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in partial fulfillment of the requirements for the degree of Doctor of
Philosophy.

ABSTRACT

Vapor phase stripping and solid adsorbent trapping were applied to
seaW'ater and related samples to concentrate volatile organic compounds.
The concentrates were subsequently analyzed by glass capillary gas
chromatography and combined gas chromatography-mass spectrometry. The
compound identities and the spatial and temporal distributions of their
concentrations were used to determine some sources, transformations,
and transport mechanisms of organic matter in the sea.

Volatile organic compounds were determined in seawater samples from
the Sargasso Sea, the western Equatorial Atlantic, and the upwelling
region off Peru. Pentadecane was present in all three areas in surface
samples at 10-40ng/kg ànd decreased to 1-2 ng/kg in the deep water.
A source related to the transformation of the algal fatty acid, hexadecauRic
acid, by zooplankton is proposed since anthropogenic and direct phyto-
plankton sources are unlikely. Cz-alkylated benzenes were found in the
upwelled water off Peru at about 4 ng/kg in the surface (5 and ZOrn),
3 ng/kg below the thermocline (100m), and Z ng/kg or less in deeper water.
A surface or atmospheric source is required to produce this distribution.
C6-CiO aldehydes were also found in seawater from off Peru. The direct
correlation of their concentrations with chlorophyll ~ and with oxygen
indicated that they are derived from chemical oxidation of algal metabolites,
for example, unsaturated fatty acids. Total volatiles in the oligotrophic
Sargasso Sea were about 10-30 ng/kg while the biologically productive
upwelling region off Peru contained up to 100 ng/kg.

The temporal variations of volatile organic compound concentrations
were investigated in coastal seawater from Vineyard Sound, Massachusetts.
Pentadecane and heptadecane showed large summertime concentration increases
which were ascribed to benthic algal sources. Laboratory incubations of
benthic algal samples supported this conclusion. The saturated hydro-
carbons, from C13-C17, and alkylated benzenes and naphthalenes were all
abundant after an oil spill several miles from the sampling site. Cz- and C3-
benzenes were the most persistently abundant volatile compounds and their
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concentrations were observed to be 2-10 times higher than average immedi-
ately after summer weekends, peak periods of tourist and recreational
activities on Cape Cod. Naphthalene and its homologues were more abundant
in the winter than in the summer. C6-CIO aldehydes were observed year-
round, but showed a concentration maximum at the time of the late-winter
phytoplankton bloom. C12-C15 aldehydes were also found in abundance at
that time. Oxidation of algal matter by zooplankton or photochemically-
produced oxidizing agents may produce the aldehydes, since laboratory
cultures of phytoplankton 4id not produce these oxygenated volatiles. An
alkene, structurally similar to the known benthic algal gamone, fucoser-

. raten, was also found in Vineyard Sound seawater and in the upwelling
region off Peru. Its appearance in Vineyard Sound samples coincided with
the period of expected algal reproductive activity in February and March.
Dimethyl polysulfides were found in coastal seawater. They may be
produced within the water from precursors such as methyl mercaptan or other
known polysulfide metabolites. Total volatile concentrations in Vineyard
Sound seawater varied between ZOO and 500 ng/kg for the period from
January to June. Maximum concentrations occurred during the late-winter

phytoplankton bloom and again in the spring from anthropogenic inputs of
hydrocarbons. .

~

The highest concentrations of CZ- and C3-benzenes found in Vineyard Sound
seawater coincided with motorboat use in the immediate vicinity of the
sampling station. The average year-round isomer distribution most closely
resembled distributions from gasoline and auto exhaust dissolved in sea-
water, consistent with an inboard or inboard/outboard motorboat source.
Atmospheric and runoff delivery of CZ- and C3-benzenes to Vineyard Sound
seawater during the period from spring through fall was concluded to be
of lesser importance. The atmosphere may serve as a buffer for seawater
concentrations of the aromatic compounds, supporting low concentrations in
the winter and limiting high concentrations in the summer.

Thesis Supervisors: Oliver C. Zafiriou
Associate Scientist
Department of Chemistry
Woods Hole Oceanographic

Institution

Robert B. Gagosian
Associate Scientist
Department of Chemistry
Woods Hole Oceanographic

Institution
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CHATER I. INTRODUCTION

"No specific organic substances, defined as to their structures and molecu-
lar formulas, have been identified with absolute certainty in seawater...."

E. K. Duursma, 1961

In order to understand the origins, interactions, transport, and fates

of organic matter in the sea, it is useful to identify the specific organic

compounds involved (Anderson, 1977). Moreover, it is important to measure

the spatio-temporal variations of the concentrations of these compounds.

Less than twenty years ago, leaders in the field of marine chemistry

lamented at our inability to study specific organic compounds in seawater.

Now, due to tremendous technological advances, this can be done. This has

allowed three important advantages. First, by focusing on defined organic

substances, our knowledge of the basic organic chemistry and biochemistry of these

compounds maybe utilized to understand their roles in the environment. Second, the

accuracy and precision of the analyses of specific compounds may be inves-

tigated. This provides a necessary background on which to interpret the

data. Finally. laboratory simulations of environmental processes may be

studied for their effects on specific organic compounds.

This thesis describes studies concerning a group of volatile organic

compounds in seawater. This introductory chapter defines the fraction of

the total volatiles to be discussed, provides background information from

other volatile-compound studies in seawater. describes what is known about

various sources of specific volatile compounds. and offers historical per-

spective on the analytical methods. The next chapter reports the results of

investigations on the spatial distributions of volatile organic compounds in

three different open-ocean regions. Then, a seasonal study of volatile organic

compounds in coastal seawater is described. Having this temporal study as

-13..
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background ~ the next two chapters report investigations into the sources of

some anthropogenic and some natural volatile compounds.

These studies have provided insight into several aspects of marine

organic chemistry. First, organic compounds and their concentrations in sea-

water have been determined, allowing speculations concerning their chemical.

biochemical, and photochemical transformations. Next, additional insight

into the quantity and lability of the volatile fraction has been obtained

and can be put into the context of the larger carbon cycle. Also, informa-

tion pertinent to the feasibility of proposed transport mechanisms. for

example, from land via the atmosphere to the sea, has been acquired. Evi-

dence for chemical signals from marine organisms has been obtained and sug-

gests the strength and timing of these signals. Finally, data describing

"Man's infringement" on the sea have been procured and reveal not only the

presence of anthropogenic volatile compounds, but Have also suggested their

mode of introduction, their longevity, and tàeir potential for biological

interference.

Definition of Volatiles

The volatile fraction which is the subject of this thesis is described

by an operational definition. Three criteria are used to limit this frac-

tion. First, a compound must be "stripable", that is, it must be of suf-:

ficiently low water solubility and high vapor pressure to be purged from

the seawater sample by bubbling with an inert gas. Next, the component must

be retained at room temperature by a solid adsorbent such as charcoal or

Tenax. Lastly, the volatile must be amenable to gas chromatographic analy-

sis. It must be separable from interfering low-boiling compounds. it must

be thermally stable within the gas chromatograph, and it must be detectable

with the flame ionization detector.
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Potentially, this fraction includes many normal, branched ,and cyclic

alkanes, alkenes, aromatics, aldehydes, ketones, esters, ethers, halogenated

hydrocarbons, and thioethers. Consequently, one would expect a diverse

group of organic compounds to be included. This diversity holds substantial

information concerning sources, transformations,and sinks of the specific

compounds, as well as of the more general organic fraction. This fraction

does not include organic aompounds of boiling point lower than about ioooc

or of water solubility greater than about 1 gm/kg (~ 0.01 M). Therefore,

this fraction is a subset of the total volatile fraction.

Estimates of. the Size of the Total Volatile Fraction

Motivated by the desire to measure accurately the dissolved organic

carbon (DOC) in seawat~r, a few workers have attempted to estimate the size

of the total volatile fraction. Duursma (1961) reported that less than 10%

of the DOC, or about 0.1 mg/kg, was volatile. This conclusion was based on

an experiment in which he used acetic acid as a model volatile compound.

Vityuk (reported in Skopintsev, 1966) also attempted to measure the

total volatile fraction. He dried one set of seawater samples at 600C for

routine dry-combustion analysis and a parallel set at room temperature with

a dessicant. He found an average 18% lower value for the 600C dried samples,

t
i

indicating that the volatiles make up 15% of the DOC (or about 0.3 mg/kg) *.

However, if some of the organic matter autoxidizes during evaporation of the

seawater, more oxidation will certainly occur at the elevated temperature.

This would also reduce the DOC values of samples dried at600C relative to

* Russian workers, using dry-combustion methods, typically find 2 mgC/kg
seawater, about twice the value found by Canadian and American investiga-
tors, who rely chiefly on wet-combustion analyses.
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those at room temperature. On the other hand, many volatiles will be lost

even with evaporation at room temperatur~ and, therefore, comparison to this

sample may underestimate the volatile fraction of the DOC. Thus, it is

difficult to judge the accuracy of Vityuk's result.

Armstrong and Boalch (1960) measured the UV absorption ,of several sea-

water distillates. They found an absorbance maximum (10 em cell) of O. 17 at

-1ZlO nm . Assuming a fairly high extinction coefficient of 10,000, a con-
-6

centration of distilled absorbing material of 2 x 10 M or approximately

200 l.:g/kg (for MW 100) can be calculated. Returning this to the original

seawater (1/10 distilled over), the figure reduces to ZO l.g/kg. The au-

thors made DOC determinations on the distillates obtained from seawater with

excess NaOH added and found ZO-50 ii'gC/kg seawater. They also reported the

presence of sulfur in the distillates at approximately 1-4 l. gS/kg seawater.

These data tell us little about volatiles undetected by UV absorbance (must

be less than ca. 50 l.'gC/kgseawater), and unfortunately the UV method will

include those compounds which codistill with water but are not "stripable."

Recent work by MacKinnon (pers. comm.) has shown that on the order of L-LO

l.gC/kg seawater may be purged' with prolonged bubbling from seawater (at 60oC)

and trapped on Tenax. This volatile fraction estimate is based on procedures

most closely resembling those of this thesis. Therefore, this is the most

relevant estimate of the volatile fraction which is the subject of this

thesis.

Qualitative Information on the Volatile Fraction in Seawater

There is very little information available concerning the structures

of volatile compounds occurring in seawater.

Giger (1977) has recently reviewed "the inventory of organic gases and

volatiles" in the marine environment. He notes that methane is the only
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volatile. which has been studied in sufficient detail for us to have deter-

mined the major aspects of its marine geochemistry.

Numerous reports have been made concerning the occurrence of Cl to C4

hydrocarbons in seawater (Unnenbom and Swinnerton, 1970; Frank et aL., 1970;

Lamontagne et al., 1971; Brooks et al., 1973; Brooks and Sackett, 1973;

Swinn.erton and Lamontagne, 1974; Lamontagne et al., 1974; Lamontagne et al.,

1976; Scranton, 1977). Methane typically occurs at about 30 ng/kg seawater

(2.2 nM), ethane at 0.6 ng/kg (0.02 nM), and propane at 0.6 ng/kg (0.014 nM).

Even lower levels of ethene, propene, butane, isobutane, butene and pentane

are found. Methane and ethene have biological sources; all of the saturated

lower hydrocarbons have petroleum-related sources; and the unsaturated com-

pounds may arise from photochemical processes.

Some effort has been made to study the volatile halogenated hydrocar-

bons in seawater due to interest in their anthropogenic origin. Volatile

chlorinated and fluorinated hydrocarbons are produced industrially at about

35,000 MT/yr, and about 4000 MT/yr are used in directly disp.ersed manners

(NAS, 1975a). Table I-i lists the compounds reported, the concentrations

found, the suspected source (s) and the location of the samples. Only tet-

rachloroethylene (CI2C=CC1i) and hexachlorobutadiene (CI2C=CCI-CCI=CCli)

would be amenable to detection by the methods used in this thesis (but not

particularly so since aflame ionization detector is used).

Volatile organic sulfur compounds such as carbon disulfide (Lovelock,

1974) and dimethyl sulfide (Lovelock et al., 1972) have also been isolated

from seawater samples. Carbon disulfide occurred at about 0.5 ng/kg while

dimethyl sulfide was found at about 12 ng/kg. Biological sources for

these materials are suspected.

Most recently, Sauer et al. (1978) have reported the concentrations of

the volatile liquid hydrocarbons in seawater from the Gulf of Mexico.
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Table l-l. Ha logenated volatile organic compounds, their concentrations
(ng/kg) in seawater samples, and their suspected sources.



compound

CH3CI

CH3 Br

CH31

CHCl3

CCl2F2

CCl3F

CCl4

CHCI=CCI2

CCI2=CCI2

CCl3CH3

CCl2=CCI-CCl=CCI2

seawater
concentration

(ng!kg)

20

8

12

8

traces

0.05

0.14

250

0.4

7

300.

0.5

120

250

4
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sample
location

suspected
source

coastal industrial or rxn from CH3 I

rxn from CH31

benthic algae

coas'tal

coas.tal

NE Atlantic indus t rial sewage t rea tmen t

aerosol dispensers, refrigerant

N & S' Atlantic aerosol dispensers, refrigeran1

NE Atlantic biological or industrial

Liverpool Bay

N & S Atlantic

NE Atlantic industrial solvent, dry cleanii
paint stripping

Liverpool Bay.

NE Atlantic industrial solvent, dry cleanii
paint stripping, fumigant

Liverpool Bay'

Liverpool. Bay industrial solvent or fumigan

Liverpool Bay industrial (:PVC)

references: Lovelock et aL., 1973; Lovelock, 1975; Pearson and McConnell, 1975;
Su, 1976; Giger, 1977.
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They found total n-alkanes (C6-C14) at 9-50 ng/kg and total aromatics

(C6-C8) at 20-450 ng/kg. Petroleum related sources were suggested for

these compounds as they correlate with the anthropogenic Cl and Cz hydro-

carbons.

We can derive some lessons from the little that is known regarding

volatile organic compounds in seawater. First, we now know that many

volatiles which are found in seawater have terrestrial sources and must

arri ve at the ocean via the atmosphere. Next, society's use and handling

of fossil fuels is responsible for large inputs of volatiles to the sea.

Biological and photochemical processes are thought to produce some vola-

tiles in seawater. Finally, individual concentration levels are typi-

cally in the ng/kg range for the open ocean and higher in coastal zones.

However, most of the above insight has been acquired for volatiles

which are not the subject of this thesis. Most of the volatile fraction dis-

cussed in this thesis has not been reported in seawater due to the ab-

sence of suitable techniques and equipment. This technology became

available only recently (e.g., Zlatkis et aL., 1973;Grob, 1973).

;

,

Sources for Volatile Organic Compounds Amenable to Study in this Work
"!

J
Marine Algae

Ever since Haas (1935) demonstrated the presence of methyl mercap-

tan (CH3SH) in Polysiphonia spp., workers have found other volatile

organic compounds in numerous marine algae. Armstron¡i and Boalch (1960)

demonstrated the liberation of large quantities of volatile materials

into culture media by algae~ In another early study, Cook et al. (1951)

found that a volatile compound was responsible for sperm attraction to

the eggs of Fucus spp.
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However, it has been only recently that specific compound charac-

terizations have been accomplished (Fenical, 1975; Crews, 1977; Moore,

1977). Müller and Jaenicke (1973) identified the Fucus attractant as trans,

cis-I, 3, 5-octatriene. (I, fucoserraten). These workers have also found similar

agents from Ec tocarpus sp. (II, ectocarpen) (Müller et al., 1971) and from

Cutleria multifida (III, multifiden) (Jae~icke et al., 1974). In the process,

several other unsaturated cyclic compounds were also found.

I II ~III
~ vv

Ectocarpen was found to make up 0.06% of the dry weight of the algal

gametophyte material~

Moore and his coworkers (1974) have discovered a new group of C11

compounds which they have termed the "dictyopterenes." These include

unsaturated straight chain and cyclopropyl compounds.

~ ~ ~
Fenical et al. Ú972) have found a cadinene-type sesquiterpene in the

brown seaweed, Dictyopteris zonarioides. This compound made up 0.04%

of the dry weight of the alga. ~
alson.foi.ri;d dihydrotropones in the Dic-Moore and Yost (1973) haveo~

tyopteris algae. ~
Thus, it can be expected that

Dvo
oxygenated volatiles occur in marine

plants. Katayama (1958, 1961, 1962) using harsh steam-distillation

techniques has reported the occurrence of oxygenated volatiles in a va-
o

riety of seaweeds. His inventory includes furfural ( ~I ), methylo 0""oJ' ~l
furfural ( V ), valeraldehyde ( ~I ),- benzaldehyde ( 0

o1,8-cineol (-- ), linalool (~), geraniol ~ ) and. ¡¡o
p-cresol ( -o0H). He reports the presence of p-cymene (-o ),

) ,
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alpha-pinene ( ~ ), and limonene ( -ü ) in Ulva pertusa

and Laminaria sp. Work was also done to demonstrate the antimicrobial

activity of the carbonyl and terpene fractions isolated (Katayama, 1962).

Some effects on annelids and nematodes were also demonstrated (Katayama,

196Z) .

Ulitzur and Hastings (1978) have shown that straight-chain alde-

hydes (C9-C16) are utilized in bioluminescent reactions of marine bac-

teria.

Many workers have shown the occurrence of halogenated volatiles in

algae. Burreson et al. (1975) found numerous halo 
forms in Asparagopsis

taxiformis, the dominant one being bromoform (CHBr 3) . These compounds

accounted for 0.4% of the dry weight

x X
yy
)( )CX~I(
o l(

of the alga. Tetrabromomethane

o
), monohaloacetones ( ~ X ),

), and 3, 3-dihaloacroleins ('á 'fi )

x 0

(CBr 4)' tetrahalopropenes (

polyhalobut-3-en-Z~ones (

were also found.

Lovelock (1975) has interpreted high levels of methyl iodide (CH3I)

in Laminaria beds as production and release of this volatile by these

algae. Zafiriou (1975) noted that this compound will react in seawater

yielding methyl chloride (CH3CI) among other products.

Numerous volatile halogenated monoterpenes have been found in red

algae. These include mono- and di-halo myrcenes. (
~Cl Ll~r

(Burreson et al., 1975; Ichikawa et al., 1974).

Volatiles from Marsh Grass

Miles et a1.(l973) have analyzed Juncus roemerianus (a marsh

grass) for its volatile content by steam distillation. Numerous com-

pounds were found and included C11-CZO hydrocarbons, several C7-C9

aldehydes, nine CS-C18 ketones and some C1Z-C15 ethers. The volatile

)
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fraction represented 0.01% of the initial plant starting material. One

may infer from these data that many. of these compounds were accumu-

lated from the environment (H'S 1-5), while others were synthesized de

novo (6 and 7).

CL~LI
'Y C.I
cl l.

óc 00 o: c8'"' I ..,. ""

o~l OH~
2. 3. 4. 5. 6. 7.

Other Sources

Volatiles are. also important for marine animal life. Hasler and

Wisby (1951) determined that a volatile material acts as a stream marker

for salmon. Thus, rivers add volatiles to the sea.

Land organisms are an important source .of volatile organic com-

pounds. Several workers have shown that land plants produce and release

tremendous quantities of terpenes (ten carbon branched and cyclic unsat-

urated hydrocarbons) (Went, 1960; Rasmussen and Went, 1965; Rasmussen,

1972; Tyson eta!., 1974; Whitby and Coffey, 1977). It has been estimated

that 2-4 x I08 metric tons of terpenes are released annually (Rasmussen and

Went, 1965; Rasmussen, 1972) to the atmosphere. The major compounds are

alpha and beta pinene and limonene (Rasmussen, 1972). Air measurements

within forests have shown total terpene levels of 50 ng!liter-air (Whitby

and Coffey, 1977). Downwind from the forest, levels between 4 and 11

ng/liter were observed. Still other workers have shown seasonal varia-

tions in these emissions (Zavarin et aL., 1971; Powell et a:l., 1973;

among others).

