Proterozoic
(2.6 to .7 b11110n years ago), continental growth was much slower, and
while tectonics may have operated, continental crust was primarily
remobilized and differentiated. The apparent change at the
Archaean-Proterozoic boundary has been interpreted as a change in the
scale of mantle convection (Kroner, 1981; Windley, 1981), and also as

the beginning of subduction (Hargraves, 1981).
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Due to the half lives of the heat producing elements (K, U, Th),
heat production in the past was much greater than today. McKenzie and
Weiss (1975) and Bickle (1978) have suggested that the higher heat
production would also imply more rapid plate production and movement.
The notion of rapid crustal formation is consistent with the observed
abundance of archaean crust. Viscosity of mantle materials is strongly
temperature dependent, which is another argument for more rapid
convection in times of greater heat flux.

The geological record can readily be interpreted in terms of the
plate tectonic processes of today, but it is clear that the rates and
specifics of these processes were quite different (this has been termed
"1iberal uniformitarianism" by Hargraves, 1981). If convection were
more vigorous in the past, it is also reasonable to expect that
degassing was more rapid. The degassing processes may have been
similar, differing only in rate. A period of particularly rapid
crustal production, such as the archaean, may have been accompanied by
rapid degassing. However, if archaean convection involved the whole
mantle rather than the layered convection that has been assumed for the
present, the degassing rate may have been disproportionately higher.

Since the present day helium flux from the mantle is reasonably
well known, it is possible to test the feasibility of producing the
atmosphere by extrapolation of thislrate through time. Due to the fact
that helium escapes from the atmosphere, this cannot be accomplished
using a total helium atmospheric inventory. However, if the helium
flux is used to calculate the flux of another noble gas, which does not

escape (such as argon), the atmospheric abundance can then be used.



-242-

This réquires that the 3He/30Ar ratio of the mantle gas be known.

For example, if we assume that the 3He flux has been constant over

the age of the earth, 4.35 x 1036 atoms of 3He have been lost from

the mantle. If this escaping gas had 3He/36Ar ratios similar to

the planetary gas in meteorites (~ .01; Bernatowitz and Podosek, 1978),

O38 atoms of 36Ar would have accumulated, which is

roughiy 4.2 x 1
only 12 percent of today's atmospheric 36ar inventory.

However, as discussed above, the degassing rate should be scaled tb
the greater heat production by U, Th, and K in the past. This can be
accomplished by using an exponential of the form:

K(t) = K exp(t/tm)

p
where K is the degassing rate today, tm is a constant depending

p

upon the assumed abundance of U, Th, and K, and t is the time in years
before the present. If we assume that the earth has a chondritic
composition,
tm = 2.05 b.y., whereas if the earth has a somewhat Tower heat
production, as suggested by Wasserburg et al. (1964) and O'Nions et al.
(1968), tm = 3.05 b.y. (see also Dickinson and Luth, 1971; McKenzie and
Weiss, 1975). Integrating over 4.5 b.y., and using a chondritic earth
as an upper 1imit, roughly four times more 36Ar will have escaped.
This is still only ~ 50 percent of the atmospheric inventory.

Unfortunately, the 3He/36Ar‘ ratios of the escaping mantle gases
are not well determined. If most of the helium flux is derived from
the normal MORB type mantle, then the 3He/36Ar of MORB glasses
should be the best approximation. Kyzer (1980) and Rison (1980) have 7

reported helium and argon measurements on a suite of glasses. The
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3He/36Ar ratios of their samples range from .03 to .3, and the
4OAr/36Ar ratios vary from 300 to 5,000. The 4OAr/36Ar‘

variability suggests that there may be atmospheric or seawater
contamination, which would make these values lower limits. Even so,
these values are significantly higher than .01, and when used in the
inventory calculation, result in an even greater discrepancy, i.e.
suggesting that present degassing rates are too slow. Similar
conclusions are reached by using the 3He/36Ar values from Kaneoka
and Takaoka (1978: Hawaiian xenoliths with 3He/4He of 8 x Ratm) or
Fisher (1975: assuming 3He/%e of 8 x Ratm).

