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Abstract

Despite numerous and regular improvements in underlying models, surface drift prediction in the ocean remains a challenging
task because of our yet limited understanding of all processes involved. Hence, deterministic approaches to the problem are often
limited by empirical assumptions on underlying physics. Multi-model hyper-ensemble forecasts, which exploit the power of an
optimal local combination of available information including ocean, atmospheric and wave models, may show superior forecasting
skills when compared to individual models because they allow for local correction and/or bias removal. In this work, we explore in
greater detail the potential and limitations of the hyper-ensemble method in the Adriatic Sea, using a comprehensive surface drifter
database. The performance of the hyper-ensembles and the individual models are discussed by analyzing associated uncertainties
and probability distribution maps. Results suggest that the stochastic method may reduce position errors significantly for 12 to 72 h
forecasts and hence compete with pure deterministic approaches.
© 2007 NATO Undersea Research Centre (NURC). Published by Elsevier B.V. All rights reserved.
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1. Introduction

A plethora of ocean, wave and atmospheric models
are currently available on a routine basis at the global,
regional and local scale in many coastal areas. Funda-
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mental questions arise concerning which model to select
for a given task, what criterion to apply for this selection
and what is the resulting confidence level. All such
models have varying skills in space, in time, but also in
frequency. A master model may introduce direct errors
on a slave model in a one-way coupled implementation
or even feedback errors on itself in two-way coupled
implementations, generating a complex chain of errors
known as the “uncertainty cascade”.

Much effort is spent on individual model improve-
ments, limited at a point beyond which processes have to
be simulated in a non-deterministic way. An original
statistical approach was recently proposed to circumvent
this limitation, aimed at combining optimally different
models into a super-ensemble for weather and climate
NURC). Published by Elsevier B.V. All rights reserved.
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forecast (Krishnamurti et al., 2000a,b; Kumar et al.,
2003; Shin and Krishnamurti, 2003a,b) using least
squares optimization, dynamic linear models and
probabilistic approaches.

These techniques have been also successfully applied
in the ocean for sound velocity profile estimations
(Rixen and Ferreira-Coelho, 2005) and for surface drift
problems (Rixen and Ferreira-Coelho, in press).

Surface drift prediction can be very challenging in
certain areas because of the number, and the complex
interplay, of processes involved (e.g. Carniel et al.,
2002; Rixen and Ferreira-Coelho, in press), including
Ekman transport, tides, Stokes drift, ocean currents,
inertial oscillation, leeway effects, etc. As a rule of
thumb, Ekman drift will set up a surface current of
roughly ∼ 3% of the wind speed, ∼ 15° to the right of
the downwind direction in the Northern hemisphere. But
these values may vary according to the sea state and the
stratification (e.g.Gill, 1982). Other processes may have
similar contributions to the flow, such as the effect of
waves and ocean. Deterministic methods do not yet exist
to combine these effects, and it is hence natural to try
non-deterministic or statistical approaches to solve
surface drift problems.

In the present study, the hyper-ensemble approach
developed in Rixen and Ferreira-Coelho (in press) is
applied: (1) to forecast at short time scale surface drifts
from combined atmospheric ocean, wave models and
local drifter observations in the Adriatic during a “Bora”
event that occurred in February 2003, a wind respon-
sible for deep water formation in the area in winter (e.g.
Signell et al., 2005); and (2) to derive uncertainty/
probability areas for drifter positions. Data, models and
the hyper-ensemble methodology are detailed in Section
2. Results are presented in Section 3 and conclusions are
drawn in Section 4.

