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In this paper a rapid focus detection technique is developed for objects imaged

using digital in-line holograms. It differs from previous approaches in that it is

based directly on the spectral content of the object images and does not need

a full reconstruction of the actual images. It is based on new focus metrics

defined as the l1 norms of the object spectral components associated with

the real and imaginary parts of the reconstruction kernel. Furthermore, these

l1 norms can be computed efficiently in the frequency domain using a polar

coordinate system, yielding a drastic speedup of about two orders of magnitude

compared with image-based focus detection. The subsequent reconstruction,

when done selectively over these detected focus distances, leads to significant

computational savings. Focus detection results from holograms of plankton are

demonstrated showing that the technique is both accurate and robust.
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1. Introduction

Digital holographic imaging has been increasingly used in a broad spectrum of applications,

such as holographic microscopy [1], plankton sampling [2–4] and holographic particle image

velocimetry (HPIV) [5–7]. Computational reconstruction from digital in-line holograms usu-

ally generates a sequence of 2D images along the axial direction [8, 9]. In general, a large

number of such object image planes are reconstructed first, upon which post processing

is applied to extract application specific parameters such as the precise object axial and

transverse location, individual object morphology and large-scale object distributions. This

reconstruction process is typically time-consuming, especially when a relatively large volume

is reconstructed at high resolution. In most application scenarios, however, the distribution

of objects is relatively sparse and only a few of the reconstructed image planes contain in-

focus objects. The majority of reconstructed images often do not contain any focused object,

yet they consume most of the computation. The reconstruction can be accelerated markedly

if the focus distances of the objects could be known a priori within some small range. Thus

there is a pressing need for effective focus-detection techniques capable of locating the focus

distances efficiently prior to the actual reconstruction.

Various focus analysis techniques have been previously reported [10–13]. Most of them ex-

tract the focus distances from the sequence of reconstructed images based on certain criteria.

Thus the reconstruction is done blindly without knowing the focus distances, and the focus

analysis is carried out as a post-processing step. For instance, Yu et al. [13] used a thresh-

olded edge-detector to pick out the focused layer which then is subtracted from the object

spectrum. By permuting the order of focus layers and carrying out multiple reconstruction

cycles, they concluded that the average of each focus layer image has an improved quality.

Clearly this scheme of iterative edge-detection and subtraction with averaging over multiple

reconstructions is computationally expensive and the simple thresholded edge-detection may

not always yield optimal results. More recently Liebling and Unser [11] proposed to compute

the decomposition of the object image in terms of the wavelet like Fresnelet bases and then

find the focus distance by maximizing a sharpness metric related to the sparsity of the de-

composition coefficients. The hypothesis is that the Fresnelet coefficients for a focused image

are sparse. However, although the Fresnelet sparsity-based technique is robust to noise, the

resulting resolution is not satisfactory compared with other approaches such as the Laplacian

sharpness metric. The recent work by Dubois et al. [10] is closely related to this paper. It

had shown that the integration of the amplitude modulus of the reconstructed object image

is minimized when an object with real positive amplitude is in focus and maximized when

a pure phase object is in focus. A focus plane detection method was proposed based on this

amplitude analysis.

While these previous methods can be quite useful for automatic location of objects within
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the sequence of images, they all require full reconstruction of the object images and are not

suited for rapid, computationally-efficient applications.

In this paper, a new focus detection technique is developed for objects with real amplitude

captured in digital in-line holograms. It differs from all the previous approaches in that it

is based directly on the spectral content of the object images, and hence does not require a

full reconstruction of the images. It is based on new focus metrics defined as the l1 norms

of the reconstructed object spectral components associated with the real and imaginary

parts of the reconstruction kernel. Furthermore, these l1 norms can be computed efficiently

in the frequency-domain using a polar coordinate system. The subsequent reconstruction,

when done selectively over these detected focus distances, yields significant computational

savings.