There is some evidence that samples derived from undepleted sources
have significantly lower 3He/36Ar ratios, which would affect the
result of the calculation if the escaping gas were derived from the
lower mantle. Measurements on submarine glasses from the east rift of
Kilauea reported by Rison (1980) and Kyser (1980) yield 3He/36Ar
ratios of .0001 to ;025. However,}their 3He/4He ratios vary from
3.7 to 25 x atmospheric, while the results reported from Kilauea
reported in chapter 5 (some of which were from the same dredges),
yielded no variation (3He/4He of 14 x atmospheric).

Phenocryst samples from Haleakala (Maui) studied by Kaneoka and
Takaoka (1980) had SHe/3%Ar of .0015 to .00317, and SHe/*He
ratios from 17 to 50 x atmospheric. However, these 3He,’36Ar ratios
are a factor of 5 lower than the meteorite values, and may have been
affected by some fractionation process. Since the gases in these
phenocrysts most 1ikely reside within melt inclusions (see chapter 5),

the relative abundances may have been altered during incorporation.



_244-

Melt inclusions are formed at the crystal-melt interface, and since
this zone contains all of the volatiles excluded from the crystal
during growth, the 3He/30Ar ratio is particularly suspect. For
example, since He diffuses faster than Ar, the He may rapidly
equilibrate with surrounding melt, while the Ar is slower, leaving a
Tow 3He/36Ar at the interface. Additional measurements will be
required to ascertain the cause of the variability, and to what extent
the measured 3He/36Ar ratios reflect the source.

With these uncertainties in mind, it would appear that samples
derived from undepleted mantle sources have lower 3He/36Ar ratios.
The proposed model suggests that 3He/36Ar may be fractionated (in
the upper mantle) due to the diffusivity limited transport across the
boundary between the upper and lower mantle. 3He would diffuse more
rapidly, Teading to higher 3He/36Ar in the upper mantle, in
agreement with the available measurements.

In summary, the 3He/36Ar ratio, coupled with the global 3He
flux can provide important constraints on the degassing rates of the
past. Available MORB glass measurements suggest that the present rate
is too slow to account for the atmospheric 364 inventory, even if
the rate is scaled to increased heat production in the past.
Therefore, a period of more rapid degassing in the past seems
necessary, which can either be viewed as a catastrophic "event" or a
period when the degassing mechanism was facilitated. The latter is
quite possible in the context of the layered mantle model shown in
figure 6.6. If at some time in the past, the lower gas-rich layer was

exposed at the surface, the degassing rate would be significantly



-245-

higher; at present, the upper mantie serves as an insulating layer. An
appropriate analogy is gas exchange between the atmosphere and the sea
surface. Most of the gas exchange occurs when the stagnant film at the
sea surface is very thin, and the rate is a strong function of the wind
speed. Exposure of the lower mantle could have a similar effect on the
mantle degassing rate, and as discussed above, the geological record
shows that such an episode is quite feasible.
D. Conclusions
The helium isotopic systematics indicate the existence of three
distinct mantle reservoirs that have been referred to here as depleted,
undepleted and recycled. The correlations between 3He/-4He and
87Sr/865r place important constraints on the origins of these
mantle reservoirs. In light of these data, and other geophysical and
geochemical information, the following conclusions have been drawn.
1. The highest 3He/4He ratios are observed for tholeiitic islands
such as Hawaii and Iceland. The source regions of these samples
have evolved with higher time-integrated 3He/(Th + U) than the
source for MORB. Using a closed system evolution model, a minimum
3He content of 10"9 cc STP/gram can be estimated for the
undepleted reservoir. This is significantly higher than the value
estimated for the MORB source (2.8 x 10711 ¢ STP/gram).
2. The low 3He/4He, high 87Sr/865r samples are derived from a
source with time integrated 3He/(Thk+ U) Tower than MORB.' These
source regions can be generated by subducted oceanic crust that is

mixed back into the mantle. The time necessary to lower the

3He/4He of the slab depends critically upon the nature of the
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oceanic crust, the extent to which it is degassed, and the fate of
the subducted material in the mantle.

