
Signature of

Cer-tified hy:

Accepted by:

CONPOSITION AND CHARl\.CTEJUSTICS OF PARTICLES

IN THE OCEAN:

EVIDENCE FOR PRESENT DAY RESUSPENSION

by

l"Lh.RY JOSEPHINE RICHARDSON

A.B. Smith College
(1915)

SUßNITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE

DEGREE OF

M A. 0/', :---~,~"~'i'¡,;\ ri.d.~ ;
8!OLCC~!rc' i ¡

L" Dr.'~ ' .~, :.'- ,r-u., .e..,.'...... I__--......l.i'..J¡\~~,' .'

L . to, -.._--_. '. If ¡ .)' í) Ii '" \ 1'----1
-- l, ¡~-~ of.,.-" _-___ 1 1 \ ( ,_

1"1"0' ---~ ¡"0' ¡)Ç IJOI . --~I\. i.it lJ;¡~ ~:'0 i

Vi 1 "fo't..;,... 1:. N. 0 I ¡------.... ¡~,.~:

DOCTOR OF PHILOSOPHY

at the

NASSACHUSETTS INSTITUTE OF TECHNOLOGY

and the

\-mODS HOLE OCEANOGRAPHIC INSTITUTION

May 1980

Au that": _~;lJtQ_il ~-_fuhru¿chdb~)_~._____
JOl.nt Pi:og~ in Oceanography
Massachusetts Institute uf Technalogy ... Woods

~e ¡bceanogr aph ic Ins ¡¡ io~ .~M".198a

___bhÆhL_'D_~~lU.J____

~
Thesis Supervisor

f? cVWI j.t n - ~~._-----_._._.-
Chairman, Joint Oceanography Committee in the
Earth Sciences, Massachusetts Institute of
T~chnology - Woods Hole Oceanographic Ins titution

GC
'7

,R. 3l

I :J ¿l.?



-2-

COMPOSITION AN CHARACTERISTICS OF PARTICLES IN THE OCEAN:

EVIDENCE FOR PRESENT-DAY RESUSPENSION

by

MARY JOSEPHINE RICHARSON

Submitted to the Massachusetts Institute of Technology - Woods
Hole Oceanograph ic Inst itut ion Joint Program in Oceanography
on May 2, 1980, in partial fulfillment of the requirements

for the degree of Doctor of Ph ilosophy

ABSTRACT

This study of particulate matter in the water column and the
underlying surface sediments verifies the occurrence of local,
present-day resuspens ion in the deep sea. The locat ion of the major
port ion of th is work was the South Icelan d Rise, a reg ion influenced
by the flow of Norwegian Sea Overflow Water. Measured current
veloc it ies exceeded 20 cml sec in the axis of the bottom current for
the durat ion of the deployment s, approx imately two T,.eeks.
Particulate matter was sampled with Niskin bottles, to obtain the
stan ding crop of suspen ded matter an d with sediment traps, to obtain
the material in flux through the water column. Box cores were taken
to obtain surface sediment samples for comparison with the trap
samples.

Suspended particulate matter (SPM) and light-scattering studies
demonstrate that in the Iceland Rise area the correlat ion of the
L-DGO nephelometer to concentrat ion of SPM differs between clear
water and the nepheloid layer. Correlat ions of light scattering to
SPM concentrat ion also differ regionally, but for predict ing
concentration from light scattering, regression lines at two
locations are indistinguishable. Particle size distributions have
lower variance in the nepheloid layer than those in clear water
which have roughly equal volumes of material in logarithmical ly
increas ing size grades from 1-20 ~m. Apparent dens ity differences
between SPM in clear water and the nepheloid layer are not
dist inguishable in the Iceland Rise study; appa rent dens it ies
increase in the nephelo id la~er in the T,.estern North At lant ic. An
apparent density of 1.1 g/cm adequately separates clear water
from nephelo id layer samples in th is reg ion. Compos it ional
variations seen between clear water and the nepheloid layer include
a decrease in small coccoliths and an increase in clays and mineral
matter. These compos it ional variat ions are more dramat ic in the
western North At lant ic reg ion, due to dissolut ion of carbonate at
the seafloor, later resuspended into the nepheloid layer.
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Sedimentolog ical ev idence of resuspens ion an d redistribut ion of
material are: 1) presence of sediment drifts throughout the Iceland
Bas in; 2) occurrence of coarse, glac ial age sediments beneath the
axis of the bottom current; and 3) differences in mineralogy,
carbonate an d organ ic carbon contents between surface sediments
beneath the bottom current and those in a channel.

A comparison of the vertical flux of material measured by
sediment traps at 500 meters above bottom (mab) with the
accurnlat ion rate in cores, shows that the present-day surface input
is an order of magnitude smaller than the accumulation rate. This
observat ion suggests transport of material into some sect ions of the
region by bottom currents or by turbidity currents.

The horizontal flux of particulate matter into and out of the
region by the bottom current is 100 kg/sec. This material may
contribute to the format ion of Gardar sediment drift downstream.
The trends in % CaC03 and % organic carbon through the water
column and in the surface sediments suggest that dissolut ion of
carbonate and decomposition and consumption of organic carbon occurs
primarily at the seafloor. These data also suggest preferential
preservation at channel stations and/or preferential erosion beneath
the bottom current.

A comparison of sediment-trap samples with box-core surface
samples further supports present-day resuspens ion. Benth ic
foramin ifera, iron-oxidi coated plankton ic foramin ifera an d the
glac ial, subpolar plankton ic foramin ifera (Neogloboq uadrina
pachyderma (sinistral)) in traps at 10, 100 and a few specimens at
500 mab, provide conclusive evidence for local resuspens ion. The
coarse fract ion (~125 ~m) of the sediment trap material collected at
10 mab comprises 21-34% of the samples Calculat ions indicate that
th is material is locally derived (few kilometers) resuspended
material.

Thesis Supervisor: Dr. Charles D. Hollister

Title: Senior Scientist
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CHA.PTER I

I.NTRODUCTION

Voluminous sediment drifts in the northern North Atlantic (e.g.,

?eni, Gardar ,find HattoD sedi!i:ent drifts; .Jones ~~:. ~,,; 1970;

::¡o~lister f;~ aL., 1978; NcC-ive et a 1.,' , 1980) a::'e evidence for the

transport and redistribution of massive quantities of deep-sea

s,,"diinents through geologic time. The \"orking hypothesis of this

thes is 1 S t~at resuspens ion of deep-sea sediments cont inues to Occur

in the northern North Atlantic, specifically in the Iceland Rise

region, and is measurHble on time scales of days to months.

This investigat:ion, to study present-day resusp2nsiün and its

inf~uence on the characteristics of suspended particulate matter,

waD principally conducted OD the south Iceland Rise. This reg~on 1S

p~,tticularly suitable for three reasons: 1) Norwegian Sea Overflow

¡,later flo\"s roughly parallel to contours through the region at:

velccities in excess of 20 cmlsee (Steele et aI., 1962, Shot',

1978). Laboratory experiments indicate that these speeds are

cap~ble of erading cohesive shel f sediments and abyssal clays

(Lonsdale anci Southard, 197/¡; Young and Southard, 1978), and so they

are probably capable of eroding the local sedimenls. 2) Near-bottom

nepheloid layers are preseiit with high concentrations of suspended

particulate metter, The existence of these features is indicative

of an ongoing process keeping ina teria 1 in susp(~ns ion near the

seafloor 3) Geologic evidence indicates a continuation of sediment
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eras ion and red is tribut i on through the Recent. For example, beneath

the 2xis of the bottom current, the small amount of Recent sediment

present is coarse-grained, winnowed of its fines. Also, the Katla

Ridzes (Nalmberg, 1974) ".'hich are sediment.gry featui-es in the sLdy

area, have been constructed and shaped hy both bottom currents and

tur~idiLy currents through geologic time (Shor, 1979). In addition,

fart~er downstream lies the Gardar sediment drift, a huge pile of

sediment formed by depositiun from bottom currents (Hollister

eî: .:::~., 1973; HcCave ~-t a1., 1980).

A large portion of this work focuses on the transport and

properties of suspended particulate matter. Particulate matter 1n

the ~.!.iter column ~,,'as collected \-/ith both \Vater bottles and sediment

traps in two regions, the Iceland Rise and the continental rise

sO:.ltheacit of N':!ív York. The suspended particulate matter Has

ex.:',;I1.ncd tü determine and interpret the changes in particles that

occur from mid--t.,ater depths through the near-bottom nepheloid

layer. Surface sediments recovered in box cores were compared with

trapped material to estimate the fraction of resuspended material

and to assess the changes occurriryg to particles from transit

through the \vater column to residence on the seafloor. Current--

meter measurements and CTD lcHerings were used to determine the

spatial extent and magnitude of the bottom current, and together

with measurements of the suspended particulate matter concentra-

tions, to estimate the horizontal transport of particulate matter.
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Specific questions addressed in this thesis are:

(1) Where are the present bottom-current velocities sufficient

to erode the local surface sediments?

(2) What are the composition and characteristics of material

settling from the ~urface waters and how do they differ from

those of ~at2rial being transported in the near-bottom

nepheloid layer?

(j) What processes are responsible for the observed changes LU

suspended particulate matter in the water column?

(4) What fraction of nepheloid-layer particles are resuspended?

(5) How far c~n particles travel in single episodes of

re BUS p:':~ riS ion?

The stcucture of the thesis in ans\.¡ering these questions i8 Di;

fo110'''3. Chapter II details the regional settings, summarÜ~es the

hydrography, and explains the rationale for the sampl ing schemes

selected. Chapter III discusses the horizontal and vertical spatial

v2riability in character istics of suspended particulate matter 1n

the Iceland Rise region and along the cont inental rise in the

western North Aclantic. It emphasizes the existence And

interpretations of the differences between near-bottom nepheloid

waters and the overlying clear water. Chapter iv deals with

resuspension and advection by bottom currents as inferred from a

comparison between the composition of the contents of sediment traps

in the lower portion of the water column and that of the surface

sedi_ments. Chapter V is a summary of the conclus;,ons of the tbesis.
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CHAPTER II

REGIONAL SETTINGS, HYDROGRAPHY AND SAMPLING SCHEMES

The princ ipal study region for this thes is work is the Iceland

Ris0 T~ broaden the scope of the work beyond a r.egional study, a

comparison or the Iceland Rise results of suspended particulate

matter is made with the results of a similar study in the western

North Atlantic across the continental rise southeast of New York.

This comparison allows th~ site-specific resul ts to be

differentiated from those perhaps more generally applicable. A

det.ailed description of the Iceland Rise region and a summary of the

applicahle regional and liydrographic differences in the western

North Atlantic continental rise region follows.

REGHmAL SETTING: ICELAND RISE

Previous investigations have shm,,i that Nonvegian Sea Over£lm-!

Water dominates the abyssal circulation of the northern and western

North Atlantic (Figure 2.1; Lee and Ellett, 1965; Horthington, 1969;

Worthington, 1976). In the Arctic basins and shelves north of

Iceland, surface water is cooled and mixed downward by convective

overturning in the winter (Peterson and Rooth, 1976). This cold,

dense water mixes with warmer, more saline North Atlantic water as

it casc~des over siiis in the ridge from Greenland to Scotland

(Ste~le et: al., 1962; Crease, 1965; Lee and Ellett, 1965,

Worthington and Volkmann, 1965; Dietrich, 1967; Worthington, 1969;
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Generalized western boundary, bottom-water circulation
in the North Atlantic. Study areas south of Iceland
and southeast of New York, denoted by the box and
triangle respectively, are located in the path of A
bottom current.
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SHift ~!: ..1.; 1980). i.Jater flows southward along the eastern flank

of the Reykjanes Ridge, and we~tward through the Charlie-Gibbs

F:racture Zone at approximately 530N (Worthington and Volkmann,

1965; Garner, 1972; Schmitz and Hogg, 1978; Shor et_ .al , 1980).

From this latitude southward, the overflow water is mainly

restricted to the western basin of the North Atlantic and flows

along the western boundary.

The south Iceland Rise, the study area for this ,.,ork (Figure

2 I), is directly in the path of the Norwegian Sea Overflow Water.

This ,.,ater flows southwest';.ard through the region directed upslope

from the contours of the East Katla Ridge by 300 to 450 (Figure

2.2; Steele et ~l., 1962, Worthington, 19'10; Shor ~! ~l:,., 1977).

Significant transport of Norwegian Sea Overflow Water, with current

velocities on the order of 20-30 cm/sec (Shor, 1979), has been

documented through this region.

Geologic effects of the Norwegian Sea Overflow Water are seen in

abundance in the Iceland Basin region (Figure 2.3). Cardar Drift on

the wes tern side of the Iceland Basin, Feni Drift in Rockall Trough,

and Hatton Drift on the western flank of Rockall Plateau are all

thought to be formed and molded by deposition and redistribution of

sediments from the overflov water (Johnson and Schneider, 1969;

Jones .et i:!., 1970; Davies and Laughton, 1972; Ellett and Roberts,

1973; Lonsdale and Hollister, 1979; McCave et .i., 1980).

The detailed study region, the Katla Ridge province (Figure 2.2;

Malmberg, 1974) in the south Iceland Rise, consists of two
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Bathymetry of the Iceland Rise study area. Contours
are in correc ted meters. Current measurements were
made along the northern transect across th¿ eastern
flank of the East Katla Ridge. Current velocities
show westward to southwestwa~d flow with an upslope
component. The southern transect of stations extends
from the nose of the West Katla Ridge into the Iceland
Basin.
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Figure 2.3
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Location of the major sediment drifts in the
northeastern North Atlantic. Arrows trace the flow of
bottom water throueh the region. From McCave et ~~,
(1980).
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sedimentary ridges, the East and West Katla Ridges (Shor et ~.,

1977). The East Katla Ridge, striking NN, has smooth parallel

contours along its eastern flank from 1200-2100 m. Along this

flank, the overflow water flows as a geostroph ic current, roughly

parallel to the regional contours (Steele et al., 1962). East Katla

Ridge is separated from West Katla Ridge by a narrow turbidity-

current canyon. The West Katla Ridge, oriented approximately N-S,

has a wide, blunt nose and is separated from Ga rdar Drift to the

southwest by a second turbidity-current canyon (Figures 2.2 and 2.3).

The south Iceland Rise is a region where both a strong surface

source and a resuspended input of particulate matter are to be

expected. Biogenic material in the surface waters and terrigenous

material from volcanic and glaciofluvial sources are probable

components of the flux of primary particulates (i.e. those of
~

surface origin) through the water column. These sources are likely

to have peak inputs during the spring and summer months, during the

period of sampling for this study. The input of resuspended

material is likely to be high due to the strong flow of Norwegian

Sea Overflow Water through the region. The bottom current may be

sporadic (Steele et al., 1962), but it has been observed in both

winter and summer (Crease, 1965; Lee and Ellett, 1965; Shor, 1979).

A mean velocity in the current core greater than 20 cm/sec was

recorded during this study (Shor, 1979).
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REGIONAL SETTING: ¡'¡ESTERN NORTH ATLA0lnC

The area chosen for comparative study of the characteristics of

particulate matter was the continental rise southeast of New York 1n

the western North Atlantic (Figure 2.1). Hydrographically, this

cegion is influenced hy the deep northeast\.¡ard-flmáng Gulf Stream

Gyre System (Worthington, 1976; Luyten, 1977; Laine and Hol lis ter,

198.0), and the southwest\vard-flowing Western Boundary Und2rcurrent

(Figure 2.4; Hollister, 1967; Zimmerman, 1971, Richardson, 1977).

Through geolügic time, deep contour-following currents have shaped

and developed the continental rise of eastern North America (Heezen

E~t: ?L. J 1966, Field and Pi1key, 1971; Eittreim and Ewing, 1972;

Hollister and Heezen, 1972). This continental boundary is dissected

by many canyons which may have disgorged vast alllOunts of terrigen;Jlls

debris into the deep sea during lower stands of sea level;

presently, however, ~ost of the sediment transported by rivers 1S

trapped io estuaries and does not escape the continental shelf

(Mea¿e, 1972). Some terrigenous material may be supplied at

mid-water depths by horizontal transport from the continental slope

(Drake et ~., 1972; Pierce, 1976). The introduction of biogenic

material from the surface waters decreases rapidly from the highly

productive, nutrient-rich slope waters to the unproductive Sargasso

Sea. Partic Ie input to the water column from the seafloor by

resuspension and advection of sediments 1n this region, is possible

from either the Gul f Stream Gyre System or the Western Boundary

Undercurrent.
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Locations of hydrographic stations in the ,,,estern
North Atlantic. Stations were taken from the base of
the continental slope to the lower continental rise.
Arrows indicate the abyssal flow of the Western
Boundary Undercurrent and the Gu If Sr.ream Gyre.
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HYDROGRAPHY

The Iceland Rise study, of which this thesis work is a part, was

a multidisciplinary, cooperative effort. As part of a comprehensive

study of bottom currents and abyssal sedimentation south of Iceland,

Shor (1979) described the hydrography of the region. The spec ifics

of the instruments and methods used and calculations made for his

work are contained in Shor (1979). A summary of his results which

are pertinent to this study follows.

Six current meters were deployed for approximate ly one week,

each during a two week period, at 10 m above bottom (mab) down the

eastern flank of the East Katla Ridge from 1200 to 2171 m at 200 m

isobath intervals (Figure 2.2). The meters between 1393 and 1796 m

recorded velocities in excess of 20 cm/sec for the duration of the

experiment (Table 2.1). The direction of flow was predominantly to

the west-southwest, tending approximatly 300 upslope with a

maximum speed of 29 cm/sec (Figure 2.2). To the northwest and

southeast of this inferred core of the overflow current, the mean

current speed was 10 cm/sec or less, and flow directions were more

variable. At the 2000 m mooring, the current record indicates

velocities below threshold (~2 cm/sec) for two days. Prior to and

following this event, currents exceeded 20 cm/sec (Figure 2.5).

Current meter data are restricted to a single transect of

stations across the region, referred to as the northern transect

(see Figure 2.2). Photographic evidence of currents agrees we 11
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Figure 2.5
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Current velocity vectors plotted against time. Current
meter locations are shown in Figure 2.2 Measurementi:
are 3D-minute averages. Tidal components have not
been removed. Note the consistency of velocities in
the three meters at 1393) 1600 and 1796 m) located in
the core of the overflow watei. From Shor (1979).
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with actual measurements for this northern transect of stations.

ßott.:im photographs indicate that currents are i"esti"ard along the

West Katla Ridge, and oscillating northerly and southerly flow, is

indicated for canyon stations.

Geostrophic calculations made from hydrographic sections

generally show southwestward velocities increasing with depth for

individual pairs of stations. Calculated velocities are highest

be tween 1600 and 1800 il for the northern transec t and between 1800

to 2100 m for the southern transec t, \o!hich corresponds wi th the

minima in potential temperature (see Shor, 1979, Figures 2.5 and

2.6). Volume transport through the northern transec t is calculated

6 3
to be 5.0 x 10 Q /see; and through the southern line, is, 6 3 6 3
4.2 x: ),0 m /sec. A small east"\vard flm", 0.8 x 10 m !sec,

was indicated between stations 31 and 76.

