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Abstract 

Fire is an important component of the historic disturbance regime of oak and pine forests 

that occupy sandy soils of the coastal outwash plain of the northeastern U.S. Today prescribed 

fire is used for fuel reduction and for restoration and maintenance of habitat for rare plant, 

animal and insect species. We evaluated the effects of the frequency and seasonality of 

prescribed burning on the soils of a Cape Cod, Massachusetts coastal oak-pine forest. We 

compared soil bulk density, pH and acidity, total extractable cations and total soil C and N in 

unburned plots and in plots burned over a 12-year period, along a gradient of frequency (every 1-

to-4 years), in either spring (March/April) or summer (July/August). Summer burning decreased 

soil organic horizon thickness more than spring burning, but only summer burning every 1 to 2 

years reduced organic horizons compared with controls. Burning increased soil bulk density of 

the organic horizon only in the annual summer burns and did not affect bulk density of mineral 

soil. Burn frequency had no effect on pH in organic soil, but burning every year in summer 

increased pH of organic soil from 4.01 to 4.95 and of mineral soil from 4.20 to 4.79. Burning had 

no significant effect on organic or mineral soil percent C, percent N, C:N, soil exchangeable 

Ca2+, Mg2+, K+ or total soil C or N. Overall effects of burning on soil chemistry were minor. Our 

results suggest that annual summer burns may be required to reduce soil organic matter thickness 

to produce conditions that would regularly allow seed germination for oak and for grassland 

species that are conservation targets. Managers may have to look to other measures, such as 

combinations of fire with mechanical treatments (e.g., soil scarification) to further promote 

grasses and forbs in forests where establishment of these plants is a high priority. 
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Introduction 

Abundant charcoal in the sediments of Cape Cod ponds relative to other locations in New 

England indicates that fire was a persistent feature of these forests during 9,500 years of post-

glacial history (Winkler, 1985; Stevens, 1996; Fuller et al., 1998). European explorers of the 

New England coastline described pine forests with open, grassy, understories (Bromley, 1935; 

Altpeter, 1937), which they attributed to fires set by Indians (Day, 1953; Patterson and 

Sassaman, 1988). During the historical period, references to fire are frequent, and many large 

fires, particularly in cut-over or shrub-dominated landscapes, have been documented (Altpeter, 

1937; Foreman and Boerner, 1981; Foster and Motzkin, 1999). 

Since approximately 1940, fire suppression has reduced the number and extent of fires in 

northeastern oak-pine sandplain forests (Foreman and Boerner, 1981; Patterson et al., 1983; 

Dunwiddie and Adams, 1994; Motzkin et al., 2002). The elimination of burning is associated 

with changes to forest structure, including the gradual replacement of pines (Pinus rigida) by 

oaks (Quercus alba, Q. velutina, Q. coccinea, Q. ilicifolia and Q. prinoides) (Little 1964; 

Patterson et al., 1983, Chokklingam, 1995; Barron, 2005), an increase in the density of 

understory shrubs, including blueberries (Vaccinium spp.) and huckleberry (Galussacia baccata) 

(Little and Moore, 1949), and an increase in the thickness of the accumulated soil organic and 

litter layers (Little and Moore, 1949). A decrease in fire frequency is also associated with the loss 

of scrub oak (Q. ilicifolia) (Foster and Motzkin, 1999) and sandplain forbs typical of more open, 

savannah-like woodlands (Little and Moore, 1949; Dunwiddie, 1994; Clarke and Patterson, 

2007). Fire maintained grasslands and recently-burned pitch pine-scrub oak communities are 

priorities for conservation in the northeastern U.S., because they are uncommon, declining, and 

support a number of rare plant and animal species (Schweitzer and Rawinski, 1988; Dunwiddie 
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et al., 1996; Motzkin and Foster, 2002; Wagner et al., 2003). The historical role of fire, recent 

decreases in fire frequency, fire’s association with rare species, and increased risk of large 

wildfires have led to calls for more prescribed burning for forest and rare species management in 

the coastal plain region (Patterson et al. 1985; Dunwiddie et al., 1997; Jordan et al., 2003).  

