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ABSTRACT

In studying the earth with reflection seismics, éne of the
méjor unknowns is the velocity structure of the medium. Tech-
niques used to determine the‘vélocity structure commonly involve
multi-channel arrays which measure the spatial as well as the
time sﬁructufejof the-:éturning signals. The apblication of a
dataradaptive technique, the Maximum Likelihood Method, to the
problem of estimating seismic velocities‘is described. The
peculiar problems of this application are identified and inves- 4;
tigated. The windowing of short duraﬁion signals is shown to
be an important consideration, and the'statistics of the MLM
estimator for a single observation of the data set are presented.-
The adaptive estimator is applied to an ideal covarianéefmatrix,

to simulated data, and to field data. The results show the MLM



-velocity/depth estimator to be a valuable tool in seismic
analysis, and the windowing and statistical results should

have general applicatiohs in a variety of fields.
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Introduction

This thesis considers the application of data adaptive
array processing methods to the estimation of velocit&/depth
spectra in multi-channel seismic reflection data. The
adaptive processing methods are not new; the basic techniques
were developed more than a decade ago for ofher applicétions,
and have been applied to a multitude of time series and array '
processing problems to date. The intention of the authof,in‘
undertaking this study s to gemeratize the adaptive methods
for application to non-plane wave, non-homogeneous array aata,
and ﬁo study the fequifeméﬁfs and”péiformanCe of theregﬁimation
methods as applied to velocity/depth spectra estimation. The
application appears successful-and the result is an additional
tool for the geophysicist in his search for higher resolution_'
in studying the earth's structure. This thesis presents the
velocity/depth spectral estimators and compares the conventional
and adaptive forms. The details of their implementation are
considered and an analysis of their statistics is presented.
The primary contributions qf this work are the implemehtation
of the adaptive processor to non-stationary fields, the

importance and sensitivity of the time windowing to the
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conflicting requirements of time and frequency resolution,
and én analysis of the statistics of the adaptive estimator
for a singular covariance matrix.

The concept of remotely determining seismic veiocities
has been used for many years (Green, 1938). Before the édvent,
of the digital computer, the techniques involved the physical
manipulation of plotted records and the fitting of curves to
visually determined érrival times. Along with the digitél’
computer came the ability to perform the velocity estimates
using correlation techniques and the reality of an entire
velocity/depth spectrum. A sampling of this.development
may be found in the literature in papers by Green (1938),
Durbaum (1954),‘Dix (1955),.LePichon, et al (l9§8), and_Taner »i
éna Kéehler (iéééj.bwfhé &elocity/depth spectrum as we use
it may be defined as an estimate of thé coherent'réflected

-signal power received from subsurface reflectors as a function

Rt o

of the depth (in travel time) of the reflector and the seismic
RMS velocity to the reflector. The amount of effort expended
in velocity analysis in seismics is justified by the fact that
most of the further processing or analysis of data thét is |
commonly performed makes use of the velocity infofmation. In
particular, common depth éoint stacking and migration tech—r

niques depend heavily on accurate velocity determinations.
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Unlike most types of array processing, we are dealing
with a medium which has non-homogeneous wave velocities. In
order to correctly'phase or focus the array, we mustvbe ablei
to relate the spatiai position of the array elements to phaee
shifts or delay times. The velocity/depth spectrum provides
the information which enables us to do this. 1In additien
to its applications in further processing of the data; the
velocity/depth information is used in stratigraphic interpre-
tation as an aid in following layers and ih defetmining the
nature of the structure. An important use in geophysical
interpretation is in differentiating between overlapping
primary returﬁe'from deeper layers*and'multiple reflections
from_shallow reflectorsuen continqous profiling reeofds. The
normelly highereVeloeitiesuof deepef strata make it pdssible
to distinguish the two types of returns.

‘Data adaptive processing methods have been developed
in several areas which include sonar array proceseing (see
Gabriel, 1976 fer a good list of references), time series
analysis (Burg 1967, Lacess 1971), speech processing (Makhoul
1975), and communication theory (Van Trees 1968, Makhoul
1975). The development was often simultaneous, but approached
in different ways. It is interesting to note that although

each field has its own literature and terminology for the
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methods, many of them have been shown to be equivalent
(Edelblute, et al 1966, Gabriel 1976, Pusey 1975). Generally
the adaptive methods may be classified as one of two types,
which have come to be known as the Maximum Likelihood Method
(MIM) and the Maximum Entropy Method (MEM). The MLM is attri-
buted to Capon (1L967), but has been shown to.be equivélent
to several earliefltechniques applied to single frequenciés
(Edelblute, et al. 1966). The MEM includes autoregression
analysis, covariance extension, prediction error filters, -
innovations filters, and whitening filters. The MEM techniques
are attributed‘to Burg‘(l967) and Parzen (1968, 1969). Pusey.
(1975) deﬁonstrates the equivalence of some of the other MEM
forms. |

The method we employ in our study is the Maximum’Like—
lihood Method. The MIM is applicable to non-homogeneous
fields with non;uniform.sampling, whereas the MEM has not yet
been generalized to cover these cases in any reasonable manner.
‘The application of a data adaptive estimation algorithm.fo
velocity/depth spectra estimation was first proposed by
Baggeroer (l974)land Baggeroer and Leverette (1975).‘ This
thesis is a continuation and extension of that work.

The general concept behind data aaaptive processing.

methods is thatvthe filter coefficients or window weighting
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functions are determined from'the data on each application
in order to minimize the effects of noise fields. In-order :
to demonstrate.this and to further motivate a study of adap-
tive array procédures épplied to velocity/depth spectré
estimation, we would like to give two examples. The first
is an application of the adaptive algorithm to an array
receiving plane waves. The wave number spectra of a field
containing a single plane wave are given in Figures 1.'and‘2.
Figure 1. is the spectrum as measured by the conventional
array processor, and Figure 2. is the spectrum as measured
by the data adaptive array processqr. The.rema:kable»increaée
in resolution is more easily understood if we examine the
be§m Patt??nS:0f the two array pr§d§ssors. .The.conventional -
array beam paﬁtern is given in Figuré 3.7 For the samevarray
with a noise field entering from various directions (%N)' the
adaptive beam pattern is'given-in Figure 4. By édapting to
the received signal and noise field, the adaptive array is
able to move its ﬁeak and sidelobes away from interfeiing
signals. This makes the ada?tive processor particularly
useful for sparse arrays which normally have large sidelobé
structurés. For the second example, Figures 5. and 6. show
samples of velocitY/depth spectra generated by the two esti-

mators from data taken on Georges Bank. Figure 5. gives the
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Figure 1. Response of 6 Channel Conventional Array
to Field Containing One Plane Wave.
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Figure 2. Response of 6 Channel Adaptive Array to
Field Containing One Plane Wave and 1%
White Noise.
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Figure 3. Beam Pattern of Conventional Array.
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Figure 5. Conventional Velocity/Depth Spectrum.
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Figure 6.
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Data Adaptive Velocity/Depth Spectrum.
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output from a conventional analysis, and Figufe 6. gives
the output from the data adaptive analysis. In the mofe
complicated case of estimating velocity/depth information
instead of simple plane wave vectors, the adaptive élgorithm
continues to exhibit a higher resqlution éapability._

We begin with a review of the travel time calculations
and the conventional estimator. Although these may be found
scattered throughout the 1iteratﬁre, their importance to the
work ﬁhat follows and the relatively wide range of éudience
we hope to address justify a concise review. In-chapter 1
we déVelop the necessary background for the calculation of
progégafiéﬁ travel times from known informatiop about the
| velocity structure of the earth. In Chapter 2 we describe
the inverse problem of determining seismic velocities from
measured travel times, making ﬁsé of the model'developed in

Chapter 1. The conventional estimate is presented in both

iy -

‘the time and frequency domains and the Maximum Likelihood
Method velocity/depth estimator is developed. Chapter 3
considers theoretical resolution limits of the conventional
array in terms of velocity and depth. The velocity/time
ambiguity function is considered, building from the work done
by Kline (1976). Chapter 4 considers the problems encountered

in applying the estimator to real data, specifically the
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windowing and averaging-requirements‘in forming the covariance
matrix. Chapter 5 develops the statisﬁics of the different
forms of the estimators. Finally, Chapter 6 presents the
experimental results and conclusions. The Appendicies include
some of the detailed calculations used in Chapters 4 and 5,

and a glossary of symbols.

et
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Chapter 1 Array and Travel Path Geometries and Travel.
Time Calculations.

Introduction

Before addressing the problem of estimation of seismic
velocities, it is helpful to reviewvsome of the physical
properties of the general seismic reflection problem. In
this chaptér we review the general array and signal path
geometries and develop the commonly used RMS velocity‘travel
time equation. The ﬁravel time, the time required for a
signal to travérse a path from the source to a reflecting
interface and back to a receiver, is one of the most importan#
properties in the estimation of velocities. We calculaﬁe
thérfravel'time‘as;a fungti@n_of the source to receiver
distance for a pafticular depth of, and RMS velocity td a'r
reflecting surface. We can then generate a pattern of delays
(or, in'the frequency domain, phase shifts) that allow us to
steer or phase the array to look for coherent returns as a
functibn of velocity and depth. |

Travel time calculations can become very complicated
for any but the simplest geological models, and we find that
simplifications of thevgeological models and approximate
solutions are desirable and necessary for our purposesbin

velocity/depth spectra estimation. The RMS travel time
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equation is a truncated seriesfappfoximation of the travel
times to interfaces in a horizontally homogeneous layered
earth model. It is a particularly convenient model beéause
it has a>closed form solution and because it simplifies the
velocity dependence of the delay pattern to a single average
veloéity rather than the entire velocity structure of the
travel path.

In the remote measuremeht of seismic velocities, we
measure the delay and curvature of a wavefrdnt that has
originated at a point source at the surface and has penefratgd
the earth‘to reflect from some lateral inhomageneity in the
substrate. The most common instrumentation used to measﬁre-
’thgjéurvature~§f;ﬁhe wayéfyqnt is;an'array of;hydrophgﬁes
or geophones unifotmly spaéed along the surface at incréasing
distances from the source. The source generally gives an
impulsive signal, although longer coded signhals which can
later be deconvolved or matched filteréd are sométimes used
(i.e., a chirped signal). For a single homogeneous layer
the geometry.is shown in Figure l.la. This is the exact
geometry for the first return in the case of a homogeneous
and horizontal first layer} In marine data, it is the water
column return when there is a flat bottom. If the reflected

image is unfolded (Figure l1.1lb) and projected to an array
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Figure l.la Array and Travel Path Geometries for
a Single Homogeneous Layer.
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Figure 1l.1lb Single Layer Travel Path Unfolded.
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below, it is easily seen that the wavefront is spherical
and the raypaths are straight lines. The travel time to a

receiver may be written as

2 F . 2 ji?
T 2"61;—/(7“0)+X.) AR

where C is the wave group velocity. We note that for conven-
ience and in order to maintain consistency, we will use the
unit 6f.vertical two-way travel time T, to specify the
depth of a reflector throughout the remainder of this study.
Since the data is a function of time, this parameter is much
easier to‘correlate with the data than would be-depth in
linear:dimensions-

In the case of a non-constant sound velocity with depth,

we can no longer assume straight line travel paths or perfectly,

spherical spreading. The rays will instead follow minimum
travel time paths as given by Fermat's Principle. We,éan
-use Snell's law and ray path theory to solve for the travel
time exactly, but the expression is a function of the initial
angle and mus£ be solved parametrically.

In order to generalize this exact form of travel time -
calculation, we consider a layered earth structure consisting

of horizontal hbmogeneous layers. In the limit as the number

SR —
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of layers goes to infinity and the layer thicknesses.go to
zero, this model may represent any horizontally homogeneous
velocity structure. The multi-layer case is depicted in
Figure 1.2. The ray parameter 1==ci/cos¢§ is preserved as
the wave travels through the layers. The time through a

particular layer is

t°"/c°5¢i = 7\t";/ci . - 1.2

where hi is the normal incidence travel time through the

th ’
ith layer. See Figure 1.3. Summing to the m layer, we

~+
i

obtain a two-way travel time of
T = 22X Abk/g 1.3
= ‘ _ -

The horizontal distance traveled in passing through each

layer is
3 ' '
X, = citz.sin@ = toz_(Ai—c:‘). | 1.4

Summing this over a two-way trip through m layers gives us

the total horizontal distance traveled.

