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DATA ADAPTIVE VELOCITY/DEPTH SPECTRA ESTIMATION
IN
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on JUly 1, 1977 in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

ABSTRACT

In studying the earth with reflection seismics, one of the

major unknowns is the velocity structure of the medium. Tech-

niques used to determine the velocity structure commonly involve

multi-channel arrays which measure the spatial as well as the

time structure of the returning signals. The application of a

data adaptive technique, the Maximum Likelihood Method, to the

problem of estimating seismic velocities is described. The

peculiar problems of this application are identified and inves-

tigated. The windowing of short duration signals is shown to

be an important consideration, and the statistics of the MLM

estimator for a single observation of the data set are presented. .

The adaptive estimator is applied to an ideal covarianc~ matrix,

to simulated data, and to field data. The results show the MLM
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velocity/depth estimator to be a valuable tool in seismic

analysis, and the windowing and statistical results should

have general applications in a variety of fields.

Thesis Supervisor: Arthur B. Baggeroer, Associate Professor,
Ocean and Electrical Engineering, M.I.T.
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Introduction

This thesis considers the application of data adaptive

array processing methods to the estimation of velocity/depth

spectra in multi-channel seismic reflection data. The

adaptive processing methods are not new; the basic techniques

were developed more than a decade ago for other applications,

and have been applied to a multitude of time series and array

processing problems to date. The intention of the au.thor. in

undertaking this study I'....t: geerl'Ize the adaptive methods

for application to non-plane wave, non-homogeneous array data,

and to study the requirements and performance of the e.stimation

methods as applied to velocity/depth spectra estimation. The

application appears successful and the result is an additional

tool for the geophysicist in his search for higher resolution
j.

. -r

in studying the earth! s structure. This thesis presents the

velocity/depth spectral estimators and compares the conventional

and adaptive forms. The details of their implementation are

considered and an analysis of their statistics is presented.

The primary contributions of this work are the implementation

of the adaptive processor to non-stationary fields, the

importance and sensitivity of the time windowing to the
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conflicting requirements of time and frequency resolution,

and an analysis of the statistics of the adaptive estimator

for a singular covariance matrix.

The concept of remotely determining seismic velocities

has been used for many years (Green, 1938). Before the advent

of the digital computer, the techniques involved the physical

manipulation of plotted records and the fitting of curves to

visually determined arrival times. Along with the digital

computer came the ability to perform the velocity estimates

using correlation techniques and the reality of an entire

velocity/depth spectrum. A sampling of this development

may be found in the literature in papers by Green (1938),

Durbaum (l954), Dix (l955), LePichon, et al (1968), and Taner

and Koehler (1969). The velocity/depth spectrum as we use

it may be defined as an estimate of the coherent reflected

signal power received from subsurface reflectors as a function L

r
of the depth (in travel time) of the reflector and the seismic

RMS velocity to the reflector. The amount of effort expended

in velocity analysis in seismics is justified by the fact that

most of the further processing or analysis of data that is

commonly performed makes use of the velocity information. In

particular, common depth point stacking and migration tech-

niques depend heavily on accurate velocity detèrminations.
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Unlike most types of array processing, we are dealing

with a medium which has non-homogeneous wave velocities. In

order to correctly phase or focus the array, we must be able

to relate the spatial position of the array elements to phase

shifts or delay times. The velocity/depth spectrum provides

the information which enables us to do this. In addition

to its applications in further processing of the data, the

velocity/depth information is used in stratigraphic interpre-

tation as an aid in following layers and in determining the

nature of the structure. An important use in geophysica 1

interpretation is in differentiating between overlapping

primary returns from deeper layers. and multiple reflections

from shallow reflectors on continuous profiling records. The

normally higher velocities of deeper strata make it possible

to distinguish the two types of returns.

Data adaptive processing methods have been developed

in several areas which include sonar array processing (see

Gabriel, 1976 for a good list of references), time series

analysis (Burg 1967, Lacoss 1971), speech processing (Makhoul

1975), and communication theory (Van Trees 1968, Makhoul

1975). The development was often simultaneous, but approached

in different ways. It is interesting to note that although

each field has its own literature and terminology for the
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methods, many of them have been shown to be equivalent..

(Edelblute, et a1 1966, Gabriel 1976, Pusey 1975). Generally

the adaptive methods may be classified as one of two types,

which have come to be known as the Maximum Likelihood Method

(MLM) and the Maximum Entropy Method (ME). The ML is attri-

buted to Capon (l967), but has been shown to be equivalent

to several earlier techniques applied to single frequencies

(Edelblute, et al. 1966). The ME includes autoregression

analys~s, covariance extension, prediction error filters,

innovations filters, and whitening filters. The MEM techniques

are attributed to Burg (l967) and Parzen (l968L 19691. pusey

(l975) demonstrates the equivalence of some of the other MEM

forms.

The method we employ in our study is the Maximum Like-

lihood Method. The ML is applicable to non-homogeneous

fields with non-uniform sampling, whereas the MEM has not yet

been generalized to cover these cases in any reasonable manner.

The application of a data adaptive estimation algorithm to

velocity/depth spectra estimation was first proposed by

Baggeroer (l974) and Baggeroer and Leverette (l975). This

thesis is a continuation and extension of that work.

The general concept behind data adaptive processing.

methods is that the filter coefficients or window weighting
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functions are determined from the data on each application

in order to minimize the effects of noise fields. In order

to demonstrate this and to further motivate a study of adap.

tive array procedures applied to velocity/depth spectra

estimation, we would like to give two examples. The first

is an application of the adaptive algorithm to an array

receiving plane waves. The wave number spectra of a field

containing a single plane wave are given in Figures i. and 2.

Figure l. is the spectrum as measured by the conventional

array processor, and Figure 2. is the spectrum as measured

by the data adaEtive array processQL_ Th rpmarkahle increase

in resolution is more easily understood if we examine the

beam patterns of the two array processors. The conventional

array beam pattern is given in Figure 3. For the same array

with a noise field entering from various directions (k ), the
N

adaptive beam pattern is given in Figure 4. By adapting to

the received signal and noise field, the adaptive array is

able to move its peak and sidelobes away from interfering

signals. This makes the adaptive processor particularly

useful for sparse arrays which normally have large sidelobe

structures. For the second example, Figures 5. and 6. show

samples of velocity/depth spectra generated by the two esti-

matorsfrom data taken on Georges Bank. Figure 5. gives the
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Figure l. Response of 6 Channel Conventional Array
to Field Containing One Plane Wave.

-0.8 o. 0.8

d sin e
k = ).

Figure 2. Response of 6 Channel Adaptive Array to
Field Containing One Plane Wave and l%
Whi te Noise.

-0.8 o. 0.8
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Figure 3. Beam Pattern of Conventional Array.
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Figure 4. Beam Patterns of Adaptive Array With
Various Plane Wave inputs.
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Figure 5. Conventional Velocity/Depth Spectrum.
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Figure 6. Data Adaptive Velocity/Depth Spectrum.
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output from a conventional analysis, and Figure 6. gives

the output from the data adaptive analysis. In the more

complicated case of estimating velocity/depth information

instead of simple plane wave vectors, the adaptive algorithm

continues to exhibit a higher resolution capability.

We begin with a review of the travel time calculations

and the conventional estimator. Although these may be found

scattered throughout the literature, their importance to the

work that follows and the relatively wide range of audience

we hope to address justify a concise review. In Chapter 1

we develop the neces.sary background for the calculation of

propagation travel times from known information about the

velocity structure of the earth. In Chapter 2 we describe

the inverse problem of determining seismic velocities 
from

measured travel times, making use of the model developed in ;, -
"""

Chapter l. The conventional estimate is presented in both

the time and frequency domains and the Maximum Likelihood

Method velocity/depth estimator is developed. Chapter 3

considers theoretical resolution limits of the conventional

array in terms of velocity and depth. The velocity/time

ambiguity function is considered, building from the work done

by Kline (1976). chapter 4 considers the problems encountered

in applying the estimator to real data, specifically the
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windowing and averaging requirements in forming the covariance

matrix. Chapter 5 develops the statistics of the different

forms of the estimators. Finally, Chapter 6 presents the

experimental results and conclusions. The Appendicies include

some of the detailed calculations used in Chapters 4 and 5,

and a glossary of symbols.

;. -
"""
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Chapter 1 Array and Travel Path Geometries and Travel
Time Calculations.

Introduction

Before addressing the problem of estimation of seismic

velocities, it is helpful to review some of the physical

properties of the general seismic reflection problem. In

this chapter we review the general array and signal path

geometries and develop the commonly used RMS velocity travel

time equation. The travel time, the time required for a

signal to traverse a path from the source to a reflecting

interface and back 'to a receiver, is one of the most important

properties in the estimation of velocities. We calculate

the travel time as a function of the source to receiver

distance for a particular depth of, and RMS velocity to a

reflecting surface. We can then generate a pattern of delays

(or, in the frequency domain, phase shifts) that allow us to

steer or phase the array to look for coherent returns as a

function of velocity and depth.

Travel time calculations can. become very complicated

for any but the simplest geological models, and we find that

simplifications of the geological models and approximate

solutions are desirable and necessary for our purposes in

velocity/depth spectra estimation. The RMS travel time
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equation is a truncated series approximation of the travel

times to interfaces in a horizontally homogeneous layered

earth model. It is a particularly convenient model because

it has a closed form solution and because it simplifies the

velocity dependence of the delay pattern to a single average

velocity rather than the entire velocity structure of the

travel path.

In the remote measurement of seismic velocities, we

measure the delay and curvature of a wavefront that has

originated at a point source at the surface and has penetrated

the earth to reflect from some lateial ; nnomagene.i.t.y in the

substrate. The most common instrumentation used to measure

the curvature of the \yav~rront is an array of hydrophones
..,...-

or geophones uniformly spaced along the surface at increasing

distances from the source. The source generally gives an

impulsive signal, although longer coded signals which can

later be deconvolved or matched filtered are sometimes used

(i .e., a chirped signal). For a single homogeneous layer

the geometry is shown in Figure 1 .1a. This is the exact

geometry for the first return in the case of a homogeneous

and horizontal first layer. In marine data, it is the water

column return when there is a flat bottom. If the reflected

image is unfolded (Figure i .lb) and projected to an array
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Figure 1.la Array and Travel Path Geometries for
a Single Homogeneous Layer.
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below, it is easily seen that the wavefront is spherical

and the raypaths are straight lines. The travel time to a

receiver may be written as

j i;?

. "-

., Xl.

C:i
1.1T

J
-l jCJ.Dt + X."C J

where C is the wave group velocity. We note that for conven-

ience and in order to maintain consistency, we will use the

unit of vertical two-way travel time To to specify the

depth of a reflector throughout the remainder of this study.

Since the data is a function of time, this parameter is much

easier to correlate with the data than would be depth in

linear dimensions.

In the case of a non-constant sound velocity with depth,

we can no longer assume straight line travel paths or perfectly

spherical spreading. The rays will instead follow minimum i

. r

travel time paths as given by Fermat i s Principle. We can

use Snell i s law and ray path theory to solve for the travel

time exactly, but the expression is a function of the initial

angle and must be solved parametrically.

In order to generalize this exact form of travel time

calculation, we consider a layered earth structure consisting

of horizontal homogeneous layers. In the limit as the number



23

of layers goes to infinity and the layer thicknesses go to

zero, this model may represent any horizontally homogeneous

velocity structure. The multi-layer case is depicted in

Figure l.2. The ray parameter À = ci/cosq,i is preserved as

the wave travels through the layers. The time through a

particular layer is

t.i t.~cos (/ À t. Ie.
il l z

l.2=

where to'
i

.th 1i ayer.

is the normal incidence travel time through the

th
Summing to the m layer, weSee Figure l. 3 .

obtain a two-way travel time of

T
rn '. .... .

2. ~ À tz/Cï
1=1

The horizontal distance traveled in passing through each

layer is

'" . ==
1

c. t. sin C/i i
'- 2.) Y:

ti (À - Cz .

Summing this over a two-way trip through m layers gives us

the total horizontal distance traveled.

1.3

1.4

, .
;
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Details of One Layer of a Multi-Layer Travel
Path. (Dimensions in Seismic Travel Time).
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x
ni

Á L
i-=/ ( ~)Y:1ti À') - Ci . 1.5

Given the source to receiver distance Xj, we can solve

Equation l. 5 for À. inserting - À into Equation l.. 3 i we can

then solve for the travel time T.. For the special case
J

where the velocity in all the layers is the same, c. = ci 1
for all i, the equations simplify to

T - i 1; i .6aC, ,

Jli.

X - (À:J - Cl) r " i .6b

. i=i

m

L i- to.1 . i.7where 1:

Solving to eliminate À, we obtain

= -r '" t-
::X~

C, l.8T ::

This is identical to our result for the single layer case.

