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Abstract
The importance of eddies and nonlinearities in ß-plume dynamics in the deep ocean
was investigated using reduced gravity models of the deep ocean forced by a small
region of cross isopycnal transport in the interior. The effect of topography on ß-
plumes was also examined by placing a Gaussian bump in the forcing region. Despite
the fact that the mean flow is weak in the deep ocean interior, it was found that the
nonlinearity and instabilities are stil important for realistic parameter and forcing
values. The flow was dominated by eddies and was remarkably different from what
would be expected from a linear solution.
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Chapter i

Introduction

1.1 What is a ß-plume?

A ß-plume is a large scale horizontal circulation driven by a localized mass source

or sink. It was introduced by Stommel (Stommel 1982) who was inspired by an

observational result which show an anomaly of helium from the hydrothermal vents

extending to the west of East Pacific Rise (Lupton 1984). This feature was unexpected

at the time, for the circulation at this location (90° - 134°W, 15°8) was believed to

be a weak southeast flow according to the Stommel and Arons Model (Stommel and

Arons 1960). Stommel then showed that a hydrothermal vent is capable of driving a

large horizontal circulation on its own by using a linear vorticity balance equation;

ßv = fow*
H (1. 1)

where fo, ß, v, w*, and H are the Coriolis parameter, its meridional gradient, merid-

ional velocity, cross isopycnal velocity, and layer thickness respectively. More detailed

description of this equation and terms wil be given later. This linear vorticity equa-

tion (Eq 1.1) is a balance between planetary vorticity advection (LHS) and vortex

stretching(w* ? 0) or squashing(w* ~ 0) (RHS). For a wind driven gyre where this

linear vorticity balance is known as Sverdrup balance, Ekman pumping causes vortex

stretching/squashing and drives a meridional flow. For a ß-plume, the cross isopycnal

9



transport created by the hydrothermal vents causes vortex stretching/squashing and

drives a meridional flow. However, the meridional flow can establish only in limited

areas because unlike wind forcing, hydrothermal vents do not exist all over the basin.

Figure 1-1 shows the basic concept schematically. Through geothermal heating, the

water near the vent is heated and rises to its neutrally buoyant layer as it entrains

the surrounding water. For the neutrally buoyant layer, this cross isopycnal trans-

port leads to vortex squashing. Fì'om Eq 1.1, vortex squashing creates a southward

flow. In order to balance this southward flow, there needs to be a northward flow

somewhere in the basin. Since there can not be any meridional flow in the interior

where hydrothermal vents do not exist, an anticyclonic circulation consisting of a

northward western boundary flow, a westward zonal jet and an eastward zonal wil

establish. For the layer below the neutrally buoyant level, the opposite mechanism

causes vortex stretching and a cyclonic circulation wil establish. Figure 1-2 is the

steady solution for each layer. A linear two-and-a-half layer reduced gravity model

described in the next chapter was used to calculate this steady solution. These two

counter rotating circulations are what has been called the "ß-plume." The concept

of ß-plumes provided a mechanism for creating a strong zonal flow in the deep ocean.

A small cross isopycnal transport is capable of forcing a horizontal circulation

of much larger order of magnitude than itself. For example, at 300 N, the linear

vorticity balance (Eq 1.1) shows that a cross isopycnal transport of 0.01 Sv over an

area 100km(meridional) x ioOkm(zonal) is capable of creating a horizontal transport

of 3.5 Sv. The ratio of total cross isopycnal transport(W) to horizontal transport(M)

depends on a parameter f / ßL which is a function of the latitude and meridional

length scale L of where the cross isopycnal transport exists. ¡Fedlosky 1996, Spall

2000j. Suppose a region of constant cross isopycnal velocity (forcing region) exists

in the interior as shown in Figure 1 -3a. From linear vorticity balance, the total

meridional transport(M) across this forcing region is,

fw*M = vHLx = ßLx (1.2)

10



z -- N Equator~

isopycnal'- w*

Figure 1-1: Schematic Picture of a ß-plume adapted from 8tommel(1982). The upper
layer represents the neutrally buoyant density layer and the bottom layer represents
the layer below. The left boundary represents the western boundary. The water
heated by the vent entrains the surrounding water from the bottom layer and enters
the upper layer with a total cross isopycnal transport of W* As a result of this cross
isopycnal transport, a cyclonic circulation is established in the bottom layer and an
anticyclonic circulation is established in the upper layer
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Figure 1-2: Velocity field in the (a) Neutrally buoyant layer and (b) Layer below are
shown. The black circles indicates the forcing region. Velocity larger than 0.01 m/s
are truncated and are shown in red. Only the values at every 5 grid points are shown.
For scaling, 0.01 m/s is shown in the bottom right corner
(a) shows an anticyclonic circulation and (b) shows a cyclonic circulation. Meridional
flow exists only in the forcing region and the western boundary connected by the
two zonal jets. The weak zonal jets at the southern and northern boundar (in both
figures) are created by the weak uniform background flow from the upper layer to
the layer below. It is a weak Stommel and Arons type of circulation and thus is not
strongly interacting with the ß-plume circulation.
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Forcing Region

Figure 1-3: A schematic of a ß-plume when the water mass is leaving the layer:
(a) The region of intense cross isopycnal velocity (forcing region) is located in the
interior of a rectangular basin. Assuming that the linear vorticity balance holds
inside this forcing region, the total horizontal transport induced by the forcing is
M = vLx = ~~ Lx' Using the total cross isopycnal transport (W = w* LxLy) across
the forcing region, it = ßLH' The ratio shows that the induced horizontal transport
is inversely proportional to Ly as shown schematically in (b) and (c).
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The total cross isopycnal transport in the forcing region is W

equation (Eq 1.2) becomes

w* LxLy so this

M f
W ßLyH (1.3)

This parameter shows that the total meridional transport is inversely proportional to

the meridional length scale of the forcing region.

Studies on ß-plumes progressed by solving the steady problem through theory,

primarily because only a few observations were available in the deep ocean. It might

be argued that ß-plumes are localized processes and thus might be insignificant in the

presence of mean flows such as those in the Stommel and Arons model, topographic

effects, and wind forcing. Prior effort focused on this problem finds the ß-plume

stil significant enough in some region to compete with the mean flow and to drive

the deep circulation. Speer (1989) showed that the existence of a ß-plume in the

presence of a background Stommel and Arons flow depends on the ratio of long wave

speed to the background flow which is large enough to overcome the background flow

in some places. Hautala and Riser (1993b) investigated a ß-plume in the presence

of background Stommel and Arons flow, topography, and wind forcing by solving a

steady geostrophic three layer modeL. Their result also showed the strength of the

ß-plume to be significant enough to compete with other effects, at least locally. An

observational work of Hautala and Riser (1993a) which showed the effect of ß plumes

in the deep ocean, also seems to be in support of the previous theoretical studies.

The concept of ß-plumes have been applied to regions besides deep ocean such as

the Mediterranean overflow. Localized entrainment of Atlantic Ocean water into the

overflow water is driving the ß-plume in this case. Since w* is negative, the mechanism

for this ß-plume works in the opposite sense creating a cyclonic gyre in the upper

layer and an anticyclonic gyre in the lower layer since w* is negative. Jia (2000)

showed this mechanism to be a possible cause for the Azores current. Spall (2001)

and Özgökmen and Crisciani (2000) showed that friction is capable of diminishing

or completely wiping out the ß-plume when the forcing region (mass sink/source) is

along the eastern boundary. The role of friction can not be neglected in ß-plume
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dynamics if the mass sink/ source is close to the boundary.

There have been only a few studies on the effect of nonlinearities and instabilties

on ß-plumes. The results of Özgökmen et aL. (2001) shows the presence of barotropic

instabilities in their calculations of the Mediterranean overflow case, although no

detailed analysis of the role of these instabilities were given. ß-plumes are also two

layer events and baroclinicity can become important. How ß-plumes are affected by

nonlinearities and instabilities is an open question and wil be a focus of this study.

1.2 Single Hydrothermal Plume Events

Single hydrothermal plume events have been studied theoretically (Speer 1989), nu-

merically (Speer and Marshall 1995), and through laboratory experiments ¡e.g. Hel-

frich and Battisti (1991)J. Most work concentrated on the formation and breaking

mechanisms of a single plume event. A hydrothermal plume first rises to a level of

neutral buoyancy and then starts to spread out laterally, forming a lenselike struc-

ture. This lenselike structure creates an anticyclonic vortex in the neutrally buoyant

density layer and a cyclonic vortex below this layer. The lens structure is maintained

as the plume increases laterally until it reaches the size of the deformation radius.

Then, the lens structure begins to break apart. The anticyclonic vortex in the neu-

trally buoyant layer splits into an anticyclonic vortex and a cyclonic vortex and many

vortices of different sign wil eventually emerge in the region with each vortex having

no particular preference on the direction in which it propagates (Hogg and Stommel

1985).

The evolution of a single plume in the deep ocean is diffcult to observe. Joyce et

al. (1998) showed two vortices of different sign on top of each other formed in one of

the mega plume events in its early stages. D'Asaro et aL. (1994) also found a vortex

structure both in the young and mature mega plumes. Observations seem to support

the formation mechanism outlined above.

The studies of a single plume event have been mainly based on a f - plane. This is

because each plume event occurs on the order of a few kilometers and the change in
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f is negligible. The nonlinear nature of two vortices of different sign on top of each

other have been well studied (e.g. Flierl (1988)) on the f-plane, but if a large scale

effect of hydrothermal plumes were to be considered, ß cannot be neglected from its

dynamics. Nonlinear behavior of the large scale plume wil be influenced by ß which

could stabilize the vortex breaking observed in a f plane modeL. While there have

been many studies on nonlinear behavior of individual plume events in small scales,

the nonlinear behavior of the large scale mean of many single plumes has not been

well studied.

1.3 Topography

Hydrothermal vents typically lie on mid ocean ridges where topographic variations

are large compared to other parts of the ocean interior. Overflows also exist where to-

pographic variations are large. The regions where the concept of ß-plumes are applied

coincide to regions where topographic variation is considered large. The importance

of topography on ß-plumes has been addressed in some previous studies (Speer 1989),

although its actual effect has not been studied adequately. The topographic varia-

tions can modify the background Potential Vorticity (PV) gradient, which wil likely

change the basic circulation.

