
 1 

Evidence for substantial intramolecular heterogeneity in the stable 

carbon isotopic composition of phytol in photoautotrophic organisms 

 

Stefan Schouten1*, Suat Özdirekcan1,2, Marcel T.J. van der Meer1, Peter Blokker1,3, 

Marianne Baas1, John M. Hayes4 and Jaap S. Sinninghe Damsté1 

 

1. Netherlands Institute for Sea Research, Department of Marine Biogeochemistry & 

Toxicology, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands. 

2. Present address: Department of Biochemistry of Membranes, University of Utrecht, 

Padualaan 8, 3584 CH Utrecht, The Netherlands. 

3. Present address: Nalco Europe B.V. PO Box 627, 2300 AP Leiden, The 

Netherlands. 

4. Woods Hole Oceanographic Institute, MS 8, Woods Hole, MA 02543, USA. 

 

 

 

*: corresponding author: E-mail : schouten@nioz.nl; Tel. (+31) (0)222 369546; Fax: 

(+31) (0)222-319674. 

 

Revised version submitted to Organic Geochemistry 

 

Keywords: phytol, phytane, pristane, stable carbon isotope, mevalonic acid pathway, 

2-C-methylerythritol-4-phosphate pathway, 2,6,10-trimethylpentadecan-2-one. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Woods Hole Open Access Server

https://core.ac.uk/display/4166647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

Abstract 

The ubiquitous isoprenoid phytol was isolated from a range of algae, terrestrial plants 

and a bacterium and its two terminal carbon atoms were quantitatively removed by 

chemical oxidation. The product, 6,10,14-trimethylpentadecan-2-one, was depleted in 

13C by 1-4‰ relative to the parent phytol. This difference is significant, and indicates 

that the pathway for biosynthesis of phytol induces substantial intramolecular stable 

carbon isotopic fractionations. The nature and magnitude of the fractionations suggest 

strongly that it is associated both with the biosynthesis of isopentenyl pyrophosphate 

via the 2-C-methylerythritol-4-phosphate pathway and with the formation of 

carotenoids and phytol from geranyl-geraniolphosphate. As a result of these large, 

intramolecular isotopic differences, diagenetic products formed by loss of C, such as 

pristane, may be naturally depleted in 13C by several permil relative to phytane. 

 

1. Introduction 

  The isotopic compositions of individual lipids in sediments and organisms 

depend strongly on the isotopic compositions of their biosynthetic precursors and on 

the pathways by which they are biosynthesized (Hayes, 1993; 2001). Variations in 

these factors can lead to isotopic compositions differing by up to 20‰ between lipids 

within a single organism (e.g. Summons et al., 1994; Schouten et al., 1998b; Sakata et 

al., 1997; van der Meer et al., 1998; summarized by Hayes, 2001). However, the 

mechanisms causing this isotopic diversity are incompletely understood (Hayes, 

2001). 

  A few studies have focused on the influence of the enzyme pyruvate 

dehydrogenase on the isotopic composition of lipids (Monson and Hayes, 1982a; 

Melzer and Schmidt, 1987). These showed that this enzyme discriminates against 13C 
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during the decarboxylation of pyruvate to produce acetyl coenzyme A. At least in 

bacteria, this isotopic fractionation accounts for the relative depletion of 13C in 

straight-chain lipids (additional fractionations are evident in eukaryotes; Monson and 

Hayes, 1982b). Acetyl coenzyme A can also serve as a precursor for isoprenoid lipids 

(Ratledge and Wilkinson, 1989). The isotopic compositions of those products indicate 

that fractionations are associated with the biosynthesis of isoprenoids, e.g. within 

photosynthetic algae isoprenoid lipids are isotopically depleted compared to biomass 

(Schouten et al., 1998b). 

  Phytol is thought to be one of the main precursors of the ubiquitously occurring 

sedimentary compounds pristane and phytane (e.g. Volkman and Maxwell, 1984 and 

references cited therein; Koopmans et al., 1999). The diagenesis of phytol has been 

studied extensively over the last decades and the carbon isotopic compositions of 

phytol or its diagenetic products have often been used as indicators of the carbon 

isotopic composition of photoautotrophic organic carbon (e.g. Freeman et al., 1989; 

Hayes et al., 1990; Kohnen et al., 1992; Grice et al. 1998; Koopmans et al., 1999; 

Schouten et al., 2000a). 