Based on the available geophysical and geochemical information, in
addition to the data presented here, a layered mantle model has
been chosen as most feasible. The relative abundances of basalts
derived from the three mantle types suggests that the undepleted
reservoir is in the lower mantle, and that the depleted plus
recycled reservoirs coexist in the upper mantle. A model is
proposed which accounts for the existence of mantle plumes in the
context of a three reservoir mantle. The model assumes that
convection in the upper mantle is characterized by two different
convective scales (e.g. Richter and Parsons, 1975). The different
chemistry of the plumes is thus accounted for by derivation from
the boundary between the upper and Tower mantle (presumed to be at
700 km.).

Assuming that the upper mantle is the source for MORB, and that
recycling primarily involves the upper mantle, the present day

3He content and 3He/4He of the upper mantle require a source

of 3He. In the absence of such a source, MORB would have much
Tower 3He/4He. Using the inferred closed-system evolution
concentrations for the undepleted reservoir, the lower mantle can
readily supply the 3He. The implication is that most of the
observed oceanic SHe flux is ultimately derived from the Tower
mantle. Furthef, a significant proportion of the earth's
atmospheric helium escape rate may be balanced by 3He flux from

hot spot volcanism (i.e., Hawaii, Iceland, Reunion, Bouvet,
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Yellowstone).

In order to explain the atmospheric abundance of 36Ar, degassing
rates in the past must have been significantly greater than the
rate inferred from the 3He escape rate, measured 3He/36Ar,

and the half lives of the heat producing elements. Such a period
of rapid degassing is easily reconciled with the layered mantle
model, since the upper mantle is presently insulating the gas-rich
lower mantle. Geological evidence shows that this may not always
have been the case. Therefore, it is reasonable to attribute the
rapid degassing in the past to exposure of the gas rich layer at

the surface.
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APPENDIX I

Table AI.l: Stepwise Heating of Alv 519 2-1-b

(Grain size =.064 = ,02 mm)

Temperature Total Fraction Diffusion*

(°C) Elapsed of Helium Coefficient
Time Released (cme/sec)
(seconds)

150 4,500 146 % .002 £ 2. x 10712
155 8,400 220 = 002 £ 3. x 10712
155 12,120 .267 % .003 x4, x 10712
160 19,320 .340 % .003 £3, x 10712
160 26,520 .396 + .004 £3, x 10712
220 29,520 .583 £ .006 £3, x 1071
225 32,520 729 = .007 £ .4 x 10710
225 35,220 .80 * .01 £ .4 x 10710
265 37,620 .92 = .01 1, x 10710
270 40,020 .97 % .01 2, x 10710
310 42,420 1.000

*Calculated for spherical geometry
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Table AI.2: Stepwise Heating of Alv 519 2-1-b

(Grain Size = .160 = .02 mm)

Temperature Total Fraction Diffusion*
(°c) Elapsed of Helium Coefficient
Time Released (cml/sec)
(seconds)
200 1,200 .061 1.8 = .4 x 10711
235 3,300 .256 2.0 = .3 x 10710
235 4,800 .325 2.0 = .6 x 10710
235 6,300 .378 2.0 = .6 x 10710
235 7,800 417 1.8 = .7 x 10710
235 8,300 451 5.2 % 2. x 10710
235 9,800 .478 1.6 = .9 x 10710
235 11,800 .537 3.0 = .8 x 10710
315 12,300 .691 4.6 .8 x 1079
380 13,800 .951 8.2 1. x 1072

540 e 1.000 [
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Table AI.3: Stepwise Heating of Alv 519 2-1

(Grain Size = .090 = .01 mm)

Temperature Total Fraction Diffusion*
(°C) Elapsed of Helium Coefficient
Time Released (cmé/sec)

(seconds)

140 3,600 .041 8.2 5, x 10713
190 5,700 .151 1.9 =1, x 10711
195 7,500 239 4.0 = .2 x 10-10
245 9,420 .514 2.8 % .6 x 10~10
250 11,100 .695 4.8 = .7 x 10-10
310 12,900 .934 1.7 £ 2. x 1079
315 14,820 .987 1.7 £ .9 x 1079