R ST
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Figure 1.3 Details of One Layer of a Multi-Layer Travel
Path. (Dimensions in Seismic Travel Time).
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m lﬂ- |
X = Z E t"z‘(kz—‘cia)/_ 1.5

Given the source to receiver distance_zgj, we can solve
Equation 1.5 for A. 1Inserting A into Equation 1.3, we can

then solve for the travel time T.. For the special case

]
where the velocity in all the layers is the same, c; = cl
for all i, the equations.simplify to
~ A - o
T - ——C—— _’; P ‘ l-6a

x = (A- C:‘)z T 1.6

Solving to eliminate A, we obtain -

2

e », X | o
T = 7:—_ -+ 61 - ’ . 1.8
1 . :

This is identical to our result for the single layer case.

A much éimpler solution was proposed by Dix (1955),
which was a special case of a general solution presented by
Durbaum (1954). A brief summary of the solution may be found

in the appendixlof Taner and Koehler. (1969). We again refer
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to Figure 1.2 for the travel pathrgeometry for a separated
source and receiver. Following Taner and Koehler, we write
the travel time T as an infinite series in powers of X , the

source to receiver distance.
a . 2 4 é a5 2 '
T = Ao + A’X_ + A1X + A3‘ X- . * . 1 "9

Solving for the first two coefficients, we obtain

A = [lfta.] = T 1.10a

[A]/ch_t

An approximatidn using the first two terms of the series

=}

[25‘: C-iz—"'-] 1.100 |

z=t T

'y

RS
fi

gives us an equation that is very similar to the expression
for the travel time through a single homogeneous layer. If

we define

I

m 2 ) ‘
C 2 L= L 1.11

N
l

&
-

where C is a time weighted Root-Mean-Square velocity, we

obtain a travel time expression of the form
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2 -9. '
i 2
, l = l + =
o c? XJ

J 1.12

This is the most common traVelrtime expression presently in
use. To ié the two-way ngrmal incidénce travel time to the
layer of interest. C is known as the RMS or stacking velocity.
We note that‘it is not a true velocity, but is the first order
- term describing the hyperbolic curvature of the wavefront.
For normal array lengths'and for normally'ehcountered seismic
velocity variations, the accuracy of this approximation for
the model is better than 2% (Taner and Koehler, 1969).

If it becomes necessary to go to the next term in the
series, Fhe model becomes much more complicated. The coef-

ficient for the next term is

_(ger) - Eu(Eue)
_ 6 (E4a)°

t=1

A

2

1.13

Although we can find no physical gquantity corresponding
direétly to this term, it is a measure of the variation in
layer velocities. A2 goes to zero for c; = dl for all 1i.
We expect this term tovbe the first order variation from a

2
less thén or equal to zero by the Schwartz inequality.

hyperbolic wavefront shape. A may be shown to always be
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The assumptions incorporated in the RMS travel time
model are the horizontal homogeneity of the velocity structure,
and {for A, to be small) an absence of extreme variations in
the vertical vélocity structure; In addition, all Qf the
calculations we have considered so far require that the array
length be small enough that there is always a vertical com-
ponent to the velocity vector; that the travel path does
not include wholly refracted segments. To put it another
. way, we must always be close enough to normal incidence so
that the interaction with the lowest interface is strictly
: reflection. vAs the travel path deviates from vertical, the
approximation in the model becomes poorer and poorer.

. The most cqmmonvdeyiation from;the as;umptions oﬁ_the
model is that there is usually éome slope to the structure,
both in the geology and the velociﬁy. Solving for the first
order coriection to the model for uniform sloping layers,
we find that the model is fairly robusf to small slopes.
From model studies and least squares fitting of real data,
Taner and Koehler (1969) éhow that fhe returns from mildly
dipping layers are still very closely hyperbolic in form.
Solving for the delay times about a éommon central ground
point for the dipping single layer case (see Figure 1.4),

we obtain

e A e
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Figure 1.4 Dipping Single Layer Geometry.
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Th = T +--§;(1 - %&Q) 1.4

The dipping layer always flattens the travel time curve and
increases the apparent velocity. Taner and Koehler (1969)
extend this to multi-layered cases. ‘With all other parameters
held constant, increased dips produce higher apparent velocities.
But, although the apparent velocities vary, it is important
that it is still possible to closely fit the delay pattern
with a hyperbolic model.

Finally, we note that it is a simple procesé to take
the velocity structure in RMS velocities and calculate in-
terval velocities. The interval veiocity between interface

i and i+l is given by

lj

2 —2 — T:
C.+ C“'l - C s 2 I .

" 3 1.15

Summary
In the RMS travel time model we have a simple and efficient

means of calculating the travel time delays for the multi-
channel array. The model assumes a horizontally homogeneous
acoustic velocity structure for the travel paths, although

it appears to be robust to small dips. It is most accurate
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near Qertical incidence and for structures withoﬁt majoxr
- deviations in velocity. The model becomes invalid as any
part of the £ravel path approaches a refracting (i.e.»hori—
zontal) condition. With a means of relating velocity and
depth to parameters that are directly measurable, we can

now look at the estimation procedure.
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Chapter 2 Estimation of the Velocity Fune¢tion.

Introduction

In this chapter we develop the concept 6f a velocity/
depth spectrum and present the mechanics of its estimation;
vThe form and general structure of the data are examined and
the estimation procedure is segmented into a two-step oper-—
ation. The contribution of each step toward the éverall |
resolution is examined, and areas ofvneeded improvement ident-
ified. The first step,‘the windowing, is shown to be a criti-
cal, although aften suhtle, part of the estimation procedure.
The second, a beamforming or coherent power estimaté, is the
operation to which we intend to apply the adaptive procedure. .
The conventional velocity/depth eétimator is developed using
a beamformer approach, and then an adaptive form of this is
derived from an adaptive wave number estimatoxr. Finally, the
adaptive form is shown to be computationally similar to the»
conventional estimator, and the possible édvantage of applying

either form in the frequency domain is indicated.

The Velocity/Depth Spectrum

The concept of a velocity/depth spectrum has been well

described in the literature by LePichon, Ewing, and Houtz (1968),
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Taner and Koehler (1969), and others. It.is an estimaté of
the coherent power received from a reflecting surface at a
given depth and at a given RMS velocity. The data set, com-
posed of N channels of recordings from the N surface positions,
is écanned in an iterative process with the estimator. For
each combination of depth and velocity the data is windowed
according to the travel time model, and an estimate of -the
coherent power in the windows is made to form the épectral_
estimate. A sample spectrum is given in Figure 2.1l.

There are several ways commonly used to displéy velocity/
~ depth spectra; this one shows the estimated power as the
displaceﬁént of plotted traces. In most of the work which“
foilows we prefef to dispiay thejspectra in’contour plots of
thé power le;els in 6.dB/incremeht$; Becausé of the simpli-
city of the equations and the ease of correlating the spectra
with the original timé traces of-the data, we always consider
depth in the units of seconds of two-way travel time. - Our
units of velocity are RMS meters per second.

An idealized example of velocity/depth spectra estimation
is given in Figures 2.2 and 2.3. Figure 2.2 gives the time
traces from 8 channels showing ;eflectéd returns from four
interfaces. As the data is scanned with the estimator, the

windows are delayed according to a travel time model such
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Figure 2.1 Sample Velocity/Depth Spectrum.
From USGS. Used with permission.
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Figure 2.2 Simulated Data Set Showing Windows Properly
Delayed for Third Reflector.
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Figure 2.3a Data Windows With Velocity Too Small.

i

Figure 2.3b Correct Delay of Data Windows.

Figure 2.3c Data Windows With Velocity Too Large.
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as we calculated in the previous chapter. The windows in
Figure 2.2 are shown delayed for a velocity and depth cor-
responding to the third reflector. As the velocity in the
travel time model is incremented in the.scanning process, the
window delays are shifted appropriately. Exampleé of tﬂe re-
sulting windowed data for several shifts in velocity are
given in Figure 2.3a through 2.3c. Changes in the depth
(normal incidence trave1 time) shift the windows in a similar
manner, although much more uniformly up or down the trace for
all the channels. For each deléy pattern specified by the
combination of each depth and each velocity, the data is
windowed and an estimate of the coherent energy in those win-
dows is ﬁade. Tﬁe signals (though not necessarily the noise)
in'thé'windows in 2.3b are coherent across all 8 channels, and
oﬁr estimatézéflthé cbhefehtbpdwéiiin theée Wihdowé_ﬁiil‘be N
much larger than the estimate for the windows in Figures 2.3a
and 2.3c. This estimate of the coherent power as a function
of the velocity and.deptﬁ.of the‘delay model férms the
velocity/depthvspectrﬁﬁ.” The reSultéiof the velocity)depth »b
estimation procedure for the idealized data in Figures 2.2
and 2.3 are given in Figure 2.4. The féur reflectors are in-
dicated by /\ and the estimates corresponding to the three

sets of windows in Figure 2.3 are indicated by “f';
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Seismic Reflection Data

Before examining the estimation algorithms in any detail,
we first examine the form of the data and the source signa-=
.ture; The entire estimation procédure, and the windowing in
particular, are ultimately dependent on the expectedrform of
the returniné wave front. .A typical example of data is éhown
in Figure 2.5. This is data taken with WHOI;S 6 channel
system on Georges Bank in August 1975. Reflection wavefronts
are inaicated in the timg display by hyperbolic patterns of
varying degrees of curvature. Two of these are indicated on
the figu;g. The velocity spectrum of this data was given in
Figures 5 and 6 in the Introduction. The set of returns
frb@ ah interface'is.not élways obvious, even to the fréined
eye. They vary for different interfaces and, to some ektent,
from channel to channel. The.characteristics>df the reflected
wéve are a function of the source signature and the dispersive
and attenuation characteristics of the travel path medium..

The characteristics 6f various seismic sources have
been studied and classified (Kramexr, et al. 1968). The out-
going signal for our data is a pulse from an array of Bolt
PAR éirguns. A typical outgoing signaturé is given ih Figure
2.6. It is a relatively wideband signal df approximately _

250 to 500 ms. duration. The frequency power spectrum is
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2.5 Sample 6 Channel Data.
Common Depth Point Gather.
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Figure 2.6 Airgun Signature. 3 gun array.
(from Kramer, et al, 1968)
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given in Figurxre 2.7. The spectrum is quite peaked at the
natural compressional frequencies of the air descharge bubble.
This sighal undergoes phasé changes, dispersion, and‘selective )
attenuation as it travels through the sediment structure.
Since the travel paths for the N channels of data differ in
length, and usually to some extent in composition, there will
be a'modificaﬁion of the signal as a function of time (travel
distance) that will vary somewhat from channel to channel.
To the extent that the signal from a given reflector is co-
herent across the array, our coherent power measurement func-
tions well. Any incoherence across the wavefront creates
difficulties with its measurement which we will address later
when we are considerinéhthe sehsitivity of the estimation

procedure to noise and signal incoherence.

Partitioning of the Estimation Procedure

In this section we look separately atrthe two basicr
operations making up the estimation procedure - the windowing
and the coherent power estimate; Each can be used alone to
produce a form of épectrum. our reason for doing so is two-
fold. By examining each aspect separately, we can better under-
stand the whole and hoﬁ each part contributes to the overall

resolution and accuracy of the complete estimator. Secondly,
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our proposed processor differs from the conventional in only
one of the aspects, the coherent power estimate, and an under=
standing of the role of this part enables us to place limits
oh any improvements we hope to achieve. In ccnsidering a
spectral estimate without the coherent power estimate, we
'replacebthat operation with a calculation of the total power
that is present in the windows. For the case of only using
the coherént power estimate, we lengthen the windows until
they iﬁclude £he entire data trace. In this way both forms
are still estimates of the power in the data as a function
of velocity and depth.