  Isopentenyl pyrophosphate (IPP), the biomonomer from which phytol is 

assembled (e.g. Ratledge and Wilkinson, 1989; Fig. 1), can be biosynthesized via two 

different pathways using different precursors. In some cases, IPP is biosynthesized 

from three acetyl coenzyme A units. Because mevalonic acid is an important 

intermediate product, this route (Fig. 1; e.g. Nes and McKean, 1977) is known as the 

mevalonic acid (MVA) pathway. Alternatively, IPP is biosynthesized from pyruvate 

and glyceraldehyde-3-phosphate with 1-deoxyxylulose 5-phosphate and 2-C-

methylerythritol-4-phosphate (MEP) as important intermediates (Rohmer et al., 1993; 

1996; Bach, 1995; Lichtenthaler et al., 1997; Lichtenthaler, 1999; Schwender et al., 
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2001; Eisenreich et al., 2004; Fig. 1). This so-called MEP-pathway is now thought to 

be widespread in Bacteria (Lichtenthaler, 1999; Eisenreich et al., 2004) whilst in 

Eukaryotes the MEP pathway is mainly operating in the chloroplast to produce 

isoprenoids such as phytol (Schwender et al., 2001; Eisenreich et al., 2004; Rohmer, 

2007). To produce regular isoprenoids with 20 or 40 carbon atoms, 4 IPP units are 

sequentially coupled and the product, geranyl-geraniolphosphate (GGP), is 

subsequently fed into different biosynthetic pathways to produce metabolic products 

like quinones, tocopherols, carotenoids and phytol (Fig. 1). 

  The different pathways for IPP biosynthesis produce isoprenoids with differing 

depletions of 13C relative to total biomass (e.g. Hayes, 2001; Massé et al., 2004). The 

reasons for this are not known in detail, but are likely to include differing 

intramolecular distributions of 13C. If any such isotopic patterns can be determined, 

they will not only explain quantitatively the intermolecular isotopic differences, but 

also point to the specific biosynthetic steps which are responsible for them (cf. 

Monson and Hayes, 1982a). Here we report here on intramolecular stable carbon 

isotopic differences within phytol determined using a novel approach involving the 

selective oxidation of carbon C1 and C2 from phytol. 

  

2. Materials and methods 

2.1 Cultures 

 The algae and conditions of growth are listed in Table 1. Continuous cultures 

were grown in constantly aerated, 3-l Erlenmeyer flasks and were illuminated using a 

16:8 h light/dark regime. Dilution rates ranged between 0.13-0.22 d-1 except for 

Dunaliella (0.50 d-1). Most marine algae were grown on an F/2 medium (Guillard, 1975) 

with the exception of the dinoflagellates which were grown using a medium described 
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by Hansen (1989). Freshwater species were grown using a 16:8 h light/dark regime and 

a medium described by Kates and Jones (1964). Batch cultures were harvested when the 

algae reached the end of their exponential-growth phase. Euglena gracilis strain Z 

(Klebs 1224-5/25) was obtained from Algensammlung Göttingen and was grown 

autotrophically under axenic conditions with a light/dark regime of 14:10 h. Every three 

days, at the end of a dark period, the culture was diluted: 10 ml (0.5x106 cells/ml) of the 

suspension was transferred to 100-ml fresh medium (Cramer and Myers, 1952). 

Chloroflexus aurantiacus OK-70fl (DSM 636) was grown under anaerobic 

phototrophic conditions at 55ºC using a mineral-salt medium supplemented with 

vitamins and gassed with a mixture of H2/CO2 (80:20; Menendez et al., 1999). Cells 

were harvested during the exponential-growth phase by centrifugation and 

subsequently frozen in liquid nitrogen and lyophilized before lipid extraction. 

 The terrestrial plants were obtained from the peat bog reserve “Bargerveen”, 

(Zwartemeer, SE-Drenthe, The Netherlands), except Ficus benjamini which was grown 

as a house plant in an office under natural sunlight. 

 

2.2 Isotopic analysis of phytol 

  The freeze-dried cell material was ultrasonically extracted with methanol 

(MeOH; 2x), MeOH/dichloromethane (1:1, v/v; 2x) and dichloromethane (2x). The 

extracts were subsequently saponified by refluxing (1h) with a 1N KOH/MeOH 

solution. After neutralising to pH 3 with a 2N HCl/MeOH solution, the samples were 

washed with double-distilled water/DCM (2:3 v/v) and then twice extracted with 

DCM in a separatory funnel. Subsequently, the DCM layers were combined and dried 

by filtering through a column of anhydrous Na2SO4. Alcohols present in the extract 

were isolated by column chromatography (Al2O3) using a 9:1 (v/v) mixture of n-
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hexane and DCM to elute the apolar compounds and 1:1 (v/v) DCM/MeOH to obtain 

the alcohol fraction. The alcohol fraction was then silylated by adding 75 µl of BSTFA 

and pyridine and heating the mixture at 60°C (30 min). To correct for the isotopic 

change due to the introduction of carbon derived from the trimethylsilyl (TMS) group, a 

hexadecanol standard with an known isotopic composition (-30.1‰), was silylated 

using the same batch of BSTFA. By determining the carbon isotopic composition of the 

derivatized standard, the carbon isotopic composition of the TMS group was calculated 

by mass balance.  As discussed below, the required correction for the presence of TMS 

carbon introduces an additional uncertainty in the isotopic composition of phytol. The 

fractions were analysed by gas chromatography (GC), GC-combustion-isotope ratio 

monitoring mass spectrometry (GC-C-irms) and, in some instances, by GC-mass 

spectrometry (GC-MS). 