Land microorganisms also evolve large quantities of volatiles.

Stotzky et al. (1976) have reviewed the subject and have demonstrated

that terpenes, aldehyd es, ketones, and sulfides affect the growth of

various microorganisms.
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Land animals also utilize vola tiles as chemical messengers. For

example, Wilson (1977) notes that the ant, Acanthomyops claviger, utilizes

several compounds for its interspecific communications including 2, 6-

dimethyl-5-heptenal, citronellal ( AN ), nerol (~ ),
otl

k J ~geranial ( /W ), undecane, tridecane, pentadecane, 2-tridecanone,

and 2-pentadecanone.

Another important source of volatiles derives from the activities of

man. Industrial processes, as indicated earlier, release large quantities

of volatile organic compounds to the environment (NAS, 1975). Anthropogenic

inputs also come from our use of fossil fuels. Numerous workers (Altshuller

et aL., 1971; Grob and Grob, 1971; Bertsch et aL., 1974; Ciccioli et aL.,

1976; Lonneman et al., 1974). have measured the hydrocarbon concentrations

in urban air samples. They find individual compound concentrations on the

order of ngs/liter-air. The fate of these materials and of the natural

emissions, especially as regards potential transport to the sea, is unknown

(Duce et al., 1974; Duce, 1977; Garrett and Smagin, 1976).

RECENT ADVANCES IN METHODOLOGY

As noted earlier, tremendous advances in the methodology available

for the determination of the volatiles in aqueous samples have been

made within the last five or six years. This progress was motivated by

the biomedical profession's desire to utilize metabolic profiles to assess

patients' health (Horning and Horning, 1971; Zlatkis et al.,.. 1973, Teranishi

et aL., 1972) and the desire to monitor drinking waters and other natural

freshwaters for volatile pollutants (Grob, 1973; Bellar et aL., 1974;
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Novotny et aL., 1974; Dowty et aL., 1975; Bertsch et aL., 1975; Hites,

1977). These advances were primarily of twö kinds. First, solid ad-

sorbents were investigated for their ability to collect and retain vola-

tile organic materials from air streams. Tenax, a polymer of 2,6-

diphenyl-phenylene oxide, is found to adsorb volatiles and is ther-

mally stable. Thus, a Tenax trap may be used to collect a volatile con-

centrate and can be directly inserted into the injection port of a gas

chromatograph for thermal desorption of the volatiles. Charcoal has also

been used in traps by Grob and his coworkers (Grob and Zürcher,

1976) . This trap can be extracted with a small amount of solvent pro-

viding a concentrated volatile sample.

The second important advance was the availability of glass capillary

gas chromatography. This facilitates the separation of hundreds of com-

pounds per analysis and enables the efficient analysis of complex natural

mixtures. These together allowed rapid and routine recovery, separation,

identification, and quantification of a chemically diverse group of vola-

tile organic compounds.

SUMMY

This thesis reports the application of current technology to the

study of an "analytical window'" of volatile organic compounds in seawater.

The literature suggests that the total volatiles in this analytical

window are present in seawater in concentrations of about 1-10 ug/kg.

Also there is ample evidence for both natural and anthropogenic sources

of volatile organic compounds to seawater.

Work in this field has added to our knowledge of the identity of

some organic reactants occurring in seawater, 'the size of the volatile

fraction and its relation to the larger organic carbon pool, the
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importance of transport mechanisms in controlling volatile distributions

in the sea, the importance of chemical communication processes between

the organisms of the sea, and the pathways and levels of anthropogenically

produced volatile organic compounds into the sea and the nature of their

fate.



CHAPTER 2. VOLATILE ORGANIC COMPOUNDS IN OPEN OCEAN SEAWATER

INTRODUCTION
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Recently, methods have been developed for the semiquantitative

analysis of volatile organic compounds in aqueous samples (Zlatkis

et aL., 1973; Grob, 1973; Bellar and Lichtenberg, 1974; May et aLi,

1975; Grob and ZUrcher, 1976). Study of this fraction of the

organic matter in seawater has been neglected in the past due to a

lack of suitable methods.

It was the intention of this work to apply gas-phase stripping

and solid-adsorbent trapping methods to the analysis of open-ocean

seawater samples in order to assess the importance of this volatile

organic fraction. Moreover, because the method is based only on

the criterion of "stripability" (see Methods), many diverse organic

compounds containing alkyl -, alkenyl -, aryl -, carbonyl -, alkoxy-,

acyl-, and/or halo-functional groups could be represented and be

used to study the chemistry of compounds containing these moieties

in the environment.

Three markedly different open-ocean regions were investigated:

the Sargasso Sea near Bermuda, the western Equatorial Atlantic, and

the Peru upwelling region. The first two have low primary produc-

tivity while the third is known for its extremely high production.

The western Equatorial Atlantic is influenced by a riverine input

(Amzon) (Ryther et al., 1967). Different atmospheric transport

patterns would be expected for these regions as the Sargasso Sea

receives volatile inputs, including industrial materials, from the

North American continent (Harvey and Steinhauer, 197 6), but the

western Equatorial Atlantic and the region off Peru should show the

effect of dust and organic vapor transport from arid land.s (Zuta et

aL., 1975; Simoneit et al.,. 1977). The Peru upwelling region is

oxygen deficient in midwater and is underlain by anoxic sediments.
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This situation allows the investigation of the influence of different

redox conditions on the volatiles. This chapter reports the observa-

tions made on volatile organic compounds in these three widely

differing oceanic regions.

METHODS

Sampling

In February, 1977, seawater samples were collected in the

Sargasso Sea near Bermuda from the R/V Panulirus II (32°10'N x 64030'W,

about 3000 m depth). The weather was marked by strong winds and

approximately 3-m swells. Water was collected with a single 30-liter

Niskin (Teflon coated spring) and transferred into 2-liter round

bottom flasks on the deck. Upon our return to the dock, water was

transferred to the stripper, spiked with an internal standard, and

stripped. Traps, stored in screw-cap vials, were returned to Woods

Hole for gas chromatography analysis. Hydrographic data were provided

by Dr. B. Morris and Ms. E. Schroeder from the regular Panulirus

station visited within a week of our sample collection.

Seawater samples were also collected from 6 hydrocasts made from

the R/V Oceanus (cruise 22) in the western Equatorial Atlantic in

March, 1977 (Figure 2-1). Sampling occurred between 10:00 and 14:00

local time. PVC Niskins (5- or 30-liter with Teflon coated stainless

steel springs) were used. Sample depths were computed from reversing

thermometer data. Water was transferred in a closed system from the

Niskins through glass to 2-liter round bottom flasks. Samples for

salinity, nutrients, and chlorophyll ~ were also drawn from the same

Niskins.
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Figure 2-1. Station locations on cruise 22 of the R/V Oceanus to
the western Equatorial Atlantic ocean (March, 1977)
and on cruise 73 of the R/V Knorr to the Peru upwelling
region (March, 1978).
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A third set of seawater samples was collected at 6 stations in

March, 1978 on cruise 73 of the R/V Knorr to the upwelling region off

the coast of Peru (figure 2-1). A single 30-liter Niskin was used.

Water was drawn from the bottle through a polypropylene tube and an

in-line filter (precombusted 142 mm glass fiber filter in a stainless

steel holder) which were rinsed with a portion of the sample. Reagent

bottles (2-liter) with ground-glass stoppers were filled with seawater,

poisoned with O. 5ml HgCl2 solution (40 mg HgCl2 per ml water), and

then tightly stoppered. Filtering and poisoning were done to prevent

biological activity from altering the volatile organic compound

content of the samples during storage.
. 0

Samples were stored at 4 C in

the dark for 3 to 6 weeks until being returned to the lab at Woods Hole.

IIi order to check for the effects of filtering and poisoning

treatments, some replicate samples were left untreated while others

were only poisoned. Untreated samples were always drawn first, then

unfiltered samples, and finally those that were filtered.

Samples for salinity, oxygen, nutrients, chlorophyll ~, and

phaeophytin were drawn from the same Niskin bottle and analyzed on

board.

Analysis of Volatile Organic Compounds

The seawater samples from the Sargasso Sea and the western

Equatorial Atlantic were analyzed for volatile organic compounds

using the "Tenax method." Details of this method are provided in

Appendix I. It is chiefly adapted from methods reported in the

literature (Zlatkis et al., 1973; Bellar and Lichtenberg, 1974; May

et aL., 1975).
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Briefly, the method involves bubbling a warmed seawater sample

with helium and passing the effluent gas stream through a trap loaded

with a solid adsorbent, Tenax. The volatiles, which are concentrated

on this trap, are transferred by thermal desorption within a gas

chromatograph injection port into a cryogenic loop which was made by

reshaping the front end of the glass capillary gas chromatography

column. After this transfer, the loop is warmed and chromatography

is performed.

The method determined those compounds of sufficient volatility

and low solubility to be stripped (hence the term "stripability")

and not interfered with by the variable contamination (presumably

o
atmospheriq by compounds boiling below 100 C. The lower limit of

detection for nonpolar compounds was about i ng/kg seawater.

Precision, as determined by the recovery of l-chloro-n-decane added

to the seawater at 10 ng/kg, was + 20%. Compound recoveries varied,

but were better than 80% for nonpolar volatile compounds, about 50%

for slightly polar compounds such as alkylated benzenes, and less

than 20% for more polar compounds such as the aldehydes.

The Peru seawater samples were analyzed using the "Grob" method

(Grob, 1973; Grob and Zürcher, 1976; Schwarzenbach et al., 1978;

Appendix I). Just before analysis, 200 m1 of water was poured off

at a nearby beach to provide a clean-air headspace. At the lab,-ot
samples were stripped for 2 hours at 35 C using the recycled head-

space air. Volatile compounds were collected on a charcoal trap

placed in the recycling vapor path. After the water was stripped,

the trap was extracted with l5 l11 CS2. GC and GCMS analyses were

performed on aliquots of this extract.
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These analyses provided a lower limit of detection of about

1 ng/kg. Reproducibility based on previous work (Schwarzenbach et

al., 1978) was about + LO%. Greater stripping efficiency was obtained

using the Grob method, such that nonpolar and slightly polar compounds

were recovered with an efficiency exceeding 80%. Relatively polar

volatile compounds such as the aldehydes were recovered at about 30%.

Only samples which were both filtered and poisoned are discussed.

Comparison to untreated samples showed that these procedures did not

contaminate the samples (Appendix I). Surface samples which were

filtered sometimes showed lower concentrations (about 50%) for aldehydes

and n-pentadecane than unfiltered replicates (Appendix I, Table 1-3).

RESULTS

The winter Sargasso Sea station had a well-mixed surface layer

to 400 meters as evidenced by the temperature, salinity, and oxygen

data (figure 2-2). Pentadecane was the only volatile organic compound

found at greater than trace (~ 2 ng/kg) concentrations (Table 2-1).

Three samples from 10 m and one from 100 m contained between LO and

25 ng pentadecane!kg. The 1200-m sample had less than lng/kg.

The hydrographic data from the western Equatorial Atlantic cruise

reveal the presence of a seasonal thermocline at about 100 m for the

6 stations studied (figure 2-3, Appendix

II). No anomalously low surface salinity samples were found; thus

the influence of the Amazon was not important for any of these

surface samples. Nutrients were depleted in the surface mixed layer

and increased in the deeper waters to a maximum at several hundred

meters. Chlorophyll a showed low values (0. i - O. 6 ~g/kg above 50 m
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o
Temperature ( C), salinity

(ml/l) of seawater samples
Bermuda in February, 1977.

o
( /00) and oxygen concentrations
taken at a station southeast of
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Table 2-1. Pentadecane concentrations (ng/kg) in se~water samples from
southeast of Bermuda and the western Equatorial Atlantic
ocean.
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SampIe
station/ depth (m)

Sargasso Seal10
Sargasso Seal 1 0

Sargasso Sea/10
Sargasso Sea/100
Sargasso Sea/1200

approximate
pentadecane
cortcèntratiòrt (ng/kg)

10
12
25
15
.: 1

Equatorial Atlantic
1315
13/87
13/131
13/594
13/792
13/2376

15/7
15/116
15/146
15/176
15/750
15/2255

17/5
17/83
17/133
17/173
17/631
17/641
17/1896

19/6
19/108
19/147
19/188
19/680
19/690

24/7
24/35
24/83
24/180
24/700
24/1923

24
4

26
.:1

1

9

(both from same 30 1 Niskin)9,37
1

4
2
1

.: 1

3
15

1

i
q

1

14

10
i

c:
cd

2
1

10,38
26

7

2
3

29

(each from a separate sampler)
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Figure 2-3. Temperature (oC), salinity (0/00) ,sigma e (0/00),
nitrate (~M/kg) and chlorophyll a (~8/kg) versus
depth in seawater from station 13 (0 58.4' N x 390
26.7' W) in the western Equatorial Atlantic ocean.



"" ~ ~
 
1
2
0
0

~ c:

16
00

20
00

24
00

23

tT
 9

 (
%

0)

2
6
 
2
7

24
25

I
 
I
 
I
 
i
 
I
 
-
r
 
-
-
-

34
SA

L
IN

IT
Y

 (
%

0)
3
5
 
3
6

I
 
I
 
-
-
T
 
-
-

28
29 37

N
O

j (
PM

/k
g)

20
40

o
10

30
I
 
i
 
I
 
I
 
i

T
E

M
PE

R
A

T
U

R
E

 (
O

C
)

4
 
8
 
1
2
 
1
6
 
2
0
 
2
4
 
2
8
 
3
2

.
~
'
 
,
 
,
 
I
O
~
.
'
 
,

--
.. 

...
- 

,.-
-

c
h
I
 
a
 
(
P
g
/
k
g
)

i
-
.
=
 
1
 
~
 
.
 
~

r
i
A
 
·

40
0

80
0

SA
L

IN
IT

Y

.
.

o

.
 
c
h
i
 
a

II .

W
. E

Q
. A

T
L.

S
T
N
.
 
1
3

0°
58

.4
' N

 x
 3

9°
26

.7
'W

.



-41-

and a subsurface maximum of about 2 ~g/kg at 70 - 90 m. Hence fairly

. low phytoplankton productivity was encountered. Due to variable

sample contamination of the volatiles on the western Equatorial

Atlantic cruise, only pentadecane provided useful data (Table 2-1).

Surface values varied considerably and were as high as 40 ng/kg.

Some thermocline samples contained 20 to 30 ng/kg, while most of the

samples between 100 and lOOO m had less than 3 ng/kg. Curiously, 3

of the 4 deep water samples showed elevated concentrations of penta-

decane between 10 and 30 ng/kg.

The hydrographic data (figure 2-4) from the Peru upwelling region

demonstrated the presence of active upwelling inshore of station 3

during the sampling. The nutrients were relatively high at station i

and then reduced in the offshore stations to relative minima at stations

4 and 6 (figure 2-5). An oxygen deficient subsurface layer was

encountered at all stations at about 100 m (figure 2-6). Chlorophyll a

was very high (greater than 10 ~g/kg) in the surface waters offshore

of station 2 (figure 2-6). Phaeophytin did not reveal any marked

trends beyond being higher in surface seawater than in deeper samples

(figure 2-6).

The seawater samples from the upwelling region near Peru contained

detectable levels of several groups of volatile organic compounds.

The individual C2~alkylated benzenes were found at less than LO ng/kg;

surface seawater samples contained 2 to 3 times more of these aromatic

hydrocarbons than did samples from 1000 m (figure 2-7).

An unknown compound was found to be coeluting with ethyl benzene

in several surface seawater samples. Mass spectral evidence suggested

that this was an octatriene. A molecular weight of l08 was determined

for this compound based on the presence of m/e 109 (M+I), 137 (M+29) 0
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o
Sections showing potential temperature ( C), salinityo 0 .
( /00) and sigma e ( /00) in seawater from the Peru
upwelling region. Note that depth is shown on a logscale. .
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Figure 2-5. Sections showing nutrient concentrations ~ M/kg) in
seawater from the Peru upwelling region. Note that
depth is shown on a log scale.
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Figure 2-6. Sections showing oxygen concentrations (ml/kg),
chlorophyll a concentrations (~g/kg) and phaeophytin
concentrations (~g/kg) in seawater from the Peru
upwelling region. Note that depth is shown on a log
scale.
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Figure 2-7. Sections showing i ,4-dimethyl benzene + i ,3-dimethyl
benzene (para + meta xylene), unknown (ro 108), and

pentadecane concentrations (ng/kg) in seawater from
the Peru upwelling region. Note that depth is shown
on a log scale.
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and l49 (M+41) ions in the CH4 chemical ionization (CI) spectrum and m/e

108 in the electron impact (El) spectrum (figure 2-8). Loss of l3

and 27 mass units (giving m/e 95 and 81) in the CI spectrum indicates

the presence of a terminal ethenyl group (Field, 1968), while loss of

15 mass units (giving m/e 93) in both the EI and CI spectra suggests

that there is a terminal methyl substituent also. Due to insufficient

sample size, the remainder of the EI spectrum was largely uninter-

pretable. Authentic trans ,cis-I, 3 ,5-octatriene and ethyl benzene

CI spectra are also shown in figure 2-8. These spectra have all the

same major fragment peaks as the unknown and èthyl benzene mixture in

the sample. However, since this octatriene does not coelute with

ethyl benzene, the unknown cannot be this particular isomer. Al though

not all cyclic and branched structures can be ruled out, these data

are consistent with a structure such as a straight chain octatriene.

The GC peak heights of this unknown compound (ro 108) were estimated

by subtracting assumed ethyl benzene peak heights from that of the

mixed GC peak. The ethyl benzene peak heights were obtained by assuming

that they were proportional to the peak heights of the other C2-benzene

isomers. This was reasonable because ethyl benzene levels covary with

the other C2-benzene isomer concentrations in most fossil fuels and

environmental samples tested (chapter 4). These difference estimates

agree well with predicted peak heights based on GCMS where data were

available. The resultant spatial distribution of the concentration

of this unknown compound (ro 108) is shown in figure 2-7. Maximum

values were always found near the surface. Station 3 showed the

highest level of all surface samples ând the concentrations decreased

in the offshore direction.
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Figure 2-8. Electron impact (EI) and methane chemical ionization
(CI) mass spectra of unknown compound (mixed with
ethyl benzene) isolated from seawater samples collected
in the Peru upwelling region. Also shown are CI
spectra from authentic trans, cis-l,3 ,5-octatriene and
ethyl benzene. Fragments from m/e 76 to 79 were not
collected in the sample spectra because of solvent (CS2)
interference. M/E values greater than 120 are amplified
4 times in the CI spectra of the Peru sample and trans,
cis-I, 3, 5-octatriene.
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Mass plots for ro/e l09 in the CI-CH4 GCMS analyses showed that,

while only one "octatriene" was found at station 3, additional isomers

had appeared in the surface seawater at station 6. Mass spectra

showed that these compounds were very closely related.

Pentadecane was also found in the upwelling region near Peru

(figurè 2-7). Surface samples contained the highest concentrations

except at the most nearshore station. The 20-m and 100-m samples at

the most offshore station showed atypically high pentadecane concen-

trations.

A comparison of filtered and unfiltered 5- and 20-m samples from

the Peru upwelling region showed 2 samples with 50-60% losses of

pentadecane and i sample with no significant difference on filtering

(Appendix I, Table 1-3). A filtering experiment done on coastal

seawater from Vineyard Sound also showed about one-half removal of

pentadecane on filtering. These losses may be due to a particle

association of a significant fraction of this hydrocarbon.