A much simpler solution was proposed by Dix (1955),

which was a special case of a general solution presented by

Durbaum (1954). A brief summary of the solution may be found

in the appendix of Taner and Koehler. (1969). We again refer
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to Figure l.2 for the travel path geometry for a separated

source and receiver. Following Taner and Koehler, We write

the travel time T as an infinite series in powers of X, the

source to receiver distance.

T'" = Ao' t- A,X2.
If

+- A:i X t-
t.

A3X + 1.9

Solving for the first two coefficients, We obtain

Ao
". ~

L:i f; toJ T~o 1 .1 Oa

At
~I m 2.

Dct) / .... 2 ~ cí" tz

-I

£ If.cL-4j 1.l0b

An approximation using the first two termS of the series

gives us an equation that is very similar to the expression

for the travel time through a single homogeneous layer. If

we define

_ 2-C - 2. f c: to..
i~i i;

l.ll

where C is a time weighted Root-Mean-Square velocity, we

obtain a travel time expression of the form
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a.T
J

T2.ø + ,-:aë x.2.
J l.l2

This is the most common travel time expression presently in

use. To is the two-way normal incidence travel time to the

layer of interest. C is known as the RMS or stacking velocity.

We note that it is not a true velocity, but is the first order

term describing the hyperbolic curvature of the wavefront.

For normal array lengths and for normally encountered seismic

velocity variations, the accuracy of this approximation for

the model is better than 2% (Taner and Koehler, 1969).

If it becomes necessary to go to the next term in the

series, the moel becom much more complicated. The coef-

ficient for the next term is

A:A -

, . ;i
- (f. c¡o, t.)- .,., t

Ib (E to;C¡)lf

(~ tØ¡) ( '& t'a" ~"4)
l.13

"",

A1 though we can find no physical quantity corresponding
L
!i

I

directly to this term, it is a measure of the variation in

layer velocities. A2 goes to zero for ci = c1 for all i.

We expect this term to be the first order variation from a

hyperbolic wavefront shape. A2 may be shown to always be

less than or equal to zero by the Schwartz inequality.
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The assumptions incorporated in the RMS travel time

model are the horizontal homogeneity of the velocity structureø

and (for A2 to be small) an absence of extreme variations in

the vertical velocity structure. In addition, all of the

calculations we have considered so far require that the array

length be small enough that there is always a vertical com-

ponent to the velocity vector; that the travel path does

not include wholly refracted segments. To put it another

way, we must always be close enough to normal incidence so

that the interaction with the lowest interface is strictly

reflection. As the travel path deviates from vertical, the

approximation in the model becomes poorer and poorer.

The most common deviation from the assumptions of the

model is that there is usually some slope to the structure,

both in the geology and the velocity. Solving for the first

order correction to the model for uniform sloping layers,

"
"

.1;

we find that the model is fairly robust to small slopes.

From model studies and least squares fitting of real data~

Taner and Koehler (l969) show that the returns from mildly

dipping layers are still very closely hyperbolic in form.

Solving for the delay times about a common central ground

point for the dipping single layer case (see Figure l. 4) ,

we obta in
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Dipping Single Layer Geometry.
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T2. =
2-

1; + x:l-
C20

(1 -
5~!2 )

l.l4

The dipping layer always flattens the travel time curve and

increases the apparent velocity. Taner and Koehler (l969)

extend this to multi-layered cases. With all other parameters

held constant, increased dips produce higher apparent velocities.

But) although the apparent velocities vary, it is important

that it is still possible to closely fit the delay pattern

wi th a hyperbolic model.

Finally, we note that it is a simple process to take

the veloçity structure in RMS velocities and calculate in-

terval velocities. The interval velocity between interface

i and i+l is given by

~C. -
1+1 i-~C'+I c: J

1:
;i to

HI l.l5

Summary

In the RMS travel time model we have a simple and efficient

means of calculating the travel time delays for the multi-

channel array. The model assumes a horizontally homogeneous

acoustic velocity structure for the travel paths, although

it appears to be robu~ to small dips. It is most accurate
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near vertical incidence and for structures without major

deviations in velocity. The model becomes invalid as any

part of the travel path approaches a refracting (i. e. hori-

zontal) condition. With a means of relating velocity and

depth to parameters that are directly measurable, we can

now look at the estimation procedure.
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Chapter 2 Estimation of the Velocity Functiön.

In.troduction

In this chapter we develop the concept of a velocity/

depth spectrum and present the mechanics of its estimation.

The form and general structure of the data are examined and

the estimation procedure is segmented into a two step oper-

ation. The contribution of each step toward the overall

resolution is examined, and areas of needed improvement ident-

ified. The first step, the windowing, is shown to be a criti-

ca 1 , although a£t. auht... pai:L ø.f t.he e-s.t.:kma-t :ion procedure.

The second, a beamforming or coherent power estimate, is the

operation to which we intend to apply the adaptive procedure.

The conventional velocity/depth estimator is developed using

a beamformer approach, and then an adaptive form of this is

derived from an adaptive wave number estimator. Finally, the

adaptive form is shown to be computationally similar to the.

conventional estimator, and the possible advantage of applying

either form in the frequency domain is indicated.

The Velocity/Depth Spectrum

The concept of a velocity/depth spectrum has been well

described in the literature by LePichon, Ewing, and Houtz (l968),
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Taner and Koehler (1969), and others. It is an estimate of

the coherent power received from a reflecting surface at a

given depth and at a given RMS velocity. The data set, com-

posed of N channels of recordings from the N surface positions,

is scanned in an iterative process with the estimator. For

each combination of depth and velocity the data is windowed

according to the travel time model, and an estimate of . the

coherent power in the windows is made to form the spectral

estimate. A sample spectrum is given in Figure 2.1.

There are several ways commonly used to display velocity/

depth spectra; this one shows the estimated power as the

displacement of plotted traces. In most of the work which

follows we prefer to display the spectra in contour plots or

the power levels in 6 dB increments. Because of the simpli-

city of the equations and the ease of correlating the spectra

with the original time traces of the data, we always consider

depth in the units of seconds of two-way travel time. Our

units of velocity are RMS meters per second.

An idealized example of velocity/depth spectra estimation

is given in Figures 2.2 and 2.3. Figure 2.2 gives the time

traces from 8 channels showing reflected returns from four

interfaces. As the data is scanned with the estimator, the

windows are delayed according to a travel time model such
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Sample Velocity/Depth Spectrum.
From USGS. Used with permission.
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Figure 2.2 Simulated Data Set Showing windows properly
Delayed for Third Reflector.
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Data Windows With Velocity Too Small.

Figure 2.3b Correct De la y 0 f Da ta Windows.

Figure 2. 3c Data Windows With Velocity Too Large.
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as we calculated in the previous chapter. The windows in

Figure 2.2 are shown delayed for a velocity and depth cor-

responding to the third reflector. As the velocity in the

travel time model is incremented in the scanning process, the

window delays are shifted appropriately. Examples of the re-

sulting windowed data for several shifts in velocity are

given in Figure 2. 3a through 2. 3c. Changes in the depth

(normal incidence travel time) shift the windows in a similar

manner, although much more uniformly up or down the trace for

all the channels. For each delay pattern specified by the

combination of each depth and each velocity, the data is

windowed and an estimate of the coherent energy in those win-

dows is made. The signals (though not necessarily the noise)

in the windows in 2. 3b are coherent across all 8 channels, and

our estimate of the coherent power in these windows will be

much larger than the estimate for the windows in Figures 2. 3a

and 2. 3c. This estimate of the coherent power as a function

of the velocity and depth of the delay model forms the

velocity/depth spectrum. The results of the velocity/depth
estimation procedure for the idealized data in Figures 2.2

and 2.3 are given in Figure 2.4. The four reflectors are in-

dicated by ~ and the estimates corresponding to the three

sets of windows in Figure 2.3 are indicated by +.
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Seismic Reflection Data

Before examining the estimation algorithms in any detail,

we first examine the form of the data and the source signa-

ture. The entire estimation procedure, and the windowing in

particular, are ultimately dependent on the expected form of

the returning wave front. A typical example of data is shown

in Figure 2.5. This is data taken with WHOI's 6 channel

system on Georges Bank in August 1975. Reflection wavefronts

are indicated in the time display by hyperbolic patterns of

varying degrees of curvature. Two of these are indicated on

the figure. The velocity spectrum of this data was given in

Figures 5 and 6 in the Introduction. The set of returns

from an interface is not always obvious, even to the trained

eye. They vary for different interfaces and, to some extent,

from channel to channel. The characteristics of the reflected

wave are a function of the source signature and the dispersive

and attenuation characteristics of the travel path medium.

The characteristics of various seismic sources have

been studied and classified (Kramer, et a1. 1 968) . The out-

going signal for our data is a pulse from an array of Bolt

PAR airguns. A typical outgoing signature is given in Figure

2.6. It is a relatively wideband signal of approximately

250 to 500 ms. duration. The frequency power spectrum is
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Sample 6 Channel Data.
Common Depth Point Gather.
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Figure 2.6 Airgun Signature. 3 gun array.
(from Kramer, et al, 1968)
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given in Figure 2.7. The spectrum is quite peaked at the

natural compressional frequencies of the air descharge bubble.

This signal undergoes phase changes, dispersion, and selective

attenuation as it travels through the sediment structure.

Since the travel paths for the N channels of data differ in

length, and usually to some extent in composition, there will

be a modification of the signal as a function of time (travel

distance) that will vary somewhat from channel to channel.

To the extent that the signal from a given reflector is co-

herent across the array, our coherent power measurement func-

tions well. Any incoherence across the wavefront creates

difficulties with its measurement which we will address later

when we are considering the sensitivity of the estimation

procedure to noise and signal incoherence.

Partitioning of the Estimation Procedure

In this section we look separately at the two basic

operations making up the estimation procedure - the windowing

and the coherent power estimate. Each can be used alone to

produce a form of spectrum. Our reason for doing so is two-

fold. By examining each aspect separately, we can better under-

stand the whole and how each part contributes to the overall

resolution and accuracy of the complete estimator. Secondly,
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on any improvements we hope to achieve. In considering a

spectral estimate without the coherent power estimate, we

replace that operation with a calculation of the total power

that is present in the windows. For the case of only using

the coherent power estimate, we lengthen the windows until

they include the entire data trace. In this way both forms

are still estimates of the power in the data as a function

of v€loci ty and depth.

In Figures 2.8 and 2.9 we present the two forms of

spectra ruri6~ ideälizgddatä containing four reflectors.

Figure 2.8 gives a contour plot of the spectrum which relies

solely on windowing for its resolution. The points of inter~

est are the relatively sharp delineation of the reflectors

in depth, but the rather poor delineation in velocity. Figure

2.9 gives the spectrum of the same reflectors calculated using

only the conventional coherent power estimate. In this case

there is poor resolution along a line which, as we show in

the next chapter, is defined by

2
To C = constant
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velocity/Depth Spectrum Calculated From
Incoherent Arriva 1 Times. Four Reflector
&irrnÜated Data With No Noise. Linear
COtour Spacing.
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Figure 2. 9 velocity/Depth Spectrum Calculated From
Conventional phase Measurement Without
Windowing. Four Reflector Simulated
Data. Linear Contour Spacing.
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From the general nature of the two forms of spectra and

their order of application, we observe that the windowing

provides most of the resolution in the time dimension, and

the coherence measurement then provides the resolving power

in the velocity dimension. In both of these forms of spectra

we note that the resolution is significantly better at shal-

lower depths. It is interesting that the coherence measure-

ment alone completely determines the reflector parameters in

the shallowest region. The wavefront exhibits the most

curvature (as determined by the travel time equation) in the

very near field of the array and the wavefront shape is unique

for a given depth. In this region the focusing of the array

is analogous to holographic methods. If the entire geologic

region of interest were in this holographic focusing region,
we could dispense with some of the stringentwindowing require-

ments. But such is not often the case, and we recall that
this is also a region where the travel time equations start

to break down due to refraction effects. The area where

we have the most to gain. from new coherence measurement tech-

niques is in the velocity resolution in the intermediate and

1far end of the Fresnel region. In these regions the change

lwe define the Fresnel region as being the region where the

reflectors are shallow enough that the curvature of the
wavefronts is still significant over the array length, and
the planewave approximations of the wavefront are not valid.
The term is commonly used in optics.
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in wavefront curvature for a given change in velocity is

relatively small, and any improvements in resolving power

effectively improve the resolution and the operating range

of the array.

Conventional Estimator

In conventional array theory, a processor which calcu-

lates the coherent power received by an array is called a

beamformer. A simple beamformer corrects the phase of the

signal from each element to correctly "steer" the array, and

then sums the outputs. Since the phasing is a function of

frequency, it is often convenient to work in the frequency

domain. ,.The conventional estimate of the total coherent

power is given by

~ L.
f

N j2rrrr;
L ~(f) e
;= i

2.