Isothermal bottom mixed layers along the northern transect of

stations were observed to be 30-50 m thick in the axis of the bottom

cUTrcnt; off-axis and along the southern line, the layers were

10-20 m thick. These layers are thought to form by turbulent mixing

at boundaries (Armi, 1978). In this study, the thickest mixed

layers occur in conjunction with the highest velocities or in the

canyon. Mixed laye.rs arc absent where current velocities are

inferred from direct measurements and geostrophic calculations, to

be low (see Shor, 1979; Figure 2.8).
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SAHPLlNG SCHEMES AND APPROACHES

A pi:iinary purpose of this thes is U~ to determine whe ther

reSlispension is presently occurring and to examine the influence of

resuspension on the composition and characteristics of suspended

particulate matter. Approaches to this pr-oblem and the rationale

for using particular sampling schemes are rliscussed in this section.

CURrrENT COHPETENCE

Resuspension is generally acknowledged to be responsible for the

exiDtence of nerheloid layers in the deep sea (Heezen et ~..., 1966;

Betzer and Pilson, 1971; Eittreim and Ewing, 1974; Biscaye and

Eittreim, 1977). However, it is difficult to predict the conditions

under which a deep-sea current is competent to actively resuspend

seafloor sed iments. Labora tary flume experiments have es timated

critical erosion velocities for deep-sea clays and oozes to be in

the range of 15-35 cm/sec (Southard ~ ~., 1971, Lonsdale and

Southard, 1974; Young and Southard, 1978). Within the axis of the

overflow current, from 1400-1800 m along the flank of the Eas t Katla

Ridge, velocities were within this range for the duration of the

experiment. Upslope and downslope of the axis, velocities are

usually less than 15 cm/sec (Figure 2.5). This observation suggests

that resuspension may be occurring during the entire time of the

experiment in the current core, and occasionally when velocities

exceed those critical for erosion, at the stations further removed.
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Sin~e the laboratory experiments of Southsyd and co-work~rs

represent idealized circumstances and were not performed with

s2Jimelit or biota from this particular sludy .:rea, .: comparison of

the field and laborntory measurements alone cannot be used to

conclusiv?ly establish that resuspension is actively occurring.

Instead, it simply indicates that resuspension is likely. Suspended

particulate matter in the study area was examined tó determine

whether changes in the composition and characteristics of the

p,3rticles in the 10\.¡e1. portion of the water column were indicative

of resuspension.

SUSPEnDED NATTER

Suspended particles are usually measured by filtration of water

sain?les collected with Niskin bottles (Brevl(:~:. et a1., 1976). This

m~thod gives only an instantaneous point measurement of concen-

tration, and with the small volume of water collected (5-30 liters),

does not provide a representative sample of the rar.e larger

particles in suspension (Bishop, 1977). Large particles may be

major contributors to the mass flux of material through the water

column (NcCave, 1975). The two principal means of collecting these

large particles are large-volume filtration systems and sediment

traps (Bishop, 1977; Gar.drii?-r, 1977a, Honjo, 1978; Spencer et aI.,

1978). Large-volume filtration has been restricted to shallow depths

(~l500 m), precluding sampling in the deep-sea near-bottom nepheloid

layer. Sediment traps can be used at all water depths.
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Niskin bottles were used to collect the standing crop of small

part ic lee. Based on SEM photomicrographs of fi ltered samples and

particle size distributions measured with E Coulter counter, most

material collected in Niskin bottles below the surfRce water in the

study region is less than 20 ~m. Based on the assumption of

Stokes-law settling, the vertical fall velocities of particles 1n

this size range, (5 x 10-5 to 1.3 -2x 10 cm/ see) , are more than

three orders of magnitude less than the horizontal velocities in the

core of the bottom current south of Iceland. This suggests that the

material collected by the Niskin bottles in the high current areas

of this study is a quasi-canservative property of the water.

Sediment traps were used to collect time-integrated samples of

the suspei:ded material in flux. The size of material caught by the

sediment traps ranged up to a few millimeters, indicating that there

are large particles in flux through the water column which are not

collected by water bottles. However, sediment traps are not only

large particle collectors: 5-42% of the trap samples are composed of

pc:rticles less than 20 ¡mi. One problem with sediment traps is that

the state of aggregation of particulate matter when it enters the

traps is unknown. Loose aggregates may break up and with the high

concentration of material on the floor of the sediment traps,

aggregates may forni. Size fractionation by sieving reveals smaii

particles, particularly volcanic glass, adhered to large pteropods,

foraminifera, diatoms, and organic matter. This agglomeration may

have occurred in the sediment trap. The presence of intact and
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collapsed fecal pellets on filters from the sieve~ fractions

indicates that these aggregates maintain their integrity through

wet-sieving, but filtration and drying of the samples may cause

pel12ts to collapse.

Measurement of concentrations of suspended particulate matter

from water bottles is limited by the number of bottles per cast.

Nephelometers provide nearly continuous mea3urements of light

scattering through the water column. To give a more detailed view

of the distribution of suspended particulate matter, light-

scattering observations were made during this study and correlated

with concentrations of suspended matter from samples obtained at the

same. time.

These three ins truments, Niskin bottles, sediment traps, and the

nephelometer, were used to obtain information on suspended

particulare matter during this study. The results are discussed in

the following chapters.
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CHAPTER III

C:HAP~ACTERISTICS OF SUSPENDED PARTICULATE

~~.TTER FROM NISKIN BOTTLES

INTRODUCTION

The distribution and redistribution of marine particulate matter

18 of great importance in Interpreting the biological, chemical and

geological processes acting 1n the deep sea. Particulate matter

from the productive surface layer descends through the \\later column

slowly by individual particle settling and rapidly by fecal-pellet

transport, provid ing organic-rich food to the benthic communities.

Adsorption of dissolved species and scavenging of chemical elements

by the particulate matter may affect the distribution of chemical

tracers and radioisotopes throughout the water column.

Geologically, the suspended material in flux to the seafloor may

ultimately become part of the sedimentary record.

Presently, a primary source of particulate matter to the deep

ocean is the surface waters. Rivers, and off Iceland, glaciers,

deliver high suspended loads of terrigenous material as we 1 1 as

dissolved nutrients necessary for the proliferation of plankton.

Phytoplankton and zooplankton dominate the particles present in the

surface waters. Their skeletons and pellets sink, comprising a

large frnc tion of the material in transit through the water column.

Other components, such as volcanic and winct-b lown detritus, are

regionally important constituents of the suspended matter.
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Purticles settling from the surface \.¡aters are constantly

subjected to the physical, biological and chemical processes of

aggregation, disaggregation, decomposition and dissolution. These

processes are responsible for changing the characteristics of the

part iculate matter during descent through the water column to the

seafloor.

Suspended material is also derived from the seafloor. Only

infrequent ly does fresh ly depos j ted mater ia 1 become permanent ly

incorporated into the sedimentary record at its first place of

deposition. Hore commonly, animals living in and on the seafloor

reprocess and transport the sediments through feeding and

bioturbation. Deep-sea currents can also resuspend and transport

the surface sediments. Both these mechanisms, animals and currents,

re-introduce previously deposited material into the water column.

This recii,~::ent resuspension can result in vast redistribution of

material (Ewing and Hollister, 1972).

Suspended matter originating from the surface waters may differ

in its characteristics of particles from that originating at the sea

floor. Assessing and interpreting the differences in particles

settling from the surface waters versus those resilspended from the

seafloor is the purpose of this chapter.

NEPHELOID LAYERS

In many areas of the oceans, after a decrease in concentration

of suspended particulate matter (SPM) with depth due to dissolution,
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decomposition, and consumption in the \-ater. column, there is an

increase in the concentrçition of SPH near the seafloor. This layer

of increased concentration of SPM (the near-bottom nepheloid layer)

i3 thou~it to be due to resuspension of sediment from the seafloor

(Heezen et a1., 1966; Betzer and Pilson, 1971; Feely 1975; Breí.'ier

el:. al., 1977; Biscaye and Eittreim, 19;7). The depth of minimum

conc(~ntrat ion of SPM above the near-bottom nepheloid layer í s termed

the "clear-water minimum" (Biscaye and Eittreim, 1977; Figure 3.0.

Below this level, there is an increase in the resuspended component

of the SPM. By sampling in clear water and the nepheloid layer

below, the increasing influence of resuspended sediment can be

examined.

HISTORICAl, PERSPECTIVE

The cÌí3Tacteristics of marine particulate matter have been

studied extensively only in the past decade. With the initiation of

the GEOSECS program, a detailed examination of the geochemistry of

abyssal ocean water and SPH ,vas begun. The GEOSECS program

colleeted SPM for chemical, mineralogic, and microscopic analyses

(Bre'ver et a1., 1976). Since GEOSECS began, numerous techniques

have been employed to determine the propert ies of suspended

material. Compositional analyses have been performed with the

scanning electron microscope for morphologic identification (Honjo

~ ~~., 1974; Hoojo, 1976; Feely, 1976, Bishop et ~-l., 1977), X-ray

diffraction for mineralogy (Feely, 1975), and neutron activation and



Figure 3.1
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Idealized nepbelometer profile. Tbe unit Log E/En
is a measure of scattering made by comparing tbe
scattered 1 igbt to a direct beam. Cross-batcbed area
represents tbe near-bottom nepbeloid layer. Note the
locat ion of tbe clear water min imum.
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atomic absorption for elemental determination (Spencer ,et al , 1972;

Krishnas,.¡ami and Sarin, 1976; Bishop et ~., 1977). Size

distriLutions of suspended matter have been determined with

iastniments \Vhich count and discriminate particles by volume, e.g.,

c CO'Jlter counter (Carder et aI., 1971; Plank oet al., 1972; Sheldon

et ::~l., 1972; Brun~Cottan, 1976). Optical devices, nephelometers

and transmissometers, have been widely used to ind irectly mea sure

the concentration of SPM. Nephe10meters, which measure scattered

light, have been used to document the exis tence of near-bottom

nepheloid layers 1n many areas of the world i s oceans (Ewing and

Thorndike, 1965; Eittreim et ~., 1972; Eittreim and Ewing, 1972;

Biscaye anù Eittreim, 1974; Kolla et ~., 1976; Biscaye and

Eittreim, 1977). TrBnsmissometers, which measure transmitted light

(a function of both absorption and scattering by SPM and water),

have been used to monitor variations in the quantity of SPM,

particularly in surface waters (Pak and Zaneveld, 1977, Bartz et

~., 1978). Using data on SPM concentration and size, models have

been formulated for the vertical flux of particles in the oceaD

(McCave, 1975; Bishop, 1977).

These techniques have been used to gain a global perspective of

the distribution of SPM, gross compositional information, and

preliminary ideas about its dynamics. Now that this base-line

information has been established, it is possible to examine in

detail those characteristics of marine particulate matter that may

yield insight into its behavior and provenance.
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OBJECTIVES

Geological and physical-oceanographic data were obtained in the

North Atlantic along the Iceland Rise (cruise ATLANTIS II-94) dnd in

the western North Atlantic along the continental rise (cruises

DALLAS, KNORR-58, and OCEANUS-6) with the following objectives in

mind:

(1) to determine the differences between clear-water particles

and nepheloid-layer particles "lith respect to size distribution,

composition, density, and light-scattering characteristics in

limited study regioris;

(2) to identify properties of particles which might be useful in

distinguishing their prior source;

(3) to deteniine ''vhether differences observed bet,..een properties

of nepheloid-layer particles and clear-water particles are

regionally site-specific;

(4) to identify those processes which most strongly influence

particle characteristics, e.g., dissolution, decomposition,

deposition, and resuspension.

OBSERVATIONAL TECHNIQUES

This investigation is a comparison of the characteristics of the

SPM in two regions: the Iceland Rise and the continental rise

southeast of New York (Figure 2. l). A total of thirty-two

hydrographic stations and twenty-four nephelometer stations were
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occupied on the Iceland Rise during June and July 1977 (Figure 2.2),

and seven hydrographic stations were occupied in the western North

Atlmitic along cl transect southeast of Ne\-1 York in the summer of

lY76 (Figure 2.4). Each hydrographic station employed six to twelve

5 or 30 liter Niskin Dottles for collection of SPM. Samples were

collected from the 10\-1er portion of the water column from both clear

t"ater ~md the riear-bottom nepheloid layer. Reversing thermometers

were used to obtain accurate records of sample depth in mid-water; a

pinger was used to determine the height of the bottom bottles above

the sea floor. Simultaneous nephelometer profiles uS1ng an

L-DGO-Thorndike deep-sea photographic nephelometer (Thorndike, 1975)

\-1ere takeii at most Iceland Rise stations to ensure that samples were

from a known position relative to the nepheloid layer (if present).

CONCENTRATION OF SPN

A 250 ml aliquot was taken from the Niskin bottles immediately

on retrieval for size distribution determ:i.nation of SPH. The

remaining water was filtered with an in-line vacuum filtration

system through a preveighed 4,7 mm diameter, 0.4 lJrn Nuclepore

filter. Filters were washed ten times with filtered distilled water

to remove sa It and reweighed upon return to the laboratory to

determine the mass of particles. For the Iceland Rise, water beneath

the spigot was filtered onto a separate filter to collect the

"dregs" (Gardner, 1977b). For the western North Atlantic, the

entire water bottle was filtered onto one filter by tilting the
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bottle to remove all the water. Concentrations reported as

"corrected" concentrat ion include th is "dregs" material. Comb ined

errors in filter weighing and volume readings amount to ::9% for

concentrat ions of 20 llg/l and ::5% at 100 llg/l.

SIZE DISTRIBUTIONS

Size distribution of SPM was determined with a Model TA II

Coulter counter. With th is instrument, part icles suspended in an

electrolyte (seawater) are drawn through a small aperture. When a

suspended part icle passes through the aperture, it decreases the

volume of electrolyte in the aperture, thereby increasing the

res istance and decreas ing the current in the circuit. The percent

current change is proportional to the ratio of the particle volume

to the aperture volume. This relationship is linear for particles

having diameters between 2% and 40% of the aperture diameter

(Sheldon and Parsons, 1967).

Coulter-counter data are recorded in terms of either total

number or total volume of particles counted and are subdivided into

logarithmically increasing size grades, each grade representing a

doubling of volume. A 50 îi m aperture and a 2.0 ml sample size were

used in th is study to measure the size distribut ion of part icles

having equivalent spherical diameters from 1-20 ll m.
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LIGHT SCATTERING

Light-scattering \vas measured with a L-DGO-Thorndike deep-sea

photographic nephelometer (Thorndike, 1975), designed to measure

relative forward light scattering from 80 to 240. Although

liglit scattering is dependent on all the optical properties of the

particles (Jerlov, 1968), forward scattering is most sensitive to

variations in concentration of SPM and least sensitive to variations

1n particle size and index of refraction (Thorndike, 1975).

The nephelometer is composed basically of a light source and a

camera lens. An attenuator is situated between the source and lens

to calibrate direct light. Scattered light as well as the

attenuated direct light are measured by the nephelometer. A ratio

1.8 formed between the intensity of the scattered light, E, and that

of the atLnuated direct light, ED' to form a scattering index,

E/ED. Forming this ratio circumvents problems involved in

correctin2 the scattering values due to variation in the intensity

of the source and direct beam attenuation losses. Nephelometer

read ings are most often reported in terms of log(E/ED).

Nephelometers are optical instruments and cannot directly yield

absolute concentrations of SPM. However, nephelometer readings in a

fe,.; instances have been calibrated by sampling and filtering \vater

for SPM from nephelometer lmverings (Beardsley ~ ~., 1970; Baker

et 3_~., 1974; Carder ~! ~., 1974; Sternberg et a1., 1974). The

L-DGO-Thorndike nephelometer has been calibrated by Biscaye ancl

Eittreim (1974) th~ough their work in a limited region of the
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Blake.-ß;¡hama Outer Ridge and the Hatteras Abyssal Plain (BBOR---HAP).

A slightly different calibration for this instrument was obtained by

them f::'om the eastern North American Iml1er continental rise (LCR)

(Biscaye and Eittreim, 1977),

--.~--'----"--.._-.-----COHPOSITIONAL ANALYSES

Composition of the SPN collected from the near-bottom nepheloid

layer and overlying clear water was studied by photographing

sections of filters with a scanning electron microscope. Five

stations in the Iceland Rise area and two along the western North

Atlantic transect were selected for quantification of the

composition of SPM. A sample from the nepheloid layer and one from

cleL!:: \oJater f01 each station 'VJere photographed for optical

iclentifi.cai:ion of the SPH. Four or five random photographs \Vere

taken in each of four sections of a filter to determine homogeneity

of the SPM on the filters.

Additionally, Ildregsll filters from ttl10 of the Iceland Rise

samples were photographed and counted to allow a valid comparison

with the western North Atlantic samples, where the entire sample was

collected on one filter. A comparison of Ildregsll composition to

tha t of the above-spigot sample was made for the Iceland Rise

samples to examine the differentiation of the SPM while settling in

the water samplers (Gardner, 1977b).

Twelve classes of partic les were identified and counted: smal i

coccoliths (~4 ~m), large coccoliths (~4 um), centric diatoms,
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pennate diatoms, dinoflagellates, organic matter, plankton

fragments, fecal pe llets, aggregates, clays, mineral mat ter, and

unidentified part icles (Plate 3. l). Partie les smaller than two

microns were not included in the counts sinee positive

identification was impossible.

Chi-square analysis of the compositional data was performed:

a) to determine wliether the random photographs represented

subsamples of a homogeneous population of material on the filters;

b) to determine i:rhether compositional differences between

clear-water samples and nepheloid-layer samples for individual

stations were statistically significant; c) to determine whether the

clear-water samples from all stations were statistically different

from each other and whether the nepheloid-Iayer samples from all

stations were statistically different frora each other; and d) if all

the above are true, to determine whether col lect ively the

clear-water samples statistically differ from the nepheloid-layer

samples.

RESULTS

SPM CONCENTRATION

High concentrations of SPM in the lowest few hundred meters of

the water column extend from the sill depths along the

Greenland-Scot land ridge, at approxima tely 620N, southward a long

the western side of the North Atlantic basin outlining the path of



Plate 3.1
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SEM photographs of suspended part iculate mat ter.
Samples (la)lb) are taken from clear water (a) and the
nepheloid layer (b) from the western North Atlantic.
Note the decrease in percentage of small coccoliths
and increase in percentage of clays and mineral matter
between these two samples. Samples (2a, 2b) are
"dregs" filters from the Iceland Rise. Note the
aggregates of coccoliths and diatoms and the large
mineral grains. Approximate scale is given below each
photograph. X 1100.
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òottom-i-riLer flow (Figure 3.2; Bre\.ier et a1., 1976). This detailed

s ttidy of SPM across the bottom-current axis south of Iceland and

along a transect scross the western North Atlantic margin is an

attempt to compare SPM characteristics from areas widely separated,

but perhaps influenced by the same hottom current.