400 0 e 1.000 e
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Stepwise Heating of Alv 892-2

(Grain Size = .090 = .01 mm)

Total

Temperature Fraction Diffusion*

(°C) Elapsed of Helium Coefficient

Time Released (cmé/sec)

(seconds)

135 1,800 .030 8.9 x 10713
145 3,600 .082 5.7 x 10712
145 5,400 116 7.1 x 10712
190 .7,200 .244 5.4 x 10711
200 9,000 .392 1.3 x 10710
255 10,800 .699 6.4 x 1010

265 12,600 .836 1.1 x 1079
265 14,460 .949 8.8 x 10710
73S —— 1.000 e
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Table AI.5: Stepwise Heating of Alv 519 2-1-b

(Grain size = .080 * .01 mm)

Temperature Total Fraction Diffusion*

(°C) Elapsed of Helium Coefficient

Time Released (cmé/sec)’
(seconds)

125 1,500 .01 1.2 x 10713

190 3,000 111 1.2 x 1071

260 4,500 516 3.4 x 10710

330 6,000 .942 2.3 x 1072

400 - 1.000 e
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APPENDIX II

Petrographic Descriptions: Atlantic and Indian Ocean Samples

Sample  Rock Type and Location Description
R43 Picrite: Extremely porphyritic basalt, with
Piton de 1a Fournaise 4 percent vesicles and 40 percent olivine
Reunion Island phenocrysts (1-10 mm in size) in an
aphanitic ground mass. The olivines
contain devitrified melt inclusions and
euhedral spinels. Source: Dr. C.d.
Allegre.
R36 Olivine Basalt: Olivine-rich basalt with euhedral olivine
Piton de 1a Fournaise, phenocrysts (1-3 mm in size, ~ 15 percent
Reunion Island by volume in a fine-grained groundmass.
Olivines have abundant melt inclusions,
but no fluid inclusions or deformation
lamellae. Source: Dr. C.Jd. Allegre.
WJ8B Hawaiite: Porphyritic basalt with 40 percent
Westwind Beach, plagioclase phenocrysts (2-5 mm) in a
Bouvet Island fine-grained groundmass that contains
some opaque minerals. Plagioclase
phenocrysts often contain up to
10 percent melt inclusions. Source: Dr.
W. J. Voerwoerd. References: A. le Roex,
1980.
M68 Ankaramite: Porphyritic basalt with 15 percent
Mt. Deux Mamelles, olivine phenocrysts (1-2 mm) and
Mauritius Island 15 percent clinopyroxene phenocrysts in
an aphanitic groundmass that also in-
cludes blebs of opaque oxides.
Source: Dr. B. Upton.
ALR26G  Ankaramite: Ankaramite that contains 1-3 mm
Mt. Powett phenocrysts of clinopyroxene (10 percent)

Gough Island

and olivine (15 percent) in a
hyalopilitic ground mass. The
clinopyroxenes are euhedral, zoned and
often have corroded textures, possibly
indicating disequilibrium. Source: Dr.
A. le Roex.
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Petrographic Descriptions: Atlantic and Indian Ocean Samples

Sample  Rock Type and Location Description
ALR41G  Pyroxene Phyric Basalt: Porphyritic basalt containing 30 percent
Mt. Powett, clinopyroxenes (3-10 mm) and smaller
Gough Island (~ 1 mm) olivines in an intergranular
groundmass. The pyroxenes often have
corroded appearance, are zoned, and have
rows of melt inclusions parallel to the
zoning. Source: Dr. A. le Roex.
TK46A Ankaramite: Basalt with 15 percent clinopyroxene
Big Point, Tristan (2-8 mm) and 10 percent olivine (1-3 mm)
da Cunha Island in an aphanitic groundmass that also
contains large (.5 mm) blebs of
magnetite. Zoning is evident in the
smaller clinopyroxene grains, whereas the
largest ones have a corroded texture,
suggesting two generations. Source: Or.
S. Humphris.
TK26 Amphibole Gabbro Amphibole gabbro consisting of 40 percent
Xenolith in Pyro- pyroxene, 25 percent pleochroic
clastics: kaersutite, 15 percent plagioclase,
Buff Gulch, Tristan 10 percent opaque minerals and 5 percent
da. Cunha olivine. Fluid inclusions are abundant
throughout and are primarily aligned
along healed cracks. Source: Dr. S.
Humphris,
WJ21E Ankaramite: Basalt with 15 percent euhedral to
Top of Western subhedral clinopyroxene crystals (1-3 mm)
Escarpment : and 5 percent olivine (1 mm).
Prince Edward Clinopyroxene is zoned in several cases,
Island and some grains contain rows of fluid
inclusions, which are also present in the
olivines. The olivines do not display
"~ deformation lamellae. Source: Dr. W. J.
Voerwoerd. Reference: Voerwoerd, 1971,
LP249 Ankaramite: Vesicular basalt that contains 20 percent
.a Palma black clinopyroxenes, 5 percent vesicles,