Kawase and Straub (1991) and Straub and Rhines (1990) investigated the effect

of topographic variation on the Stommel and Arons Flow. Although their studies

are based on the Stommel and Arons flow, they showed an establishment of two

zonal jets to the west of the topography similar to ß-plumes. This occurred when

the topographic variation was large enough to create a region of closed PV contour.

These two zonal jets existed roughly along the same latitude and were flowing in

the opposite direction. Uniform mixing across the basin is capable of creating zonal

jets in the presence of topography. However, further investigation is needed for cases

when mixing is localized instead of uniform across the basin. The topographic effect

of nonlinearity and instability wil also need further investigation.
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1.4 Present work

The motivation of this work is to examine the role of eddies and nonlinearities on

the dynamics of ß-plumes. As mentioned in the previous sections, past studies of

large scale ß-plumes have focused more on linear dynamics while eddies were usually

neglected. However, this does not necessarily mean that the large scale plume has to

be governed by linear dynamics. For example, can the narrow zonal jets really exist?

Are they stable? Nonlinearities and instabilities could play an important role and

influence the ß-plume.

Past studies of single hydrothermal plume events have focused on the formation

and breaking mechanism on a f-plane. The behavior of a large scale plume, repre-

senting series of single hydrothermal events with a large scale mean, wil likely be

influenced by ß and behave differently from a single plume event. However, the non-

linear dynamics of single plume events turned out to be quite relevant to ß-plumes

found in this thesis. This thesis attempts to show that eddies and nonlinearities do

influence the large scale ß-plume with its dynamics somewhat similar to the f plane

dynamics. It should be noted that the eddies that wil be shown in this study are

not the hydrothermal eddies created by some particular hydrothermal plume event

or from interaction between hydrothermal plumes. A large scale mean of the effect

of many hydrothermal events was used because the resolution was not high enough

to suffciently resolve the dynamics of each hydrothermal plume event. Î,

Topographic effects wil also be investigated. Not only can topography change the

structure of the ß-plume but it can also change the instability mechanism because of

the topographic ß effect. The importance of nonlinearities and instabilties can also

change with the topographic variation.

1'1"
g.

¡,,
:r

Figure 1-4 is a result of the same reduced gravity model as the one used for Figure

1-2 but now with nonlinearity and varied bottom topography. Compared to Figure

1-2 where the model was linear with a flat bottom, it is apparent that nonlinearity

and varied topography do affect the ß-plume. The flow structure is now complicated

and its dynamics are not easy to understand. How this complicated flow field was
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created wil be described in the following chapters by separating the problem into

two parts so that it easier to understand. (1) How baroclinicity effects ß-plumes. (2)

How bottom topography effects ß-plumes. The details of the numerical model used

in this study are described in Chapter 2. Scaling arguments, PV balance equation

and thickness balance equation which wil be used when diagnosing the result wil

also be explained here. The effect of baroclinicity on ß-plume with a flat bottom will

be described in chapter 3. The effect of topography on the ß-plume wil be described

in chapter 4. Chapter 5 is the summary and conclusion.

¡,

:l
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Figure 1-4. An instantaneous pressure field after 100 years of spinup when nonlineaity
and bottom topography variation variation are included into the previous two-and-
a-half layer linear model (used for Stommel's solution shown in Figure 1-2). The
meridional length of the basin is also longer to the north than the previous linear

modeL. The forcing region is indicated by the black circle. High pressure is contoured
in red and low pressure is in blue.
The flow in both layers is now dominated by eddies. The large scale anticyclonic
and cyclonic circulation expected from the linear dynamics like Figure 1-2 is hard to
notice. The flow is roughly geostrophic with the velocities basically along the pressure
contours with red to the right. More complete details of this figure wil be shown in
Chapter 4 where this case wil be examined more in detaiL.
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Chapter 2

Model Description and Basic

theory

2.1 Numerical Model

A flipped two and a half layer reduced gravity model was used in this study. This

model is simple but includes the necessary physics for the purpose of this study.

A schematic picture of this model is shown in Figure 2-1. Unlike typical reduced

gravity models, the top layer is motionless. There are two moving layers of constant

density which represent deep ocean waters. (These two layers represent the neutrally

buoyant layer and the layer below which was mentioned in Chapter 1.) The cross

isopycnal transport induced by the hydrothermal vents is represented by a prescribed

cross isopycnal velocity (w*) between the two moving layers. The model solves the

primitive equations based on the Arakawa C-grid and is based on the model used in

Yang and Price (2000).

Reduced gravity defined as g' = ßp . g / Po is set to 5 x io-4m/ S2, where g is the

gravitational acceleration and ßp is the density difference between each layer and the

one above. The density difference ßP2 and ßP3 where ßP2 = P2 - Pi and ßP3 =

P3 - P2, are set to be the same. Subscript 1, 2, and 3 represent the top, intermediate,

and bottom layer respectively. Initial layer thickness is 500m for both layer 2 and 3.

,H and g' were estimated from observation of a hydrothermal plume in Juan de Fuca

21



z

Laye r 1

(u,v=O)

h2

h3

Layer 2

(Ho=SOOm)

Layer 3
(Ho= SOOm)

Figure 2-1. Schematic of the Reduced Gravity Model: The top layer(Layer 1) is
motionless. x and y axis is to the eat and north respectively. z is the vertical axis
measured from the bottom (0). Layers 2 and 3 are the two moving layers which repre-
sent the deep ocean waters. Both layers have initial layer thickness 500m. The domain
size is 400km or 600km meridionally and 800km zonally. Topographic variation only
exists for layer 3.
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Ridge (Baker 1987). The deformation radius is RDodei = J g'(hi + h2)/ fo = iokm

for baroclinic mode 1 and RmDode2 = g'~/ r = tkm for baroclinic mode 2.
(hi +h2) J 0

The ß plane approximation (J = fo + ßy) was used for the Coriolis parameter

with its center latitude set to 300 N. Local Cartesian coordinates were used with x

and y positive to the east and north. The horizontal domain is rectangular, SOOkm

wide zonally and 400km or 600km long meridionally depending on the experiment.

The ß plane approximation is valid for both cases, ßL/ fo ~~ 1.

Lateral viscosity was used for friction with AH = 5m2 / s which gives a Munk

boundary layer width of 6km. The model grid is square, ßx = ßy = 2km, and is

suffcient to resolve the M unk western boundary layer and the deformation radius of

the two modes mentioned earlier. No slip and no normal flow were used for the lateral

boundary condition.

For layer 2, the momentum equation and the continuity equation are ¡Pedlosky

(1996)J:

dU2 _ f _ _ ,8(h2 + h3 + hb) F
dt V2 - 9 8x + 2x,
dV2 f _ _ ,8(h2 + h3 + hb) F

dt + U2 - 9 8y + 2y,
8h2 8( U2h2) 8( V2h2) *
at + 8x + 8y = W .

(2.1)

(2.2)

(2.3)

For layer 3:

dU3 _ f _ _ 'h 8(h2 + 2h3 + 2hb) F
dt V3 - 9 3 8x + 3x,
dV3 f _ _ 'h 8(h2 + 2h3 + 2hb) F

dt + U3 - 9 3 8y + 3y,
8h3 8(U3h3) 8(V3h3) *
8t + 8x + 8y = -w .

(2.4)

(2.5)

(2.6)

ü = (u, v), h, hb, and \7 are horizontal velocity, layer thickness, bottom topography,

and horizontal gradient vector (8/ 8x, 8/ 8y) respectively. Initial layer thickness for
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the layers are set to

h2(t = 0)

h3(t = 0)

Ho(= 500m)

ho - hb.

(2.7)

(2.8)

w* is the cross isopycnal velocity defined as,

w* = w _ dr¡
dt (2.9)

where w is the vertical velocity and r¡ is the absolute height of the interface between

layers 2 and 3 (r¡ == h3 + hb). This cross isopycnal velocity is the difference between

the vertical velocity and the change in the absolute height of the interface. If the

interface height does not change with time, cross isopycnal velocity is identical to

vertical velocity. Alternatively, cross isopycnal velocity is identical to the change in

the interface height if vertical velocity is zero.

:F is a dissipation term which is defined in each layer as,

:F2 (:F2x, :F2y) = ~: V' . (h2 V'U2) + w* U3 ~ U2 8( w*),

AH _ * U3 - U2 *
(:F3x, :F3y) = h3 V'. (h3 V'U3) + w h3 8( -w ),

(2.10)

:F3 (2.11)

where 8 (x) is the Heaviside step function

~ 1 ifx:?O8(x) = -
o if x ~ 0

(2.12)

The first term in the dissipation term :F is lateral viscosity and the second term is

momentum transfer between the two moving layers.

Forcing: Cross isopycnal velocity

The model was spun up from rest and forced with a prescribed cross isopycnal velocity

between layers 2 and 3 shown in Figure 2-2. A region of intensive cross isopycnal
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velocity from layer 3 to 2 is located as

* ((X-XO)2 (Y-YO)2J
W3--2 = woexp - Ox - ~ '

with an e-folding scale of 50km for Ox and oy. Maximum cross isopycnal velocity is

located at (xo,Yo) which is 600km from the western boundary and 200km from the

southern boundary. The term "Forcing region" wil correspond to this intense cross

isopycnal velocity region within one e-folding scale. The term "Forcing strength" is

used to represent the magnitude of wo, which controls the strength of the prescribed

cross isopycnal velocity.