Iceland Rise

Profiles of concentration of SPM were obtained in the lower

1000 m of the water column along two transec ts across the axis of

the bottom current from the crests of the East and West Katla Ridges

(1200 dnd 1500 m) into the Iceland Basin (2500 m)(Figure 2.2). In

water depths greater than 2000 m the profiles are characterized by

low concentrations (~30 ~g/l, corrected concentrat ion of ~40 ~ g/l)

in mid-water depths with sharp increases in concentration in the

lowest hundred meters of the water column (Figure 3.3). Shallower

than 1800 m, concentrat ions in mid-water are higher (~50 ~g/l,

corrected concentration of ~70 l1g/U with thicker nepheloid layers

(up to 300 m)(Figure 3.3).

Stations 29, 40, and 85 are reoccupations of a ~tation at

approximately 2ÖOO m. The character of the SPM profile changed

dramatically over a ten-day period (Figure 3.4), even at mid-water

depths. Station 29 showed a gradual increase in concentration

towards the seafloor to concentrations up to 120 l1g/1 (corrected

concentration). 200"jl g/ 1.. Mid-water concentrations exceed 40 l1 g/l

(corrected concentration of ~50 Pg/l). Four days later. station 40



Figure 3.2

~ i:-:X)-

Distribution of suspended particulate matter in the
western Atlantic Ocean. High concentrations in the
nephe loid layer. seen from the Denmark Strai ts to
450N. outlines the flow of the Norwegian Sea
Overflow water. From Brewer et 81. (1976).
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Figure 3.3
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Profiles of suspended particulate matter from the
Iceland Rise. Most profiles show nepheloid layers.
a) Stations from the northern transect, both standard
and correc ted concentrations; b) stations from the
southern line with standard and corrected
concentrations.
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Figure 3.4
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Profiles of suspended particulate matter from
reoccupation of the station at 2000 m from the Iceland
Rise. Note the temporal variability in both mid-water
concentrations and nepheloid layer concentrations over
a ten-day period.
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had both lower mid-water concentrat ions (~20 ~ g/l. corrected

concentration of ~40 llg/i) and nepheloid-layer concentrations

(0(60 llg/l, corrected concentration of ~90 llg/U. For the final

reoccupatiol1. mid-\.¡ater values remained low (0( 20 l1 g/l, corrected

concentration of 20-70 l1g/0. but nepheloid concentrations increase

to greater than 90 l1g/1 (corrected concentration ::300 l1g/U.

Concentration maxlina are seen in mid-water near the crest of the

Katla Ridges (Figure 3.5). These features are above the near-bottom

nepheloid layers and may be detached turbid waters laterally

advected from upstream (Armi. 1978).

Western North Atlantic

A sinele hydrographic section was made across the continental

rise southeast of New York (Gardner, 1977a). Nepheloid-layer

corrected concentrations on the slope and upper rise did not exceed

ioa l1g/1. while above the lower rise and abyssal plain, nepheloid-

layer corrected concentrations consistently exceeded 100 llg/l

(Figure 3.6). Mid-\.¡ater maxima in particle concentrations in slope

and upper rise waters are interpreted as being caused by material

advected horizontally outward from the slope.

LIGHT-SCATTERING OBSERVATIONS

Information on SPM concentration from water bottles is limited

to a small number of discrete samples per station. In order to

obtain a continuous vertical profile of SPM. light-scattering



Figure 3.5
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Cross-sections of suspended particulate matter fo~ the
Iceland Rise region. Dots indicate sample locatìons.
Correc ted concentra t ions inc lude the "dregs" (Gardner.
1977b). Highest concentrations in the near-bottom
water occur in the bottom current axis, along the
flanks of the ridges.
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Figure 3.6
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Cross-section of suspended particulate matter along
the continental rise southeast of New York.
Concentrations are corrected for "dregs." Note the
occurrence of some high concentrations in mid-water
which may reflect advection of material from the
slope. From Gardner (1977a).
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measurements, which can be calibrated in terms of SPM

concentrations, i"ere made at most of the hydrographic stations in

the Ice land Rise region (Figure 3.7).

The nephelometer profiles exhibit features similar to those of

the SPM, but being more detailed, the nephelometer profiles allow

the vertical extent and structure of the nepheloid layer to be more

clearly defined. Lowest clear-water values (0.34 log E/En) are

found over the basin; highest near-bottom values (1.43-1.55

log E/ED) occur along the ridge flank and over the basin in water

depths greater than 1800 m.

The character of the nephelometer profiles changes substantially

from the crest of the ridge eastward into the basin. The ridge-

crest profiles show variable light scattering throughout the water

column, generally in excess of 0.5 log E/ED. At station 67, no

clearly defined nepheloid layer is observed. To the east, along the

ridge flank (1600-2200 m) nepheloid layers up to 700 m thick are

developed. Clear-water values decrease below those from the ridge

crest. The nepheloid layers for the last profile of each transect,

located over the bas in, are thin (cIOO m), but show a very sharp

gradient from clear water to the nepheloid layer.

Profi les taken within the canyon between the two ridges are

somewhat erratic. A general increase in light scattering from

mid-water to the seafloor is observed, but the nepheloid layer is

not as well-defined as it is along the ridge flanks (Figure 3.7).

Light scat tering is fairly high (~O. 6 log E/ED) for these profi les

throughout the entire water column.



Figure 3.7
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Nephelometer profiles from the Iceland Rise region.
Nepheloid layers are sharper and thinner with
increasing depth. Locat ion of samples taken for
suspended particle size analysis is indicated by (0)
for clear water samples and (x) for nepheloid layer
samples. a) Northern section; b) southern section; c)
canyon stations.
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The t\.;o reoccupations of station 28 (2000 m) gives some idea of

the temporal variability of the nepheloid-layer structure over

10 days (Figure 3.8). The first occupation shows a sharply defined

nepheloid layer, 700 m thick, with a second increase in light

scattering in the deepest 10 m of the water column. Station 40,

taken 4 days later, has a much thinner (400 m) nepheloid layer. The

nepheloid layer is characterized by a gradual increase wi th depth

leveling off to a constant value for the final 150 m. The second

reoccupation (Station 84) has a nepheloid layer 450 m thick with a

sharp increase with depth in light scattering in the lowermost

30 m. These reoccupations demonstrate that light scattering in the

region i8 highly variable over the time scale of ten days.

The nephelometer profiles have been compiled to give cross-

section distributions of light-scattering values (Figure 3.9).

These cross sections show the extent and influence of the bottom

current in the region. In the axis of the current (1600-2000 m),

the nepheloid layer is several hundred meters thick, but diffuse,

suggesting mixing of material up into the water column. In the

basin, the nepheloid layer is thin, perhaps reflecting the lesser

influence of the bottom current.

High values of light scattering in the surface waters are

probably caused by both high biological productivity and Icelandic

terrigenous input. The general decrease in clear-water values from

the ridge crests into the basin is a function of the distance from

Ice land.



Figure 3.8
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Nephelometer profiles from reoccupation of the station
at 2000 m from the Iceland Rise) showing the temporal
variability in the thickness and structure of the
nepheloid layer over a ten-day period.
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Figure 3.9
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Cross-sections of light-scattering for the northern
and southern lines on the Iceland Rise. Vertical
lines indicate station control. Light-scattering
readings were made at 25 m intervals.



-76-

LIGHT SCATTERING (LOG E/Eo)
ICELAND RISE

o 17 19 22 25 28 30 37 33 32~--I ++-~+-~ -~-ioo~t---+-~-t-

-t= II I NO~THERN SECTIO~!f,O I ,~-O.?5 I
500

"'
~
~ WOO
Q)

~
:ii-
~
C:

~500

2000

75 76

SOUTHERN SECTION

0,50

2500
o 40 80 120 ~60

DISTANCE (km)



-77-

SIZE DISTRIBUTION ANALYSES--_._----_._-----
SPM size d is tri but ions have been examined throughout the oceans,

but primarily in the surface waters (Sheldon et ~., 1972). The

presence and patchiness of biological components in the surface

waters dramatically affects the size distributions of SPM. For this

reason, both latitudinal and seasonal variations have been noted

(Sheldon et ~., 1972). Below the surface yiaters (upper few hundred

meters) the particle size distributions change. Distributions in

sur face waters arc often characterized by a predominant moda 1 size,

\"hereas in deep water the particle size spectrum is one of approxi-

mately equal amounts of material in logarithmically increasing size

grades (Sheldon et ~., 1972), at least up to the ioa l1Jl size

studied.

Particle size distributions are most often displayed in terms of

number, volume, or weight of particles per logarithmic size grade.

Since this work deals with volume or weight concentrations rather

than numbers of particles, all of the data will be displayed in

terms of volumetric measurements.

Iceland Rise

Water samples were obtained from above and within the near-

bottom nepheloid layer in order to compare characteristics of the

SPM. Two stations (25 and 39) are used here as examples to

demonstrate the differences in the percent volume size distributions

between clear water and the nepheloid layer. Station 25 is located
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along the northern section in the Iceland Rise region at 1804 m, 1n

the axis of the bottom current. A nephelometer profile obtained at

the same site (Figure 3.7) was compared with SPM concentrations from

the water bottles t.o verify which bottles were \vithin the nepheloid

layer. The size distribution from bottle 1 at 1780 m, within the

nepheloid layer, shows a distribution with low variance (Figure

3.10). The modal size is an equivalent spherical diameter of

5.6 ~m. The shape of this distribution stands in marked contrast to

the more typical deep-water profile of equal volumes of material in

the size grades from 1--20 ~m (Sheldon ~ al,., 1972). This more

typical distribution, with high variance, is seen in bottle 4

090 Il), 111 clear water at the same station (Figure 3.10).

Similar features are seen at Station 39 at 2163 m, farther down

the ridge flank (Figure 3.11). The nephelometer profile for this

station (Figure 3.7) shows a sharply defined nepheloid layer. From

this profile, two bottles, Bl and B5, were selected for comparison

of particle size distributions. Bottle B5 at 2l4S m shows a low

variance distribution as does the nepheloid-layer sample at Station

25, but the modal size of this distribution is larger ( ~9 ~m).

Bottle Bl, at 1205 m, has an irregular, high variance distribution,

as does the clear-water sample from Station 25.

Western North Atlantic

Size distributions were also compared for clear- and nepheloid-

layer waters in the western North Atlantic. In this region)



Figure 3.10
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Coulter counter volumetric size histograms from
station 25 in the Iceland rise region. See Figure 3.7
far the location of the clear-water and nepheloid-
layer samples with respect to the light-scattering
profile. Note the lower variance of the nepheloid-
layer sample.
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Figure 3.11
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Coulter counter volumetric size histograms from station
39 in the Iceland Rise region. See Figure 3.7 for the
location of the clear-water and nepheloid-layer
samples with respec t to the light-scat tering profile.
Note the lower variance of the nepheloid-Iayer sample.
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nephelometer profiles \.,ere not available at the hydrographic

stations, so the nepheloid layer was judged to begin at the sharp

increase in concentration in the near-bottom waters. The general

results of the comparison made between clear.-water and nepheloict-

layer samples are similar to those from the Iceland Rise. The

nepheloid-layer samples (e.g., OC6, 718, bottle 1,4462 m) have low

variance distributions with the modal size at 3 pm, whereas clear-

water sample distributions have higher variance (Figure 3.12).

Both standardly drm.,n samples and "dregs" samples were counted

with the Coul ter counter for nepheloid-layer samples. The

nephe loid- layer Ildregs" samples exhibit the 1m., variance type

distribution even more strongly than do the standard nepheloid-layer

samples (Figure 3.12).

COHPOSITION OF SPM

Part ic les on SEM photomicrographs were counted in this study to

determine the difference in composition betvieen the clear-water

material and the nepheloid-Iayer material.

Iceland Rise

Five stations were selected for compositional analysis in the

Iceland Rise region (25, 31, 39, 67, and 76; see Figure 2.2) as

being representative of the various hydrographic conditions.

Station 25 is in the axis of the bottom current; Station 39 is

off-axis along the same transect. Stations 31 and 76 are in the



Figure 3.12
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Coulter counter volumetric size histograms from
station 718 in the western North Atlantic. Samples
are from clear water, the nepheloid layer and the
"dregs" \vater from a nepheloid layer sample. Note the
lower variance of the nepheloid-layer standard and
"dregs" samples.
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interior of the basin, at the ends of the northern and southern

lines, respectively. Station 67 is located on the nose of the West

Katla Ridge and exhibits no nepheloid layer. Ins tead, concentra-

iions vary erratically with an overall general decrease with depth.

T\.¡o samples were taken from each station, one in clear \.¡ater at

mid-depths and one in the nepheloid layer or within fifty meters of

the seafloor.

The results of the particle counts for these stations are given

in Figure 3.13 and Table 3.1. These compositional studies (Plate

3.2) show that by number, small coccoliths are the largest component

of the samples (up to 62%). Pennate diatoms, mineral matter, and

clays follow in order as the next largest fractions of the sample.

These are also the components which shou major differences between

clear-water and nepheloid-layer samples. Nepheloid-Iayer samples

have fewer small coccoliths and more pennate diatoms, clays, and

mineral matter than do clear-water samples (Figure 3.13). These

same differences are observed whether or not particles from the

Ildregsll water are inc luded. In comparison to the standard,

above-spigot samples, Ildregsll samples have fewer small coccoliths,

less organic matter and mineral matter, and more large coccoliths,

centric diatoms, and pennate diatoms. The smaller percentage of

mineral matter in the "dregs" samples is difficult to understand.

One would expect that the larger and denser particles would settle

to the bottom of the bottle. A differentiation is seen for the

biogenic particles, but does not hold for the mineral matter.



Figure 3.13
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Compositional variability of suspended particulate
matter from the Iceland Rise. Counts were made of the
different components from scanning electron microscope
photomicrographs and normalized to total number of
particles counted. Identifiable fragments were
inc luded in the counts. Greatest d iffcrences between
clear-water and nepheloid-layer samples are in small
coccoliths, pennate diatoms, and mineral matter.
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Plate 3.2

-90-

SEM photomicrographs of suspended part iculate matter
from clear water and the nepheloid layer from the
Iceland Rise. la and 2a are clear-water samples; lb
and 2b are from the nepheloid layer. Sample 1 is from
Station 25, and sample 2, from Station 76. Sample 3
is from Stat ion 67, which has no nepheloid layer. 3a
is from mid-water; 3b, from the near-bottom water.
See text for interpretat ion of these samples.
X 1200.
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Perliaps the mineral matter is contained 1n orgao1c aggregates of Im.¡

density. The results of the chi-square analysis (statistics after

Cro\-J !'t !,~l., 19(0) on the c.ompositional data summarized in Table 3.2

indicate that at the 95% confidence level, the random photomicro-

graphs of the filters are representative subsamples of a homogeneous

population of material. This result allows summing the counts from

many photomicrographs to make additional comparisons. The second

chi-square test performed was to determine whether clear-water and

nepheloid-layer samples from individual stations are statistically

different. This was found to be true at the 95% confidence level.

The di fferences observed were out 1 ined above. Another chi-square

test was performed to determine whether the clear-water samples from

all stations were statistically different from each other, and

,.¡hethel' the nepheloid--layer samples from all stations \.¡ere

statistically different from each other. This hypothesis was also

found to be true at the 95% confidence level. The variability

between stations 18 perhaps related to proximity to Iceland. The

two stations in the basin generally have less mineral matter and

fewer clays and aggregates than the stations along the flanks. For

mineral matter, this is true only for the nepheloid-layer samples,

indicating that the variability may also be caused by resuspension

of mineral matter by the bottom current into the nepheloid layer for

the stations along the flanks.



-95--

TA BLE 3. 2

CHI-Square Analysis of Compositional Data from the Iceland Rise

and Western North Atlantic

Station
-Bottle

Clear - C Degrees of
Nephe 10id - N Freedom

Ca 1cu1ated

CHI'.Square

95%
Confidence

Interval

TESTS FOR HOMOGENEITY OF FILTER SAMPLES

25-4 C 27 35.16 40. 11
25--1 N 27 39.83 40. 1 i
39-B1 C 27 25.83 40. 1139-B5 N 27 23.98 40.1132-4 C 27 31.95 40.1132-1 N 30 28.93 43.7767-B6 C 27 19.29 40. 11
67-131 C 27 41.30* 40.11
76-B6 C 24 25.50 36.42
76 -B 1 N 30 14. 15 43.77

TESTS FOR STANDARD VERSUS DREGS SAMPLES

25-,./! C 10 32.70", 18.3125-) N 11 70.031, 19.6839-1 C 10 103. 121, 18.31
39 5 N 10 73 96~' 18.31

TE STS FOR CLEAR HATER VERSUS NEPHELOID LAYER SAMPLES

25 C/N 11 38.62''" 19.68
39 C/N 10 50. 161( 18.31
32 C/N 10 131.90"' 18.31
67 C/C 9 16.52 16.92
76 C/N 10 24.07"( 18.31

SAME INCLUDING DREGS

25
39
718
734

C/N
C/N
C/N
C/N

11
10

8
8

48. 34"(
64.36'''
37.46*

145.50'''

19.68
19.68
15. 51
15.51

TESTS FOR ALL CLEAR WATER SAMPLES

all clear C 45 197 . 2 8* 61.63

TEST FOR ALL NEPHELOID LAYER SAMPLES

all nephe loid N 33 326. 15"( 45.69

* Significant At 95% confidence interval
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Western North Atlantic

Compositional identification and quantification of partii:les for

two stat ions in the western North At lant ic were performed in a

s imilaT fash ion to that for the Icelan d Rise samples. The dominant

components of these samples are small coccoliths, clays, and mineral

matter (Figure 3.14, Table 3.1). The variations seen between clear-

water and nepheloid-layer samples are also most pronounced for these

components. The percentage of small coccol iths drops sharply from

clear-water to nepheloid-layer samples, whereas the percentages of

clay and mineral matter rise dramat ically (Figure 3.14).

A chi-square test to examine the similarity of the clear-water

and nepheloid-layer samples verifies that these samples are

statistically different at the 95% confidence level (Table 3.2).
~

DISCUSSION

CORRELATION OF LIGHT-SCATTERING MEASUREMENTS WITH SPM CONCENTRATIONS

A correlat ion of light-scattering measurements with concentra-

t ions of SPM has been used for several years to cal ibrate L-DGO

nephelometer profiles in quant itat ive terms (Biscaye and E itt re im,

1974; 1977). As part of this study, a relationship was sought

between 1 ight-scattering observat ions and SPM concentrat ions

(uncorrected for "dregs" particles) for clear-water samples,

nepheloid-layer samples, and the entire water column. Uncorrected



Figure 3.14
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Compositional variability of suspended particulate
Qatter from the western North Atlantic. Note the
pronounced differences in percentages of small
coccoliths, clays and mineral matter between clear
water and the nepheloid layer.
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concentrations \.¡ere used so that a comparison of the relationships

given by Biscaye and Eittreim (1974; 1977) to those obtained south

a fIe e 1 and co u I d be ma d e (Tab Ie 3. 3) .