Iin figures 2.8 and 2j9 we present the two forms of
speétra run éh;idealizéd‘daté conﬁaining‘four ﬁeflectors.
Figﬁfe 2.8 gives a contour plot of tﬁe spectrﬁm which relies
solely‘on windowing for its resolution. fhe Points of inter-
est are the relatively sharp delineation of the reflectors
in depth, but the rather poor delineation in velocity. Figure
2.9 gives the spectrum of the same reflectors calculated using
only the conventional coherent power estimate.. In this case
there is poor resolution along a line which, as we show.in

the next chapter, is defined by

T C = constant
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Figure 2.8 Velocity/Depth Spectrum Calculated From
Inccherent Arrival Times. Four Reflector
Simulated Data With No Noise. Linear
Contour Spacing.
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Velocity/Depth Spectrum Calculated From
Conventional Phase Measurement Without
Windowing. Four Reflector Simulated
Data. Linear Contour Spacing.
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From the general nature of the two forms of spectra and

their order of application, we observe that the windowin§
provides most of the resolution in the time dimension,'and
the coherence measurement then provides the resolvingléower
in the velocity dimension. In both of these forms of spectra
we note that the resolution is significantly better at shal-
lower depths.' It is interesting that the coherence meésure—
ment alone completely determines the reflector parametefs in
the shallowest region. The wavefront exhibits the most
curvature (as determined by the travel time equation) in the
very hear field of the array and the wavefront shape i§ unique.
for a given depth. In this region the focusing of the array
is analogous to holographic methods. If the entire geologic
region of interest were in this holographic focusing region,
Qercéuld dispenée withrsbme of the stringent"Windowing'require;
ments. But such is not often the case, and we recall that
this is also a region where the travel time equations start
to break down due to refraction effects. The area where
we have the most to gain-from new coherence measurement tech-
nigues is in the velocity resolution in the intermediate and
far end of the Fresnel region.l In these regions the change
1We define the Fresnel region as being the region where the

reflectors are shallow enough that the curvature of the

wavefronts is still significant over the array length, and

the planewave approximations of the wavefront are not valid.
The term is commonly used in optics.
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in wavefront curvature for a given change in velocity is
relatively small, and any improvements in resolving power L
effectively improve the resolution and the operating range

- of the array.

Conventional Estimator

In conventional array theory, a processor which calcu-
lates the coherent power received by an array is called a
beémformer. A simple beamformer corrects the.phase of the
'signal.from each element to correctly "steer" thé array, and
then sums the outputs. Since the phasing is a function of
frequency, it-ié often convenient to work in the frequency
domain.. .The conventional estimate of the total coherent

powervis giyen_by
E_ = 2| = Y(O e | 2.1

where Sﬂ(f) is the frequency domain representation of the

Tt ot TS S

signal from channel i,
and 1JTF1? is the phase correction at.frequency f-for-
| chanhel i.
This estimator can be modified by multiplying each channel
by a weighting coefficient in order to taper the array, and

thus modify its resolution and sidelobe structure. But for
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any form of the conventional beamformer, we note that the
weights, and hence the resolution and beampatterns, are
constant with respect to the daﬁa being loeked at.

In the development of velocity/depth estimation, the
traditional approach has been to use an algorithm in the
time domain. We can easily show that our simple beemformer
is equivalent te an un-normalized "semblance criferia" ae
developed by Taner and Koehler (1969). Applying Parseval's

theorem to Equation 2.1, we obtain

2

N 2 o
LX) L 2
n |

D

E

The‘phese shifte beceme delays in £ime, end.the summation
in time is over the data window used by the Fourier traneform
when going to the frequency domain.

- Returning to our frequency domain representation, we
now introduce a vector motation. We let Y{f) pe a vector of
the data Y(F) and E(f) bve a steering vector of phase shifts

Jzn{’ T;

. Using this notation, the conventional estimator

e

becomes
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. . : |
The quantity [%Z‘Y'] is a matrix of products and cross pro-
ducts of the frequency terms from the Fourier transforms. @{gixMQL@§
. : el
For Gaussian data, this is an estimate of the covariance

matrix of the process (Anderson, 1958). We denote the co-

variance matrix by R.

RO = YW YH 2.4

We note that R(£f) is hermitian; it is conjugate symmetric
complex, and is different fér each frequency of the trans-
form. Collectively, the set‘of covariance matrices contain
all the félative phase information of the N data windowé..

In final form, we can write

+A
P=y ERE
P o

tmtpgang e -

Adaptive Estimatorx

The simple beamformer has a beam pattern which is directed»
to look at the amount of coherent energy in the desired in-
coming wave through the use of the prope# delays. The weights
on the elements in this beamforming process are held constant,

so that the basic shape of the beam péttern and the associated
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sidelobe pattern for a given focus (veloéity and depth) do
not change. But more importantly, they do not depend upon
the data in any direct manner. In order to optimize the
signal-to-noise ratio when there are othér wavefronts in
the viewing field, we would like the beam pattern to adapt
to the data being processed. By changing the weights of the
array elements, the beam pattern may be controlled such that
the peak and sidelobes of the pattern are kept away from the
dirécﬁions that may interfere with the estimation at a
particuiar desired direction.

The data adaptive algorithmvwe are incorporating is
called thé high resolution Maximum Likelihood Method, or MLM.
Itlwas develobed'for'wévé—vector_aﬁéiysis for the large'aper—
ture seismic érray (LASA) in Montana by Capon (L967). VOur
application differs f#om previous uses inrthat the field
being measured does not consist of plane wavés. The data
field is non—homogéneéus, or spatially non—stationaryf This
charaéteristic rules out most other data adaptive methods
that are in popular use.

The MIM is based upon the design of a minimum noise
unbiased estimator. The estimator is édnstrained to pass the
desired wave (phase or delay pattern) with no distortion,

while optimally suppressing any noise fields. The resulting
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estimator is ideﬁtical to the maximum likelihood estimate
if the input signal field is a multi-dimensional Gaussian
process.l The concept of the MLM of wavenumber estimation
is to calculate the average power that this unbiaéed; or
maximum likelihood, estimator has as a function of the steer-
ing wavenumber, k. There are several ways to arrive at the
MLM wavenumber estimator formulé; and we present one which
has an intuitive appeal based upén the unbiaéed array pro-
cessor. Similar discussion can be found in‘Edélblute, et al.
(1967), Capon (1969), and Lacoss (1971). |

The unbiased estimator for é plane wave with a wavenumber
k operating in the presence of a noise field with a spectral

. . ! - . . 2
cross correlation matrix, R, is given by

A (',U ENRE) E() | 2.6

where Rij(f) is the cross spectra between array elements

i and j at frequency £, and

: lThe maximum likelihood estimator is the one which gives as
its estimate the parameter set which has the maximum
probability of producing the received signal. (see Van
Trees, 1968)

»2We use notation similar to Lacoss (19271).
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is a steering vector consisting of the phase shifts required
for each array element. Now, if the noise field is applied
to the minimum variance unbiased array processor, it passes
the component in its steered direction without attenuation
and rejects the rest of the field in the manner which mini-
mizes the output variaﬁce. Ideally, then, the output vari-
ance should indicate the intensity of the component in the
steering direction, and this is defined aé the MLM wavenumber

estimator formula.

The final step is to employ an estimate of the cross spectral

. .1
correlation matrix.

2.8

lCapon and Goodman have derived formulae which specify the
fluctuation introduced by using an estimate of the cross

correlation matrix. Essentially, their results show that
one loses N degrees of stability in the MLM formula when

one has a multi-dimensional Gaussian process.
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The form of the MLM estimator can be compared with the more

conventional beamformer estimator,

() = [EWR® EY

oy

2.9

Cony

We observe that additional computation required essentially
consists.of inverting the cross spectral matrix, which is a
minor computational load. when compared with that of estimating
the matrix and scanning across the parameter set.

In modifying the MIM adaptive spectral estimation algo-
rithm for use in estimating velocity spectra, one major'modi—
fication is required, and this is the introduction of windows.
For depths or normal incidence times in excess of that where
there is holographiqrresplution by1£he phasing across the
.éfféi;‘fhe 6niy-ﬁaylihé£ §ne cantégfain reéélutidhzipféeﬁth o
is ﬁo use a sequence of window sets which are positioned as
a function of depth. Since the velocity also influences the
>position of the windows, especially at the more distant ele-
ments, these windows are positioned as a function of both depth
and veiocity. The netreffect is that one éssentially has a |

local estimate of the cross spectral matrix and a resulting MLM

lAlmost all previous applications of the MLM algorithm have
implicity employed windows; but here their role is more
important because of the inhomogeneity of the spatial process.
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velocity spectra estimate around each window posifion.

The presence of this windowing procedure introduces a
tradeoff which turns out to be quite impértant in estimating
the cross spectral matrix. (In fact, understanding the
presence of this tradeoff proved to be one of the more subtle
issues of this investigation.) The conflicting issues in
this tradeoff may be summarized as follows: Good depth‘teso—
lution and suppression of interfefence from reflectors at
diffefent depths requires multiplication by short duration
windows in the time domain. This, however,.implies a smearing
of the data, especially the phase, across the bandwidth of
the-winddQ which increases as the window is shortened. We
ahéiyZe.this}tradeoff”iﬁ.mgfé aéﬁéé} in Chéptér 4.

With these comments on the use of windows, we define

the MLM velocity/depth spectra estimate to be

where

Brret) = & 3 TLEeNY(men) e
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which is an estimate of the covariance based upon transforms,

Tz;(xcpﬁ), of the data within windows positioned around depth
T and velocity C; and where g(@o,ezf) is a_steering phasing
vector in the direction of the desired depth and velocity
parameters $o and C. If we compare the férm of the MLM.
velocity/depth estimafor to the conventional beémforming
procedure based upon coherency measure, we ohserve that it

is completely analégous to comparing the MIM and conventional
wavenumber estimators.

Fiﬂally, we note that the estimator is a function of
frequency ahd is applied to discréte frequency bands of the
Fourier f?ansform. The éharacteristics of seismic data are
sucﬁ,that;thi§~§ar£iti9ningfofifrééqency is Qfﬁen désirablg..
Real reflecting ﬁorizons ére oftéﬁ wavelength selective
‘because of the finite thickness of the impedance transition
region. Maintaining separate estimates over frequency not
only gives sharper resolution of this type of reflection, but

gives some insight into the nature of the reflecting surface.

st e
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Chapter 3 Beam Patterns and Ambiguity Functions.

Introduction

In the general Intfoduction we presented the on-axis
beam patterns of linear arrays 1ookihq ét a single plane
wave in wavenumber space. These gave us some insight into
the high résolution capabilities 6f the adaptive éiréy.

In this chapter we examine the conventional beam pattern

of an érray looking at hyperbolic waves in Velocityftime
ééace. This will provide us with a much better indication
_of the resolution of-the beamforming process which we Llaoked
at in a sﬁpéfficial manner in the last chapter.

__¢‘;The geﬁgfal funq;iop‘we_need‘ﬁp»define this resolutiqh
is the parameter ambiguity fuﬁction;“ The ambiguity'fdhétioﬁ
has been described as the response of a matéhed filter to

a mis-matched signal. 1In the case of an array processox,

e

it is the normalized response of a steered array to waves
other than the primary focus. We consider a uniformly spaced
linear array és shown in Figure 3.1. The array may be steered
to receive waves from various directions by adding appropriate
delays to each element. For plane waves and a 1inéar array,

the ambiguity function is given by
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Figure 3.1 Plane Wave Incident on a Uniformly Spaced
Discrete Array.
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where the steering function SU(;( 9-) is given by
. 7\ °

q/(ka,@o) = Adk sing 3.2

and m = (N-1)/2, N = number of elements in the arréy. By
modifying the form of the exponent in Equation 3.1, it is
easily seen that we can form the ambiguity function for the
array respohse to non-plane waves. In the case of wide angle
reflections from horizontal layers, the wave may be specified
by thevRMé travel time model. We then have the ambiguity

fuh¢tion'in terms of yelbcity andhdepth.

jzﬁf(‘/j;z+%§; —,/7:2 +_§_;)
: 1 R

I

”_
ife

1=t

¢(LC.T,C) .3
This is the complex monochromatic ambiguity function. For

a case where we had a signal'that was zero phase, we could
simpiy weight the complex monochromatic ambiguity funétion

by the freguency spectrum of the signal and integrate over
frequency to obtain a wide band ambiguity function. Kline
(1976) studied this wideband function and found greatly

increased resolution capabilities. With a signal of unknown
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phase characteristics, the ambiguity functions (and signals)
add incoherentiy across fréquency, and we must resort to
integratinq the absolﬁte magnitudes of ambiguity and signal
over frequency. We continue to weiéht by the freﬁuency
spectrum to account for changes.in signal stfength. our

wideband ambiguity function becomes

G, (LElTT) = L[4 S® | dmalne)| s

B - fou-’ S(h)

The Veloéity—time ambiguity function is not solvable in closed
form;;and'thﬁs_require#!huﬁerical~solutions ox approximatiﬁg
fﬁnctions. Kiihe (19765;dérivéd appfbxiﬁations for thé peak
shapes and peak widths of this function for monochromatic

and narrow band cases which prove useful when optimizing

O P POV

parameters for beam width or sidelobe structure.
Looking at the monochromatic ambiguity function, we
find a large region of ambiguity stretching along a line

defined by

T.C = T.C = constant o 3.5
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When focusing on (T;,C;), the array will respond almost
equally well to any_return falling on £he_line defiﬁed byv
Equation 3.5. We note that this ambiéuity is independent
of frequency. The half power points as approximated by

Kline (1976) are

— % J l.8190
T;(: = [ —, T == J ' 3.6
C- Fe -
whefe Leq is the equivalent length of the array. For a

discrete element array, the equivalent length is

Figure 3.2 gives a contour plot of an exact monochromatic

ambiguity function calculated for Tl

m/s, £ = 20 Hz, and N = 12. The wideband ambiguity function

= 2.0 seconds, Cl = 2000.

as applicable“to our da;a is the sum of monqchromatic ambi-
guityvfunctions at diécrete frequency points obtained by the
fast Fourier transform of sampled data. The'géneral form of
the ambiguity function is not changed, aithough thé peak is

better defined. An example is given in Figure 3.3 for T1 =

2.0 seconds, c, = 2000. m/s, £ =20., 24., 28., and 32. Hz,

and N= 12.

e ATt o
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Monochromatic Ambiguity Function.

