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Abstract 

Biological knowledge can be inferred from three major levels of information: molecules, 

organisms, and ecologies. Bioinformatics is an established field that has made significant 

advances in the development of systems and techniques to organize contemporary molecular 

data; biodiversity informatics is an emerging discipline that strives to develop methods to 

organize knowledge at the organismal level extending back to the earliest dates of recorded 

natural history. Furthermore, while bioinformatics studies generally focus on detailed 

examinations of key “model” organisms, biodiversity informatics aims to develop over-arching 

hypotheses that span the entire tree of life. Biodiversity informatics is presented here as a 

discipline that unifies biological information from a range of contemporary and historical sources 

across the spectrum of life using organisms as the linking thread. The present review primarily 

focuses on the use of organism names as a universal meta-data element to link and integrate 

biodiversity data across a range of data sources. 

Introduction 

Continual improvements in technology enable us to generate more types of data across a wider 

spectrum of life than ever before imaginable. Among the grandest challenges in biology are 

transforming volumes of raw data into usable knowledge about our world and its inhabitants. 

This transformation poses significant challenges that necessitate the assistance of automated 

methods. Informatics strategies have been shown to facilitate the organization of biological data 

towards the development of testable hypotheses. To date, much of informatics in the biological 

domain (generally termed “bioinformatics”) focuses on studying molecular aspects of life across 

a number of key “model” organisms and systems. Biodiversity informatics has emerged as a 

suite of informatics techniques that can augment traditional bioinformatics approaches by linking 



information at the organism level across a wide spectrum of data types and organisms, often 

times within a historical context. While “biodiversity informatics” can be considered a new 

discipline, the use of automated techniques is not entirely new to the biodiversity domain. 

Indeed, the development of systematic techniques (often involving computers) has proven to be 

essential in the study and cataloguing of the speciation, distribution, and evolution of life on 

Earth. However, to date, there has been limited integration and harmonization of biodiversity 

information within the context of molecular studies that are the focus of bioinformatics. 

 

“Biodiversity” refers to the holistic study of life on Earth in light of its inherent variation [1]. In 

this context, diversity of biology is considered at three levels [2]: (1) molecular; (2) organismal; 

and, (3) ecological. Bioinformatics studies primarily focus on examining biological hypotheses 

from the molecular perspective. Information at the organism level, including scientific 

description and distribution information, may be available for many species that are not yet (or, 

in the case of extinct species, never) associated with molecular information. Biodiversity 

informatics thus aims to identify linkages within and across all three levels of biological data 

relative to the organism. The relationship between bioinformatics and biodiversity informatics, 

relative to the spectrum of biology is shown in Figure 1. The fundamental tenet in biodiversity 

informatics is that biological information can be linked through the organism towards the 

development of new, testable hypotheses. Additionally, because much insightful data may 

currently be locked away in historical archives that are becoming available through digitization 

movements, biodiversity informatics promises to enable the complement contemporary 

knowledge with archival information.  

 



FIGURE 1. BIODIVERSITY INFORMATICS. The spectrum of biological knowledge can be 

binned into three categories: Molecular, Organismal, and Ecological. Bioinformatics studies 

primarily focus on the development of hypotheses at the molecular level. Biodiversity informatics 

primarily emphasizes the organization of knowledge at the higher levels, at  the level of the 

organism.  

 

The creation of methods and systems to consolidate, organize, and categorize available 

information, regardless of its available form, is an essential step for large-scale comparative 

biological studies. The organization of biological information from an array of resources into 

consolidated knowledge bases for subsequent archival and research purposes is a significant 

informatics task. This centralization of a range of data types into a single resource can enable a 

range of comparative studies. In the bioinformatics community, centralized systems like the 

Entrez system at the National Center for Biotechnology Information (NCBI) provide access to 

biomedical information across many resources [3, 4]. This information can be retrieved and 

organized using standardized ontologies or terminologies [5-8]. Knowledge-based systems have 

also emerged to capture and organize biological information relative to particular domains (e.g., 

molecular interactions [9-11]). Finally, the magnitude of natural language biomedical literature 

has given rise to a range of Natural Language Processing (NLP) systems to capture relevant 

information from biomedical literature [12-16]. Recent discussions in both the scientific [17-20] 

and popular media [21, 22] have described the need for similar frameworks to organize existing 

biodiversity knowledge both within the context of existing data and the modernization and 

incorporation of archival knowledge.  