There are two important comparisons to be made wi th these

regref:S ion carre lations: firs t, the comparison between clear-water

and nepheloid-layer samples in the Iceland Rise area, and second,

the regional comparison between the Biscaye and Eittreim curves and

the combined Iceland Rise data.

Analysis of the regression lines for clear-water and nepheloid-

layer data shows a statistically significant difference in these two

curves at the 95% confidence level (Figure 3.15). This cart be

interpreted in two ways: either the nephelometer responds

differently to the particles in the nepheloid layer versus those in

clear water, or the relationship between light scattering and SPM

conc(~ntratíon is nonlinear for the full range measured. Theory

suggests nephelometers are responsive to particle characteristics

other than concentration, such as size and composition from

differences in index of refraction (Jerlov, 1968). It has been

shown here that the size and composition of suspended material

differs between clear-water and nepheloid-layer samples in th~

Iceland Rise region. Both of these factors are likely to influence

the response of the nephelometer; however, it is not yet possible to

determine the magnitude of their influence.

The considerable scatter about the regression lines for the

Iceland Rise d~ta may originate from numerous sources of error.
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Table 3.3

LEAST SQUARE REGRESSION EQUATIONS FOR LIGHT SCATTERING
VERSUS CONCENTRATION CORRELATIONS

BBOR-HAP log Y 1.19 log X + 0.13 ( r = 0.90from Biscaye and Eittreim (1974)

LCR log Y = 1.0 log X + 0.50 ( r 0.84 )from Biscaye and Eittreim (1977)

Clear water log Y = 0.63 log X + 0.94 (r 0.62)this study Sb = 0.106

Nephe 10 id layer log Y = 0.36 log X + 1.35 ( r = 0.52)this study Sb = 0.055

All data log Y = 0.65 log X + 0.98 ( r 0.76)this study

Y = concentration (~g/l)
X = light-scattering (E/En)
r correlation coefficient

Sb = standard error of the regression coeffic ient, b ,

test for similarity between clear water and nepheloid layer lines

t
b1 - b2

Sb1-b2
= 0.63 - 0.36 =

0.0124 21. 77

Reject the hypothesis at the 5% significance level that the two
regress ion 1 ines are the same

statistics after (Crow ~ ~., 1960)



Figure 3.15
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Correlation of light scattering and standard concen-
tration for the Iceland Rise area. The dashed line is
the regression line for the clear-water samples. The
inner pair of dashed curves are the 95% confidence
limits for clear-water concentration values. The
outer pair represent the 95% predict ion interval for
this regression. The solid line is the regression
line for the nepheloid-layer samples. The solid
curves are the same as for the clear-water samples.
The regress ion lines for clear water and the nepheloid
layer, are stat ist ically different at the 95%
confidence level. The dotted lines are the
regress ions for the BBOR-HA and LCR of Biscaye and
Eittreim (1974; 1977).
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There is analytical error iii the concentration measurements

(outlined earlier), error in the light-scattering determinations,

and error in relating the depth of the nephelometer measurements to

the depth of the bott Ie samples. Perhaps larger than any of these

is the basic difference in the volume of water being examined by

each method. The SPM concentration data are obtained \víth 5 or 30

liter Niskin bottles, \.¡hich sample over a vertical scale of one-half

to one meter. The nephelometer, on the other hand, measures light

scattering that is integrated over a vertical distance of 25

meters. In a region of active currents like the Iceland Rise,

temporal variability over a half hour and patchiness in the

concentration of particles in near-bottom water are likely and could

cause differences between the point values of the Niskin bottles and

the integrated values measured by the nephe lometer.

Although the Biscaye and Eittreim curves (Figure 3.16) yield

good first-order approximations of SPM concentration, their

calibration curves differ from those of this data set. Calibratj,ons

apparently differ regionally. The data south of Iceland produce a

curve with a gentler slope and a larger intercept than those

obtained by Biscaye and Eittreim (1974; 1977). This reflects

smaller changes in concentration for the same increase in light

scattering when compared with their study. The difference in the

intercepts of these curves indicates that in the BBOR-HAP and LCR

regions, less material is needed for detection of measurable

scattering than south of Iceland. This may be due to a nonlinear



Figure 3.16
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Correlation of light scattering and standard
concentration for the BBOR-HAP, from Biscaye and
Eittreim (1974). The BBOR-HAP line is the
least-squares regression line through the data shown.
Also shown are the regression lines for the LCR from
Biscaye and Eittreim (1977), and that for the entire
Iceland Rise data set.



-105-

3.0

0.5

2 5 -
~"~~
~ 2.0CJ

i:
~
~
~ ..
~ . ."
~
CJ .(.
(.~
(J LO..

o 0.5
-i
LO

I

l. 5
I

2.0
-i
2.5

LOG (E/ED)



--106--

response of the nephelometer, or to a difference 1n the nature of

SPM in the two regions. A comparison of the SPH off Iceland to that

along the continental rise off New York indicetes that more clays

and mineral matter occur at the latter location.

Most light-scattering values observed in these studies fall 1n

the range 0.5 to 1.5 log E/ED. Over this range of light-

scattering values, the differences in prediction of the SPM

concentration from the different regression lines vary by a factor

of 3.4 for low values of light scattering and by a factor of 1.3 for

high values. Thi s appears to indicate significant differences in

prediction from the curves. However, the 95% prediction limits for

the Iceland Rise data span at least this much variability (Figure

3.15). Information for these i imits for the Biscaye and Eittreim

curves is not available. Therefore, although there are regionally

significant differences in the response of the nephelometer to SPM,

used as a predictive tool, the particular correlation employed 1S

unimportant, since the prediction limits are so large.

SIZE DISTRIBUTION VARIATIONS

Particle size distributions were analyzed from clear water and

the nepheloid layer from south of Iceland and compared to those from

the western North Atlantic to determine whether variation in the

size spectra were site specific.
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y. 0 1 L1~~ t r i:~~li:_s t ~g.2~ams.

Histograms of normalized particle volume versus equivalent

spherical diameter depict the variations in the distributions

bet~een clear water and the nepheloid layer (Figures 3.10, 3.11,

~~.l2). The clear-\,¡ater distributions in both regions have

relatively constant volumes of material in logarithmically

increasing size grades, from 1-20 ~m, i.e., distributions with high

variance. In contrast, the particles in the nepheloid layer

generally have low variance distributions. These variations in

particle size distributions between clear water and the nepheloid

layer are noted in both areas, and may be due to either differences

in the state of aggregation or the composition or the suspended

material. Filters of SPH \vere examined to determine which

slternative was more likely.

The per~entage of aggregates does not change substantially

between clear water and the nepheloid l~yer for either region.

Composition of the SPM does change. Both regions show an increase

1n relative proportion and total concentration of the clays and

mineral matter in the nepheloid layer in comparison to clear water.

The variations in particle size distributions between clear

water and the nepheloid layer occur wherever a nepheloid layer is

present. In the few stat ions where nepheloid layers are absent, the

size distributions retain a clear-'water characteristic, high

variance, even near the seafloor (Figure 3.17). This suggests that

nepheloid layers are areas of introduction into the water column of

material with a given, (site-specific) predominant modal size. With
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Coulter-counter volumetric size bistograms from station
67 in tbe Iceland Rise region. See Figure 3.7 for tbe
locat ion of tbe mid-water and deep-water samples witb
respect to tbe ligbt-scattering profile. Stat ion 67
does not sbow a well-defined nepbeloid layer..
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an increasing quant ity of resuspended material, a distribut ion of

lower variance with a more well-defined mode develops.

Differential Volume Distributions

Data on marine part icle-size distribut ions are usually expressed

as the slope of the cumulative number distribution (Bader, 1970;

Carder et al.; 1971, Brun-Cottan, 1971; Sheldon et al., 1972;

McCave, 1975; Brun-Cottan, 1976). A slope of minus three is

indicat ive of a distribut ion with equal volumes of material in

logarithmically increasing size grades, the type described here for

clear-water samples. In this study of concentration, size,

composition, and density, most of which are related to weight or

volume of material, the parameters mass and volume are more useful

than number. For this reason, the normalized differential volume of

part icles is used in interpretat ion rather than the cumulat ive

number distribut ion. For comparison with other studies, a slope of

minus one for a normal ized different ial volume distribut ion is

equivalent to a slope of minus three for a cumulat ive number

distribut ion (Figure 3.18).

Slopes from the normal ized different ial volume distribut ions

were plotted versus depth for all stat ions from the Iceland Rise

region (Figure 3.19). Nepheloid-layer and clear-water points were

dist inguished to determine trends with in these subgroups. It is

seen from the plot that the data have too much scatter to reveal any

depth-dependent or clear-water versus nepheloid-layer distinctions.
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Pa rt ic Ie size distribut ions and assoc iated
parameters. Graph la represents a particle size
distribut ion with equal volumes of material in
logarithmically increasing size grades. Graph lb
shows the associated different ial and cumulat ive
number distribut ions. Graph lc shows the assoc iated
volume distribut ion normal ized by the size grade
interval. Graph 2a illustrates an ideal ized
nepheloid-Iayer, volumetric distribution of lower
variance. Graph 2b, similar to lb, demonstrates the
variability of slope through the distribution, but
overall having slopes very similar to those in lb.
Graph 2c, similar type to lc, shows both positive and
negative slopes through the distribut ion, with the
overall slope similar to lc.
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Figure 3.19
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Scatter plot of the slopes of the curves of the
normalized differential particle volume versus
particle diameter, with depth for the Iceland Rise
region. Slopes of two idealized distributions are
shown in Figure 3.18.



.. .1. "t--

aa. I.0
C\. 0

0

..
o 0% 00 0 0 0

0 00 0 0 0"D 0 .- 0 .. ~ ~...ób.oo 0
,_.a o · ~ 0 a- 0 000 o O.
(J 0 . 0lo . 00 00 .. 0 0 o 0: 000 'boo 0 a00- 0000 % C\(J 0 0 O~ 0 · .0 0(J) 0 00 0 .U Z 00 . . 0

0 . 00 . 0 .~ 00 0.0000
0 o 0

co 0 00 00 0 . 0 00
o c 0

°oi¡o " 0 0
0 000 0 0 -,

0 0 O. 0 lo 0 I. ~
0 0

0 . . ..-0.0 00 ..
o 0 Cò cP

0 0

~
0 0 00 0

0 0
C

0 00
00 0 00 0 ~0 0

0 0 a ~0 0 0 ao 0 0
190 0° a0 0 0 00 0 '"0 0 0

0
0

0 00 o 00

0
00

0 0

0 a0 00
0 aI.0 0 0 0

0
0 0

0
0

L i I aa a a I. aa I. q Ö
C\ - .. I

I I
i

3d07S



-- 115-

Insight into this phenomenon is gained in examining the slopes of

individual profiles (Figure 3.20). Clear-water distributions are

well represented by single lines having slopes of approximately

-0.9. Nepheloid-layer distributions as single-line representations

have slopes similar to those of clear 'vater, but much more scatter.

An explanation for the similarity in slopes between clear-water and

the nepheloid-layer samples is se~n in examining idealized

distributions (Figure 3.20). Both idealized clear water (high

variance, flat distributions) and idealized nepheloid layer (low

variance distributions) have the same slopes of minus 1. However,

the nepheloid-Iayer distributions are much better expressed as

two-Dlope distributions with a slope break at the modal point of the

par tic 1 e vo lume his tograms.

Th is break in s lope has previous ly been reported for shallow-

water data (c200 m) (Bader, 1970; Brun-Cottan, 1971; McCave, 1975)

and is here shown to be a feature also of the deep-water nepheloid

layer In shallow water, the meaning of the slope break LS

unexplained. In this case, for deep wa ter, the two-s lope

distribution is interpreted to be due to an introduction of

resuspended c lays and mineral mat ter into the nephe loid layer.

APPARENT DENSITY

One of the characteristics of suspended particles most difficult

to determine is their in-situ bulk density. However, measurements

related to the density of SPM may be useful in providing insight



Figure 3.20
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Individual profiles of normalized differential particle
volume versus particle diameter for the clear-water
and nepheloid-layer samples plotted in Figures 3.10
and 3.11. Clear-water samples are seen to be well
represented by a single line through the data.
Nepheloid-Iayer samples are better represented as a
two-slope distribution.
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into the differences between clear-water and nepheloid-layer

samples. Biogenic organic-rich matter has a density close to that

of seawater, whereas mineral grains have a dens ity approach ing
3

2.5 g/cm. However, few marine particles are composed solely of

either organic matter or mineral grains. Organic-rich matter, fecal

pellets, and aggregates are often composed of varying percentages of

skeletons of plankton, organic matter, and clays.

Contents of organic-matter in SPM drop substant ially from 25-50%

in the water column to .: 2% in surface sediments (Baker et ~., 1979;

Rowe and Gardner, 1979). This difference may be useful in

ident ifying resuspended material, wh ich would tend to have a lower

organic-matter content and therefore a higher density.

Although in-situ particle density cannot now be measured, an

apparent dens ity can be calculated. Th is parameter is the rat io

between mass and volume concentrat ions of a sample of SPM. The mass

concentrat ion is determined by filtrat ion and the volume

concentrat ion, by the Coulter-counter analys is. Filtrat ion of SPM

gives a measurement of dry weight of particles per volume of

seawater. The Coulter counter gives a measurement of wet volume of

part icles per volume of seawater. The rat io of the two gives a dry

weight of material per wet volume of material.

It is evident that numerous sources of error are included in

estimates of this type. The specific errors in filtration and

Coulter-counter analys is have been detailed previously. The three

major additional sources of variability in this parameter lie in the
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difference in the quantity, range) and nature of the measurements.

First, filtration integrates over at least 5 (and up to 30) liters

of water, \vhereas the volume of sem.mter analyzed with the Coulter

counter was only a 2 ml aliquot. Seconè, the Coulter counter was

used to Il:easiire particles only bet\veen 1 and 20 llm, \vhereas

filtration includes all particles greater than 0.4 urn. and some

smaller particles are probably collected as welL. Third, filtration

is a measurement of a dry weight of particles; Coulter-counter

analysis measures a wet volume. These sources of error indicate

that apparent dens ity cannot be interpreted in terms of actual bulk

densities, but it may be a useful parameter for comparative purposes.

Iceland Rise

A plot of mass concentration versus wet particle volume (Figure

3.21) reveals no distinction in the data between the apparent

density (the ratio of the two plotted parameters) of the nepheloid-

layer and clear-water samples. except that nepheloid-layer samples

plot in the upper portion of the graph due to their higher

concentrations. The fifty-t\vO clear-water samples gl.ve a mean

apparent density of 2.00 :! L39 g/cm3. \.¡hereas the nepheloid-layer

samples yield a statistically indistinguishable 2.38 i 1.23 g/cm3.

Western North Atlantic

A similar study was made of the apparent density of particles

from the western North Atlantic continental rise. A plot of

-:
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Apparent density of samples from the Iceland Rise. No
differentiation by apparent density is evident between
c lear-water and nepheloid-layer samples.
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apparent density (Figure 3.22) suggests that the nepheloid-layer

particles have an apparent density greater than that of clear-water

particles. Clear-water samples have a mean apparent density of

0.83 i 0.40 g/cm3, \~hereas nepheloid-layer samples have

significantly larger values (1.34 i 0.46 g/cm3). A line of

apparent density at 1.10 g/cm3 effectively separates most of the

nepheloid-layer samples froin clear-water samples.

An explanation for why differences in apparent density between

particles in clear water versus nepheloid water Rre seen in the

western North Atlantic and not south of Iceland lies in the

composition of the particulate matter Bath regions have

statistically significant differences in the composition of SPM

between clear-water and nepheloid-layer samples. However, the

differenc~s for the western North Atlantic samples ~re much more

pronounced (Table 3.1). They have a dramatic 16-43% decrease in

coccoliths, a 16-23% increase 1n mineral matter, and a 6-13%

1ncrease 1n clays between clear water and the nepheloíd layer. The

increase 1n the c lays and mineral matter 1n the nepheloid layer

serves to increase the apparent density of these particles with

respect to clear-water particles. Compositional variations for the

Iceland Rise samples are not as large. Coccoliths have a 5-6%

decrease; pennate diatoms, a 0-6% increase, clays, a 2% 1ncrease;

and mineral matter, a 1-5% increase, between clear water and the

nepheloid layer. These compositional differences are not sufficient

to reflect differences in the apparent densities.



Figure 3.22
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Apparent density of samples from the western North
Atlantic. Clear water samples have apparent densities
smaller than those for nepheloid-layer samples. A
line with slope 1.1 g/cm3 effectively separates the
two groups.



"'
'"~
~
~
h:
~"
~J~
8
fai.
~
~
8

-12l~-

APPARENT DENSITY WESTERN NORTH ATLANTIC
200 r

180 -

160

t40

120

tOO

80 -
..

60

40 L

0

0

i

20L
0

0

0 I

0 20 40

.. . .

00

o

.

.

.. .

o

o
o

o

o
o Clear
· NepheloidI I I i

60 80 100 120 140 160 180 200
WET VOLUME (PPB)



-125-

COMPOSITIONAL DIFFERENCES

Filters of SPM from both regions were examined to look for

compos it ional differences between clear-water and nepbeloid-layer

part icles, and to determine wbetber compos it ion or state of

aggregat ion is a likely cause of tbe differences in part icle size

distributions. In tbe previous section, compositional differences

were suggested as an explanat ion for apparent dens ity changes in tbe

western North Atlant ic samples.

Iceland Rise

Ch i-square analyses of tbe compos it ional results indicate tbat

particles from clear water and tbe nepbeloid layer at individual

bydrograpbic stat ions differ at tbe 95% confidence level. In order

to determine wbetber these differences are due to processes caus ing
J

nepbelo id layers, or are s imply evidence of dissolut ion,

decomposition, and consumption of particles witb increasing water

depth, a station witb no nepheloid layer was sampled. A cbi-square

test was made on samples from Stat ion 67 (no nephelo id layer; Figure

3.7) taken from 700 m and 1479 m wbere tbe total water deptb is

1522 m. The result in dicates tbat at tbe 95% conf idence level tbese

samples are from tbe same populat ion. Tbese data support tbe

hypothesis tbat tbe variability between clear-water and

nepbeloid-layer samples is due to tbe existence of tbe nepbeloid

layer, and is not simply a function of depth or depth-related

processes.
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For comparative purposes, the percentages, rather than numbers,

of particles in the different compositional classes were used to

eliminate the effects of concentration differences between clear

Hater and the nepheloid laY2r (Figure 3.13). The major variations

seen in composition were a decrease in the percentage of small

coccal iths and an increase in the percentage of diatoms

(particularly Rhizosolenia), clays,' and mineral matter 1n the

nepheloid layer relative to clear water. The increase in the

percerttages of diatoms, clays, and mineral matter 1S probably caused

by resuspens10n of these components, which are abundant in the local

surface sediments into the nepheloid layer. The decrease in the

percentage of small coccoliths reflects dilution. The number of

small coccoliths does not decrease in the nepheloid layer, but the

percentage does (Table 3.1, Figure 3.13). Therefore, the other

components of the SPM in the nepheloid layer are preferentially

added, resulting in the decrease in percentage of small coccoliths.