 

2.3 Oxidation of phytol 

  To convert phytol into 6,10-14-trimethylpentadecan-2-one, portions of the 

silylated extracts were oxidized using RuO4 (Schouten et al, 1998a). Prior to 

oxidation, the solvent in which the alcohol fractions was stored was evaporated under 

dry N2 and the fractions were dissolved in 2 ml of 1:1 (v/v) chloroform/acetonitrile.  

An equal volume of an aqueous solution of 0.2 M NaIO4 at pH 4 was then added.  The 

reaction was started in an ultrasonic bath by adding 6 mg of Ru(III) as a catalyst. The 

reaction was stopped by adding 3 ml of double-distilled water and 2 ml of n-hexane, 

followed by centrifugation to remove the residual material from the organic layer. The 

organic layer was then removed and added to 0.5 ml of MeOH. Subsequently, the 

remaining Ru salts were extracted with 2 ml of n-hexane and twice with 2 ml of ethyl 

acetate. The black Ru salts were then precipitated from the organic layer by 
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centrifugation as described above and the remaining supernatant was washed with 0.5 

ml of a 5% (w/v) solution of sodium thiosulfate in water. The extract was dried over 

anhydrous Na2SO4 and evaporated to dryness under nitrogen. The dried residue was 

finally dissolved in ethyl acetate and analyzed by GC-FID, GC-MS and irm-GCMS.  

 

2.4. Analytical methods 

  A Hewlett Packard 5890 series II chromatograph equipped with an on-column 

injector and fitted with a 25 m × 0.32 mm fused silica capillary column coated with 

CP-Sil 5 (film thickness 0.12 µm) was used for separations and analyses. Helium was 

used as carrier gas and the oven was programmed from 70°C to 130°C at 20°C/min, 

followed by an increase of 4°C/min to 320°C (15 min hold time). Compounds were 

detected using a flame ionization detector. 

  Samples were analyzed by GC-MS using the GC conditions described above. 

The column was directly inserted into the electron-impact ion source of a VG - 

Autospec Ultima mass spectrometer operated with a mass range of m/z 40−800, a 

cycle time of 1.8 s, and an ionization energy of 70 eV.  

  The DELTA-C irm-GCMS-system has been described previously (Schouten et al., 

1998b). The gas chromatograph was equipped with a fused silica capillary column (25 

m x 0.32 mm) coated with CP Sil-5 (film thickness = 0.12 µm) with helium as carrier 

gas. The samples (dissolved in ethyl acetate) were on-column injected at 70°C. The 

column temperature was programmed to 130°C at 20°C/min, then to 320°C at 4°C/min, 

and finally held at 320°C for 30 min. Values of δ13C for individual peaks of CO2 

resulting from combustion of the eluted compounds were calculated from integrated ion 

currents at masses 44, 45 and 46 (Ricci et al., 1994). The δ scale was calibrated using 
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CO2 spikes produced by admitting CO2 with a known 13C-content at regular intervals. 

Performance of the combustion system was checked by regularly injecting a C20 and C24 

perdeuterated n-alkane mixture and results were always within 0.5‰ of values 

determined offline. The reported δ values are the averages of at least two analyses.  

Isotopic compositions are reported relative to the VPDB 13C standard.  

  To assess precision, we calculated the pooled standard deviations of replicate 

analyses. These were 0.56‰ for phytol (51 replicates and 19 mean values, thus 32 

degrees of freedom) and 0.46‰ for the C18 ketone (58 replicates, 19 means, 39 

degrees of freedom). This assessment of precision attributes variations mainly to 

random analytical errors rather than to sample-specific factors (e.g., coelutions). It 

allows large sample-vs.-mean differences to influence strongly the estimate of the 

standard deviation and is therefore a conservative assessment. Inspection of the 

chromatograms and sets of replicates supports these choices. Accordingly, to assign 

uncertainties to analytical results, we have taken 0.5‰ as the standard deviation of a 

single isotopic analysis and computed the standard deviation of the mean by dividing 

0.5‰ by the square root of the number of replicates. 