A particle association of pentadecane may also explain the high

variability observed for this compound in the Atlantic surface

seawater samples (Table 2-1). Replicate samples from the same depth

(e.g., Sargasso Seal lO m and w. Eq. Atl. 24/7 m) showed very poor

reproducibility. Gardner (1977) has found that a large fraction of

the particulate matter in a seawater sample will settle below the

outlet of a 30-liter Niskin. Particle concentrations may be 2-20 times

higher in the dregs of the 30 liter Niskin than in the remainder of

the water. Thus, factors such as the time of standing of the sampler

after retrieval and the sequence of subsampling may have affected the

particle distributions in the subsamples of this work, and as a

resul t, the pentadecane concentrations may have also varied.
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A family of straight chain aldehydes from hexanal to decanal

were observed in seawater from off Peru at i to 10 ng/kg. As was

the case for the other volatiles, concentrations were highest in

offshore surface samples (figure 2-9).

DISCUSSION

Total Volatiles

For all three regions, 40 ng/kg was the maximum concentration

observed for an individual compound. Total levels in surface samples

were on the order of LO-30 ng/kg in the Sargasso Sea and about LOO

ng/kg near Peru. Deep samples contained 10 ng/kg or less. Three

general explanations for this scarcity of volatiles may be offered.

First, there may be a lack of sources. In areas such as the Sargasso

Sea and the western Equatorial Atlantic, primary production of

organic matter is low and consequently might not be expected to be

an important source for the volatiles. Also, remoteness from land

for these Atlantic regions may have precluded transport from natural

or industrial terrestrial sources. The coastal region of Peru is a

sparsely populated coastal desert near the area where the samples

were acquired. Thus, terrestrial sources to these nearshore samples

are unlikely to be strong, in spite of offshore winds. However,

primary production in this upwelling region was very high at the

time of sampling, and although elevated total volatile concentrations

were seen, it seems likely that some other mechanism limits these

organic constituents dissolved in seawater to only tracé levels.

The levels of the volatile organic compounds may also be limited

by a dynamic remineralization system. Investigators using several
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Figure 2-9. Sections showing hexanal, heptanal and octanal concen-
trations (ng/kg) in seawater from the Peru upwelling
region. Note that depth is shown on a log scale.
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approaches to the study of organic matter in the sea have previously

suggested the importance of this phenomenom. Menzel (1975), in his

review of organic matter in the sea, has speculated that DOC is

rapidly decomposed after pulse inputs since only poor correlation with

measured primary productivity and DOC values could be found. Obser-

vations on specific organic metabolites such as amino acids (Lee and

Bada, 1975) have also led investigators to conclude that these

compounds are quickly removed af ter release in to seawater. Thus, it

appears that the concentrations of some biochemically labile materials

may be controlled in seawater by heterotrophic activity.

Volatile compounds, whose principal source is production in

surface seawater, have an additional sink from seawater in transport

into the atmosphere. The mixed layer of the open ocean is degassed

with a residence time of about i month (Broecker and Peng, 1974).

Therefore, unless sources in the mixed layer continually produce a

volatile organic compound, this atmospheric sink will rapidly deplete

the individual volatile organic compound concentrations to values in

equilibrium with the atmosphere.

The total volatile fraction found in the Sargasso Sea and the

Peru upwelling region samples comprises less than O. OL% of the DOC.

Specific Volatiles: ,Pentadecane

Pentadecane was the best-studied volatile compound. It was

ubiquitous in surface seawater samples at a concentration near its

calculated thermodynamic solubility (Schwarzenbach et aL., 1978).

The lack of other homologues (e. g., tetradecane and hexadecane)

indicates that this compound was not derived from a fossil fuel

source. Land derived dust, for example, from the region of the



-58-

Equatorial Atlantic, does not contain detectable amounts of pentadecane

(Simoneit et al., 1977). Other workers have confirmed this finding

by noting that all of the pentadecane in their atmospheric samples

was in the vapor phase (Cautreels and van Cauwenberghe, 1978). The

partition coefficient (Schwarzenbach et al., 1978) for this saturated

hydrocarbon is such that it is unlikely that a gaseous source of

pentadecane to the open ocean could maintain the tens of nanograms

per liter observed. Chemical reduction of oxygenated analogues such

as pentadecanoic acid to pentadecane is not likely in oxygenated

surface seawater.

In situ biological production is another potential source. Some

phytoplankton have been shown to produce pentadecane (Clark and

Blumer, 1967; Blumer et al., 1971). Clark and Blumer (1967) reported

lOO ng nC1S/gm dry algae for three phytoplankters. Blumer et al.

(1971) also found that an older dinoflagellate culture (i.e. in

stationary phase) contained proportionately more pentadecane. Thus

it is possible that the "age" of the bloom and the species involved

are important factors controlling the pentadecane concentration in

s.eawater.

A brief calculation suggests the magnitude of this phytoplankton

source of pentadecane. Assume that the average phytoplankton have

LOO ng nCl5/gm and that surface POC values represent an upper limit

to phytoplankton biomass. In a region with LOO ~g POC/kg, this would

correspond to only 0.02 ng nCl5 /kg. Even for the Peru upwelling

region where up to 1000 Vg POClkg may be found, this only suggests

t¡hat 0.2 ng nCl5/kg was present in the phytoplankton. These particulate

stocks would have to turn over 100 to 1000 times and release all of

their pentadecane to the seawater to provide the observed levels.
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This seems unlikely to occur fast enough to build up sufficient

pentadecane against the atmospheric sink. Possibly, unexamined

species of phytoplankton contain much more pentadecane than those

studied by Clark and Blumer (1967), and these algae may be the

source of this volatile compound.

Another potential mechanism for pentadecane production is

decarboxylation of hexadecanoic acid by zooplankton, analogous to

the pathway proposed for the formation of pristane (Blumer et al.,

1964). Phytoplankton are rich in this fatty acid (Ackman et al.,

1968; Chuecas and Riley, 1969; Fisher and Schwarzenbach, 1978) and

may contain about LO mg/gm dry weight. Thus a potential standing

stock of this starting material would be between 2 and 20 ~g/kg

seawater. Should only a fraction of a percent of this fatty acid

be metabolized in a fashion similar to that proposed for phytol to

phytanic acid to pristane (Avigan and Blumer, 1968), tens of nanograms

of pentadecane/kg could result. Tetradecane and hexadecane would

not be found in similar abundance because phytoplankton do not contain

much of the appropriate fatty acid precursors. In support of this

proposed source, biogenic pentadecane and pristane appeared together

in seawater collected in the fall during a seasonal study on Georges

Bank (Energy Resources Company, Inc., 1978).

Station 6 off Peru was found to have a dinoflagellate bloom while

the more inshore stations were dominated by diatoms. Dinoflagellates

may contain greater amounts of hexadecanoic acid than

diatoms (2-3x) (Ackman et al., 1968). Thus, the correspondence of

relatively high pentadecane concentrations with the occurrence of

dinoflagellates may be the result of higher precursor availability.
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Zsolnay (l973, 1976) has reported the correlation of chlorophyll a

and nonaromatic hydrocarbon concentrations in seawater samples from

the upwelling region off Northwest Africa and in the slope waters

between the Gulf Stream and Nova Scotia. This has been taken as

evidence for a phytoplanktonic source of these hydrocarbons. Plots

of pentadecane concentration versus chlorophyll ~ for the western

Equatorial Atlantic and the Peru cruises are shown in figures 2-l0 and ll.

If one considers all samples from a region, the correspondence in

these parameters is very poor. However, if the sample locations are

noted, additional insight may be found. In the western Equatorial

Atlantic, 4 of t.he 5 high-pentadecane observations were from shallow

samples of the two westernmost stations (l3 and 24). Possibly these sites were

populated with a biological community capable of greater pentadecane

production than the stations to the east. Similarly, if the Peru

upwelling region samples are divided by sample locations, the station

6 samples fall into one region while the other surface samples are

found in another. Thus, the relationship of pentadecane and chloro-

phyll a seems to be dependent on site specific parameters.

The station 3 surface samples from the Peru upwelling region

n"
1"
¡o
~

r
were collected at different times of day relative to the other shallow

samples (about 18: 00 instead of IO :00 for the 5-m sample and vice

versa for the 20-m sample). Time of day appears to affect the

chlorophyll ~ and phaeophytin values. These pigments always built

up during the day (Gagosian, pers. comm.) and consequently show

uncharacteristically high values at station 3/5 m and low values at

3/20 m. Pentadecane seems to vary in the opposite fashion (i. e. ,

diminishing during the day). Sample 3/5 m had quite low pentadecane

concentration relative to other neighboring samples while the 3/20 m
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Pentadecane concentrations (ng/kg) versus chlorophyll a
concentrations (~g/kg) in seawater samples taken in the
western Equatorial Atlantic ocean. Points are identified
with the station number followed by the sample depths in
meters.
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Figure 2-11. Pentadecane concentrations (ng/kg) versus chlorophyll ~
concentrations (ll glkg) in seawater samples taken in the
Peru upwelling region. Points are identified with
station number followed by the sample depth in meters.
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sample was enriched relative to adj acent samples of the same depth.

This atypical result may be caused by organisms which are particularly

rich in pentadecane (or somehow capable of producing pentadecane)

and which migrate vertically during the day. This interpretation

also suggests the involvement of zooplankton in the formation of

pentadecane.

Three deep samples from the western Equatorial Atlantic (13/

2376 m, i 7 /1896 m, and 24/1923 m) showed unexpectedly high values

of pentadecane. Other workers (Iliffe and Calder, 1974; Barbier et

al., 1973) have reported increased total hydrocarbon concentrations

with depth after an initial subsurface concentration decrease. These

higher concentrations may represent relic hydrocarbons produced by

organisms in surface seawater at the site of deep-water formation.

Blumer et aL. (1971) noted the relative stability of the saturated

hydrocarbons, and these compounds have been proposed as water mass

tracers (Illife and Calder, 1974). It seems unlikely that in situ

production or remineralization of materials transported from the

surface could generate the pentadecane found at these depths.

Specific Volatiles; C2-benzenes

The individual C2-benzenes were found at less than 10 ng/kg.

The mean value for the meta + para xylenes in 5- and 50-m samples

from off Peru was 4 ng/kg. Values declined to less than 3 ng/kg at

Less than 2 ng/kg were found in the deepest samples. This
~

pattern suggests a surface or atmospheric source. Biological sources

lOOm.

of these compounds are unknown. Since the recently upwelled waters

at station i also have 4..5 ng/kg of these compounds ,the transfer

from the source must be very rapid. If the atmosphere :were the

l
, .
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source, air concentrations in this region would have to be about 1-2

ng/l air (K ~ 0.34). This value may be compared with the 3-5 ng/l

air measured near Cape Cod (chapter 4) and in rural areas of Florida

(Lonneman et al., 1978).

Station 4 in the Peru upwelling region demonstrated two unusual

features. The sum of the 5-m, 20-m, and 100-m concentrations for the

meta + para xylenes was much lower than that for any other station.

Also, the deep sample from this station revealed an anomolously high

concentration. The fact that surface water at this station also

shows a nutrient minimum suggests that the production of large numbers

of phytoplankton cells may have caused additional removal from

seawater of these aromatics either via adsorption or absorption.

Subsequent sedimentation and remineralization of this biogenic material

on the bottom may have caused the unusually high concentration of

meta + para xylene in the 4/340 m sample. This injection of aromatic

hydrocarbons to deep water may also explain the background levels

(0( 2 ng/kg) found in the other deep water samples from this region.

Specific Volatiles: unknown (ro 108)
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On the other hand, a phytoplankton source cannot be ruled out.

Little work has been done to isolate volatile compounds from phyto-

plankton.

Specific Volatiles; C6-CiO Aldehydes

The C6-CIO straight chain aldehydes were observed in the Peru

upwelling region samples predominantly in surface waters (figure

2-9). These aldehydes may be produced by phytoplankton. The linear

correlation coefficients for hexanal and heptanal with chlorophyll ~

were 0.55 and 0.76 respectively. Other workers have found aldehydes

as constituents of freshwater diatoms (Kikuchi et al., 1974) and

fresh water yellow-green algae (Collins and Kalnins, 1965).

Alternatively, these aldehydes may be intermediate oxidation

products of algal organic matter by heterotrophs. For example ,

hexanal has been obtained from the metabolism of linoleic and linolenic

acids (Jadhav et aL., 1972). In order to see if these aldehydes

might be produced by remineralization processes in the seawater off

Peru, the aldehyde concentrations were plotted against oxygen

(figure 2-12). Rather than the expected inverse correlation, a strong

direct correlation was observed for hexanal and heptanal (linear

correlation coefficients of 0.78 and 0.89). Octanal showed a weaker

correspondence (r = 0.67), whereas the trace levels of nonanal and

decanal precluded useful testing. The direct correlation of aldehyde

concentrations with oxygen suggests that these compounds were not

produced by heterotrophs during remineralization. Instead, the

observed correlation suggests another source for the C6-CIO aldehydes,

chemical oxidation. Possibly higher oxygen concentrations cause this

reaction to proceed more quickly and therefore result in higher aldehyde

levels.
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Figure 2-12. Hexanal, heptanal, and 0ctanal concentrations (ng/kg)
versus oxygen (mlfkg) in seawater samples taken in the
Peru upwelling region. Linear regression coefficients

(r) are also shown.
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Potential precursors for chemical oxidation to aldehydes are the

unsaturated fatty acids. TWo of the most common fatty acids found in phyto-

plankton are cis-9-hexadecenoic acid and cis-9-octadecenoic acid (Ackman et

al., 1968; Chuecas and Riley, 1969). Oxidation by reactants such as ozone

which add to the double bond would yield only heptanal and nonanal from

these compounds. It is difficult to produce octanal and decanal from such

reactions, given that the appropriate fatty acids are uncommon. A second

mechanism which produces all the C6-C10 aldehydes is shown in figure 2-13.

This mechanism does not have to be the dominant pathway of decomposition of

the fatty acids, as these adds are found in l.g/kg quantities (Jeffrey, 1966;

Kattner and Brockman, 1978) while the aldehydes are found at only ng/kg

levels. Side products in this reaction are omega-carboxy-aldehydes which

are not volatile. The 2 fatty acids mentioned above are also found at

l.gs/kg in surface slicks (Kattner and Brockman, 1978), which may be the site,
of (photo?) oxidation.

SUMRY

Individual volatile organic compounds appear at less than 40 ng/kg in

open-ocean samples from diverse areas such as the Sargasso Sea, the western

Equatorial Atlantic, and the Peru upwelling region. Total volatiles for

the analytical window investigated range between 10 and ioa ng/kg. These

low levels may indicate: (I) insignificant sources were present, (2) rapid

turnover of these organic compounds occurred, or (3) degassing to the atmos-

ph ere was important.

Pentadecane is present in most surface seawater samples at about LO-40

ng/kg, which is very near the calculated thermodynamic solubility (Schwarzenbach

et al., 1978). This hydrocarbon may be produced from an abundant phytoplankton
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Figure 2-13. Mechanism for production of hexanal, heptanal, and
octanal from cis-9-hexadecenoic acid. The steps are
drawn out for only 1 of 'the 4 possible free radicals
created by abstraction of an allylic hydrogen.
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fatty acid, hexadecanoic acid, in a manner analogous to that of pristane

from phytanic acid, or may be produced directly by phytoplankton. The

concentration of pentadecane does not correlate well with chlorophyll ~,

as site-specific factors appear to affect this relationship. Other alkanes

were observed at trace levels.

C2-benzenes occurred in surface waters off Peru at about L-IO ng/kg.

The Peru samples showed higher values (2-3x) in surface waters than in deep

ones, suggesting an atmospheric or surface source. Sedimentation of biogenic

particles may transfer these aromatic hydrocarbons to deepet water.

A group of compounds suggested to be octatrienes was found in the Peru

upwelling region. A single isomer of this group may be produced in near-

shore waters by phytoplankton or benthic algae and may rearrange in the

environment to yield several new conformers.

Aldehydes (C6-ClO) were found in samples from near Peru. The direct

correlation of their concentration with O2 has. led to the suggestion that

they are oxidation products of unsaturated fatty acids from algae.

~t
f



CHAPTER 3. TEMPORAL VARIATIONS OF VOLATILE ORGANIC COMPOUNDS AT A
COASTAL STATION

INTRODUCTION

In the past, oceanographers have observed the relationship of' dissolved

or.ganic carbon (DOC) to --primary. produc ti vi ty. . For example, Duursma

(196l) carried out a time series study in the Baltic region and observed

that DOC increased during the spring phytoplankton bloom. Other workers

have monitored specific organic compounds such as amino acids (Riley and

Segar, 1970) and hydrocarbons and fatty acids (Schultz and Quinn, 1977)

in coastal regions and also noted the coincidence of specific compound

level increases with phytoplankton blooms. Consequently, it would be

expected that certain volatiles would increase in concentration during

local spring (and fall) algal blooms (Fish, 19l1; Lillick, 1937; Yentsch

and Ryther, 1959).

In the coastal region studied, seasonal cycles in abundance and

physiology occur for the various benthic marine algae (Con9ver, 1958;

Sears and Wilce, 1975; Ragan and Jensen, 1978) and for the seagrasses

(Sand-Jensen, 1975). The intensive primary productivity of these plants

. 2
(which may be as high as i to IO gmC/m /day (Kanwisher, 1966; Sand-

¡

Jensen, 1975; Phillips, 1978) may also control the levels of specific

volatiles. It has recently been shown that various volatile unsaturated

hydrocarbons are chemical messengers for benthic marine algae (MUller,

1977). These signals may demonstrate seasonal variation, and their

study may discern bóth the periods and intensity at which they occur.

The region of Cape Cod also shows a seasonal influx of residents and

tourists. Thus, one may reasonably expect to see changes in anthropo-

genic volatile introduction to the coastal zone on a seasonal basis.

-74-
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In addition, the Cape, and the Northeast U.S. in general, are heavily

forested. Seasonal variations in the outputs of volatile organic compounds

such as the terpenes (Whitby and Coffey, 1977) and their subsequent trans-

port into coastal seawater may be expected.

All of these seasonal processes, and many others, occur and involve

changes in the introduction of volatile organic compounds to the environ-

ment. It is the intention of this work to attempt to interpret the varia-

tions in volatile compound concentrations of the coastal seawater in

terms of the effects of such processes.

Accordingly, the temporal variations of a diverse group of specific

organic compounds have been studied in coastal seawater. The preliminary

results have been reported by Schwarzenbach et al. (1978; Appendix III) .

In these studies, an inventory of specific organic compounds and their

concentrations was acquired. The changes in the specific compound levels

were compared with variations of other processes (such as algal blooms).

It was then possible to speculate concerning the manner in which environ~

mental processes affect the cycling of these organic compounds. Moreover,

opportunities arose (such as pollution events) to observe the manner and

rate at which the natural system responded to perturbations. These

results have allowed consideration of the environmental chemistry of

these organic materials ,and by extension, the more complex organic matter

to which they bear structural resemblance.

METHODS

Sampling

Samples were obtained biweekly at Chemotaxis Dock (CD) (figure 3-l),

a wooden pier which extends about 10 meters into Vineyard Sound. The

water depth off the end of the dock is between i. 5 and 2.5 meters and
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Figure 3-1. Map showing region near Chemotaxis dock (CD).
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varies with about a 0.6 meter tide. The bottom is sandy and covered

seasonally with an extensive algal and seagrass growth. The shore is

cobbled and backed by a mixed oak and pine forest band. The main road

in the region is greater than 0.5 km away and is separated from the

beach by this vegetation. Public beaches are located about i km to

ei ther side, and Woods Hole and Falmouth harbors are beyond these.

Ferries to Martha's Vineyard and Nantucket pass se~eral times per day

several kilometers offshore. A series of brackish water ponds discharge

into the Sound to the east of the sampling site. Groins are placed

along the shore and inhibit thë longshore drift which is in the net

eastward direction (Bumpus et ál., 1971).