A weak cross isopycnal velocity returning from layer 2 to 3 is also given to conserve

mass in each layer,

* = - Wo 11 (_(x - XO)2 - (Y - YO)2J dAW2--3 A exp Ox oY .

where A is the total basin area. This cross isopycnal transport from layer 2 to 3 is

distributed uniformly across the basin. Thus, the total cross isopycnal velocity at

each point is,

w* W;--2 + W;--3 (2.13)
woexp (_(x - XO? _ (Y - YO)2J _ Wo 11 exp (_(x - XO)2 - (Y - YO)2J dA.Ox oY A Ox oY

Figure 2-2 shows the distribution of this total cross isopycnal velocity when Wo =

1 x 10-6 mjs. This amounts to 0.008 Sv of cross isopycnal transport between layer 2

and 3 which is the same order of forcing strength as used in Stommel (1982).
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Figure 2-2: Forcing: Cross isopycnal velocity ¡1O-6 mjsj. Positive value represents
the cross isopycnal transport from layer 3 to 2. Most of the basin has a weak negative
value (rv -2.5 x 10-8 mjs). Maximum cross isopycnal velocity from layer 3 to 2 is
located 600km from the western boundary and 200km from the southern boundary,
with a value of 1 x 10-6 mjs.
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Figure 2-3: Bottom Topography ¡mj The maximum height is co-located with the
maximum isopycnal transport from layer 3 to 2, i.e., 600km from the western bound-
aryand 200km from the southern boundary. The maximum height is 50 ¡mj with
e-folding length scale 50km zonally and 100km meridionally. The bump is meridion-
ally long and was purposely done so so that the meridional length scale of the forcing
and the bump is different.
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Topography

For cases with topographic variation, a simple Gaussian bump with e-folding scale of

50km zonally and 100km meridionally shown in Figure 2-3 was used:

hb = hoexp (_(x - XO)2 - (y - YO)2Jlx ly (2.14)

where ho, lx and ly are the maximum height and the e-folding length scale in x and

y respectively. The maximum height ho is 50 m and is located at the same place

as the cross isopycnal velocity maximum. Asymmetry was given to this Gaussian

bump so that the meridional length scale of the topography and the forcing region

is different (ly =1 by). The size of ho is 10% of the total water column thickness and

this magnitude is small compared to the actual values found near the hydrothermal

vents.

One-and-a-half layer model

A one-and-a-half layer model was used when the barotropicl behavior of a ß-plume

was examined. Baroc1inicity was eliminated by making layer 2 motionless and layer

3 the only moving layer. The momentum equation and continuity equation for layer

3 is, by substituting 112 = 0 and h2 + h3 = 0 into Eq (2.1)-(2.6):

dU3
f - ,å(h3 + hb) F (2.15)- V3 - - g åx + 3x

dt
dV3

+ f - ,å(h3+hb) F (2.16)- U3 - - g åy + 3y
dt

åh3
+

å(U3h3) å(V3h3) *
(2.17)åt ax + ay = -w ,

IThe term 'barotropic' is used for the calculations based on the one-and-a-half layer model and

'baroclinic' for the studies based on the two-and-a-half layer modeL. Although this model is a reduced
gravity model and so the one-and-a-half model is technically not a barotropic model but a baroclinic
model, these terms are used only to distinguish the two type of models.
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where :F3 is

:F3 (F3x,F3y) = ~:\7' (h3\7U3) + w*~:8(-w*). (2.18)

Linear models

Linear models were used to understand the basic behavior of ß-plumes. Both baro-

clinic (two-and-a-half layer) and barotropic (one-and-a-half layer) models were used.

The equations that these two models solve are,

Baroclinic Model:

aU2 _ f _ _ / a( h2 + h3 + hb) F
at V2 - 9 ax + L2x,
aV2 f _ ,a(h2 + h3 + hb) F
at + U2 - -gay + L2y,
ah2 H. (aU2 aV2) _ *
at + 0 ax + ay - w .
aU3 f - 'h a(h2 + 2h3 + 2hb) F

at - V3 - -g 3 ax + L3x,
aV3 f _ _ 'h a(h2 + 2h3 + 2hb) F

at + U3 - 9 3 ay + L3y,
ah3 + (Ho _ hb) . (au3 + aV3) = -W*.
at ax ay

(2.19 )

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

Barotropic Model:

aU3

at
aV3

at
ah3
at

f - ,a(h3 + hb) FV3 - -g ax + L3x

f - ,a(h3 + hb) F+ U3 - -gay + L3y

+ (Ho + hb) . (aU3 + aV3) = -w*ax ay

(2.25)

(2.26)

(2.27)

where :FL is the linearized dissipation term:

:FL2
AH \7 . (Ho \7U3) + w* U3 8( -w*).Ho Ho
H:~ hb \7 . ((Ho - hb)\7U3) + w* Ho ~ hb 8( -w*).

(2.28)

(2.29 ):FL3
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2.2 Basic theory

The basic theoretical methods that wil be used later in the thesis wil be described

in this section. Only layer 3 wil be focused on here, but equations for layer 2 can be

derived by substituting -w* for w* and subscript 2 for 3.

Scaling

Using the momentum equations and the continuity equation, the PV equation in layer

3 is,
dq3 Q3W* J3
di=~+ h3'

where Q = (J + ()jh is the PV and J3/h3 is the PV dissipation defined as the curl of

(2.30)

vorticity dissipation

J3 == l; . \7 X :F3. (2.31 )

over layer thickness where l; is the unit vector in vertical direction and ( is the vertical

component of the relative vorticity, l; . (\7 x 11).

If steady and linear, Eq 2.30 becomes

w*
ßV3 = f ho + JL, (2.32)

where JL is the linearized dissipation term and ho is the initial layer thickness. If fric-

tion is further negligible, this equation becomes the linear vorticity balance equation

mentioned previously as Eq 1.1.

If the flow is unsteady and nonlinear, the full PV equation (Eq 2.30) needs to be

considered. Decomposing the terms in Eq 2.30 and multiplying it with h3,

â~: + 113, \7(3 + ßV3

(i) (ii)
f+(3 u-- '\h~ 3' v 3

( iii)

L.w* + (3 w* + 'ih3 h3 v3.
(iv) (v)

(2.33)

The nonlinearity of this equation can be diagnosed by comparing the order of the

nonlinear terms to the linear terms. Assumptions wil be made here so that geostrophy
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is valid (J )-:? () and that the linear terms (terms (ii) and (iv)) are stil the two main

balancing terms in Eq 2.33. From these assumptions, term (v) becomes negligible

because f ~ ( and the size of other nonlinear terms (terms (i) and (iii)) compared

to the linear terms can be estimated in two parameters:

(i) U3
(ii) ß£2

(2.34)

( iii)

(ii)
j2(U2 - U3)

ßg'H (2.35)

where U,L and H are the scales for horizontal velocity, horizontal length and layer

thickness respectively. Thermal wind balance was used for deriving the second pa-

rameter (Eq 2.35.) If these parameters are of order one or larger, the assumption of

linear vorticity balance fails.

Barotropic can exist in a nonlinear system. A necessary condition for barotropic

instabilty for a purely zonal flow in a flat bottom is the change of sign in the merid-

ional vorticity gradient. Since the planetary vorticity gradient ß is always positive,

this condition requires the total vorticity gradient to be negative at some point.

ß - å2U3 oC 0

åy2 (2.36)

Non-zonal flows are known to be more easily unstable than this condition but here

this condition is used as a rough measure for the potential existence of barotropic

instability. When this necessary condition for barotropic instability is met, the pa-

rameter in Eq 2.34 is of order one or bigger. If bottom topography is included in the

model the condition becomes

ß ß* å2U3 0+ --oC
åy2 (2.37)

where ß* is the topographic ß defined as,

ß* = L åhb
Ho åy (2.38)
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Baroclinic instability can also happen in a nonlinear system. The necessary con-

dition for baroclinic instability for a purely zonal flow in a two layer channel model is

to have a different sign of PV gradient somewhere in the layer. For a zonally uniform

geostrophic flow this condition can be expressed by the velocity shear between the

layers that is required to change the sign of the PV gradient. Since the planetary PV

gradient is positive, this condition requires PV gradient to be negative at some point;

Bq3

By ~ (f+(3) = l-(ß+ B(3 _ f+(3Bh3)By h3 h3 By h3 By
_1 (ß _ _f Bh3) ( )

. .' Zonally uniform (3 = 0
h3 h3 By

~3 (ß - P(U;,~ U3)) ~ 0 (... Geostrophy)

therefore,
ßg'h

Us = U2 - U3 ? -l = Uc. (2.39)

When Us, the velocity shear between the layers, exceeds the critical shear UC, the

necessary condition for baroclinic instability is met. This condition was used as a

rough estimate to examine the potential for baroclinic instabilty. It does not exactly

hold for non-zonal flows but since non-zonal flows are generally unstable in weaker

velocity shear than uc, so the flow is likely to be already baroclinically unstable when

this condition is met. The condition, Us :? uc, is equivalent to having the parameter

in Eq 2.35 of order one or bigger.

Thickness balance (Mass conservation)

Reynolds decomposition wil be used for velocity and layer thickness separating the

variable into a mean term and a fluctuation term,

a = 7i + a', where 7i = ~ iT adt and a' = O. (2.40 )
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where a symbolizes the mean and a' the fluctuation term. The continuity equation

for layer 3 (Eq 2.6) can be rewritten as,

V'(Ü3h3) +V.(u"3h3) =W*. (2.41 )

This is the thickness balance equation. The equation shows the balance between

mean thickness divergence, eddy thickness divergence, and cross isopycnal velocity.

By taking an area integral over some arbitrary area 2l, Eq 2.41 can be written as,

t (Ü3 h3) . ñdl + t (u3h3) . ñdl = J 1 w*dA, (2.42)

where ñ is a unit vector perpendicular to the boundary of area 2l and £ is the line

integral along the boundary of area 2l. This equation shows a balance between the

mean transport divergence, eddy transport divergence and the total cross isopycnal

transport within area 2l.

Potential Vorticity Balance

Using the decomposed form for velocity and potential vorticity (with the same defi-

nition of mean and fluctuation as Eq 2.40), the PV equation (Eq 2.30) becomes,- -.-. ,,- +' ",U3 . v a3 U 3 . v a3 = a3 w*
h3

+L
h3

(a ) (b) (c) (d)
(2.43)

Terms (a) and (b) are the mean and the eddy PV advection terms. Terms (c) and (d)

are the PV increase by the cross isopycnal flux (PV forcing) term and PV dissipation

term. The term "PV balance" is used when the order of each term in this equation

is compared. This becomes a very useful way of diagnosing the role of eddies and

nonlinearities for it can represent the effect of the two nonlinear terms (terms (i) and

(iii)) in Eq 2.33, as one term.