Figure 3.2
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Figure 3.3 Discrete Frequency Ambiguity Function.
Four Frequency Components.
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Discussion

- We see that the array focusing -~ the coherent power
estimate - allows us to resolve a reflection return to a
one dimensional strip or line in velocity~-time space. We
depend on the time windowing to provide resolution along
the length of this strip. The effect of applying the adap-
tive processor will be primarily to reduce the width of the
‘'strip. The time wihdowing will continue to carry the load
of resolution along the length of the strip. Going to a
wide band estimator does not produce any significant improve-
ments in the ambiguity function. Higher frequencies give
improved resolution, but our primary reason for applying
a Widéband,estimator_wi;l be for iﬁproved signal—tbﬁnéiSe
rafios. In the‘next chépter we invéstigate.fhe Qindowingv
to remove the ambiguity along the strip, and in Chapter 6

we see how reducing the width of the strip greatly enhances

L Ty AL LTINS

the overall resolution of the velocity/depth estimator.
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Chapter 4 Estimation of the Cross Spectral Correlation
Matrix.

Introduction

Both the MIM and the frequency domain implementation
6f the conventional semblence criteria for estimating velo-
city/depth spectra involve determining the cross spectral
correlation matrix in one way or another. 1In applicétions
to étationary homogeneous signal fields this typicaily in-
vdlves‘averaging over transfdrmed segments of the data from
each of the channels. In the application.to velocity/depth
speétra, however, the transient nature of the reflected
signals requires a windowing operation; partiéularly for
réédl&iﬁg.éléﬁg the depth, or timé“cébidinaté;' The details
of the cross spectral correlation matrix estimation involving

this windowing operation are critical, for the errors and i

Srapmeiiang e "

biases introducadp;ppagate}iirectly into the final spectral
estimate. The estimation of this matrix has proven to be
the most subtle aspect of our experiments in applying the
MLM to velocity/depth spectra estimation.

The procedure for estimating the>cross spectral corre-
lation matrix using a window is shown schematically in Pigure
4.1. At a given frequency.the diagonal components of this

matrix are measures of the'energy at each channel, while the
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off-diagonal terms are indicative of‘the éoherent energy

and its relative phaSing from channel to channel. The two
most important aspects in the estimation of these components
are the smearing, or bias, and the variance. As in any
spectral estimation problem there are inevitable tradeoffs
between these two quantities; the windéwing, however, further
complicates this issué. In this chapter we examine some
aspects of estimating this matri# - both thersmearing intro-
duced by the windowing and the various ways of averaging to.

improve the stability of it.

4-A Windows and the Bias of Transfofms

.. The speétralrcorré}a£i§n ma;ri%is estimated using thé
aiéééﬁ ér fFT»ﬁe£hoaAof‘speétrélranélysis, sé the.fifsﬁ ;tep
_involves analyzing the bias introduced by windowed Fourier
transforms. In this section we examihe this by first intro-
ducing a stochastic modgl_for tbg“reflected signal f;om which
we can calculate bias errors using established methods}of
spectral -analysis. Then we examine the effecté of windowing
on an airgun source signature which ideally should be repre-
sentafive of the signal reflected from é horizon. Finally,

we use estimates of allowable positional errors determined

from the results of the stochastic analysis to derive bounds

TS
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on perturbations of the moveout parameters TQ, T for main-
taining a particular level of average_bias in ﬁhe windowed
transforms.
We modél the reflected signal observed at an array element

as a desired signal plus an additive noise, ox
Y = 4(t-T,) + n@ o 4.1

where xi(w is the reflected signal at the array élement
which arrives with a to£a1 travel time delay
or moveout of T;.
n({) is an .additive noise which may include both
-“émb%ént,noisefand“revérbera;ién;ffom‘other
horizons.
As indicated in Figure 4.1, the windowed transform operation
conéists of multiplyiné the signal by a window function |

centered at T, and then_Fourier‘transforming; or

w

—Jzﬁft

A6 - fm)w(t—me i .2

(We use continuous time notation, although in practice the
FFT algorithm is used.) We specify the windows to have a

half width duration of M seconds, and some commonly employed
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windows are indicated in Figure 4.2.
If there were no windowing and no noise, i.e.'w(t) =1l.,

n(t) = 0., the result of the transformation would be

aJTF7"

S -

which consists of the desired signal transform and a linear
phase shift from the travel time delay. Both the windowing
and the additive noise term introduce errors in this, so one

actually obtains

—jzrft |
A= j(é(t-’r)q—nt))w(t-T)e at

It is convenient at this point to define the error, since

this is what we wish to guantify. We have

co _117¥t |
£ = [ LO-UGED) rngwi-T)] e’ d s

-0
Qualitatively, the duration of the window, M, introduces a
tradeoff. A long window leads to low resolution of the
depth and higher noise in the transformation; however, it is
relatively insensitive to its exact positioning and intro-

duces little bias or smearing. Conversely, a short window
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leads to higher resolution in depth and lower noise; however,

" it is very sensitive to its exact positioning and can intro-

duce significant bias,

signal.

For oux stochastic analysis we model the reflected

signal as

A(t) =

a(t) #(t)

or smearing of the frequency domain

where a(@ is an envelope function of approximate duration

7: (half width) which models the transient, or

short duration nature of the reflected signal;

‘Xﬁ» is a wideband stationary process which models

lfherwavefoim variation of the signal within

the duration of the envelope.

If we assure that
processes, we can
and averaging Eq.

in terms of their

|=ol fS,((v) | f a(t-T)(w(t-w) 1) €

..Jm({’ﬂr)t

the signal and the noise are uncorrelated

determine the mean square error by squaring

4.5. If we express all of the correlations

associated spectra, we obtain

+j8,,(v) \w(t-T,) e

di

- :m({’ -2) 5| *

dt

dv

dv 4.7
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where S,( and Sn are the power density spectra of the processes
x(t) and n(t) respectively. We next assume that these spectra
are essentially constant across the bandwidths of the window
w(t) and the envelope d(t). (This is a common assumption in
spectral analysis.) :We then can take them outside the integrals,

and after using Parseval's theorem we obtain

e ———te

(e = S0 [ [atT)(wet-t-1)] 4t .

-

+ Sn(f)j w(t)dt

The details of this derivation are given in A?pendix I. The :
first term degéii’b_es%Ehé?jé”&é_r? ifitroduéed by the durdtion and
positioﬁ of the window with respect to the desired réflecfed
signal, while the second term describes the effects intro-
ducéd by the additive noise. We consider each of them separ-
ately.

The noiée term is easy to analyze. For almost any

reasonable window, one can demonstrate that

(¢ 4]

S| Vs = SEHRKM s

-0

where }<” is a window factor whose precise value depends
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upon the shape of the window, but typically-ranges from
Ji<]{”<2. The most important observation is that the RMS.
value of the noise increases as Jﬁfz so one wants to avoid
excessively long windows for noise as weil as resolution
consideratiéns.

The signal term is generaliy the more important one,
and it is somewhat more difficult to analyze. First it is
convenient to normalize it simply for . the purposes of com-
parison. The mean squaie value of the desired signal Qith

no windowing is given by

i

J:mf T [

lJ(f)e

- o

S0 [ dwde

The expression which quantifies the relative effects of the

mean square bias error due to the windowing is then given by

E (“T M) = f[a(t)(w(t"”') 1) /J o' () dt - a.11

where AT=E-T;,' is the difference between the position of
the window and the center of the desired signal. The precise
shape of‘this function depends upon the particular wiﬁdow
and envelope employed. Figures 4.3 and 4.4 are indiéative

of the general structure. Figure 4.3 was computed using -
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Gaussian shaped functions for the window and envelope of the

form
w(t) = e | 4.z

4.12b

!
(®

a(t)

Figure 4.4 was computed using Hanning windows for the shape

of both the window and envelope of the form

w(t) + (f* -COS(%)) : . 4.13a

- A @) e

Esséntially these figures suggest that for less than a con-
servative 10% efror in the average bias of the windowed
transform operation, one wants to keep the positional error
within #0.1 (i.e. 20% of the effective window extent) and
use windows with 7;/WI$O.5, i.e. windoWs whose duration is
at least twice the effective signal duration. .

To test the effects of windowing on actual data, several

tests were performed upon recorded airgun signatures, which
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ideally should>represent the signal reflected from a horizon.
The signature and its unwindowed transform are illustrated
in Figure 4.5. One can estimate the energy distribution
about a central location by calculating the median signal
location and then computing the residual energy outside an
interval about that point. This .suggests that 7; =0.12..

‘Figure 4.6 illustrates the windowed transform With no
positional error using the windows indicated in Figure 4.2
with a value of M = 0.128 secs., i.e. notléonforming to our
preﬁiously suggested design guideline of T,/M 0.5. One
can observe that there is some evident spectral smeariﬁg,
but-thé windowed trasform is basically accurate. (One néeds
t6 compensaté visﬁéllf’foéfthe-pﬂééévjumps.étriﬂ'as é éhift
of Zﬁ;in phéée is equivélent.) Figdre 4.7 is a more sénsitive
~indication of the accuracy of the windpwed ﬁransform with
resﬁect to positional error. Here we have plotted the phase
deviaﬁion from linearity for the 10 Hz cdmponent as the sig-
nature is delayed through the winaow. We can observe that
for only two of the windows is there a comparatively narrow
range of #0.012 sec., or AT/M 0.1 where the phase deviation
is within #15° for an error of #30%. This is essentially in
agreement with Figure 4.3 which predicts that for T,/M=1.,

the error should be constant at 28% for AT/M <0.1, and then
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Figure 4.5a 300 cu. in. Airgun Signature (including
water surface image).
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Figure 4.6 Frequency Spectra Estimates of Gun
Signature Using Various Lag Windows.
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increase significantly thereafter. Figure 4.4 givés similar
results fox ﬁhe Hanning windows.

The final step in our analysis of bias error introduced
by windowing is to trénslate‘the tolerance in positionél
| error_to allowable perturbation in normalAincidence time..To.
and velocity, C. Essentially, we have that if changes in
these parameters produce large positional arrors around a
normal moveout curve for the array elements, then We require
a dense scanning in estimating the spectral correlation
ﬁatrix. Obviously this is an added computational burden
which ane would like ta avaid.

We can perform this analysis by taking ﬁhe total deriv-

ativeiof the-ﬁormalamb?édﬁtﬁfelaFiQnShip.