The remainder of the paper is organized as follows. Section 2 formulates the recording

and reconstruction procedures of a digital in-line hologram. Section 3 defines the new focus

metrics and presents the focus detection technique. The focus behavior also is explained in

terms of spatial smoothing and frequency modulation. An efficient way of computing the

focus metrics using polar coordinates is described in Section 4. Section 5 shows experimental

results obtained by applying the new focus detection technique to plankton holograms. Both

individual hologram cases as well as statistical results obtained from processing a set of

holograms are included. Finally, conclusions follow in Section 6. Throughout the paper, ∗∗

denote 2D convolution; F and F−1 denotes the 2D forward and inverse Fourier transform,

respectively; Capital letters represent Fourier Transformed variables, and ‖‖1 denotes the l1

norm.

2. Hologram Recording and Reconstruction

Consider an object plane located at distance z from and parallel to the hologram (Figure

1, represented by a field distribution a(x, y). The object wave field at the hologram plane,

denoted by o(x, y), can be written in terms of a(x, y) as [14]

o(x, y) = h(x, y; z) ∗ ∗a(x, y) (1)

O(fx, fy) = H(fx, fy; z)A(fx, fy) (2)

where h(x, y; z) is the kernel obtained from the free-space Greens function associated with

a point source at (x, y, z) and H(fx, fy; z) = F
(
h(x, y; z)

)
is the corresponding transfer

function. O(fx, fy) and A(fx, fy) denote the 2D Fourier transformation of o(x, y) and a(x, y),

respectively.
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The kernel and the transfer function are given by [14]:

h(x, y; z) =
1

jλ

ejk(x2+y2+z2)1/2

(x2 + y2 + z2)1/2
(3)

H(fx, fy; z) =





e−jkz

[
1−(λfx)2−(λfy)2

]
1/2 √

f 2
x + f 2

y < 1
λ

0 otherwise.
(4)

where k , 2π
λ

. H(fx, fy; z) is bandlimited within a disc
√

f 2
x + f 2

y < 1/λ. Note that the

practical bandwidth, determined by several factors such as the finite hologram aperture and

the camera pixel size (the sample frequency), is usually much smaller than 1/λ. However, the

above bandwidth expression can be easily generalized to accommodate those limitations by

replacing 1/λ with an appropriate cutoff frequency. Unless explicitly specified, it is always

assumed that fx and fy are within the above bandwidth disc throughout the paper.

The in-line hologram, denoted by i(x, y), is the intensity of the sum of the reference wave

and the object wave incident on the hologram plane:

i(x, y) = |1 + o(x, y)|2

= o(x, y) + o∗(x, y) + |o(x, y)|2 + 1. (5)

Here the reference wave is a plane-wave and represented simply by unity after normalization.

Hereafter the DC term and the negligible nonlinear term will be dropped. The retained two

linear terms are denoted by ĩ(x, y):

ĩ(x, y) = o(x, y) + o∗(x, y). (6)

Let Ĩ(fx, fy) , F
(̃
i(x, y)

)
. Since F(o∗(x, y)) = O∗(−fx,−fy), it follows that

Ĩ(fx, fy) = O(fx, fy) + O∗(−fx,−fy). (7)

Generally, during reconstruction, a sequence of object images are computed over a range

of distances. The object image reconstructed at one such distance ẑ is given by

â(x, y; ẑ) = h∗(x, y; ẑ) ∗ ∗̃i(x, y), (8)

or in frequency domain,

Â(fx, fy; ẑ) = H∗(fx, fy; ẑ)Ĩ(fx, fy), (9)

since F
(
h∗(x, y; ẑ)

)
= H∗(−fx,−fy; ẑ) = H∗(fx, fy; ẑ).
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3. Focus Detection

3.A. Image Sparsity Measure

It was shown recently [10] that, in the absence of twin-image component, i) the energy and

the integral of amplitude of the reconstructed object image are invariant to the reconstruction

distance; ii) the integral of the amplitude modulus is minimized at the focused distance for

object with real positive amplitude and is maximized at the focused distance for pure phase

objects. That is

zfocus =

{
arg minbz

∫
x,y

|â(x, y; ẑ)| dxdy if a(x, y) is real and positive.

arg maxbz

∫
x,y

|â(x, y; ẑ)| dxdy if a(x, y) is pure phase.
(10)

Although not explicitly stated [10], the integral of the amplitude modulus is in fact exactly

the l1 norm of the reconstructed object image, i.e.