 



This brief review begins with a discussion of how organisms can be used to link information 

across disparate resources. The use of organisms within an information retrieval framework, 

termed ‘taxonomically intelligent information retrieval,’ is then described within the context of 

biomedical literature retrieval using Medline. Finally, the use of organisms as a universal meta-

data element is explored towards the development of Web-based, federated search tools that 

enable retrieval and subsequent linkage of information across a range of resources.  

 

The Organism as a Unifying Thread for Knowledge About Life on Earth 

All information pertaining to life, including molecular data, is associated with at least one 

organism. Biodiversity informatics is thus a species-centric discipline [18, 23]. The research 

community is familiar with – even takes granted of the fact that – organism identifiers are used 

to annotate and organize almost all biological data. In current practice, for example, every entry 

in GenBank is associated with an organism (denoted by the “TaxId” field, which links to NCBI 

Taxonomy). To this end, organism identifiers (which can include an organism’s name or a name 

surrogate, like a strain number or concept within an ontology) can be used to link data across a 

wide range of biologically relevant databases. Organism identifiers can thus be used to identify 

and link information from data sources that might contain information on gene expression, 

ecology, conservation, and distribution. They can also be used to identify historical documents 

that might contain the original description of the organism, which often includes in-depth 

morphological character descriptions. This aspect of using the name as a metadata anchor to link 

biological data across resources reflects the point that “All accumulated information of a species 

is tied to a scientific name, a name that serves as the link between what has been learned in the 

past and what we today add to the body of knowledge.” [24] To date, most efforts have focused 



on the (mostly manual) organization of information associated with a single organism or a group 

of related organisms (as in the case of the above quote, entomology). To keep pace with the 

increasing rate of new biological data being made available, there is a significant need to develop 

resources and techniques for organizing biological information across a wider spectrum of life. 

Informatics solutions can then be developed to further the exploration of comparative biology 

hypotheses across a wide range of organisms within the context of multiple axes of information 

(e.g., morphological features and geographic distribution). 

 

There are an estimated two million organisms that are associated with taxonomic treatments [2]. 

A taxonomic treatment generally includes an organism name, morphological description, 

distributional information, and other related (e.g., phylogenetic) information. These taxonomic 

treatments can be used to supplement contemporary molecular data, especially in the context of 

identifying “genotype-phenotype” correlations (e.g., molecular patterns can be associated with 

morphological descriptions between taxonomic group). However, using organism names as 

identifiers to link information can be problematic, especially in a historical context. Organism 

names change over time – e.g., before 1919, data associated with Escherichia coli were labeled 

with Bacillus coli or Bacterium coli. Issues remain even in light of an array of regulatory bodies 

that strive to develop systematic rules to stabilize names and minimize ambiguity [25-27]. 

Reconciliation techniques are thus needed to interconnect multiple names, either objectively 

(e.g., Doryteuthis pealeii and Loligo pealeii are names that refer to the common squid) or 

subjectively (e.g., Brucella abortus and Brucella suis are names that refer to the causative agent 

for Brucellosis, which affects a range of hosts). Disambiguation methods are also needed to 

distinguish different organism concepts associated with the same names that refer to more than 



one species (e.g., Peranema refers to a genus of both a fern and a euglena). The successful 

development of comprehensive scientific name indices can be used to identify relevant data 

across a wide range of resources. A centralized index might also foster the development of 

applications that can be used to infer linkages between organisms across heterogeneous data 

sources.  