  In the case of phytol, correction for the additional carbon present in the 

analyzed,TMS ether slightly increases the uncertainty.  Specifically, 

 σPh
2 = 23
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� 
� 
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� 
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� 

2

σTMS
2  [1] 

where the σ terms are standard deviations of the calculated δ value of phytol (Ph), the 

measured δ value of the TMS ether of phytol (Ph-TMS), and the δ value of TMS 

calculated from the analysis of the TMS ether of the hexadecanol isotopic standard 

(TMS).  The coefficients 23, 20, and 3 are the numbers of carbon atoms in the TMS 

ether of phytol, in phytol, and in the TMS moiety.  For σTMS = 1.6‰ (pertinent in this 
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case), σPh is 0.62‰ (vs. 0.5‰ for an analysis not requiring TMS correction) for a 

single analysis, 0.47‰ (vs. 0.35‰) for a duplicate, 0.41‰ (vs. 0.29‰) for a triplicate, 

and 0.37‰ (vs. 0.25‰) for a quadruplicate. Hence, the uncertainty in the isotopic 

composition of phytol is only slightly increased by the correction for the TMS-

derivitization. 

 

3. Results 

3.1 Isotopic fractionations associated with the analytical method 

  Our method to examine intramolecular isotopic differences in phytol involves 

the treatment of phytol with RuO4 to form 6,10-14-trimethylpentadecan-2-one (Fig. 

2). This reaction removes carbon atoms C1 and C2. Provided that either isotopic 

fractionation is absent or that the oxidation reaction is quantitative, resulting in net 

zero fractionation, comparison of the isotopic composition of the C18 ketone with that 

of phytol then provides information about the distribution of 13C within phytol. To 

determine the reaction’s isotopic characteristics, a mixture of E- and Z-phytol 

produced by Aldrich Chemical Company (St. Louis, MO), was oxidized in four 

replicate experiments. The average yield was 100±4% and 6,10-14-

trimethylpentadecan-2-one was the sole product (Fig. 2). 

  Isotopic analyses showed that the isotopic compositions of the oxidation 

product and of the commercial phytol were identical (Table 2). Two factors now 

combine. First, isotopic fractionation should be absent because the yield is 

quantitative. Second, isotopic homogeneity is likely because of the mixed origin of the 

phytol produced by Aldrich. Together, these support the conclusion that the procedure 

provides an accurate view of the isotopic difference between C1 + C2 and the 

remainder of the phytol molecule. 
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  To test the reproducibility of the method, cells of Tetraedron minimum grown in 

continuous culture were divided in two parts and analyzed separately. For these 

replicates, the isotopic differences between phytol and its oxidation product did not 

differ significantly (1.6 versus 2.1‰; Table 2). This indicates that the isotopic 

differences measured with the RuO4 oxidation method are reproducible. Additionally, 

these isotopic differences, derived from a continuous culture of T. minimum, do not 

differ significantly from the isotopic differences observed for a batch culture of T. 

minimum (1.6‰; Table 2). This suggests that the methods used here have no 

substantial effects on the intramolecular distribution of 13C in phytol. 

 

3.2 Isotopic variations in natural phytol 

  To begin intramolecular isotopic studies of isoprenoids, we have used the 

procedure described above to survey the isotopic characteristics of phytol from a 

variety of sources. These include cultures of seven marine and five freshwater algae, 

specimens of four terrestrial plants, and a culture of a photosynthetic bacterium (Table 

2). As a plastidic product, phytol will in nearly all cases have been produced by the 

MEP pathway (possible exceptions are discussed below). The results bear on two 

questions. First, is there a consistent isotopic signal that might be linked to 

biosynthetic processes? Second, considering possible instances of synthesis via the 

MVA pathway, is there any evidence that the isotopic characteristics of the MEP and 

MVA pathways differ significantly? 

  Results are summarized in Table 2. The answer to the first question is readily 

apparent. Even though uncertainties are appreciable relative to the isotopic 

differences, the C18 ketone is in all cases significantly depleted in 13C relative to the 

phytol from which it was derived. Accordingly, carbon positions C1 and C2 are on 
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average enriched in 13C relative to the average of the 18 other carbon positions in the 

parent phytol. 

 

4. Discussion 

4.1 Mechanisms and magnitudes of fractionation 

  The origins of the isotopic signal can be considered systematically. We start 

from the consistent observation that phytol is depleted in 13C relative to average 

biomass (cf. Schouten et al., 1998b). The fractionations responsible for that overall 

depletion must occur during the production of the IPP from which phytol is produced. 