‖â(x, y; ẑ)‖1 =

∫

x,y

|â(x, y; ẑ)| dxdy. (11)

Therefore the results (10) are equivalent to saying that the l1 norm of the reconstructed object

image is minimized when a real positive object is in focus and maximized when a pure phase

object is in focus. Strictly speaking, the degree of sparseness of a signal is quantified by its l0

norm, which is the total number of the nonzero signal components. The l1 norm is a convex

relaxation of the l0 norm and is often used due to its analytical tractability.

Although this spatial sparseness as a focus metric is analytically appealing, it is based on

the sequence of reconstructed images which need to be computed over a range of distances.

Therefore it is not suitable for the purpose mentioned in the introduction section. The new

frequency-domain based focus detection technique, developed in the next section for object

with real amplitude, is based on focus metrics defined directly in the frequency domain and

can be computed prior to the reconstruction.

3.B. Spectral l1 Norm Focus Metrics

Hereafter a(x, y) is assumed real, hence A(fx, fy) = A∗(−fx,−fy).

Denote the real and imaginary parts of H(fx, fy; z) by Hc(fx, fy; z) and Hs(fx, fy; z) re-

spectively. Thus,

Hc(fx, fy; z) , cos
(
k rfz

)
(12)

Hs(fx, fy; z) , − sin
(
k rfz

)
, (13)

where rf ,
[
1 − (λfx)

2 − (λfy)
2
]1/2

. In addition, let

Âc(fx, fy; ẑ) , Hc(fx, fy; ẑ)Ĩ(fx, fy) (14)

Âs(fx, fy; ẑ) , Hs(fx, fy; ẑ)Ĩ(fx, fy). (15)
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Definition of the Focus Metrics :

The new focus metrics are defined in terms of the l1 norms of Âc(fx, fy; ẑ) and Âs(fx, fy; ẑ)

respectively as follows:

Fc(∆z; z) ,

∥∥∥Âc(fx, fy; ẑ)
∥∥∥

1
(16)

Fs(∆z; z) , −
∥∥∥Âs(fx, fy; ẑ)

∥∥∥
1

(17)

Here ∆z , ẑ − z. An object then is determined to be in focus at an axial distance where

Fc(∆z; z) and Fs(∆z; z) are maximized. This criterion corresponds to the global maximum

for a single object and to one of the local maxima for multiple objects.

Consequently,

Fc(∆z; z) =

∫ ∣∣∣Âc(fx, fy; ẑ)
∣∣∣ dfx dfy (18)

=

∫ ∣∣∣Hc(fx, fy; ẑ)Ĩ(fx, fy)
∣∣∣ dfx dfy (19)

Fs(∆z; z) = −

∫ ∣∣∣Âs(fx, fy; ẑ)
∣∣∣ dfx dfy (20)

= −

∫ ∣∣∣Hs(fx, fy; ẑ)Ĩ(fx, fy)
∣∣∣ dfx dfy. (21)

The remainder of this section shows why Fc(∆z; z) and Fs(∆z; z) can be used as metrics

for focus detection as defined above.

Substituting (2) into (7) and using H∗(−fx,−fy; ẑ) = H∗(fx, fy; ẑ) and A(fx, fy) =

A∗(−fx,−fy) yields

Ĩ(fx, fy) = 2Hc(fx, fy; z)A(fx, fy). (22)

Hence

Âc(fx, fy; ẑ) = A(fx, fy)C(fx, fy; ∆z, z). (23)

where

C(fx, fy; ∆z, z) ,
[
cos

(
k rf∆z

)
+ cos

(
k rf(2z + ∆z)

)]
(24)

Similarly,

Âs(fx, fy; ẑ) , Hs(fx, fy; ẑ)Ĩ(fx, fy)

= −A(fx, fy)S(fx, fy; ∆z, z). (25)

where

S(fx, fy; ∆z, z) ,
[
sin

(
k rf∆z

)
+ sin

(
k rf(2z + ∆z)

)]
. (26)
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Both C(fx, fy; ∆z, z) and S(fx, fy; ∆z, z) are equal to zero outside the bandwidth limit.

Âc(fx, fy; ẑ) and Âs(fx, fy; ẑ) are the spectral components of the reconstructed object

image associated with the real and imaginary parts of the reconstruction kernel respectively.