Seawater was collected 20 cm below the surface with a I-liter round

bottom flask fastened to the end of an aluminum rod by a PVC bracket.

The flask was filled and emptied three times, and then three separate

additional aliquots were used to rinse a 5-liter round bottom flask.

Finally this larger flask was filled with 4 liters of seawater, spiked

with an internal standard solution (2 ~l of 20 ng each l-chloro-n-

decane, -dodecane, -tetradecaneliil acetone) ~ and swirled. The l..liter

flask was then used to acquire samples for salinity, nutrients, chloro-

phyll ~ and phytoplankton counts.

Stripping

Samples were immediately returned to the lab and analyzed. The 4-

liter seawater sample was stripped according to the methods of Grob and

Zürcher (l976). Briefly, a metal bellows pump forces air through a frit

into the bottom of the water sample (figure 3-2). The resultant column

of bubbles sweeps the sample of its volatile compounds, and the effluent

air carries this organic load through glass and stainless steel tubing



-79-

Figure 3-2. Recirculating stripper configuration from Grob and
Zürcher (1976).
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o

(heated to 60 C to reduce the relative humidity), before reaching a

charcoal trap. The microcharcoal trap consists. of a glass tube in

which about I mg of charcoal has been fixed between two stainless steel

screens glass-blown into the tube. After passing through the trap, the

air returns to the pump for recirculation through the system, The

sample was stripped for 2 hours at a flow rate of about 1.5 liter/min.

o
The water sample was heated to 35 C by a water bath. All water samples

were restripped onto a fresh trap for an additional 2 hours immediately

after the first strip (henceforth referred to as a restrip) i

After stripping, the trap was removed from its holder and extracted

with is ~l CS2 (figure 3-3). This was done by adding another internal

standard (2 ~l of 20 ng l-chloro-n-octane/~l CS2) onto the trap and then

adding 6 ~l CS2. Cooling the vial of the assembled extraction apparatus

drew the solvent plug down through the charcoal. Warming the vial 
pushed

the solvent back up through the charcoaL. After several such passes ,the

solvent was drawn down and away from the charcoal by prolonged cooling,

and with a quick flick was shaken down into the bottom of the vial.

Repeating the extraction with an additional 6 ~l CS2 efficiently completed

the removal of the volatiles from the trap and provided a concentrated

solution for further analysis.

Gas Chromatography and Gas Chromatography ~ Mass Spectrometry

The volatiles were analyzed using gas chromatography (GC) and

combined gas chromatography-mass spectrometry (GCMS). A single SE54

glass capillary column (0.3 mm i.d. x 20 m long; purchased from Jaeggi,

9043 Trogen, Switzerland) was used. A Carlo Erba Model 215l ACgas

chromatograph equipped with a flame ionization detector (FID) and 
a

special Grob inj ec tor was used. Injections were made with the split
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Figure 3-3. Microcharcoal trap extraction apparatus from Grob and
Zürcher (1976).
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closed. The split was opened (10: I) after 30 seconds. Helium was used

as the carrier gas at 0,6 atm pressure at the column front (ca.3 ml/

min). The oven was operated at room temperature for 8 min. and then

o 0programmed from 20 to 200 C at 3 C/min. The data were displayed on a

strip chart recorder (l mv full scale). In January, 1978 a CSI Super-

grator II was added to facilitate the measurement of peak heights. Peak

height measurements are more precise than area measurements for chroma-

tograms containing unresolved compounds.

Compound concentrations were calculated by comparison of GC peak

heights to that of the internal standard, l-chloro-n-octane. A correction

was made for peak width differences based on results obtained from resolved

standard mixtures. However, the reported concentrations do not take into

account FID response 4ifferences nor stripping efficiency differences.

GCMS was performed on a Finnigan 3200 system. A single SE52 column

(0.3 mmi. d. x 20 m long) was used. EI spectra were obtained at 70 eV.

CI spectra were acquired with methane as the reactant gas at 950 microns

and using an ionization potential of 130 eV.

Ancillary Data

Seawater temperatures were obtained from d~ily readings made at the

Woods Hole Oceanographic Institution dock. Salinity samples were measured

at the WHO I facility, . Nutrients were determined using a Technicon

autoanalyzer. Chlorophyll ~ and phaeophytin were measured using the

fluorescence technique of Strickland and Parsons (1972). Dr. M. Hulburt

(WHOl-biology) counted and identified the phytoplankton from CD samples.

Blanks, Recoveries and Reproducibility

A detailed discussion of the quality characteristics of the methods



RESULTS AND DISCUSSION

Hydrographic and Nutrient Data

Temperature of the water showed a sinusoidal cycle with a maximum

of about 230C in August and a minimum of about -i °c in February (figure

3-4), Salinity showed a general decline throughout the study period

(figure 3-4). The 330/00 at the outset of the 'work was an uncharacteris-

tically high value and may be erroneous. Chase (1972) found that salinity

never exceeded 32.S? /00 between 1956 and 1969. The saiinity variations for

samples taken twice a day for a late summer week are exhibited in figure

3-5. The tidal flow brings in saltier water from the. west, and the ebb

allows fresh water outflow from the neighboring ponds (e. g., Oyster Pond:

1_3° /00). This tidal exchange, in conjunction with a period of rain near

the beginning of this series, was probably responsible for the daily

fluctuations observed over the several days of this example. Data
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Figure 3-4. Seawater temperature (oC) and salinity (0/00) of
biweekly seawater samples from CD and cumulative
rainfall (inches) between biweekly sample collections.
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Figure 3-5. Salinity (0/00) versus time in seawater samples from CD.
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revealing the variation of salinity at CD on an hourly timescale show

a range of salinities of about 0.20/00. These salinity data suggest that

pond water exiting to the Sound was diluted about iSO times with coastal

seawater by the time it reached CD.

During the period of this study, precipitation was spread quite

evenly throughout the year (figure 3-4).

The distributions of the nutrients in the waters off CD are shown

in figure 3-6. Nitrate, nitrite and ammonia showed an interesting

succession with the most reduced form, NH:, appearing at the end of August

and remaining until October. The N02 became important in November and

the beginning of December. Finally, NO; grew in while N02 was still

present and peaked in concentration in January. NH: may be introduced after

the breakdown of the seasonal thermocline in the nearby Oyster Pond in

the late summer with mixing of its anoxic bottom waters and spillage

into the Sound (see Emery, 1972). However, samples taken along an offshore

transec t on October 3 showed similar levels of NH: in all samples,

al though salinity increased offshore. Thus it is unlikely that mixing

+of pond water into the Sound was the source of this NH4. Rather this

ammonia was probably part of the classical picture of fall-winter

remineralization of organic matter. The virtual absence of these nutri-

ents throughout the remainder of the year is indicative of the activity

of marine plants.

Phosphate demonstrated a more scattered distribution, as did

silicate. The simultaneous minima of these two nutrients in October

may reflect a fall bloom triggered by the sudden abundance of nitrogen

+
in the form of NH4. This was not indicated by the chlorophyll ~ measure-

ments although a fall diatom bloom is common in this region (Fish. 1925;
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Figure 3-6. Nutrient concentrations (~g-atom/i) in biweekly seawater
samples from CD.
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Lillick, 1937). Possibly, the benthic algae were responsible for these

autumn nutrient depletions.

Phytoplankton ~

Chlorophyll ~ concentration peaked in late winter in both years

(figure 3-7). Beginning in December, 1977 phaeophytin was determined

and showed increased importance suggesting either the active degradation

of chlorophyll ~ or the return of degradation products to the water

column as winter storms stirred up the sediment.

Phytoplankton counts revealed a tremendous late-winter bloom of

Thalassiosira nordenskioeldii. Several million cells per liter were

found at the peak of this bloom. The appearance of this diatom bloom

coincided with the February, 1978 chlorophyll ~ maximum and the disap-

- -3
pearance of N03, PO 4 ' and Si02. More than 85% of the bloom population

(by cell numbers) consisted of this species.

Other Observations

In the fall (end of September and again at the beginning of November)

large beach washups of the seagrass, Zostera marina, and associated

macroalgae occurred with the incidence of strong storm activity. These

washups may not be solely attributable to stormy weather, but also to a

weakening of the plants by physiological changes generally thought to

occur at this time of year (Sand-Jensen, 1975; Ragen and Jensen, 1978).

These plant materials could be seen to be pulverized in the surf zone

and were responsible for greatly increasing the turbidity of the shallow

water.
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Figure 3-7. Chlorophyll ~ (~g/kg) and log phytoplankton counts (cells/liter) in

biweekly seawater samples from CD. Crosses indicate phaeophytin
concentrations (~g/kg).
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Three known incidents of hydrocarbon spills occurred in the region

during the study period. In January, 1977 a barge carrying Bouchard no. 2

fuel oil spilled part of its cargo at the head of Buzzards Bay (ca. 16

km. from CD). Some time later.. ice ~ laden with some of this oil, was

observed in the waters near CD. Also, in March, 1978 a large

gasoline spill occurred near Block Island in Long Island Sound (ca. 80

km. from CD). Finall~ in April of 1978, a second barge spilled

oil near the west end of the Cape Cod Canal (ca. l6 km. from CD). Only

the first of these accidents could be clearly related to the level of

volatile organic compounds at CD (see below and Schwarzenbach et al.,

1978) .

Variations of Volatile Organic Compounds

Alkylated Benzenes. The seasonal changes in the concentrations of

the C2- and C3-alkylated benzenes are shown in figures 3-8 and 3-9. All

of these compounds, except ethyl benzene (see later discussion), closely

covary. The C2-benzenes usually appear at an isomer ratio of ethyl

benzene: m + p-xylenes: o-xylene = 1: 2: I. These isomers were always more

abundant than the C3-benzenes. Still more highly substituted benzenes

were also observed at lower concentrations and their temporal distribu-

tions parallel those of the lower homologues.

In order to demonstrate the nature of a source of the alkylated

benzenes, one of them, o-xylene (or mOLe properly, I, 2-dimethyl benzene)

has been replotted including three samples taken the three days immedi~

ately following the Memorial Day weekend (May 27-29, 1978) (figure 3-l0).

One can see a tremendous fluctuation in the concentration of this compound

at this time over a very short time interval. Indeed, the sample

following the weekend shows the highest concentration found all year.
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Figure 3-8. C2-benzenes (nglkg) in biweekly seawater samples from CD.

Question marks indicate samples in which ethyl benzene
coeluted with an unknown compound. The open circle shows
ethyl benzene concentration found when volatiles were
chromatographed on a column which resolved these compounds.
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Figure 3-9. C3 -benzenes (nglkg) in biweekly seawater samples from CD.
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Figure 3-10. O-xylene concentrations (ng/l) in biweekly 
seawater

samples from CD (closed circles) and in 3 seawater
samples taken during the week after the MemOr:lal Day
holiday weekend ,May 27-29,1978 (open circles).
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These data suggest the source of these alkylated benzenes may be related

to the activities of tourists and summer residents on Cape Cod. A plot

of the o-xylene data according to the day of the week in which the

samples were taken clearly shows higher levels earlier in the week

(figure 3-11). Separating the summer data from those of the "off season"

further emphasizes this trend in the summer. Thus one may reasonably

hypothesize that gasoline use by automobiles or motorboats has introduced

these pollutant hydrocarbons into coastal seawater, especially during

periods of intense tourism. Levels climb to about 3 times those seen

during the rest of the year. Based on the plot of o-xylene concentration

versus day of the week, it appears that this anthropogenic input is

removed from the coastal seawater with a halflife of about l-2 days.

This is consistent with the observed decline of the o-xylene levels after

the Memorial Day weekend, 1978. A combination of air-sea exchange and

tidal flushing may be sufficient to lower the o-xylene levels this quickly.

It is also apparent from this information that the time scale of interest

for these volatiles is on the order of days and not weeks.

Ethyl benzene concentrations do not always appear to covary with

the other alkylated benzene isomers because ethyl benzene was unresolved from

another compound in the chromatograms. CI-CH4 mass spectral examination

of this mixed peak in a sample acquired in February, 1978 revealed the

simultaneous presence of a compound of molecular weight I08 (figure 3-12).

This molecular weight assignment is assured due to presence of M + l, M

+ 29, and M + 41 peaks in the CI-CH4 spectrum. The m/ e 95 fragment

suggests that the compound contains a terminal ethenyl group (Field, 1968),

while the m/ e 93 fragment indicates the presence of a terminal. methyl

substituent. It is known that the brown alga~ Fucus spp.~ utilizes
-

trans, cis-l,3,5-octatriene (mw 108) as its sexual chemotactic agent
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Figure 3-11. O-xylene concentrations (ng/l) in biweekly seawater
samples from CD grouped according to the day of the
week on which they were collected.
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Figure 3-12. Electron impact (El) and methane chemical ionization

(CL) mass spectra of unknown ~ompound (mixed with
ethyl benzene) isolated from seawater samples collected
from CD in February and March 1978. Also shown are
CI spectra from authentic trans, cis-l,3,5-octatriene
and ethyl benzene. Fragments from m/e 76-79 were not
collected in the sample spectra because of sol vent

(CS2) interference. M/E values greater than 120 are
amplified 4 times in the CI spectra of the CD sample
and trans, cis-l,3,5-octatriene.



~
;:
~
~
Ct
"(

~
j:
"(
çj
ri

91

)

j

j

j

iJ
3l' 5l'

E I: CD SAMPLE

93

iD8

. f06

L.II,III\"'\1.'1"'" l"" 11'hlTn"p-lrnilrmllfnl"lrninnrmlrmrrJ"",l"rrl"l'",I'""f"i'
1 00 lSei 2eiei 25(:
iD9 120 x4

67 i07

CI: CD SAMPLE

81 93

95
135

91 437

I

'147

I 1i i
.~ifl9 d. .. d

'. _1-

SCJ 1 ei

iD9

lSCJ 2CJCJ
120 x 4

2SCJ

67

CI: AUTHENTIC trans, cis-l,3,5-
OCTATRIENE

95
81

79
93

I. .I II

13
.1. i. ';9

i

SCJ lCJei lSCJ 2CJCJ 2SCJ

to7

""

t
!

C I: AUTHENTIC ETHYL BENZENE

79

9i

I

so 100 lS0
M/E

2SCJ2CJCJ



-108-

(Müller and Jaenicke, 1973). Fucoserraten, as this structure is called,

was obtained from Dr. Müller and its GC and spectral properties ascertained.

The authentic compound elutes later than ethyl benzene (RICA* = lOI) on the

SE54 column (RICA* = llO) but its CI-CH4 spectrum is very similar to that

of the unknown (figure 3-12). The only difference is that the authentic

fucoserraten has m/e 95 about 2 times m/e 93, while the compound found in

this study showed the reverse. This suggests that the unknown compound

is a closely related isomer of fucoserraten, e.g., trans, trans-I,3,5-

octatriene.

By GCMS analysis, one may estimate that the February 22, 1978 sample

contained a 60:40 mixture of the unknown and ethyl benzene. This estimate of

the concentration of ethyl benzene corresponds to that which one might expect from

the typical isomer ratio of this compound and the xylenes. This suggests

that one may obtain an idea of the temporal variation of the "octatriene"

by plotting the deviation of ethyl benzene from that expected from the

other C2-benzenes versus time (figure 3-l3). A peak in concentration of

this material occurred in late February and March.

Mathieson et al. (l976) have reported that sunlight may be the key

environmental variable controlling the release of gametes by Fucus spp.

The solar irradiance level, which they found to be critical, occurred

at the beginning of February at CD. Thus it is possible that this unknown

was related to the algal sexual activity. Isomerization of fucoserraten

(especially in sunlight) may have quickly produced the unknown observed

in this year-round study. This compound was also observed in surface

seawater from the upwelling region off Peru (chapter 2).

* RICA: retention index relative to the l-chloro-n-alkane standards, e.g.,
110means that the compound eluted LO% of the way between the lst i. s.

(l-cl-n-hexane) and the 2nd (l-cl-n-octane).
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Figure 3-13. Estimated unknown compound concentrations (ng/kg) in
biweekly seawater samples from CD.
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~aphthalenes. The naphthalenes showed a different temporal function in

their concentrations (figure 3-14). The March 8, 1977 sample was rich

in these compounds (as it was for alkylated benzenes). Examination of

the isomer relations at CD and those from a sample of no. 2 fuel oil

reveal identical patterns (Schwarzenbach et al., 1978). Thus direct

input of oil was the most likely source of these compounds at that time.

However, two weeks after the next sample was taken, the seawater concen-

tration of these compounds had decreased dramatically. As noted in

Schwarzenbach et al. (1978) a period of intense storm activity between

these two samples may have been responsible for this thorough flushing.

It is difficult to identify either the atmosphere or the sediments as the

ultimate sin~ as transfer to either reservoir would be enhanced during

storm-induced introduction of bubbles or particles into the water.

Naphthalenes also showed relatively high levels in the winter of

1977-l978. Possibly this may be attributed to the use of home heating

oil a t this time of year.

The homologue ratios may add some insight into the source of naphthalenes

throughout the year. By analogy to the higher polycyclic aromatic hydrocar-

bons, the ratio of naphthalene to the sum of the Cl -naphthalenes may

reflect the temperature of formation of the source material (Blumer and

Youngblood, 1975a, 1975b, and 1976) as well as the environmental transport

processes which brought them to CD (Laflame and Hites, 1978). For

example, if a high temperature source was responsible, naphthalene

concentration should be greater than that of the methyl substituted

compounds. If atmospheric transport of the compounds to CD has occurred,

the ratio may increase as the lighter naphthalene exhibits a higher vapor

pressure and therefore is more easily volatilized. Obviously, the possible

combinations of source ratios and their environmental transformations are

numerous and complex.
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Figure 3-14. Naphthalene and substituted naphthalenes (ng/kg) in
biweekly seawater samples from CD. Closed circles
show concentrations recovered in first 2 hours of
stripping, while crosses show concentrations recovered
in an additional 2 hours of stripping.
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The naphthalene-to-methyl napthalenes ratios are plotted for all

the year-round samples in figure 3-15. A sinusoidal pattern is apparent

with low ratios in the summer and high ones in the winter. The March,

1977 sample was contaminated by the oil spill and consequently had a

very low ratio.

Also shown (figure 3-15) are the ratios found in laboratory studies

of various possible sources of these aromatic compounds. Gasoline,

gasol ine and oil for outboards, diesel fuel, and API standard no. 2 fuel

oil were diluted and analyzed directly by GC. Car exhaust and diesel

exhaust were collected in glass flasks, stripped onto charcoal traps,

extracted with CH2Cl2, and analyzed by GC. These exhausts were also

connected to flasks containing exhaustively prestripped Seawater (gently

stirred) and allowed to exchange the volatiles between the vapors in one

flask and the water in the other. After one day, the water was stripped

and chromatography was performed on the volatile concentrate.

These source data, in conjunction with the year-round pattern,

suggest that more direct inputs to coastal seawater occurred in the

summer than in the winter. The ratios seen in the winter samples indicate

that a good deal of fractionation must have taken place to produce such

high values from any of the known sources. The general trend in the

experimental data was to increase the ratio by burning a fuel and to

increase it still further by atmospheric transport. Therefore, these

data may indicate that atmospheric sources become more important in the

winter (e.g., from the burning of home heating oil).

A significant concentration of naphthalene was also found in the

restrips (figure 3-14). This suggests that this compound was somehow

unavailable for exchange into the vapor phase of the purging bubbles.

The relatively low air-water partition coefficient (O.016 as compared

l.
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Figure 3-15. Naphthalene to Ci-naphthalenes ratios in biweekly seawater
samples from CD. Arrows on the right margin indicate the
naphthalene to Ci-naphthalenes ratios found in laboratory
studies.
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with 0.29 for o-xylene and 0.076 for heptanal) of this compound indicates

that it might not be stripped effectively; filtering experiments suggest

that about half of the naphthalene can be removed by a glass fiber filter

from seawater. Consequently, it is likely that the naphthalenes occur as

both dissolved and particulate species in seawater, and neither of these forms

are readily purged from water ~amples.