 

The cataloguing of scientific names into a single, publicly accessible resource is a paramount 

first step to develop a framework for organizing biological knowledge [28, 29]. Such an 

endeavor is not a new concept. The Unified Medical Language System® (UMLS®) began 

development in the mid-1980’s as a means to create a standard language for biomedicine that 

could be used by computer-based clinical information systems [30]. The UMLS includes terms 

from over 100 biomedical terminologies and ontologies organized into over one million concepts 

[31]. The UMLS does contain some scientific name terminologies, most notably NCBI 

Taxonomy. However, in addition to NCBI Taxonomy, there are a number of other resources that 

maintain lists of scientific names. These include Species2000 [32] and the Integrated Taxonomic 

Information System (ITIS; [33]), both of which are associated with the Catalogue of Life project 

[34]. Organism names are also maintained by groups of researchers focused on a particular 

taxonomic group – e.g., IndexFungorum (Fungi; [35]), AlgaeBase (Algae; [36]), CephBase 

(Cephalopods; [37]), Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ; 

Microorganisms derived from Euzeby’s List [38]), and FishBase (Fish; [39]). To organize these 

different lists from multiple sources, the Universal Biological Indexer and Organizer (uBio; [40]) 

project has been working towards the integration of scientific and vernacular names. The uBio 

databases are designed to function much in the same way as the UMLS, as an aggregator of lists 



of concepts and hierarchies into a single resource. Currently, uBio contains over 10 million 

organism name strings, which have been collected from a range of existing scientific name 

resources, including all of the previously mentioned. The general structure of names in uBio is to 

organize vernacular, scientific, and published name variants (e.g., misspellings) into 

reconciliation groups (Figure 2). This structure enables the linkage of information across various 

resources for the same organism, regardless of the name used for annotation. Because taxonomic 

opinions can also be subjective in nature, the structure is also designed to accommodate 

competing viewpoints.   

FIGURE 2. ORGANISM NAME RECONCILIATION. Much of biological content is associated 

with organisms, and thus annotated with organism names. However, organism names can be 

represented by vernacular, scientific, and published misspellings. Centralized name-based 

indices are designed to relate multiple variants for the same organism name (shown by dashed 

lines) such that content can be related across multiple databases (linked by solid lines). 

 

Beyond organism names contained in catalogs and databases, a significant number of organism 

names are embedded in natural language texts, which include many historical texts that are 

becoming increasingly available through various digitization efforts [41]. Perhaps the most 

significant, relevant digitization effort currently underway is the Biodiversity Heritage Library 

(BHL; [42]). Ultimately, the BHL aims to digitize all recorded natural history, starting with the 

ten core BHL member institutions (American Museum of Natural History, The Field Museum, 

Harvard University Botany Libraries, Harvard University Ernst Mayr Library of the Museum of 

Comparative Zoology, Marine Biological Laboratory / Woods Hole Oceanographic Institution, 

Missouri Botanical Garden, Natural History Museum, The New York Botanical Garden, Royal 



Botanic Gardens, and Smithsonian Institution). Initially, the BHL digitization efforts will focus 

on volumes that are out-of-copyright or for which permissions have been obtained. There have 

already been discussions about expanding the scope of digitized literature beyond pre-1923 (the 

current accepted criteria for determining copyright restriction). Nonetheless, the pre-1923 

literature represents millions of pages of natural science literature that have essentially been 

locked away until the conception of the BHL.  

 

Because the BHL represents a significant corpus of historical literature that may not have been 

studied in decades, it will undoubtedly contain references to organisms that have long since been 

renamed, migrated, or become extinct. It will thus become increasingly important to develop 

automated tools that can detect scientific names contained within  digital text. Named Entity 

Recognition (NER) algorithms, which have been shown effective for identifying gene and 

protein names from biomedical literature [43], can be applied to this task. NER algorithms that 

are specific for identification of organism names, called Taxonomic Name Recognition (TNR), 

have been developed to exploit the linguistic and contextual nature of taxonomic names, as 

dictated by Linnaean rules used for most organism scientific names since 1754 (e.g., Latinized 

form of words in “Genus species” format) [44, 45]. The basic TNR approach posits that 

taxonomic names can be identified from natural language text using a combination of taxonomic 

nomenclature rules and/or a lexicon of non-taxonomic terms. TNR methods need to be flexible 

enough to process “dirty” OCR documents – given the scope of the BHL, it is difficult to predict 

the accuracy of how good the OCR quality will ultimately be.  