Taking the 2D inverse Fourier transform of both sides of (23) and (25) yields

âc(x, y; ẑ) = a(x, y) ∗ ∗c(x, y; ∆z, z) (27)

âs(x, y; ẑ) = −a(x, y) ∗ ∗s(x, y; ∆z, z) (28)

where âc(x, y; ẑ) , F−1
(
Âc(fx, fy; ẑ)

)
, âs(x, y; ẑ) , F−1

(
Âs(fx, fy; ẑ)

)
and

c(x, y; ∆z, z) = F−1
(
C(fx, fy; ∆z, z)

)
=

2π

λ2

[
sinc(kr1) + sinc(kr2)

]
(29)

s(x, y; ∆z, z) = F−1
(
S(fx, fy; ∆z, z)

)
= j

2π

λ2

[
cinc(kr1) + cinc(kr2)

]
(30)

and sinc(x) = sin(x)/x, cinc(x) = cos(x)/x, r1 =
√

x2 + y2 + ∆z2 and r2 =√
x2 + y2 + (∆z + 2z)2. The second equalities in (29) and (30) are obtained by first ex-

pressing C(fx, fy; ∆z, z) and S(fx, fy; ∆z, z) in terms of complex exponential forms similar

to H(fx, fy; z) and then using the 2D Fourier transform pair (3)-(4).

For real a(x, y), âc(x, y; ẑ) represents the object image reconstructed at ẑ and Âc(fx, fy; ẑ)

is its spectrum. The second terms in (24) and (29) correspond to the twin-image component.

The functions c(x, y; ∆z, z) and C(fx, fy; ∆z, z) characterizes the focus behavior of the

object image in the spatial domain and frequency domain, respectively.

Several useful observations follow from (29) and (24):

1. For ∆z ≪ z, c(x, y; ∆z, z) is dominated by sinc(kr1) (see Figure 2); similarly

s(x, y; ∆z, z) is dominated by cinc(kr1). Hence although the twin-image effect remains

visible in the area surrounding the object, as far as the focus behavior is concerned, it

is negligible and may be dropped:

âc(x, y; ∆z) ≈ a(x, y) ∗ ∗
2π

λ2
sinc(kr1), (31)

âs(x, y; ∆z) ≈ −a(x, y) ∗ ∗
2π

λ2
cinc(kr1), (32)

Âc(fx, fy; ẑ) ≈ A(fx, fy) cos
(
k rf∆z

)
, (33)

Âs(fx, fy; ẑ) ≈ −A(fx, fy) sin
(
k rf∆z

)
. (34)

2. At ∆z = 0, sinc(kr1) = sinc(k
√

x2 + y2) is close to but not exactly equal to the

Kronecker delta function. This is the result of the band limitation of the propagation

transfer function. However, the full width half maximum (FWHM) of sinc(k
√

x2 + y2)

is proportional to the wavelength and for most applications is well approximated by

the Kronecker delta function.
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3. Equation (31) states that the reconstructed object is the output of convolving the true

object with sinc(kr1) in the spatial domain. As a result, the l1 norm of âc(x, y; ∆z)

is minimal at the focused distance. When the object is out of focus, the manifest of

this spatial convolution is well-known to be a set of fringes surrounding the true object

and effectively a spatial smoothing of the object image. The convolution distributes

the signal energy more broadly. The more out-of-focus an image is, the smoother it

becomes, which means a larger l1 norm.

To show that both Fc(∆z; z) and Fs(∆z; z) are maximized only at ∆z = 0, it is assumed

here that the twin-image effect is insignificant and the approximations (33) and (34) are

used. Therefore,

Fc(∆z; z) =

∫ ∣∣∣Âc(fx, fy; ẑ)
∣∣∣ dfx dfy

≈

∫
|A(fx, fy)|

∣∣cos
(
k rf∆z

)∣∣ dfx dfy

≤

∫
|A(fx, fy)| dfx dfy (35)

where the equality holds only when ∆z = 0. Similarly,

Fs(∆z; z) = −

∫ ∣∣∣Âs(fx, fy; ẑ)
∣∣∣ dfx dfy

≈ −

∫
|A(fx, fy)|

∣∣sin
(
k rf∆z

)∣∣ dfx dfy

≤ 0 (36)

where the equality holds only when ∆z = 0.