2. Data and models

2.1. Data — drifters

Lagrangian drifters provide a broad basin-scale
coverage of mesoscale surface circulation and surface
temperatures to study the movement of water masses
(e.g. Kovacevic et al., 1999; Poulain et al., 2003).
Typical drifters that track the top one-meter of the ocean
surface show excellent coupling to the surface layer and
exhibit little wave rectification. During field experi-
ments ADRIA02 and ADRIA03 with the R/V ALLI-
ANCE between fall 2002 and spring 2003, some 144
drifters were launched in the Adriatic, building the
comprehensive database used in this study (Fig. 1).
2.2. The atmospheric, ocean and wave models

2.2.1. ROMS circulation model
To simulate near-surface ocean circulation, the

Regional Ocean Modeling System (ROMS) version 2.1
was used. This model was selected because it has several
features of potential benefit for the study of near-surface
currents. The s-coordinate allows more flexibility than
the sigma coordinate in specifying vertical grid spacing,
allowing thin layers near the surface to have a more
uniform thickness. In addition, version 2.1 contains the
Generic Length Scale (GLS) mixing scheme of Umlauf
and Burchard (2003), which can be configured with
parameters that allow the model to represent the correct
dissipation profile under strong wind driving with
breaking surface waves. The model was configured in
curvilinear coordinates with variable grid resolution
ranging from 3 to 4 km in the northern Adriatic to 7–
9 km in the southern Adriatic. The model was initialized
in mid-September 2002 using in situ observations and
driven with tides and no-gradient temperature and
salinity open boundary conditions at the narrow entrance
to the Adriatic Sea. Wind, air temperature, air pressure,
cloud fraction, short-wave radiation and relative humid-
ity were used from LAMI (see below) with sea surface
temperature from ROMS to compute bulk momentum
and heat fluxes using the COARE 2.6 algorithms. The
model was run from September 17, 2002 to June 13,
2003, and output saved every 3 h. For further details on
the model implementation, see Signell et al. (2005) and
references therein.

2.2.2. LAMI model
LAMI (Limited Area Model Italy) is the Italian

operational implementation of LOKAL MODELL, the
limited area model originally developed by the German
Meteorological Service (DeutscherWetterDienst, DWD)
for meso/micro scale weather prediction and simulation
developed by several European meteorological services
belonging to COSMO (COnsortium for Small scale
MOdelling). LAMI is managed by SMR-ARPA-EMR,
UGM (Ufficio Generale per la Meteorologia, Italian
Airforce) and Regione Piemonte. It has been operational
since the beginning of 2001 at the CINECA super-
computing Centre in Bologna. It has a 7 km grid spacing
and 35 vertical terrain-following levels. It is a fully
compressible, non-hydrostatic 3D model in which initial
and boundary conditions are obtained from the DWD
global circulation model GME (Majewsky, 1998;
Majewsky et al., 2002). LAMI gives output every 3 h
and produces a 48-hour forecast daily. We therefore used
forecast winds at 03, 06, 09, … 24 h (00+03, 00+06,

http://dx.doi.org/doi:10.1016/j.jmarsys.2004.12.005
http://dx.doi.org/doi:10.1016/j.jmarsys.2004.12.005


Fig. 1. Selected trajectories of drifters in the Adriatic Sea for the period January–February 2003. The dashed line shows the 48-hour track after 10-
Feb-2003. The dotted line shows the remaining track after that time. Circles and crosses indicate start and end position.
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00+09, … 00+24). For further details, see Doms
and Shattler (1999), Cacciamani et al. (2002) or the
COSMO web site (http://www.cosmo-model.org).

2.2.3. COAMPS model
The Coupled Ocean/Atmosphere Mesoscale Predic-

tion System (COAMPS) is a 3D finite difference, non-
hydrostatic, sigma-coordinate model developed by the
Naval Research Laboratory (Hodur, 1997). The version
adopted was run in a re-analysis mode using three
nested grids with the finest 4 km grid mesh centred
over the Adriatic Sea. The two outer meshes are a
12 km grid covering the majority of the Mediterranean
and a 36 km resolution European grid. The global
NOGAPS model provides lateral boundary conditions
for the 36 km grid at 6-hour intervals. In the reanalysis
configuration, analyses are performed twice daily with
forecasts for the following 15 h. Forecast winds at 03,
06, 09, … 24 h (00+03, 00+06, 00+09, 00+12, 12+
03, 12+06, 12+09, 12+12) were used. Details are
documented in Hodur et al. (2001) for an evaluation of
the COAMPS system and in Pullen et al. (2003) for the
Adriatic re-analysis.
2.2.4. SWAN model
In order to simulate the wave characteristics, a third-