Fire can lead to important changes in the physical and chemical properties of forest soils 

including increased bulk density and altered physical structure (Boyer and Miller, 1994; Arocena 

and Opio, 2003), increased soil cation stocks (Franklin et al., 2003; Liechty et al., 2005; Neff et 

al., 2005), and decreased carbon (C) and nitrogen (N) stocks in surface soils (Binkley, 1992; 

Choromanska and DeLuca 2001; MacKenzie et al., 2004; Shelburne et al., 2004). Responses of 

soil cations, C and N to fire vary substantially in direction, magnitude and the length of time 

during which changes can be detected after fire (Carter and Foster, 2004; Certini, 2005). The 

effects of prescribed surface fires on soils in many forest types are relatively minor (Richter, 

1982; Boerner et al., 1988; Binkley, 1992; Ferran et al. 2005; DeLuca and Sala, 2006), but severe 

burns under drought conditions generally lead to significant changes to soil biogeochemical 

stocks (Southwick et al., 2005).  

Most studies that have evaluated the effects of fires on forest soils have compared the 

effects of single wildfires or prescribed fires or the effects of a single prescribed fire regime—

i.e., the set of recurring conditions of fire that characterizes a given ecosystem. None have 

simultaneously evaluated the effects on soils of the frequency and the seasonal timing of fires 

that would allow determination of what fire regime would lead to important changes to soil 

chemistry and C and N stocks.  

Prescribed burning has been used in sandplain oak-pine forests to reduce the competition 

of oaks with commercially valuable pines, to prepare the soil for pine seedling establishment and 



 5

to reduce fire risk (Burns, 1952; Little, 1964; Dunwiddie and Adams, 1994; Patterson, 2007). 

Most prescribed burning for silvicultural purposes has been conducted during the spring, 

typically from March to May. Compared with intense wildfires, these understory fires do not 

typically damage trees >2 cm dbh, recovery of shrubs is rapid (Reiners, 1965; Matlack et al., 

1993), and effects on soil chemistry are minor (Burns, 1952). Understanding soil responses to 

prescribed fire in coastal plain forests is important, because the shrubs or herbaceous plants that 

are targets of conservation management involving prescribed fire often require specific 

conditions such as exposed mineral soil for germination (Dunwiddie, 1990; Vickery, 2002). In 

addition, most of the disturbance-adapted plant species that are conservation targets reach their 

greatest abundance on sites with low soil pH and low soil fertility (Dunwiddie et al., 1996; Neill 

et al., 2007).  

We evaluated the effects of the frequency and seasonality of prescribed understory 

burning on the soils of a Cape Cod, Massachusetts coastal oak-pine forest. We compared soil 

bulk density, pH and acidity, total extractable cations and total soil C and N in control 

(unburned) plots and in plots subjected to prescribed burns, over a 12-year period, along a 

gradient of frequency (from 1-to-4 years) either in spring (March/April) or summer 

(July/August). 

Methods 

Study area 

This study was conducted in the Lombard/Paradise Hollow research area of the Cape Cod 

National Seashore (CCNS), South Truro, Massachusetts (41o57’N, 70o02’W). The area lies on 

coarse-textured glacial outwash deposits that are typical of the northeastern U.S. coastal plain 

(Oldale and Barlow, 1986). Soils are Typic Quartzipsamments of the Carver series (Fletcher, 
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1993), with a coarse sand texture, an Oe horizon over a weakly-developed E horizon, and <5% 

clay fraction (Fletcher, 1993). The area is 32 m above msl. Vegetation consists of a ~90-year-

old, relatively even-aged canopy dominated by white oak (Q. alba), black oak (Q. velutina) and 

pitch pine (P. rigida). The understory is dominated by the ericaceous shrubs black huckleberry 

(Galussacia baccata), early low and late low blueberry (Vaccinium angustifolium and V. 

pallidum). Soils and vegetation indicate the area was used continuously as a woodlot since 

European settlement (Dunwiddie and Adams, 1994). Similar oak-pine forests are the dominant 

vegetation on the northeastern US coastal plain. 