The models described in the first section of this chapter are the ones that wil

be used in the following two chapters. Table 2.1 summarizes the model parameters
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that was used. The second section of this chapter wil be used to understand the dy-

namics of the flow that established in the model calculations. Not only the necessary

condition for instability, but the Thickness balance and the PV balance that were

described here wil become useful for understanding the role of eddies that existed in

Fig,iire 1-4.
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Case 1 2 3 4
Topography Flat Flat Gaussian Gaussian

layers 1.5 2.5 1.5 2.5
Basin size (Meridional 400km 400km 600km 600km

x Zonal) x 800km x 800km x 800km x 800km

Table 2.1: Difference in the model configurations for each case. All other parameters
are the same for every experiment, i.e., AH = 5 ¡m2sJ, l:x = l:y = 2 ¡kmJ, g' =
5 X 10-4 ¡mç2J, and Ho = 500 m.
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Chapter 3

Numerical Model Result:

The effect of Nonlinearity

in a flat bottom basin

A linear ß-plume in a flat bottom basin is shown in Figure 1-2 has been well studied,

but nonlinearity and topographic variation apparently have major effects on ß-plume

dynamics and can create a complicated flow field as shown in Figure 1-4. In order to

understand the dynamics of this flow field, the effects of baroclinicity and topographic

variation were studied separately. The effect of nonlinearity using a flat bottom basin,

is described in this chapter. The effect of topographic variation is described in the

next chapter. All experiments in this chapter and the next use a forcing strength of

w~ = 1 x 10-6 mjs (equivalent to 0.008 Sv of cross isopycnal transport between the

layers).

¡,,
'I

3.1 Barotropic ß-plume: Case 1

Before examining the nonlinear baroclinic ß-plume, the nonlinear barotropic ß-plume

will be examined (Case 1) in order to see how nonlinearity changes the circulation

from the linear solution for a barotropic circulation. A one-and-a-half layer model

was used and thus the lowest layer (layer 3) is the only moving layer. The term
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'barotropic' refers to the flow in the one-and-a-half layer model and 'baroclinic' refers

to the flow in the two-and-a-half layer model to distinguish the two types of flow.

After 30 years of spin up, a cyclonic ß-plume established ¡Figure 3-1aJ. The

circulation was steady except at the southwest corner of the circulation where the

western boundary flow separated from the western boundary. A strong meandering

was also observed in this part of the circulation. The unsteadiness of the southwest

corner and the wavy feature wil be examined more closely later in this section.

The cyclonic structure is similar to the linear solution ¡Figure 1-2bj. The north-

ward flow in the forcing region, zonal jets, and the southward western boundary layer

flow remain the same. Maximum horizontal velocity in the forcing region was 0.007

m/s and the transport was 0.28 Sv which are both similar to the linear solution (0.008

mis, 0.32 Sv). Figure 3-2a shows the size of the terms in the vorticity equation (Eq

2.33) along cross section A (see Figure 3-1a). Although the relative vorticity advec-

tion term and the layer thickness advection term ¡term(i) and (iii)j are not negligible

compared to the linear terms ¡terms (ii) and (iv)J, the figure shows that the balance

stil between the two linear terms.

The unsteadiness at the southwest corner of the ß-plume is due to barotropic

instability. The necessary condition for this instability is that the vorticity gradient

change sign (Eq 2.36). The meridional vorticity gradient in Figure 3-3 shows that

the gradient does change sign where the flow was unsteady. The unsteadiness was

a slow meridional oscilation and breaking of the wavy feature in this region. This

unsteadiness can be seen in Figure 3- 1a and b which are a two snapshot of the flow

after 30 and 35 years of spinup. The existence of this unsteady southwest corner

depended on the magnitude of the velocity of the zonal jet. Experiments with weaker

zonal jets had a steady circulation. However, the waviness stil existed in those

experiments. The waviness, therefore, is not a result of the barotropic instabilty.

The major difference between this nonlinear result (Figure 3- 1) and the linear

result (Figure 1-2) is the existence of the waviness in the southern eastward zonal

jet. The waviness starts from the western boundary where the western boundary flow

overshoots to the south and then gradually dissipates as the flow enters the interior.

I.

¡ .
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Figure 3-1. Case 1: Barotropic flat bottom ß-plume is shown. The plots show the
velocity field at a different time with the pressure contour plotted in the background.
(a) shows after 30 years of spin up and (b) shows 35 years. Notice that the waviness
exists for both cases but the flow is changing its course after it separates from the
western boundary. This was the region where the necessary condition for barotropic
instabilty was met. Except for the wavy southwest corner, the structure is similar
cyclonic circulation as the linear solution in Figure 1-2. Velocity vectors larger than
0.01 m/s are truncated and are shown in red. For scaling, 0.01 m/s is shown in the
down right corner. The two cross sections A and B wil be used later.
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Figure 3-2: Vorticity balance of a barotropic nonlinear case with a flat bottom (Case
1). The plot shows each of the terms in the Vorticity Equation (Eq 2.33) at:
(a) cross section A: The main balance is between the two solid lines. ßv and fw* Ih
which are the two linear terms in the vorticity equation.
(b) cross section B: The main balance is between ßv and u V ( in the interior where the
waviness exist. The waviness gradually decreases as the flow departs from the western
boundary. Friction becomes important in the balance near the western boundary.
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Figure 3-3: Meridional vorticity gradient ß - ~ lljmsj of a barotropic ß-plume in

a flat basin (Case 1). The values on the contour are multiplied by 1010 for clearer

view of the figure. Solid lines represents regions where the meridional gradient is

positive and region within the dotted lines represents regions where the meridional

gradient is zero or negative. The region closed with the dotted lines have negative

gradient. The figure shows region positive gradient and negative gradient closer to the
western boundary which matches with the region where the zonal jet separated from
the western boundary. The dotted regions near the western boundary shows that
the vorticity gradient are negative there, therefore these region satisfies the necessary

condition for barotropic instability.

39



Except for the region where the flow was barotropic ally unstable, the waviness was

steady and did not have any phase propagation. This waviness appears when the

inertial boundary layer width (8/ = vuj ß) is larger than the Munk boundary layer

width (8M = (AHjß)!). Using the linear vorticity balance in the forcing region to

estimate the horizontal velocity scale u, the inertial boundary layer width can be

estimated as 100 km wide which is much larger than the Munk boundary layer width

6km. This condition for the existence of the waviness can be expressed in terms of

the forcing;

( AßH) ! fE r¡~ V ß = V -- (Linear vorticity balance)

:. Wo ? (A;)' ßt = 1. x io-7mls (3.1)

where the initial layer thickness was used for layer thickness scale H. Forcing in this

experiment was Wo = 1 x 1O-6¡mjsj which does exceed this required minimum for

the existence of waviness. The waviness is a standing Rossby wave which has a

westward phase speed that is exactly the opposite of the eastward background flow.

The existence of a standing Rossby wave is typical for a flow that is inertial, eastward,

and strong enough for friction to play role ¡e.g. Moore (1964), Cessi (1990 )j. Figure 3-

2b shows the size of each term in the vorticity Equation (Eq 2.30) along Cross section

B (see Figure 3-1). The plot shows that the wave is created between the relative

vorticity advection term and planetary vorticity advection term. The wavenumber of

the standing Ross by wave is

k = (ß
V -;

(3.2)

for a zonal current of Ujet ¡Pedlosky (1987)j. Assuming the zonal jet has a zonally

uniform velocity, an analytical solution for the wave can be solved from Eq 2.33. The

relative vorticity advection term ¡term (i) in Eq 2.33j is included in a linearized form

40



by decomposing the terms into the background flow and its perturbation.

U . \lu rv Ujet . \lu'

where u' is the velocity of the perturbed field. Using'¥ for the perturbed streamfunc-

tion, the steady linear vorticity equation can be solved as,

AH'¥xxxx -ß'¥x - Ujet'¥xxx = 0 (3.3)

'¥ = '¥oexp (1 !ßx) exp I_~ (OM)3 -;J (3.4)
V U; L 2 oJ UjetoJ

which gives the dissipation length scale,

2Ujet
L = ßAH

Using the linear vorticity balance equation in the forcing region for the scale of Ujet

(0.007 m/s), the wavelength can be estimated as 120km with a dissipation length

scale of 500km from the western boundary. This theoretically estimated wavelength

and dissipation length scale does match with the model result. The linear vorticity

balance wil remain valid in the forcing region EkS long as the forcing region is away

from the western boundary than this dissipation length.

3.2 BaroclInic ß-plume: Case 2

Baroclinicity was then added to the previous experiment by using a two-and-a-half

layer model (Case 2).

The flow did not reach a steady state, but after 50 years of spin up, the flow

reached a statistically steady statel ¡Figure 3-4j. A snapshot and the mean2 of the

pressure and velocity field of this final state in layer 2 are shown in Figures 3-5 and

3-6. Corresponding plots for layer 3 are shown in Figures 3-7 and 3-8. The snapshots
lThe term 'statistically steady state' is used for a state when the time averaged flow field does

not change signficantly with time.
2Mean is taken over the last 100 years of model run.
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Figure 3-4: Potential Energy (PE) divided by Pog' for two baroclinic cases are shown.

PE is integrated for the whole layer over the whole basin: PEl Pog' = J J (17~ + 17~)dA

where 172 is the height deviation at the interface between layer 1 and 2, and 173 is for the
interface between layer 2 and 3. baroclinic flat bottom case (Case 2) and baroclinic
flow with a Gaussian bump (Case 4) reaches a steady state in 50 and 80 years after
spinup respectively. Case 4 takes longer time to reach a steady state because of its
larger basin size.

in both layers show no particular structure and the whole gyre was dominated by

eddies. However, the mean flow resembles a familiar ß-plume; the flow is anticyclonic

in layer 2 and cyclonic in layer 3 although the flow has become broad and weak

compared to experiment 1.

The maximum horizontal velocity of the mean flow in the forcing region was 0.003

m/s for layer 2 and 0.004 m/s for layer 3. The horizontal transport of the zonal jet

was 0.06 Sv for layer 2 and 0.08 Sv for layer 3. The magnitude of the transport

decreased to roughly a third of the value of case 1 (0.007 mis, 0.28 Sv). The zonal

transport of case 1 and the mean zonal transport of this case at cross section C (see

figure 3-8) are compared in Figure 3-9. The decrease of the transport is clear.