generation wave model, SWAN (Simulating WAves
Nearshore), has been implemented for the Adriatic Sea
with COAMPS wind forcing. The SWAN model was
developed for shallow waters at Delft University
Technology (TU Delft), with support from the Office
of Naval Research (USA) and the Ministry of Transport,
Public Works and Water Management (The Nether-
lands). The basic model used in this paper was SWAN
version 4.41.

Waves in SWAN are described with the two-di-
mensional wave action density spectrum. The equations
take into account the local rate of change in time, the
propagation in geographical space, the shifting of the
relative frequency due to variations in depths and
currents, and the depth-induced and current-induced
refraction. The sink-source terms take into account the
generation by wind, dissipation by white-capping,
dissipation by depth-induced wave breaking, dissipation
by bottom friction and redistribution of wave energy
over the spectrum by non-linear wave–wave interac-
tions. A full description of the SWAN model is given by

http://www.cosmo-model.org
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Holthuijsen et al. (1989), Booij et al. (1999), Ris et al.
(1999), and http://www.swan.ct.tudelft.nl.

Thirty-six uniformly distributed directions were used
with 26 frequencies geometrically distributed: fn+1=
1.1⁎fn, and f1=0.05 Hz. The model time step was
10 min and the spatial grid had a uniform resolution of
2 km over the Adriatic. The bathymetry for the 2 km grid
was interpolated from the finite element tidal model of
Cushman-Roisin and Naimie (2002). The wind compo-
nents from the wind models were linearly interpolated
onto the 2 km wave model grid prior to running the
simulations. Incoming waves at the open southeastern
boundary of the Adriatic were assumed to be zero. The
model was run in non-stationary mode with wave
breaking enabled and Madsen bottom friction with de-
fault parameters.

Further details on these models and their respective
implementations may be found in Signell et al. (2005).

Fig. 2 shows the model velocities before and during a
BORA event for the ocean surface currents, Stokes drift
from waves (e.g. Rixen et al., in press), wind velocities
at 10 m and the drifter velocities optimally interpolated
in space and time with 30 km spatial and 3 days
temporal correlation lengths. LAMI shows weak winds
on 8th February 2003 followed by strong BORA
conditions on the 14th. ROMS surface currents and
SWAN Stokes drift respond accordingly with strong
NE–SW currents and Stokes drift components in the
Northern Adriatic, and a strong signature of the Western
Adriatic Current. These model outputs agree qualita-
tively with the surface drift as derived directly from the
drifter data showing strong velocities in the Northern
Adriatic and along the Western Adriatic coast from day
12 February onward. They have been interpolated on a
common 5 km by 5 km grid.

Surface drift 48 h forecast errors from traditional
approaches are presented in Fig. 3 for day 10 February
(corresponding to day 12 February) and include simple
ocean advection (top left), the rule of thumb imposing
3% of the wind magnitude rotated by 15° to the right
(top right), the combination of both (bottom left) and the
subsequent addition of the Stokes drift (bottom right).
ROMS ocean currents show larger discrepancies with
drifter data along the Croatian coast and in the southern
part of the basin probably due to a lack of drifter data
used in the optimal interpolation. However, they seem to
agree at least qualitatively with the gridded drifter data
in the northern part along the Italian coast and during the
strong Bora event in the northern Adriatic at day 14
February. This suggests that ROMS may be of some use
to the hyper-ensemble, once corrected for its bias. The
rule of thumb on the contrary shows large discrepancies
along the Italian coast. The combination of the rule of
thumb and ocean currents, and the subsequent addition
of the Stokes drift contribution increase the errors
further. Results for other days and lead times show
qualitatively similar results.