A 5-ha area of relatively flat, uniform vegetation and soils was selected for prescribed 

burn treatments. Twenty-seven plots measuring 20 m × 20 m were laid out in a random fashion 

(Patterson, 2007). Three replicate plots were assigned as either control (no burning), or spring 

(March or April) or summer (July or August) burning at frequencies of 1, 2, 3 or 4 years (Table 

1). Plots were established in 1985, with all but the control plots burned for the first time in 

March/April or July 1986. Plots were burned with strip-head fires with flame lengths in the 

initial fires of 1.5 to 2.25 m. The Keetch-Byram Drought Index (KBDI) was used to estimate 

cumulative moisture deficiency in the duff and upper soils layer (Keetch and Byram, 1968; 

Melton, 1989). We used data on temperature, humidity and rainfall from climate stations on 

Cape Cod to calculate KBDI for each summer burn date.  

Sample collection and analysis 

Soils in all treatments were sampled in March of 1999 after 13 burns in the 1-year plots, 7 

burns in the 2-year plots, 5 burns in the 3-year plots and 4 burns in the 4-year plots. The timing 

of sampling was chosen because all plots were burned in either April or July 1998, and time 

since burning was similar in all treatments. Soil was collected at 3 randomly selected points in 
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each plot excluding a 2 m buffer around the plot edge. At each point, 2 adjacent cores to 20 cm 

total thickness were collected using a 5-cm diameter steel corer after removal of the liter (Oi) 

horizon. Cores were extruded in the field, and the thickness of the duff layer (Oe horizon) was 

measured to the nearest millimeter in the resulting hole. The organic and mineral soil layers from 

each of the two adjacent cores from each point were combined and homogenized by thorough 

hand mixing. This yielded three composite organic and three mineral samples per plot and a total 

of 9 samples per soil horizon per treatment. 

In the laboratory, a subsample was oven dried to determine dry bulk density. Soil samples 

were air dried and sieved through a 2 mm sieve to remove stones. Soil pH was measured in water 

(2:1, soil:water) on air-dried soil with an Orion 611 meter. Exchangeable Ca, Mg and K in oven-

dry (60oC) soil were measured by extraction with 1N NH4Cl (Robarge and Fernandez, 1986). 

Concentrations in the extracts were analyzed on a Perkin-Elmer atomic absorption 

spectrophotometer. Exchangeable acidity and exchangeable Al (to determine total cation 

exchange capacity to calculate percent base saturation) were measured on oven-dry soils by 

extraction with an unbuffered salt solution of 1 N KCl and titration of the extract to the 

phenolpthalein titration end point (Robarge and Fernandez, 1986). Concentration of Al in the 

extracts was analyzed by atomic absorption spectrophotometry. 

Total C and N in organic and mineral soils were analyzed by grinding oven dry (60oC) 

soils with mortar and pestle and combusting them in a Perkin-Elmer 2400 elemental analyzer. 

Total soil C and N were calculated from percent C and N and soil bulk density for each horizon. 

Changes to total C and N relative to the control caused by the various burning treatments were 

estimated by calculating C and N mass to the same depth in the mineral horizon that would have 

been sampled if there had been no decrease in volume of the organic horizon caused by burning 
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(Davidson and Ackerman, 1993). In this case, this was 15.4 cm of the mineral horizon, which 

represented the mean mineral horizon sampled in the control, where the mean organic horizon 

(Oe) thickness was 4.6 cm.  

We used analysis of variance (GLM procedure of SAS) to test for differences in soil 

variables among treatment means and the effects of the season and frequency of burning. The 

mean of each soil parameter from the 3 replicate composite samples within each plot served as 

the input to the analysis. We first performed an overall test for the presence of any treatment 

effect using a one-way analysis with the 9 treatments as main effects (df = 8, 18). If any 

significant treatment effect was found, we then: 1) tested for differences among individual means 

using the Ryan-Einot-Gabriel-Welsch Multiple Range Test (REGWQ option in SAS), and 2) 

performed a second two-way ANOVA with burn season (spring or summer) and frequency (1, 2, 

3 or 4 yr intervals) as main effects (df = 7, 16). The level of significance was adjusted to account 

for the performance of multiple ANOVAs. We report means ± SE. 

Results 

Summer moisture conditions as indicated by the KBDI varied from 145 in the 1-year and 

2-year burns in 1989 to 495 in the 1-yr burns in 1991 (Table 2). The mean KBDI across all years 

of the study was highest (327) in the 1-year burns and lowest (211) in the 4-year burns. The 1-

year treatments were burned 8 times when the KBDI exceeded 300 and 4 times when it exceeded 

450. Only two of the 3-year and one of the 4-year treatments were conducted when the KBDI 

exceeded 300. 