2. 1

;, .
"",

where Y; (f) is the frequency domain representation of the

signal from channel i,

and .i 1T t i¡ is the phase correction at frequency f for

channel i.

This estimator can be modified by multiplying each channel

by a weighting coefficient in order to taper the array, and

thus modify its resolution and side10be structure. But for
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any form of the conventional beamformer, we note that the

weights, and hence the resolution and beampatterns, are

constant with respect to the data being looked at.

In the development of velocity/depth estimation, the

traditional approach has been to use an algorithm in the

time domain. We can easily show that our simple beamformer

is equivalent to an un-normalized "semblance criteria II as

developed by Taner and Koehler (1969). Applying Parseval's

theorem to Equation 2.1, we obtain

~ IN""L ,L:. X (t + li) I
t 1=/

2.2

The phase shifts become delays in time, and the summation

in time is over the data window used by the Fourier transform

when going to the frequency domain.

Returning to our frequency domain representation, we

now introduce a vector notation. We let '1(0 be a vector of

the data ~(f) and E(f) be a steering vector of phase shifts

yirrfli
~ . Using this notation, the conventional estimator

become s

~ - L rEtyytEJ
r

2.3
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The quantity rir):t) is a matrix of products and cross pro-

ducts of the frequency terms from the Fourier transforms. ~~)~(/trù~
For Gaussian data, this is an estimate of the covariance

matrix of the process (Anderson, 1958). We denote the co-

variance matrix by R.

..
Ii (f) -

t
Y (f) Y(f) 2.4

We note that R(f) is hermitian¡ it is conjugate s~metric

complex, and is different for each frequency of the trans-

form. Collectively, the set of covariance matrices contain

all the relative phase information of the N data windows.

In final form, we can write

~ L
f

EtR E- - 2.5
¡,

r

Adaptive Estimator

The simple beamformer has a beam pattern which is directed

to look at the amount of coherent energy in the desired in-

coming wave through the use of the proper delays. The weights

on the elements in this beamforming process are held constant,

so that the basic shape of the beam pattern and the associated
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sidelobe pattern for a given focus (velocity and depth) do

not change. But more importantly, they do not depend upon

the data in any direct manner. In order to optimize the

signal-to-noise ratio when there are other wavefronts in

the viewing field, we would like the beam pattern to adapt

to the data being processed. By changing the weights of the

array elements, the beam pattern may be controlled such that

the peak and side10bes of the pattern are kept away from the

directions that may interfere with the estimation at a

particular desired direction.

The data adaptive algorithm we are incorporating is

called the high resolu.tion Maximum Likelihood Method, or MLM.

It was developed for wave-vector analysis for the large aper-

ture seismic array (LASA) in Montana by capon (1967). Our

application differs from previous uses in that the field

being measured does not consist of plane waves. The data

field is non-homogeneous, or spatially non-stationary. This

characteristic rules out most other data adaptive methods

that are in popular use.

The MLM is based upon the design of a minimum noise

unbiased estimator. The estimator is constrained to pass the

desired wave (phase or delay pattern) with no distortion,

while optimally suppressing any noise fields. The resu 1 ting

, .
i
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estimator is identical to the maximum likelihood estimate

if the input signal field is a multi-dimensional Gaussian

1
process. The concept of the Mk~ of wavenumber estimation

is to calculate the average power that this unbiased, or

maximum likelihood, estimator has as a function of the steer-

ing wavenumber, k. There are several ways to arrive at the

MLM wavenumber estimator formula; and we present one which

has an intuitive appeal based upon the unbiased array pro-

cessor. Similar discussion can be found in Ede1b1ute, et al.

(l967), Capon (l969), and Lacoss (1971).

The unbiased estimator for a plane wave with a wavenumber

k operating in the presence of a noise field with a spectral

cross correlation matrix, ~, is given by2

A ar) -

/l_-~t-.~l..-1 .
B (f) E(It)

E t( l!) R-'(f) £ (Jr) 2.6

where R. . (f) is the cross spectra between array elementslJ
i and j at frequency f, and

lThe maximum likelihood estimator is the one which gives as

its estimate the parameter set which has the maximum
probabi1i ty of producing the received signal. (see Van
Trees, 1968)

2we use notation similar to Lacoss (1971).
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E (h')
( -j b:.~1 -j b:~z.
e ie,

T

, e-jltox" J

is a steering vector consisting of the phase shifts required

for each array element. Now, if the noise field is applied

to the minimum variance unbiased array processor, it passes

the component in its steered direction without attenuation

and rejects the rest of the field in the manner which mini-

mizes the output variance. Ideally, then, the output vari-

ance should indicate the intensity of the component in the

steering direction, and this is defined as the MLM wavenumber

estimator formula.

S"'LM (k) 4

t
0-'-( lr) := A (b:) R(f) A Us)

-I

r ET(lf) R-'( t) E(li)J
.2.7

The final step is to employ an estimate of the cross spectral

correlation matrix. 1

iA
SMLM(k) -

.- -I
f Ò1r ~ -if) £ (I!) J 2.8

lcapon and Goodman have derived formulae which specify the

fluctuation introduced by using an estimate of the cross
correlation matrix. Essentially, their results show that
one loses N degrees of stability in the MLM formula when
one has a multi-dimensional Gaussian process.
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The form of the MLM estimator can be compared with the more

conventional beamformer estimator,

SGøPlV (~) r E tiki R (f r(~ 2.9

We observe that additional computation required essentially

consists of inverting the cross spectral matrix, which is a

minor computational load when compared with that of estimating

the matrix and scanning across the parameter set.
In modifying the ML adaptive spectral estimation algo-

rithm for use in estimating velocity spectra, one major modi-

fication is required, and this is the introduction of windows. 1

For depths or normal incidence times in excess of that where

there is holographic resolution by the phasing across the

array, the only way that 'one can ol?tain resolution in. ~epth

is to use a sequence of window sets which are positioned as

a function of depth. Since the velocity also influences the

position of the windows, especially at the more distant e1e-

ments, these windows are positioned as a function of both depth

and velocity. The net effect is that one essentially has a

local estimate of the cross spectral matrix and a resulting MLM

lAlmost all previous applications of the ML1 algorithm have

implicity employed windows; but here their role is more
important because of the inhomogeneity of the spatial process.



55

velocity spectra estimate around each window position.

The presence of this windowing procedure introduces a

tradeoff which turns out to be quite important in estimating

the cross spectral matrix. (In fact, understanding the

presence of this tradeoff proved to be one of the more subtle

issues of this investigation.) The conflicting issues in

this tradeoff may be summarized as follows: Good depth reso-

1ution and suppression of interference from reflectors at

different depths requires multiplication by short duration

windows in the time domain. This, however, implies a smearing

of the data, especially the phase, across the bandwidth of

the window which increases as the window is shortened. We. .
analyze this tradeoff in more detail in Chapter 4.

Wi th these comments on the use of windows, we define

the MLM velocity/depth spectra estimate to be

-f

8cJtê: f' - f E t(f"ê:) ir(~E,,:f) E (T.ê:) J
¡J'\'r,' ""~~,I'P",,,

~~.J ;

2.l0

where

A

R (i- c: f)
..
!I

M

L:
m:/

t
'r (-r~:f) Y (TiC: f)

';.r,?i-
ß1J.."'

fY""& 1.'"

2 .1l
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which is an estimate of the covariance based upon transforms,

.Yr.,(i:c:f), of the data within windows positioned around depth
.A .A

T and velocity C; and where E(To,C:f) is a steering phasing

vector in the direction of the desired depth áfid velocity

" A
parameters T and C. If we compare the form of the MLMo

velocity/depth estimator to the conventional beamforming

procedure based upon coherency measure, we observe that it

is completely analogous to comparing the MLM and conventional

wavenumber estimators.

Finally, we note that the estimator is a function of

frequency and is applied to discrete fre~uency bands of the

Fourier transform. The characteristics of seismic data are

such, that-this-partiti0ning - of frequency is often desirable.

Real reflecting horizons are often wavelength selective

because of the finite thickness of the impedance transition

region. Maintaining separate estimates over frequency not

only gives sharper resolution of this type of reflection, but

gives some insight into the nature of the reflecting surface.



57

Chapter 3 Beam Patterns and Ambiguity Functiöns.

introduction

In the general Introduction we presented the on-axis

beam patterns of linear arrays looking at a single plane

wave in wavenumber space. These gave us some insight into

the high resolution capabilities of the adaptive array.

In this chapter we examine the conventional beam pattern

of an array looking at hyperbolic waves in velocity-time

space. This will provide us with a much better indication

of the resolution of the beamforming process which we Looked

at in a superficial manner in the last chapter.

The general function we need t.o define this resolution

is the parameter ambiguity function. The ambiguity function

has been described as the response of a matched filter to
"",

a mis-matched signai. In the case of an array processor, i
.r

it is the normalized response of a steered array to waves

other than the primary focus. We consider a uniformly spaced

linear array as shown in Figure 3.1. The array may be steered

to receive waves from various directions by adding appropriate

delays to each element. For plane waves and a linear array,

the ambiguity function is given by
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Figure 3.1 Plane Wave Incident on a Uniformly Spaced
Discrete Array.
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ø ( If, e I kø, a,) = .L mN L
f=-m

j (I J k sin e - Cf (k., eo))

e 3.1

where the steering function llJ(k e) is given by
T¡ ~,ø

lJ ( ka , eo) R d ko sin a 3.2

and m = (N-1) /2, N = number of elements in the array. By

modifying the form of the exponent in Equation 3.1, it is

easily seen that we can form the ambiguity function for the

array response to non-plane waves. In the case of wide angle

reflections from horizontal layers, the wave may be specified

by the RMS travel time model. We then have the ambiguity

function in terms of velocity and"depth.

N j'Jflr(¡T;~ + X(
ø tT;',C,,/ 7;, C,) = -/ ~ e C,.1=1 .

-jT'- +x)i --:
C, 3.3

This is the complex monochromatic ambiguity function. For

a case where we had a signal that was zero phase, we could

simply weight the complex monochromatic ambiguity function

by the frequency spectrum of the signal and integrate over

frequency to obtain a wide band ambiguity function. Kline

(l976) studied this wideband function and found greatly

increased resolution capabilities. with a signal of unknown
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phase characteristics, the ambiguity functions (and signals)

add incoherently across frequency, and we must resort to

integrating the absolute magnitudes of ambiguity and signal

over frequency. We continue to weight by the frequency

spectrum to account for changes in signal strength. our

wideband ambiguity function becomes

øws (-r.,c~1 T"êJ - ~ r df S(f I ø("r.,~JT"C,) I 3.4

B=rclS(f

The velocity-time ambiguity function is not solvable in closed

form, and thus requireS"numerical solutions or approximating

functions. Kline (1976) derived approximations .for the peak

shapes and peak widths of this function for monochromatic

and narrow band cases which prove useful when optimizing

parameters for beam width or sidelobe structure.

Looking at the monochromatic ambiguity function, we

find a large region of ambiguity stretching along a line

defined by

2
T1 C1

2
= T 2 C2 = constant 3.5
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When focusing on (Ti, Ci), the array will respond almost

equally well to any return falling on the line defined by

Equation 3.5. We note that this ambiguity is independent

of frequency. The half power points as approximated by

Kline (1976) are

T. C.... - f T,' C," :t i. 8/'10 J

f Le;
3.6

where L is the equivalent length of the array. For aeq
discrete element array, the equivalent length is

L = (N-1)deq 3.7

Figure 3.2 gives a contòui plot of an exact 'monochromatic

ambiguity function calculated for Ti = 2.0 seconds, Cl = 2000.

mis, f = 20 Hz, and N = l2. The wideband ambiguity function

;. .
"""

as applicable to our data is the sum of monochromatic ambi-

gui ty functions at discrete frequency points obtained by the

fast Fourier transform of sampled data. The genera 1 form of

the ambiguity function is not changed, although the peak is

better defined. An example is given in Figure 3.3 for T1 =

2.0 seconds, Cl = 2000. mIs, f = 20., 24., 28., and 32. Hz,

and N= i 2 .
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Figure 3.2 Monochromatic Amiguity Function.
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Figure 3.3 Discrete Frequency Amiguity Function.
Four Frequency Components.
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Discussion

We see that the array focusing - the coherent power

estimate - allows us to resolve a reflection return to a

one dimensional strip or line in velocity-time space. We

depend on the time windowing to provide resolution along

the length of this strip. The effect of applying the adap-

tive processor will be primarily to reduce the width of the

strip. The time windowing will continue to carry the load

of resolution along the length of the strip. Going to a

wide band estimator does not produce any significant improve-

ments in the ambiguity function. Higher frequencies give

improved resolution, but our primary reason for applying

a wideband estimator wi-ll be for tmproved signal-to""_noise

ratios. In the next chapter we investigate the windowing

to remove the ambiguity along the strip, and in Chapter 6

we see how reducing the width of the strip greatly enhances

;. .
""

í

rthe overall' resolution dofthe velocity/depth estimatoi;.
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Chapter 4 Estimation of the Cross Spectral Correlation
Matrix.