Intuitively, equation (33) indicates that Âc(fx, fy; ẑ) is A(fx, fy) modulated by

cos
(
k rf∆z

)
which, for ∆z 6= 0, is a set of concentric rings in the frequency domain. The ra-

dial cross section of cos
(
k rf∆z

)
is a chirp signal with a chirp rate increasing with ∆z. This

spectral modulation controls the focus behavior of the reconstructed image in the frequency-

domain. As a result of this modulation, the spectrum of the object image reconstructed out

of focus becomes sparse as some of the spectral components are set to zero. Within a fixed

bandwidth disc, the number of zeros increases with an increased ∆z as the chirp rate in-

creases. At ∆z = 0, cos
(
k rf∆z

)
= 1 within the bandwidth disc. Therefore, the l1 norm of

Âc(fx, fy; ẑ) is maximized at the focus distance and decreases as the object is reconstructed

further out of focus.

Consider an example of a point source object, i.e. A(fx, fy) = 1. Then

Fc(∆z; z)|point source =

∫
|C(fx, fy; ∆z, z)| dfx dfy , Fp,c(∆z; z) (37)

Fs(∆z; z)|point source = −

∫
|S(fx, fy; ∆z, z)| dfx dfy , Fp,s(∆z; z) (38)

8



Dropping the twin-image component in both cases,

Fp,c ≈

∫ ∣∣cos
(
k rf∆z

)∣∣ dfx dfy (39)

Fp,s ≈ −

∫ ∣∣sin
(
k rf∆z

)∣∣ dfx dfy (40)

It is easy to verify that both are maximized at the focus distance ẑ = z.

In the presence of the twin-image, since neither (37) nor (38) has closed form expression,

it can be shown numerically that over ∆z ∈ (−z,∞) both Fp,c(∆z; z) and Fp,s(∆z; z) are

maximized at ∆z = 0. Figure 3 has plotted the numerical evaluations of Fp,c and Fp,s for a

point object hologram, with a 256×256 pixel image, 633 nm wavelength and 7.9375µm pixel

size. Both Fp,c(∆z; z) (the lower panels) and Fp,s(∆z; z) (the upper panels) were evaluated

over ẑ ∈ [0, 100 + z] for z = 10, 55, 100 mm and normalized by the hologram size. The left

panel covers the whole range of ẑ ∈ [0, 100 + z] while the small panel on the right shows a

close-up plot around ∆z = 0. In these plots both Fp,c and Fp,s attains peak response at the

actual object distance. The response shown is robust to the twin-image effect.

The calculation of both Fc(∆z; z) and Fs(∆z; z) involves a 2D Fourier transform of the

hologram and for each ∆z computing the l1 norm specified by (19). Compared with a full

reconstruction, it avoids the 2D inverse Fourier transformation at each reconstruction dis-

tance. In the next section, a more efficient implementation in the polar coordinate system in

the frequency domain is developed, which speeds up the processing time dramatically.

4. Efficient Implementation in the Polar Coordinate System

This section develops an efficient algorithm that speeds up the focus metrics computation

by exploiting the circular symmetry of both Hc(fx, fy; ẑ) and Hs(fx, fy; ẑ).

The integrand of (19) can be separated into

|Âc(fx, fy; ẑ)| = |Hc(fx, fy; ẑ)Ĩ(fx, fy)| = |Hc(fx, fy; ẑ)| |Ĩ(fx, fy)| (41)

Note that Hc(fx, fy; ẑ) is circularly symmetric, as seen in (12), and can be rewritten as

Hc(fx, fy; ẑ) = Hc(fr; ẑ) (42)

with no angular dependence. Here fr ,
√

f 2
x + f 2

y denotes the radial spatial frequency. This

fact can be used to remove one integration if (19) is converted from a Cartesian coordinate

system into a polar system. The focus metric becomes

Fc(∆z; z) =

∫
∞

fr=0

∫ 2π

fθ=0

∣∣∣Hc(fr; ẑ)Ĩ(fr, fθ)
∣∣∣ fr dfr dfθ

=

∫
∞

fr=0

|Hc(fr; ẑ)|
[∫ 2π

fθ=0

|Ĩ(fr, fθ)|dfθ

]
fr dfr. (43)
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Here, fθ is the angular spatial frequency.