Burning significantly reduced the thickness of the organic horizon (Table 3), but only 

summer burning every 1 or 2 years reduced organic horizon thickness compared with the control 

(Fig. 1). Summer burning reduced organic horizon thickness to a greater extent than spring 
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burning (Table 4). While organic matter thickness generally declined with increasing burning 

frequency, this effect was not significant (Table 4). The overall reduction in organic horizon 

thickness caused by the most severe burn treatment (summer burning every year) was from 4.6 to 

1.9 cm (Fig. 1). Burning significantly increased the bulk density of organic soil (Table 3). This 

effect on bulk density was caused by higher density of organic soil with annual summer burning 

(Fig. 1). Both burning season and burning frequency significantly increased organic soil bulk 

density, and the interaction of season and density was significant (Table 4). The primary effect 

was greater density in the annual spring burns. Burning had no effect on the bulk density of 

mineral soil (Table 3). 

Burning significantly increased the pH of both organic and mineral soil (Table 3). In 

organic soil, pH increased from a mean of 4.01 ± 0.07 in the control to a mean of 4.51 ± 0.04 

across all of the burn treatments (Fig. 2), but only the 1-year summer burns had higher pH than 

the control (Fig. 1). Neither season of burning nor frequency of burning had significant effects 

on organic soil pH, but the interaction of interaction of season and frequency was significant 

(Table 4), and increased burning frequency increased organic soil pH more in the summer burns 

than in the spring burns (Fig. 2). Mean organic soil pH did not differ between spring burns (4.57 

± 0.05) and summer burns (4.45 ± 0.07). The pH of mineral soil in the control (4.20 ± 0.05) was 

similar to the pH of organic soil (4.01 ± 0.07) and the response of mineral soil pH to burning was 

very similar to that of organic soil (Fig. 2). Burning increased mineral soil pH to a mean of 4.43 

± 0.03 across all burn treatments, but only the 1-year summer burns had higher mineral soil pH 

than the control. Neither burning season nor burning frequency had significant effects on mineral 

soil pH, but the interaction of season and frequency was significant (Table 4). Increased burning 

frequency increased mineral soil pH in the summer burns but not in the spring burns (Fig. 2). 
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Burning reduced total exchangeable acidity in organic soil but had no effect in mineral 

soil (Table 3). Acidity in the 4-year spring burns and the 1-year summer burns was significantly 

lower than in the control (Fig. 2), and there were no consistent effects of season or frequency on 

organic soil acidity (Table 4). Treatment had no significant effect on Ca2+, Mg2+ or K+ 

concentrations or percent base saturation in either organic or mineral soil (Table 3).  

Burning treatments had no significant effect on total exchangeable Ca2+, Mg2+ or K+ in 

the top 20 cm, though there was a general pattern of higher total exchangeable Ca2+ and lower 

total exchangeable Mg2+ and K+ with burning (Fig. 3). The largest gains in exchangeable Ca2+ 

between the burned plots and the control (7.0 to 7.6 g Ca2+/m2) were in the 4-, 3-, and 2-year 

spring burns. Greatest losses of Mg2+ (4.2 g Mg2+/m2) were in the 1-year summer burn plots, and 

the greatest losses of K+ (5.0 g K+/m2) were in the 2-year summer burn plots (Fig. 3).  

 Soil percent C in the organic and mineral horizons did not differ significantly among 

treatments (Table 3, Fig. 4). The largest effect of any treatment on percent soil C was lower soil 

percent C with annual summer burning. There was no effect of the treatments on soil C:N (Table 

3, Fig. 4). Differences in the total soil C at 0-20 cm among the individual treatments were not 

significant, but there was a pattern of lower total soil C with increased burning in summer (Fig. 