Baroclinic instabilty is the main mechanism for generating the eddies. From Eq
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Figure 3-5: Pressure contours in layer 2 for a baroclinic flat bottom case (Case 2).
The pressure in this layer is Pz P09' . (h~ + h~) and the figure shows h~ + h~ where'

represents the fluctuation from initial state. (a) A instantaneous pressure field after
100 years and (b) mean pressure field are shown. Contour intervals are 50¡mjfor each
plot. (a) The instantaneous pressure field shows a field dominated by eddies. Small
eddies are around the forcing region. The eddies become larger as it moves away
from the forcing region and are eventually dissipated. ß-plume structure can hardly
be recognized. (b) The mean pressure field shows a familiar ß-plume. The flow is in
anticyclonic sense. The interval of the pressure contours are much broader than Case
1 (Figure 3- 1) Also pressure gradient exists where it did not in case 1. The figure
shows the weakening and broadening of the mean flow.
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Figure 3-6: Velocity field in layer 2 for a baroclinic flat bottom case (Case 2) The size
of the vectors can be compared with Figure 3-1. (a) The instantaneous velocity after
100 years and (b) the mean velocity are shown. Just like the pressure field, (a) shows
a field dominated by eddies. They have large velocity values compared to the mean.
Small eddies are around the forcing region. The eddies become larger as it moves
away from the forcing region and are eventually dissipated. ß-plume structure can
hardly be recognized. (b) shows a familar ß-plume, although it is very hard to see
this because the flow is very weak. The flow is in anticyclonic sense. Velocity vectors
exists where it did not in case 1. The figure shows the weakening and broadening of
the mean flow. Velocity vectors larger than 0.01 m/s are truncated and are shown in
red. For scaling, 0.01 m/s is shown in the down right corner
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Figure 3-7: Pressure contours in layer 3 for a baroclinic flat bottom case (Case 2)
Pressure fluctuation is P3 Po9' . (h~ + 2hs) in this layer and the values shown in

the picture are h2 + 2hs. (a) A instantaneous pressure field after 100 years and (b)
mean pressure field are shown. The total pressure field (a) represents only one snap
shot of the statistically steady state. Contour intervals are 50¡mjfor each plot. (a)
The instantaneous pressure field shows a field dominated by eddies. Small eddies are
around the forcing region. The eddies become larger as it moves away from the forcing
region and are eventually dissipated. ß-plume structure can hardly be recognized. (b)
The mean pressure field shows a familiar ß-plume. The flow is in cyclonic sense. The
interval of the pressure contours are much broader than Case 1 (Figure 3- 1 ). Also
pressure gradient exists where it did not in case 1 The figure shows the weakening
and broadening of the mean flow.
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Figure 3-8: Velocity field in layer 2 for a baroclinic flat bottom case (Case 2) The
size of the vectors can be compared with Figure 3-6. (a) The instantaneous velocity
after 100 years and (b) the mean velocity are shown. Just like the pressure field,
(a) shows a field dominated by 

eddies. Small eddies are around the forcing region.
The eddies become larger as it moves away from the forcing region and are eventually
dissipated. ß-plume structure can hardly be recognized. (b) shows a familar ß-plume
although it is hard to see because of the small values. The flow is in cyclonic sense.
Velocity vectors exists where it did not in case 1 The figure shows the weakening
and broadening of the mean flow. Velocity vectors larger than 0.01 m/s are truncated
and are shown in red. For scaling, 0.01 m/s is shown in the down right corner
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Figure 3-9: Comparison of zonal transport of case 1 and 2 along Cross section C. The
values for Case 1 are shown in Blue and the values for Case 2 are shown in Red. Case
1 shows the westward zonal jet in the north (y rv 250km) and eastward zonal jet in
the south (y rv 150km). Case 2 shows a decrease of magnitude in both of the jets. It
also shows that the zonal jets have diffused out to north and south. The decrease of
magnitude between the two experiment is clear.

47



2.39, the required velocity shear (between the two layers) for baroc1inic instabilty is,

Uc
ßg'H

j2

2 x 10-11 .5 x 10-4 .500 = 0.001 mj s.

(7 x 10-5)2
(3.5)

The maximum mean velocity shear of the model result was 0.0019 mjs (in the forcing

region) which exceeded this critical value. The velocity shear for the whole basin

is shown in Figure 3- 1Oa, showing that the criteria is met near the forcing region

where eddies formed actively. How the maximum horizontal velocity changed with

forcing strength is plotted in Figure 3-10b. The values are also compared to the linear

solution. The figure shows the model result departing from the linear solution as the

forcing strength increased. This departure from the linear solution is likely the result

of baroc1inic instability. The reason is as follows. A critical value of w~ for the on set

of baroclinic instability can be estimated by using the linear vorticity balance for the

estimate of the velocity field:

2fw *
Us = IU2 - u31 = ßHo . (3.6)

By comparing this velocity shear to the critical value uc, the critical value w~ can be

estimated;

:. w*
2ß2g' H; = 0 7 x 10-8mjs2j3 .

(3.7)

(3.8)

Us :? Uc

This critical value w~ = 0.7 x 10-8mj s matches fairly well with where the model

results started to depart from the linear solution. Although the criterion is only valid

for zonally uniform flows, non-zonal flows tend to be more unstable than purely zonal

flows and this criterion was stil useful for a rough estimate for the onset of baroc1inic

instability. When instability did not occur, the circulation in became similar to the

linear case (Figure 1-2) for both layers. The criterion was shown to be useful (but

roughly), but a more careful theoretical examination wil be needed for an exact

criterion for the onset of baroclinic instabilty.
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Figure 3-10: The sensitivity of the baroclinic instabilty criterion is shown for the
nonlinear baroclinic case with a flat bottom. (a) shows the velocity shear between
the two layers for Case 2. (b) shows the sensitivity of the criterion by comparing
w* and the maximum horizontal transport. The critical value of w* for the onset of
baroclinic instability is 0.07 x 10-6. The departure of the the model result from the
linear solution does seem to match roughly around this critical value.
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Baroclinic instability converted the potential energy of the mean flow to the eddies

and reduced the velocity shear between the two layers. Eddies in this experiment were

generated near the forcing region and were about the size of deformation radius. The

eddies eventually propagated to the west and dissipated as they went out of the forcing

region. The role of these eddies can be investigated from layer thickness balance (see

Chapter 2). Each of the terms in the thickness balance equation for layer 3 (Eq 2.41)

are plotted in Figure 3-11. The figure shows a balance between the forcing and the

eddy transport divergence in the forcing region. The loss of thickness by the forcing

is balanced by the eddy thickness flux from outside the forcing region. The region

outside the forcing region (both north and south) shows a balance between the mean

and eddy transport divergence. This indicates that the mean flow in this region was

driven by eddies. The broadening of the mean flow that was observed in Figure 3-7

or 3-8 can be explained as a result of this eddy activity.

The role of eddies can also be investigated from looking at the PV balance. Figure

3-12 shows the PV balance for layer 3 along cross section A (see Figure 3-1). It shows

that the eddy PV flux was a major balancing term with PV forcing. The eddies have

taken the role of balancing the PV forcing in a way similar to the layer thickness

balance mentioned above. The mean flow driven by the eddies outside the forcing

region is also clear from this figure.

Eddies began to play a critical role in the thickness or PV balance when baro-

clinicity was included into the modeL. The eddies redistributed layer thickness and

PV between the forcing region and its surroundings, making the mean flow weaker

and broader than the barotropic case (where there were no eddies, Figure 3-1). Com-

paring the two cases, the existence of eddies seems to indicate that their existence

is somewhat similar to viscosity, i.e., redistributing momentum to the surroundings.

It is not diffcult to imagine a similar ß-plume to establish by having an enhanced

viscosity value near the forcing region in the modeL. The instantaneous flow also re-

sembles the past works on the instability mechanism of two vortices of different sign

on top of each other on a f-plane where instability happened all around the forcing

region ¡e.g. Flierl (1988), Helfrich and Send (1988)j and numerical studies of a local-
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Figure 3-11. Thickness balance oflayer 3 in the case with flat bottom and baroclinicity
(Case 2): Thickness balance (Eq 2.41) along cross section A is shown in this plot.
(This cross section crosses the region of intense cross isopycnal transport from layer
3 to 2.) Eddy transport divergence term (Red) is shown as the major balancing

term with the forcing. The mean transport divergence (Dotted) is small compared

to the eddy thickness advection in this region. The plot shows a big change from

case 1 where the forcing was balanced completely by the mean transport divergence.
Outside the forcing shows a balance between the eddy and mean transport divergence.
This is an indication that the mean flow in this region was created by the eddies.
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Figure 3-12: PV balance for a baroclinic flat bottom case (case 2): This figure shows
the PV balance at cross section A. The PV increase by the intense cross isopycnal
velocity is noted as 'PV Forcing'. This plot shows that the PV forcing is balanced
by eddy PV flux rather than the mean PV flux. Surrounding the forcing region is a
balance between the mean PV flux and eddy PV flux. This indicates that the mean
flow in this region driven by the eddies.
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ized PV forcing on a f - plane ¡ Wardle and Marshall (1999)j. The resemblance seems

to be from the fact that eddies existed uniformly around the forcing region for this

particular case. However, the importance of the eddies in balancing with the forcing

is not uniform around the forcing region although the existence of eddies are uniform.

There is a dependence in the direction of where the eddies play an important role

or not. Figure 3-13 shows the mean and the eddy transport divergence terms in the

thickness balance for the whole basin. (Figure 3- 11 is the cross section A of this

figure.) It shows that the eddy-mean balance exist only to the east of the forcing

region and not to the west. It also shows that the thickness lost in the forcing region,

was mainly brought from the eastern side of the forcing and not from the west. The

eddies that existed to the west of the forcing region did not have a significant role

in balancing with the forcing. The role of eddies, therefore, is not quite the same as

enhanced viscosity. The non-uniform behavior of eddies in balancing with the forcing

is likely to occur because of the ß effect, but to understand exactly where and how

this takes place needs more careful examination.