T; (-—,—;) E) Xi) — \/"‘:" + (Xl./C')z '_ | 4.1.4a

. 2 /=3 —-.
or AT, = -EAT’ - (x/C )Aac 4.14b

) T

This can be manipulated into the form

2y, T2

AETEX) = sl ~ Tsinty T8 a5

where d)} = | T;,,-’[ X,/ET;] ' | _ | 4.16

B e 0 U
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The easies‘t.way to employ this relation is to noﬁe that the
maximum effects of a éhange in AT, are wheﬁ d)i:_"—“.aO. and in
aC When d},e_’-90°. We can use a worst case analysis for a
nominal To’ C by consideringvthe situations at (I); =0. and
(}2_ = ()?w‘ = 'Fa”" [Xm“/é',:]  where )(mx 1s the array element
with the most distant offset. |
As a simple example we consider a 'velocity analysis for‘

a 2.5 km. array at T, = 3. secs. and C ranging from 1.5
km/sec to 4.5 km/sec. From our previous analysis we rall'ow
a positional error of *0.025 secs which is divided equally.

between that caused by 4T, and that by AC. We then have

for the allowable normal incidence time change

‘COS (b | max A.]: £ '_Oll5r'f-5e.c.>s ,

or ' max AT: < .0l25 secs. 4.17

For the allowable velocity change

7;,,,4) sind) —:’C-:’— MaxACI < 0125 secs. , ‘4.18‘

At C = 1.5 km/sec this implies

e
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IR

(Dmax = 2-70 > lmax AE[ .0Z23 km/sed’ 4.19

while at € = 4.5 km/sec it implies

IR

d)m“ = 10.5° max AC 556 km/se;. 4.20

Obviously the positional errors are more sensitive at the
lower velocity, which réquires a denser selection of nominal
parameters for To,'E. The results for velocity incréments
for the same 2.5 km array for a range.of velocities and
depths are plotted in Figure 4.8. Note the iarge incremehts

that are allowed . in the deep, high velocity regidn.

Discussion

We now can set up the iteration over velocity and depth
in an optimum manner.. We scanithe estimator on inérements
corresponding to the finest resolution that we can expect in
the given dimension. In time the incremént is determined
by the length of the signature and the length of the data
- window. In velocity it is dependent on the array épacing
and length, on the frequency, and on the estimator form used.
The results of this last section offer relief, however, from

the necessity of having to form a new covariance matrix foxr
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Figure 4.8 Maximum Velocity Estimate Increments versus

Velocity and Depth of the Estimate for a
2.5 km Array.
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each increment of the estimator. The estimaté can be per-
formed on the same matrix without appreciable degradation

over a range specified by Egs. 4.16 and 4.17, and Figure 4.8.

4-B Averaging and the Stability of the Cross-Spectral
Correlation Matrix.

In the previous section we concentrated upon producing -
an estimate of the cross spectral correlation matrix which
had a minimum of bias. In this section. we consider the other
aspect of this estimate, that of its wvariance or stability._
The stability of the estimate is essentially determined by
the deterministic components and the available number of in-
dependent degrees of freedom in reducing any random comﬁonents.
The determlnlstrlc, or mean, components are indicative of
fthe‘presence of reflectlon horlzons, whlle the random oneS
represent the variation that one observes in the reflections
from them. The random components may be caused by variations
between the travel paths of adjacent shots, dispersion be-
tween different frequen01es, Or errors caused by random
noise. In thlS sectlon we examlnerthe methods by Whlch one
may increase the stablllty of the estimate. We reserve until
the following chapter a discussion of the statistics and

probability models for the estimators. The probabalistic

models for describing a non-linear estimator with
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many controlling parameters tend to become intractable.
By firs£ considering how one goes about stabilizing the
estimate, we gain some inéight into the description of the
statistics of the complete estimator &hich we examine in
Chapter 5.

The priméry mechanism for increasing the stability of
a spectral estimate is one of averaging over blocks of dafa.
Within the constraints of our windowing requirements there
are two domains over which one can average to reduce the
variance of the_estimate - across shots and across frequency.
This averaging of the daté'may,be-performed at several positions
before, within, and after the application of the estimation
 procedure, each with slightly differing results. . These
.poéifibns are inéiéétéa iﬁ‘fi§uféi4:9; Thé'ﬁwo avéraging
domains are sufficiently different f;omfeach othe; that eagh
-bears a separate set of comments.

. The possibility ofaveraging'over successive shots is
suégested by thé'similéfiﬁy of élgnals produced by closely
spaced shots. The estimate is impréved only if the signals
being processed are coherent in some respect across the shots
being averaged, and the noise is uncor;elated. The effective-
ness of this>is then a function of the horizontal homogeneity

of the medium and the distance between shot points, as well
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as the control of the array geometry and the stability of the'
airgun signatures. For a horizontal planar structure and
closely spaced shot points, the signal méy be coherent over
many shots and extensive averaging is possible.

Thereare two respécts by means of which a signal may
be coherent over a shot sequence. 1In the first the wave-
fdrm may repeat from shot to shot, and here a linear aver—
aging of signals, or their transforms (since the transfor-
mation is a linear operation) is appropriate. This is indi=
cated in the first two averaging columns of Figure 4.9.
Alternatively, the signél may véry frém‘shot to shot, but
the cqrrelation and relatiyg phaging may be gtable.) Here
'afqﬁadiaticjaye;agingqugthe;cpqéﬁéprodugts;qséd iq9estimétingf £*’
the‘cgoss spedtfal eofreia£ion maﬁrix is appfopriate. " This

is illustrated in the third averaging column of the figure.

g

In estimating the matrix one can average across fre-
quency if the sighals are broadband, and the relative phasing is
not severely distortéd across the frequency bana used. The
same concepts that appear in the analysis of conventional
planar arrays also appear here. (See Skolnik, 1962). The
bééic calculation that is performed is to compute the bandwidth-
of the array about a nominal center frequency. For the case

of a simple linear array in a field consisting of a single
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plane wave, we have a normalized response given by

pistonayte,a))
(8 > e. 4.21

3’(%,@,_,6,[1(:,6,, 8) = )_\'{_ ﬁ

£

where the steering function is giveh by

(]

y(£c,0) = 0d 22k an g

This is the plane wave ambiguity function. (see Eq.s 3.1

and 3.2.) For a correctly steered array, we have

| C,=C, o - o o 4.23 "
. 6.=G° £ ) ":— "f _ e .

Now, if we let fO “vary while keeping f. fixed, we have

1

. 2(32T sing)(£-17)
plhcealfce)-y §1€J e | )

4.24
The response to waves of other frequencies is dependent on
the propagation velocity and the angle of incidence, as well
as on the frequency shift. For the case of the bandwidth of‘
the array in velocity/depth estimation, the response to other

frequencies is given by
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J ZWT(T:. Es Xl) ('Fa- ;I.)

PLT.ClET,0) = w1y e o

‘Because of the complexity of the geometry here, it is Aiffi-
cult to state anything very general. The arfay bandwidth
depends on the depth and velocity of focus, . as well as on the
‘array geometry. For the adaptive processor, the increased
resolution will decrease the array bandwidth significantly,
although this is even more difficult to gquantify.

These comments, however, do not hold for averaging a-
cross frequency in column 5 of Figure 4.9; averaging the final
estimate. Averagimg at this point produces a wideband esti-
mate‘as described in Chapters 2 and 3. Here there ig no
lgngei phase_informati@g_and the‘estimates_average egherentlxigr
as-iong as the informafion in'thevtwo freéuehcy bahés'ié‘ -
consistent. |

We have found that in regions with a reasonable amount
of horizontal homogeneity, the velocity/depth spectra are
quite consistent across adjacent or closely spaced shots.

(See Chapter 6) Averaging across shots in any of the posi-
tions is of some benefit. We have had mixed results, however,
in averaging across the frequency domain. In all of the
positions except column 5 the smearing has been noticeable.

In column 5 we have found that it is often useful to main-

tain the separate estimates over frequency. It appears that

ERS—
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‘the reflection process can be frequency selective, with
“horizons which are‘evident in a CDP Profile appearing only
in some of the velocity/depth estimates versus frequency.
It may be possible to use this frequency selectivity con=-
structively, either for the design of filters in subsequent
stacking operations or as a diagnostic tool in interpretiﬁg

the character of the reflection horizons.

'Summarz

_The estimation of the covariance matrix from the data
is a cfitical step in forming the velacity/depth spectrum.
Two important aspects of this estimation are the time windowing
'p;ipf;to transforminé;énaﬁihe aVeﬁgging of;thejdata.nghéF:.
optimum window shape and length is dépendent.on thé reflected
signature. Once the window is determined from a tradedff of
time resolutioh and frequency smearing, the bias due to
positional errors is éasily calculated. Defining limits
for this bias, we can then perform tﬁe velocity/depth spectral
power estimate over a small range of depths and velocities
using the Same estimate of the covariance matrix. Numerically,
this can be a time saver. In practice we have found this to
work quite well for a range of velocities, but not for thé

time increments, which depend on the window increments for
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resolution. Averaging of thé data reduces the random com-—
ponents, but must be done with discretioh. It is very seldom
that the return signals do not véry to some extent ffom shot
»tq shot, even in the best of conditions. Nature never quite
follows our assumtion of flat, laterélly homogeneous layers
~of sediments, and we rapidly begin to lose information if
we aQerage very many-data seté. Again experience with real
data provides the final answer, and we have had some of our
bestvreéults without avéraging over shots, and summing over
frequency only in the final stage of the esﬁimator. After
examining the statistics of the estimators in the next chapter,
we.investigate the results of applying the estimators to

real. data ih'éhépter’6;5i¢;
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Chapter 5 Statistics of the Estimators.

Introduction

In this chapter we examine the statistical distributions
of both the conventional and MLM velocity/depth spectral
estimatorsﬁ We calculate the bias and variance of both forms
of the estimator for Gaussian input data. Simplified results
are presented for the special case of independent (between
channels and between observations) noise. With the aid of
a matrix whitening process we solve the estimator forms and
their statistics for the case of a singular (rank 1) estimate
- of the éovafiance matrix. The moments for the MLM estimate
ng;ating on QTSingqla; chariang¢3matrixvére»shown tQLbe
a fofm of conflueﬁt hyééréeometriq function; These are éal—
culated and compared wi#h the conventional moments using
the same covariance matrix estimate. The MLM is shown to
improve the velocity/depth spectral estimate, even when
employing a singular covariance matrix.

Throughout this chapter we characterize the data (the
output from the FFT operation) as a complex valued éignal
plus complex Gaussian noise. The signal is consideréd as
unknown but constant, and the noise is multi-variate normal

with zero mean and a covariance matrix 2;. The data from
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observation "k" is denoted by

Ik = ..S— + N—k 5.1

where S is the vector of signals and Ek is a noise vector.
This is a common assumption in geophysical data and permits
us to calculate and compare the statistics of the two forms

of the estimators.

Conventional Estimator Statistics

We begin by considering the statistics of the conventional
estimate. We use matrix notation to simplify our calculations.
‘The data may be c¢onsidered an NxL matrix formed from I obser- :

vations of vectors composed of the N data channels.

Yz.u -?;J. ' = QG’) 5.2

The estimated covariance matrix is formed by

A | T
R = Uumue 5.3
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th A
where the ij component of R is
A L * |
Ry = 2. Vi i o 5.3b
bet

vRéferring to section 4-B, the averaging inherent in this form
of the estimated matrix is the quadratic averaging in column
3 of Figure 4.9. This is the form generallf_used for the
estimate of the covariance matfix of a process (Anderson 1958,
Goodman 1963).

We write the data as a signal plus Gaussian noise,

Yk = S o+ 0y | . 5.4

wheré fZ; is diétributed as N(§J§5,.§ = [Si] is the unknowﬁ
but constant signal, and 2 is the actual covariance matrix
of the noise process. It has been shown (Goodman 1963, Rab
1965, and others) that the estimated covariance matrix ﬁ has
a non—-central complex Wishart distribution. This is a multi-
variate generalization of the.non—central complex chi-sqguare
distribution.