and 3 percent olivine phenocrysts in a
fine-grained groundmass. Source: Dr. H.
Staudigel.
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Petrographic Descriptions: Atlantic and Indian Ocean Samples

Description

Icelandic samples (source: Dr. H. Sigurdsson)

HS782

HS806

HS785

EZ274

EZ1498B

EZ125

Sub-Glacial Basalt:

‘Botnsheidi, Iceland

64°22.3'N, 21°10.8'W

Sub-Glacial Basalt:
Eigiksjokuii,olce1and
64 48 .4'N, 20 26.75'W

Sub-Glacial Basalt:
Botnsheidi, Ige1and
64°27.2'N, 21°05.5'W

Sub-Glacial Basait:
Stapafell, Reykjanes
Iceland

63°54.4'N, 22°31.9'W

Sub-Glacial Basalt:
Grasatangi, Iceland
64 13.6'N, 18 59.7'W

Sub-Glacial Basalt:
Innsta-Bakafell,

Icg]and .
64 41.0'N, 17 39.1'W

Glass contains 1 percent (.5 to 1 mm.)
vesicles and 1 percent plagioclase
phenocrysts. Many vesicles (~ 30

percent) are filled with clay minerals,
and the glass often has a duil appearance,
suggesting some post-eruptive alteration.

Vitreous to spherulitic glass containing
1-2 percent vesicles (.2-.5mm) and
abundant plagioclase phenocrysts (~ 1 mm.)

Fresh, vitreous, aphyric glass,
containing 1-2 percent vesicles (.5-1.0
mm in size).

Porphyritic olivine basalt with 10 percent
vesicles and 4-5 percent olivine
phenocryts in an intergranular

groundmass. Olivines are lmm. in size,
and contain devitrified melt inclusions
and spinel. The glass present on the
outer rim has ~35 percent (1-2 mm.) and
has fewer olivines than the interior.

Vitreous to spherulitic glass with
olivine (~ 5 percent) and plagioclase
(~1 percent) phenocrysts. Vesicles are
5 mm. in size ~ 1 percent by volume.

Vitreous glass with 10 percent vesicles
(1-2mm in size) and numerous plag. pheno-
crysts. Roughly 10 percent of the
vesicles are filled with an orange red
mineral.
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Table II.2: Petrographic Descriptions: Hawaiian Samples

Sample  Rock Type and Location Description

Puna Submarine Tholeiite Glassy basalt with 10 percent vesicles,

No. 2 Glass: dredged from and containing olivine (9 percent),

1400 m, east rift of pyroxene (1 percent) and plagioclase

Kilauea, Hawaii (1 percent) phenocrysts. Source: Dr. J.
Moore. References: Moore, 1965; Hart,
1973.

Puna Submarine Tholeiite Glassy basalt with 1 percent vesicles,

No. 6 Glass: dredged from 14 percent olivine, 2 percent
4680 m, east rift of clinopyroxene, and 2 percent plagioclase.
Kilauea, Hawaii Source: Dr. J. Moore. References: Moore,

1965; Hart, 1972.