The next chapter will focus on the effect of topography on ß-plumes.
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Figure 3-13: Thickness balance for a baroclinic flat bottom case (case 2) in the whole
basin: (a) is the Mean transport divergence term and (b) is the Eddy transport

divergence term. (Figure 3- 11 was a cross section of this plot along cross section
A.) (a) shows the spreading of the mean circulation. The term exists outside the
forcing term. (b) shows a balance between the forcing in the forcing region. However,
outside the forcing region shows a positive eddy transport divergence. This is where
the eddy transport divergence balance the mean flow which resulted in the spreading
of the mean circulation outside the forcing region. The figure shows that this eddy-
mean balance only exist to the eastern half outside the forcing region which is a clear
indication of the non-uniform behavior of eddies around the forcing region.
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Chapter 4

The effect of bottom topography

The effect of bottom topography is examined in this chapter. Because topographic

variation changes the background PV (JI(Ho - hb)), the structure of the ß-plume

can be altered. The background PV for layer 3 when a Gaussian bump (Figure 2-3,

described in chapter 2) is included in the model, is plotted in Figure 4-1. Notice that

the gaussian bump created a closed PV contour region. The existence of this closed

PV contour region wil have a significant impact on the structure of the ß-plume in

the cases shown in this chapter. Topographic variation wil affect the flow not only

in layer 3 (which is in direct contact with the bottom topography), but in layer 2

also. This chapter is organized as follows. First, the linear barotropic case wil be

described. Next, nonlinearity wil be included into the barotropic modeL. Finally,

baroclinicity wil be included by using the nonlinear baroclinic modeL. All cases in

this chapter wil use a forcing strength of Wo = 1 x 10-6 m/s. This forcing strength

is the same strength as the previous cases with a flat bottom (Chapter 3).

4.1 Linear Solution

The linear solution was solved using a linear barotropic model described in Chapter

2. Figure 4-2 shows the height deviation from the initial resting state of this solution.

The major difference from the linear barotropic flat bottom result (Figure 1-2) is the

existence of a strong recirculation around the Gaussian bump. This strong recircula-
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Figure 4-1. The Background PV (j j Ho) for cases with the Gaussian bump for bottom
topography. The forcing region is shown with a black circle. There is a region of closed
PV contour which is created by the Gaussian bump. This region of closed PV contour
coincides with the forcing region, but the rest of the basin shows the PV equivalent
to the case with a flat bottom.
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Figure 4-2: The linear solution for the case with the Gaussian bump for bottom
topography. The layer thickness deviation from the initial resting state is shown here.
The layer thickness field is the same as the the pressure field since h~ = P j Pog' ¡ m j.
Note that the contour intervals are irregular. There is a closed contour region with the
thickness deviation values extremely negative. This is the region of closed PV contour

(Figure 4- 1) where friction becomes important for a linear system. The change in the
background PV shifted the zonal jets of the ß plume northward. The two zonal jets
have a weak thickness(pressure) gradient is weaker than the flat bottom case. The
contour intervals seems slightly broader for the southern eastward zonal jet than the
northern westward jet.

57



600
... Linear Barotropic

Nonlinear Barotropic
Nonlinear Baroclinic

........
.-...."-'-...

400 -- ..............
~
~

#
#

200
~

~
~,

.

..

o
-6 -4 -2 o 2 4 6 (m2/s)

Figure 4-3: The Horizontal transport along Cross section C for cases with the Gaus-

sian bump:

(a) The linear solution is shown in a red dotted line. The two zonal jets in the north
(y ~ 400km) are the jets that were shifted by the presence of the Gaussian bump.
There is also a westward jet in the south (y ~ 100km) that is weak but significant to
play a role in the vorticity balance.

(b) One-and-a-half layer Nonlinear Case (Case 3) is shown in blue solid line. The
two zonal jets in the north has shifted southward compared to the linear solution.
The strength of the zonal jets have also increased and the southern westward jet that
existed in the linear solution disappeared.
(c) Two-and-a-half layer Nonlinear Case (Case 4) is shown in green solid line. The
latitude of the two zonal jets are similar to that of Case 3 but the strength have
decreased. This decrease is similar to the decrease in the flat bottom case when
baroclinicity was included (Figure 3-9).
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tion establishes because friction plays the central role in the dynamics of this region.

The reason is as follows. The flow must have a net mass transport across a closed

PV contour in order to balance the thickness (mass) loss by the forcing. Suppose the

flow was steady and friction was negligible. Then the flow is in geostrophic balance.

Linearity implies that the effect of relative vorticity or change in layer thickness by

the flow is excluded; thus the flow feels only the background PV (f Iho) where ho is

the initial layer thickness. Defining the layer thickness term as h = Ho + r¡ where

Ho is the initial layer thickness and r¡ is the thickness deviation, the mass transport

across a closed PV contour wil be,

1 Hail. ldl =
!ConstantPV f tHo -.g TVr¡ .ldl

tHo f -.
g T Vr¡ . ldl
o

('.' Geostrophy) (4.1)

(-: Constant PV) (4.2)

(4.3)

where r is the vector along the line integral. This equation implies that geostrophic

flow can not have a net transport across a closed PV contour. However, the flow

must somehow balance mass so the flow needs to creates an ageostrophic component.

The only way that the ageostrophic component can be created is by using friction

and this is why friction starts to play the central role in the dynamics of this closed

PV contour region. The intense recirculation was created so that friction term can

become important in the momentum balance. The recirculation in this linear case had

a maximum horizontal velocity of 0.12 m/s and a transport of 3 Sv which is about an

order of magnitude stronger than in the previous cases. In fact, the recirculation was

so strong that the total layer thickness became negative. Obviously the assumption

of linearity was inappropriate for this case.

The strength of the zonal jet have weakened compared to the flat bottom case.

The maximum velocity was 0.005 m/s and the transport was 0.12 Sv for the westward

jet. This decrease of zonal jet is from topographic ß effect. Eq 1.3 shows the ratio

of horizontal transport to the cross isopycnal transport. Because the effective ß from

topography is large in this experiment, topographic ß needs to be used instead of
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the planetary ß. Effective ß was few times larger than the planetary ß and thus

decreased the magnitude of the flow. The zonal transport along cross section C is

shown in Figure 4-3. Besides the two zonal jets in the north, a weak southern zonal

jet also existed. Although this zonal jet is an interesting feature and is necessary to

close the total PV budget!, the two more familar zonal jets in the north wil be the

main focus here and in the following sections.

4.2 Barotropic ß-plume: Case 3

The effect of nonlinearity is examined by using a nonlinear barotropic model (Case

3). Bottom topography, forcing strength and other model parameters are the same

as in the previous linear case ¡Table 2.1 j.

The flow does not reach a steady state but reaches a statistically steady state.

Figure 4-4a shows a snapshot of the velocity field of this final state and Figure 4-

4b shows the time mean velocity field. The flow created a strong cyclonic mean

circulation along the Gaussian bump like the linear solution but the maximum mean

velocity and the transport were 0.02 m/s and 0.34 Sv which are an order of magnitude

smaller than the linear case (0.12 mis, 3 Sv). There was also an asymmetry between

the recirculation flow in the north and south of the bump whereas the linear case did

not. The maximum mean velocity north of the bump was 0.003 m/s which is weaker

than the south (0.01 m/s) and the eddies were also present and existed more to the

north.

The zonal jet had a maximum velocity of 0.01 m/s and a transport of 0.20 Sv. The

cross section of the zonal transport is shown in Figure 4-3. Compared to the linear

IThe Total PV budget is meant for the total PV balance over the forcing region. (In general,
this can be any arbitrary area) Taking an area integral of the vorticity equation,

t (tJ . ñ) (f ~ () dl = J i V x idA = t i . ñdl
(4.4)

where the line integral c is around the area of where the integral was taken. The dissipation term
can assumed to be negligible if the line integral is in the interior far enough from the forcing region
or the lateral boundaries, so the RHS of the equation is zero. This means that there are no total
vorticity input into the area that the integral was taken. This zero input of total vorticity was the
total PV budget that was checked with the model result.
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Figure 4-4: The Velocity field in layer 3 for the barotropic nonlinear case with a
Gaussian bump (Case 3). (a) shows the instantaneous velocity field and (b) shows
the mean velocity field. Velocity vectors larger than 0.01 m/s are truncated and are
shown in red. For scaling, 0.01 m/s is shown in the down right corner. Figure (a)
is the instantaneous velocity field after 50years of spinup. The formation of eddies
north of the bump, propagation to the west, and dissipation at the western boundary
can be seen from this figure. Figure (b) is the time mean velocity field. The mean
flow shows the strong recirculation around the bump with two zonal jets. However,
no particular mean structure can be seen in the region of these zonal jets in Figure (a)
which indicates that the two mean zonal jets are the mean of eddies. The eastward
zonal jet is broader than the northward zonal jet.
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Figure 4-5: Mean PV field in layer 3 for the barotropic nonlinear case with a Gaussian
bump (Case 3). The PV contours in the forcing region and the western boundary
are more connected than it is for the background PV contours (Figure 4-1). This
is because the eddies modifies the PV field which as a result, makes the flow cross
the closed PV contour more easily than the linear case. The southern region of the
forcing region shows a similar PV field with the background PV
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solution (0.005 mis, 0.11 Sv), both the velocity and the transport were larger and the

second westward jet observed in the south disappeared. The mean PV field is shown

in Figure 4-5. Compared to the linear solution where the flow was influenced only

by the background PV gradient, the flow in this nonlinear case can feel the change

of PV that the flow has created itself. The nonlinearity allowed the formation of

eddies which then could transport mass across the closed PV contour instead of using

friction. Therefore, the flow has created a mean PV field in which the PV contours

in the forcing region and the western boundary are more connected than the linear

case. In contrast to the region north of the bump, the PV field south of the bump is

similar to that in the linear case. The eddies seem to have modified the mean PV in

the north of the bump but not much in the south.