2.3. The hyper-ensemble

Super-ensemble methods aim at combining models
of the same kind (e.g.Krishnamurti et al., 2000a,b). This
technique has been recently extended by Rixen and
Ferreira-Coelho (in press) to the concept of hyper-
ensemble, where models of different kinds are com-
bined. Indeed, surface drift is a complex combination of
a wide variety of processes.

Considering N models and M data, the simplest,
linear combination of ocean and atmospheric models
that matches the drifter tracks can be solved by
minimizing Eq. (1) in a least-square sense if we allow
for an independent term (otherwise, the last column and
last weight are simply ignored).

m1;1 :: m1;N 1
:: :: :: ::
:: :: :: ::
:: :: :: ::
:: :: :: ::

mM ;1 :: mM ;N 1

2
6666664

3
7777775
⁎

w1

::
wN

wNþ1

2
664

3
775 ¼

d1
::
::
::
::
dM

2
6666664

3
7777775

ð1Þ

Here, d represents the drifter velocities, v represents
the model velocities at the drifter data points and w the
weights to be optimized. The overall strategy is to find
an optimal weighting of the ocean, atmospheric and
wave models based on past or a priori information
during a learning cycle at all grid points, and use them
locally to compute new predictions in a forecast cycle,
as a weighted combination of model forecasts for given
lead times.

Negative regression weights w can, and frequently
do, occur in this type of formulation. This effect is
typically caused by collinearities in the model forecasts.
One may argue that the inclusion of a possible
independent term/global bias in Eq. (1) does not have
a physical meaning. However, we should bear in mind
that the bias is a ‘local property’ of the hyper-ensemble.
For specific purposes, the independent term is some-
times ignored to get a better understanding of the
underlying physics.

Bearing in mind that the skills (‘weights’) are local
properties of the super-ensemble, and considering that
drifter data are Lagrangian and do not offer time series
of velocity measurements at single points, one needs to

http://www.swan.ct.tudelft.nl
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Fig. 2. ROMS ocean currents (top-left, surface), SWAN derived Stokes drift (top-right, surface), LAMI winds at 10 m (bottom-left) model nowcasts
and gridded drifter velocities (bottom-right) (m/s) at days 8 (A) and 14 (B) February 2003, 00:00. The colorbar refers to the magnitude of the
velocities contoured in the plots.
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Fig. 3. Raw model surface drift 48 h forecast errors (m/s, vectors and magnitude in the color scale) at day 10 February 2003 corresponding to day 12
February 2003 for simple ocean advection (top left), the rule of thumb (top right), the combination of both (bottom left) and the subsequent addition of
the Stokes drift (bottom right).
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perform some kind of 4-D interpolation/objective
analysis of the raw data, so that the linear regression
described above can be performed at any single point on
the common grid. On the contrary, in the field of
meteorology, the linear regression would probably first
be computed using the raw data time series at the
meteorological stations to produce the local station
forecast subsequently interpolated in space.

Of course, any number of available models might be
considered in Eq. (1). When only one model is used (e.g.
the ocean ROMS model only), the method reduces to a
simple bias correction.

In the present study, this optimum is obtained using
linear regression (with bias) in a least square sense with
various learning periods, from 5 to 10, 25, 50 days. Here
we assume local linear combinations of non-linear
processes and neglect local non-linear interactions
between wind, waves and currents, which would be
beyond the scope of the present work and is a research
topic on its own. For non-linear methods (neural net-
works, genetic algorithms, etc.) and further details on the
hyper-ensemble strategy, we refer to Rixen and Ferreira-
Coelho (in press).
3. Results

Fig. 4 shows instantaneous 48 h forecast errors from
day 10 February 2003, using unbiased ocean currents
(top-left), unbiased rule of thumb (top-right), an
unbiased combination of both (bottom-left), and the
inclusion of the Stokes drift (bottom-right). In the case
of the unbiased rule of thumb, the hyper-ensemble thus
corrects for the angle and amplitude of the rule, besides
the independent term. Errors remain similar among the
different methods, larger along the coast, but generally
speaking lower than the traditional forecast methods
shown in Fig. 3. Results for other days, lead times and
combinations of models show qualitatively similar
results.