 



In addition to literature and molecular data, organism names are associated with specimen 

collections. Most of these data are becoming increasingly available in one of two structured 

XML schemas – DarwinCore [46] or ABCD [47]. The systematic representation of data in 

museum and herbaria collections can ultimately lead to the linkage of knowledge from molecules 

(e.g., in repositories like GenBank), to contemporary literature (e.g., indexed in Medline), to 

historical literature (e.g., indexed in the BHL), to raw specimen data that are available in 

museums and herbaria. The importance of museum specimens in the study of zoonoses has been 

demonstrated – e.g., rodent skins preserved in a museum collection were instrumental in 

elucidation of the disease etiology of hantavirus [48]. 

 

Taxonomically Intelligent Information Retrieval 

Identifying pertinent information within large databases may be facilitated through the use of 

controlled vocabularies to represent concepts that are associated with each item of information. 

The Medline literature citation database indexes its content using a controlled vocabulary of 

indexing terms, the Medical Subject Headings (MeSH) [49]. The use of a controlled vocabulary 

to facilitate information retrieval queries has been positively demonstrated when using MeSH to 

retrieve information from Medline [49, 50]. Both the retrieval and information linking processes 

are dependent on the quality of the keyword controlled vocabulary as well as their consistent 

application to information objects (e.g., MeSH terms that are used to annotate Medline citations) 

[51]. A significant challenge for the success of this approach is the identification of pertinent 

terms for a given query [51]. One way to identify terms is to browse through a hierarchical 

organization of terms. For example, it has been shown that a browsing system that provides a 

“real-time” list of available terms can help guide searching through a corpus of documents [52]. 



The Medline search interface enables users to take advantage of the hierarchical structure of 

MeSH. Organism names can also be placed into hierarchies that can assist in the navigation of 

knowledge sources [53]. This is naturally done within biology through taxonomies, which reflect 

hierarchies that are often used to organize organisms according to relatedness. The term 

‘Taxonomic Intelligence’ was introduced in connection with the ‘Logic-based Integration of 

Taxonomic Conflicts in Heterogeneous Information Systems’ (LITCHI) initiative [20]. 

Taxonomic intelligence may also be incorporated into existing information retrieval paradigms 

to identify organism knowledge, such as represented in literature. 

 

The ability of an information retrieval system to reliably and accurately return results is 

measured according to two metrics: ‘recall’ and ‘precision’. Recall, or sensitivity, assesses the 

ability to retrieve expected results; Precision, or the positive predictive value, is determined 

based on an assessment of number of correct results relative to the results that were retrieved. A 

taxonomic information retrieval tool with perfect recall would therefore need to identify all the 

variant forms of a given organism that exist within a knowledge base. The first task towards this 

goal will be the comprehensive collection of scientific names into a biological names register 

that may readily accommodate new classifications or nomenclature standards [54]. For example, 

if seeking all the literature in Medline associated with Escherichia coli, the query “Escherichia 

coli” should return articles that contain reference to its known variants (e.g., “Bacterium coli” 

and “Bacillus coli”) or its mis-spellings (e.g., “Escheria coli”). However, performing Medline 

queries for “Escherichia coli,” “Bacterium coli,” “Bacillus coli,” or “Escheria coli” reveals that 

none of these retrieve the same number of results (at the time of this writing, they respectively 

return 233,339; 182,939; 182,907; and 22 citations). The only query that reliably retrieves all 



relevant results is “Escherichia coli OR Bacterium coli OR Bacillus coli OR Escheria coli” 

(233,384 citations). The respective recall values for retrieving documents from Medline using 

only Escherichia coli, Bacterium coli, Bacillus coli, or Escheria coli are thus 99%, 78%, 78% 

and <1%. This finding implies that individuals seeking information from Medline would need to 

know all synonyms (including mis-spellings) for a given organism before querying PubMed. 