Alkanes. The temporal variations Of the Cl3 to Cl7 n-alkanes and of

pristane (2,6, 10, 14-tetramethyl-pentadecane) are shown in figure 3-16.

The levels were high in March, 1977 as a result of the oil spill. This

interpretation is supported by an odd-even carbon preference index ("CPI")

calculated as nCl5 + nCI7/nCI4+ nCl6 which at this time was 1.2 (figure

3-17). Pentadecane showed two maxima in the sumer of 1977 and another

beginning in the summer of 1978. Schwarzenbach et al. (1978) attributed

this to production by the extensive benthic algal growth in the area.

A biological source was also sugges.ted by the high "CPI"~. Heptadecane

also showed two concentration peaks in the summer of 1977, the second of

which corresponds to the s.econd pentadecane spike. Again, the high "CPI"

suggests a biological source of this hydrocarbon for both of these

concentration spikes. Benthic algae in this region are known to be rich

in these compounds (Clark and Blumer, 1967; Youngblood et al., 1971;

Youngblood and Blumer, 1973). The July peak demonstrated a nCl7/pristane

ratio of about 120 suggesting a green algal source (Clark and Blumer,

1969). The late summer peak in the concentrations of nCl5 and nCl7 may

reflect the onset of senescence in some of the seaweeds, or be due to

other physiological changes. As mentioned earlier, large washups of

seagrass and macroalgae were observed soon after these peak levels were

observed.
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Figure 3-16. Alkane concentrations (ng/kg) in biweekly seawater samples
from CD. Closed circles show concentrations recovered in
first 2 hours of stripping, while crosses show concentra-
tions recovered in an additional 2 höurs of stripping.
The concentrations of hexadecane in March and April, 1978
include an unresolved substance as determined by GCMS.
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Figure 3-17. "Carbon preference index" (defined as nC15 + nC17/nC14 +
nC16) in biweekly seawater samples from CD.
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The winter peaks of heptadecane are of unknown origin. Possibly,

they reflect the return to the water from the sediments of previously

deposited material.

The increased concentrations of all the n-alkanes in late May, 1978

wi th "cpr" of 1. 4 indicate a pollution event. However, only acenaphthalene

and 2-ethyl naphthalene covary with the n~,alkanes among the various naphtha-

lene isomers investigated. Possibly the source was of a higher boiling

or weathered petroleum fraction.

As was the case for naphthalene, the n-alkanes were also found in

abundance in the restrips (figure 3-16). The filtering experiments also

demonstrated that about half the concentrations of these compounds could

be retained by a glass fiber filter. One concludes that these compounds

occur in seawater either adsorhed to particles or associated with

microorganisms.

(The hexadecane peak in March and April was due to the occurrence

of another compound coeluting (figure 3-l6); this is supported by GCMS.)

Aldehydes. A group of straight chain aldehydes (C6-CIO) were recovered

throughout the year from the seawater at CD (figure 3-18). These

compounds represent a highly reactive, both biochemically and chemically 1

group of volatiles. The temporal variation of the aldehydes in restrips

is similar to that seen in the initial (figure 3-18) strips and would be

expec ted to be so from the known poor recoveries of these compounds.

The most important feature of the year-round patterns for these aldehydes

was the concentration maxima in the spring and fall corresponding to

periods of algal blooms (see discus.sion of nutrients and chlorophyll ~).

This was most pronounced in the spring when the phytoplankton bloom was

most intense (figure 3~19). These compounds may be the result of direct
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Figure 3-18. C6-CiO aldehyde concentrations (ng/kg) in biweekly seawater
samples from CD. Closed circles show concentrations
recovered in first 2 hours of stripping, while crosses show
concentrations recovered in an additional 2 hours of
stripping.



15

HEXANAL 10
(ng/kg) 5

o

15

HEPTANAL 10
(ng/kg) 5

o

15

OCTANAL 10
(ng/kg) 5

o

15

NONANAL 10
(ng/kg) 5

DECANAL 10
(ng/kg) 5

+ · STRIP
+ RESTRIP

+ .V\ ~~ / \... .-. + ,.,. ..... .-.-.-.
+ · /.....-.-.:- ',...- ¡,--,,1 + + + + + + + + + i.

.. + + + + + of + + +.. .+

".-i,./\
....-i + + + __.-._.....+ + +

o

15

.\ .-.. ,... / \. .-. '. It
. . --..- -.

"'' '."'\ i,.l\+,-~+\- '" + +++ + . + ++ +++ + ++ ++ ++++

.,
1_\ \ I"T. / \. / . I... .-... '.__ + .\. /~-. I. +. + 0" '\ + +'0-./+ +++ + + + + +

+ .-+ ++ + +'i + + + + + J F M A M Jo M A M J J A SON 0 1978
1977



Figure 3-19.
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Heptanal concentrations (ng/l) and chlorophyll a
concentrations (iig/kg) in biweekly seawater sàmples
from CD. Heptanal concentrations were obtained by
summing the recoveries from both the first 2 hours
and the additional 2 hours of stripping.
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production by the plankton or may represent oxidation products of algal

lipids. Potential precursors and a viable mechanism for chemical oxidation

of algal fatty acids to C6-CiO aldehydes are described in detail in

chapter 2 (figure 2-l2).

A group of longer-chain aldehydes became particularly abundant

during the phytoplankton bloom of February, 1978. These included Cl2 to

Cl5 saturated and unsaturated aldehydes (figure 3-20). The bloom was more

than 85% Thalassiosira nordenskioeldii as mentioned previously; thus it

seemed likely that this diatom was the ultimate source of this material.

Figure 3-21 demonstrates the correlation of these compounds with cell

numbers of this diatom.

Accordingly, pure cultures of this diatom were grown in the laboratory.

4
Cultures (1600 ml of ~ 3 x IO cells/ml in log phase growth) were extracted

with CH2Cl2 after collection on a glass fiber filter, and the extract

chromatographed. No evidence for the presence of any aldehydes could be

found. Another culture was stripped directly as normal volatile analysis

of water samples is performed, but no aldehydes were found by this approach.

Finally, approximately 100 ml of CD seawater were added to a culture and

incubated for two additional weeks (stationary phase). Stripping this

cuI ture did not provide any aldehydes ei ther ~ Thus, it seems that the

diatom does not produce the aldehydes directly.

Possibly, zooplankton plays a role in aldehyde production. Another

possibility is that photochemical oxidation (which cannot occur with the

lights used to incubate algae) of algal metabolites produced the aldehydes.

Also, a less abundant phytoplankton species may have released these

compounds during the bloom.

Dimethyl Polysulfides. Another group of compounds (figure 3-22) observed
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Figure 3-20. C12-C15 aldehyde concentrations (ng/l) in some biweekly
seawater samples from CD.
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Figure 3-21. Diatom cell numbers (x 106/kg), pigment concentrations
(~g/l) and aldehyde concentrations (ng/l) in biweekly
seawater samples from CD.
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Figure 3-22. Dimethyl polysulfide concentrations (ng/kg) in biweekly
seawater samples from CD.. Closed circles show concentra~
tions recovered in first 2 hours of stripping, while
crosses show concentrations recovered in an additional
2 hours of stripping. Arrows indicate undetermined large
quantities.
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were the dimethyl polysulfides, CH3SSCH3 (DMDS), CH3SSSCH3 (DMTS), CH3SSSSCH3

(DM4S). DMDS appeared in the spring and summer. DMTS and DM4S were found

in the restrips of winter samples and in both the strips and restrips of

the spring samples of 1978.

These compounds are frequently recovered in greater amounts in the

second 2 hours of stripping than in the original strips (figure 3-22).

As discussed in Schwarzenbach et al. (1978), a capacity for the formation

of these polysulfides must be contained within the samples.

DMDS may be formed by the oxidation of methyl mercaptan (Reid, 1958),

a common product from marine algae (Haas, 1935; Challenger, 1959) and

microorganisms (Kadota and Ishida, 1972). DMDS, DMTS, and DM4S may all

be produced by the reaction of methyl mercaptan and elemental sulfur at

room temperature (Mc~1illan and King, 1948; Vineyard, 1966). Possibly, the

analytical conditions increase the release of methyl mercaptan by micro-

organisms into seawater; allowing the concentration of this thiol to

build up. As a result, the rate of production of polysulfides would also

increase in time, and restrips would contain higher yields than the

original 2 hours of stripping.

Elemental sulfur may also add to DMDS to yield DMTS and DM4S.

The ratio of sulfur to starting disulfide (Murdock and Angier, 1970) or

mercaptan (Vineyard, 1966) has been shown to control the distribution of

polysulfide products. Excess elemental sulfur levels favor the production

of compounds with longer sulfide chains. Thus the different distributions

of polysulfides seen in the year-round study may reflect the concentration

of elemental sulfur in the seawater throughout the year.

Also these compounds may be derived from other metabolites. Cyclic

polysulfides (Wratten and Faulkner, 1971) and acyclic forms (Moore, 1971)

have been reported and their degradation may be the source of these
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polysulfide volatiles. Particularly attractive candidates are compounds

like the bis-(3-oxoundecyl) di-, tri- and tetra sulfides or bis-(3-acetoxyundec-

5-enyl) disulfide found in the red alga, Dictyopteris spp. (Roller et al.,

1971; Moore, 1971; Moore et al., 1972).

A simple calculation suggests the importance of these polysulfides to

the sulfur cycle. The seawater at CD contained about LO ng-S/kg in the form

of these polysulfides; this represented a standing stock of 20 ~g_S/m2. If

this material was swept into the atmosphere in about 3-4 days 
(Schwarzenbach. 2

et al., 1978), this amounts to the local introduction of about 2 mg-S/m /yr

to the air. This figure is similar to the 2 mg/m2/yr calculated for H2S

and the 6-10 mg/m2/yr for dimethyl sulfide found in the coastal region of

Chesapeake Bay (Maroulis and Bandy, 1977). However, a global biological

source of about 130 mg-S/m2/yr is needed to balance the sulfur cycle (Friend,

1973) .

Other Volatile Organic Compounds. Two halogenated volatiles were observed

in seawater at CD. The first was tetrachloroethylene at about lng/kg.

This value is similar to that reported for the Northeast Atlantic of 0.5

ng/kg, but much lower than the concentration in Liverpool Bay (l20 ng/kg)

(Murray and Riley, 1973). The source of this compound was most likely

anthropogenic as it is heavily used in a direct disperal manner (McConnell

et al., 1975).

Bromoform (CHBr 3) was also found, particularly in the summer. The

source of this compound was probably the benthic algae (chapter 5 and

Burreson et al., 1975).

Total Volatile Organic Compounds. Figure 3-23 shows the total volatile

organic compound concentrations over a six-month period as measured by
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Figure 3-23. Total volatile compound concentrations (ng/kg) in
biweekly seawater samples from CD.

~



500

400

300
TOTAL VC
(ng/kg)

200

100

/..

/..
I..

.

\/~. .

o
J F M A

1978
M J



-138-

the CSI Supergrator II.

First, it can be seen that the total levels approximately doubled

during, and presumably in response to, the phytoplankton bloom. Also,

a second peak occurred in May. The nutrient data do not support the

contention that this second maximum could be remineralization of the

earlier produced phytoplankton organic matter. The chlorophyll ~ values

do not show that another bloom øccurred at this time. The individual

volatiles provide insight: to the source of this second increase.

The alkylated benzenes demonstrated a doubling in the early part of

the month. Based on previous discussion, this may be attributed to

pollution associated with weekend recreational activities; this sample

was aequired on a Monday. Therefore, the value of 400 ng/kg total volatiles

may be enly a few-day transient level.

The alkanes and some of the naphthalenes show a concentration spike

at the end of the month. This was earlier ascribed to a pollution event

involving a heavy petroleum fraction.

The total volatile organic carbon investigated in this study comprised

about 0.02 - 0.05% of the DOC (assumed i mg/kg) pool. This is much less

than the 1-IO ~g/kg total volatiles found by MacKinnon (pers. comm., 1978) who

utilized similar methods.

SUMMRY

The temporal variations in the concentrations of several groups of

volatile organic compounds i.n coastal seawater have been studied.

Correlations with other known processes were sought to provide insight

into the cycling of these compounds.

The C2- and c3-alkylated benzenes covaried. Large concentration

increases were observed in the sumer, immediately following weekends.
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This suggested an anthropogenic source related to summer recreational

activities for these large inputs.

An unknown ocmpound, probably an octatriene, was found in late

February and March. This material may be related to the chemical

attractant utilized by Fucus spp. (Phaeophyta) and may represent a

biological signal.

Naphthalenes were most abundant after an oil spill and in

winter samples. Winter samples contained a greater abundance of naphtha-

lene, relative to the methyl naphthalenes, than did summer samples; this

suggests that more indirect sources are important in the winter and

thereby allow fractionation during transport of these homologues.

Pentadecane and heptadecane were the dominant n-alkanes observed.

Separate large concentration increases for these compounds were found in

the summer and the high "CPr" strongly suggests a biological source of

these compounds. Benthic algae are abundant at this time of year, have

been shown to contain these hydrocarbons (Youngblood et al., 1971;

Youngblood and Blumer, 1973), and consequently have been identified as

the probable sources.

C6-CIO straight chain aldehydes were found in all samples year-

round. These aldehydes, and longer chain homologs from Ci2-CI5' were

greatly increased in abundance in the late winter. The coincidence with

the Thalassiosira, nordenskioeldii bloom indicated that this phytoplankton,

or oxidation of the organic matter produced by this diatom, was the source

of these oxygenated volatiles.

Dimethyl di-, tri-, and tetrasulfides were found in the coastal

seawater. These polysulfides. may be formed by reaction of methyl

mercaptan and elemental sulfur, or from polysulfide metabolites of marine

organisms.
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The total volatile organic compounds accounted for only about 0.02 -

0.05% of the DOC (assuming 1 mg/kg). This was about an order of magnitude

less than that found by MacKinnon (pers. comm., 1978) utilizing similar methods.

Similarly intense peak levels of total volatiles seem to occur in response

to either natural or anthropogenic activities.



"Also, short range transport and deposition should be measured in

field studies performed in coastal regions relatively close to

maj or urban sources. A prime site for such a study is the area

off the northeast coast of the United States. "

NAS, 1978

Chapter 4. SOURCE OF Ci- and C~-ALKYLATED BENZENES TO COASTAL SEAWATER

INTRODUCTION

Recently there has been a great deal of discussion concerning the

tropospheric transport of petroleum-derived hydrocarbons to the oceans

(Duce et al., 1974; NAS, 1975b; Garrett and Smagin, 1976; NAS, 1978).

5
Approximately 6 x lO metric tons of petroleum hydrocarbons per year are

estimated to be delivered to the sea by the atmosphere (NAS, 1975b). This

amounts to 10% of the estimated total petroleum hydrocarbon input to the

marine environment.

The gaseous hydrocarbons in urban air are chiefly benzene homologues

(NAS, 1978). Several investigators have reported between i and 40 ng

individuaIC2- and C3-benzenes/l-urban-air (Grob and Grob, 1971; Altshuller

et al." 1971; Bertsch et al., 1974; Ciccioli et al., 1976). Lonneman et

al. (1978) have found 0.2-4 ng/l-air in regions of Florida, including the

Everglades. If air parcels with these concentrations were equilibrated

wi th coas tal seawater, water levels of 0.3- 120 ng/kg-seawa ter would result.

This includes the range of values found for the C2- and C3-benzenes in a

year-round study of coastal seawater (Chapter 3; Schwarzenbach et al. ,1978).

-141-
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Many workers have attributed aromatic hydrocarbons in air to automobile

exhaust, based on the composition similarity of air and exhaust samples, and

on the spatial and temporal covariations of high compound concentrations

and dense traffic (Grob and Grob, 1971, 1974; Altshuller et al., 1971;

Bertsch et al., 1974; Lonneman et al., 1978).

Very little work has been done concerning the C2- and C3-benzenes in

coastal seawater. Sauer et al. (l978) found levels of 0.3-24.4 ng/kg of

individual C2-benzenes in seawater from 8 coastal stations in the Gulf of

Mexico. They identified oil production and transport sources f0~ the aromatic

hydrocarbons.

Clark et al. (1974) have suggested that outboard engine exhaust may

be an important source of petroleum hydrocarbons to coastal seawater. They

indicated that about 10% of the fuel used by these engines may be put

directly into seawater.

In this chapter, efforts to ascertain the importance of atmospheric

delivery versus direct inputs of Cz- and C 3-alkylated benzenes are described.

Since my ability to assess air samples directly was limited by my analytical

capabilities, several independent approaches utilizing water sample analyses

were taken to provide insight to this problem. First, the long-term varia-

tions of these compounds found in the year-round study were investigated for

seasonal, tidal, and rain effects. Short-term temporal studies were conducted

to identify the timing and magnitude of effect of inputs associated with

intensified tourist and recreational activities on summer weekends (Chapter

3). Also, the isomer distributions of the C2- and C3-benzenes in some fuel

samples and the fractionation of these isomers in laboratory simulations of

transport into seawater were investigated. Four studies of the concentrations

of the aromatics in seawater samples from other nearby stations on the Sound
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were conducted. Rain samples were analyzed to indicate the potential of

the atmosphere as a source. Fresh and brackish water samples from inland

sites were investigated to test the importance of runoff. Finally,

a brief effort was made to determine the concentrations of the C2- and C3-

benzenes in air.

METHODS

Water samples were analyzed for volatile organic compounds by the

methods of Grob and ZUrcher (1976) and Schwarzenbach et al. (1978).

RESULTS AND DISCUSSION

In order to simplify discussion, only o-xylene (1,2-dimethyl benzene)

concentrations will be considered except in the isomer distribution studies .

This is reasonable since all the C2- and C3-benzenes covary to a first

approxima tion, and since o-xylene is cleanly resolved in the chromatograms.

Year-round Chemotaxis Dock Seawater Data.
.

As noted in Chapter 3J the concentrations of o-xylene in samples from

the year-round studywere higher immediately after summer weekends (figure

3-10) . This suggested an anthropogenic source related to recreational

activities at that time of year.

If the C2- and C3-benzenes were delivered to Chemotaxis Dock (CD) from

one dominant source (e.g. Woods Hole harbor), one should observe an influence

of .the tide on these aromatic compound concentrations, Accordingly, the

concentrations of these aromatic compounds in the biweekly samples from CD

in the year-round study were considered as a function of the tide at the
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time of collection. Five samples in the year-round group were taken within

i hour of low tide, and these showed an o-xylene concentration of 8 + 3 ng/kg.

Six other samples, acquired within i hour of high tide, had 16 + 5 ng

o-xylene/kg. All of the remaining samples (21) contained 9 + 5 ng o-xylene/

kg. Thus, there is some indication of a source related to high tide (i.e.

located to the west of Chemotaxis Dock). However, all of the high-tide

samples were obtained in the months of May, June and July. Consequently,

the relatively high o-xylene average found in this group might also be

caused by a seasonal factor.

Another possibility is that rain delivers C2- and C3-benzenes to

coas tal seawater. This may occur by two mechanisms. Firs t, if the a tmos-

phere contains high levels in excess of equilibrium with seawater of these

aromatic compounds, rain may acquire this hydrocarbon burden and deposit it

on the sea. Grob and Grob (1974) favored this explanation for the increase

of the alkylated, benzene concentrations in Lake Zurich after rain. The

other mechanism entails increased runoff from streets and sewers due to

rain. 6Urban runoff has been cited for delivery of 0.3 x 10 . metric tons

petroleum hydrocarbons per year to the sea (NAS, 1975b) .,

To test for the effects of rain, samples from the Chemotaxis Dock

year-round study were grouped into those (7 samples) taken within I day

of greater than O.L" rain and those (16 samples) acquired at least 4 days

after the last rain. The samples taken shortly after rain

contained 12 :! 6 ng o-xylene/kg, while those obtained more than 4 days

since the last rain showed 9 :! 4 ng o-xylene/kg. Thus, there is no signifi-

cant difference.