It is therefore possible, even likely, that the isotopic difference examined in these 

analyses derives from an isotopic pattern within IPP, namely 13C-enrichment of the 

average δ13C of C1 and C2 (δt ) relative to the average δ13C of C3, C4, and C5 (δh ; 

Fig. 2). This corresponds to �i > 0 where �i � δt −δh . Given the limitations imposed 

by the present analytical scheme, however, an alternative possibility must be 

considered. Specifically, even if strong isotopic order is present within IPP and 

underlies the overall depletion of 13C in phytol, it is conceivable that �i = 0 (n. b., δt  

and δh  are average isotopic compositions, �i = 0 therefore does not exclude all forms 

of intramolecular isotopic order). In that case, the isotopic differences measured in the 

present investigation would derive from enrichment of 13C only at positions C1 and 

C2 in phytol and not in other isoprenoids derived from IPP. 

  Distinct mechanisms are associated with these cases. In the first, the isotopic 

differences measured here derive from isotope effects and carbon flows associated 

with the production of IPP. In the second, they derive from some process downstream 

from production of IPP. Since a significant branch point in flows of carbon is 
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required, a single possibility for downstream fractionation exists, namely the 

commitment of GPP either to production of phytol or dimerization to yield phytoene 

and, subsequently, carotenoids (Fig. 1). At that point, if the kinetic isotope effect on 

the branch leading to phytoene is larger than that on the branch leading to phytol, an 

enrichment at position C1 in phytol would result (C2 would be largely unaffected; the 

enrichment measured here for C1 + C2 would in fact be concentrated at C1). We use 

�g to designate this enrichment.   Mass-balance expressions are then as follows: 

 20δP =12δh + 7δt +1(δt + ∆ g)  [2] 

 18δK =12δh + 6δt  [3] 

Equation 2 relates the average isotopic composition of the carbon positions in phytol 

to those of the carbon positions in the head and tail portions of IPP and allows for one 

of the carbon positions (namely C1 in phytol) to be enriched by a further amount, i.e. 

�g. Equation 3 notes that the 18 carbon atoms in the ketone produced by oxidation of 

phytol are comprised of 12 carbon atoms from the head and 6 from the tail of IPP. 

Substituting δt = δh + ∆ i, �P-K � δP −δK , and combining equations 2 and 3, we obtain 

 20∆P-K = 4
3

∆ i + ∆ g  [4] 

This equation relates the isotopic difference between phytol and the C18 ketone (Table 

2) to isotopic differences between the head and tail portions of IPP and to enrichment 

of 13C at C1 in phytol. It shows how either of the mechanisms suggested above, or a 

combination of them, could account quantitatively for the observed isotopic 

differences. The situation is summarized in Figure 3. In the case of �P-K = 1.5‰, for 

example, the observation might be explained by �i = 22.5‰ and �g = 0‰, by �i = 0‰ 

and �g = 30‰, or by any combination of values of �i and �g on the line linking these 

points.  
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  Intramolecular isotopic differences observed up to now (Abelson and Hoering, 

1961; Monson and Hayes, 1982a; b) have not exceeded 25‰. If a slightly greater 

value, 30‰, is taken as a plausible maximum value for fractionation at a single C 

position in a multi-C reactant, Figure 3 shows that �i alone (i.e., �g = 0) can explain 

only �P-K � 2‰. Similarly, �g alone can explain only �P-K � 1.5‰. For six of the 

entries in Table 2 (S. communis, P. boryanum, Tetraselmis sp., Amphidinium sp., S. 

recurvum, and F. benjamini), a combination of both fractionations is required even at 

the lower end of the 95% confidence interval for the observed value of �P-K. Thus, 

both mechanisms are likely responsible for the observed differences between phytol 

and the C18 ketone. These mechanisms will be discussed in more detail below. 

 

4.1.1 Fractionation during IPP biosynthesis 

  Values of �i indicated in Figure 3 must be associated with the MEP pathway, 

which is predominant in chloroplasts (Lichtenthaler et al., 1997; Schwender et al., 

2001; Eisenreich et al., 2004). A notable exception is phytol biosynthesized by 

Chloroflexus aurantiacus which has a substantially smaller difference. This will be 

discussed in more detail below. 

  Close examination of the MEP pathway (Fig. 1) reveals an important branch 

point: the decarboxylation of pyruvate to form activated acetaldehyde that 

subsequently reacts with glyceraldehyde phosphate (GAP). Previous studies have 

shown that decarboxylation of pyruvate during the biosynthesis of acetyl coenzyme A 

leads to a depletion in 13C of the carboxyl group (Monson and Hayes, 1982a; Melzer 

and Schmidt, 1987). The decarboxylation reaction in the MEP pathway (Fig. 1) is 

similar and the potentially-depleted carbon position can be traced to C3 in IPP. Other 

carbon atoms in the IPP formed via the MEP pathway have not been affected by 
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decarboxylation reactions and thus may be less depleted in 13C. In fact, carbon atoms 

C1 and C2 have potentially been unfractionated during synthesis of IPP by the MEP 

pathway since they have not been involved in any carbon-carbon bond cleavages. 