It can be shown that for a Wishart distributed matrix

g and a column vector of constants E, the quantity

TR ye—



P

R-w[E

3

is distributed as a first order Wishart with L degrees of

2 _
freedom, which is equivalent to ’X(L) (Rao, 1965). Specif-

ically, the distribution is
2 g% | '
U; ’X (L,7\) ‘ 5.5a

2 + ’
where g = Yy EZE - 5.5b

and 7\is a non-centrality parameter given by

|G E's| |

E

2

>4

n

If we look at the on-axis response (Ei S, = ¥} ) and consider
the noise to be uniform and independent (_};:0'5_1_ ), then

we have, for a simplified case,

2
2 - a :
O;; T "NT“ 5.6a
N N 2011
’.)\ - a 5.6b

The characteristics and moments of the non-central chi-square
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are well known. The mean is

il

E[R] a. (L+A) 5.7a

and the variance is

Gt = (&) (2+42) sm

For our simplified case we have

E[E] = O—Yz(flﬁ + 'L:‘E) . 5.8a

-8
1

c

2 4+ (2L A}Lf’ﬁl .
0; = CT;:*( NE -+.'h10;f - $.8b

MLM Estimator Statistics

We begin our investigation of the statistics of the i
MLM witﬁ results derived by Capon and Goodman (1970). Using
a relation given by Rao (1965), we can derive-Capon and
Goodman's result.in a simple fashion. - Rao (1965) giVes
the following result for a matrix R distributed aé W(L,Z) -

" The quantity

1- -l

—

E
E

{m

P
+.E:'

|m
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. . ' 2 ‘
where E is any fixed vector, is distributed as X(L=N+l1).
The numerator is a variance term which remairns constant.

We rewrite this result to give

is distributed as

[ 1|_,E] 7(2(L-N+l) LN 5.9

This result, as well as the existence of the Wishart distri-
‘bution density function, &spends on L »N. The expressions for

the mean and variance are - -

E[P.] = [_E*;",E_]-(_L—Nnn\)' 5.i0a

2 -2

t ! ‘ '
0. = [E £ E] (2(L-N+1) +42) 50
mm - = - ) »

where A is the non—centrality.parameter'given_in Eq. 5.5c.

: .

We again simplify for the case of ;=U$l and E;s;=0§. The

results are

5.11a
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and
L I TAR L* 5
T, = % 2(%*1) t o4 N o2 >-11h

Comparing Eg.s 5.8 and 5.1l1, we see that both the expected
value due to the noise power and the variance are réduced
by the MIM. This verifies the conéept that the MLM is a
higher resolution estimator and does not respond as greatly
to incoherént signals.

We note in applying these results that the requirement
that L be greater than N is a problem. 1In most of our appli-
cations we have used only oné or_seveial shots or observations
in.fofming the,Cova;ignce matrix. In order to examine the
statistics of these cases, we propose another aéproach which

is presented in the next section.

MILM for a Singular Covariance Matrix

The general results of Capon and Goodman (1970) are
not valid for the case where L <N, which is a region we are
most interested in. The rank of the estimated covariance

-1 :
matrix is L, and R does not exist when L <N, We have

o

found that by adding a small real quantity to the diagonal

elements of E, we eliminate the singularity of the inversion

Tt YT VST
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and can invert the modified matrix even when its original
rank was unity. This operation is commonly done in spectral
analysis techniques and is described as whitening the matrix.
The effect of whitening is much the same as the quadratic
averaging of many observations, each of which contain somé
white noise. The diagonal terms (which.are all zero phase)
are enhanced relative to the off—diagonal terms (which have
non-zero phases that vary with the hoise componeﬁts). We
note that the diagonal terms are spectral components and the
off-diagonal terms are cross-spectral components. White
noise contributes to the level of a spectral estimate with-
out affecting the cross-spectral level. We also note here

Ehéf;fhé'liﬁégf“évéraéiﬁéf{h:céluhhéfl-éndi2f6f

reduce the noise by increasing the number of observations,
but do not contribute to increésing thevrahk of the matrix.
The estiméted matrix following the linear averaging of the
terms is of rank 1. The comments in the next section on
the single observation case are also applicable to this casé
if we consider a reduced input variénce.

Some insight into the singular covariance matrix may
be gained from factoring the matrix into its eigenvectors

and eigenvalues.
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.’. .
WA W 5,12

Pe)
I

A is a diagonal matrix whose diagonal terms are . and Wis

a matrix of column eigenvectors. The eigenvectors are ortho-
1 A L . . .

normal so that WW=]. R is hermitian, which implies that

the A; are real and non-negative. The inverse of E is given
by

A - - + '
B_' = \_/_l//_.\lw 5.13

—

...‘ .
A is a diagonal matrix whqose terms are ( '/R,}' When one ox
more of the 7\i are zero, ﬁ is singular and the inverse is
ill-defined. =

If we now consider the modified covariance matrix

= E + ?l 5.14a

gy

E]

we get a modified eigenvalue matrix.

/

~ : + . »
R = WAW + 8l  5.14b

*

or R = W (A +B_I_) y_v+ ~ 5.lac

The eigenvalues of the modified matrix are
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A = li’.’pv 5.15

1

and the eigenvalues of the inverse are

i

AL R
A CA+B 5.16

These are always finite for'f3>O and the inverse is no longer
ill-defined.

Thé stability of the inversion operation is determiﬁed
by a quahtity known as the condition numbe:y 7{(Householdef
1964). The condition number of the covariance matrix is the

ratio of its largest to its smallest eigenvalue.

= 1 .
a}( ' 5.17

mi .
in A

For'7<approaching one, the inverse operation is a well posed
problem and the solution involves very stable calculations.
For ?(increasing, the computation of the inverse becomes
more and more unstable, and the matrix approaches a singular
condition.'.By whitening the matrix, we are limiting the

'value of}(. The largest eigenvalue is bounded by

2

BB o < TW(E) ;1o
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The minimum eigenvalue in the modified matrix is greater
than or equal to B Letting ﬁ be a function of Tr (E), we
control.?(and the stability of the inversion operation. The
optimum maximum value of'?(is determined by the numerical
stability and accuracy of the computational device used
for the calculations. For computers with a 7 significant'
figure‘accuracy, a value of about lO4 is suggested. The
tradeoff we make for stabilizing the matrix inversion is
one of distorting-the matrix, and ultimately distorting the
final estimate. Our results which follow indicate that>this
distortion is toward the conventional form of £he estimator;
hence we have a valid, if‘slightlyrless than optimum, estimate.
Thigubias towg;@_the ;ogygpﬁional §stimate is intuitively
cdrféét ih tﬁatrés'Weniﬁcféaée é%é 1ével‘of whifé hoiseiin
the signal field, the weiéhting coeffecients approach uniform
‘and the optimum beam pattern approaches the conventional.
We conclude that, with the whitening, it is possible to
employ the MLM estimator on a singular covariance matrix.
The estimate suffers from not having reduced the random

components, but the adaptive procedure should still produce

a higher resolution estimate than the conventional.



104

Single Observation MLM Estimator - Exact Solution

A simple case that we can solve exactly and generally
is for the inversion of the whitened covariance matrix from
one observation of the data set. The estimated covariance
matrix becomes

A t
R= 7YY + BI

5.19

where B is the power of the added white noise. Generally

2

we let B be in the range of 1074 to 107 times the trace

of’ZZ{ .From Graybill (1969) we have

5.20

Solving for both estimators in terms of the vector components,

we obtain

_ —@_ _l__ N N ¥ *
R=x" N;f: BTN 5.21
2 N c 3
v 6 LYY
= o 5.22
wa T ONB N EYY - 1S ENY ’
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We make the following substitutions
2

" N
U = 15 Al | » 5.23a

e = - 5.23b
N
where A, = E Y, - | , 5.23c
- & | .
and A =5 24 , 5.23d

We note that 91 is the square of the sample mean of the

‘steered data and C) is the‘sample variance. Substituting

these intd'Eqs.HS.Zl ané’5.22;"Wéf6btain

N
5.24
- 1) |
MLM N I+8o 5.25

These results are derived in Appendix II. We use these ex-

pressions for the estimators in the remainder of this dis-

cussion.

For f3 increasing, we note that the MLM estimate asymp-

totically approaches the conventional estimate.- The two

L S
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estimates also converge for the ¢ase when the variance of the
steered samples approaches zero. This corresponds to the

correctly steered estimate of a signal without noise.

Statistics of Single Observation Estimators.

In order to determine the statistics of the single
observation case, we again consider multi-variate non-zero

mean Gaussian data as the input to the estimators.

Y -~ N(S'_Z-_) o 5.26a

———

A ~ N(.[SiE?J [ETQJEJ]) 5.26b

Constraining the noise to be identically distributed and
independent, and the phase corrected signals to be identical

for each channel, we have

' 2
A ~ NOT, ) 5.27
Deriving the distributions of q}and © is straight forward,

and we take our results from Papoulis (1965).. q} is a first
order non-central chi-square process. The probability density

function is
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UL T Y
f ot o NN, o%H Iy s
L %—Y— Ay B -
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() is central chi-square with density function

Y = Tna M e ’ c UY U(@) | . 5.29
* 2 EFre) ' .

We also have that {/ and © are independent. Changing variables

§

S

i
C p—
+

N |
s © | 5.30

5.31

)
- X
L
. e 2 Y
I
Nty
Nrt

~ we obtain

S v -BS |
fj =(;~€‘;'3) F@E—E)— (ggl) e ™ U({‘l)_ 5.32

and

N § | 5.33
Since y}and f are indepéndent, we can solve for the distri-

bution of the quotient.jzzf%g in a straight forward, but

algebraically complicated manner (seeiAppendix I11).



This expression is not reducible in terms éf ¢losed form
functions. Because.q/and f are- independent, we can solve
for the mean and variance of the estimétor most simply by 
returning to the expressions for the distributioﬁ functions
of q}and-f. Calculating>the first and second moments of

%’and é—, we have

Nt | ~ 5.35a

4 2 A ,
E[VY] = 3 073% + 6} %‘f— + X‘4 ~ 5.35b

m
—
nj—
| S—
i
»
w0
3
S
| NF
<l
i
nF
A
N——

5.35¢c
- :
i B S
- G U g

2{(a,b,k) is the second form of Kummer's function, a type
of confluent hypergeometric function. (Abramowitz and Stegun,

1965). It is convenient when looking at the mean to drop
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the constant B/N and consider only the mean of (V/f for the
MLM estimator and the mean of (/} for the conventional. The

mean of the MIM estimator is given by
E[PMLM] = E[Y] E[-f’-] | | 5.3
The variance of the estimator is given by
Var[Bw] = EVIE[p] - EV]IE[7] 5.7

Using the relation

abz) = T {_M_(éz.b,z) 7 M(Ha-b,z-b,_z)} |
u(z)sm‘n‘b Tlrra-Bre) Z ey J o

we solve for the moments of (‘S.L) with N = 6.

o : | | |
E[;"] =%\/17€Q + 32-(;)[!—1@/"1(1,%,@)] 5.39a.

54 Q
elp] =33 QM40 -30 -3VT 29€ 5w

Q = == 5.39¢c
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ﬁﬂa,b,x) is the first form of Kummer's function, which may
be determined form tabulated values of calculated from the
series definition (see Abramowitz and Stegun, 1965).

The expected values of the MLM estimator versus the
noise variance are plotted iﬁ Figure 5'10' As the noise in
the data increases - as the signal structure deviates from
the form decreed by the éteering vectors, the output of>
the estimator drops off sharply. This is an indicator df tﬁe
increased resolution that we find with the adaptive estimator,
aﬁd how thé resolution is controlled by the levei of B. As
ﬂ is decreased, the estimator permits smaller and smaller
deviéﬁions from the desired signalrstructure in order to

méf%igih'éﬁéféagelééeiiéé;Sﬁﬁpﬁﬁikiie., tﬁg;#ésdiﬁﬁi6;?is
increased).

The variance of the single observation MIM estimator
is plotted in Figure 5.2 along with the vaiiance of the
corresponding conventional estimator. Since the adaptive
estimator is dependent on the signal field, we have plotted
the variance versus the variance of the input data for several
values of signal strength and for different values of additive
white noise. For small values of Cﬁ?the variance of Pum

is highly dependent on the strength of the signal. As the

noise variance increases, the dependency on the level of
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FIGURE 5.1 Expected Values of Estimators-

Single Observation Estimate.
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FIGURE 5.2 VARIANCE OF ESTIMATORS - Single Observation Estimate
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additive white noise becomes the dominant factor. For com-—
parison purposes we also have plotted the variance of the

conventional estimator for the same signal levels.