 

Because Medline is manually (or semi-automatically) curated and indexed [55], one can assume 

that relevant articles are annotated with relevant MeSH terms. Querying Medline for those 

articles that have been annotated with the MeSH term “Escherichia coli” results in 178,461 

citations. Based on this value, the precision for previous query for “Escherichia coli” is 76% (the 

fraction of those articles known to be associated with Escherichia coli relative to the total 

number of results returned, or 178,461 out of 233,384). While “Escherichia coli” is a MeSH 

term, neither “Escheria coli” or “Bacterium coli” are. Although the PubMed interface generally 

expands queries to relevant terms (e.g., Bacterium coli for Escherichia coli), it is difficult to 

assess the absolute accuracy without manual examination. However, manual examination of the 

9 citations that contained the mis-spelled form, “Escheria coli”, but not annotated with the 

MeSH term “Escherichia coli” reveals that 8/9 (89%) of them contain relevant knowledge. It is 

important to note that only through expert validation can articles be certified as containing 

relevant knowledge about a particular organism. Reliable validation will improve resources, and 

tools will emerge to curate knowledge such as that available through literature [56].  

 

Taxonomically intelligent tools that accommodate scientific name variation have been described 

in the context of harmonizing differing taxonomic hierarchies and species checklists [20]. The 



incorporation of taxonomic hierarchical categories is akin to how information retrieval searches 

can use the MeSH “explode” feature to report content that is associated with a particular MeSH 

term and all of the granular terms that are inherited (e.g., if the MeSH term for “Protozoan 

Infections, Animal” is chosen, the explode function will also include the more specific terms of 

“Babesiosis,” “Cryptosporidiosis,” “Theileriasis,” etc.). The same principle of “hierarchical 

inclusion” should then naturally be extended to organize biological information for comparative 

studies – e.g., a developmental biologist working with a fruit fly (Drosophila melanogaster) may 

wish to identify literature pertaining to all Drosophila. However, taxonomic relationships 

between organisms tend to be less stable than traditional metadata keywords. To address this, 

synchronization methods are needed to interface between scientific names and their current 

taxonomic hierarchies. Exploring the retrieval of Medline literature for five “model” organisms 

using a widely accepted taxonomic hierarchy reveals unexpected and inconsistent performance 

of hierarchical inclusion (Table 1). For example, more articles were recovered using the default 

search of Mus musculus than with the more taxonomically inclusive term Mus.  

 

TABLE 1. CURRENT STATE OF TAXONOMIC INFORMATION RETRIEVAL FROM 

MEDLINE. The number of Medline articles retrieved via PubMed for five taxa at eight different 

taxonomic levels as well as common synonyms used to refer to the organisms (below heavy line). 

For each term used (shown in bold face with grey background), we performed three different 

queries: 1) “Default” – the query term is entered into the PubMed interface as written; 2) 

“Quoted” – the query term is entered into the PubMed interface within quotes, thus preventing 

any expansions of the term; and, 3) “MeSH” – If the term is a MeSH term, specify to only search 

MeSH annotations within Medline. 



 

There is thus a significant need for taxonomically intelligent information retrieval tools that 

enable one to identify literature at different levels of granularity according to taxonomic 

knowledge to address questions like, “What parasites affect those organisms within the genus 

Castor?” The lack of taxonomic intelligence can limit the types of organisms that can be 

searched. For example, a Giardia lamblia (which is the organism associated with giardiasis, a 

common nonbacterial cause of diarrhea) researcher might want a list of other parasitic organisms 

that use the beaver as its host, since it is a mammal that spends much of its time in aquatic 

environments, which are a particular hotbed for a range of parasitic diseases. When using the 

search terms “beaver” and “parasites,” PubMed performs a search for the MeSH term “rodentia”. 