Introduction

Both the MLM and the frequency domain implementation

of the conventional semblence criteria for estimating velo-

city/depth spectra involve determining the cross spectral

correlation matrix in one way or another. In applications

to stationary homogeneous signal fields this typically in-

volves averaging over transformed segments of the data from

each of the channels. In the application to velocity/depth

spectra, however, the transient nature of the reflected

signals requires a windowing operation, particularly for.. .
resolving along the depth, or time coordinatè. The details

of the cross spectral correlation matrix estimation involving

this windowing operation are critical, for the errors and

biases introduced px:opagate directly into the final spectral

i
h
ii'

estimate. The estimation of this matrix has proven to be

the most subtle aspect of our experiments in applying the

MLM to velocity/depth spectra estimation.

The procedure for estimating the cross spectral corre-

lation matrix using a window is shown schematically in Figure

4.l. At a given frequency the diagonal components of this

matrix are measures of the energy at each channel, while the
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off-diagonal terms are indicative of the coherent energy

and its relative phasing from channel to channel. The two

most important aspects in the estimation of these components

are the smearing, or bias, and the variance. As in any

spectral estimation problem there are inevitable tradeoffs

between these two quanti ties; the windowing, however, further

complicates this issuec In this chapter we examine some

aspects of estimating this matrix - both the smearing intro-

duced by the windowing and the various ways of averaging to

improve the stability of it.

4-A Windows and the Bias of Transforms

The spectral correlation matrix is estimated using the

direct or FFT method of spectral analysis, so the first step

involves analyzing the bias introduced by windowed Fourier

transforms. In this section we examine this by first intro- L

T

ducing a stochastic model for the reflected signal from which

we can calculate bias errors using established methods of

spectral analysis. Then we examine the effects of wind owing

on an airgun source signature which ideally should be repre-

sentative of the signal reflected from a horizon. Finally,

we use estimates of allowable positional errors determined

from the results of the stochastic analysis to derive bounds
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on perturbations of the moveout parameters To' ~ for main-

taining a particular level of average bias in the windowed

transforms.

We model the reflected signal observed at an array element

as a desired signal plus an additive noise, or

Y (t) = ~ (t--t) T n (t) 4.1

where A1 (~ is the reflected signal at the array element

which arrives with a total travel time delay

or moveou t of i¿.

n (t) is an additive noise which may include both

-ambientnoíse :and'revèrberatiòn from other

horizons.

As indicated in Figure 4.l, the windowed transform operation

consists of multiplying the signal by a window function

centered at 1: and then Fourier transforming, or

~

~(l)
r a: -j~1rrt

Y(t) w( t -1:) e dt
-0;

4.2

(We use continuous time notation, although in practice the

FFT algorithm is used.) We specify the windows to have a

half width duration of M seconds, and some commonly employed
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windows are indicated in Figure 4~2.

If there were no windowing and no noise, i. e. w (t) = l.,

net) = 0., the result of the transformation would be

A

d(f) - xf(f)

-j ?.1lti:
e 4.3

which consists of the desired signal transform and a linear

phase shift from the travel time delay. Both the windowing

and the additive noise term introduce errors in this, so one

actually obtains

0) .
¿ (f = 5 (4(t-t) + nit)) w(t-Tw)

-0)

-j:i-r ite elt 4.4

It is convenient at this point to define the error, since

this is what we wish to quantify. We have

co

E(f - r r..(t-t)(w(t-t,)-t) + nit) w(t-T.)j

-CD

-j2rrtt
e dt 4.5

Qualitatively, the duration of the window, M, introduces a

tradeoff. A long window leads to low resolution of the-

depth and higher noise in the transformation; however, it is

relatively insensitive to its exact positioning and intro-

duces little bias or smearing. Conversely, a short window
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Figure 4.2a Commonly Used Windows in the Time Domain.
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leads to higher resolution in depth and lower noise; however,

it is very sensitive to its exact positioning and can intro-

duce significant bias, or smearing of the frequency domain

signal.

For our stochastic analysis we model the reflected

signal as

A (t) - a (t) 'X (t) 4.6

where a~) is an envelope function of approximate duration

1; (half width) which models the transient, or

short duration nature of the reflected signal;

x(t) is a wideband station,ary process which models

the waveform variation of the signal within

the duration of the envelope.

If we assure that the signal and the noise are uncorrelated

processes, we can determine the mean square error by squaring

and averaging Eq. 4.5. If we express all of the correlations

in terms of their associated spectra, we obtain

IEa)l~ J r iD~0t &. Siv; ,a(t-t,J(w(t-1;) -1) edt, Jir 4.7

~

J 5 -j11r(f-1f)t+ Sn(V) , w(t-Ïw) e dt dv
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where S" and Sn are the power density spectra of the processes

x (t) and n (t) respectively. We next assume that these spectra

are essentially constant across the bandwidths of the window

wet) and the envelope a(t). (This is a common assumption in

spectral analysis.) We then can take them outside the integrals,

and after using Parseva1 i s theorem we obtain

I E(l) l:t -
Jx (t) Ii a (t-t.) (w(t-;,) -1) t Jt

CD

+ Sn (f L w'"() dt

4.8

The details of this derivation are given in Appendix I. The... . - .- - -.
. firstterm describeS'the'_:er£ó:t'-intiôc1uced by-the durâtióri :and

posi tion of the window with respect to the desired reflected

signal, while the second term describes the effects intro-

duced by the additive noise. We consider each of them separ-

ate1y.

The noise term is easy to analyze. For almost any

reasonable window, one can demonstrate that

ø

S" (f f W'(t) Jt

-co

""
Sn(t) Kw lV 4.9

where LI is a window factor whose precise va lue depends
J \w
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upon the shape of the window, but typically ranges from

.5 ~ K.c: 2. The most important observation is that the RMS

value of the noise increases as JÑ, so one wants to avoid

excessively long windows for noise as well as resolution

considerations.

The signal term is generally the more important one,

and it is somewhat more difficult to analyze. First it is

convenient to normalize it simply for the purposes of com-

parison. The mean square value of the desired signal with

no windöwing is given by

I xl (l e- j11tt~ f"-

,. . eD
Sx (f L" Q'"() clt 4~lO

The expression which quantifies the relative effects of the

mean square bias error due to the windowing is then given by

e '"AT, 1':1;) = £J a(t)( Wet-liT) -1) r;1 : 1( t) dt 4.1l

where ÅT:~-~ is the difference between the position of

the window and the center of the desired signal. The precise

shape of this function depends upon the particular window

and envelope employed. Figures 4.3 and 4.4 are indicative

of the general structure. Figure 4.3 was computed using



10
0%

~ ~ ~
 
1
0
%

'- 't

Fi
gu

re
 4

.3
 R

M
S 

E
rr

or
 V

er
su

s 
Po

si
tio

n 
E

rr
or

 f
or

 V
ar

io
us

 R
at

io
s 

of
E

nv
el

op
e 

D
ur

at
io

n 
to

 W
in

do
w

 D
ur

at
io

n

G
au

ss
ia

n 
E

nv
el

op
e 

an
d 

W
in

do
w

1%

'a
/M

=
2

T
c/

M
=

1.

7õ
/M

 =
.5

.0
1

0.
1

.
6
T
 
/
 
f
Y

~ 
-';

~:
-"

:;~
':h

:r
~~

;i'
:'l

:i.
::.

o,
..:

-,

R
.

P
h
a
s
e
 
D
i
a
g
r
a
m

In
di

ca
tin

g 
E

ff
ec

t
o
f
 
E
r
r
o
r
 
i
n
 
t
h
e

C
om

pl
ex

 P
la

ne

1.
0

20
%

10
%

-. ~



75

Gaussian shaped functions for the window and envelope of the

form
1.

wet)
-11 (Â)- e

t 2.

a(t)
-1ì(iJ- e

4.12a

4.12b

Figure 4.4 was computed using Hanning windows for the shape

of both the window and envelope of the form

w(£) i (t + .cos(~t)) 4.l3a

aCt) i (1 + cos(~)) 4 .l 3b

Essentially these figures suggest that for less than a con-

servative lO% error in the average bias of the windowed

transform operation, one wants to keep the positional error

within IO.l (i.e. 20% of the effective window extent) and

use windows with 1;/M ~0.5, i.e. windows whose duration is

at least twice the effective signal duration.

To test the effects of windowing on actual data, several

tests were performed upon recorded airgun signatures, whic~



76

II0..0
a: c a0II ..:J 00 '- ~'- :J

~ Cl 0
'U

~ C
'- 0 3:0 'U- C 'U'-0 3: c
'- 0
'- 0 Q)W +- a.c c 00 0

Q).. +- :: iO0 CII '- N0 :J W ""a. Cl 01 II ZII
Q) c d:J a. c l-II'- 0 c ~

~ Q) 0
:: J:

'- c
0 W
'-i. -

W 0
en
~
a: C\ .. iO

II II II II

V ~ ~ ~ :E
-i .. .. .. ..

~ ~ ~ 0
Q. l-L.
::
oi
I.

q
~ ~ ~00 0 0

Q
0

( ~ 'w '.v) '3



77

ideai1y should represent the signal reflected from a horizon.

The signature and its unwindowed transform are illustrated

in Figure 4.5. One can estimate the energy distribution

about a central location by calculating the median signal

location and then computing the residual energy outside an

interval about that point. This suggests that t ~ 0.12..

Figure 4.6 illustrates the windowed transform with no

positional error using the windows indicated in Figure 4.2

with a value of M = 0.l28 secs., i.e. not conforming to our

previously suggested design guideline of t /M 0.5. One

can observe that there is some evident spectral smearing,

but the windowed trasform is basically accurate. (One needs

to compensate visually for the phase jumps at :t1ias a shift

of 2~ in phase is equivalent.) Figure 4.7 is a more sensitive

indication of the accuracy of the windowed transform with

respect to positional error. Here we have plotted the phase

deviation from linearity for the lO Hz component as the sig-

nature is delayed through the window. We can observe that

for only two of the windows is there a comparatively narrow

range of :to.OL2 sec., or A.T/M ~O.L where the phase deviation

is within :t15° for an error of ~30%. This is essentially in

agreement with Figure 4.3 which predicts that for ~/M=l.,

the error should be constant at 28% for A1íM ~O.l, and then
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Figure 4.5a 300 cu. in. Airgun Signature (including
water surface image).

A) Time Signature

I I

O. .100 .200 .300 .400 .500

Time (seconds)

Figure 4. 5b and 4.5c Frequency Signature of Airgun.

B) Frequency Magnitude

50. 100. 150. 200. 250.
C) Phose

71

-71
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Frequency (Hz)
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Figure 4.6 Frequency Spectra Estimates of Gun
Signature Using Various Lag Windows.
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increase significantly thereafter. Figure 4.4 gives similar

results for the Hanning windows.

The final step in our analysis of bias error introduced

by windowing is to translate the tolerance in positional

error to allowable perturbation in normal incidence time, To'

and velocity, c. Essentially, we have that if changes in

these parameters produce large positional arrors around a

normal moveout curve for the array elements, then we require

a dense sca~ing in estimating the spectral correlation

matrix. Obviously this is an added computational burden

which one wouid ii. to a'\a..i_

We can perform this analysis by taking the total deriv-

at-ive of the normal moyeout :-relçitionship,

~ (1:) C) Xi) ¡ T,:J + (Xi/e)2. 4.l4a
L

r

or LiT¡ 1; Al: ( ~/ 3 -Xi/ ë-) Ll C

1i
4. l4b

This can be manipulated into the form

LJT;(i: ex.)' -
1 1 Z

cas ~ li1;i - i;., 41 sin CÁ 1; 1iec 4.15

where
4l - Tan-I I Xi/Ci:) 4.l6
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The easiest way to employ this relation is to note that the

maximum effects of a change in i11; are when cP; ~O. and in

4C when ~~90o. We can use a worst case analysis for a

nominal To' C by considering the situations at ~ ~o. and

ø; = ~ø" = 1Q;' (X"It~x/C 1:) where X is the array element
MQ"

with the most distant offset.