State of aggregation of particles was also studied. Aggregates

were found in both the clear-water and nepheloid-Iayer samples, with

the percentage of aggregates in both samples being very similar

(Table 3.1). Aggregates are sometimes difficult to detect on

filters, because drying of the samples removes water and collapses

organic matter which may act a binding agent. In clear-water

samples, collapsed aggregates were readily detected because there

was little material on the filters (Plate 3.2). However, for

nepheloid-layer samples, filters were usually covered with material,
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in some cnses more than a single layer, which made estimation of

aggregates more difficult. Therefore, aggregates may have been

underestimated in the nepheloid-layer samples.

From the studies on composition and state of aggregation, it

appears that compositional differences between clear water and the

nepheloid layer, particularly the increases in diatoms and mineral

rnatter, may account for the differences in particle size distribu-

tions. Aggregations of particles in the nepheloid layer may be of

secondary importance.

The possibility of inorganic flocculation being a contributor to

aggregate formation in the nepheloid was assessed on theoretical

ground s. Inorganic flocculation occurs by Brownian motion, local

shear and differential settl ing. Eins tein and Krone (1962) report

equations to calculate the probability of successful collisions by

particles in salt water resulting in flocculation. From their

equations, and using Iceland Rise data, collisions by Brownian

motion would occur once every six months to two years; collisions by

local shear would occur once every twenty to eighty days; and

differential settling may be important for particles larger than

5.4 ~m which comprise ~l% by number of the suspended particles.

These calculations indicate that inorganic flocculation is not

likely to be responsible for aggregate formation in the nepheloid

layer on the Iceland Rise. However, organic flocculation may be

important.
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Wes tern North At lant ic

The compositional differences between particles in clear water

and the nepheloid layer are more pronounced in the western North

Atlantic region than for the Iceland Rise. This is probably due to

the different inputs and processes in the two regions. At present,

the Iceland Rise region has a high surface input of both terrigenous

and biogenic components, \vhereas the western North Atlantic has a

smaller terrigenous input. For the western North Atlantic, the

clear-water samples are mostly composed of biogenic material; the

nepheloid-layer samples contain a larger fraction of clays and

mineral matter (Figure 3.14). Changes between clear water and the

nepheloid layer include a decrease 1n percentage of small coccoliths

and organic matter and an increase 1n mineral matter, clays, and

aggregates.

Water depths are much greater in the western North Atlantic than

in the Iceland Rise area. In these increased depths carbonate

dissolves at the seafloor (Takahashi, 1975; Broecker and Takahashi,

1978). The coccoliths observed in the nepheloid-layer s2mples are

frequently partially dissolved. Dissolution at the seafloor, and

subsequent resuspension, certainly could account for the dramatic

decrease 1n coccoliths from clear water to the nepheloid layer. The

increase in c lays and mineral matter in the nepheloid layer is par-

tially due to the decomposition and dissolution of other components

at the seafloor. However, advection of nonbiogenic materia I into

the region in the bottom boundary layer is another probable cause.
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Since current velocities were not measured during this study,

assessing the probability of local sediment input is difficult.

Composition and state of aggregation change from clear-water to

nepheloid-layer samples. Both of these may cause the differences

observed in the particle size distributions. Mineral grains and

clays increase substantially in the nepheloid layer. These

components usually range in s ize from 3 to 8 pm ~nd therefore ~ay

account for the peak of material in the nepheloid-layer particle

size distributions (Figure 3.12). Aggregates observed tended to be

larger (~10 pm), and therefore are not as likely candidates for

explaining the size changes observed.

CONCLUSIONS

(1) Analysis of light scattering versus SPM concentration from

the Iceland Rise gives three principal results: a) clear-water and

nepheloid-layer samples show different relationships of

concentration to light scattering, indicating that although the

first-order response or the L-DGO nephelometer is a function of

particle concentration, second-order responses due to other SPM

characteristics such as particle size and composition are not

negligible, and/or the response is nonl inear with increas ing

concentration; b) comparison of the correlation obtained south of

Iceland to the BBOR-HAP and LCR regression lines (Biscaye and

Eittreim, 19/4, 1977) demonstrates that the correlation is somewhat

site-specific, with predicted concentrations differing by up to a
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factor of 3.4 for light-scattering log E/En values between 0.5 and

1.5; and c) but as a means of predicting SPM concentration from

light scattering the carrelation curves for the two regions are

indistinguishable. Limits for prediction of a further observation

for the Iceland Rise data include the Biscaye and E ittreim curves

for log E/ED values greater than 0.5.

(2) Particlè size analyses show that clear-water and nepheloid-

layer samples have different distributions. Clear-water samples are

characterized by high variance distributions of roughly equal

volumes of material in logarithmically increasing size grades.

Nepheloid-layer samples have lower variance distributions with a

mean modal size between 3 and 9 pm in the two areas studied.

Expressed in terms of normalized different ial volume curves,

nepheloid layers are shown to have a two-slope distribution,

previously reported only in shallow waters. The variations in

particle size observed between clear-water and nepheloid-layer

samples are interpreted as being due primarily to resuspension of

sediment into the nepheloid layer and advection of material into the

region in the bot tom boundary layer.

(3) Determinations of apparent density from the Iceland Rise

area show no differentiation between clear-water and nepheloid-Iayer

samples. However, plots of apparent density from the western North

Atlantic do show a marked increase for nepheloid-layer samples. The

interpretation of this phenomenon is that the compositional

differences for the western North Atlantic samples are much greater
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than for the Iceland Rise samples. Tne dramatic clecrease in

coccoliths and increase in mineral matter ancl clays between clear

\'Jater and the nepheloid layer serves to increase the apparent

àens ity or these partic les with respec t to clear-water partic les.

(4) Microscopic examination of filtered partic les and

application of a chi-square test to the data obtained show that

samples from the nepheloid layer are statistically different from

clear-,.¡ater samples. For the Iceland Rise, compositional

differences include a decrease in the percentage of small coccoliths

and an increase in the percentage of diatoms, clays, and mineral

matter in the nepheloid layer relative to clear ,.iater. These

differences are interpreted as being due to dilution of the

caccoliths by other components (diatoms, clays, and mineral matter)

which are readily resuspended into the nepheloid layer from the

local surface sediments. For the western North Atlantic, the major

compositional changes between clear water and the nepheloid layer

include a decrease in small coccoliths and organic matter and an

increase in mineral matter, clays, and aggregates. These

differences are due to dissolution of the carbonate and

decomposition and consumption of the organic matter on the seafloor

with subsequent resuspension and advection of the refractory

material into the near-bottom boundary layer
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CHAPTEH iv

CG~1PAXISON OF SED,n-n';NT TRAP SANPLCS AND THE. SURFACE SEDIHENT:

EV!DEN(~E F'OR LOCAL RESUSPENSION

INTRODUCTION

TIiere is ample geologic evidence that resuu~ensi.o~ ~nd

redistribution of sediments by deep-sea currents has occurred ove~

gec.log,:L(; ti,me. The high frequency of hiatuses in DSDP and ris,toii

cores (Watkins and Kennett, 1971; Rona. 1973; Davies et al., 1973,

Berggren and Hollister, 1977; Moore and Heath, 1977) 18 overwhelming

ev:í.(:(~'iKe foy periods of erosion and/or." ncndeposition. T2nninatin¿~

or outcropping reflectors 1U continuou~ seismic pTofiles corroborate

erosion and non.deposition (Ewing et- a1., 1970; Tucholke, 1979).

Coarse sediment lag deposits. interpreted as the material left

behind in winnowing by currents, are also indications of erosion, at

least of the fines (Huang and Watkins, 1977; Stow and Lovell, 1979)

Evidence for extensive redistribution and horizontal transport

of deep-sea material is found in the size and structure of the

sediment features in the ocean basins. If pelagic settling were the

only factor in the distribution of sediments, the o('ea11 floor ~.;'ould

be uniformly hlanketed with sediments Instead, large (10's-100:8

km) bodies of sediment -- ridges, rises and drifts -- have been

identified 10 many regions of the ocean b3sins (Jones e~ ~l.) 1970;

'"ruci-i()lke e t " ) i c¡ "', '3' 'Llr¡ 1 i i" c' 1- "',- _e ..t_ ~1. 1 ...__ ~..c,. i... . ) l- ....1. _ U ..c.. ._ ~ 1978) . Some of these

features are associated with 8ma11er scale (em to 100'8 m)
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bedforms -- ripples, furrows and mud waves (Hollister ~ ~., 1974;

Bouma and Treadivell, 1975, Jacobi ~ 8.1., 1975; Lonsdale and Spiess,

1977; Flood, 1973). Formation of these sediment features may

indicate sediment redistribution during the present day and up to

mi llions of years ago.

Another probable indication of resuspension and transport of

material by deep-sea currents comes from examining the components of

the sediment. Distinctive tracers from a single source, e.g.,

Antarctic diatoms (Burckle and Biscaye, 1971; Johnson ~t a1., 1977)

and hemipelagic red c lay (Ericson ~ a1., 1961; Heezen ~ ~., 1966;

Hollister, 1967; Zimmerman, 1972) have been useful in inferring the

paths of bottom currents. These tracers are transported and

deposited by the currents, outlining the flow of Antarctic Bottom

Water and the North Atlantic Western Boundary Undercurrent,

respectively.

There is abundant geological evidence for resuspension and

extensive transport of material having been important processes over

time. A piirpose of this chapter is to determine whether

resiispension is occurring now or was restricted to phases of more

vigorous bottom-,.¡ater flow such as may have occurred during

Pleistocene glacial epochs (e.g., Ledbetter ~nd Johnson, 1976).

The approach used to test for present day resuspension in this

chapter is to compare the material in the water column to that on

the seafloor. Samples were obtained with sediment traps through the

lower 500 m of the water column and from box core samples of the

sediment surface layer.
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OBJECTIVES

The pr inc ipa 1 purpose of this \vork is to determine whether

resuspension of deep-sea material is presently occurring on a time

scale of days to weeks and to determine the influence of

resuspens ion on suspended particulate mat ter. In carrying out this

study, the focus i~ on the" followihg objectives:

(1) To examine samples of particulate matter from the water

column and the seafloor below to assess and interpret the

changes that occur to particles in transit through the water

column and while residing on the seafloor.

(2) To look for components of material in the water column

which ¡nay be clearly identified as having previously resided

on the seafloor, as evidence of resuspension.

(3) To assess the vertical settling velocity versus horizontal

current velocity scales involved to constrain the possible

sources and distances of transport of the resuspended material.

HETHODS

SUSPENDED PARTICULATE MATTER

Three moorings of sediment traps were deployed in the Iceland

Rise region for periods from 4 to 13.5 days (Table 4.1). Two

moorings were located along the northern transect at 1596 and 1971 m

(Figure 4.1), with traps at 13, 103, 493 and 503 m above bottom

(mab)(Figure 4.2). The third mooring was located in a turbidity-
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Figure 4.1
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Bathymetry of the study area with mooring locations and
box cores identified. Three moorings and fourteen box
cores were obtained from the study area. Samples were
collected in the channel between the two ridges
(Mooring 3, box cores 6, 7, 9, 10, 11 and 12) and
a long transec ts under the influence of the bot tom
current (Moorings 1 and 2, box cores 2, 3, 4, 5, 8,
13, 14, 15).
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Diagram of sediment trap moorings from the northern
transect. Traps were located at 503, 103 and 13 mab
for Mooring 1 and 493, 103 and 13 mab for Mooring 2.
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current canyon at 2146 m with additional traps at 53 and 
13 mab

(Figure 4.3). In the rest of this chapter the traps are referred to

as being at 10, 50, ioa and SOO mah; these are their approximate

heights above bottom and this description is used for convenience in

comparison from one mooring to another. Water depths for the

moorings are rounded to 2000, 1600, and 2150 m for moorings 1, 2,

and 3, respec iively.

The sediment traps iised in this study \..ere a modification of the

type used by Gardner (1977a). The traps are PVC cylinders 25 cm in

diameter and 62 cm in height (Figure 4.4). The lid of the trap is a

butterfly valve recessed 30 cm from the top edge. The 1 id is held

open by a spring-loaded PVC clamp. The valve is closed either by

burning a nichrome wire at tached to the spring mechanism or

alternatively by dropping a messenger which releases a taut line to

the spring mechanism. The burning of the wire or dropping of a

messenger is actuated by a iimed release.

SURFACE SEDIMENT SAMPLES

Sediment samples were obtained throughout the study area by

piston coring and box coring. Box-core samples were iised in this

work since box corers more reliably recover the surface sediments.

Fourteen box cores were obtained in the Iceland Rise region (Table

4.2, Figure 4.1). The box corer used is that described by Bouma

(1969, p. 339-342). Surface scrapings from the top 1 cm were taken

from the cores for comparison with the sediment-trap samples.
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Diagram of sediment trap mooring from the channel
station, Mooring 3. Traps were located at 494, 104,
54, 14 and 13 mab. The trap at 14 mab was a different
design from the other traps and did not function
properly.
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The sediment trap used in this study. The trap is a
PVC cylinder with a height to width ratio of 2.5. The
closing mechanism is a butterfly valve actuated by a
timed release.
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SIZE DISTRIBUTION ANLYSES

Part icle size analyses were performed on sediment trap material

and surface sediments. Samples were wet sieved with gent Ie

agitation at 250, 125, 63, and 20 ~m, yielding five size fractions

per sample. Samples were sieved with seawater as dist illed water

might disperse the aggregates and loosely bound fecal pellets. Some

particles smaller than the grid size remained on the sieves due to

agglomeration with larger particles. Each size fraction was

separately filtered onto 0.4 ~m Nuclepore filters or pre-combusted

glass fiber filters (nominal pore size of l~m), for weight

determination. Samples were rinsed ten times with 10 ml aliquots of

filtered, buffered to pH 7, distilled water to remove residual salt.

OPTICAL IDENTIFICATION

Components of sediment trap samples and surface sediment samples

were ident ified by opt ical microscopy and scann ing electron

microscopy. A binocular microscope was used to study the '?63 ~m

fract ions of the samples wh ich comprised 37-70% of the total trap

samples by we ight. Counts were made of the major const ituents of

the samples. These include: foramin ifera, radiolaria, pteropods,

diatoms, dinoflagellates, fecal pellet s, un ident if ied biogen ic

material, volcanic glass, mineral grains, and aggregates. Counts

were made directly from filters obtained in the size-fraction

analysis for the sediment-trap samples for all but the traps at

10 mab. The sieved fract ions of the surface-sediment and
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sediment-trap samples from 10 mab were later split into smaller,

manageable fract ions with a microspl itter before counting. Scanning

electron microscopy was used to obtain photomicrographs of the

various const itutents in the samples.

MINERALOGY

X-ray diffract ion was used to determine the mineralogy of

surface-sediments and sediment-trap samples from 10 mab; trap

samples above 10 mab had insufficient material for these analyses to

be made. Bulk powder mounts were used to determine the overall

compos it ion of the samples, and oriented mounts of the 0( 2 ll m

fract ion were used for clay mineralogy (Hathaway, 1972).

CARBONATE DETERMINATIONS ,
The calcium carbonate content of sediment-trap samples and

surface-sediment samples was determined by ac idif icat ion of a

fract ion of the samples. Sediment-trap samples were wet spl it with

a plankton spl itter into fract ions small enough to be concentrated

onto 25 ro diameter precombusted, preweighed glass-fiber filters.

The samples were digested with 2N HCl and rinsed ten times with

distilled water. Calcium carbonate content was calculated from

weight loss.

ORGANIC CARON AN NITROGEN ANALYSES

Organ ic carbon and nitrogen contents were determined for both

the sediment-trap and surface-sediment samples. Samples obtained at
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sea were fractionated by wet splitting and filtering these portions

onto precombusted glass-fiber filters. These filters were frozen at

sea to minimize organic decay. Subsequently, in the laboratory they

were thawed, acidified to remove carbonate, and analyzed with a

Perkin Elmer #240 elemental analyzèr, to obtain organic carbon and

nitrogen contents of the samples.

RESULTS

All of the sediment trap moorings were successfully recovered,

with almost complete success with the sediment traps. All traps

were recovered with good samples except for the traps at 500 and 100

mab from Mooring 3. Material from these traps may have been

partially washed out 1n the surface waters, because they remained

open and subject to the pumping action of the swell before recovery.

11L'\SS COLLECTED BY THE SEDI:ENTTRAPS

The quantity of material collected by the sediment traps

increases substantially from 500 to 10 mab, particularly between 100

and 10 mab (Table 4.3). The greatest increase, more than two orders

of magnitude, is for Mooring 2, located in the axis of the bottom

current.

Apparent vert ical fluxes of material can be calculated from the

sediment-trap data (Figure 4.5; Gardner, 1977a). At 500 mab,

2apparent fluxes varied by a factor of 2, from 1.8 mg/cm /yr at

Mooring 2 at 1600 m to 3.6 mg/cm2/yr at Mooring 1 at 2000 m.
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Mooring 2
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Table 4.3

MASS OF SEDIMENT TRA SAMPLES

MAB (m) Mass Collected (mg)

500 68.0

100 147.6

10 3867.

500 15.9

100 36.4

10 4072 .

500 18.7*

100 54.3*

50 55.3

10 1895.

* traps returned open
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Apparent vertical fluxes of material through the water
column. Weight of material collected by the traps is
divided by the area of the opening and duration of
trapping. A dramatic increase in apparent flux is
observed from 100 to 10 mab. The trap data from 500
mab and 100 mab from Mooring 3 are questionable since
these traps were recovered open.
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Traps were spaced up to 500 mab because it was thought that 500 m

would be high enough to be above the nepheloid layer, and would

catch only primary, surface-source material. However, from the

light-scattering profiles discussed in Chapter III (Figure 3.8), the

traps at 500 mab on Moorings 1 and 3 were still within the nepheloid

layer; the 500 mab trap from Mooring 2 was above it. Apparent

fluxes at 100 mab varied by a factor of 1.9, with the higher value

at the deeper station, Mooring 1. At 10 mab, the fluxes vary by a

factor of 2.3 with the highest flux, 474 mg/cm2/yr at Mooring 2,

in the axis of the bottom current.

PARTICLE SIZE DISTRIBUTIONS

Part icle size distribut ions were examined for sediment-trap

samples and nearby surface sediments to determine if grain size
~

varies with water depth or between material in the water column and

that on the underlying seafloor.