--i
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Short-term Temporal Studies.

The o-xylene concentration in samples from CD acquired before, during,

and after summer weekends is shown in figure 4-1. In the first study

(May 26 .- June i, 1978), the concentration of o-xylene was greatly increased

after the weekend, relative to before the weekend, In the other 2 cases

(July 14-19, 1978; August 31 - September 6, 1978) samples were taken during

the weekend and showed that the concentration of o-xylene increased during

tha t time. Notably, the early part of these weekends did not have peak

concentrations; in July the highest concentration was found on Sunday while

in September this maximum occurred on Saturday afternoon.. This indicates

either a delay in the water response to heightened atmospheric levels or

that recreational activities on Saturday afternoon provide these aromatic

compounds. The Saturday afternoon sample on September 2 was taken while

two power boats were towing water skiers in the vicinity of CD. This was

the highest concentration ever observed and undoubtedly derived chiefly

from these motorboats.

Isomer Distributions

Isomer distributions were studied in an effort to "fingerprint" the

sources of the c2- and C3-benzenes. Interpretation of isömer distributions

in seawater is difficult due to differential effects of environmental

processes which operate on an isomer distribution. However, llyoung'! dominant

sources should leave revealing "fingerprints,"

Gasoline, gasoline/oil for outboard engines, and fuel oil were diluted

and analyzed directly by gas chromatography (GC). Auto exhaust was collected
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Figure 4-1. a-xylene concentrations (ng/kg) in seawater samples
collected before, during and after sumer weekends.
May 27-29, 1978 was the Memorial Day holiday weekend.
September 2-4, 1978 was the Labor Day holiday weekend.
Periods of rain are indicated by crosshatch. Closed
circles indicate concentrations in samples collected
in the morning; open circles indicate concentrations
in samples collected in the afternoon.
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in a glass flask, stripped onto a charcoal trap, extracted into methylene

chloride, and analyzed by GC. In another experiment, auto and diesel

exhaust were collected in empty glass flasks, Each was connected by a U-

shaped neck to an identical flask containing thoroughly prestripped seawater

(gently stirred). The vapors were then allowed to exchange between the air

and the seawater for i day. The water was then analyzed for C2... and C3-.

benzenes. In order to study the effects of outboard engines, water was collected

near the underwater exhaust of an outboard engine, and this was analyzed for

its isomer distribution. Also, a seawater sample was collected at CD on

September 2 during an afternoon of continual motorboat activity in the

immediate vicinity of CD. The resultant isomer distributions are shown in

figure 4-2.

Although all of the patterns are similar, some important differences

exist. Gasoline and gasoline/oil for motorboats contain less C3-benzenes

than .the heavier fuel oil. Auto exhaust and outboard-exhaust-dissolved-in-

seawater have similar isomer distributions. This may be explained if both

engines produced like exhaust patterns, and this pattern is not changed on

transfer .into seawater bv underwater exhaust systems of outboard engines.

The isomer distribution obtained from exchange of auto exhaust vapor

wi th seawater differs from that of the original exhaust by an enrichment in

the lower-boiling compounds. The pattern of auto-exhaust-dissolved-in~

seawater resembles that observed in CD sample of September 2. This may be

due to boats operating near the dock that had either inboard ör

inboardloutboard engines. These powerboat types exhaust directly into the

atmosphere, a situation simulated in the lab by placing exhaust gases in

close proximity to seawater and allowing them to dissolve.
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'-

Figure 4-2. Relative C2- and C3-benzene isomer abundances from
several fuels , auto exhaust, and some exhausts
dissolved in seawater. Abundances are normalized so
that o-xylene (1, 2-dimethyl benzene) equals 1. Closed
circles show average relative abundances from biweekly
seawater samples from CD.
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Finally, the diesel-exhause-dissolved-in-seawater pattern differs from

the gasoline-exhaust-dissolved-in-seawater pattern in that the former

showed Cz- and C3-benzenes at similar levels while the latter had relatively

more C2- than C3-benzenes. This is probably due to the relatively facile

transfer of C2-benzenes on the one hand, and to the original enrichment of

C3 -benzenes in the heavier diesel on the other hand. This C3 ~benzene

enrichment is particularly evident for l, 2, 3-trimethyl benzene relative to

the other lower-boiling isomers.

The average year-round isomer distribution is indicated by the dots in

figure 4-2 and most resembles the patterns for auto-exhaust~dissolved-in-

seawater and September 2 boat exhaust at CD. The linear correlation coeffi-

cients for the isomer distributions found in the lab studies versus the

average year-round, Idistribution values were: gasoline, O. 9l; auto exhaus t,

0.46; auto exhaust dissolved in seawater, 0.95; gasoline/oil for outboards,

0.88; outboard exhaust dissolved in seawater, 0.61; Sept. 2, 1978 ski

boats, 0.94; diesel exhaust dissolved in seawater, 0.80; and #2 fuel oil,

0.44. The most notable discrepancies in these distributions are found for

the peaks containing para substituents (para-xylene, p-ethyl methyl benzene,

and 1,2, 4-trimethyl benz ene; the first 2 were not resolved from the meta

isomers by GC and appear as a single peak in the isomer distributions) .

These compounds were found to be the most rapidly degraded of the. alkylated

benzenes by Kappeler (1976) in his studies of the microbial degradation of

the alkyla ted benzenes in groundwater. Thus, the discrepancies may reveal

the importance of a similar biochemical degradation in these coastal seawaters.

Utilizing o-xylene as an internal standard, the other C2- and C3-

benzenes may be studied for their relative variations during the year
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(figure 4-3). Propyl benzene showed a strong negative deviation (-80%)

from its mean ratio to o-xylene in August. Ethyl benzene also showed this

effect, although less pronounced (-50%). Grob and Grob (1974) also saw

strong relative removal of these compounds in Lake Zurich when water temper-

o
atures were above 20 C. They suggested that biological degradation was

occurring by a microorganism suited to these warm temperatures and capable

of metabolizing the elongated sidechains. A warm-weather metabolic degrada-

tion of these compounds may also occur in the coastal zone near CD.

Mesitylene (1,3, 5-trimethyl benzene) showed a 3-fold relative maximum

in September at CD. This compound was also found in relative abundance in

marsh samples (Schwarzenbach et al., 1978). Possibly an unknbwn biological

source of this compound exists.

O-xylene in Seawater from Other Vineyarò Sound Stations.

Four investigations of the concentrations of the C2- and C3-alkylated

benzenes in surface water from Vineyard - Nantucket Sound were conducted.

Samples were obtained within 3 km of CD. Salinity data are available from

3 of these studies (figure 4-4) and, along with knowledge of the tide at

the time of sampling, have been used to draw the lines of flow shown.

Salinity always increased offshore from CD. It appears that the shoals,

about 2 km off CD, do not provide a major barrier to mixing of surface

waters.

The concentrations of o-xylene in seawater from these stations are

shown in figure 4-5. No trends were consistently observed. Al though there

were always significant concentration differences, e.g. between samples from

stations at CD and 0.8 km. offshore, sometimes offshore levels were lower



Figure 4-3. Ratios of C2- and
samples .from CD.

i. March - July,
ethyl benzenes to
ethyl benzene and
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C3-benzene to o-xylene in biweekly seawater
Year-round mean ratio has been set equal to
1977 and February - March, 1978 ratios of
o-xylene are unknown due to coelution of
other compounds in samples from these periods.

'--
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o
( /00) in seawater samples from the region near
at different times of year. Arrows indicate the
of tidal currents at the time of sampling.
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Figure 4-5. O-xylene concentrations (ng/kg) in seawater samples
from the region near CD taken at different times of
year. O-xylene concentration (ng/kg) in Oyster Pond
water is also shown for August 14, 1978.
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while at other times they were higher. Similarly, concentrations did not

always increase in the samples taken closer to Woods Hole harbor. The

inhomogeneity of o-xylene levels was much greater than can be explained by

the analytical error (I 10%). This variability is unexpected for a domin-

antly atmospheric source, assuming that the rate of removal of o-xylene

from surface seawater was similar at these stations.

Rain

Two rain samples were analyzed for the C2- and C3-benzenes (Table 4-1).

The C3-benzenes were present at very low concentrations, and consequently,

only the most abundant isomer, 1,2, 4-trimethyl benzene, is reported. The

2 samples contained very similar levels of C2-benzenes. The spring sample

had very much lower levels of C2-benzenes than seawater át that time, while

the fall rain sample had concentrations comparable to those of seawater.

If the rain was near equilibrium with respect to air concentrations of

these C2- and C3-benzenes, an estimate of the atmospheric concentrations

of these aromatic compounds may be calculated from the rain results.

These air concentrations may then be used to infer the direction of

air-sea exchange for the C2- and C3-benzenes at the time of rain collection.

From this approach, it appears that seawater was degassing the C2- and C3-

benzenes in June, but was near equilibrium in November.

These estimates of the atmospheric concentrations of the C2- and C3-

benzenes probably reflect the levels in air present during the entire rain

period. If these compounds occur as vapors, rainfall cannot efficiently

scrub the atmosphere of them since the partition coefficients (0.l-0.4)

are so low. Thus comparison of these estimated aromatic

~
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Table 4-l. CZ-benzenes and 1,2,4-trimethyl benzene concentrations (ng/kg)
in rain. For comparison, concentrations (ng/kg) are also
shown for seawater taken at CD in the biweekly sampling series.



C
om

po
un

d
R

ai
n

6/
14

/7
7

C
D

sw
6/

6/
77

C
D

sw
6/

21
/7

7
R

ai
n

11
/9

/7
7

C
D

sw
10

/2
7/

77
C
D
s
w
 
C
D
s
w

1
1
/
1
0
/
7
7
 
1
1
/
2
2
/
7
7

e
t
h
y
l
 
b
e
n
z
e
n
e

6

m
 
&
 
p
-
x
y
l
e
n
e

12

o-
xy

le
ne

6

1
,
2
,
4
-
t
r
i
m
e
t
h
y
l
 
b
e
n
z
e
n
e

3

14 73 28 23

Z
O 57 23 21

4 10 5 2

'-"
''''

''''

10 14 6 5

1
3
 
5

11
10

5
5

4
4

I i- 0\ i- I



-162-

compound concentrations in air to seawater concentrations of the Cz- and

C3-benzenes may be a valid indicator for the longer-term direction of flux.

Oyster Pond, Quashnet River, and Sippewissett Marsh.

Inland water samples were analyzed for their volatile content. Five

samples of Oyster Pond water were acquired in August and September, 1978.

This pond is located very near CD and is separated from the coastal seawater

by a narrow stretch of land (figure 3-1). The pond is a collecting basin

for groundwater and runoff, and releases about 3 X 106 liters of water to

the Sound near CD per day (Emery, 1972). Motorboats are not allowed on

Oyster Pond.

The concentrations of o-xylene in Oyster Pond were consistently found

to be lower than those in CD (figure 4-6). Assuming that sinks such as

biodegradation or loss to the sediments are no more important in the pond

than they are at CD, these .data suggest that the atmosphere. was not an im-

portant source of C2- and C3-benzenes to CD at this time. . Since o-xylene

is more soluble in freshwater than in seawater, the concentrations in

freshwater should be higher than in seawater given an atmospheric source

at equilibrium with both (Sutton and Calder, 1975; Appendix IV).

After rain, the Oyster Pond concentration of o-xylene increased (30%),

while at CD the concentration decreased (25%). This observation indicates

that the atmosphere is the source of this aromatic compound to Oyster Pond

but not to CD. It also supports the conclusion from the year-round data

that rain does not lead to delivery of aromatic hydrocarbons to CD.
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Figure 4-6. a-xylene concentrations (ng/kg) in water samples,
collected concurrently from CD (solid circles) and
Oyster Pond (solid squares) in August and September,
1978. A period of rain is indicated by the crosshatch.
The Labor Day holiday weekend (September 2-4, 1978) is
indicated. Crosses indicate concentrations expected
for seawater in equilibrium with the atmosphere, if
Oyster Pond samples accurately reflect atmospheric
concentrations.
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The Quashnet River and Sippewissett Marsh (low tide) were sampled in

August, 1977 and July, 1977, respectively. Both samples showed lower levels

of C2~ and C3~benzenes than seawater collected on the same day (Table 4-2).

These observations, together with those on the Oyster Pond samples, suggest

that runoff in the summer dilutes seawater with respect to these aromatic

hydrocarbons.

Air Measurements.

Air samples in August and September, 1978 were analyzed for C2- and C3-

benzenes. Air at CD was pumped through a 5-liter round bottom flask for

is minutes at a rate of about 2 liter/min. After this flushing, the air

was rerouted through a charcoal trap for is min. Repeating this sequence

4 more times allowed the analysis of 25 liters of air.

Figure 4-7 shows the result of a midweek air analysis. Standards

(added to the charcoal trap just prior to extraction and indicated in the

figure by dots) indicate the 1. 6 ng/l~air concentration level. First, one

can see that the concentrations of the alkylated benzenes were quite low.

Moreover, a reBtrip of the same air onto a fresh charcoal trap showed

significant levels of these compounds relative to the first strip. This

suggests that 15 min. for the first strip was insufficient for complete

recovery from 5 liters; and therefore, the concentrations of these compounds

in air may be underestimated by these analyses. Finally, an analysis of

exhaustively prestripped air is shown and reveals that the procedural blank

was very good.

Table 4-3 shows the observed levels for o-xylene in air. Highest

values were found on Saturday and Monday of the Labor Day holiday weekend"
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Table 4~2. CZ-and C3-benzenes concentrations (ng/kg) in water samples
from the Quashnet River and SippewissettMarsh (low water) .
For comparison, CZ-and C3-benzenes concentrations (ng/kg)
in seawater from CD collected on the same dates are shown.
Most of the C1-benzenes were present in Quashnet River water
at too low wafer concentrations to be measured.

\
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Figure 4-7. Gas chromatograms showing volatile compounds collected
from air, from a rest rip of that air, and from exhaus-
tively prestripped "blank" air. Clos.ed circles indicate
the l-chloro-n-alkane internal standar~s (5,8,16) which
are added at 1. 6 ng/l-air. C2-benzenes and 1,2,4-
trimethyl benzene peaks are also indicated. The GC
column was a 0.3 mm x 20 m SE54 glass capillary column
operated at room temperature for 8 min. and then
programmed from 20-2000C at 30C/min.
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Table 4-3. O-xylene concentrations (ng/ 1) in air from direct measure-
ments and calculated from rain and Oyster Pond o-xylene
concentrations assuming equilibrium with the atmosphere.
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DATE
o-xylene

(ng/liter air)

AIR MEASUREMENTS

August 10, 1978 0.4

September I,
" 2"
" 3
" 4
" 5
" 6

1978 (Fri)
(Sat)
(Sun)
(Mon)
(Tues)
(Wed)

0.4
1.5
0.3
1.3
0.3
O. i

CACULATED FROM RAIN MEASUREMENTS

June 14, 1977 1.0

November 9, 1977 0.9

CALCULATED FROM OYSTER POND MEASUREENTS

August 14, 1978 (Mon) 0.5

Augus t 31, 1978 (Thurs) 1.0

September 2, 1978 (Sat) 1.4

September 4, 1978 (Man) 0.8

September 6, 1978 (Wed) 0.9
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(September 2-4, 1978). Also shown are the concentrations calculated from

the levels found in rain and Oyster Pond samples assuming that these were

at equilibrium with the atmosphere (physical data in Appendix iV). The

general range of these calculated values agrees well with the levels measured.

Seawater, at equilibrium with the air values found, would contain 0.4 to

6.6 ng o-xylene/kg. Seawater samples always contained greater levels

of o-xylene than this, and therefore the atmosphere appears to have been a

sink, rather than a source, for C2- and C3-benzenes at this time.

Aromatic hydrocarbons introduced into the atmosphere are degraded

largely by reaction with OH- (Darnall et al., 1976). Reaction rates indicate

that this removal process from polluted air occurs with a half life of only

a few hours in daylight even for the slowest reacting alkylated benzene,

If the metropolitan area of New York were the source of a large plume of

aromatic hydrocarbon-rich air, by the time it reached Cape Cod, (ca. 8

hours, Cleveland et al., 1976), it would have been largely diluted and

cleansed by DH radical reactions. The 5-10 ng o-xylene/l-air found in

urban areas (Grob and Grob, 1971; Altshuller et al., 1971; Bertsch et al.,

1974; Ciccioli et al., 1976) may be reduced to the D.I to 1.5 ng o-xylene/

I-air found in this study.

It is difficult to know the nature of the source of C2- and C3~benzenes

. in the winter since the. samples in this study were taken in the late spring

through early fall. Levels almost never fell below 5 ng o-xylene/kg, eVen

in the winter; hence possibly the atmosphere serves as a buffer and main-

tains this "background" leveL. This would require the atmosphere to contain

about 1. I ng o-xylene/l-air, possibly a reasonabl e level for the metropolitan

Northeast U.S. In the sumer, it seems that the atmosphere is not a source,
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but that direct inputs (e.g. from boating activities) dominate. However,

even at this time, the atmosphere may operate as a buffer and .act as a

sink until the return of concentrations to background levels after summer

weekends. A brief calculation, utilizing the stagnant boundary layer model

of the air-sea interface (Broecker and Peng, 1974; Liss and Slater, 1974)

can show that exchange to the atmosphere may diminish a suddenly increased

concentration of a volatile compound in seawater to less than 20% of the

size of the spike within a week:

.dC D Aflux after spike input = dt =- _ -; x V (Cexcess)

where C = concentration of the organic compound,

t = time

D = diffusion coefficient

z = stagnant boundary layer thickness

A = cross sectional area of diffusion

v = volume of water column under A

C = spike concentration over and above concentration inexcess
equilibrium

rearranging and integrating

ln C/C
o

DA
= -- x t

zV

= C exp C DA x t)o zVC

for the region of CD,

D = 0.6 x 10-5 cm2/sec based on diffusion coefficient of methane and the
proportion of the square roots of molecular weights

(Witherspoon and Bonoli, 1969; Liss and Slater, 1974).
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2A=lcm

-2z = lO em corresponding to a wind velocity of 4.5 m/sec

(Kanwisher, 1963)

depth at CD ca. 2 meters.
3

V = 200 cm

then DA/zV = 3 x
-610 / sec

and af ter i hour C exp (-DA! zV) x (t) = 0.99C0 0

af ter i day = 0.78C
0

af ter 3 day = 0.46C0

af ter i week = O. 16C
0

Thus, if 30 ng o-xylene/kg were added to a 5 ng o-xylene/kg background,

degassing would reduce an observed concentratiòn of 35 ng o-xylene/kg

to 10 ng o-xylene/kg within 1 week. This reduction would be even faster

if wind speeds were greater or if other sinks such as mixing with cleaner

wa ter also were available.

SUMRY

Several independent approaches have been taken in an effort to assess

the transport öf C2- and C3-bè zenes to coastal seawater.

The data suggest that the atmosphere was not an important route of

delivery of these aromatic compounds to the seawater in the summer. The

highest concentrations of C2- and C3-benzenes ever observed at CD were

associated with motorboat traffic on a summer weekend. Two other lines of

evidence suggest that the air was not a source of these compounds to coastal

seawater in the period from late spring through fall. First, the inhomogeeity

of concentrations in surface seawater from Vineyard Sound indicated that
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an atmospheric source did not control these levels. Also air concentrations

of o-xylene (measured directly, calculated from rain data, and calculated

from Oyster Pond data) were below values expected for equilibrium with

observed seawater levels.