Summary

In our probabilistic models we have over simplified
the actual processes, and the accuracy of the models suffers
accordingly. Without these simplifications, hoWéver; the
problem becomes intractable. There are too many dimensions
to allow reasonable interpretations to be made. Our most
vulnerable simplifications are the restriction on the noise
to be independent and the restriction to looking only at'
.cq;;ectly steeredvsignalslr The'noise in seiémic reflection
.data is generally highlyvcoloredrénd propagating. Aéiwe
scan the steering vectors versus To and C, what was the
desired signal in one instance is a strbng part of the noise
‘field'in the.next. But the simplificatioﬁs do allow us to
identify some of the major characteristicé of the estimator
and make some simple comparisonsT The results‘from the
singular matrix case are appiicable in a more general sense
if we consider unwanted signals és non-~random components
which feduce the degrees of freedom of the matrix. oOff-axis

signals increase the sample variance of the steered data
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and increase the value of @ in Eq. 5.27. The resulting
.estimator shows a much higher resolution in depth and velocity
than does the conventional estimator, which is one of the
strong points of the adaptive processor.
| As we sawvin the beginning of this chapter, the multi-
observation matrix provides its own whitening while reducing
the random components within the data. Considering the
constraints used to develop the estimétor,'this whitening
should be optimum; i.e., theiwhite noise level, which we
have seen to be an indicator of the resolution, is a direct
function of £he noise variance of the data. Noisier data
calls for a broader resolution. The single obseryation
MLM estimator is sub-optimum in two sensesf,,Eirst, there B
is no way fofjit to diéﬁiﬁguish'géthenvsighél and noise -
there is no averaging to redﬁce the random components.
Second, the white ndise level is externally adjusted and
is not directly related to the noise variance of the data.
In spite of these shqrt comings; ‘the MLM single observation
estimate is a large improvement over the conventional single
-observation estimate. The single observationvMLM estimator
still has a greatly increased resolution and-a reduced varér
iance. We simply need to be judicious in our estimate of

the noise level of the data and our choice of the parameter'ﬁ.
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If we consider hoise as errors in the data, then there is a
tradeoff between the mean square value of the errors which
we assume to be present in the data and the resolution that
we call for. We cannot afford a high resolution if there
are significant random or systematic errors present.

For the MLM estimators in general, we find that we have
an increased resolution and a reduced variance. For the
single observation, and any case where the random components
have not been completely averaged out, the reéoluﬁion and
variance are gained at the expense of an increaséd bias.
This bias, however, which is a decreased signal level, is
a direct contribution to the increased resolution of the
éstimate. Ifiused caﬁ#iéusly,vit“iS‘to-bendesired.réthe;'

thanvavoided.
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Chapter 6 Experimental Results and Conclusions

Introduction

The experimental development of the MLM estimator in our
study has been through a step by step procedure. We began by
doing studies of the estimator response to an ideal covariance
matrix as in Figure 2.9. Following this investigatioﬁ we
created synthetic tapes in which we could control thé charac-~
teristics of the reflectors and in which we could be certain
that the data matched the travel time model. Studies with
this data brought out the requirements for careful windowing
and demonstrated the increased velocity resolution. Studies
with realrdata have substantiated the results and conclusions
~-of the synthetic data studiésj'aﬁd;have_alsb:identified some* f
inféfésting poinfs.that wére n§£.acéoun£ed for in the synthetic
data. These include the ability to resolve overlapping sig-
nals and multiples, and the strong frequency dependence of
certain returns.

Figureé 6.1 and 6.2'give typical results from the ideal
covariance matrix studies. Figure 6.1 is the conventional
'estimate and 6.2 is the MLM estimate of a foﬁr reflector éase.
The reflectors are indicated on the plots by a *+—.- These

spectra were calculated entirely from a single covariance
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FIGURE 6.1 Ideal Covariance Matrix Spectrum. Conventional Estimate

at 25 Hz. Six Channels.
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FIGURE 6.2 Ideal Covariance Matrix Spectrum. Adaptive Estimate
ot 25 Hz. Six Channels.
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matrix containing all the reflectors. The ambiguous strip and
the higher resolution at shallow depths that we predicted from
the ambiguity functions are evident. The effect of holographic
focusing is indicated by the resolution in both depth and velo-
city of the shallowest reflector. 1In comparing the relative.
resélution of the two estimators, the MIM processor appears to
~extend the focusing range of the array, as well as providing

a higher resolution in the normal range of the conventional
processor.

The next step in the development of our study was to
estimate the covariance matrix frém ideal data. A common
groﬁnd point gather from é}l2 channel synthetié tape is given
iniFigdye 6.3;¥5The#eiqréh8 refleétdié whqsé éarameters are
given in Table 6.1. This'aata does not contéin any:ﬁoise
wavefronts dther than those introduced by a filtered random
noise generator applied to each channel. Nor does it éontain
multiples or refracted arrivals. All the delay times follow
the RMS travel time model. The reflection signatures are

damped sinusoids. The conventional and MIM spectra of this
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Table 6.1 Reflectors in Synthetic Data Tape.

T, se) C (ms) F':i:::cy (Hz)
.20 1490. 34,
.80 1840. 30.
1.30 2260. 27.
2.10 3050. 24,
2.50 3230. 22.
2.70 3490. 20.
345 4i20. 18.
3.60 4430. 15.

Lt P
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data are given in Figures 6.4 and6.5.l These estimates are
summed over frequency and inélude the frequehcy band from

19 t§'35 Hz. An'iﬁteresting point of comparison is the flat-
ness of the background in the-adaptive estimate; the absence

of much of the fine structure that is present in the convén-
tional estimate. The noise is white Gaussian and we are
observing the reduced variance predicted in Chapter 5. The
resolution élong the time axis is comparable for both‘estimates.
as we would expect from Figures 2.8 and 2.9. There is a
notable increase in the velocity resolution in the MIM esti—
mate, particularly for the deeper reflectors. The spectra

for 6‘channels of this same data ( the_even numbered qhannels, |
Giving the same array 1éngin) e given in Figures 6 6 and 6.7.
The results of the adap£ivé procedure applied to the 6 channel
array are not'quite as good as in the 12 ghannel estimate,

| but.continue to be greatly improved over the conventional
estimate.

Following the synthetic data studies, we turned our

We note that most of our spectra plots are contoured at 6 dB
intervals. These were plotted before we normalized the gain
factors between the conventional and adaptive estimation pro-
grams, so we can only say that the levels are arbitrary. All
the contours above an arbitrary level are shaded to aid in
interpretation. The shading contour was chosen in each case
to highlight the peaks.
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Figure 6.4 Conventional Velocity/Depth Spectrum of
12 Channel Synthetic Data. 19-35 Hz.
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Figure 6.5 Data Adaptive Velocity/Depth Spectrum of
12 Channel Synthetic Data. 19-35 Hz.
6 dB contour levels.
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ntional Velocity/Depth Spectrum of

6 Channel Synthetic Data. 19-35 Hz.
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Figure 6.7 Data Adaptive Velocity/Depth Spectrum of
6 Channel Synthetic Data. 19-35 Hz.
6 dB contour levels.,
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attention to actual field data. The data is from the WHOI
multi-channel system employing six channels at 150 meter
spacings. The shot points are spaced at 37.5 meter intervals,
so we would expect a fairly high correlation bétween adjacent
gathers. The next four figures give the conventional and
adaptive spectra of two consecutive common ground point
gathers. Figures 6.8 and 6.9 give the conventional estimates,
and Figures 6.10 and 6.11 give the adaptive estimates. We
see the same reduction in sidelobe energy and flatness of
spectrum that we observed in the synthetic data. Note the
reflector at 0.85 seconds and 1800. meters per second £hat is
vir#qally lost in the energy from the shallow refractgd and
diféct érriVaié?iﬁ ﬁhéfééﬁééntibhgi'SPéctra;7:fhe.highéf
resolution of the MIM allows it to discriminate betweeh the

direct and refracted returns and those returns fitting the

RMS travel time model. Comparing the reflector at 1.7 seconds

and 2400 méters pet second in Figures 6.9 and 6.11, the
adaptive estimate distinguishes between the reflector and a
slower multiple, while the conventional estimate smears them
together. Finally, the geheral stationarity of the data
between adjacent gathers is an indication that we can further

improve the estimate by averaging the covariance matrices.



Figure 6.8
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Conventional Velocity/Depth Spectrum of
6 Channel Georges Bank Data. 19-35 Hz.
Shotpoint 300. 6 dB contour levels.
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Figure 6.9 Conventional Velocity/Depth Spectrum of
6 Channel Georges Bank Data. 19-35 Hz.
Shotpoint 301l. 6 dB contour levels.
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Figure 6.10
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Data Adaptive Velocity/Depth Spectrum of
6 Channel Georges Bank Data. 19-35 Hz.
Shotpoint 300. 6 dB contour levels.
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Figure 6.11
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Data Adaptive Velocity/Depth Spectrum of
6 Channel Georges Bank Data. 19-35 Hz.
Shotpoint 30l1. 6 4B contour levels.
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Another example of the improvements gained by use of the
adaptive estimator is given in Figures 6.12 and 6.13. This is
another WHOI 6 channel data set from Georges Bank. We égain
observe the same relative improvements of the MIM over . the
conventional estimate. Note that Figure 6.13 is plotted at
3 dB increments to bring out the structure of the spectruﬁ.
The energy from the direct and shallow refracted arrivals in
the conventional estimate is greatly attenuated in the MIM
spectrum. Two reflectors at 1.45 and 2.25 seconds and 2700
meters per second are greatly enhanced relative‘to slower
velocity returns in the adaptive estimate. The velocity
resolution of the reflector at 3.35 seconds and 3100 meters
per:seqond-is,significhElg bette;ﬁin thé:adaptive'estimatei
| .d;fhis éamé déta:éiégféives‘ﬁQL; éood exéﬁple of tﬁé'infor—
mation partitioning as é function of frequency. The spectra
in the previous six figures (6.8 - 6.13) have all been aver-
aged over a 19 to 35 Hz frequency band. If Wé look at the
estimates for each frequency component for shotpointleZO
(Figure 6.13), we find that the different travel paths‘afe
highly frequency selective. Monochromatic MIM estimateé for
this shotpoint are given in'Figures 6.14 through 6.18. Most
of the multiple eﬁergy is in the higher frequencies of the

band, and most of the penetrating primary energy is in the
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Figure 6.12 Conventional velocity/depth spectrum of
. 6 channel Georges Bank data. 19-35 Hz.
Shotpoint 1020. 6 dB contour levels.
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Figure 6.13
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Data Adaptive velocity/depth spectrum of
6 channel Georges Bank data. 19-35 Hz.
Shotpoint 1020. 3 dB contour levels.
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Figure 6.14 Adaptive Velocity/Depth Spectrum of 6 Channel
Data. Frequency Breakdown of Shotpoint 1020.
19 Hz. 6 dB contour levels,
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Figure 6.15
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Adaptive Velocity/Depth Spectrum of 6 Channel

Data. Frequency Breakdown of Shotpoint 1020.

23 Hz. 6 dB contour levels.
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Figure 6.16 Adaptive Velocity/Depth Spectrum of 6 Channel
Data. Frequency Breakdown of Shotpoint 1020.
27. Hz. 6 dB contour levels.
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Figure 6.17
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Adaptive Velocity/Depth Spectrum of 6. Channel
Data. Frequency Breakdown of Shotpoint 1020.
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Figure 6.18 Adaptive Velocity/Depth Spectrum of 6 Channel
Frequency Breakdown of Shotpoint 1020.

Data.
35 Hz.

6 dB contour levels.
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lower frequencies. This is indicative of the filtering done |
by the travel path medium, and points out the usefulness of
working in the frequency domain for both the conventional and
adaptive spectra estimates.

We can also use this data to demonstrate the effects of
.averaging over shots. The estimated spectra (MIM) for shot- .
points 1021 and 1022 are given in Figurés 6.19 and 6.20. A
spectral estimate using shotpoints 1020 - 1022 in forming the
covariance matrix is given in Figure 6.21. Somerof the
reflectors (1.25 seconds) are improved, while some (2.3 and
3.35 seconds)are degraded over the better of the single

observation estimates.

Conclusions

We have seen how the Maximum Likelihood.Method, when
applied to velocity/depth spectra estimation, gives improved
resolution of reflector parameters. The resolution in depth
is determined by the windowing of the data, which is identical
for both the conventional and MIM processors. The resolution
in velocity is determined primarily by the coherent power‘_
estimate, and here the MIM introduces significant improvements.
The improvement is dependent on the additive noise field, but.

is substantial for the synthetic and field data that we
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Data Adaptive Velocity/Depth Spectrum of
6 Channel Georges Bank Data. 19-35 Hz.
Shotpoint 1021. 6 dB contour levels.
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Figure 6.20 Data Adaptive Velocity/Depth Spectrum of
6 Channel Georges Bank Data. 19-35 Hz.
Shotpoint 1022. 6 dB contour levels.
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Figure 6.21
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Data Adaptive Velocity/Depth Spectrum of
6 Channel Georges Bank Data. 19-35 Hz.
Shotpoints 1020-1022. 6 dB contour level
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examined. The increased velocity resolution is of particular
significance for deep returns where the array is approaching
the limit of its near field geometry. Here.the MIM can extend
the practical operating range of the array.