Sediment Traps

Part icle size distribut ions vary cons iderably through the water

column, but show the same general trends from mooring to mooring

(Figure 4.6). Traps at 500 mab have roughly similar amounts in all

size fractions ~20 ~m. The ~20 ~m fraction is a large percentage of

the samples, 33 to 42%. This high proportion of small particles

indicates that although large part icles may theoret ically compose a

substant ial port ion of the vert ical flux of material through the
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Particle size distributions for sediment trap samples
by weight. Distributions were determined for two
splits of the samples which are represented by the
solid bars. The average size distribution of the
combined splits is given as the open bars.
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\-'ater column (McCave, 1975), small particles are equally important

in this particular area.

The traps at 100 mab a long the northern transec t have a peak in

the 63-125 pm size fraction. The 50 mab trap from the channel

mooTing (the only trap at this height) has roughly equal amounts of

material in the size fractions;: 20 llm, as do the traps at 500 mab,

but has a decrease in material ~20 ii m.

The material from traps at 10 mab are more variab Ie ìn their

size distributions. A general trend among these three samples is

low percentages of material ~20 pm. This may be artificial. For

these traps, up to one gram of material was sieved. The 20 pm sieve

would frequently clog, and sieving at this size fraction took

several attempts to complete. Some material smaller than 20 urn

undoubtedly remained on the sieve due to the large amount of

material processed. This could account for the strong decreases 1n

the ,20 pm s 1ze frac tion for these samples.

A general trend observed among the trap samples is a decrease

with depth in the percentage of material ~ 20p m.

Surface Sediments

Box cores were taken along the northern transect and in the

channe 1. The samples recovered are somewhat biased, s 1nce some

attempts made to recover box cores in the current axis a long the

northern line, were unsuccessful due to wash-out of the coarse

sediments during recovery. Cores taken in the channel have fine
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grained sediments, up to 96% ~63 ~m (Figure 4.7). Cores along the

northern transect tend to be composed of coarser material. Cores 3,

5, and 15 (Figure 4.7) and gravity cores 1, 5, and 11 (Shor, 1979)

have surface sand layers from wh ich the fines seem to have been

winnowed.

OPTICAL IDENTIFICATION

The coarse material (~63 ~m) in flux at various depths in the

water column was identified and counted to compare this material to

that on the seafloor.

Sediment Traps

Foramin ifera

Plankton ic fo ram in ifera comprise by number from 2 to 54% of the
li

size fract ions ~ 63 ~ m of the sediment-trap samples (Table 4.4).

The ~ 250 ~ m size fraction had the largest percentage of planktonic

forams; smaller size fract ions had smaller percentages. The

plankton ic foraminifera ~ 150 ~ m in the sediment trap samples from

10 mab were identified to compare the trap species in the traps with

those in the surface sediments. Forams 0( 150 ~m were generally too

small for reliable identification of species. Species identified

and counted include Neogloboquadrina pachyderma (dextral and

sinistraU, Globigerinita glutinata, Globigerina bulloides,

Globigerina quinqueloba and Globorotal ia inflata (Plate 4.1, 3-8;

Table 4.5). Some of the plankton ic forams in the samples were

coated with iron oxide (Plate 4.1,8; Table 4.5).
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Particle size distributions for surface sediment
samples. Samples were wet sieved and filtered on
glass fiber filters for weight determination.

'.~
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Plate 4.1 SEM photomicrographs of part icles from the sediment
traps.

1) Pteropod from Mooring 1, 10 mab, scale bar 200 ll m, X 65.
2) Pteropod from Mooring 1, 500 mab, scale bar 50 ll m, X 400.
3-8) Planktonic foraminifera from Mooring 2, 10 mab:

3. Neogloboq uadrina pachyderma (dextral), scale bar 50 li m,
X 250;

4. Globigerina glutinata, scale bar 50 ll m, X 240;
5. Globigerina bulloides, scale bar 50llm, X 200;
6. Globigerinata quinqueloba, scale bar 50 j. m, X 380;
7. Neogloboquadrina pachyderma (sinistral), scale bar

50 ll m, X 270;
8. Globorotalia inflata, note the surface texture; this

foram has an iron-oxide coat ing representat ive of
res idence at the seafloor, scale bar 50 ll m, X 260;

9-12) Benthic foraminifera from traps at 10, 100 and 500 mab:
9. Parafissurina sp., from Mooring 2, 10 mab, scale bar

50 ll m, X 240;
10. Uvigerina peregrina, from Mooring 2, 100 mab, scale bar

20 ll m, X 500;
11. Cassidulina sp., from Mooring 2, 100 mab, scale bar

20 ll m, X 700;
12. Astronon ion sp., from Mooring 1, 500 mab, scale bar

50 ll m, X 380.
13-16) Radiolaria from the sediment traps:

13. Phaeodarian, Protocystis xiphodon, from Mooring 2,
500 mab, scale bar 20 ll m, X 950;

14. Nassellarian, Botryostrobus aquilonarias, from Mooring
1, 500 mab, scale bar 20ll m, X 610;

15. Smullerian, family Phacodiscidae, from Mooring 1,
10 mab, scale bar 50ll m, X 270;

16. Smullerian, family Lithelidae, from Mooring 1, 10 mab,
scale bar 50 ll m, X 340.
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Benth ic foraminifera were also found in the sediment-trap

samples (Plate 4.1, 9-12). All traps at 10 mab and 100 mab

contained at least a few benthic specimens. The trap at 500 mab

from mooring 1, at 2000 m, contained 3 small (~100 ~m) benthic

forams (Plate 4.1,12). Some identified were Uvigerina sp.,

Parafissurina sp., and Cass idulina sp.

Due to the small size of the samples from the traps located at

500 and 100 mab, differentiating of the planktonics by species was

not done, only the total number of individuals was counted. The

presence or absence of benth ic forams, the glacial assemblage foram,

Neogloboquadrina pachyderma (sinistral), and iron-oxide staining in

these samples was recorded since occurrences of these indicate

resuspension of seafloor material.

~

Radiolaria

Radiolaria of the three major groups (spumellarians,

nassellarians, and phaeodarians) were observed in the sediment trap

samples (Plate 4.1, 13-16). They comprise ~ 10% by number of all the

samples and are absent entirely from some of the)o 250 ~ m size

fractions (Table 4.4). The percentage of nasse11arians and

phaeodarians generally decreases between 500 and 10 mab. Th is

agrees with the observations by Takahashi and Honjo (1980) that

spumellarians are less sub ject to dissolut ion than the nassellarians

and phaeodarians.
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Pteropods

Pteropods were found in most of the sediment-trap samples (Table

4.4). Specimens were large, a millimeter or more in diameter, and

have fragile transparent to translucent tests (Plate 4.1, 1-2).

Pteropods comprise ~7% by number of the total samples cons idering

all size fractions. However, for the ~250 ~m size fraction at the

channel stat ion, Mooring 3, they are the dominant component, forming

42% of the trap sample at 50 mab. In general, the percentage of

pteropods in trap samples decreases toward the seafloor. At Mooring

2, at 1600 m, no pteropods were observed in the trap at 10 mab.

Pteropods are composed of aragon ite, with wh ich the bottom water

may be undersaturated (Berner, 1977). The spec imens observed in the

traps probably fell rap idly through the water column from their

surface source and have so far escaped dissolut ion. Some of the
~

pteropods collected were so fragile that touching them with a wet

fine-tipped brush caused them to break into several fragments.

Diatoms

Both centric and pennate diatoms were found in the sediment-trap

samples. Rhizosolenia was most prevalent (Plate 4.2, 8), but

Coscinodiscus, 60-80 ~m in diameter, (Plate 4.2, 9) was also

common. Diatoms comprise by number 11% or less of the bulk

sediment-trap samples; individual size fract ions have ~ 1 to 15%

diatoms. The two moorings along the northern transect show oppos ite

trends with depth. For Mooring 1, 2000 m, diatoms increase in

percentage from 500 to 10 mab, whereas for Mooring 2, 1600 m, a

decrease is observed (Table 4.4).
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Plate 4.2 SEM photomicrographs of part ic les from the sediment
traps and surface sediments. 1-12 are trapped
sediments; 13-17 are from the surface sediments.

1) Fecal pellet, Mooring 3, 50 mab, see Figure 4.8a for X-ray
of elements present. Calcareous, siliceous, and clay
material is seen at higher magnification. Scale bar
50 llm, X 230.

2) Fecal pellet, Mooring 3, 50 mab, see Figure 4.8b for X-ray
of elements present. Silica and calciumpare, the only
elements detected. Scale bar 50 llm, X 330.

3-7) Dinoflagellates from Mooring 2, 500 mab:
3. Ceratium, scale bar 20 llm, X 510;
4. Dinophysis, scale bar 20 llm, X 940;
5. feratium, scale bar 50 llm, X 220;
6. Ceratium, scale bar 20 ~m, X 420;
7. Peridinium, scale bar 20 llm, X 610.

8) Diatom, perhaps part of Rhizosolenia, Mooring 2, 500 mab,
scale bar 20 ym, X 390.

9) Diatom, Coscinodiscus, Mooring 2, 500 mab, scale bar 20 pm,
X 800.

10-12) Volcanic shards and mineral grains from Mooring 2,
10 ma b :

10. Vesicular volcanic shard, see Figure 4.8c for X-ray
of elements present, scale bar 50 llm, X 230;

11. Quartz grain with iron-oxide coating, iee Figure 4.8d
for X-ray of elements present, scale bar 50 llm,
X 230,

12. Altered volcanic shard, see Figure 4.8e for X-ray of
elements present, scale bar 50 llm, X 330.

13-17) Volcanic shards and mineral grains from box core 5:
13. Vesicular volcanic shard, see Figure4.9a for X-ray

of elements present, scale bar 50 llm, X 270;
14. Volcanic shard, see Figure 4.9b for X-ray of elements

present, scale bar 50 llm, X 360;
15. Mineral grain, see Figure 4.9c for X-ray of elements

present, scale bar 50 llm, X 310;
16. Mineral grain with iron-oxide coating, see Figure 4.9d

for X-ray of elements present, scale bar 100 llm,
X 130;

17. Quartz grain, see Figure 4.ge for X-ray of elements
present, scale bar 50 llm, X 250.
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Dinoflagellates

The principal genera of dinoflagellates observed in the sediment

traps were Ceratium, Peridinium and Dinophysis (Plate 4.2, 3-7).

They are found predominantly in the samples from 500 an d 100 mab in

the 63-125 ~m size fraction, usually comprising only a few percent

by number of the samples. Few spec imens were observed at 10 mab.

These organ isms have tests of organ ic material, wh ich is highly

suscept ible to degradat ion in the water column and/or at the

seafloor.

Fecal Pellets

Fecal pellets of many shapes, colors, and sizes were found in

the sediment traps (Plate 4.2,1-2; Figure 4.8 a,b). Most were

?125 ~m. The percentage, by number, of fecal pellets decreased

toward the seafloor (Table 4.4). At 50 mab at Mooring 3 in the

canyon, the sample is composed of 31% fecal pellet s. Th is sample

contains both well-formed tan to brown ish fecal pellets and wh ite

fecal material as well. Traps at 100 mab at the other mooring sites

have less than 5% of the sample composed of fecal pellets.

Unfortunately, the traps at 500 and 100 mab from Mooring 3 did not

funct ion properly to determine if th is high percentage of fecal

material at 50 mab is regionally controlled. Counts of the samples

from these two traps, wh ich were open show ambiguous results. In

the trap at 500 mab, 5% of the sample was fecal pellets, where in

the trap at 100 mab, the figure was 68%.



Figure 4.8
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Energy dispersive X-ray spectroscopy of sediment trap
material; a) fecal pellet from Nooring 3, 50 mab, see
Plate 4.2, 1 for photomicrograph; b) fecal pellet from
Mooring 3, 50 mab, see Plate 4~2, 2 for
photomicrograph; c) ves icular volcanic shard from
Mooring 2, 10 mab, see Plate 4.2, 10 for
photomicrograph; d) quartz grain with iron-oxide
coating from Mooring 2, 10 mab, see Plate 4.2, 11 for
photomicrograph; e) altered volcanic shard from
Mooring 2, 10 mab, see Plate 4.2, 12 for
photomicrograph.
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Unidentified Biogenic Material

Unidentified biogenic material comprising -( 10% by number of the

sample constituents was found in all size fractions of all the

sediment traps. A general trend observed in the samples is a

decrease in this group of particles toward the seafloor (Table

!+J~). This category includes biogenic material too small to be

. def:in.it ive.ly identified, biogenic aggregate,s, and unidentified tes t

fragments.

Volcanic Glass

Two types of volcanic glass were observed in the trap samples;

smooth glass shards and very vesicular fragments (Plate 1¡..2, 10,12,

Figure 4.8, c, e). Both types were observed in all traps and in

most size fractions. Volcanic glass was most prevalent in the small

size fraction counted (63-125 Vm), comprising up to 53% of this

fraction. Some glass had smooth, shiny, sharp surfaces, while most

volcanic shards showed alternation of its surface. A likely source

of this component is Iceland.

Mineral Grains a~d Aggregate~

Mineral grains and aggregates were combined in counting.

Rounded part ic1es and c lay aggregates were the primary cons t ituents

in this category (Plate 4.2, 11; Figure 4.8 d). These components

were found in all size frac tions in mos t trap samples (Table 4.4).

There is a dramatic increase in these components toward the
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seafloor. For the traps at 10 mab, up to 60% of the trap sample

/63 ~m is composed of mineral grains and aggregates. For the traps

above, 13% or less of the sample is composed of these particles.

Surface Sediments

Surface sediments from box cores 3, 4, 5, 6, 8, 10 and 15 were

sieved at 63 ~m to examine the coarse fraction of material and at

150 ~ m to separate juvenile forams. Percentages of a part iculat

component were determined as a fract ion of the total number of

part icles counted.

Foramin ifera

Planktonic foraminifera are one of the major components of

material /150 ~ m in the surface sediments (Table 4.6). Percentages
1

of forams in this size fraction range from 12 to 65% and do not

appear to be regionally controlled. The spec ies of the forams do

show some regional differences. N. pachyderma (dextral and

sinistral), Q. bulloides, Q. glutinata, Q. quinqueloba, and G.

inflata (Plate 4.3,1-6) were identified. ~. pachyderma (sinistral)

comprise 9-30% of the samples from box cores 3, 4, 5, 8 and 15,

which all are located below the bottom current (Table 4.5). This

same spec ies comprises only 0-2% of the spec ies from box cores 6 and

10 from the channel sites (Table 4.5). Other general trends are

more N. pachyderma (dextral), Q. bulloides, and Q. quinqueloba in

the box cores from the channel in comparison to the box cores
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Plate 4.3 SEM photomicrographs of particles from the surface
sediment s .

':

1-6) Planktonic foraminifera:
1. Neogloboquadrina pachyderma (sinistral), scale bar

50llm, X 290;
2. Neogloboquadrina pachyderma (dextral), scale bar 50 llm,

X 300;
3. G10bigerina bulloides, scale bar 50 llm, X 190;
4. Globorotalia inflata, scale bar 50 llm, X 190;
5. Globigerina glutinata, scale bar 50 llm, X 340;
6. Neogloboquadrina pachyderma (sinistral), same species

as (1) but have an iron-oxide coating, scale bar
50 llm, X 300.

7-12) Benthic foraminifera, 7-11 from box core 5; 12 from box
core 6:

7. Parafissurina sp., scale bar 50 llm, X 320;
8. Trifarina sp., scale bar 50 llm, X 190;
9. Planulina wuellerstorfi, scale bar 50 ll m, X 290;

10. Melonis barleenum, scale bar 50 ll m, X 230;
11. A milliolid, Quinquelocu1ina or Trioculina, scale

bar 50 ll m; X 280.
12. Pleurostomella sp., scale bar 100 llm, X 100.

13-16) Radiolaria from box cores 10 and 15:
13. Nasselarian, Anthocyrtidium ophirense, scale bar

50 ll m, X 330;
14. Nasselarian, Bot ryostrobus aqui1onaris, scale bar

20llm,X630;
15. Smullerian, family Phacodiscidae, scale bar 50llm,

X 300;
16. Smullerian, family Lithelidae, scale bar 20 ll m, X 430.

17) Diatom fragment, perhaps Rhizosolenia, from box core 15,
scale bar 100 ll m, X 140.
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beneath the bottom current. The distribut ion of iron-oxide coat ings

on the forams is similar to that of N. pachyderma (sinistral). Only

1% of the forams from the box cores in the channel are iron-oxide

coated; 22-45% of the forams from the box cores beneath the bottom

current have the coat ing. In the size fract ion ~ iSO ~m forams

compose a much smaller percentage of the sample (1-6%).

Benthic forams were found in all the sediment samples. Some

observed were Parafissurina sp., Trifarina sp., Planulina

wuellerstorfi, and Melonis barleeanum (Plate 4.3, 7-12). Benthic

forams const ituted 1-13% of the total number of forams present. The

benthic forams of a channel box core (core 6) were dominated by

P1eurostomel1a sp. Th is same spec ies was not observed in nearby box

core 10.

~

Radiolaria

Radiolaria comprise only a few percent of the ~lSO ~m and

~150 ~m size fractions for the box cores taken beneath the bottom

current (Table 4.6). With in the canyon, radiolaria are relat ive1y

more abundant (Plate 4.3, 3-16). Spume11arians were the dominant

group of radiolaria found in the sediments. Some nasse1arians, but

no phaeodarians, were present.

Pteropods

No pteropods were found in any of the surface sediment samples

examined. However, layers of pteropods have been observed to be

common down core in one piston core in the canyon (Shor, 1979).
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Dia toms

Diatoms are generally absent from the ~150 ~m size fraction.

However, 13% of the sample from box core 10 in the channel is

composed of diatoms. Diatoms, mostly Rhizosolenia (Plate 4.3, 17),

are a few percent of the ~150 vm size fraction.

Dlnoflage lTates, 'Fec:al ?el1ets and Unidentified Biogenic Materia i

Dinoflagellates and fecal pellets were absent from the sediment

samples examined ('rable 4.6). Unidentified biogenic material was

found as only a very minor component of box core 15 (Table 4.6).

Vo lcanicGlass

Volcanic glass is the most abundant component of the sediment

samples (Plate 4.2, 13, 14; Figure 4.9a,b), comprising from 31-71%

by number of the particles counted (Table 4.6). It is more common

in the ~150 pm fraction than the ~150 pm fraction. Some of the

glass shards show surface al teration.

Mineral Grains and Aggregates

Mineral grains and aggregates are another principal constituent

of the sediment samples (Plate 4.2, 15-17; Figure 4.9c-e). They

comprise 3-41% of the samples ~63 pm (Table 4.6). Most particles

counted were single grains. However, in box core 6 from the

channel, the majority (87%) of the material ~150 pm was composed of

clay aggregates that were not disaggregated by sonification.