66055 Picrite Basalt: Vesicular (10 percent by volume picrite
Crater wall of Kil- basalt with 7-8 percent euhedral olivine
auea (below volcano (1-2 mm) that contain numerous melt
observatory) Hawaii inclusions. Groundmass has an

intergranular texture of interlocking
plagioclase, cpx olivines and opaques.
Source: Dr. S. 0. Agrell.

57370 O0livine Basalt: Olivine-rich basalt with ~ 4 percent
1840 lava near vesicles and 10 percent olivine
Nanowale Bay, phenocrysts in a fine-grained groundmass.
Kilauea, Hawaii Olivines are 1-2 mm in size, are euhedral

to subhedral and contain abundant melt
inclusions. Source: Dr. S. 0. Agrell.

ML84 0livine-rich Basalt: Highly vesicular basalts with 20 percent
1868 flow of Mauna vesicles, and 10-15 percent olivine
Loa, near Pun Hoo on phenocrysts (1-3 mm in cross-section)
the coast, Hawaii in a fine-grained ground mass. Source:

Dr. M. Rhodes.

ML55 Olivine Basalt: Highly vesicular basalt, with 15 percent
1950 Tava of Mauna vesicles (1-5 mm in size), 3-4 percent
Loa, near Routell at olivine phenocrysts (1 mm) in a pilotaxic
93-mile marker, Hawaii groundmass. Source: Dr. M. Rhodes.

185 Submarine Pillow Glassy basalt with ~ 3 percent vesicles

Basalt: from 1017 m
depth, Kealakekua
Bay, Hawaii

(.2-.5 mm) in a glassy intersertal
matrix. In refiected light, the glass has
crystallized-vitreous appearance. Source:
Dr. D. Fornari.
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Sample  Rock Type and Location Description

187 Submarine Pillow Glassy basalt with ~ 15 percent vesicles
Basalt: from 710 m (.5 -1.0 mm), similar in appearance to
depth, Kealakekua . 185. Source: Dr. D. Fornari.

Bay, Hawaii

203-1 Submarine Pillow Glassy basalt with 4-5 percent vesicles
Basalt, from 1017 m (.3-.9 mm) in a glassy intersertal
depth, Kealakekua groundmass. Elongate laths of plagioclase
Bay, Hawaii make up ~ 30 percent of the glassy

groundmass. Source: Dr. D. Fornari.
Reference: Fornari et al., 1980.

KK 9-14 Glassy Basalt: Glassy basalt with thick glasssy rim
Submarine part of (~ 1 mm) associated with flow structure.
northwest rift zone Vesicles are .2 -.6 mm and constitute
Hualalai ~ 6 percent of the glass. Olivine

phenocrysts are 1 mm in size and comprise
1 percent of the rock. Source: Dr. D.
Claque.

KK14-7  Glassy Basalt: Basalt with glassy margin that contains
submarine part of 2-3 percent vesicles (.1 - .3 mm in size)
northwest rift, and large (1 mm) olivine phenocrysts.
Hualalai Source: Dr. D. Claque

KK10-1 Glassy Olivine Basalt: Extremely olivine-rich basalt, that
submarine part of contains 50 percent olivine phenocrysts
northwest rift, (that range in size from 1-5 mm) in a
Hualalai glassy spherulitic groundmass. Several of

the olivines have prominent kink bands
and rows of fluid inclusions. Source:
Dr. D. Claque.

USNM Dunite Xenolith: Dunite with porphyroclastic texture.

113987 in alkali basalt of Porphyroblasts are 2-4 mm in size, and

-107 1801 flow, Hualalai contain numerous kink bands and fluid

Hawaii

inclusions. Smaller neoblasts (< 1 mm)
rarely contain as many inclusions or kink
bands, and surround the larger olivines.
Spinel is present as a trace constituent.
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Phyric Basalt:
Qakala, Mauna
Kea, Hawaii