As a simple example we consider a velocity analysis for

a 2.5 km. array at T = 3. secs. and C ranging from i. 5o

km/sec to 4.5 km/sec. From our previous analysis we allow

a positional error ofiO.025 secs which is divided equally

between that caused by' 11i: and that by ß C. We then have

for the allowable normal incidence time change

.-

Cas øt mal( ß-r ~ .OI.2S- seç.s )

or mQX Li-r ~ .Oi:i~ sees. 4..l7
,~

For the allowable velocity change,

m m 7;1a" 't sin.. C
I mG)C .dG I

~ .012.5" sees. 4.l8

At C = l. 5 km/sec this implies



cPmax
o- i'l

83

I max LlC ~ .OÄ3 kmjsec 1 4.l9~

while at C = 4.5 km/sec it implies

cPmø"
ø

I 0.5" , I mal' LlC e: .556 krn / sec. 4.20

Obviously the positional errors are more sensitive at the

lower velocity, which requires a denser selection of nominal

parameters for T , C. The results for velocity incrementso

for the same 2.5 km array for a range of velocities and

depths are plotted in Figure 4.8_ Note the large increments

that are allowed in the deep, high velocity region.

Discussion

We now can set up the iteration over velocity and depth

in an optimum manner. We scan the estimator on increments

corresponding to the finest resolution that we can expect in

the given dimension. In time the increment is determined

by the length of the signature and the length of the data

window. In velocity it is dependent on the array spacing

and length, on the frequency, and on the estimator form used.

The results of this last section offer relief, however, from

the necessity of having to form a new covariance matrix for
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Figure 4.8 Maximum Velocity Estimate Increments versus
Velocity and Depth of the Estimate for a
2.5 km Array.
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each increment of the estimator. The estimate can beper~

formed on the same matrix without appreciable degradation

over a range specified by Eqs. 4.16 and 4.17 l and Figure 4.8.

4-B Averaging and . the Stability of the Cross-Spectral
Correlation Matrix.

In the previous section we concentrated upon producing

an estimate of the cross spectral correlation matrix which

had a minimum of bias. In this section we consider the other

aspect of this estimate, that of its variance or stability.

The stability of the estimate is essentially determined by

the deterministic components and the available number of in-

dependent degres ar :fdom in reducing any random components.

The deterministric, or mean, components are indicative of

. the presence ÒÎ reflectiorihorizoiiS, 'while the random ones'
ij;

represent the variation that one observes in thê reflections

from them. The random components may be caused by variations

between the travel paths of adjacent shots, dispersion be-

tween different frequencies, or errors caused by random

noise. In this section we examine the methods by which one

may increase the stability of the estimate. We reserve until

the following chapter a discussion of the statistics and

probability models for the estimators. The probabalistic

models for describing a non-linear estimator with
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many controlling parameters tend to become intractable.

By first considering how one goes about stabilizing the

estimate, we gain some insight into the description of the

statistics of the complete estimator which We examine in

Chapter 5.

The primary mechanism for increasing the stabi li ty of

a spectral estimate is one of averaging over blocks of data.

Within the constraints of our windowing requirements there

are two domains over which one can average to reduce the

variance of the estimate - across shots and across frequency.

This averaging of the data may be performad at aeveLLpositions

before, within, and after the application of the estimation

PJ:ocaa~re,. e?lc;t with.sij,ghtlyçl:E_fe~jng results.. '. , ,These."

positions are indfcated iri Figure 4.9. The two averaging

domains are sufficiently different from each other that each

bears a separate set of comments.

The possibility of averaging over successive shots is

suggested by the similarity of signals produced by closely

spaced shots. The estimate is improved only if the signals

being processed are coherent. in some respect across the shots

being averaged, and the noise is uncorrelated. The effective-

ness of this is then a function of the horizontal homogeneity

of the medium and the distance between shot points, as well
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as the control of the array geometry and the stahi li ty of the

airgun signatures. For a horizontal planar structure and

closely spaced shot points, the signal may be coherent over

many shots and extensive averaging is possible.

There are two respects by means of which a signal may

be coherent over a shot sequence. In the first the wave-

form may repeat from shot to shot, and here a linear aver-

aging of signals, or their transforms (since the transfor-

mation is a linear operation) is appropriate. ~his is indi-

cated in the first two averaging columns of Figure 4.9.

Alternatively, the signal may very from shot to shot, but

the correlation and relative phasing may be stable. Here

a:~uadratic- a:verag ing-qf~-.the cr:os~,-..produçts:_-_ased in. ,es tima ting-

the cross spectral correlation matrix is appropriate. This

is illustrated in the third averaging column of the figure.
;. -
"""

In estimating the matrix one can average across fre-

quency if the signals are broadband, and the relative phasing is

not severely distorted across the frequency band used. The

same concepts that appear in the analysis of conventional

planar arrays also appear here. (See Skolnik, 1 962) . The

basic calculation that is performed is to compute the bandwidth

of the array about a nominal center frequency. For the case

of a simple linear array in a field consisting of a single
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plane wave, we have a normalized response given by

JJ ( jPJ ~ sin a -j a¿(f; c, E)nÇ) (K,~, eor t i e,i 6)) - -l L e ø e g ~ ,J N R 4.21

where the steering function is given by

~ (f, ,c,)~) - R d :z1r f, sin eC, , 4.22

This is the plane wave ambiguity function. (see Eq.s 3.1

and 3.2.) For a correctly steered array, we have

P=-t.
T. 0

C, =Cø

0, ::.80

4.23
i. -u

Now, if we let fo vary while keeping f1 fixed, we have

y( rD~ co,~ I t, Co,a)

N JP (4f sin a) ( t - f. ):LI,e 0
N 1 4.24

The response to waves of other frequencies is dependent on

the propagation velocity and the angle of incidence, as well

as on the frequency shift. For the case of the bandwidth of

the array in velocity/depth estimation, the response to other

frequencies is given by
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l (t l 1: , elf J 1: 1 C)

Ni I
N l

j :¿rrT(i:, e,Xi) (f,,-f,
e 4.25

Because of the complexity of the geometry here, it is diffi-

cul t to state anything very general. The array bandwidth

depends on the depth and velocity of focus, as well as on the

array geometry. For the adaptive processor, the increased

resolution will decrease the array bandwidth significantly,

al though this is even more difficult to quantify.

These comments, however, do not hold for averaging a-

cross frequency in column 5 of Figure 4.9; averaging the final

estimate. Averaging at tÌ1Ìspoint produces a wide band esti-

mate as described in Chapters 2 and 3. Here there is no

longer pha¡:einformatioIl_arid the estimates averagecaherently"

as long as the information in the two frequency bands is

consistent.
We have found that in regions with a reasonable amount

¡,

lof horizontal homogeneity, the velocity/depth spectra are

qui te consistent across adjacent or closely spaced shots.

(See Chapter 6) Averaging across shots in any of the posi-

tions is of some benefit. We have had mixed results, however,

in averaging across the frequency domain. In all of the

positions except column 5 the smearing has been noticeable.

In column 5 we have found that it is often useful to main-

tain the separate estimates over frequency . It appears that
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the refl~ction process can be frequency selective, with

horizons which are evident in a CDP profile appearing only

in some of the velocity/depth estimates versus frequency.

It may be possible to use this frequency selectivity con-

structively, either for the design of filters in subsequent

stacking operations or as a diagnostic tool in interpreting

the character of the reflection horizons.

Summary

The estimation of the. covariance matrix from the data

is a critical step in forming the veLQcity/de~tl s~ectrum.

Two important aspects of this estimation are the time windowing

. PJ;:i:of" _to trans_'forming, :.nd :the averaging oLthedata __ '. ..~The'

optimum window shape and length is dependent on the reflected

signature. Once the window is determined from a tradeoff of

time resolution and frequency smearing, the bias due to

positional errors is easily calculated. Defining limits

for this bias, we can then perform the velocity/depth spectral

power estimate over a small range of depths and velocities

using the same estimate of the covariance matrix. Numerically,

this can be a time saver. In practice we have found this to

work quite well for a range of velocities, but not for the

time increments, which depend on the window increments for
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resolution. Averaging of the data reduces the ra ndom com-

ponents, but must be done with discretion. It is very seldom

that the return signals do not vary to some extent from shot

to shot, even in the best of conditions. Nature never quite

follows our assumtion of flat, laterally homogeneous layers

of sediments, and we rapidly begin to lose information if

we average very many data sets. Again experience with rea 1

data provides the final answer, and we have had some of our

best results without averaging over shots, and summing over

frequancy only in the final stage of the estimator. After

examining the statistics of the estimators in the next chapter,

we investigate the results of applying the estimators to, -. .' .
reaL. data ìn chapter 6.
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Chapter 5 statistics of the Estimators.

Introduction

In this chapter we examine the statistical distributions

of both the conventional and MLM velocity/depth spectral

estimators. We calculate the bias and variance of both forms

of the estimator for Gaussian input data. Simplified results

are presented for the special case of independent (between

channels and between observations) noise. with the aid of

a matrix whitening process we solve the estimator forms and

their statistics for thG case of a singular (rank i) estimate

of the covariance matrix. The moments for the MLM estimate

opa+ating OIl ?l,singul?x covariance matrix are shown to be

a form of confluent hypergeometric function. These are cal-

culated and compared with the conventional moments using

the same covariance matrix estimate. The MLM is shown to

improve the velocity/depth spectral estimate, even when

employing a singular covariance matrix.

Throughout this chapter we characterize the data (the

output from the FFT operation) as a complex valued signal

plus complex Gaussian noise. The signal is considered as

unknown but constant, and the noise is multi-variate normal

with zero mean and a covariance matrix í:. The data from



94

observation "k" is denoted by

Yk s + N k 5.1

where S is the vector of signals and N is a noise vector.-k
This is a common assumption in geophysical data and permits

us to calculate and compare the statistics of the two forms

of the estimators.

Conventional Estimator Statistics

We begin by considering the statistics of the conventional

estimate.' We use matrix notation to simplify our calculations.

The. data may' bé consideí"éd an NxL matrix formed from' L obser-

vations of vectors composed of the N data channels.

1:, ~ lL

-i Y;~ 1:
1'. -t - :v (f) 5.2

~, ~L

The estimated covariance matrix is formed by

A
ß. (f) -- t

~ (r) u (n 5.3a
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where the ij
n

component of R is

A
R.o

'J

L ..
L ~k"1k
k=/

5.3b

Referring to section 4-B, the averaging inherent in this form

of the estimated matrix is the quadratic averaging in column

3 of Figure 4.9. This is the form generally used for the

estimate of the covariance matrix of a process (Anderson 1958,

Goodman 1963).

We write the data as a signal plus Gaussian noise,

)7k = S.l + n¡k 5.4

where JLk is distributed as N (S, L), s = (siJ is the unknown

but constant signal, and ¿ is the actual covariance matrix

of the noise process. It has been shown (Goodman 1963, Rao L

. rA
1965, and others) that the estimated covariance matrix R has

a non-central complex Wishart distribution. This is a multi-

variate generalization of the non-central complex chi-square

di stribu tion.

It can be shown that for a Wishart distributed matrix

A
R and a column vector of constants E, the quantity
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EtR E J

is distributed as a first order Wishart with L degrees of'

1.
freedom, which is equivalent to ~(L) (Rao, 1965). Specif-

ical1y, the distribution is

f4

~
:i

'X (L, À) 5.5a

where ~
o-e. ~ EtE E 5.5b

and Âis a non-centrality parameter given by

Â
2-

I ~ gfs-I
CT '2

E.

5.5c

If we look at the on-axis response (E. s = 't ) and consider, l
the noise to be uniform and independent (i:=~ I ), then

we have, for a simplified case,

a: :2 - 0; ~
s:

N

À N L:t 1"J-
a: ~y

5.6a

5~6b

The characteristics and moments of the non-central chi-square
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are well known. The mean is

E l~J CT:(L+À) 5.7a

and the variance is

,.

~
0;

co

:i
(~') (i-+'tÀ) 5.7b

For our simplified case we have

E(~)
:a (L

o-y ,N + ~~) 5.8a

~
~c

CTy+,( ~: + 't~r) 5.8b

MLM Estimator Statistics

We begin our investigation of the statistics of the i

:l

MLM with results derived by Capon and Goodman (1970). using

a relation given by Rao (1965), we can derive Capon and

Goodman i S result in a simple fashion. Rao (1965) gives

the following result for a matrix R distributed as W (L, L) .

The quantity

EtE-'£- --
, t ..-,ERE- .- -
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where E is any fixed vector, is distributed as )((L~N+l).

The numerator is a variance term which remains constant.

We rewrite this result to give

8LM l A-'ERE

is distributed as

r~/~~~J
:l

X (L -N i-I) ) L.~N 5.9

This result, as well as the existence of the Wishart distri~

bution density functIcm, depends on L ~N. The expressions for

the mean and variance ar~ --, .i :

E f ßl. )

-,

- r E t L,-I E J (L - N + J + À ) S .lOa

~
a-

PM"'''

-;¡

t E t L -I E J (i. ( L - N +- l) + 4 À) 5. lOb

where À is the non-centrality parameter given in Eg. 5.5c.