Figure 4.9
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Energy d ispersive X~ray spec troscopy of surface
sediments from box core 5; a) vesicular volcanic
shard, see Plate 4.2, 13 for photomicrograph; b)
volcanic shard, see Plate 4.2, 14 for photomicrograph;
c) mineral grain, see Plate 4.2, 15 for
photomicrograph; d) minera 1 grain with iron-oxide
coating, see Plate 4.2, 16 for photomicrograph; e)
quartz grain, see Plate 4.2, 17 for photomicrograph.
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Combining the categories of volcanic glass and mineral grains

and aggregates demonstrates that the majority of the particles

preserved at the seafloor are not biogen ic. Together these

categories comprise from 53 to 85% of the sediment samples.

MINERALOGY

,Se-ir:ient traps

Due to the limited amount of material collected by the sediment

traps, powder maÜnts för bulk composition by X~ráy diffraction were

made only for the surface sediment samples. Hoi,¡ever, enough

material from sediment traps at 10 mab was available to make

oriented mounts of the ~2 pm fraction which was filtered onto silver

filters. This procedure precludes semiquantitative analysis; only

presence or absence of particular minerals can be determined. The

principal minerals detected were quartz, feldspar,_calcite, and some

clays (Figure 4.10). The quartz and feldspar are from volcanic

material and mineral grains; the calcite is biogenic. Clays were

riot well detected due to dilution'by the otbe~ constituents. Those

detected were chlorite, smectites, and illite. illite was detected

only at Mooring 2, in the axis of the bottom current.

Surface Sediments

Surface sediments from box cores have the same components as the

sediment traps at 10 mab. Semiquantitative analysis was performed

by using peak areas on the diffractograms of the minerals present



Figure 4.10
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X-ray diffractogram for a sediment trap sample.
Minerals detected are calc ite, quartz, feldspar,
montmorillonite, chlorite and illite.
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(Table 4.7). Quartz', feldspar, and calc ite are the dominant

minerals detected (Figure 4.11). Montmorillonite, chlorite, and

ill ite are the clays present. III ite is absent from, or composes a

smaller percentage than, montmorillonite or chlorite in the channel

box cores (Table 4.7). For the box cores taken beneath the axis of

the current, the percentage of illite is greater than or equal to

the percentages of montmorillonite or chlorite. This suggests a

different iat ion of the clay minerals that may be controlled by the

bottom current or channel.

CARBONATE CONTENT

The carbonate content of the sediment-trap samples decreases

from 500 mab to 10 mab and then further to the surface sediments

(Figure 4.12). From opt ical ident ificat ion of the part ides in the

trap samples, both forams and pteropods comprise the coarse

carbonate fract ion. Acidificat ion indicates that carbonate

comprises up to 90% of the trap samples at 500 mab. Surface

sediments at the mooring sites have values as low as 15%.

Carbonate percentages of the surface sediments vary regionally

(Figure 4.13). Low values (9 to 21%) are found for the northern

transect box cores and box core 8 atop the channel level, along the

southern transect. The box cores with in the channel have higher

carbonate contents (21-30%). This indicates that the channel may be

preferentially retaining or obtaining carbonate material, or the

bottom cu rrent is preferent ially removing it.
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Table4.7

SEMIQUANTITATIVE HI NE RALOGY OF SURF ACE SEDIMENTS*

Mon tmor- Ch lori te and
Ca Ie ite Quartz Fe Idspar illonite Kaolinite Illite

15 9 11 0.8 0.5 0.7
12 11 14 8 l- 430 6 12 6 7 325 4 10 2 1
30 13 14 ,3 2 341 4 10 13 3
35 6 13 17 6 225 6. 11 11 8 230 5 15 14 4
31 6 10 3 1 2

*Values are recorded as the percentage of the samples
composed of each mineral. Peak areas were compared to
peak areas of standards to obtain relative percentages.



Figure 4.11
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X-ray diffractogram for a box core sample. Minerals
detected are quartz, feldspar, calcite, mont-
morillonite, chlorite and illite.
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Figure 4.12
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Carbonate percentage in sediment trap and box core
samples. Percentage of carbonate decreases with depth
through the water column to the surface sediments.
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Figure 4.13
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Ca lcium carbonate percentages for box core surface
samples. The distribution of carbonate varies
throughout the region with higher values in the
channel stations.
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ORGANIC CARBON AN NITROGEN CONTENTS

As with carbonate percentages, organ ic-carbon percentages in the

sediment-trap samples show a decrease toward the seafloor (Figure

4.14). However, mooring 1, at 2000 m, shows a low organic carbon

content at 500 mab, smaller than those values at 100 mab and 50 mab

for the same mooring. Th is low value is anomalous, part icularly

since this sample has an overwhelming (90%) percentage of

carbonate. In this case, organic carbon is unexpectedly not

directly assoc iated with biogenic calc ium carbonate (Heath et al.,

1977). Organic-carbon contents decrease from ~1.25% for the trap

samples at 10 mab to .:1.25% in the surface sediments.

The regional picture for the content of organic carbon in the

su rface sediments shows the same trends as for carbonate (Figure

4.15). Box cores from the channel have higher organic carbon
~

content, ~O. 80%. Cores taken along the northern and southern

transect strongly influenced by the bottom current, have lower

organic carbon contents (0.16-0.50%).

Ratios of organic carbon to nitrogen also vary through the water

column (Table 4.8). The moorings along the northern transect have

high ratios e.7.8), but there are no consistent trends with depth.

The sediments beneath these moorings also have high rat ios

(7.9-9.6). The channel mooring has lower ratios (8.4 and 7.0 at 50

and 10 mab, respectively), and ratios in box core surface sediments

range from 6.9 to 7.6 (Table 4.9). These differences are not as

distinct as those for the content of organic carbon.



Figure 4.14
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Organic carbon percentages in sediment trap and box
core samples. Values generally decrease through the
water column to the surface sediments.
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Figure 4.15
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Organic carbon percentages for box core surface
samples. The distribution of organic carbon varies
throughout the region with higher values at the
channel stations.
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A parameter which shows a clear distinction between samples from

the channel and those from beneath the bottom current is the ratio

of the percentages of organic carbon to calcium carbonate. Cores

from the channel have a ratio of 0.041 i 0.006; cores from beneath

the bottom current, 0.022 i 0.003. These ratios reflect that less

organic carbon is found beneath the bottom current than in the

channel cores with respect to calcium carbonate. This may be due to

greater input or preservation of organic carbon in the channel, or

alternatively, increased degradation beneath the bottom current.

Another possibility would be that this ratio reflects differences 1n

the sediment grain S1ze or age. The material beneath the current 1.S

coarser and older than that in the channel.

DISCUSSION

The data obtained here are used to verify local resuspension and

transport by the bottom current, assess changes that occur to

particulate material in transit through the water column, and

estimate the distance of transport of the material collected in the

traps.

PRESENT-DAY RESUSPENSION OF SEDIMENTS

Four components of the size fraction greater than 125 ~ m, for

the traps at 10 mab, substantiate present-day local resuspension by

the bottom current.
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Benthic foraminifera (e.g., Parafissurina sp. and Uvigerina sp.)

were collected in all the traps at 10 mab in the study area. These

forams provide conclus ive evidence of act ive, present-day

resuspension. Benthic foraminifera reside on the seafloor, and

therefore must have been resuspended from the seafloor into the

traps. These forams are larger than 125 llm and therefore have high

settling velocities, (some;:l cm/sec), which would indicate that

they are locally derived. Distance of transport of the trapped

material is discussed in a later sect ion.

Another component of the sediment-trap material in dicat ive of

active erosion is !. pachyderma (sinistral). The typical Recent

subpolar assemblage in th is area is composed of !. pachyderma

(dextral), Q.. bulloides, and Q.. quinqueloba (Ruddiman and McIntyre,

1976). Indeed, these are the predominant foraminiferal species

present in the trap samples. However, the single spec ies wh ich

defines the polar water and Pleistocene glacial assemblage of this

region, !. pachyderma (sinistral) (Ruddiman and McIntyre, 1976), is

also present. This suggests that either glacial sediments are

presently being eroded or !. pachyderma (sinistral) are being

advected from polar reg ions. Surface sediments in the reg ion

contain N. pachyderma (sinistral), so extensive advection does not

need to be invoked to explain the data.

A th ird line of evidence for present-day eros ion of material

lies in the condition of the planktonic foraminifera in the traps.

Planktonic forams secrete their tests in surface waters. Forams
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falling directly from the surface are translucent to white, and some

still have spines (Be, 1977). Some forams which have resided on the

seafloor develop an iron-oxide staining to their tests and become

orange in color. Numerous forams coated with iron oxide were

observed in the surface sediments of the region (Table 4.5). Some

iron-ox ide-coated planktonic forams were observed in the sediment

traps at 10 mab (Table 4.5), giving additional evidence of present-

day resuspens ion.

Further evidence for resuspension is the increase in the

percentage of volcanic glass and mineral matter collected in the

sediment traps with depth (Table 4.4). Percentages of these

components in the). 250 ll m size fract ion increase from.( 1-7% at

500 mab to 15-67% at 10 mab. Surface sediments near the moorings

have 27-87% volcan ic glass and mineral matter in the). 250 ll m size
\\

fraction (Table 4.6). Dissolution and degradation of biogenic

material at the seafloor probably accounts for the percentage

differences seen from 500 mab to the surface sediments, while the

increase from 500 mab to 10 mab (Table 4.4) is attributed to

resuspension of the biogenic-poor surface sediments.

The size fraction of material from 63-125 llm that is caught by

the sediment traps is composed primarily of juvenile foraminifera,

diatoms, fecal pellets, volcanic glass, and clay aggregates. A few

tiny (.( 125 ll m) benthon ic forams were also foun d in th is size

fract ion. These part icles can be transported greater distances by

the bottom current than those). 125 ll m before they are deposited. In
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the traps at 10 mab, the 63-125 ~m size fraction is dominated by

volcanic glass and clay aggregates, but in the upper traps, forams

and diatoms are also important.

Some benthic forams were found in the traps at 100 mab in the

63-125 Um size fraction. In one case, three benthic forams were

found in the trap at 500 mab from Mooring 1. These occurrences

suggest that some small resuspended seafloor material is found up to

500 mah.

Resuspended mat~rial (benthic foraminifera, iron-oxide-coated

planktonic foraminifera, and glacial-assemblage planktonic

foraminifera, together with an increase in volcanic glass and

mineral matter with depth) has been found in sediment traps located

at 10 mab with some found up to 500 mab. These components of the

sediment-trap material particularly at 500 mab, may conceivably have

comp from an ups lope source and been transported downs lope to the

traps. However, the large size and fast settling velocities of the

foraminifera and volcanic and mineral grains argues for a local

source and local resuspension. An assessment of the distance of

transport of the resuspended material is contained 1n a later

section.

ADVECTIVE TRANSPORT BY THE BOTTOM CURRENT

The bottom current transports large quantities of material into

and out of the study area. A relationship of the potential

temperature to suspended particulate matter distributions, the

quantity of material transported by the current and its variability
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'.vith time, and a comparison of horizontal and vertical fluxes are

discussed in this section.

Relationship of the Bottom Water to Suspended Particulate Matter

The distribution of suspended particulate matter reflects the

influence of the bottom current. A well developed near-bottom

nepheloid layer is present throughout most of the region (Figure

3.8). An association between the bottom water and the nepheloid

layer is brought out in a compilation of the data on potential

temperature and light scattering from the hydrographic stations.

There is a sharp increase in light scattering in water colder

0'
than 3.3 C potential temperature (Figure 4.16). A diagram of

potential temperature versus salinity shows that water colder than

o
3.3 C has a large component of Norwegian Sea Deep Water (Figure

L~. 17). Above 3.30C, the salinity range increases dramatically due

to the introduction of Labrador Sea Water. oThe 3.3 C boundary is

below the reference level used by Shor (1979) in calculating volume

transport through this region. His ~eference level was intended to

be a level of no motion. oThe 3.3 C' boundary separates water of

Norwegian Sea origin from that having a strong component of Labrador

Sea Water and may indicate the boundary of the strong flow of the

bottom current. The association of the bottom water with the high

light-scattering values suggests that the current carries large

quantities of suspended sediment through the region and may locally

resuspend material from the seafloor without significant mixing

between the current and the surrounding water of the basin.
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Potential temperature versus light scattering plot. A
sharp increase in light scattering is seen below
3.30C potential temperature indicating an
assoc iat ion between high concentrations of suspended
ma tter and the strong bottom current.
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Figure 4.17
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Potential temperature versus salinity plot showing the
difference between the Shor (1979) reference level and
the 3. 3°C potential temperature boundary. The
latter minimizes the Labrador Sea Water component.



-205- ¡I

)

34.90
_i. . ., _l

35.00
i

35.10 35,20
go-l

.'
. .-.

.
-:-:

. .

. -.

.- :. -.. .

.(

.. I..
. .. ..... ;:. .-.

. . 6°. .-.-.

5°

4°

-3.3°
3°

80% ~/
t1

NS

2°

10



-20,6-

Quantity and Variability'of Advective Transport

Routh estimates of horizontal fluxes of suspended particulate

matter can be computed by multiplying current velocities by

suspended-matter concentrations. Based on geostrophic calculations

of water velocities (Shor, 1979) and suspended-particle

concentrations from filtration of water samples, the amount of

material advected through the northern transect of stations (Figure

2.2) is on the order of 50-200 kg/sec, using standard concentrations

and corrected concentrations, respectively. Shor (1979) estimated

the horizontal flux using light-scattering measurements converted to

suspended-matter concentrations and obtained 100 kg/sec. These

estimates of horizontal flux are subject to a large amount of

temporal variability and measurement uncertainty.

A reoccupation of Station 28 at approximately 2000 m was made

(Station 84), which provides one estimate of the variability in the

geostrophic volume transport of water. Transport across the

northern transect of stations using Station 28 yields a flow of

6 3
5.6 x 10 m /sec; substitution of Station 84 into the northern

section results in transports of 5.0 x 106 m3/sec (Shor, 1979).

The difference in the transport estimates between the nearest

stations upslope and downslope of Stations 28 and 84 is 2.5 x 106

6 3
and 1.9 x 10 m /sec. Based on the hydrographic stations a

temporal variability of at least 30% should be considered reasonable

in estimates of water transport.
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Current veloc it ies measured by the current meters are un iform

and steady in the axis of the bottom current (Figure 2.5). East of

the axis of the current (at approximately 2000 m) flow speed varies

by an order of magnitude, from current meter stall speeds': 2 cm/sec

to speeds in excess of 20 cm/ sec. These measurements were taken on

the boundary of the current and probably reflect spatial meandering

of the current rather than temporal variability of the bottom

cu rrent ve loc ity .

Based on the nephelometer lowerings at Stat ions 28, 40, and 84,

net part iculate standing crops (Biscaye and E ittreim, 1977) were

calculated to be 4075, 1834, and ins llg/cm2 respectively. These

values in dicate temporal variat ion in suspended matter by at least a

factor of two.

Combining the variat ions in water transport and in suspended-
t)

particle concentrations suggests that during this study, temporal

variabil ity of the horizontal flux of suspended part iculate matter

is approximately a factor of 2.5.

HORIZONTAL VERSUS VERTICAL FLUXES

Est imat ion of the apparent vert ical flux of material to the

bottom from the surface waters can be made with the sediment traps

located at 500 mab. Apparent fluxes measured by the traps are

~2 mg/cm2/yr, which together with a density estimate of

3
1.5 g/cm implies a sedimentation rate of 3 cm/1000 yr. This rate

is low in comparison to the long-term depos it ion rates for the
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Recent measured in cores in the Iceland Basin, ~30 cm/IOOO yr (Shor,

1979). The rate measured by traps compares mos t closely with the

sedimentation rate observed beneath the current axis

(c 1-2 cm/iOOO yr), which certainly is not a situation of continuous

deposition. Cores from beneath the current have coarse surface

sedlinents, apparently winnowed of fines. If the traps collected an

accura te vert ical flux of material, as sugges ted by Gardner (1980),

then, additional material must be introduced into the region other

than directly from the surface waters, or alternatively, the fluxes

were measured for an anomalous period of low surface input. This

study was conducted over a short time scale of two weeks during the

summer, a period of high biological productivity. Due to melting,

the terrestrial input from Iceland would also be greatest during the

spring and summer. Therefore, it seems likely that there is

a6ditional material input into the region from other than surface

waters. The most likely sources for this additional material are

turbidity currents or the bottom current. The horizontal flux of

material into the ~egion by the bottom current, ~ 100 kg/see or

4 2
2 x 10 mg/ cm /yr, is three orders of magni tude greater than the

sedimentation rate indicated for the Recent in cores, 30 cm/lOOO yr

or 20 mg/cm2/yr, indicating that the bottom current is a likely

source of material transported into and deposited in the region, as

well as further do~.,nstream south of the Iceland Rise. The large

quantity of material carried by the current is sufficient to make up

the deficit indicated by the sediment trap as well being a likely

source of material for the Gardar sediment drift downstream.
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ESTlHATES OF THE 'QUANTITY OF RESUSPENDED M.A-TERIAL

Estimates can be made of the resuspended fraction in the trap

samples based on the quantities and percentages of mass, calcium

carbonate, and organic carbon. Gardner (1977a) estimated the

resuspended component by assuming that the samples at 500 mab are

composed entirely of primary material with no resuspended fraction.

For the traps belmv 500 mab, the amount of resuspended material is

the quantity of material greater than that collected at 500 mab,

Le.,
_ 1110 7, 11500.

% Resiis,pendeq. i- . - . ' 11" "."
lQ,

where M = quantity of material collected by the traps and the

.1 subscripts represent heights above the seafloor. Using his method

and assumptions, an average of 59% t 6% of the material caught at

100 mab has a seafloor source (Table 4.10). At 10 mab 98-99% of the

material is estimated to be resuspended (Table 4.10).

By assuming that the material in the traps at 100, 50, and 10

mab is a simple mixture of primary material of the composition

caught at 500 mab and the surface sediments as obtained with box

cores, calculat ions of the percentage of the resuspended component

can be made, e.g.,

F x %traP500 + (I-F) x %core = %trap
10 or ioa

where F = fraction of primary material and l-F = fraction of

resuspended material. Calculations are made only for Moorings land

2, since the 500 mab sample at Mooring 3 returned open.
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These calculations lead to the estimate of 59% for the

resuspended fraction at 100 mab. For 10 mab the value of the

resuspended fraction 1S 77% ~ 17%. Comparing these percentages with

those from the mass-flux calculations shows that the estimates of

the percentage of resuspended material at 10 mab based on % CaC03

are low with respect to the estimates based on mass flux, that is,

there is more carbonate at 10 msb than predicted from mass-flux

calculations

Similar calculations using organic carbon show that the

percentage of resuspended material at 100 mab for organic carbon is

74% ~ 3%. At 10 mab, the resuspended fraction is estimated to be

88% :t 1%. A comparison \YÍth the mass-flux calculations indicates

that there is more resuspended material at 100 mab and less at 10

mab.