4). Losses of C in the organic horizon of the treated plots compared with the control ranged from 

2 to 21% (-0.06 to -0.68 kgC/m2) in the spring burned treatments and from 20 to 50% (-0.64 to -

1.63 kgC/m2) in the summer burned treatments. Changes to C stocks were more variable in the 

mineral horizon. In the spring treatments, changes ranged from a gain of 35% to a loss of 10% 

(0.44 to –0.19 kgC/m2), whereas in the summer treatments they ranged from a gain of 16% to a 

loss of 36% (+0.23 to –0.50 kgC/m2). Highest C losses within each seasonal burn treatment 

occurred in the plots burned every year.  
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Total soil N showed a similar pattern (Fig. 4), with no significant effect of the individual 

treatments but a similar pattern of lower total soil N with increased burning frequency in 

summer. Losses of N in the organic horizon of the treated versus the control plots ranged from 0 

to 20% (-0.01 to –20.4 gN/m2) for the spring and from 20 to 37% (-20.0 to –36.9 gN/m2) for the 

summer. In mineral horizon, changes to N stocks relative to the control for the spring treatments 

ranged from a gain of 23% to a loss of 3% (-1.2 to 8.8 gN/m2), whereas for the summer burns 

changes ranged from a gain of 13% to a loss of 39% (4.8 to –14.8 gN/m2).  

Discussion 

Prescribed burning across a wide range of frequencies and burning conducted in the 

dormant (spring) versus growing (summer) seasons had relatively minor effects on soil pH, 

acidity, total exchangeable cations and total soil C and N. Only the plots burned every 1-2 years 

in summer had higher pH and only the plots burned annually in summer had higher bulk density 

than the unburned controls. This indicated that only very frequent annual or biannual burning of 

the understory litter and shrubs in these forests caused appreciable change in these soil 

characteristics. This result was consistent with studies in southern loblolly pine forests (Richter, 

1982; Binkley, 1982), ponderosa pine forests (Covington and Sackett, 1986; Wright and Hart, 

1997; Gundale et al., 2005; Hatten et al., 2005) and oak forests (Boerner et al., 1988; Ferran et 

al., 2005), all of which showed no or relatively little change in soil pH, cation or total soil C and 

N in response to single or repeated burning. In New Jersey pine-oak woodlands, Burns (1952) 

found fire rotations of 4 years increased extractable base cations only slightly. In the most 

extreme case, 35 years of annual burning of a Tennessee oak forest led to increased mineral soil 

bulk density and C concentration but not to a change to total C (Phillips et al., 2000).  
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Frequent burning during summer had the largest effect on the thickness of the soil 

organic horizon. Although burning reduced the thickness of the organic soil and summer burns 

caused greater reduction in organic soil thickness than did spring burns, none of the treatments 

eliminated the organic horizon. Only in the 1-year summer burns, which reduced the mean 

organic horizon thickness from 4.6 to 1.9 cm, was there an increase in bulk density of the organic 

horizon indicating a replacement of organic matter with mineral material. Mineral soil was 

exposed over as much as 50% of the area in these 1-year burn plots. A lack of change in bulk 

density with the other treatments indicated that the mineral composition of the organic horizon 

was relatively unaffected by burning. This absence of a change in soil bulk density was 

consistent with other studies of effects of fire on soils in pine or oak woodlands (Burns, 1952; 

Shelbourne et al., 2004, Rhoades et al., 2004). In New Jersey pine-shrub oak woodlands, Lutz 

(1934) reported that fires at 8- 12- and 16-year intervals had no significant effect on soil physical 

or chemical properties. 

Summer burning may have led to the greatest changes in soil organic matter thickness, 

bulk density and pH because the greater frequency of fire increased the likelihood that fire 

occurred under conditions of soil drought. Burning under soil drought conditions results in 

greater fuel consumption (Sparks et al., 2002). This may be primarily for the primary cause of 

changes to soil pH, nutrients and organic matter. In 1987, the 1-year burns were conducted when 

KBDI was the highest at any time during the study (488) but no other treatments were burned in 

that year (Table 2). The frequency of burns with high KBDI might also be important, and 

burning in the 1-year burns was conducted more frequently (4 times compared with 1 time in any 

of the other treatments) during periods of drought conditions with KBDI > 450 (Table 2). The 

effect of drought was more likely to be important in the summer burns compared with the spring 
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burns, because the KBDI during spring burns never exceeded 200 and commonly was less than 

100 (Patterson, unpublished data). Burns under these conditions consume little soil organic 

matter (Melton, 1989).  