Such a general search term may impact the specificity of the returned citations (in this case, over 

19,000 results are returned). To address this issue, PubMed does simultaneously perform a plain 

text word search of titles and abstracts. However, unless the author specifically uses the term 

“beaver” in their title or abstract, PubMed will not retrieve the complete collection of relevant 

citations. Another approach to identify relevant articles on beavers and parasites would be to use 

the scientific name for the beaver. This presents another challenge, since there are two scientific 

names that are associated with beavers, depending on geographic location – the scientific name 

for the European beaver is Castor fiber (associated with 28 results pertinent to parasites), 

whereas in North America the name is Castor canadensis (associated with 10 results pertinent to 

parasites). Thus PubMed does incorporate some taxonomic intelligence (e.g., it can reconcile 

“beaver” to “rodentia”); however, the lack of a complete taxonomy can preclude finer grained 

taxonomic searching.  

 



 

 

Putting Biodiversity Informatics Into Action – Federated Searches 

There are billions of specimen records and observational data that exist in natural history 

collections worldwide, and continue to grow thanks to significant collection efforts [57, 58]. The 

Global Biodiversity Information Facility (GBIF; [59, 60]) and the Taxonomic Database Working 

Group (TDWG; [61]) are organizations that strive to develop structured formats to represent and 

share biodiversity data. An overview of the emerging formats for biodiversity data have been 

recently reviewed elsewhere [23]. These structured data can be used to complement existing 

stores of genomic and biomedical knowledge (e.g., as stored in GenBank and Medline, 

respectively), leading towards the integration of knowledge across a range of biological 

resources.  

 

The topic of knowledge integration in Biodiversity Informatics is rather timely – the recently 

funded Encyclopedia Of Life (EOL) project, which is inspired by E.O. Wilson [28], will depend 

on the development of the requisite informatics infrastructure to identify, validate, and mange 

information such that they can be presented through a single portal. As EOL strives to create a 

Web site for all species known to be present on Earth, the scope of issues associated with 

organizing and linking data across the plethora of current and future repositories is immense. The 

ultimate goal of the EOL is to build a consumer-driven product that provides the most 

authoritative information on all species and the means to add, mine, and analyze the information. 

The challenge is particularly acute since biodiversity knowledge predominantly exists in 



collection institutions, especially natural history museums and herbaria. This knowledge includes 

studies on the evolution, speciation, and distribution of life from around the globe.  

 

The sheer volumes of data that are being produced across the entire spectrum of biology will 

undoubtedly make the traditional model of “one-stop shopping” at centralized repositories a 

difficult proposition. Instead, a federated approach may become the only tractable alternative, 

where a single interface provides access to a number of repositories and other relevant data marts 

of knowledge. A number of resources might need to be consulted even for identification of 

relevant literature (i.e., not all relevant literature is indexed in Medline; some might be in more 

biology-centric indexing services, like BioONE [35]). Key to the development of federated 

searches is the accurate annotation of relevant content with controlled vocabularies or, even 

better, ontologies. Systematic annotation of conceptual entities within a given database can 

facilitate the development of resources that can link knowledge across multiple databases [36].  

 

Ultimately, if all data are represented or annotated in a systematic way, they can be automatically 

aggregated into portals that can serve as real-time collaboration environments for groups of 

experts from a range of disciplines with a common goal – for example, ecologists, taxonomists, 

and other experts who are all interested in studying a single group of organisms. The 

identification of information across multiple resources requires universal anchors. As pointed out 

here, the organism and its name are central to almost all biological data. Geographic location 

information is also associated with much of biodiversity data. By linking relevant information 

associated with an organism and mapping it to geographic information (called “georeferencing”), 

scientists can combine information from a range of data types (e.g., climatology and 



epidemiology) [37]. Such knowledge integration can further the understanding of the disease 

etiology and host epidemiology towards the development of prophylactic containment methods, 

vaccinations, and treatments [62]. 