Thus, based on current knowledge of the MEP pathway, we predict that C3 is depleted 

in 13C compared to the other carbon atoms in IPP. This fits with the observed data, i.e. 

13C-depletion of C3 + C4 + C5 compared to C1 + C2 in IPP. It cannot, however, be 

the only factor, since fractionation at a single position is not likely to explain values of 

�i approaching 30‰ (see above). 

  The isotopic difference between phytol and its oxidation product from the 

photosynthetic non-sulfur bacterium C. aurantiacus is significantly smaller than that 

observed for algae and terrestrial plants (Table 2). Van der Meer et al. (2001) have 

investigated the stable carbon isotopic compositions of fatty acids and isoprenoid 

compounds from the same culture. Based on the isotopic composition of the C16 fatty 

acid and the isoprenoid verrucosanol, built via the MVA pathway (Rieder et al., 

1998), they concluded that the carboxyl group of the original acetate building block 

was approximately 40‰ enriched in 13C compared to the methyl group.  Since phytol 

in C. aurantiacus is probably also made by the MVA pathway (phytol and 

verrucosanol are similarly depleted relative to the carbon source by 16.1 ± 0.1 and 

17.6 ± 0.4‰, respectively; Van der Meer et al., 2001), it follows that carbon atoms 

C1 + C2 should on average be enriched in 13C compared to C3 + C4 + C5. In turn, the 

oxidation product of phytol should be depleted in 13C. More specifically, using the 

data of van der Meer et al. (2001), we can calculate that the oxidation product of 

phytol should be depleted by ~0.4‰. This predicted depletion is very close to the 

isotopic difference of 0.5 ± 0.4‰ observed in this investigation and suggests that �g is 

negligible in this case.  
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  Phytol in E. gracilis is also expected to be a product of the MVA pathway 

(Disch et al., 1998; Kim et al., 2004). The expected isotopic consequences of this 

pathway have been discussed before (Hayes, 1993). Specifically, carbon atoms C1 and 

C3 are likely to be depleted in 13C compared to C2, C4 and C5 (Fig. 1). This is mainly 

due to the depletion in 13C of the carboxyl group of acetyl coenzyme A (Monson and 

Hayes, 1982a; Melzer and Schmidt, 1987). Accordingly, the average δ value for 

C1+C2 should be lower than that for C3+C4+C5. This is the opposite of what is 

observed for all algae and terrestrial plants, in agreement with the dominant use of the 

MEP pathway, but also the opposite of what is observed in E. gracilis. A possible 

explanation may be that our culturing conditions differed from those of the studies by 

Disch et al. (1998) and Kim et al. (2004), in which E. gracilis was grown strictly 

heterotrophically with only low illumination to avoid scrambling of the 13C-label. 

Indeed, Kim et al. (2004) showed that the MEP pathway is present in E. gracilis, but 

apparently involved only in the production of IPP used for carotenoid biosynthesis. 

This would be consistent with the evolutionary origin of the genus Euglena from a 

secondary endosymbiosis between a protist and a secondary green alga, the latter now 

forming the plastid of Euglena (Nozaki, 2005 and references cited therein).  Possibly, 

the autotrophic growth conditions used in the present work have led to the use of a 

different IPP pool for the biosynthesis of phytol. Alternatively, the results for E. 

gracilis may indicate that biosynthetic pathways for IPP are not the major cause for 

the observed 13C-enrichment and that some other process, such as the formation of 

phytol, carotenoids, quinones and tocopherols from GGP (see below), has resulted in 

the 13C-enrichment of C1+C2 carbon atoms in phytol. 
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4.1.2 Fractionation during formation of phytol from GGP 

  The pool of GGP, the direct precursor for phytol (Fig. 1), is used for both the 

biosynthesis of phytoene, the precursor for carotenoid biosynthesis, and the 

biosynthesis of phytol, which is, in turn, used for quinone and tocopherol biosynthesis 

(e.g. Ratledge and Wilkinson, 1989). If the tail-to-tail coupling of GGP to form 

phytoene is accompanied by isotopic fractionation, it will likely lead to depletions in 

13C at the C1 positions in the GGP flowing to phytoene. By mass balance, this will 

lead to an enrichment of 13C at the C1 position in the remaining pool of GGP and 

hence to enrichment of 13C in C1 of phytol esterified to chlorophyll (i.e., �g > 0). The 

magnitude of the enrichment will depend on the relative fluxes of GGP to phytoene 

and phytol which will, in turn, likely depend on the needs for phototrophy during 

growth of the organism.  Variations of this sort may explain the observed range of 13C 

enrichments at the C1+C2 carbon atoms in phytol. 