Carbon and N in the organic horizon comprised the majority of total soil C and N and 

accounted for most of soil C and N losses. Losses of C and N from the organic horizon were 

variable but tended to be greater with summer burning than with spring burning. Although 

summer burning decreased organic horizon soil C by 20 to 50% and organic horizon soil N by 20 

to 37%, C and N losses from the mineral horizon greater than 20% occurred only where severe 

burning occurred frequently (i.e., with high KBDI in the 1-year summer burns). Volatilization of 

soil C and N in the spring burning treatments was limited by higher soil moisture and generally 

higher fuel moisture contents during spring compared with summer (Patterson, unpublished 

data). Some of the spring-burned treatments (every 1, 2 and 3 years) and summer-burned 

treatments (every 2 and 3 years for C, every 3 years for N) actually had higher mineral total soil 

C and N than the unburned controls, presumably because of downward translocation from the 

organic horizon in these sandy soils. 

We did not directly measure rates of soil C accumulation that could be compared against 

soil C losses, but the development of organic horizons of 4-to-8 cm in a similar 60- to 80-year-

old coastal plain second-growth mixed white oak (Q. alba) and black oak (Q. velutina) forest on 

Martha’s Vineyard (Neill, unpublished data) suggests that rates of C accumulation in the organic 

horizon is in the range of 0.05 to 0.13 kgC/m2/yr. At these rates, the C loss of 2.13 kg/ha caused 

by the severest treatment of 12 years of annual summer burning would be replaced after 16 to 43 

years without fire. Based on the same assumptions, regional N accumulation of 1.5 to 4 gN/m2/yr 

and a loss of 52 g N in the 1-year summer burns, could be replaced after 13 to 35 years without 
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fire. Current rates of annual atmospheric N deposition for Truro, MA are approximately 1.23 

gN/m2 (Bowen and Valiela, 2001; NADP, 2006) and can account for 30 to 80% of the forest soil 

N accumulation. The annual deposition of Ca for the same location is 1.56 kg Ca/ha/yr (NADP, 

2006). This compares with measured gains of between 0.9 to 6.3 kg Ca/ha/yr in the soils of the 

burned treatments. Deposition of Mg is 2.40 kg/ha compared with losses of 0.1 and 4.2 kg/yr in 

the burned treatments, and deposition of K is 0.72 kg K/ha compared with losses of 1.4 to 5.0 

kg/ha/yr. This suggests that deposition alone could replace losses of Mg in 1-to-24 years, but 

replacement of lost K would take 23 to 83 years. 

The effects of burn-induced losses of Mg and K of this magnitude are not known. Rates 

of biomass accumulation in mesic New England oak and pine forests are thought to be most 

strongly influenced by soil available N (Aber et al. 1993). However, Woodwell (1979) suggested 

that repeated burning of Long Island oak and pine forest that reduced total ecosystem cation 

content to 60% of that in unburned forest was associated with reduced forest productivity and 

forest stature. Potassium additions to red pine (Pinus resinosa) plantations on acid, coarse-

textured soils in New York State increased tree growth and crown vigor (Heiberg et al., 1964) 

and high K retention (Stone and Kszystyniak, 1977), indicating a strong link between K 

availability and forest growth.  

Prescribed burning in conservation and restoration management 

The spring prescribed burn treatments were likely typical of many of the historical 

wildfires in coastal oak and pine forests, including those ignited by Native Americans, who often 

set fires in the fall, or before leaf emergence in the spring (Patterson and Sassaman, 1988). Our 

results showed spring fires caused relatively minor changes to soil organic matter, structure, 

exchangeable cations and total soil C or N. They also caused less tree mortality than summer 



 15

fires, and that which did occur was largely attributable to our more intense initial burns 

(Patterson, 2007). There is some evidence from the edaphically and floristically similar New 

Jersey pine barrens that repeated, light, dormant-season fires reduce huckleberry dominance and 

promote the growth of understory herbs (Buell and Cantlon, 1953; Little, 1974; Little, 1979). 

With the exception of the 1-year burns, our results were more like those of studies of oak 

woodlands in Wisconsin (Reich, 1990; King, 2000), Kansas (Abrams, 1988) and Minnesota 

(White, 1983) where single spring or fall burns had very little effect on vegetation composition 

(Patterson, 2007). 