We again simplify for the case of L~a: 1 and E~ 5¡ = $ . The

results are

:i ( L- N ..1

E (~l. J = cry N + L:L ('- )

cr ~y
S.lla
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and

:t
cr

PML.M -rr'* ( 2(L~:1) +4 L:: ô" J
N cr~

5. llb

Comparing Eg.s 5.8 and 5.l1~ we see that both the expected

value due to the noise power and the variance are reduced

by the MLM. This verifies the concept that the MLM is a

higher resolution estimator and does not respond as greatly

to incoherent signals.

We note in applying these results that the requirement

that L be greater than N is a problem. In most of our appli-

cations we have used only one or severa 1 shots or observatîons

in forming the covariance matrix. In order to examine the

statistics of these cases, we propose another approach which

is presented in the next section.
"""

i'

f

MLM for a Sinqular Covariance Matrix

The general results of Capon and Goodman (1970) are

not valid for the case where L ~N, which is a region we are

most interested in. The rank of the estimated covariance. A. ..-1
matrix R is L, and R does not exist when L ocN. We have

found that by adding a small real quantity to the diagonal

,.
elements of R, we eliminate the singularity of the inversion
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and can invert the modified matrix even when its original

rank was unity. This operation is commonly done in spectral

analysis techniques and is described as whitening the matrix.

The effect of whitening is much the same as the quadratic

averaging of many observations, each of which contain some

white noise. The diagonal terms (which are all zero phase)

are enhanced relative to the off-diagonal terms (which have

non-zero phases that vary with the noise components). We

note that the diagonal terms are spectral components and the

off-diagonal terms are cross-spectral components. White

noise contributes to the level of a spectral estimate with-

out affecting the cross-spectral level. We also note here
. ,.-,- - '.'- . .. . '._' -. '. . - - . .

that the linear averaging- in columns 1 and 2 õf FigÙre4~~9

reduce the noise by increasing the number of observations,

but do not contribute to increasing the rank of the matrix.

The estimated matrix following the linear averaging of the

terms is of rank i. The comments in the next. section on

the single observation case are also applicable to this case

if we consider a reduced input variance.

Some insight into the singular covariance matrix may

be gained from factoring the matrix into its eigenvectors

and eigenva lues.



A

B.

lOl

WAWt 5.12

A is a diagonal matrix whose diagonal terms are À¡, and Wis

a matrix of column eigenvectors. The eigenvectors are ortho-

normal so that vvt~=i.
A
R is hermitian, which implies that

the Â¡ are rea land non-nega ti ve.
A

The inverse of R is given

by

..' -,R -- -I tWAW-~ - 5.l3

Ãl is a diagonal mat:iix. wh.ose te: are (~):, When one or

more of the À¡ are zero, R is singular and the inverse is

ilL-defined.- .
If we now consider the modified covariance matrix

A / "
B. -R + p I 5. l4a

we get a modified eigenvalue matrix.

" /
R

+

W A W + ßl--- 5. l4b

or
'" ~

R W (A +ßl) Wt 5 .1 4c

The eigenvalues of the modified matrix are
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,

Ì\ .l Ài + ß 5.15

and the eigenvalues of the inverse are

I

~
1

I

/\i+ ~ 5.l6

These are always finite for ß ~O and the inverse is no longer

ill-defined.

The stability of the inversion operation is determined

by a quantity known as the condition number, Î\ (Householder

1964). The condition number of the covariance matrix is the

ratio of its largest to its smallest eigenvalue.

.. -.

Ai'

~
rna"- i

min À.
5.17

j J

For X approaching one, the inverse operation is a well posed

problem and the solution involves very stable calculations.

For ?( increasing, the computation of the inverse becomes

more and more unstable, and the matrix approaches a singular

condition. By whitening the matrix, we are limiting the

'value of;(. The largest eigenvalue is bounded by

lr(ß)
N

~ Â¡ ~ T;( R)
I7Q~

5.l8
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The minimum eigenvalue in the modified matrix is greater

than or equal to ß. Letting (3 be a function of Tr CB.), we

control ï( and the stability of the inversion opération. The

optimum maximum value of ï( is determined by the numerical

stability and accuracy of the computational device used

for the calculations. For computers with a 7 significant. 4figure accuracy, a value of about 10 is suggested. ~he

tradeoff we make for stabilizing the matrix inversion is

one of distorting the matrix, and ul timate~y distorting the

final estimate. Our results which follow indicate that this

distortion is toward the conventional form of the estimator;

hence we have a valid, if slightly less than optimum, estimate.

This bias toward the conventional .estimate is intuitively

correct in that as we increase the level of white noise in

the signal field, the weighting coeffecients approach uniform

and the optimum beam pattern approaches the conventional.

We conclude that, with the whitening, it is possible to

employ the MLM estimator on a singular covariance matrix.

The estimate suffers from not having reduced the random

components, but the adaptive procedure should still produce

a higher resolution estimate than the conventional.
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Sina1e Observation MLM Estimator ~ Exact Solution

A simple case that we can solve exactly and generally

is for the inversion of the whitened covariance matrix from

one observation of the data set. The estimated covariance

matrix becomes

A

B yy+ +- - ßI 5.19

where ß is the power of the added white noise. Generally

we let ß be in the range of 10-4 to iO-2 times the trace

of yy~ .From Graybill (1969) we have

A-I
8.

-...=
'--ß: I

t
,-,:.,.,..,..yy ,~:' ". :i' N ,. . *"ß + ß L y~

i=/ 1 1

5.20

Solving for both estimators in terms of the vector components,

we obta in

R
12
N

+ -l
N1

N N
L L.
¡..i j'"

'* *Ei "Y 1 Ej 5.21

p,:1 N '*
P

+ ß ). yyl- l:.1 ."'N ;l N N

EiY 1*Ej
5.22/oi.

Nß + N L.yy L. L
1=/ l i i=/ j~1
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We make the following substitutions

'f

~

I~Ail
N~

5.23a

e
N 1'-

L (Ai - A
i"

N
5.23b

Ai
*

where - E. Y 5.23c1 i
N

and A - 1- L. Ai 5.23d,
N ;"1

We note that ~ is the square of the sample mean of the

steered data and G is the sample var iance . Substituting
.-

these
' , -into Eqs. 5.21 and 5.22, we obtain

~ ;: ß + tpN
5.24 i

r

~t.M
- ~ + ~

N I + lie 5.25
ß

These results are derived in Appendix II. We use these ex-

pressions for the estimators in the remainder of this dis-

cussion.

For ß increasing, we note that the MLM estimate asymp-

totically approaches the conventional estimate. The two
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estimates also converge for the case when the variance of the

steered samples approaches zero. This corresponds to the

correctly steered estimate of a signal without noise.

statistics of Sinqle Observation Estimators.

In order to determine the statistics of the single

observation case, we again consider multi-variate non-zero

mean Gaussian data as the input to the estimators.

y ". N ( ~. L) 5 . 2 6a

A -- N ( (5i Ei"J rE~~ EjJ ) 5 . 26b

Constraining the noise to be identically distributed and

independent, and the phase corrected signals to be identical

for each channel, we have

A "' N ( ö ß , 0-;1) 5.27

Deriving the distributions of 0/ and f) is straight forward,.

and we take our results from Papou1is (1965).. ll is a first

order non-central chi-square process. The probability density

function is



cry J J.:rr tp

lÑ

l07
- (lJ+i'") ¡ i¡i _ Yl -

e :to-y/'N e ii + e crïN

2.
u (tp) 5.28f", ::

(j is centra 1 chi~ square wi th dens i ty functi on

L ~ N: ') ~4\7 :i:i(a;rr(N¡')
N-3 _ NS'-0:"

e 1- e -( U (e) 5.29

We also have that 0/ and e are independent. Changing variables

)
-

L
+ !: e

ß

e _. ~(f-l)
obta in

-.
we

5.30

5.3l

1,., &
= f ß ,-' e ..YfS l'; ) r(!!)

N-3 - ß r

(~-1) T e ~ U(S-I) 5.32

and

8.LM
L + Æ.N J 5.33

Since yJ and J are independent, we can solve for the distri-

bution of the quotient Z = (f) in a straight forward, but

algebraically complicated manner (see Appendix III).



r - n - f J CDF Jti.( f ~ 0)8 - f ( ø 1:.:; ) . f N d ¡ Z) Jz .)), e cosh --, - -':l ' ,, cry , d J U (4

f2

:i

N-i ß-N t

_ (~) T e Âa;:lÂ a-; J~'O r(~) 5.34

This expression is not reducible in terms of closed form

functions. Because~ and J are independent i We can solve

for the mean and variance of the estimator most simply by .

returning to the expressions for the distribution functions

of ~ and f. Calculating the first and second moments of

If and ; ~- we have

-, ,

E (til
o-y'"

. -~
.. t-- -- - +

N

E ( tpï (Ty4 '" 0: 'J (4= 3 + Cil ~ +
N~ N

E (; J

ß N~'

U ( N-I tL La)- (IÇ) :l i. i 1., Wy

N-J

E r 12 ) (ß T 11 (N-I N-3
L)-

2.(Jy' ) ;2 i Â. ?. (j;

5. 3 Sa

5 . 3 5b

i

. r

5.35c

5 . 3 Sd

1l(a,b,x) is the second Íorm oÍ Kummer's Íunction, a type

of confluent hypergeometric function. (Abramowitz and stegun,

1965) . It is convenient when looking at the mean to drop



l09

the constant % and consider only the mean of ~ for the

MLM estimator and the mean of ~ for the conventional. The

mean of the ML estimator is given by

E (~LM J E f (J) Eft) 5.36

The variance of the estimator is given by

vARir;~~J - E(tpl) El ;,.J E?( lIJ E:1 f t J 5.37

using the relation

u (a,b,?~), = r: . f M (a.. hi z), . _ Zl-h )1 (¡fa-b, Â-O,:Z )l. 5.38, . ,'sin1ì~ 'r(J+a-b)r(b) - , r(aJr(;t.6) J

we solve for the moments of (l)With N = 6.

Q ~ J
Ein - jFe Q + .; Q (i - 1.QM(U,Q)

Elf)
~ SA Q

= jQi(i +Q)fr(ti,Q) - ~Q - ~ Q -l(3+2Q)e

Q - ß
2.0: 2)"

5.39a

5 . 39b

5.39c
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!1(a,b,x) is the first form of Kummer's function, which may

be determined form tabulated values of c.a1culated from thé

series definition (see Abramowitz and Stegun, 1965).

The expected values of the ML estimator versus the

noise variance are plotted in Figure 5. l. As the noise in

the data increases - as the signal structure deviates from

the form decreed by the steering vectors, the output of

the estimator drops off sharply. This is an indicator of the

increased resolution that we find with the adaptive estimator,

and how the resolution is controlled by the level of ß. As

ß is decreased, the estimator permits smaller and smalLer

. -

deviations from the desired signal structure in order to

f'..., ~ ';

maiÍf:dün the SÇlme 1evel p:E output ;(i: e., thË;_'nli~soiutloñ is

increased) .

The variance of the single observation MLM estimator

is plotted in Figure 5.2 along with the variance of the

corresponding conventional estimator. Since the adaptive

estimator is dependent on the signal field, we have plotted

the variance versus the variance of the input data for several

values of signal strength and for different values of additive

white noise. :a n
For small values of a.. the variance of t'¡\LM

is highly dependent on the strength of the signal. As the

noise variance increases, the dependency on the level of
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FIGURE 5.1 Expected Values of Estlmalori-

Single Observation Estimate.
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FIGURE 5.2 VARIANCE OF ESTIMATORS - Single Observation Estimate
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additive white noise becomes the dominant factor. For com-

parison purposes we also have plotted the variance of the

conventional estimator for the same signal levels.

Summary

In our probabilistic models we have over simplified

the actual processes, and the accuracy of the models suffers

accordingly. Without these simplifications, however, the

problem becomes intractable. There are too many dimensions

to allow reasonable interpretations to be made. Our most

vulnerable simplifications are the restriction on the noise

to be independent and the restriction to looking only at

correctly steered signe1ls~ The noise in seismic reflection

data is generally highly colored and propagating. As we

scan the steering vectors versus T and C, what was the
o

desired signal in one instance is a strong part of the noise ¡e

r
field in the next. But the simplifications do allow us to

identify some of the major characteristics of the estimator

and make some simple comparisons. The results from the

singular matrix case are applicable in a more general sense

if we consider unwanted signals as non-random components

which reduce the degrees of freedom of the matrix. Off-axis

signals increase the sample variance of the steered data
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and increase the value of e in Eq. 5.27. The resulting

estimator shows a much higher resolution in depth and velocity

than does the conventional estimator, which is one of the

strong points of the adaptive processor.