Local RMS forecast errors provide a simple measure
of the uncertainty associated with the traditional
methods (Fig. 5) and hyper-ensemble methods (Fig. 6)
corresponding to Figs. 3 and 4 respectively. These errors
are computed over a 48 h period around day 12 February
2003. Although the ocean currents had lower instanta-
neous errors (Fig. 3, top-right), the uncertainty of the
rule of thumb is lower than any other standard method.

http://dx.doi.org/doi:10.1016/j.jmarsys.2004.12.005
http://dx.doi.org/doi:10.1016/j.jmarsys.2004.12.005


Fig. 5. Local RMS forecast error (m/s, vectors and magnitude in the color scale) corresponding to traditional methods depicted in Fig. 3.

Fig. 4. Hyper-ensemble surface drift 48 h forecast error (m/s, vectors andmagnitude in the color scale) at day 10 February 2003 corresponding to day 12
February 2003 with a 50 days learning period, using locally unbiased ocean advection (top left), bias corrected rule of thumb (top-right), the unbiased
combination of both ocean and atmospheric models (bottom left) and the subsequent addition of the Stokes drift in the hyper-ensemble (bottom right).
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Fig. 6. Local RMS forecast error (m/s, vectors and magnitude in the color scale) corresponding to hyper-ensemble methods depicted in Fig. 4.
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The corresponding RMS forecast errors for the hyper-
ensemble methods (Fig. 6) show an overall reduction of
the uncertainty. The consistency throughout the different
methods suggests that the correction is essentially a bias
correction. The combination of different models has a
minor impact on the hyper-ensemble skills. Again,
results for other days, lead times and combinations of
models show qualitatively similar results.

At this stage, some wider statistical analyses are
needed to compare quantitatively the skills of the
different surface drift forecasts. Fig. 7 shows some
standard statistics for the different methods on the two
components of velocity. In hindcast mode, the bias
should ideally vanish: statistics are compared here to
the true drifter values instead of the interpolated values.
Hence some minor bias remain. Statistics are consistent
between the hindcast and the forecast, implying that the
weights remain roughly valid and useful in predicting
surface drift. The rule of thumb (the second bar)
remains usually the more robust of the traditional
methods but is outperformed by the hyper-ensemble
methods, especially for long training periods (50 days)
in the hyper-ensemble using all models (last bar).
Again, results for other days, lead times and hyper-
ensemble combinations of models show qualitatively
similar results.
Uncertainty maps as derived previously from the
recent 48 h forecast may be used to associate two-
dimensional probability distribution areas with single
drifter tracks instances. Ensembles of 100 members
were generated by a random walk procedure, adding
Gaussian velocities with standard deviation equal to the
uncertainty velocities derived as above, from which
encompassing convex hulls of 100, 75, 50 and 25% of
the end position are identified with a shrinking of the
convex hull shape down to the mean position of the
ensemble. Several examples are illustrated in Fig. 8.
The persistence might provide useful and quite robust
information if the drifter is not undergoing a radical
direction change just afterwards. Ocean currents are
overestimated and potentially in a wrong direction. The
rule of thumb method in these examples is not very
robust either. Individual models are hindered by local
biases and limited process representation. Ocean
models, for example, do usually not take the Stokes
drift into account. Only the hyper-ensemble solutions
have tracks similar to the observed drifters. Their
probability distribution areas sometimes capture the
true drifter end position, which is not the case for the
standard methods.

The assumption of normality of the error probability
distribution function may be disputed. Results show that



Fig. 7. Hindcast and 48 h forecast RMS errors (m/s), correlation and bias (m/s) on U and V components of velocity for the different methods for day
10 February 2003 corresponding to 12 February 2003. Bars from left to right represent respectively: (1) ocean currents, (2) wind rule of thumb, (3) the
addition of (1) and (2), (4) the addition of the Stokes drift, and the corresponding hyper-ensemble combinations for a 5 (bars 5–8), 10 (bars 9–12), 25
(bars 13–16) and 50 (bars 17–20) days learning period.
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the single realization and the ensemble ‘centroid’ track
are in relative good agreement in many cases. The
limitation of this hypothesis however becomes obvious
in cases where the single realization (not part of the
ensemble) end position is not within the ensemble 25%
or 50% probability polygon area.