While the response to spring burning suggests that the fire regimes employed in this 

study may be relatively good surrogates for historical spring wildfires across widespread oak-

pine forests in this landscape, our prescribed summer fires were almost certainly not precise 

analogues for the occasional large summer fires that are known to have occurred in these coastal 

forests (Altpeter, 1937; Patterson et al., 1983; Foster and Motzkin, 1999). Historical summer 

wildfires would likely have been more severe, because they would almost always have occurred 

under extreme drought conditions. Burning on our small plots prevented the development of high 

intensity surface and crown fires. However, the increased frequency of summer burns did 

increase the likelihood that one of our fires would burn at a KBDI >300 when organic soils are 

dry and the consumption of soil organic matter greatest (Melton, 1989). Thus, even though our 

fires were not crown fires with high intensity, they were sometimes duff-consuming ground fires 

of high burn severity that consumed soil organic matter. Unlike spring burns, summer burns 

occurring when KBDI values were high drastically altered vegetation on the forest floor. They 

also caused higher mortality of oaks (Patterson, 2007) and would have caused higher mortality of 

pines if they had evolved into crown fires. 
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The response of oak-pine woodland soils to frequent prescribed understory fire raises the 

interesting question of whether alterations to the soil organic horizon are sufficient to enhance 

the recruitment of herbaceous plant species that occur in barrens and are targets for conservation 

management (Clarke and Patterson, 2007). Recruitment of some species, such as crowberry 

(Corema conradii), bushy rockrose (Helianthemum dumosum) and New England blazing star 

(Liatris scariosa var. novae-angliae) is enhanced by burning (Dunwiddie, 1990; Vickery, 2002). 

None of our spring burn treatments eliminated surface soil organic matter, and only the annual 

summer burns reduced organic matter thickness sufficiently to expose mineral soil. Although the 

life history and seed germination requirements of many rare sandplain herbaceous plants are not 

well known (Farnsworth, 2007), our results suggest that severe burning sometimes associated 

with summer burns may be required to produce conditions that would allow recruitment of many 

of these species. In the annual summer burn plots, pitch pine seedlings have germinated in some 

years, consistent with the results of intense prescribed burns (Little 1964) or wildfires (Landis et 

al., 2005) in pine barrens, but these seedlings do not survive burns repeated at 1- to 4- year 

intervals as applied in this study (Patterson, unpublished data). Proximity of seed sources may be 

an important constraint to vegetation change in oak forests even if prescribed fires result in 

appropriate seed bed conditions (Matlack and Good, 1990; Farnsworth, 2007). Seed 

augmentation may be a practical way to encourage herbaceous plant recruitment after 

disturbances which expose mineral soil in these forests (Lezberg et al., 2006).  

Our results also raise the question of whether the losses in soil C or exchangeable Mg2+ 

and K+ that accompanied frequent summer burning are sufficient to promote species-rich, oak-

pine “barrens” vegetation (Swain and Kearsly, 2001). Many native sandplain species reach their 

greatest abundance on sites with low pH, low organic matter and low cation stocks (Dunwiddie 
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et al., 1996; Neill et al., 2007). The levels of soil C and nutrient impoverishment that favors these 

species is not known, but nutrient removal by fire is used to reduce nutrient stocks in similar 

barrens and heathland vegetation (Tiffney, 1997; Mitchell et al., 2000). The relatively inefficient 

nature of prescribed burning at all but the most frequent intervals on altering soil C and nutrient 

stocks suggests that managers may have to look to other, more extreme measures of nutrient 

removal on sites where reestablishment of sandplain forbs and grasses is a high priority. 

Although summer burning under severe drought conditions, which produces abundant smoke 

over prolonged periods, is impractical in the coastal plain where residential development is 

increasing (Stone, 1998), burning combined with mechanical soil scarification and/or grazing 

may be an effective method of promoting rare plant habitat (Patterson and Clarke, in press).  
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Table 1. Design of prescribed burn plots at the Cape Cod National Seashore, Truro, MA. Three 

replicate plots of each treatment, arranged in a randomized block, were established and first 

burned in 1986.  