The existence of eddies and the decrease in the recirculation strength can be

explained by the existence of barotropic instabilty. Barotropic instabilty draws on

the mean kinetic energy to weaken and smooth the flow. For a purely zonal flow,

the necessary condition for this instabilty is that the meridional vorticity gradient

change sign. As Figure 4-6 shows, the background vorticity gradient already satisfies

this necessary condition (see Chapter 2 for details):

ß + L Bhb ~ 0
Ho By (4.5)

Therefore whether the flow is weak or strong, the flow is likely to be unstable2. Eq

4.5 implies that the condition for barotropic instabilty can roughly be controlled by

changing the background topography. For experiments where the maximum height

of the bump (ho) was small so that the topographic ß* is not large enough to satisfy

Eq 4.5, the flow was stable. This condition for instability (ß - ß* ~ 0) is also exactly

the same condition for the existence of closed background PV contour region. The

existence of closed background PV contour resulted in a strong recirculation in the

linear case. However, the condition for barotropic instability shows that the extremely

strong frictional recirculation wil not establish when nonlinearity is included into the

2This assumption is true unless the flow has an extremely strong vorticity gTadient that can

change the background vorticity gradient.
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Figure 4-6: The meridional background vorticity gradient in layer 3 for a barotropic
nonlinear case with a Gaussian bump (Case 3) If there were no Gaussian bump,
the vorticity gradient is just the planetary vorticity gradient (which is constant for a
ß-plane) and this figure would have no contours. However the effective beta created
by the the Gaussian bump introduces a change in the meridional vorticity gradient
field. The gradient increased south of the bump but decreased north of the bump.
The gradient also became negative north of the bump.

modeL.

The difference from the flat bottom case or a linear case with the Gaussian bump

was the existence of eddies. One aspect of the role of these eddies can be seen from the

layer thickness balance. Figure 4-7 shows the thickness balance along cross section C.

Most of the forcing region shows a balance between the mean transport divergence

and forcing but toward the northern part of the forcing region, the eddy transport

divergence becomes more important in the balance. In fact, just outside the northern

forcing region, there is a region where the balance is just between the mean and eddy

transport divergence; this indicates that the mean flow is driven by eddies in this

region. This region does match with where eddies were formed and from this plot, it

shows that these eddies were transporting layer thickness into the forcing region from
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Figure 4-7: Layer thickness balance in layer 3 for a barotropic nonlinear case with a
Gaussian bump (Case 3). Each of the term in the layer thickness equation is plotted
along cross section A. (This cross section crosses the center of the forcing and the
Gaussian bump.) North is to the right. Notice that the mean transport divergence
matches with the forcing in the south of the forcing region. Eddy transport divergence
becomes significant in size to the north and starts to balance the mean transport
outside the forcing region. This is the area where the mean PV field (Figure 4-5) was
modified the most.
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the outside. This layer thickness transport by the eddies is one aspect of how the

mean PV field shown in Figure 4-5 was created. The eddies formed in the north of

the Gaussian bump where the flow is barotropically unstable, and then propagated to

the western boundary. The eddies formed roughly every 10 years and after the eddies

were out of the unstable region, the eddies propagated to the western boundary with

a phase speed roughly 2 x 10-4 m/s and a wavelength 200 km. This agrees well with

the Rossby wave dispersion relation for the long linear waves. The eddies formed

north of the bump modified the mean PV field and propagated as long Rossby waves

to the western boundary.

4.3 BaroclInic ß-plume: Case 4

Baroclinicity was then included by using a nonlinear baroclinic model (Case 4). This

case includes the effect of topography, baroclinicity and nonlinearity and is the case

which created the result previously shown in Chapter 1 (Figure 1-4). Now, the com-

plicated flow of Figure 1-4 can be better understood by using the understandings

gained from previous cases.

The flow became statistically steady after 100 years of spin up (Figure 3-4). In-

stantaneous and time mean field of the velocity and the thickness deviation field in

layer 3 are shown in Figure 4-8 and 4-9. Corresponding plots for layer 2 are shown

in Figure 4-10 and 4-11.

The flow in layer 3 wil be described first. The structure of the mean flow is similar

to the previous barotropic experiment. The two zonal jets are shifted northward and

a recirculation exists around the Gaussian bump. However, the maximum velocity

and transport of the recirculation have decreased dramatically to 0.003 m/s and 0.07

Sv compared to the barotropic case (0.02 m/s and 0.34 Sv). The maximum velocity

and transport of the zonal jet also decreased to 0.004 m/s and 0.03 Sv (compared to

0.01 m/s and 0.20 Sv).

The zonal transport along cross section C is shown in Figure 4-3. Like the flat

bottom cases, the velocity and transport values showed a significant drop when baro-
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clinicity was included. The values are now similar to that of Case 2 than Case 3 and

the flow is also broad around the forcing region. This is because of baroclinic insta-

bility. The maximum velocity shear between the two layers in the forcing region was

roughly 0.006 m/s which does satisfy the necessary condition for baroclinic instability

(described in chapter 2, Eq 2.39): or,

Ius I = 0.006ml s ? uc = O.OO1ml s (4.6)

However, the critical shear Uc that is used here was solved for a flow with a flat

bottom. It does not include the effect of topographic variation which would likely to

alter the critical value that is necessary for instability. The exact effect of topography

variation needs more careful examination but model calculations with a variety of

different parameter values indicate that the flat bottom criteria is a reliable (but

rough) measure of the onset of baroclinic instability.

Barotropic instabilty also occurred in layer 3 because of the unstable background

vorticity gradient (Figure 4-6):

f ôhb

ß + H 8 ~ o.o Y
(4.7)

Eddies similar to the one mentioned in previous case 3 existed and can be seen as

the relatively large eddies near the zonal jets in the snap shot of Figure 4-9. These

eddies are large compared to the ones found near the forcing region which is another

indication that the eddies are created by barotropic instability, not by baroclinic

instability.

The flow in layer 2 had a maximum mean velocity and a transport of 0.004 m/s

and 0.08 Sv in the forcing region. Both values became similar to the values in case 2

like layer 3. The mean velocity and transport values do not seem to have been affected

by the existence of the Gaussian bump. However, the structure of the ß-plume in

layer 2 has changed dramatically by the Gaussian bump. The major difference from

case 2 (Figure 3-5 or 3-6) is the existence of a second mean circulation north of the

main ß-plume. This circulation is due to the eddies created by the Gaussian bump
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in layer 3 which would not have existed without the bump and nonlinearity. The

southern shift of the main ß plume is also an effect of the Gaussian bump. The

strong recirculation around the topography in layer 3 changed the layer thickness

in layer 2 so much that the mean PV field in layer 2 created a region of closed PV

contour (Figure 4-12). Because this closed PV contour region had a minimum instead

of a maximum like layer 3, the ß plume shifted southward instead of northward.

The three cases with the Gaussian bump shown in this chapter can be interpreted

as an example of how background PV influences the ß-plume. The results show that

the structure and the strength of the ß-plume depend critically on the background PV

distribution, especially for layer 3. Layer 2 was affected by the topography through

the strong recirculation along the topography and the eddy activity in layer 3. Back-

ground PV can also be changed by other factors such as a mean zonal flow. The main

difference between the effect of a mean zonal flow and the topography would be that

a mean zonal flow wil directly affect the circulation in both layers while topography

can only affect layer 2 indirectly through the action of eddies or a strong recirculation

around the topography in layer 3.
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Figure 4-8: Velocity field in layer 3 for a baroclinic nonlinear case with a Gaussian
bump (Case 4) (a) is the instantaneous velocity field after 100 years of spinup and

(b) is the mean velocity field. Velocity vectors larger than 0.01 m/s are truncated
and are shown in red. For scaling, 0.01 m/s is shown in the down right corner. The
forcing region is indicated in a black circle. The instantaneous velocity field (a) shows
active eddies around the forcing region. The mean velocity field (b) shows a structure
similar to the barotropic case (case 3) but the size of the velocity is much less.
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Figure 4-9: Pressure field in layer 3 for a baroclinic nonlinear cas with a Gaussian
bump (Case 4): (a) is the instantaneous pressure field after 100 years of spinup.
and (b) is the mean pressure field. The contour values shown are h~ + 2h; with an
interval of 50m for both plot. (h~ + 2h; = P09' P3) where' is the fluctuation from the

initial state). Like the velocity field, (a) shows active eddies near the forcing region.
There is also a topographically induced eddies with a well defined structure where
the zonal jets exist. These eddies are more clearly shown in this figure than in the
previous figure of the velocity field. The mean field (b) shows a structure close to
the barotropic case (Case 3) but the contours near the forcing region are more spread
out.
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Figure 4- 10: Velocity field in layer 2 for a baroclinic nonlinear case with a Gaussian
bump (Case 4): (a) is the instantaneous velocity field after 100 years of spinup and

(b) is the mean velocity field. Velocity vectors larger than 0.01 m/s are truncated and
are shown in red. For scaling, 0.01 m/s is shown in the down right corner. The forcing
region is indicated in a black circle. Like layer 3, the instantaneous velocity field (a)
shows a very eddy dominated field around the forcing region. A well defined eddy can
be seen in the middle of the basin. This is likely to be created by the topographically
induced eddies in layer 3. The mean velocity field (b) shows a structure different from
a baroclinic nonlinear flat bottom case (Case 2). The ß-plume seems to have shifted
southward but the whole circulation is weak and hard to see.
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Figure 4-11: Pressure field in layer 3 for a baroclinic nonlinear case with a Gaussian
bump (Case 4): (a) is the instantaneous pressure field after 100 years of spinup.
and (b) is the mean pressure field. The contour values shown are h~ + 2h's with an

interval of 50m for both plot. (h~ + 2h's = P09' P3) where' is the fluctuation from

the initial state). Like the velocity plots, the instantaneous field (a) shows active

eddies near the forcing region. The eddies in the middle of the basin are created
by the topographically induced eddies in layer 3 and is more clear here than in the
previous figure (Figure 4-10). The mean field (b) shows the southern shift of the
ß plume clearly. There is also a second circulation in the north. This circulation
is created by the topographically induced eddies in layer 3 that propagated to the
western boundary along this latitude.
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Figure 4-12: Time mean PV field for layer 2 in a baroclinic nonlinear case with a
Gaussian bump (Case 4). Although the PV in this layer is not directly affected by
the bottom topography, the strong recirculation in layer 3 has created a region of
closed PV contour near the forcing region. This closed PV contour region has a lower
PV than its surroundings which therefore results in a southern shift in the main
structure of the ß-plume.
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Chapter 5

Summary and Conclusion

The concept of ß plumes is inspiring for two things. First, for the establishment of

strong zonal jets and second, for driving a large horizontal circulation by a small

region or strength of the mass source/sink. However, these results are based on a

linear theory. A numerical calculation showed that the ß plume in the deep ocean

was remarkably different and complicated than the linear solution when nonlinear

dynamics and instabilites were permitted (Figure 1-4). In order to understand the

dynamics of how this complicated flow field was achieved, the problem was separately

examined on the effect of baroc1inicity and topographic variation.