As we saw in the beginning of this chapter, the mu1ti-

observation matrix provides its own whitening while reducing

the random components wi thin the data. Considering the

constraints used to develop the estimator, this whitening

should be optimum; i.e., the white noise level, which we

have seen to be an indicator of the resolution, is a direct

function of the noise variance of the data. Noisier data

calls for a broader resolution. The single observation

MLM estimator is sub-optimum in two senses. First, there

is. no way for it to distinguish between signal and noise -

there is no averaging to reduce the random components.

Second, the white noise level is externally adjusted and

is not directly related to the noise variance of the data.

In spite of these short comings, the MLM single observation

estimate is a large improvement over the conventional single

observation estimate. The single observation MLM estimator

still has a greatly increased resolution and a reduced var-

iance. We simply need to be judicious in bur estimate of

the noise level of the data and our choice of the parameter ß.
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If we consider noise as errors in the data, then there is a

tradeoff between the mean square value of the errors which

we assume to be present in the data and the resolution that

we call fer. We cannot afford a high resolution if there

are significant random or systematic errors present.

For the MLM estimators in general, we find that we have

an increased resolution and a reduced variance. For the

single observation, and any case where the random components

have not been completely averaged out, the resolution and

variance are gained at the expense of an increased bias.

This bias, however, which is a decreased signal level& is

a direct contributi'on to the increased resolution of the

estimate. If used cautiously, it-is- to - be desired rather

than avoided.
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Chapter 6 Experimental Results and Conclusions

Introduction

The experimental development of the MLM estimator in our

study has been through a step by step procedure. We began by

doing studies of the estimator response to an ideal covariance

matrix as in Figure 2.9. Following this investigation we

created synthetic tapes in which we could control the charac-

teristics of the reflectors and in which we could be certàin

that the data matched the travel time model. Studies with

this data brought out the requirements for careful windowing

and demonstrated the increased ve.locty resolution. Studies

with real data have substantiated the results and conclusions

of,_ the synt-heti,c. dat~ studi:es; .a.nd have alsÓidentifieçi soIIe '

interesting points that were not accounted for in the synthetic

data. These include the ability to resolve overlapping sig-

nals and multiples, and the strong frequency dependence of

certain returns.

Figures 6.l and 6.2 give typical results from the ideal

covariance matrix studies. Figure 6.1 is the conventional

estimate and 6.2 is the MLM estimate of a four reflector case.

The reflectors are indicated on the plots by a +. These
spectra were calculated entirely from a single covariance
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FIGURE 6.1 Ideal Covariance Matrix Spectrum. Conventional Estimate

at 25 Hz. Six Channels.
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FIGURE 6.2 Ideal Covariance Matrix Spectrum. Adaptive Estimate

ot 25 Hz. Six Channels.
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matrix containing all the reflectors. The ambiguous strip and

the higher resolution at shallow depths that we predicted from

the ambiguity functions are evident. The effect of holographic

focusing is indicated by the resolution in both depth and velo-

city of the shallowest reflector. In comparing the relative

resolution of the two estimators, the MLM processor appears to

extend the focusing range of the array, as well as providing

a higher resolution in the normal range of the conventional

processor.

The next step in the development of our study was to

estimate the covariance matrix from ideal data. A common

ground point gather from a 12 channel synthetic tape is given

in' Figùre 6.3. . There are 8 reflectOrs whose parameters are

given in Table 6.l. This data does not contain any noise

wavefronts other than those introduced by a filtered random

noise generator applied to each channel. Nor does it contain

multiples or refracted arrivals . All the delay times follow

the RMS travel time model. The reflection signatures are

damped sinusoids. The conventional and ML spectra of this
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Table 6.1 Reflectors in Synthetic Data Tape.

To (iecl ë (mIi)
Prmary

Frequency (Hz)

.20 1490. 34.

.80 1840. 30.

1.30 2260. 27.

2.10 3050. 24.

2.50 3230. 22.

2.70 3490. 20.

3.45 4120. 18.
, .
""

3.60 4430. 15.
0

¡,,
r -
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1
data are given in Figures 6.4 and 6.5. These estimates are

summed over frequency and include the frequency band from

19 to 35 HZ. An interesting point of comparison is the flat-

ness of the background in the adaptive estimate; the absence

of much of the fine structure that is present in the conven-

tiona1 estimate. The noise is white Gaussian and we are

observing the reduced variance predicted in Chapter 5. The

resolution along the time axis is comparable for both estimates,

as we would expect from Figures 2.8 and 2.9. There is a

notable increase in the velocity resolution in the MLM esti-

mate, particuIarly for tIie deeper reflectors" The spectra

for 6 channels of this same data ( the even numbered channels,

giving'the'same årray length) are-giveninF'igures 6.6'and 6.7.

The results of the adaptive procedure applied to the 6 channel

array are not quite as good as in the 12 channel estimate, ""

but continue to be greatly improved over the conventional ,I;

estimate.

Following the synthetic data studies, we turned our

1
We note that most of our spectra plots are contoured at 6 dB
intervals. These were plotted before we normalized the gain
factors between the conventional and adaptive estimation pro-
grams, so we can only say that the levels are arbitrary.. All
the contours above an arbitrary level are shaded to aid in
interpretation. The shading contour was chosen in each case
to highlight the peaks.
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Figure 6.4 Conventional Velocity/Depth Spectrum of
12 Channel Synthetic Data. 19-35 Hz.
6 dB contour levels.
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Figure 6.5 Data Adaptive Velocity/Depth Spectrum of
12 Channel Synthetic Data. 19-35 Hz.
6 dB contour levels.
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Figure 6.6 Conventional Velocity/Depth Spectrum of
6 Channel Synthetic Data. 19-35 Hz.
6 dB contour levels.
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Figure 6.7 Data Adaptive Velocity/Depth Spectrum of
6 Channel Synthetic Data. 19-35 Hz.
6 dB contour levels.
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attention to actual field data. The data is from the WHOI

mul ti-channel system employing six channels at 150 meter

spacings. The shot points are spaced at 37.5 meter intervals,

so we would expect a fairly high correlation between adjacent

.gathers. The next four figures give the conventional and

adaptive spectra of two consecutive common ground point

gathers. Figures 6.8 and 6.9 give the conventional estimates,

and Figures 6.10 and 6.ll give the adaptive estimates. We

see the same reduction in sidelobe energy and flatness of

spectrum that we observed in the synthetic data. Note the

reflector at 0.85 seconds and 1800. meters per second that is

virtually lost in the energy from the shallow refracted and

direct arrivals in the conventional' spectra.' The higher

resolution of the MLM allows it to discriminate between the

direct and refracted returns and those returns fitting the

RMS travel time model. Comparing the reflector at 1.7 seconds

and 2400 meters per second in Figures 6.9 and 6.11, the

adaptive estimate distinguishes between the reflector and a

slower multiple, while the conventional estimate smears them

together. Finally, the general stationarity of the data

between adjacent gathers is an indication that we can further

improve the estimate by averaging the covariance matrices.
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Figure 6.8 Conventional Velocity/Depth Spectrum of
6 Channel Georges Bank Data. 19-35 Hz.
Shotpoint 300. 6 dB contour levels.
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Figure 6.9 Conventional Velocity/Depth Spectrum of
6 Channel Georges Bank Data. 19-35 Hz.
Shotpoint 301. 6 dB contour levels.
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Figure 6.10
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Data Adaptive Velocity/Depth Spectrum of
6 Channel Georges Bank Data. 19-35 Hz.
Shotpoint 300. 6 dB contour levels.
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Figure 6.11 Data Adaptive Velocity/Depth Spectrum of

6 Channel Georges Bank Data. 19-35 Hz.
Shotpoint 301. 6 dB contour levels.
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Another example of the improvements gained by use of the

adaptive estimator is given in Figures 6.12 and 6.13. This is

another WHOI 6 channel data set from Georges Bank. We again

observe the same relative improvements of the MLM over the

.
conventional estimate. Note that Figure 6.l3 is plotted at

3 dB increments to bring out the structure of the spectrum.

The energy from the direct and shallow refracted arrivals in

the conventional estimate is greatly attenuated in the MLM

spectrum. Two reflectors at 1.45 and 2.25 seconds and 2700

meters per second are greatly enhanced relative to slower

velocity returns in the adaptive estimate. The velocity

resolution of the reflector at 3.35 seconds and 3100 meters

per second is significarit1y better, in the adaptive estimate.

This same data also gives us a good example of the infor-

mation partitioning as a function of frequency. The spectra

in the previous six figures (6.8 - 6.13) have all been aver-

aged over a 19 to 35 Hz frequency band. If we look at the

estimates for each frequency component for shotpoint l020

(Figure 6.13), we find that the different travel paths are

highly frequency selective. Monochromatic MLM estimates for

this shotpoint are given in Figures 6.14 through 6.l8. Most

of the multiple energy is in the higher frequencies of the

band, and most of the penetrating primary energy is in the
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Figure 6.12 Conventional velocity/depth spectrum of
6 channel Georges Bank data. 19-35 Hz.
Shotpoint 1020. 6 dB contour levels.
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Figure 6.13 Data Adaptive velocity/depth spectrum of
6 cnanne 1 Georges Bank data. 19-35 HZ.
Shotpoint 1020. 3 dB contour levels.
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Adaptive Velocity/Depth Spectrum of 6 Channel
Data. Frequency Breakdown of Shotpoint 1020.
19Hz. 6 dB contour levels.

~ 0 ~

~~ ~

1.0

o

D

f

i ,

2.0 3.0 4.0

DEPTH (SEe)



136

Figure 6.15 Adaptive Velocity/Depth Spectrum of 6 Channel
Data. Frequency Breakdown of Shotpoint 1020.
23 Hz. 6 dB contour levels.
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Figure 6.16 Adaptive Velocity/Depth Spectrum of 6 Channel
Data. Frequency Breakdown of Shotpoint 1020.
27. Hz. 6 dB contour levels.
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Figure 6.17 Adaptive Velocity/Depth Spectrum of 6 Channel
Data. Frequency Breakdown of Shotpoint 1020.
31 Hz. 6 dB contour levels.
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Figure 6.18 Adaptive Velocity/Depth Spectrum of 6 Channel
Data. Frequency Breakdown of Shotpoint 1020.
35 Hz. 6 dB contour levels.
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lower frequencies. This is indicative of the filtering done

by the travel path medium, and points out the usefulness of

working in the frequency domain for both the conventional and

adaptive spectra estimates.

We can also use this data to demonstrate the effects of

averaging over shots. The estimated spectra (MLM) for shot-

points 102l and 1022 are given in Figures 6.19 and 6.20. A

spectral estimate using shotpoints l020 - l022 in forming the

covariance matrix is given in Figure 6.21. Some of the

reflectors (1.25 seconds) are ,improved, while some (2.3 and

3.35 seconds) are degraded over the better of the single

observa tion estimates.

Conclusions

We have seen how the Maximum Likelihood Method, whßn

applied to velocity/depth spectra estimation, gives improved

resolution of reflector parameters. The resolution in depth

is determined by the windowing of the data, which is identical

for both the conventional and MLM processors. The resolution

in velocity is determined primarily by the coherent power

estimate, and here the MLM introduces significant improvements.

The improvement is dependent on the additive noise field, but

is substantial for the synthetic and field data that we
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Figure 6.19 Data Adaptive Velocity/Depth Spectrum of
6 Channel Georges Bank Data. 19-35 Hz.
Shotpoint 1021. 6 dB contour levels.
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Figure 6.20 Data Adaptive Velocity/Depth Spectrum of
6 Channel Georges Bank Data. 19-35 Hz.
Shotpoint 1022. 6 dB contour levels.
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Figure 6.21 Data Adaptive Velocity/Depth Spectrum of
6 Channel Georges Bank Data. 19-35 Hz.
Shotpoints 1020-1022. 6 dB contour levels.
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variance which is obtained at the expense of an increased

bias. This bias can be control.ied somewhat through the matrix

whi tening parameter. It is a direct consequence of the higher

resolution of the adaptive estimator, and is not a severe

problem if the whitening parameter is adjusted to suit the

data.

In concluding, the advantages of applying the MLM esti-

.r:

mator are primarily in the resolution of velocity, both when

distinguishing between multiples and primaries and at the

limi t of the array's operating range. The method allows

the use of shorter ard"sparser arrays to obtain results

equivalent to a conventional analysis, and hence reduces

operating and processing costs. On the other hand, it resolves

reflectors that would not be resolvable with the conventional

analysis for a given data set.
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Appendix I Development of a simplified expression for the
mean square error of the Fourier transform due
to windowing of the time series.