 

A number of prototype, federated search applications have been developed to bring together 

biodiversity content across a number of trusted resources. The Taxonomic Search Engine (TSE 

[39]), and the later ispecies [63] applications demonstrate the ability to link information such as 

molecular data, phylogenetic trees, and literature (including popular news feeds available 

through RSS). Like ispecies, the uBio Portal [64] also brings together information such as 

images, in addition to providing links to relevant species-centric resources (e.g., for a fish like 

Pomatomus saltatrix, one might be pointed to FishBase for further information). Screen shots of 

the TSE and uBio Portal are shown in Figure 3. All of these federated resources store minimal 

content locally; instead, they rely on indices (which might be available through Web services, 

like SOAP) and annotated content to recover results. Perhaps the main advantage of developing 

federated services to link information across multiple resources is that no one organization or 

group has to maintain all information about all data. For example, rather than GenBank keeping 

track of all possible vernacular and scientific names for a given organism (including 

misspellings), these could be made available through a Web service (such as available to uBio 

NameBank, which provides a listing of both vernacular and scientific forms for nearly 2 million 

species). These types of federated interfaces could be customized for particular user needs (e.g., 

one may want to know what lethal organisms they might encounter on a forthcoming trip to a 

remote part of the world, or a conservationist might want to track trends of genomic data 

associated with species that are near extinction). 



 

FIGURE 3. BIODIVERSITY FEDERATED SEARCHES. Federated searches that dynamically 

identify and link relevant content from a range of resources have been prototyped by a number of 

interfaces. Shown here are the Taxonomic Search Engine (TSE) and the uBio Portal, both 

searching for content using the search term “bluefish.”  

 

Closing Thoughts 

Biodiversity informatics is starting to gain momentum as a scientific discipline. Biodiversity 

informatics is not meant to replace existing biological disciplines any more than bioinformatics 

is intended to replace “wet-bench” work. Instead, biodiversity informatics aims to bring together 

relevant information into a form that can be used by biodiversity researchers. Furthermore, it 

strives to develop resources and services that may further initiatives that can benefit from the use 

of biological data – from basic biology to biomedical science to general knowledge. The range of 

available data types and formats for biodiversity knowledge is humbling – e.g., climate, 

geographic, and disease knowledge. There are a few anchoring meta-data elements that can be 

used to link information across this array of knowledge resources. The organism and its name 

were presented here as one of the fundamental metadata elements that can be used to unify and 

link data alongside other metadata elements such as geographical information. The organization 

of content using organism names will facilitate the development of systems that are 

“taxonomically intelligent,” and may thus enable comparative biology inquiries at multiple 

granularities. On par with the scope of biodiversity, the promise of biodiversity informatics is 

immense. Through the development of federated search engines that enable the searching and 

navigation across multiple, disparate resources, biodiversity knowledge might be more readily 



put into multiple contexts – from the conservation of species on Earth to the health and well-

being of our own species. 

 

Key Points 

 

1. Biological knowledge exists at three major levels: (1) Molecular; (2) Organismal; and, 

(3) Ecological. While bioinformatics focuses on facilitating molecular-based inquiries, 

biodiversity informatics aims to enhance inquiries at the organism level 

2. The organism and its name are one of the few meta-data elements that can link across a 

wide range of knowledge resources 

3. The use of the organism name necessitates the development of name management 

systems to assist with disambiguation and reconciliation of name strings 

4. The organization of knowledge according to organisms and their names can facilitate the 

development of “taxonomically intelligent” information retrieval systems 

5. The volume of biological data prohibits the easy development of aggregation databases to 

store all knowledge about all biology; federated interfaces may be a viable solution going 

forward 
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Figure 1. Biodiversity Informatics. 
 

  
 



Figure 2. Organism Name Reconciliation. 



Figure 3. Biodiversity Federated Searches. 
 

  
 

 
 
 
 



 
Table 1. Current state of taxonomic information retrieval from Medline.  
 

  
 
 
 