Fig. 9 summarizes the reliability of the estimation of
the probability distribution areas for the different
methods. The traditional methods (first 4 bars) provide
unreliable end positions, far from the true position and
almost a null probability of capturing the true position in
the ensemble convex hull. On the contrary, the hyper-
ensemble end positions, ensemble histogram maximum
(in 5 km⁎5 km bins) and gravity center are much closer
to the true drifter end position. The results are slightly
better for shorter learning period, which contradicts
somewhat the optimal 50 days found previously. The
probability of capturing the true end position in the
ensemble convex hull is usually 0 for the traditional
methods and ranges from 20% to 35% for the hyper-
ensemble solutions.
4. Discussion and conclusions

The hyper-ensemble approach is a very generic tool for
geophysical applications. This statistical approach makes
the best use of all available data, with a marginal effort,
provided that underlying models and data are available.

The application of the hyper-ensemble technique in
the challenging area of the Adriatic Sea during a Bora
event has shown significant improvements in surface
drift forecast, both on field estimates, integrated drifter
tracks and probability distribution area estimation.
However, results also suggest that this technique is
still very far from a very reliable surface drift forecasting
system that may be used in search- and-rescue cases or
dramatic oil spill incidents.

Two major limitations of the existing surface drift
approaches can be identified which deserve attention in
future developments.

On the one hand, comprehensive observational
networks are needed to cover the spatio-temporal and
spectral range of processes found in a specific area.



Fig. 8. Some examples of drifter tracks (past— continuous line, 72 h forecast— dashed line), single realization (thin line), ensemble track (thick line)
and associated probability distribution areas for different methods: true drifter track (black), persistence (dark blue), ocean current (blue), rule of
thumb (green), hyper-ensemble with all models using 5 days (orange) and 50 days (brown) learning period. Convex hulls in decreasing order
represent the estimation of the 100, 75, 50 and 25% probability distribution areas corresponding to the different methods.
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Fig. 8 (continued).
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Super- or hyper-ensembles provide a direct feedback to
modelers on local performance of their respective
models by identifying local weaknesses or strengths of
models and areas where local data assimilation might
have a significant benefit on the individual and
ensemble models. The amount and nature (i.e. Lagran-
gian vs. Eulerian) of data available will determine the
super-ensemble approach to be used. Lagrangian data
imply a prior objective analysis of available data or the
assumption of some local homogeneous area. Eulerian
times series of data on the contrary offer the advantage
of an easier implementation of the hyper-ensemble
method, but require usually expensive data collection at
sea with dedicated instrumentation.

On the other hand, individual models also require
further improvement in their respective forecast skills.



Fig. 9. Summary of reliability of the estimation of probability distribution areas for the different methods (as in Fig. 7) for 48 h forecast on day 14
February: (top) mean distance of single instance end position to the true end positions; (top-middle) mean distance of ensemble end position
histogram maximum to the true end positions; (bottom-middle) mean distance of ensemble gravity center of end positions to the true positions;
(bottom) probability that the convex hull captures the true end position.
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We have seen that individual models still have great
difficulties producing accurate surface drift velocities.

Only a joint observational and modelling effort may
improve directly the hyper-ensemble approaches which
require both components. The consistency between the
different hyper-ensemble combinations has shown that
the major correction arises from the local bias removal.
Only a marginal improvement can be expected from the
inclusion of two or more processes in the hyper-
ensemble. Indeed, all ocean, wave and atmospheric
models are usually strongly correlated (eventually
disregarding the rotation), as a result of the atmospheric
forcing on the other two components, with the exception
of the western Adriatic coast, where the coastal jet is, de-
facto, probably less sensitive to wind forcing because of
the strong advection.
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