The error is given by Equation 4.5

tJ

E(f = f f .4 (t -1.)f w (t-r,) -I J
-CD

j 11trf;

+ n(t) W(t-1;) J e dt 4.5

If we square this and take the expected value, w~ have

~

I E(f) I

co (X

r r (E(4(ti-~).4(t.-r.)1 fw(t,-t,)-I J f W(t.-t) -I J-CD -co .

J ri.1T¡(t,-tJ-l ~(n(4Jn(tJJw't/rw) w(i~-tJ e clt1dt.i,
ALl

noting that thecross:terms droP?mt' because we have assumed

~(t) and net) independent. We can rewrite the expected value

terms as autocorrelation functions.

E (A(t.-~) .A(t~-~)J a(t,-t) Rx(t.-t,J a(t1.-t) Ai.2a

E (n (i.) n(tJJ Rn (t, -t,) AI.2b

We can write the autocorrelation function as the inverse

transform of the frequency spectrum.
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r j 2.1rY( t, -ti.)
5 ()') e d~ Ai.3,

Substituting this into Equation AI.l, we have

I E(fJ 1'-

- j '-1T(l -J) )(t,--i.1)

+ J d¡J Sn(¡I) Jdfjdt~ w(Vr.) w(t/fw) e
A!. 4

Thei~tegrations in ti and t2 fact_or and are complex conju-

gates of each other.
,. .

+ ) Jv Sn(V)

( j 21T(l-V)t
) dt a(t-T,) t W(í-1;)-iJe .

7.

-J 21J(f - v)t

)dt W(t,-T,)e .

I £ (f) i;i
- f d¡i S.(i')

A!. 5

If we now assume that Sx and S_ are approximately constant
11

for (f-V) sma 11; i. e., wi thin the bandwidths of the squared

quantities, we can take them out of the integral and we get
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w.é"have
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'"

j(t) = a(t-'4)fw(t-i:)-iJ AI. 7a

h(t) = w(t-Tw) AI. 7b

. 'f . ,- yi:rr(f-v)t
- 'G(f-y).": . J(t) e .dt , . AI .8a

( - yi.1r(f-v)tH (f - V) = ) h (t) e d t AI.8b

Substituting this into Equation AI.6, we then have

I E (f) I ~. I - 5" (t r clv I G(f-v) r
,/

+ Sn r d ¡l I H (f -)I) (
/

AI.9
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From Parseva lIs theorem we have

S clir G(f - ii) .. = fJiI I G(i I.. = ) clt hW r Ai.iOa

f dii fl (f-v) r = ) dy I H(v I.. = ) dtl h(tf ALlOb

Substituting AI.lO into AI.9, we finally obtain

IE(fJr = S,,(f )clt(a(t-t)fw(t-TwHJ):l

+ Sn (tJU (w(t-Tw))'
... .'". ....- .;.;-.-;- -. Á

IE(f) ( - S)( (f) l'lt ( aft) i w ( t -t,'r)-t J J

+ So (l) ) elt wit) AI.l1
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Appendix II Derivation of simplified expressions foresti-
mators using one observation of the data set.

The two estima tors are

Pc - ~.. i £ t R E J AII.l

and

P MLM

-I -,
L Et R E J AII .2

with

1\

ß 1'1+ + ~I Aii.3

and

E t~ N AI I . 4

We have

" -I
R

1. I

ß-
yyt

(3~ + ~ t -t~
1='

AII. 5

Multiplying out the conventional estimator and gathering the

terms in summations, we have

~ -'
N'-

N *
L E¡ P E¡
i ..,

+ l N N * *'
N2. L L E¡ ~ lj tj

i'" j= I

.1
N

+
.. II N

N1 ~ t
*" . ~

£í ~1j Ej AII.6
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The MLM estimator becomes

~'" - r -¡ E tIE

-I
E t Y yt E J- - --2. N, '*
~ i (3 E; -ti;

-I
N N ~ 'M

N ï: L E. -y -y E.i i J J- ;=1 j =1-
P

~ N

'~ i;*ß +
~ L:

i =,

¡ N~ ~
N *' NN it ..

pl ~ ~-y - & ~ +Er~ 1 ~~

~~ l ~ t~1i*
i =/

P
l. LM

~ N *
P + ~ ~ ~~
N . N N* ..

N A + N i:. 1',. "Y - L. L E. Y -y E..l- l i. J .11"1 . i=1 j=1 ,j

*'Since Ei Ei = 1, we can make the subs-ti tutions

l'A = E. Yi 1 i
'*

A.A.i i
. *'

- -yyi i

-,

AII-7

AII.8a

AII.8b .
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This gives us

ß i
N N '*

~ - +
N""

L L A.A.
N ž=1 j'"

l J

ß~
N ~

+ ~ r: A.A. .
~LM =

l "i i i
r4 '" N N :1

N ~ + N L Ai A, L. L Ai Aj
i :., Î"'I j""

AI I . 9

AI I . lO

We can further simplify P L with the following two identities.
M M

and

'*
L A.A.1 i

i.

2: i Aj J .

. '*
L L A¡Aj =

:i

J L Ai 1 .

We also make use of a simple theorem.

Theorem I

Proof:

LXi'" - L (Xi - X)'" +
~

¡! (L Xi)

whe.re X = k L. Xi

N '-
L (Xi - X) =
i

N 2- _ :1)
L (Xi - :iX Xi + x.i

N :a
= L. x. - i-X L Xi +i ¡ N X

2-

L. ( Xi - X)
:a

- L. x.J - ~ (E X¡)1.

AII .11a

AII .llb

AiI.l2a

AII.l2b

..-,

Q.E.D.
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Applying the identities, we have

~i-", -

N 2.,:.
ß + f; I Ai /

N N ~2. " r ','.1..,' N I ?.
N + - L I A. ..",.,,',' -- .;~'".."" :,'. 'Ç, A.. "A i',,, ,.~.n; ,~ I" '. 'i='

Applying Theorem I to this result, we then obtain

~LM -

~i-M -

p + L 1 Ar.:4l'- + -I 1 L Ai I i.

N (1 +b L I Ai - Ã '4 )

-L
N

* t~Ar ,1;. i.
N + ~I Ai - A I

+

We define two new variables

8

1J

~ L /A;-A(

I ~A I ~

AII. l3

AII.l4

AI I .1 5a

AII .l5b
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Substituting into the two estimator forms, we finally obtain

~ i-
N

+ y; AII.l6

~LM
~
N

+ L¡

I-l~e AI I . 1 7
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Appendix III Derivation of the probability density function
of z = (t¡ /j) .

Both ~ and J are constrained to be positive. We are there-

fore limited to the first quadrant in the ~~J plane. We

first calculate the cummulative distribution function fi (z ~ Zo).

r
'l .(, ï Zo .

'l = f 2!o

tp = J i:

lf

F (z ~ Zo)
Z.

CX l '0

- r elf J dlf t,Y'(~'lJ)i 0
Aiii.1

Differentiating with respect to Z, we obtain the densityø .
function

fL
_ sL ~

d&o Z Ii
Z" :. i.

00

\ d~
/ "
i

) ~,l(f, fZ) AIII.2
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The joint density function rr,ij is simply the product of ~

and rt tp .

ff,'I

N-I

_ (1-)"î1.0: i.y

ß-Nt'J
;w::l'( -f?

0/ (~-J)

N-3
'-

ßf + NiP
Â. 0: :lYe

i.j ;rr r (N¡' )

e

( N I¡i

(T a.)( e. y +
- N tJf

e (Ty' J U(r- U(if)

Aiii.3

substituting this into Eg. AIII.2, we then obtain an integral

expression for the density function.

f (i)
l.

ro f'-3 (ß+Nz)

~ n :i-t J (i ( ~ -1(';: e. - f '-ITv' cosh (tV t: ) d ~

i

AIII.4

n
N-I

(fcr;) "

:i
ß-N t
:;0- ~ye.

j~rr r(N;')

This does not appear to be solvable in closed form. For

the case of 0=0 it reduces to a form of confluent hyper-

geometric function.



157

Glossary of Notations and Symbols

Notations

*
Complex coniugate.

t
Complex conj ugate transpose.

T
Transpose.

~ Is distributed as.
Vector or matrix quantity.

",
· Estimated quantity.(X"tJ . . h 1Vector or Matrix wi t e ements xi'



Symbols

aCt)

A

A.i

ß

E

r(.)
c, C.i

C
d

D

1.,

Ei

E l E(f)i E (r/ë:f)

E(f)

EI.J

t (tiT; MJ 7;)

fe

fyi
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Envelope for stochastic signal model.

Array element gains for adaptive processor (2).
Steered data vector (5).

Coefficients for series expansion of travel
time (1).

Matrix whitening parameter - quantity added to
diagonal elements

Uniform signal magnitude for simplified statistics'~

Complete gamma function.

.. l' .. ( . th) iSeismic ve oci ty wi thin i ayer.

RMS velocity.

Array spacing (3).

Depth of first layer (1).

Difference in position of window and position
of center of desired signa 1 (4).

t . h f .th h 1S eering p ase or i c anne .

Steering vector of phase shifts used to focus
the array.

Error in transform due to windowing and to noise (4) .

Expected va lue of (.)

RMS bias error of transform due to windowing.

Probabi li ty density function for E) .

Probabi li ty density function for ~ .
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i
K

Kw

Ï(

L

Î\

À.i
A

M

l((a,h,x)

n (t)

n..'j

N

Nk

N (5 J L, )

r¿ lr, C : f)) FUf), ß

BLfl(1,C:f), a. (l, R.LM
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Reducing coefficient in adaptive estimator (5).

Sample variance of steered data (5).

rdenti ty matrix.

Wavenumber vector.

Window factor.

Matrix condition number.

Number of observations used in forming the
covariance matrix.

Ray parameter (1). Non-centra li ty parameter (5).

Eigenva lues of R.

EigenvaLue matrix of R_

Half width of data window.

First form of Kummer i s function. .'
Noise in data.th th
Noise from i channel and j observation.

Number of channels.

th
Noise vector from k observation.

Multi-variate complex Gaussian-normal distri-
bution.

Conventional velocity/depth estimator.

Maximum Likelihood Method velocity/depth
estimator.
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Ø(kJe Iffò/7.,)

ø (i;,CJr" C,)

øwa(i;CJ.J~ c.)

2. i ~
A lL,;\ , X (L), A

tt (ke, a)

tp

rUt)
.. '"
RCr;cf) J R(l)

fa:., 7., ë/( 1:,4

~(t)
~(fJ

Sj

~
S(f)

Sx(f)

Sn (l)

SMLM (b)

(f.11OJ

a:::E

l601 . h . . .thAng e wit vertical of wave vector in i
layer (l).
Monochromatic plane wave ambiguity function (3).

Monochromatic velocity/time ambiguity function.

Wideband ve loci ty/time ambiguity function.

Chi-squared distribution function.

Plane wave steering function.

Square of the sample mean of steered data (5).

Covariance matrix of data field.

Estimated local covariance matrix for data
windowed by T, C.

Normalized respoTIs-e of velocity depth array
(conventiona 1J to frequency bandwidth.

Reflected signa 1 in data. l.
Fourier transform of signa 1 A( t) .

Signa 1 from channe 1 j.

Vector of signals in the data.

Frequency spectrum of seismic source signal (3).

Frequency spectrum of process x (t) .

Frequency spectrum of process n (t) .

MLM wavenumber estimator.

Covariance of noise process n (t), channels i and j.

Distribution sca ling factor.
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U (f)

lJ (a,b,x)

w(t)

WeLi L)

w
x(t)

X,Xj
Y(t)~ t(tJ

l6l

variance of conventiöna 1 estimator.

Variance of MLM estimator.

Uniform noise variance of data for simplified
statistics.
Covariance matrix of noise processN.

T L t. ( ) th . h . th 1 (l)rave ime one-way . roug i ayer .

Travel time thickness of i th layer (1).

Tw~hway acoustic travel time from source to
(j ) receiver.

Normal incidence two-way travel time.

Trace of (.).

Half width of signal envelope aCt) .

Delay of s.ignal

l.Delay of data window w (t) .

Uni t step function,.

Data matrix.

Second form 0 f Kummer's function.

Data window function.

Wishart distribution function.

Eigenvector matrix of R.

Wideband stationary process of stochastic
signal modeL.

( . th) . d' tSource to J receiver is ance.

Da ta from channe 1 i.
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Y(t), YJ

YC1;c:t)

z

H
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Frequency domain representation of signal
from channel i (observation j).

Vector of channels of frequency domain repre-
sentations (observation j).

Frequency domain representation of data in
windows positioned according to T, C.

Non-constant part of adaptive estimator.

Unitary vector (all ones).

l'
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