-104

Table II.2 (continued)
Sample Rock Type and Location Description
USNM Dunite Xenolith: Dunite with large (2-4 mm) olivines
113987  in alkali basalt surrounded by smaller neoblastic
-11 of 1801 flow, olivines, giving the rock a
Hualalai, Hawaii porphyroclastic texture. There is a
significant quanity of melt and spinel
that forms a vein through the thin
section, and is intergranular to the
smailer olivines.
USNM Gabbroic Xenolith: Wehrlite xenolith that contains 113987
113987  in alkali basalt of 65 percent clinopyroxene, 30 percent
-104 1801 flow, Hualalai, olivine, and 5 percent plagioclase.
Hawaii Clinopyroxene is large and of uniform
size (~ 3 mm); olivine and plagioclase
are much smaller (~ 1 mm) giving the rock
a porphyroclastic texture. Clinopyroxenes
contain the most fluid inclusions, but
they are also present in the olivines.
USNM Gabbroic Xenolith: Wehrlite xenolith containing 60 percent
113987  from 1081 flow, Targe (4-10 mm) clinopyroxene, 25 percent
-54 Hualalai, Hawaii olivine (~ 1 mm), and 15 percent
plagioclase (~ 1 mm). The texture is
porphyroclastic; clinopyroxenes contain
the most fluid inclusions.
USNM Dunite Xenolith: Dunite with large (3-4 mm) grains of
111815  from 1801 flow olivine set in a groundmass of smaller
Hualalai, Hawaii olivines (< 1 mm) giving the rock a
porphyrocliastic texture. The texture
varies within the thin section, having a
lTayer of finer-grained olivine intermixed
with melt. Source: Dr. W. Melson.
48593 0Tivine-Pyroxene 0livine-rich basalt with 20 percent

euhedral olivine phenocrysts (1-4 mm),
and 2 percent zoned clinopyroxene opaque
minerals and clinopyroxene. Source: Dr.
S. 0. Agrell.
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Photomicrographs of porphyritic samples.

a. Photograph (in crossed polars) of thin section of sample
R43 (Reunion picrite).

b. Photograph (in crossed polars) of TK 46A (Tristan da
Cunha, ankaramite).

c. Photomicrograph (in plane light) of olivine crystal in
sample H66055 (picrite basalt from Kilauea). Round melt
inclusions are evident in the crystal.

d. Photomicrograph (in crossed polars) of plagioclase
crystal in sample WJ8B (Hawaiite from Bouvet Island). Rows
of dark blobs in the center of the field are melt inclusions,
some of which have devitrified.
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Photomicrographs of dunite xenoliths and olivine xenocrysts
(a1l in cross polarized light). ‘

a. Photograph of sample KK 27-9A, a xenolith within an
alkali basalt from Loihi Seamount. Note the porphyroclastic
texture; which is typical of the dunite xenoliths from Loihi
and Hualalai. Host basalt is present near top of thin
section.

b. Photomicrograph of olivine porphyroblast in sample KK
27-9A. Note the deformation lamellae at angles to the rows
of fuid inclusions.

c. Photomicrograph of same olivine porphyroblast as in Db.,
under higher magnification. Note the bands of fluid
inclusions, which are aligned along old fractures (i.e.,
healed cracks), and the negative crystal morphology of some
of the fluid inclusions.

d. Photomicrograph of xenocryst within tholeiite sample

KK10-1 (Hualalai). The round inclusions are filled with

Tiquid COp, and enclose a smaller vapor bubble. Note the
similarity to c. in overall inclusion alignment.
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Photomicrographs of basaltic glasses (all in plane light)

a. Photograph of sample Hualalai tholeiite KK9-14 (thin
section). The thin section was cut perpendicular to the
chilled surface (top) to illustrate gradation from glassy
exterior to holocrystalline interior.

b. Photograph of Loihi alkali basalt KK21-2 (thin section).
The vesicles in this sample are unusually large and
abundant. Note that in many cases the vesicles connect,
suggesting that this sampie has lost substantial quantities
of gas.

c. Photomicrograph of FAMOUS sample Alv 519 2-1-b. The thin
section was cut to a thickness of ~.15 mm to allow
examination of the unusually large vesicles.

Microphenocrysts of olivine can be seen suspended in the
glass and attached to the vesicle surfaces.

d. Photomicrographs of Galapagos MORB sampie Alv 714 G-1,
showing small vesicles suspended in a glassy-spherulitic
groundmass.
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