The inner integration over |Ĩ(fr, θ)| is now independent of Hc(fr; ẑ) and hence ẑ. It is a

constant for a given hologram that can be precalculated. Thus, the focus metric integration

is reduced to a single integration over fr using a polar form. Derivation of Fs is similar,

replacing Hc with Hs. Table 1 summerizes the proposed algorithm.

1. Calculate Ĩ(fx, fy), 2D FFT of the hologram; (44)

2. Calculate Ĩ(fr, fθ) from Ĩ(fx, fy) via polar coordinate transformation; (45)

3. Calculate
∫ 2π

fθ=0
|Ĩ(fr, fθ)|dfθ; (46)

4. Calculate Fc(∆z; z) according to (43) for
{
ẑ
}

= ẑ1, · · · ẑS and similarly for Fs; (47)

5. Focus detection via search peaks in Fc or Fs, or a combination of both, over
{
ẑ
}
,

obtain a set of detected distances
{
ẑd

}
; (48)

6. Selective reconstruction over
{
ẑd

}
(49)

Table 1. The Algorithm for spectral l1 norm focus metrics calculation in polar

coordinate system and selective reconstruction.

The single most pressing challenge for using a polar form involves computing Ĩ(fr, θ) from

Ĩ(fx, fy). The approach taken here is to use a bilinear interpolation to resample Ĩ(fx, fy),

which was found to be sufficient performance-wisely while limiting the amount of compu-

tation required. Other methods for calculating the polar Fourier transform with increased

accuracy have been proposed [15] at the risk of additional computation time and complexity.

The fr grid points are oversampled to account for non-regular radial spacing over the rect-

angular fx, fy grid. The sampling rate in fθ can be reduced to increase calculation speed.

The inner 90% of the Fourier transform, measured across the diagonal, was used to estimate

the polar spatial frequencies in order to capture a portion of the high-frequency information

contained in the corners without significantly increasing the error.

Computational Savings:

The most significant benefit of using l1 norms in the frequency domain is fast computation.

The initial 2D Fourier transform of an N × N hologram is a common task and only needs

to be done once. The spatial l1 norm method point-wise multiplies the spectral coefficients

by H(fx, fy; ẑ), takes the inverse 2D Fourier transform, and applies a focus measure in the

spatial domain for each particular ẑ. Its focus measure is the sum of magnitudes of all N2
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elements, assumed to run in approximately kN2 time, for some positive number k. If S

depths are scanned to find the best focus, the total operation count is

opspatial = 2N2log2N + (2log2N + k + 1)N2S (50)

Taking the complex magnitudes and summing in the frequency domain avoids the additional

inverse Fourier transform, so that the operation count for the l1 norm technique in Cartesian

frequency domain coordinate system becomes

opfreq = 2N2log2N + (k + 1)N2S (51)

Discounting the initial Fourier transform (which is not significant compared to other terms

when the value of S is large), the method-dependent speedup is then given by

opspatial

opfreq
=

2

k + 1
log2N + 1 (52)

Typical holograms, sized 512 × 512 pixels through 2048 × 2048 pixels, have speedups of

2.6 to 3.0 respectively, for k = 10.

Using the polar transform adds a layer of complexity but significantly boosts computation

rates for even small S. After the initial Fourier transform, the spectral data is resampled using

a bilinear interpolation and the complex magnitudes are summed across one dimension. A

depth kernel and additional complex magnitude summation along the remaining dimension

are then applied for each sampled depth. Denoting the total number of radial and angular

sampling points as R and θ, respectively, and noting that a simple bilinear interpolation

takes 6Rθ multiplications, the total operation count using the polar transform method is

oppol = 2N2log2N + (6 + k)Rθ + (k + 1)RS (53)

Approximating Rθ ≈ N2 and R ≈ 2N , and again discounting the initial Fourier transform

common to each method, the speedup is then

opspatial

oppol

=
(2log2N + k + 1)N2S

(k + 6)N2 + 2(k + 1)NS
(54)

For N = 1024, S = 100 and k = 10, the speedup is approximately 167, two orders of

magnitude faster than the spatial l1 norm based method, and about 60 times faster than the

full two-dimensional frequency based l1 norm based method.