An explanation for the differences in the estimates of

resuspended material us 1ng mass, c~lc ium carbonate, and organic

carbon may be due to the simplicity of the assumptions. Dissolu-

tion, degradation, and preferential resuspension have been ignored

in the assumptions of the mixing -scheme; however, these processes

must be occurr1ng or there would be no differences noted between the

primary material and the surface sediments. Also, the material at

500 mao may not be all primary, but may contain some resuspended

material as well.

From the calculations made, there is no significant difference

in the calculated percentage of resuspended material at 100 mab
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based on CaC03 and mass (Table ll. 1) . However, there is more

carbonate based on CaC03 calculations than is predicted by mass

calculations at 10 mab. The primary proces s that WOlJ ld affec t the

calcium carbonate content is dissolution. However, due to the

shal low depths of the study region, the water column is saturated

with respect to calcite (Takahashi, 1975; ,Broecker and Takahashi,

1978), so dissolution of forBms and coccoliths is unlikely.

Hm,rever, in the sediments \,here organic carbon decomposes to

liberate CO2, local dissolution may occur. Pteropods are composed

of aragonite. Individual specimens, but mostly fragments Here found

in the traps at 10 mab, and not in the sediments. Perhaps the

greater quantity of carbonate at 10 mab is due to aragonite

disse,lution at the seafloor. An alternative and perhaps more

plausible explanation is that carbonate may be preferentially

resuspended into the sediment traps at 10 mab.

Differences in the percentage of resuspended material at 100 mab

based on organic-carbon and mass-flux calculations indicate that

there is less organic carbon in the trap than would be expec ted from

the mass calculations. This phenomenon may be due to degradation

and consumption of organic matter in the water column or trap, a

factor ignored in the original assumptions. There is more organic

carbon in the trap at 10 mab than is predicted by mass-flux

calculations. This may be due to increased degradation and

consumption between 10 mab and the seafloor, or preferential

resuspension. The general trend of more carbonate and organic
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carbon at 10 mab than predicted by mass-flux calculat ions suggests

that carbonate and organ ic carbon being less dense components of the

sediments, may be preferentially resuspended.

DISSOLUTION AN DEGRAATION AT THE SEAFLOOR

Profiles of the percentage of calcium carbonate and organic

carbon from sediment-trap samples and box core surface sediments

generally show a decrease in these components with increasing water

depth (Figures 4.12, 4.14). From these figures, it is seen that the

percentages of carbonate and organic carbon decrease downward

through the water column, with the sharpest decrease from 10 mab to

the seafloor. Th is decrease is on the order of 50% for carbonate

and 70% for organic carbon. One possible explanation for this

decrease in the lowermost 10 m is addit ional detrital material from

the seafloor enters the system dilut ing the carbonate. A second

hypothes is, and perhaps more plausible, is that present-day

conditions are reflected in the water column, but the surface

sediments are subject to dissolut ion and degradat ion for much longer

periods of time than the material in trans it through the water

column, Le., material in the water column does dissolve and

decompose, but most of the loss occurs at the sediment~Nater

interface. This latter concept is supported by the visual

investigation of the trap and surface sediment samples and is 1n

agreement with other investigators (Adelseck and Berger, 1975;

Berner, 1977; Takahashi and Broecker, 1977; Honjo, 1977). For
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example, aragonitic tests are absent from the surface sediments and

organic material is not visually identifiable.

REGIONAL PATTERNS OF SURFACE SEDIMENTS

Distinct regional differences in the surface sediments are seen

in the c lay mineralogy and in the content of carbona te and organic

carbon. Semi-quantitative X-ray diffraction shows that there are

relatively higher proportions of illite in the clays present beneath

the bottom current than in the channel (Table 4.7). Illite is

formed from weathering of ancient continental rocks (Biscaye,

1965). 1~e higher percentage of illite in the sediments beneath the

bottom current may reflect extensive advection by the bottom current

from weathered continental rocks, the nearest source being Rockall

PlateAu, ~500 km. Although Rockall Plateau is southeast of the

study area, it is upstream along the current path.

Carbonate and organic carbon are both more abundant in the cores

1n the channel than in the cores beneath the bottom current (Figures

4.13 and 4.15). These components are also more abundant in the trap

sample at 10 mab in the channel(Figures 4.12 and 4.14) than 1n the

other traps. This may reflect a turbidity current component 1n the

channel cores or the influence of the bottom current eroding and/or

not depositing Recent sediments and exposing older glacial

deposits. Glacial sediments have lower carbonate percentages, and

probably less organic carbon (due to the longer period of time

available for decomposition and consumption of the organic matter
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present). In addit ion, the cores taken beneath the current have

glacial-assemblage forams in the surface samples, suggesting that

glacial sediments are exposed.

DISTANCE OF TRANSPORT

Specific components of the sediment trap samples are useful 1n

estimating the distance of transport of the resuspended trapped

material. Iron-oxide coated planktonic foraminifera, benthic

foraminifera, the glacial assemblage foram ~ pachyderma

(sinistral), and some of the large (~250 ~m) volcanic fragments and

mineral grains found in the traps have a seafÌoor source. Eighteen

part icles from the trap at 10 mab at Mooring 2 were selected for a

settling experiment to determine the particle fall velocities.

Eight planktonic forams (four with iron-oxide coatings), three
,

benthic forams, one pteropod and six volcanic shards and mineral

grains, most specimens having a diameter of 300 ~m, were settled in

filtered fresh water at 200C in a one liter cylinder with a 6.2 cm

diameter. A 20 cm vert ical distance was used for determining fall

velocities. Particles were submerged in water 1n a small flask,

wh ich was subsequently evacuated to remove any air contained in the

specimens. The particles were transferred to the settling cylinder

by means of a large pipette. Particles were settled three times to

determine repeatability of the fall velocities as a means of

determin ing whether air was successfully removed from the samples.

A correct ion to take into account the difference in viscos ity
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o 0
between 20 C fresh water and 5 C seawater decreases the

veloe ìt ìes to 63% of the measured values. The results of the

experìment are gìven ìn Table 4.11.

Planktonìc forams fell most slowly, averaging 0.65 em/see.

Iron-oxìde coated forams fell at 0.94 cmlsee and volcan ic glass and

mineral graìns fall at 1.21 cm/see. The orange ìron-oxide coated

forams fall from 1.06-1.76 tìmes faster than the white forams. The

maximum fall veloe ity was 1.75 cml sec for a mìneral grain with 185

and 300 ~m axes; the mìnimum was 0.52 cm/sec for a 1.5 mm long

pteropod. From these results, ìt is found that resuspended materìal

ìs likely to have a hìgher fall velocity than materìal settling from

the surface waters. Another result of thìs study is that larger

particles do not necessarily fall more rapìdly than small ones. In

particular, the smaller (250-~m) ~ pachyderma (dextral) fell 1.14

tìmes more rapìdly than a larger (300 v-m) foram of the same specìes

and the largest specimen, the pteropod, had the slowest fall

velocìty. This may be due to both greater drag and lower densìty of

the larger spec imens.

A comparison of the experimentally determìned fall veloc it ies to

Stokes law show deviations for these large particles. Stokes law

applies only up to Reynolds numbers of 1. These particles settled

have Reynolds numbers ranging from 3-6. Stokes law,

2
W = 2Apgr

9~

would predict a fall veloc ity of 7.3 cml sec for a 300 ~m part icle

with a density difference of 1.5. With a Ap of 0.5, the fall
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Table 4.11

PARTICLE FAL VELOCITIES FROM MOORING 2, TRA 10 mab

Settling
Diameter ( m) Ve10c ity*

Part ic1e Max. Min. cm/sec

Pteropod 1500 750 0.52:i.03

N. pacbyderma (dextral) - wb ite 250 175 0.69:i.04

N. pac by de rma (dextral) - wb it e 300 200 0.60:!0.01

G. bullo ides - wb ite 300 200 o . 68 :i . 08

N. pac by de rma (sinistral) - wh it e 300 225 0.69 :!.04

N. pachyderma ( dextral) - orange** 300 188 o. 69:!. 06

G. bulloides - orange** 300 200 0.72:!0.03
(ligbt iron-oxide coating)

G. bu 110 ides - orange** 300 238 1.19:!0.07

N. pachyderma (sinistral) - orange** 300 225 1. 16:!0. 06

Benth ic Foram ~ 688 175 0.73:!0.04

Bentb ic Foram 562 350 1. 52 :to. 04

Bentb ic Foram 300 212 o. 67:!0 . 08

Mineral grain 300 188 1. 75:!0. 05

Mineral gra in 300 288 1. 34:!0. 03

Mineral grain 500 362 1. 68:!0. 03

Volcanic sbard 300 188 0.97:t0.01

Ves icu1ar vo1can ic sba rd 300 162 1. 17:0.01

Vesicular vo1can ic shard 300 88 0.84:t0.04

* Fall velocities were measured in 200C fresb water. A
viscosity correction was made to yield the fall velocity
in 50C seawater of 35%, given bere.

**iron-oxide coated.
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velocity would be 2.4 em/sec. These values are higher than those

measured for particles with a 300 ~m diameter. Density differences

of ~0.2, 0.3, 0.3 and 0.4 would be necessary for the white

planktonic forams, iron-oxide coated forams, and volcanic shards and

mineral grains respect ively for Stokes law to apply. The deviat ions

from Stokes law may be due to the use of a maximum diameter in the

equat ion and to the non-spheroidal shapes of the part icles. Us ing

the smaller diameters, calculated density differences of ~0.5, 0.7,

0.8 and 1.5 for the same particles as above are found to be more

reasonable.

By knowing the fall velocities of some of the material in the

trap, the horizontal distance of transport can be est imated.

Assuming that the part icles are mixed vert ically to the top of the

isothermal mixed layer, how far could they travel horizontally in

the bottom current and be caught in the traps at 10 mab? Mixed

layers along the northern transect are 30-50 m thick. Fall

velocities range from 0.60-1.75 cm/sec. Assuming particles are

mixed no higher than the top of the mixed layer, part icles woul d

fall 40 m (from the top of the mixed layer to the traps at 10 mab)3 3
in 2.3 x 10 - 6.7 x 10 sec. Along the 1800 m isobath (the

locat ion of the mooring), in an average current of 20 cm/ sec, the

distance of transport would be 0.5-1.3 km.

Th is study was con ducted along a ridge flank and in close

proximity to Iceland and the Iceland-Faroe Ridge. Is it possible

that the material caught in the traps is derived from these
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topographic highs? T,.¡o hundred meters up the ridge flank is 13.2 km

Particles would fall a 200 m vertical distance in 1.1 x 104away.

4
to 3.3 x 10 sec. The horizontal current required to transport

the partic les to the trap before fal ling to the seafloor 1S

calculated to be 40-116 em/sec. These velocities are in excess of

those found even for the bottom current. Since the direction of

transport from upslope is virtually orthogonal to the bottom

current, this area as an immediate source is unlikely.

The crest of the East Katla Ridge is 32.4 km upslope. The

vertical relief change is 600 m. By similar calculations to those

above, the horizontal current velocities to transport the particles

from the ridge crest to the traps in one resuspension-deposition

cycle, would be 32-94 cm/sec, which as a cross-current is also

unlikely.

Th~ shelf of Iceland is 110 km north of the sediment trap

mooring. Calculations reveal that a horizontal velocity averaging

40-120 cm/sec would be needed to resuspend material on the shelf and

transport it to the traps in one resuspension-deposition cycle.

TIiese high currents are also unlikely.

The Iceland-Faroe Ridge is 250 km upstream from the traps.

Velocities of 100-292 cm/sec would be required to transport the

resuspended material from the ridge to the traps. Although high

velocities of the overflow water may occur at other times, the

measurements taken during this study do not even approach that

range. The largest size particles that could be transported from
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the Iceland-Faroe Ridge assuming a constant horizontal velocity of

20 cm/sec (comparable to that measured during this study) are ones

with maximum diameters of 100 ~m for mineral grains and 140 ~m for

planktonic forBms.

Particles smaller than 100 ~m may be transported from the

topographic highs as well as being resuspended locally. The high

concentrations of SPM and high light-scattering values in mid-water

suggest that for the small particles (0( 20 ~m) are carried

quasi-conservatively by the water masses.

The above calculations indicate that virtually all the trapped

coan;e material;: 125 ~m which comprises 21-34% of the trap samples

is locally (few kilometers) derived resuspended sediment.

CONCLUSIONS

1) Bottom currents cause local resuspension of material in the

region south of Iceland.

2) Resuspension is shown by the presence of benthic, glacial

asserrmlage, and iron-oxide coated forams caught at 10 mab and in

some eases 100 and 500 mab in the sediment traps.

3) The maximum primary flux of materia 1 from the surface was

measured to be far less than the Recent sedimentation rate,

indicating substantial transport of material into the region by the

bottom current.

4) The observed axis of the deep current system off Iceland

(1400-1800 m) overlies coarse sediments, suggesting that the current
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has been causing preferential erosion, and/or winnowing, of fine

material and removal from the region.

5) The large flux of suspended material in the bottom current

(approximately 100 kg/sec) may be responsible for the formation of

the Gardar sediment drift to the southwest of the region.

6) Regional differences of clay mineralogy in the surface

sediments suggest that the bottom current transports material from

continental source rocks which are at least 500 km away, up current.

7) Regional differences in contents of organic carbon and

carbonate in the box cores reflec t preferent ial preservation in the

cores from the channel versus those beneath the bot tom current, or

alternatively, preferential decomposition, dissolution, and/or

er\os ion in the cores beneath the bottom current.'~
8) Presence of aragonitic tests and fragments in the traps at 10

mab but not in the surface sediments, is evidence of dissolution or

mechanical destruction of this material at the seafloor and not in

the \Vater column.

9) Calculations for determining the distance of transport of the

coarse, trapped material indicate that the greater than 125 ~m size

hac t ion, which comprises 21-34% of the trap samples, is loca lly

(few kilometers) derived resuspended sediment.
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CHAPTER V

SUMMARY AND CONCLUSIONS

Strong evidence for the transport and redistribution of large

volumes of deep-sea sediment over geologic time is the presence of

massive sediment drifts in the northern North Atlantic. As

demonstrated in this thesis, resuspension and redistribution of

d2ep-sea sediments also occurs in the present day on time scales of

days to weeks. Two approaches were used to investigate present'-day

resuspens ion: i) c lear-water and nepheloid-Iayer suspended

particulate matter was examined to determine the differences between

the part ic les, and to determine the poss ible influence of

resuspended material, and 2) the composition of particles obtained

\.¡th sediment traps located from 500 mab to 10 mab ",ias compared with

the surface sediments below.

The conclusions of the SPM clear-water and nepheloid-layer

studies are:

i) A correlation between light scattering and concentration of

suspended particulate matter in the Iceland Rise area using the

L--DGO nephelometer, demonstrates that there are differences between

particles in clear water and the nepheloid layer. Clear-water

samples show larger variations in concentration for a given change

in light scattering when compared with nepheloid-Iayer samples.

When the Iceland Rise regression equations for light scattering

versus concentration of suspended particulate niatter are compared to
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those of Biscaye and Ettreim (1974; 1977) on the Blake-Bahama Outer

Ridge, Hattaras Abyssal Plain and Lower Continental Rise, distinct

differences are observed. These studies indicate that correlations

of light scattering to concentration of suspended matter vary both

regionally and between clear water and the nepheloid layer.

Hoi-'ever, in predicting concentrations from light scattering, the

correlations de~ermined here are indistinguishable from those of

Biscaye and Eittrei.m. The 95% confidence limits for pi:ediction of a

future observation in the Iceland Rise area encompasses the Biscaye

and Eittreim curves for log E/En values iri excess of 0 5.

2) ~article size distributions of suspended particulate matter

show differences between clear-water and nepheloid-layer samples.

Cle&r-wnter samples have roughly equal volumes of material in

logarithmicHllY increasing size grades between i and 20 Pm.

Nepheloid--Iayer samples have lower variance distributions. These

differenc.es are also reflected in the normalized differential volume

curves which show twa-slope distributions being characteristic of

nepheloid layer samples, a feature previously observed only in

surface waters. The two-slope distribution is interpreted in this

study as being due to resuspension of material from the seafloor.

3) Differences 10 apparent density between suspended matter from

clear-water and nepheloid-layeT samples are noted 1n the western

North Atlantic, but not 10 the Iceland Rise area. Compositional

differences bet.Jeen clear-"rater and nepheloid--layer particles in the

western North Atlantic are more extreme than in the Iceland Rise
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area, and are regarded as a probable explanat ion of the differences

in apparent density. Apparent densities of nepheloid-layer samples

in the western North Atlant ic study are greater than for clear-water

samples. The greater apparent densities correspond with large

increases in clays and mineral matter and a decrease in organic

matter between clear-water and nepheloid-layer samples.

4) Differences in the principal components of the suspended

part iculate matter between clear-water and nepheloid-layer samples

are primarily an increase in clays and mineral matter and a decrease

in coccoliths. For the Iceland Rise study, this is interpreted as

being due to resuspens ion of material from the seafloor. In the

western North Atlantic, the decrease in coccoliths is due to

dissolut ion of carbonate at the seafloor and subsequent resuspens ion

of ca rbona te-poor sediment s .
~

An examinat ion and comparison of the sediment trap and surface

sedLment samples support resuspens ion and redistribut ion of material

continuing in the present day. Conclusions are:

1) Coarse sediments underl ie the bottom current axis from 1400

to 1800 m along the northern transect of stat ions with more

fine-grained sediment on either s ide of the axis suggest ing

winnowing and preferential erosion in the current axis.

2) Surface sediments beneath the current axis contain an

assemblage of plankton ic foraminifera representat ive of glacial

subpolar, or present-day polar conditions. The presence of these

forams is indicative of erosion or extensive advective transport.
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3) Regional variat ions in clay mineralogy, organic carbon and

carbonate contents indicate preferential preservation in cores from

the channel or preferential decompostion, dissolution and/or erosion

of the surface sediments beneath the bottom current.

4) A large horizontal flux of suspended material (~100 kg/ sec)

is transported across the northern transect of stat ions. The

vert ical flux of sediment calculated from sediment traps located at

500 mab was an order of magn itude less than Recent sediment

accumulat ion rates. Th is suggests that a large fract ion of the

sediments in the region are brought into the area via the bottom

current or turbidity currents from Iceland. The large horizontal

flux of sediment may also contribute to the format ion of Gardar

sediment drift to the southwest.

5) An increase of greater than two orders of magn itude in

material collected between 500 mab and 10 mab is indicat ive of

present day resuspens ion and advect ion by the bottom current.

6) Resuspension of sediments is substant iated by the collect ion

of particles whose source is clearly the seafloor in sediment traps

located at 10, 100 and 500 mab. These resuspended components

include benthic foraminifera, iron-oxide coated planktonic

foraminifera, and the glacial, subpolar assemblage planktonic

foraminifera (N. pachyderma (sinistral)).
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7) The rapid settling velocity of the coarse (~l25 pm),

resuspended components indicate that they are locally derived (few

kilometers) rather than horizontally advected from topographic

highs. However, the smaller size fractions (':125 llm) may be

transported from topographic highs as "ell as being locally

resuspended.
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