Analyses of inland freshwater samples from Oyster Pond, the Quashnet

River, and Sippewissett Marsh also revealed that runoff, through these

relatively undeveloped areas, diluted the coastal seawater with respect to

the aromatic hydrocarbons. This is not to say that runoff entering the

Sound through, for example, Falmouth Harbor, does not contain high concen-

trations of these pollutants.

The relative constancy of concentrations and isomer ratios of the

C2- and C3-benzenes in coastal seawater may indicate that a "buffer" controlled

the background levels of these materials. The metropolitan northeastern U. S.

may provide a continuous background of aromatic hydrocarbons and this, in

conjunction with the prevailing south westerly w~nd pattern, may maintain the

background levels observed at CD. This was supported by the November rain

sample which indicated that the atmosphere was near equilibrium with seawater

with respect to the C2- and C3~benzenes at that time.

Superimposed on this background, there may have been short-term effects

related to tourist and recreational activities on Cape Cod.

Additional work is required to study the "off season" effects. Also,

many assumptions concerning the sinks of these relatively refractory hydro-

carbons have been made and need to be investigated. Finally, the development

of dependable analytical methods for air samples is needed to complement

the reliable procedures already available for water samples.



CHATER 5. VOLATILE ORGANIC COMPOUNDS FROM BENTHIC ALGAE AN SEAGRASS

INTRODUCTION

Marine benthic algae are known to produce a variety of volatile .

org.;nic compounds (chapter I) which may.be secreted, excreted, or released

to the surrounding seawater on death, senescence, or structural deteriora-

tion. In a year-round study of the volatile organic compounds in the

coastal region of Vineyard and Nantucket Sounds, several compounds were

suspected to have been derived from benthic algal sources (Schwarzenbach

et al., 1978; chapter 3). These included hydrocarbons such as pentadecane

and halogenated compounds such as bromoform. This chapter details efforts

to assess the input of these volatiles to seawater from benthic algae and

seagrass.

METHODS

Algae and seagrass were collected in the vicinity of Chemotaxis Dock

._-

(CD). Table 5-1 gives relevant information. Efforts were made to avoid

epiphytized plants, that is, plants on which other species of algae are

attached and living. However, it was impossible to exclude all other

organisms. The algae were placed in 2-liter reagent flasks filled with

seawater and stoppered. The flasks were then anchored on the bottom at

CD or stored in outdoor running-seawater tanks at a nearby laboratory.

The algae were exposed to ambient sunlight and temperature conditions

during incubation. After 24 hours, the flasks were purged for I hour (with

h L ill i I ) i h 1 d i 200C ( htea gae st n pace w t recyc ear at except t e May samples

o
at 35 C). The effluent volatile organic compounds were trapped on a char-

coal trap which was subsequently extracted with is ~l of CS2 or CH2CI2.

Gas chromatographic analyses were made using a Carlo Erba model 255l

-176-
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Table 5-1. Date of collection
collected near CD.
and the insolation
collection.

-i 77-

and dry weight of benthic algal samples
Also shown are the seawater temperature

(average for month) at the time of
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gas chromatograph equipped with a flame ionization detector (FID) and

splitless injector. Samples were chromatographed on an SE 54 glass

i.d. x 20 m long) supplied by Dr. K. Grob (EAWAG, Dubendorf, Switzerland).

The columns were held at room temperature for 8 min. and then programmed

from 20 to 2000C at 30C/min. for the SE54 or 20 to l800C at 30C/min. for

the UCON. Helium was the carrier gas (ca. i ml/min.) Compound cone 
en-

trations were calculated based on peak height relative to the l-cl-nC8

standard and were not corrected for stripping efficiency and FIU response

(e. g. the Fin is about 4 times more sensitive to l-cl-nC~ than to bromo-

form on a weight basis).

Gas chromatography-mass spectrometry was performed on a Finnigan

3200 GC-MS system using an SE52 glass capillary column (0.3 mm i.d. x 20 m

long). Electron impact spectra were acquired with an electron potential

of 70 eV. Chemical ionization spectra were obtained with methane as the

reagent gas at 950 ~ and with electron energy of l30 eV.

RESULTS

Table 5-2 lists the major components identified, the GC retention times

on the two columns, and whether EI or CI spectra were acquired. Sample

spectra are shown in Appendix V. Retention indices were calculated

relative to the even l-chloro-n-alkanes.

Algal production and release of individual volatile organic compounds

has been estimated by subtracting the seawater control concentration from

that observed with the algae, and then dividing by the weight 
of the sample.

These results are shown in Table 5-3 for the hydrocarbons and Table 5-4 for the

halogenated methanes. Most of the discussion will be restricted to samples

which showed more than 5 times the concentration of a given compound relative

to the control seawater. Increases of only 2 - 5 times over control levelsi i
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Table 5~2. Retention indices (RI) on SE54 and UCON HB5l00 glass capillary
columns for hydrocarbons and halomethanes released to seawater
by marIne benthic algae. Crosses indicate mass spectra (shown
in Appendix V) available from samples.

,

"~
~-
-~

i'~



-181-

UCON R1

Compound SE54 R1 HB51o.O EI spec C I spec

pentadecane 415 388 x x

heptadecane 512 485

17: 1 507 480. x x

17: 1 500. 480 x x

CHBr2Cl 075 140, x x

CHiBr1 081 075 x

CHBr 3 123.5 189 x x

CHi 12 139 149 x x

R1 defined with respect to 1-chloro-n-alkane$

50-100: lclnC5 - 1clnC6

100-200: 1clnC6 - 1clnC8

200-300: 1clnC8 - 1clnC10

300-400: 1clnC10 - 1clnCii

400-500: 1clnC12 - lclnC14

500-60.0: 1clnC14 - 1 clnC16
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Table 5-3. Hydrocarbon release rates (ng/gm dry weight/day) from algae
into seawater. Values in parentheses indicate that seawater
concentrations of hydrocarbons after algal incubation were
2-5 times greater than concentrations found in the control
seawater. Other values represent increases in seawater
concentrations of hydrocarbons of more than 5 times over the
concentrations in the control seawater.
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Table 5-4. Halomethane release rates (ngl gm dry weight/day) from algae
into seawater. Values in parenthesis indicate that seawater
concentrations of halomethanes after algal incubation were
2-5 times greater than concentrations found in the control
seawater. Other values represent increases in seawater
concentrations of halomethanes of more than 5 times over the
concentrations in the control seawater.





- l86-

are shown in parenthese s. The lower limits allow assurance that observed

concentration increases cannot be due to analytical imprecision.

DISCUSSION

Pentadecane was observed to be produced and released in large quantities

in three samples: (i) Fucus, brown alga, May Ii, (2) Petalonia/Scytosiphon,

browns, May ll, and (3) Enteromorpha, green, October 2. All of the other

samples of brown algae showed small (less than 5 times the control sea-

water) releases of this compound. The other Fucus samples may not have

demonstrated the strong pentadecane release capacity for reasons of method

or physiology. While the May Fucus sample was stripped at 350C, all of

o
the other Fucus samples were stripped at 20 C and for this reason may not

have large pentadecane enrichments. This interpretation was not supported

by finding only 6 ng nCl5/gm juvenile Fucus stripped at 500C as compared

o
with 20 ng nC15/gm Fucus (May ll) stripped at only 35 C. Thus, while there

may have been some effect of the temperature of stripping, it seems that

other factors must also have been involved.

Seasonal differences in the physiology of Fucus at different times of

year may have been important. Conover (1958) found that Fucus was "dormant"

locally in the months of July and August, but had maximum growth in the

months before and after this time. Mathieson et al. (1976) have shown that

spring and early summer is the period of maximum growth and reproduction

of Fucus vesiculosis in a New'Hampshire estuary. Consequently, the May

sample of Fucus may represent a physiological condition different from later

samples.

Blumer and his coworkers (Clark and Blumer, 1967; Youngblood et al.,

1971; and Youngblood and Blumer, 1973) have showed the predominance of

pentadecane in brown algae. They have reported 10-100 ~g nCl5/gm dry

weight algae. Even the largest release rates, calculated for the brown
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algal samples from the present work, would take many months to empty the

reservoir of pentadecane in these algae. Therefore, these release rates

appear reasonable.

These investigators have also reported somewhat lower levels of penta-

decane in the green alga, Enteromorpha, of i ~g/gm. The higher rate of

release of pentadecane from the sample of Enteromorpha examined in this

study may indicate a greater "leakiness" of this alga. This plant shows

a high surface-to-volume ratio relative to its brown counterpart, Fucus.

Even if handling of this fragile form caused the observed production,

similar damage is to be expected in the environment. This alga lives in

the shallowest waters and suffers breaking waves and occasional exposure.

Simple calculations may be made to see if the release rates indicated

by these experiments may be responsible for the observed levels of penta-

decane in CD seawater. A typical benthic algal biomass for this region is
2

given by Conover (1958) as ranging between 1.5 and 4 kg wet weight/m .

Assuming these plants are 80% water, this converts to 300 to 800 gm dry

2weight algae/m. At a production and release rate of 30 ng/gm dry weight/

day and assuming the average residence time of water at CD is 2 days (ch 3&4),

2
a standing stock of pentadecane as much as l8 to 48 pg/m may be expected.

For a 2- mete;r water column, this corresponds to IO to 20 ng nCl5/liter

seawater. Nearly all of the seawater samples assessed in the year-round

study at CD were in this concentration range (figure 3-16). On three

occasions (June and September, 1977 and May-June, 1978) pentadecane levels

in seawater rose dramatically. These incidents may reflect particularly

strong storm activity destroying algal structural integrity and releasing

pentadecane to the seawater. On the other hand, algal physiology, which

is closely aligned with environmental parameters such as light and tempera-

ture, may be responsible. Since these parameters are changing rapidly in
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June and September, it may be more reasonable to expect algal physiology

changes to cause the observed pentadecane seasonal increases. Algal in-

cubations conducted precisely at these times of year are necessary to

confirm this hypothesis.

Surprisingly, heptadecane was not produced and released at high

rates in these incubation experiments. This lack of release is in strong

contrast to the case of pentadecane. Previous workers (Clark and Blumer,

1967; Youngblood et al., 1971; and Youngblood and Blumer, 1973) have re-

ported the importance of this hydrocarbon in red algae. They found be-

tween 100 andlOOO ~g/gm dry weight of ~ed algae. At most, only a few

ng/gm dry weight/day were found in the present experiments. A standing crop

calculation similar to that performed for pentadecane indicates that this

rate would support about 0.5 to 2 ng/liter seawater. Many of the CD

year-round values are only slightly above this concentration range. Peak

heptadecane concentrations at CD may be derived from algal species or

physiological stages of algae not included in these studies.

The two green algae studied revealed very high production rates for

some unsaturated l7-carbon compounds. The retention time and GCMS data, :1;c

~'

along with the work of Youngblood et al. (1971), suggest that the com-

pound from Enteromorpha is cis-3-heptadecene. Since this compound shows

such a high release rate, one would expect to observe it along with pentade-

cane in seawater. This compound was not seen in CD seawater and reaffirms

the suggestion made by Schwarzenbach et al. (l978) that brown benthic algae

were the major source of pentadecane. Codium also demonstrated production

and release of another unsaturated heptadecene.
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Production of halogenated methanes was found in these incuba-

t ions. All of these compounds have been previously reported from a

red alga, Asparagopsis taxiformis (Moore, 1976). Halogenation in

the Rhodophyta has been extensively documented (see Fenical, 1975

for review), but little work has been done on other algal classes.

Members of every algal class showed production of bromoform

(tribromomethane). The low levels of apparent production by the

vascular plant, Zostera, were quite startling, however. Epiphytic

algae or attached microorganisms may have been responsible. Also

Zostera may have accumulated this compound from the surrounding

seawater only to release it upon stripping. These sorts of "pro-

duction" mechanisms may also be operating for some of the algae ex-

amined and ex?lain the prevalence of this production.

An examination of the Fucus data suggests that maximum release

of bromoform occurs in the middle of the summer, at a time when the

algae may have been dormant (Conover, 1958). If a tribromo-2-keto-

compound were present in the essential oil of this brown alga and

were released during this period into the seawater, decomposition to

produce bromoform would occur (Burreson et al., 1976, quoted in Moore,

1977) .

Lesser amounts of chlorodibromomethane were also frequently

produced with bromoform; however strong production of this com-

pound was confined to the brown algae samples.

Release rates of 20-40 ng haloform*/gm dry weight/day suggest

that standing stocks of 1-2 ng*/liter s~awater would result in coastal

seawater. Such levels of bromoform were observed in the year-round

*Note that these weight values underestimate the true halo form levels

due to insensitivity of an FIb relative to the l-cl-nC8 internal standard.
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study in some summer samples (Schwarzenbach et al., 1978; chapter 3)

and in the August and October control seawater samples of this study.

Two dihalomethanes were also found. These were produced at

about 0.1 times the rate of the trihalomethanes. This may reflect

the greater difficulty of cleavage of the dihalo-2-keto-compounds

relative to that of the trihalo analogues. The presence of iodine

in both of these dihalocompounds would serve to' enhance this cleavage.

o
"

X3C--C--R

o
"

k )i X3 CH + HOCR

o
" k/10? ,. o"

X2 CH2 + HOCRHX C--C--R
2

Release rates on the order of several nglgm dry weight/day sug-

gest that standing stocks of less than 1 ng/liter seawater would re-

suIt. Thus detection by the FID would not be expected and indeed

the CD year-round samples did not reveal the presence of these com-

pounds. However, future work utilizing an electron capture detec-

tor may be fruitful, since thia detector is particularly sensitive

to halogenated compounds.

Undoubtedly, many other compounds substituting halogens for one

another were present in the algae of this investigation, but were

not seen due to limitations of the methodology (e.g., iodoform may be

too soluble and have too high a boiling point to be stripped).

One potential problem with this study is that algae may be

artificially induced to release. the volatiles to seawater by

the experimental conditions. However, since algae do not have root

systems, they do not die upon disengagement from the seafloor.
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Also, wave action is frequently very strong in the shallow near-

shore region and may be expected to break up algal structures. It

was hoped that by restricting the period of incubation to only one

day and by controlling the flask temperature at that of the ambient

environment, the chemistry of the enclosed seawater would not dras-

tically change and cause unnatural release of organic compounds.

The stripping process may also alter algal production and re-

lease of the volatiles. Warming the samples and agitating the algae

with vigorous bubbling may influence the release of these substances.

The efficiency of stripping a water sample with a large algal sur-

face area included is unknown, but might be expected to be lower

than that containing only water due to competition between the sur-

face and the compound in solution (Le., a "strippable" state).

Despite these reservations, the data do indicate that hydro 
car-

bons and halocarbons are released at significant rates by various

marine algae into seawater.

The purpose behind the biochemical synthesis of the halo-compounds

is unknoiYn. Fenical (1975) suggests that they. may be utilized as
~ -

f
(
r

anti-microbial or anti-herbivore agents. Thus a topical location

of these materials would be most useful and their consequent release

to the seawater would be expected to be easier than for hydrocarbons.

If competitive advantages exist, it would also be useful for a

higher marine plant such as Zostera to accumulate these compounds

from seawater. Also it may be particularly advantageous to maximize

production in the summer to protect plants during this period of

intense grazing by animals.
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Surprisingly, the Rhodophyta showed the least ability to re-

lease these halogenated compounds. These algae are well known for

the halogenation of terpenes and other metabolites (Fenical, 1975:

Crews, 1977). The studies of the red algae have typically in-

volved destruction of the plant structure and therefore may not per-

tain to the introduction of compounds into seawater. It is possible

that the physiological status of the red algae samples in these

studies was such that the release of halocompounds was low.

Study of more algal classes with nondestructive conditions is

necessary. Work to determine possible communication mechanisms us-

ing these chemicals in seawater may also be useful. Study of the

degradation of these natural products may lend insight into the

processes degrading more complex industrial halogenated materials

(Fenical, 1975).

SUMY

Evidence for the production and release of several hydrocar-

bons and halomethanes by benthic marine algae was obtained.

The observed rates of release to seawater were consistent

with the levels found in most CD seawater samples obtained in a

year-round study of the region.

Seasonal physiological changes of the algae may be the most

important factor controlling large inputs of volatile organic com-

pounds to seawater.



CHAPTER 6. SUMRY AND CONCLUDING REMARKS

The major objectives of this thesis were to identify and quantify

vola tile organic compounds in seawater, and to deduce their sources,

transformations ,and transport mechanisms. Two approaches have been

taken to accomplish these goals. First, samples from 3 open-ocean regions,

the Sargasso Sea, the western Equatorial Atlantic, and the upwelling region

off Peru, were analyzed for volatiles, and correlations with ancillary

data were sought. In the second approach, temporal variations of the

concentrations of volatile organic compounds in coastal seawater were

investigated and interpreted by comparison with those of known coastal

processes.

Open-Ocean Seawater

Total volatile concentrations found in oligotrophic surface Sargasso

Sea samples were only 10-30 ng/kg, while total concentrations in samples

from the biologically productive upwelling region off Peru were about

100 ng/kg.

Pentadecane was found in surface seawater samples from all 3 regions,

typically at lO-40 ng/kg. This compound was not derived from fossil fuel

inputs as other homologues (e.g. nCi4.and nCi6) were present at only

trace levels. Based on a calculation, it appeared that a phytoplankton

source was impronable, as the literature suggest that these organisms do

not contain sufficient amounts of pentadecane. A transformtion of the

abundant fatty acid, hexadecanoic acid, to pentadecane by zooplankton, in

a manner analogous to the production of pristane from phytanic acid, may

have been the source of open-ocean pentadecane.

-l93-



-194-

Three deep samples (ca. 2000m) contained high concentrations of

pentadecane. In situ production or vertical transport and release at

depth do not seem likely to be the source of this hydrocarbon occurrence.

Advective transport of North Atlantic Deep water may have carried this

fairly stable organic compound from the biologically productive surface

formation sites to the deep ocean.

C2-benzenes were found in the recently upwelled surface water off

Peru. Concentrations of meta + para xylene were about 4 ng/kg at 5 and

20m, about 3 ng/kg at lOOm, and about 2 ng/kg or less in the deeper

samples. This distribution indicates a surface or atmospheric source.

The air concentration necessary for the atmosphere to have been a source

was l-2 ng/l-air.

Vertical transport of m + p xylenes was indicated by the anomalously

low concentrations of these aromatic hydrocarbons in 5- and 20-m sample~

at stations 4 and 5 off Peru and by an unusually high concentration of

these compounds in seawater collected near the bottom at station 4.

Low nutrient concentrations in these surface seawaters revealed that

intense phytoplankton production had occurred, and if the m + p xylenes

became associated with biogenic particulate matter, subsequent sedimentation

and remineralization near the bottom may have introduced these compounds

to deep wa ter .

An unidentified alkene (ro 108) was recovered at up to 30 ng/kg from

surface seawater samples from the upwelling region off Peru. The GC

retention index and mass spectra of this compound showed that it is

probably structurally related to fucoserraten, an unsaturated hydrocarbon

used by the benthic alga, Fucus, as a sexual chemotactic signal. The

unknown compound may be formed by isomerization of fucoserraten (trans,
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Coastal Seawater

Total volatile concentrations found in a study of coastal seawater

were between 200 and 500 ng/kg. Higher total concentrations coincided

with the late-winter phytoplankton bloom. Anthropogenic inputs of hydro-

carbons caused similarly high total concentrations.

All of the C13-C17 alkanes and pristane were found at relatively

higher concentrations after a nearby oil spill. The "carbon preference

index" was near i at that time and corroborated the assignment of these

compounds to a fossil fuel source.