5. Experimental Results

5.A. Case examples

The new frequency domain focus metrics defined in (18), (20) were calculated from several

real holograms of marine plankton, using both the Cartesian coordinate system implemen-

tation and the polar coordinate system via the fast algorithm. A least squares fitting was
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applied to all focus metrics to extract and remove the linear trend. Then the focus metrics

were smoothed over plus and minus 1 mm and normalized to [0, 1]. In each case, only the

product of the resulting Fc and Fs is plotted in all the figures, denoted as Fcart and Fpol

respectively.

For each hologram, the spatial domain focus metric developed by Dubois et al. [10] was

calculated from a sequence of uniformly spaced reconstructions, without removing the twin-

image. The results were then sign reversed, then with linear trend removed, smoothed and

normalized in a similar fashion as done to the frequency domain metrics, before being plotted

as Fspa.

Three examples are shown in Figures 4, 5 and 6, corresponding to a single object, two

objects and three objects, respectively. In each figure, the portion of the hologram containing

the object of interest is shown in the lower left corner. Clockwise starting from the upper left

are a sequence of object image planes reconstructed at various distances around the focus

points. The plot in the lower middle panel shows the three focus metric curves as a function

of the reconstruction distance.

In Figure 4, the object was located at 24 mm away from the hologram. The hologram was

recorded with a collimated He-Ne laser beam of wavelength 633 nm. The digitized hologram’s

pixel size is 7.9375 µm. A square cut of size 256 × 256 was used for focus detection and

reconstruction. The reconstructed images at z = 16, 20, 24, 28, 32 mm are shown and the

object is in its best focus at z = 24 mm. Good agreement is observed among Fcart, Fpol and

Fspa at this distance.

In Figure 5, the hologram was recorded using a spherical reference beam from a fiber-

coupled laser source of wavelength 658 nm and a camera with 9µm pixel size. A 1024×1024

square cut of the hologram was used for reconstruction as shown at the lower left corner,

so that it contained two objects that are laterally close to each other. Images obtained at

z = 49, 61, 73, 151, 163, 175 mm are shown clockwise in the Figure. The upper copepod is

in focus at z = 61mm and the lower one at z = 163 mm. The peaks predicted by Fcart, Fpol

and Fspa are consistent and match the focus distances found in the reconstructed images.

In Figure 6, three objects, located approximately at z = 45, 64, 72.5 mm respectively,

were recorded in a single hologram with the same laser source and camera as in Figure 5. A

1024 × 1024 square cut of the hologram was used for reconstruction as shown at the lower

left corner; clockwise starting from the upper left in the figure are images reconstructed at

z = 42, 45, 48, 62, 64, 67, 70, 72.5, 75 mm, respectively. The copepod on the upper left

corner of the hologram is focused at z = 45 mm; the one in the middle is focused at z = 64

mm. It was oriented such that its body extends in the axial direction. As a result, all focus

metrics have broadened responses at z = 64 mm. The copepod at the lower left is in focus

at z = 72.5 mm. All three curves are consistent and accurately predict the distances at

12



which the objects are in focus. The peaks around z = 85 mm are associated with some small

particles not shown in the figure that are focused at that distance.

5.B. Statistical results

In order to statistically verify the accuracy and robustness of the proposed technique, the

fast algorithm implemented in the polar coordinate system was integrated into an automatic

focus detection and selective reconstruction program which was applied to a set of holograms

of plankton. These holograms were taken on August 03, 2005 at MIT’s hologram laboratory,

and each contained from 10 to 26 large objects. For each hologram, a number of regions of

interest, each of size 1024 × 1024 pixels, were selected around the objects. The algorithm

then calculated the focus metrics for each region over an axial distance range from 30 mm

to 116 mm at an interval of 1 mm. A simple peak detection algorithm was used to select

peaks from the focus metric curves. Full reconstructions were then carried out around these

detected axial distances, based on which both the probability of detection Pd and probability

of false alarms Fa were calculated, as shown in Table 2. The mean of Pd is 75.35% and its

standard deviation is 10.49%. The mean of Fa is 1.15% and its standard deviation is 0.24%.