5.1 Summary

The effect of baroc1inicity was examined in two steps. A nonlinear barotropic ß

plume was compared to the linear solution to examine the effect of nonlinearity.

Then a nonlinear baroclinic ß plume was compared to the nonlinear barotropic ß

plume to examine the effect of baroc1inicity. The effect of topographic variation was

examined next using three ilustrative cases. Using a Gaussian bump for topographic

variation, a linear barotropic ß plume was compared to that of a flat bottom first.

Then nonlinearity was added into the barotropic model and finally baroc1inicity was

added to examine the case with both baroc1inicity and topographic variation.

The model used in this study had a motionless layer above and a moving layer(s)
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below ¡Figure 2- 1 j to represent the deep ocean flow. One-and-a- half layer model was

used to study the barotropic response of a ß-plume and two-and-a-half layer model

was used to study the baroclinic response of a ß-plume. The only difference between

the two models is whether the intermediate layer of the two-and-a-half layer model

is moving or not. A cross isopycnal velocity(w*) is prescribed between the bottom

layer and the intermediate layer. An intense cross isopycnal velocity from the bottom

layer to the intermediate layer exists in a localized region in the interior and a weak

flow back from the intermediate layer to the bottom layer exists uniformly across the

basin to conserve the mass in each layer. This prescribed cross isopycnal velocity is

the forcing in this modeL. The parameters g' and w* were chosen from observations

of a hydrothermal plume in the Juan de Fuca Ridge in Baker (1987).

First two cases were on ß-plumes with a flat bottom.

The nonlinear barotropic ß-plume (Case 1) had a structure similar to the linear

solution. The magnitude of the transport was also similar to the linear solution. The

major difference was the existence of waviness in the eastward zonal jet (Figure 3- 1)

which the feature existed only when the inertial boundary layer width was larger

than the Munk boundary layer width. This was a standing Rossby wave which had

a phase speed exactly opposite to the mean flow and matched with the theoretical

wavelength and dissipation length scale (À = JUjet/ ß and L = uJetj ßAH respectively)

estimated from an assumption that the velocity of the zonal jet (Ujet) was zonally

uniform. The eastward zonal jet was also barotropically unstable close to the western

boundary. The necessary condition for barotropic instability was met in this area

and so the waviness mentioned previously occasionally broke due to this instability.

The vorticity balance in the intense cross isopycnal transport region (referred to as

the forcing region) was stil between the two linear terms, i.e. planetary vorticity

advection and the stretching term. This held true even in the case with the standing

Rossby wave or barotropic instabiltyl

: \

"
,

The baroclinic ß-plume with a flat bottom (Case 2) did not reach a steady state

IThe linear vorticity balance will be valid as long as the dissipation length scale of the standing

Rossby wave is less than the distance frOID the forcing region to the western boundary.
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but reached a statistically steady state. In a snapshot of this statistically steady state,

the structure of the flow was hard to discern and the velocity field was dominated

by eddies. However, the time mean flow of this steady state did show a ß-plume

with a structure similar to the barotropic case although its maximum velocity and

transport of the zonal jets were smaller and broader. Baroclinic instability was re-

sponsible for this decrease in the magnitude of the zonal jets. The mean flow satisfied

the necessary condition for baroclinic instability. Although this necessary condition

makes an assumption of purely zonal flows which is admittedly crude for ß plumes,

many numerical calculation showed that it is stil an adequate indicator of baroclinic

instability. Baroclinic instability converts the potential energy of the mean flow to

the eddies and as a result, it prevents the flow from creating a large shear between

the layers. The eddies created by baroclinic instability also played a crucial role in

balancing the forcing. In layer 3, the thickness balance in the forcing region showed

the eddies advecting layer thickness from outside the forcing region that was balanc-

ing the mass lost in the forcing region, not the mean flow. This advection of layer

thickness by eddies happened mostly around the eastern half of the forcing region.

The PV balance in the forcing region also showed the eddy PV flux balancing the

PV forcing. Eddies redistributed layer thickness and PV with the region outside the

forcing region and as a result drove a mean flow there. This was why the mean flow

was broader than the barotropic case. The eddies in this baroclinic case made the

ß-plume weaker and broader; in this sense, the eddies had a diffusive effect on the

flow.

The next three cases were on ß-plumes with topographic variation. A Gaussian

bump was used for bottom topography which changed the PV background and created

a region of closed PV contours. This changed the structure of the ß-plume from a

flat bottom case dramatically.

The linear solution had an extremely strong cyclonic recirculation in the closed PV

contour region. This was because forcing existed within the closed PV contour region

which friction became essential to transporting mass across the closed PV contour in

order to create an ageostrophic component of the flow. The transport of the zonal
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jets were less than the linear solution with a flat bottom.

The nonlinear barotropic flow (Case 3) started to have eddies developing at the

north of the bump. In a nonlinear system, eddies can create a net transport across

the closed PV contour. This contrasts to the linear case in which friction was the

only mechanism that could transport across closed PV contours. As a result, the

strong recirculation around the bump became smaller than that of linear case and

the magnitude of the zonal jets increased instead. the latitude of the zonal jets have

shifted southward due the modification of the mean PV gradient field by the eddies.

The eddies that developed at the north of the bump eventually traveled to the western

boundary and dissipated.

The final case included both baroclinicity and a Gaussian bump (Case 4). The

flow exhibited both of the features that were observed in the baroclinic flat bottom

case (Case 2) and the barotropic topography case (Case 3). Layer 3 had a structure

similar to case 3 showing the effect of the background PV by the Gaussian bump to

the flow. However, the strength of the flow was closer to case 2 showing that the

existence of baroclinic instability determined the strength of the flow. The strengih

of the flow in layer 2 was also close to that found in case 2 likely to be for the

same reason. There were two big differences compared to cases 2 and 3. First, a

new circulation in layer 2 existed north of the usual ß-plume. This was due to the

topographically induced eddy activity in layer 3. Second, a closed PV contour region

was also created in layer 2 by the strong recirculation around the bump in layer 3.

This resulted in the southern shift of the ß plume in layer 3. The flow in layer 2 was

shown to be affected by the existence of topographic variation.

5.2 Concluding Remarks

ß-plume dynamics in the deep ocean was found to be remarkably different from what

would be expected from a linear solution when nonlinear dynamics and instabilities

were permitted. Barotropic and baroclinic instability occurred and created eddies

which played an important role in balancing layer thickness and PV. The eddies cre-
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ated by baroclinic instability had diffusive character whereas the eddies created by

topographically induced barotropic instability had more of an advective character.

The topographically induced eddies also reduced the strength of the strong recircu-

lation over the topography and drove a mean circulation in the layer that was not

directly affected by the topography.

Since the large scale flow is thought to be weak in the deep ocean, one would

imagine the deep ocean to be governed more on linear theory. However, deep ocean

is weakly stratified and so the reduced gravity g' is very small. It requires a very

steep isopycnal slope to drive a horizontal flow and thus the necessary condition for

baroclinic instabilty can be easily satisfied. Baroclinic instability can occur even for

a weak ß-plume with velocity in order of 0.01 m/s. Therefore, for a localized forcing

such as hydrothermal plumes, the eddies playa crucial role in its ß-plume dynamics.

Also because the deformation radius is of the order of few kilometers in the deep ocean

and is much smaller than the inertial wave length (vul ß), baroclinic instability is

likely to be an important process than barotropic instability.

How would ß-plumes be observed in the ocean? It definitely wil be diffcult to

find and observe the mean flow with a weak mean flow of order 0.01 m/s. Eddies

of equal or larger magnitude wil dominate and make it harder to see any structure

unless a very long time mean is taken. This is because evolution of a flow in the

ocean is very slow and one can not see a mean structure unless the mean is taken

over few tens of years. The background topography or flow may very well change

the structure and further complicate observation of the ß-plume as the cases with

the Gaussian bump topography suggests. More careful examination of how ß-plumes

are affected by the background needs to be done if it were to be compared directly

to observations. Distribution of tracers could help us in determining where and how

strong the ß-plume is. Although tracer distribution does not follow exactly with

the flow (Speer 1988) but nonetheless it could stil reveal some aspects of ß-plume

dynamics in the deep ocean.

1'1"
g.

t
'f

The idea of ß-plumes have been applied to overflows where the entrainment of

ambient ocean water into overflows happen locally (see Chapter 1). For the ambient
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ocean, this entrainment is a local mass sink which is similar to the situation of layer

3 in this study (where mass is lost to layer 2). However, adaption of the ß-plume

dynamics considered in this study to ß plumes by overflows requires some crucial

adjustments to the model parameters: the reduced gravity and the forcing strength.

For overflows, the reduced gravity is larger and cross isopycnal transport is more

intense (Baringer and Price 1997). The structure of the long time mean might look

similar but unlike the deep ocean ß plumes, barotropic instability would probably

be more prevalent than baroclinic instability because the inertial wave length would

be comparable to the deformation radius. This seems to be exactly the case for the

numerical model results in Özgökmen (2000). Since barotropic instability requires

large horizontal velocity shear, it is likely to have a very strong flow which could

make ß-plume more easier to observe than the ß-plume in the deep ocean.

Future work wil include a more careful examination of the necessary condition

for instabilty because the instability developed not at the zonal jets but where the

flow was more meridional in the forcing region. The influence of bottom topography

on baroclinic instability also needs to be considered because the difference in layer

thickness changes the condition for instability which can either destabilize or stabilze

the flow depending on the sign of the effective ß created by the topography. The pres-

ence of mean background flow can also change the condition for instability because

it introduces a new background PV gradient field equally to different layers. Many

works examining the effect of the background flow on ß-plumes ¡e.g. Speer 19871 are

based on linear ß-plume dynamics or focused on single plume events, but this study

indicates that topography and eddies are also important for the large scale plumes.

Parameterization of eddies shown in the model would also be a very interesting prob-

lem to work on. Although this is by all means a very diffcult problem, by examining

the role of eddies in a model that is simple enough to understand but complex enough

to exhibit instability, we may be able to gain further insight into the role of eddies

and its parameterization in the deep ocean.
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