  As noted in the discussion of Figure 3, non-zero values of �g are practically 

required to explain a significant portion of the observed range of values of �P-K. This 

indicates that the isotopic fractionations associated with the biosynthesis of 

carotenoids are substantial and that a substantial part of the flow of GGP is directed 

towards carotenoid biosynthesis. The relatively low enrichment at C1+C2 in phytol 

from C. aurantiacus may then not be due to different biosynthetic routes as suggested 

above, but to different flows of GGP directed towards the biosynthesis of carotenoids 

and bacteriochlorophylls. 

  Further work, especially intramolecular analyses with greater positional 

specificity, is needed to elucidate the exact roles of IPP biosynthesis and formation of 

phytol from GGP in the intramolecular distribution of 13C within phytol. However, 



 17

our results do suggest that the biosynthesis of phytol leads to a substantial 

intramolecular heterogeneity in 13C. 

 

4.2 Geochemical implications 

  Diagenetic products of phytol, such as 2,6,10-trimethylpentadecan-2-one (e.g. 

Rontani et al., 1999) and phytane and pristane (e.g. Volkman and Maxwell, 1984 and 

references cited therein), are often encountered in recent and ancient sediments. Some 

of these products involve the loss of the C1 and/or C2 carbon atoms of phytol and 

hence their isotopic composition can be significantly different from that of their 

precursor. For instance, if pristane is formed from phytol, then our results suggest that 

pristane may be slightly depleted in 13C relative to its C20 precursor. Hayes et al. 

(1990) and Kenig et al. (1994) compared the δ13C values of pristane and phytane in 

the Greenhorn formation and the Oxford Clay Formation, respectively, and found no 

significant difference between them. Data reported by Collister et al. (1994) for the 

Green River oil shale, Hughes et al. (1995) for a suite of source rocks, Logan et al. 

(1997) for Neoproterozoic and Early Cambrian sediments, van Kaam-Peters et al. 

(1998) for Kimmeridgian source rocks, Köster et al. (1998) for Oligocene source 

rocks and Grice et al. (1998) for Paleocene-Eocene lacustrine source rocks, also show 

no consistent or significant difference between the δ13C values of pristane and 

phytane.  In contrast, Van Kaam-Peters  and Sinninghe Damsté (1997) found pristane 

consistently depleted in 13C by up to 1.5‰ compared to sulfur-bound phytane in 

Jurassic S-rich sediments. Schouten et al. (2000a,b) measured the carbon isotopic 

compositions of pristane and phytane in Toarcian black shales and in sediments of the 

Miocene Monterey Formation. In these, pristane is consistently depleted in 13C 

relative to phytane, by 0.7-1.5 and by 0.4-2.5‰ for the Toarcian shales and Monterey 
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sediments, respectively.  A strong enrichment of 13C in pristane relative to phytane has 

been reported only in rare cases (Freeman et al., 1989; Hughes et al., 1995). Thus, 

isotopic differences between pristane and phytane are generally either negligible or 

pristane is depleted by 0.5-2.5‰ in agreement with our prediction. It should, however, 

be noted that any observation of the predicted depletion in 13C will depend on whether 

pristane and phytane are solely derived from phytol or if additional sources such as 

tocopherols and archaeal diether lipids with distinctly different 13C-contents are 

involved (Ten Haven et al., 1987; Koopmans et al., 1999). Koopmans et al. (1999) 

noted occasionally strong changes in δ13C values of pristane and phytane during 

thermal maturation, suggesting formation of these compounds from tocopherols and 

diether lipids present in higher molecular-weight fractions, i.e. asphaltenes and 

kerogen. Freeman et al. (1989) found a strong enrichment of 13C in pristane versus 

phytane in the Messel oil shale and attributed this to an archaeal source for phytane. 

This mixing of sources for pristane and phytane could mask isotopic differences 

between these molecules caused by the intermolecular isotopic heterogeneity in the 

precursor molecule phytol.  

  Nevertheless, our data thus suggest that the stable carbon isotopic composition 

of sedimentary organic compounds that are diagenetically formed from one precursor 

may be dissimilar due to isotopic heterogeneity within molecules. Hence, isotopic 

differences between structurally similar molecules do not necessarily indicate different 

sources or isotopic fractionations due to diagenetic reactions. This is in contrast to 

earlier work where loss of methyl groups during aromatization of higher plant 

triterpenoids did not seem to result in large isotopic differences (Freeman et al., 1994). 
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Table 1. Investigated algae, terrestrial plants and bacteria and their culture conditions. 