We have identified two aspects of applying the estimator
which are critical to its successful implementation. The
windowing is an important, although subtle, aspect of the
estimation procedure. 1Its dual role of transform window
and arrival time detector creates a tradeoff between time and
frequency resolution. The expected form of tﬁe signature
;and its freguency spectrum must be considered in resolving
this tradeoff. 1In addition to the windowing, another critical
area-is'theiaVeraging Offdata. .Here'again.we}find tradepffs,nf
this time betwéen the s£ébility of the estimate and tﬁe.
ability to resolve reflectors that may be present in only
one or few shots and/or frequencies.

In examining the statistics of the estimates, we have
extended previous results to include our application, as wéll
as derived the statistics for a new case; the single obser-
vvation MLM estimate. A by-product of this is a new expression
for the MIM estimator which promises to be a much faster

algorithm to implement (Eg. 5.25). The MLM has a reduced
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variance which ié obtained at.the expense of an increased
bias. This bias can-be controlled somewhat through the matrix
whitening parameter. It is a direct consequence of the higher
resolution of the adaptive estimator, and is not a severe
problem if the whitening parameter is adjusted to suit the
data.

In concluding, the advantagés of épplying the MIM esti-
mator are primarily invthémresolution of velocity, both wheh
distinguishing betWeen multiples and primaries and at the
- limit of the array's operating tange. The method allows
the use of shorter'aﬁ&“spérggf arrays to obtain results
equivalent to a conventional analysis, and hencé redugesr
opéréﬁing‘ahd §£6cessiﬁ;.éos£s. ;6ﬁ7éﬁe otﬁer hand, iEFresolveé
reflectors that would not be resolvable with the conventional

analysis for a given data set.
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Appendix I Development of a simplified'éxpression for the

mean square error of the Fourier transform due
to windowing of the time series.

The error is given by Equation 4.5

| errﬁ:
E{) = J[A {;T’){w(t w)—l} + n(t) W(t'w)] dt 4.5

If we square this and take the expected value, we have

Q oo

IE(r)l f(e[d(t-n)d(t n)]{wt (t-T)- l}{wtz 7)1}

o 1ﬁf& -t,)
* E’[n(tt)n tz)] & w)w T, ) e dt,dtz’

AI.1l
noﬁiﬁg that th?;Crossftéfms drbp'pgt'because»we'have assumed’
A(t) and n(t) independent. We can rewrite the expected value

terms as autocorrelation functions.

E[A-(t.‘ﬂ)-é(t{ﬁ)] >= G(t,‘ﬂ) Rx(t,‘tz) a(tz'Td) AI;Za
] = Ryt) o

We can write the autocorrelation F'"ct on as the inverse

transform of the frequency spectrum.
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jTY(t,-t,)
R(t-t.) f sp) e dv s

Substituting this into Equation AI.l, we have

|E(4‘)-|1 54,; S (V)Jdtjolt af(t,- ’E)q(t Jr)

‘J z1r 79 VXL t)
- Hwlt, T,
o -j2m(fp)(t-t,)
. J dy 5.0 Jat.J dt, witT,) wit ) €
L i | AI.4
?hgﬁ?ptegratiops_in tl_?nd t2 facEgr and are complex cgnjuf

gates of each other.

v| e = Jdv Sx(v)

2m(f- v)t

gcu a(t-T,) {W(H“ 1}8 -

..ja.ﬂ(f-v)t *

{dt w(t,T,) e

+ Sdu Sq(v)

AI.5
If we now assume that Sy and S are approximately constant
1t
for (£-y) small; i.e., within the bandwidths of the squared

quantities, we can take them out of the integral and we get
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Letting

and

we have =
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Sx (f) dv

' sn(s;)fa)»

9(t) = alt-5) {w(t-1)-1}

H(F-v) = S

—jam(f Dt|*
Sdt w(t-T.)

- -‘Ar.8a

-jam(f- Wt

(t) €

dt

Substituting this into Equation AI.6, we then have

]EG‘)!l

= S.(0) fow |6(+- ’ i

+

| | - —jam(f-
jata ){w(tT) }e"

2
i

ATI.6

AI.7a

AI.7b

AI.8b

AN
./

AI.9
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From Parseval's theorem we have

jdy IG(r—v) = [Jv GO = jdtlj(t) AT.10a
| 2 2 A %
Sl = far ol = falol
Substituting Ai.lo into AI.9, we finally obtain

le(F)l = S gdt(a(t-'&){w(t-Tw)—I})

2

+ S, (1) fdi (w (i—’l:.,)_)l.
IE(D'Z = S-x () jdt [a(t) {W(t-AT)‘f}} |

e S [l e
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Appendix II Derivation of simplified expressions for esti-
mators using one observation of the data set.

The two estimators are

’2 = ﬁﬁ.[ Eiéiﬁl]

Y’r

and
ta?l 1™

Pun = [ E'RE]
with

A t

R = YY + Bl
and

e'E = N
We ha;e

Al _I__I . Y _

R - B= ' p2'+f;£i

Y

AIT.1

ATI.2

AII.3

AII.4

AII.5

Multiplying out the conventional estimator and gathering the

terms in summations, we have

Cc

=

~e
-

o
FD = ~Na 2: EiF;Ei +“ N

ATII.6

iem e
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The MIM estimator becomes

, Lot E'yYe
MM - p 2 N YTT*
o £
N N % WﬁiE -
= ~ ’ N ok
P > > Y,

-1

N *
7+ p LYY,
1=} 1 ¢ L.
- N * N N % *
e NB + NZYY - 22 ETYE
= . 3= =
=y AII-7
Since EiEzé= l, we can make the substitutions
* :
Ai = E;, Y; AII.8a
EVA : *
AA =YY

ATII.8b .
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This gives us

= — + — ,A.A.
R’ N N* ?;:l 3= t) | ALL-9
N *
62 + B r AA
P .= = — | AII.10
MmLm .
: N * N N *
i-'-l i=‘ ':' J
, J _
We can further simplify PMLM with the following two identities.
* * , |
DS Ai Ai = 2 }A,J AII.lla
and '
1,

Z. Z As‘A‘,‘* = ) Z‘Ai AII-'.llb‘

We also make use of a simple theorem.

Theorem I

2

—\* ] Z '
L X, = Z(Xi'x). N (in) AII.l2a

w}\e.re -)? = -l-\ll‘ in 7 AII.12b
Proof: N 2 N - —_ 2
X(-%) = 2 (X -aXx ¢ X )
i
‘ N N . 2
= Zi‘ xi - 22X Z x‘ + N X

(4% = Zx - §(2x) aep
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Applying the identities, we have

B+ ‘ZerA,]z

ol ATI.13

> A

. “="Z

Tn(z

- Applying Theorem I to this result, we then obtain

o z|AA + 4]TAL

i N (1 + éZ]Ai-le) |
_ B s1Eal
Em.m TN + AII.14
- 'IV'+ %{I/h _
We define two new variables
' _ 1A
G = T\;L 3 ,Ai"Al ATI.1l5a
2
v = I Z A AII.15b

N
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Substituting into the two estimator forms, we finally obtain

Pc = £ + LP | ATI.16
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Appendix III Derivation of the probability density function
of z = (V(f).

Both W and.f are constrained to be positive. We are there-
fore limited to the first guadrant in the Wif plane. We

first calculate the cummulative distribution function F; (2 <Z,).

{

<§Z°
\V__ _7)’/\IJ=§Z°
y - gz
¥
o fzo .
E(Z<Z,) = Jf d‘f’ﬁ,w(ﬁ,‘i’) © AIII.Ll
! (o) '

Differentiating with réspect to Eg, we obtain the density

function
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The joint density function {’Q) is simply the product of f

f §

and {’,
| Y
B-n1” +NY
i P S ~é52‘0:r1.

NWE - N3P R
e e & usuw

'~ AIII.3

Substituting this into Eg. AIII.2, we then obtain an integral

expression for the density function. -

e cosh

ml' '%“3 ] i}Naz B |
¥ ) (ML) o

P~
e

lw-0+<

Y

AIII.4

This does not appeaxr toc be solvable in closed form. For
the case of X=o it reduces to a form of confluent hyper-

geometric function.
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Glossary of Notations and Symbols

Notations

*

. Complex conijugate.

t .

. Complex conjugate transpose.
-

. Transpose.

~ Is distributed as.

= Vector or matrix quantity.
~ . B

. Estimated quantity.

[xﬂ Vector or Matrix with elements xi‘
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Envelope for stochastic signal model.

Array element gains for adaptive processor (2).
Steered data vector (5).

Coefficients for series expansion of travel
time (1). ‘

Matrix whitening parameter - quaﬁtity added to
diagonal elements

Uniform signal magnitude for simplified statistics:
Complete gamma function.
C . f .th '
Seismic velocity within (i ) layer.
RMS velocity.

Array spacing (3).

Depth of first layer (1).

Difference in position of window and position
of center of desired signal (4).

Steering phase for ith channel.

Steering vector of phase shifts used to focus
the array.

Error in transform due to windowing and to noise (4).

Expected value of (.)

RMS bias error of transform due to windowing.
Probability density function for e.

Probability density function for q).
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Reducing coefficient in adaptive estimator (5).
Sample variance of steered data (5).

Identity matrix.

Wavenumber vector.

Window factor.

Matrix condition number.

Number of observations used in forming the
covariance matrix.

Ray parameter (1). Non-centrality parameter (5).
Eigenvalues of R.

Eigenyalue matrix af R.

Half width of data window.

First form of XKummer's function.

Noise in data.

. .th .th .
Noise from i channel and j observation.
Number of channels.

. th .

Noise vector from k observation.

Multi-variate complex Gaussién—normal distri-
bution.

Conventional velocity/depth estimator.

Maximum Likelihood Method velocity/depth

estimator.
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Ok 6)k,0)

Angle with vertical of wave
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vector in i

layer (1).

P(r.glnc)
bulTClT.C)
X6, %), %
¥ (k.e)
'
" R#)

Raed), RO)

f(

f

¢

TElfTE)

4(1)

Monochromatic plane wave ambiguity function (3).
Monochromatic velocity/time ambiguity function.
Wideband velocity/time ambiguity function.
Chi-squared distribﬁtion functién. |

Plane wave steering function.

Square of the sample mean of steered data (5).

Covariance matrix of data field.
Estimated local covariance matrix for data

windowed by T, C.

Normaltized response of velocity depth array
(conventionalj to freguency bandwidth.

Reflected signal in data.

Fourier transform of signal .4(b).

Signal from channel j.

Vector of signals in the data.

Frequency spectrum of seismic source signal (3).

Frequency spectrum of process x(t).

Frequency spectrum of process n(t).

MILM wavenumber estimator.

Covariance of noise process n(t), channels i and j.

Distribution scaling factor.
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»

A

=+ ™

P

e

i
ey

Aa T

ue¢)
U()
U@bx)
wi(t)
WL, Z)
W

P

x(t)

X, X,
Y1), Y(t)

lel

Variance of conventional estimator.
Variance of MIM estimator.

Uniform noise variance of data for simplified
statistics.

Covariance matrix of noise process N.

. . .th
Travel time (one-way) through i layer (1).
' . . .th
Travel time thickness of i layer (1).

Two-~way acoustic travel time from source to
(37 777) receiver. ‘

Normal incidence two-way travel time.
Trace of (.).
Half width of signal envelope a(t).

Delay of signal -

Delay of data window w(t).

Unit step funcﬁion.

Data matrix.

Second form of Xummer's function.
Data windOW'fﬁnction;

Wishart distribution function.
Eigenvector matrix of R.

Wideband stationary process of stochastic
signal model.

Source to (jth) receiver distance.

Data from channel i.
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Y)Y

Y(rc:H)

=
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Frequency domain representation of signal
from channel i (observation j).

Vector of channels of frequency domain repre-
sentations (observation j).

Frequency domain representation of data in
windows positioned according to T, C.

Non-constant part of adaptive estimator.

Unitary vector (all ones).

ER—
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