6. Conclusion

A new focus detection technique is developed in this paper that can locate the object focus

distances prior to a full reconstruction. The focus metrics proposed here are based directly

on the spectral flatness of the reconstructed images. The technique has potential in both

serving as a stand-alone automatic focus detector and as a preprocessor providing the fo-

cus depth distances so that the subsequent reconstruction can be done selectively at these

distances, saving significant amount of fruitless computations that are inevitable in a blind

reconstruction. The technique is especially attractive due to a highly efficient implementa-

tion in the polar coordinate system, promising real-time focus detection. The experimental

results based on individual as well as a group of plankton holograms show that the technique

is accurate and robust.
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hologram no. totl. object counts positive detections false alarms Pd(%) Fa(%)

1 10 9 12 90 1.4

2 12 9 11 75 1.1

3 14 12 16 86 1.4

4 10 8 9 80 1.1

5 14 9 12 64 1.0

6 13 9 15 69 1.3

7 15 14 17 93 1.3

8 16 13 15 81 1.1

9 12 9 10 75 1.0

10 13 10 11 77 1.0

11 18 16 17 89 1.1

12 16 14 22 88 1.6

13 15 11 17 73 1.3

14 15 8 14 53 1.1

15 21 15 19 71 1.1

16 21 14 20 67 1.1

17 22 15 19 68 1.0

18 20 14 26 70 1.5

19 26 20 19 77 0.9

20 25 15 14 60 0.7

Table 2. Statistics from experimental results.

Pd = positive detections/total object counts;

Fa = false alarms/(total object counts × number of planes per object).
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8. List of Figure Captions

Fig. 1. Object wavefront propagation and hologram recording: (a) object plane;

(b) propagated object field; (c) the hologram.
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Fig. 2. The spatial convolution kernels sinc(kr1) (1st column), sinc(kr2) (2nd

column) and c(x, y; ∆z, z) = sinc(kr1) + sinc(kr2) (3rd column), with z =

200000λ and ∆z = 0 (1st row), 50λ (2nd row) and 500λ (3rd row).
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Fig. 3. Given a point object and a hologram of size 256 × 256, pixel size

7.9375µm and wavelength 633nm. (a) Fs(∆z; z) (upper panels) and (b)

Fc(∆z; z) (lower panels) for ∆z ∈ [−z, 100] and z = 10, 55, 100 mm.
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Fig. 4. Focus detection of a single object located at z = 25mm from the

hologram. The lower left panel shows a square cut of the hologram containing

the object; clockwise starting from the upper left are images reconstructed

at z = 16, 20, 24, 28, 32 mm, respectively. The plot shows the spatial focus

metric Fspa (dot-line with circle), the focus metric product in Cartesian system

Fcart (dash line with dot) and the focus metric product in polar system Fpol

(solid line with cross), as functions of z.
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z=49 mm z=61 mm z=73 mm z=151 mm z=163 mm

z=175 mmHologram
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Fig. 5. Focus detection of two objects separated in axial distance, one located

at z = 61mm and the other z = 163mm. The lower left panel shows a square

cut of the hologram containing both objects; clockwise starting from the upper

left are images reconstructed at z = 49, 61, 73, 151, 163, 175 mm, respec-

tively. The plot shows Fspa (dot-line with circle), the focus metric product in

Cartesian system Fcart (dash line with dot) and the focus metric product in

polar system Fpol (solid line with cross), as functions of z.
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z=42 mm z=45 mm z=48 mm z=62 mm z=64 mm z=67 mm z=70 mm

z=72.5 mmz=75 mmHologram
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Fig. 6. Focus detection of three objects separated in axial distance, lo-

cated approximately around z = 45, 64, 72.5mm respectively. The lower

left panel shows a square cut of the hologram containing all the objects;

clockwise starting from the upper left are images reconstructed at z =

42, 45, 48, 62, 64, 67, 70, 72.5, 75 mm, respectively. The plot shows the

spatial focus metric Fspa (dot-line with circle), the focus metric product in

Cartesian system Fcart (dash line with dot) and the focus metric product in

polar system Fpol (solid line with cross), as functions of z.
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