Organisms Class Culture 
type 

T 
(°C) 

CO2 source 

Freshwater algae     
Tetraedron minimum (c) Chlorophyceae Continuous 19 Air+2% CO2 
Tetraedron minimum (b) Chlorophyceae Batch 19 Air+2% CO2 
Scenedesmus communis Chlorophyceae Batch 19 Air+2% CO2 
Chlamydomonas monoica Chlorophyceae Continuous 19 Air+2% CO2 
Pediastrum boryanum Chlorophyceae Batch 19 Air+2% CO2 
Euglena gracilis Euglenophyceae Batch 30 Air+5% CO2 
     
Marine algae     
Dunaliella sp. Chlorophyceae Continuous 15 Air 
Tetraselmis sp. Prasinophyceae Continuous 15 Air 
Thalassiosira weissflogii Bacillariophyceae Continuous 15 Air 
Amphidinium sp. Dinophyceae Continuous 15 Air 
Nannochloropsis salina Eustigmatophycae Batch 15 Air 
     
Terrestrial plants     
Sphagnum recurvum Bryophyta  Natural n.a. Air 
Sphagnum compactum Bryophyta  Natural n.a. Air 
Eriophorum vaginatum Cyperaceae Natural n.a. Air 
Ficus benjamini Moraceae Natural rT Air 
     
Photosynthetic bacteria     
Chloroflexus aurantiacus Green non-sulfur Batch rT Air 

(c) = continuous culture 

(b) = batch culture 

n.a. = not applicable 

rT = room temperature 
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Table 2. Stable carbon isotopic composition of phytol (δP) and its oxidation product 

(δK) in algae, terrestrial plants and bacteria. Uncertainties are standard 

deviations on the means of the indicated numbers of replicates (see 

methods).  

Organisms 
Pδ  (‰)  Kδ (‰) �P-K

a 
(‰) 

Synthetic phytol -32.3 ±0.4 (3) -32.1 ±0.4 (2) -0.2 ±0.5 
    
Freshwater algae    
Tetraedron minimum    
   continuous culture 1 -30.0±0.4 (3) -31.5±0.3 (3) +1.6±0.5 
   continuouis culture 2 -29.8±0.4 (3) -31.9±0.4 (2) +2.1±0.5 
   batch culture -53.2±0.4 (3) -54.4±0.3 (3) +1.3±0.5 
Scenedesmus communis -45.2±0.4 (3) -48.5±0.3 (3) +3.2±0.5 
Chlamydomonas monoica -49.1±0.4 (3) -50.9±0.3 (3) +1.7±0.5 
Pediastrum boryanum -41.2±0.4 (3) -45.3±0.3 (3) +4.1±0.5 
Euglena gracilis -56.9±0.4 (3) -58.7±0.3 (2) +1.7±0.5 
    
Marine algae    
Dunaliella sp. -24.5±0.4 (3) -26.3±0.4 (2) +1.7±0.5 
Tetraselmis sp. -17.5±0.4 (3) -21.0±0.3 (4) +3.5±0.5 
Thalassiosira weissflogii -21.7±0.4 (3) -23.0±0.3 (3) +1.3±0.5 
Amphidinium sp. -35.1±0.4 (3) -38.0±0.3 (3) +3.0±0.5 
Nannochloropsis salina -4.6±0.4 (3) -5.9±0.3 (3) +1.3±0.5 
    
Terrestrial plants    
Sphagnum recurvum -35.5±0.4 (4) -39.1±0.4 (2) +3.6±0.5 
Sphagnum compactum -33.1±0.4 (3) -35.5±0.4 (2) +2.4±0.5 
Eriophorum vaginatum -32.0±0.4 (3) -34.3±0.4 (2) +2.3±0.5 
Ficus benjamini -31.2±0.4 (3) -34.9±0.4 (2) +3.8±0.5 
    
Photosynthetic bacteria    
Chloroflexus aurantiacus -52.8±0.4 (4) -53.3±0.3 (4) +0.5±0.5 

a KPK-P δδ −=∆  
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Figure captions 

 

Fig. 1 Schematic representation of the MVA-pathway and MEP-pathway for IPP 

biosynthesis and biosynthesis of chlorophyll, carotenoids, quinones and 

tocopherols (after Lichtenthaler, 1999, Eisenreich et al., 2004, Rohmer 2007 

and Ratledge and Wilkinson, 1989). Both start with pyruvate (indicated by the 

left square) and end with phytol (indicated by the right square). Only one GGP 

pool is drawn but there may be multiple pools of GGP inside the chloroplast 

(Ratledge and Wilkinson, 1989). 

 

Fig. 2 Formation of phytol from IPP, followed by RuO4 oxidation of phytol leading to 

the formation of 6,10,14-trimethylpentadecan-2-one. 

 

Fig. 3 Graph indicating combinations of �i and �g consistent with observed values of 

�P-K. Since neither �i nor �g is likely to exceed 30‰, the observed values of 

�P-K are probably explained by combination of fractionations associated with 

the production of IPP (�i) and with the division of GPP between phytol and 

carotenoid products (�g). 
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