Treatment Burning time Burning frequency Number of times 

burned 

Control (no burning) None None 0 

Spring burning March or April Every 4 years 4 

Spring burning March or April Every 3 years 5 

Spring burning March or April Every 2 years 7 

Spring burning March or April Every year 13 

Summer burning July or August Every 4 years 4 

Summer burning July or August Every 3 years 5 

Summer burning July or August Every 2 years 7 

Summer burning July or August Every year 13 
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Table 2. Keetch-Byram Drought Index (KBDI) for different burn treatments in each year and mean KBDI for each burn treatment during 

the 13 years of this study. 

Treatment  1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 

Mean

KBDI 

No. 

Years 

KBDI 

>300 

No. 

Years 

KBDI 

>450 

1 yr 167 488 128 145 166 495 367 436 386 466 461 424 124 327 8 4 

2 yr 167  128  166  367  386  461  124 257 3 1 

3 yr 167   145   367   466   124 254 2 1 

4 yr 167    166    386    124 211 1 0 
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Table 3. Results of overall one-way analysis of variance (df=8, 18) to test the overall effect of 

treatments on soil variables in organic and mineral soil horizons. The level of significance was 

adjusted to α=0.0045 to account for multiple ANOVAs. Soil variables that differed significantly 

with treatment are in bold.  

 Organic   Mineral  

Variable F p F p 

Organic horizon thickness 6.30 <0.0006   

Bulk density 12.06 <0.001 1.06 0.434 

pH 7.51 <0.002 8.14 <0.0001 

Exchangeable acidity 6.90 <0.0003 1.76 0.154 

Exchangeable Ca2+ 0.98 0.487 0.177 0.150 

Exchangeable Mg2+ 2.20 0.078 1.49 0.228 

Exchangeable K+ 2.16 0.084 0.84 0.577 

Percent base saturation 0.79 0.620 2.01 0.104 

Percent C 1.68 0.172 1.35 0.281 

Percent N 1.02 0.453 1.81 0.140 

C:N  1.87 0.130 0.53 0.822 
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Table 4. Results of two-way analysis of variance (df=7, 16) to test the effects of the season and frequency and interactions between 

burning season and frequency on soil variables. Tests were conducted on only soil horizons and variables in which the overall effect of 

treatment was significant. The level of significance was adjusted to α=0.012 to account for multiple ANOVAs. Soil variables that 

differed significantly with treatment are in bold. 

  Overall model Season  Frequency  Season × Frequency 

Horizon Variable F p F p F P F P 

Organic Thickness 4.54 0.006 1.51 0.0012 5.04 0.12 0.39 0.762 

 Bulk density 14.30 <0.0001 15.58 0.012 18.38 <0.0001 9.80 0.0007 

 pH 5.15 0.003 2.22 0.156 4.91 0.013 6.36 0.005 

 Exchangeable acidity 4.42 0.007 1.08 0.314 5.86 0.067 4.09 0.025 

Mineral pH 7.34 0.0005 4.26 0.058 4.07 0.025 11.63 0.0003 
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Figure Legends 

 

Figure 1. The effect of prescribed burning time and frequency on soil organic (Oe) horizon depth 

and bulk density in organic and mineral horizons. Values are mean ± 1 se. Means followed by 

the same letters were not significantly different (p<0.05).  

 

Figure 2. The effect of prescribed burning time and frequency on soil pH, exchangeable acidity, 

and percent saturation of base cations in organic (Oe) and mineral horizons (E + A1) horizons. 

Values are mean ± 1 se. Means followed by the same letter were not significantly different 

(p<0.05).  

 

Figure 3. The effect of prescribed burning time and frequency on soil cation stocks in organic 

(Oe) and mineral (E + A1) horizons. Grey bars are the organic horizon, dark bars are the mineral 

horizon. Values for total stocks are mean ± 1 se. Mean total stocks followed by the same letter 

were not significantly different (p<0.05).  

 

Figure 4. The effect of prescribed burning time and frequency on soil percent C, percent N, and 

C:N molar ratios in organic (Oe) and mineral (E + A1) horizons and total soil C and N stocks. 

Grey bars are the organic horizon, dark bars are the mineral horizon. Means are ± 1 se. Means 

followed by the same letter were not significantly different (p<0.05).  
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