Pentadecane and heptadecane showed separate large concentration

increases up to 80 and 20 ng/kg, respectively, in the sumer. The high

"carbon preference index" associated with these concentration maxima
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indicated that these hydrocarbons resulted from biological inputs. It is

known that benthic algae contain pentadecane and heptadecane, and a calcu-

lation demonstrated that it was reasonable to propose that these algae

were the source of these saturated hydrocarbons.i

The C2- and C3-benzenes concentrations covaried temporally in coastal

seawater. They were most concentrated after the oil spill and after summer

weekends. Sumer weekends are peak periods of tourist and recreational

activities in this coastal region, and strong inputs of C2- and C3-benzenes

were attributed to the uses of fossil fuels during these activities.

An unknown compound (ro 108) was found at about 20 ng/kg in coastal

seawater of Vineyard Sound in February and March, 1978. GC retention data

and mass spectra showed that it was identical to the unknown compound

recovered from off Peru and was similar to fucoserraten, the sexual

chemotactic agent utilized by benthic algae, Fucus. The appearance of this

unsaturated hydrocarbon compound coincided with the time of year in which

Fucus were expected to be reproductively active. As was the case for the

region off Peru, rapid isomerization of fucoserraten may have yielded

the observed unknown compound.

Naphthalenes were found in coastal seawater at about lng/kg in the

sumer, and as high as 5-10 ng/kg in the winter. The naphthalene to

methyl naphthalenes ratios of the temporal study samples oscillated sinu-

soidally such that maximum ratios near 1.6 were found in the winter while

minimum values of 0.8 appeared in the sumer. This may be due to more

indirect inputs (e.g. via the atmosphere) of naphthalenes to coastal- _. _.. - - -
seawater in the winter allowing more fractionation of these homologues.A . .

C6-CIO aldehydes were also found in all the biweekly seawater samples

from Vineyard Sound. The concentrations of these compounds increased
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markedly during the late-winter phytoplankton blooms of 1977 and 1978.

.-.

Oxidation of algal unsaturated fatty ac!d~ may also produce these alde-

hydes in coastal seawater as suggested for open-ocean seawater.

In addition, C12-C15 aldehydes occurred at very high concentrations

in February, 1978. Tridecanal was recovered at more than 100 ng/kg.

Cultures in log and stationary growth phase of Thalassiosira nordenskioeldii,

the predominant diatom found in the late-winter bloom, did not produce

these aldehydes. Oxidation by zooplankton or photochemically-produced free

radicals may be necessary to produce these aldehydes from algal metabolites.

Dimethyl di-, tri-, and tetrasulfides were found at up to 20 ng/kg

in coastal seawater. The observation that the first 2 hours of stripping

frequently recovered less of these polysulfides than Æn additional 2 hours

of stripping led to the conclusion that formation of these volatile sulfur

compounds must occur within the sample. Marine microorganisms are known

to produce methyl mercaptan, which may be oxidized to dimethyldisulfide.

Reaction 0~methyl mercaptan or dimethyldisulfide with elemental sulfur

will yield other polysulfides. These polysulfides may also be derived

from degradation of other polysulfide metabolites.

Ci- and C1-benzenes in Coastal Seawater

Additional work was performed to describe the sources of the C2- and

C3-benzenes to coastal seawater. Short-term studies carried out over

sumer weekends showed that large inputs of these pollutants occurred at

these times (2-10 fold concentration. increases). The highest concentrations

ever found coincided with ski boat activity in the immediate vicinity of

the sampling site. The C2- and C3-benzene isomer distribution of the
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average year-round sample data most closely resembled the distribution

found in gasoline and auto-exhaust -dissolved-in-seawa ter. The larges t

deviations of the average year-round isomer distribition from these

laboratory-determined distributions was for peaks containing para-

substituted benzenes. These particular isomers may be preferentially

degraded, for example by microorganisms,

Cz- and C3-benzenes were not homogeneously distributed in surface

seawa ter collected near CD in the fall, spring, or summer. Rain samples

from June and November contained lower or equal concentrations of these aromatic

. _... ,-. _.......

hydrocarbons than seawater. Oys ter Pond, a 'nearby::freshwa ter pon:d - on: 
which

motor boats are not allowed, had lower concentrations of C2- and C3-benzenes

than seawater samples from CD collected at the same time in August and

September. Atmospheric levels of these compounds measured at CD in August

and September were also below those expected for equilibrium with coastal

seawater. All of these results are consistent with the hypothesis that

the atmosphere was not a source of Cz- and C3-benzenes at CD from the

spring through the faii.

Low concentrations of C2- and C3-benzenes in samples from inland

sites showed that runoff through these relatively undeveloped regions

dilutes seawater with respect to these compounds.

Hydrocarbons and Halomethanes from Benthic Algae and Seagrass

Algae released hydrocarbons and halomethanes to seawater during

day long incubations. Pentadecane, heptadecane, and bromoform were

produced at rates which may support the observed coastal seawater levels.

The other compounds were not identified in the year-round study and release

ra tes sugges t that they would appear at only trace levels.
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Pentadecane and the halomethanes were found especially in brown

algae. Two green algae produced 2 different 17-carbon mono~unsaturated

hydrocarbons.

Zostera marina, a higher vascular plant, also released bromoform

to seawater. This observation suggests that Zostera, and other algae,

may concentrate it from seawater.

Volatile Organic Compounds Not Detected in Seawater.

Volatile ketones, esters, and ethers were not deteèted in seawater.

The methodology used was capable of the analysis of suitable representa-

tives of these compound classes. Esters are known to have biological

sources, but they were also found to be rapidly degraded chemically in

seawater (half life of a few days with respect to hydrolysis in seawater).

Ketones and ethers are at least as stable chemically as aldehydes, therefore

their observed absence may be attributed to insufficient sources.

Several other volatile compound groups were not detected, and there-

fore upper limits for their occurrence in Vineyard Sound seawater of less

than lng/kg have been established. Lower n-alkanes (nC8-nCI2)' prominent

constituents of petroleum products; chlorinated benzenes, produced by

ch10rina tion of sewage and drinking water; and halogenated terpenes, known

from red algae of shallow Pacific coast regions, were not detected.

Terpenes were also undetectable. This res~lt is consistent with the

following scenario for delivery of C2- and C3-benzenes and terpenes from

land to the sea. The terrestrial sources of both generate atmoslheric

concentrations of individual compounds of 1-40 nfl-air near the site of

input. The tertiary and allylic hydrogens of the terpenes and the benzylic
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hydrogens of the C2- and C3-benzenes, are very reactive with atmospheric

free radicals (e.g~ OH'). Darnall et al. (1976) report that terpenes

(limonene and beta-pinene) are attacked by OH' 1~3 times faster than the

most reactive C3~benzene. Therefore, decomposition of individual terpenes

is faster than that for C2- and C3-benzenes during atmospheric transport.

Relative transfer into seawater may be described by consideration of the

relative partition coefficients, Solubility data for terpenes are not

available, but an estimate of these values may be made using an empirical

+

relationship 'of molar volume and log solubility (McAuliffe, 1966). Utilizing

this approach, one finds that terpenes are about an order of magnitude

less soluble than Cz- and C3-benzenes. Thus since vapor pressures for

terpenes are similar to those of Cz - and C3-benzenes, one may conclude

that the terpenes will partition between air and seawater such that the

proportion of a terpene compound dissolved in seawater will be .about an

order of magnitude less than that for C2- and C3-benzenes. If atmospheric

contributions to the C2- and C)-benzenes in coastal seawater at CD

support the observed background levels of 1-IO ng/kg (chapter 4), then

terpenes could well be present at less than O.L-L ng/kg, hence escaping

detection.

Future Work

While this thesis adds to our knowledge of the spectrum of low-polarity

organic compounds in the analytical window from n-octane to n-pentadecane,

additional work is still required to determine the volatile organic fraction

boiling between n-pentane and n-octane. This unstudied fraction contains

many of the compounds used as solvents and consequently may reveal strong
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anthropogenic inputs. Work in this area must include extra precautions

to avoid spurious results derived from laboratory contamination. This

problem has made the results on toluene from the analyses reported in this

thesis difficult to evaluate,

Benzenes and naphthalenes are presistent constituents of coastal

seawater. The transport of volatile aromtic hydrocarbons to seawater

is incompletely understood. The elucidation of the role of the atmosphere

as a source or a sink of these alkylated benzenes and naphthalenes to

coastal seawater awaits the simultaneous application of more detailed

air and water measurements. Also, little is known about the affinity of

these aroma tic hydrocarbons for particles, their transport into sediments,

or their microbial degradation rates.

Additional work to confirm transformation~ oroposed in this thesis,

is necessary. Also work to ascertain the roles of catalysts, light, and

special reactants, such as elemental sulfur, is needed so that these

reactions may be extended to predict effects on more complex organic matter

in the sea.

Additional work is necessary to confirm the identification of the

unknown alkene and its source. Since this compound, which may be a

chemical signal related to the s.exual reproduction of a benthic alga, and

volatile hydrocarbon pollutants are found similtaneously in coastal

waters in Vineyard Sound and off Peru, the question arises: do these

pollutants interfere with the natural communication process?

Throughout these studies on the cycling of both natural and anthro-

pogenic compounds, it was apparent that much additional work on acquiring

basic physical chemical data, e.g. solubilities of compounds such as

aldehydes, is n.:eded.
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Application of sensitive selective detectors (e.g. electron capture

detector) may reveal many additional natural (e.g. haloterpenes) and

anthropogenic (e. g. chlorobenzenes) compounds in seawater.



APPENDIX I ANALYTICAL METHODS USED FOR THE DETERMINATION OF
VOLATILE ORGANIC COMPOUNDS IN SEAWATER

Introduction

This appendix describes the methods used for the analysis of volatile

organic compounds in seawater. These stripping methods have been adapted

from others reported in the literature ("Tenax": Zlatkis et aL., 1973;

Novotny et al., 1974; Bellar and Lichtenberg, 1974; Bertsch et al., 1975;

May et al., 1975; "Grob": Grob, 1973; Grob and ZUrcher, 1976). Experiments

performed to evaluate the methods will also be described. Finally, a

brief discussion of the relative merits of these methodological approaches

will be provided.

Sampling

PVC Niskins (5- and 30-liter) with stainless steel or Teflon-coated

springs were used to collect seawater samples. The bottles were flushed

with tapwater and then extensively rinsed at sea before use. Bottles

were stored closed on deck.

A comparison of the volatile organic compounds in surface seawater

samples collected with a 5-liter glass round bottom flask and a PVC Niskin

did not reveal any differences. This was also seen for coastal seawater

samples (Schwarzenbach et al., 1978).

Sampling was always performed with the winds blowing off the sea

and onto the side of the ship with the hydroplatform.

On the Sargasso Sea cruise, water samples were transferred through

the air into round bottom flRsks. For the western Equatorial Atlantic

samples, water was transferred from the Niskin samplers through glass

-Z03-
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tubing into round bottom flasks. Finally, on the Peru cruise J the seawater

was passed through polypropylene tubing, precornbusted glass fiber filters,

and a stainless steel filter holder before entering the glass flasks. No

indication of contamination by these transfers was found. It seems that

the limited contact with open ocean air during transfers does not add

volatile organic compounds at the ng/kg level. This was also found by

Schwarzenbach et al. (1978) for samples transferred at coastal sampling

sites.

Tenax Methodology

The first method chosen to investigate open ocean volatiles sought

to provide rapid and routine semiquantitative analysis of this fraction.

Based on the literature, methods utilizing Tena~ as a solid adsorbent of

volatiles purged from aqueous samples by dynamic headspace stripping

seemed most suitable. The following is a description of the details of

this methodology as it was applied to the analysis of seawater samples.

Tenax traps :'¡~,

The Tenax traps were made from 0.125" o.d; x 1. 5" long Pyrex glass

¡,,
I

tubing. One end was firepolished until the opening constricted to less

than i ro. A glass wool plug was inserted and packed into this constricted

2
Then 6 mg 60/80 mesh Tenax beads (approximately O. i m surface area)end.

followed by a second plug of silanized glass wool were added . Individual

traps were stored in Teflon-lined screw-cap vials which were previously

washed with soap and water and baked dry. The traps were cleaned just

before use by heating to 2500C under helium flow (2 ml/min) for i hour.



-205-

Tenax (Applied Science Laborator:Les, Inc i' State College, Pennsylvania)

is a polymer of 2, 6-diphenyl~para-phenylene oxide that has been shown to

serve as a useful adsorbent for low-to~medium polarity organic compounds

(Zlatkis et aL., 1973; Bellar and Lichtenberg, 1974; Novotny et aL., 1974;

Bertsch et al., 1975; Dowty et al., 1975; May et al., 1975). It has no

affinity for water. Furthermore, samples may be stored on Tenax for several

weeks (Zlatkis et aL., 1973). This polymer is thermally stable (up to

4000C; wan Wijk, 1970; Sakodynskii et al., 1974) and hence is suitable for

thermal desorption of a sample load in the hot injection port of a gas

chroma tograph.

Stripper

The stripper (figure I-i) reservoir consisted of a 2 liter "cool

coil" condensor with 24/40 ground glass joints. Below this was a glass-

blown piece including the frit (pencil shaped, fine porosity) for intro-

duction of the purging gas and a sidearm tube with a stopcock and ball

joint for sample input. Above the stripper was a Liebig condensor operated

at 150C to minimize water transport to the trap (Zlatkis et al., 1973;

Novotny et al., 1974) , An adapter on the Liebig condensor reduced the

24/40 exit to 0.25" glass tube. This, in turn, was reduced with a 0.25"

male to O. 125" male swagelok union with Teflon ferrules. When not in use,

an 0.125" glass rod was inserted into this union to keep the stripper

clean. A Tenax trap was substituted for this rod just prior to seawater

sample introduction into the stripper.

Stripping
,

A precleaned trap was inserted in place on the stripper. The "cool

coil" condensor had 600C water running through it to rapidly heat the
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Figure I-I. Stripper used with Tenax traps.

~
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sample. Sample water was forced into the stripper reservoir by connecting

a 2 -liter round bottom flask containing the sample to the sidearm piece

for sample introduction and pressurizing this flask with helium. Midway

through sample transfer, the stopcock was closed 1 the pressure was released,

the joint in the transfer line was parted ~ and an internal standard (20 ng

each l-chloro~hexane~ -decane~ -dodecane in 2 ~1 acetone) was injected into

the water in the transfer line. Connections were rapidly remade and the

stripper filling was completed. This transfer took about LO minutes during

which time a 1700 ml sample initially at l50C was heated to 200C at the

o
stripper bottom and 40 C at the top. Immediately upon bubbling, temperatures

o
equilibrated, and at the end of a 5 minute strip, the water was at 50 C.

Once the sample was introduced~ purging with helium was begun. High-

purity charcoal-filtered helium was used for stripping at iSO ml/min.

After 5 minutes of stripping, the gas flow was stopped, and the trap was

replaced by the glass plug. The trap was returned to the small vial and

stored in a freezer. The seawater was then forced out the sample inlet

tube by continued bubbling with helium into the plugged stripper; once the

stripper was empty, the helium flow was continued for an additional 5

to 10 minutes to flush the stripper and leave it full of helium for the ¡,

J
next sample.

Gas chromatography and combined gas chromatography-mass spectrometry

The volatile organic compounds were detected and identified using

glass capillary gas chromatography (GC) and combined gas chromatography-

mass spectrometry (GC-MS). GC was performed with an HP5700 chromatograph

equipped with a flame ionization detector and subambient attachment (C02),

An O.125" injector was used and filled halfway with 0.125" o~d. glass
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tubing to hold the short Tenax trap near the injection port opening and

to reduce the dead volume of the inj ec tion port. The column extended

into the injection port for the length of this glass insert. The other

end of the column extended into the detector just below the bottom of

the flame jet. The front of the. column was made into a small loop for

cryogenic trapping. Both ends of the column were deactivated with

PG20,000 (0.5% in CH2CI2).

Sargasso Sea samples were chroma tographed on an 0.3 ro o. d. x

20 m long SE30 glass capillary column purchased from J & W Scientific

(Sacramento, CA). This column was programmed at room temperature for

2 min and then 30-200oC at 4°C/min. The carrier was helium at I ml/min.

The western Equatorial Atlantic samples were analyzed using a

0.3 mm ~.d. x 20 m long UCON LB550 glass capillary column. This phase

was chosen to work in conjunction with the reduced temperatures made

possible by the subambient attachment. The column was programed ato 0 0 I
10 C to 120 C at 2 C min. Helium was again used as the carrier at

1 ml/min.

For analysis, the GC oven was cooled to its starting temperature,

and then the oven control was turned to "off". A liquid nitrogen (LN)

bath was placed around the cryogenic loop. Next, the septum cap was

removed~ the Tenax trap dropped into the injection port, and the cap

quickly reins taIled.
oDesorption was then carried out at 250 C for

5 minutes with heliun flow carrying the volatiles into the cryogenic

loop at the front of the GC column. Finally, the LN was removed and

with the trap still in place, the temperature program was begun.

For GC/MS analysis ~ the UCON LB550 cOlumn was transferred to a Finnigan

. '. - _.' - - .
3200 quadrupole GCMS. Tenax traps were analyzed as with the GC. Electron

impact spectra were obtained with 70 eV ionization voltage. Chemical
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ionization spectra were acquired using CH4 as the reactant gas at 950 ~

o
pressure, with the ionization chamber at about 180 C and 130 eV ionization

potentiaL.

Evalua tion of the Method

Blanks were determined throughout the cruises. Precleaned Tenax

traps were placed on the helium~flushed empty stripper. Helium purging

was begun, as if the seawater sample were in place, and continued for

5 minutes. At the end of this time the trap was removed -to a screw-

cap vial and stored in the freezer along with other sample traps until

GC analysis. Typical gas chromatograms for blanks (no standards added)

and open ocean seawater samples are shown in figure i-Z. The blank

chromatogram was very similar to that shown previously by May et al.

(1975) . Contamination peaks were present in the "solvent regionll

(pentan~ acetone, methylene chloride) and for this reason, and because

the resolution in this region of the chromatogram was poor, this part

of the gas chromatograms was subsequently ignored. Peaks were also

present near the high-boiling end of the chromatogram, but these elute

beyond the volatile compounds Qoncentrated by stripping.

A large and variable blank was found for the western Equatorial

Atlantic samples. Identification of the compounds found in this contam-

ination showed the presence of several unusual compounds which were

stored in the same refrigerator as the Tenax traps. Traps stored in

more than one refrigerator before GC analysis showed contamination from

compounds unique to each refrigerator. Thus f Tenax trap storage in the

screw-cap vials was not always adequate for the prevention of large

blanks.
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Figure 1-2. Gas chromatograms showing volatile compounds collected
with Tenax method from IO m and 100 m seawater samples
at a station southeast of Bermuda in February, 1977.
Gas chromatograms from blank analyses run before and
after the samples are also shown. Closed circles
indicate the l-chloro-n-alkane internal standards (6,
10,12) which were added to the water at 10 ng/kg. For
gas chromatography conditions see text.
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For traps analyzed soon after loading, compounds boiling higher.o 0
than about IOO C and lower than about 300 C, could be measured at the

ng/kg level and be seen well above background in the chromatograms.

The efficiency of stripping was assessed in a series of experiments

in which coastal seawater samples were spiked with known quantities of

a variety of compounds. For recovery experjJents at less than 50 ng/kg,

the water was prestripped, removed from the stripper, allowed to cool,

spiked and then analyzed. Table I-i shows the recoveries of these

compounds as compared to direct spikes of solvent containing the same

compounds on the traps. Nonpolar and highly volatile compounds were

recovered at greater than 80% efficiency. Slightly polar materials,

such as the aromatics, were stripped at lower efficiency. Relatively

polar substances such as the aldehydes were recovered poorly or not at

all. Higher-boiling compounds such as heptadecane were found at reduced

efficiency. Pentadecane recoveries at low spike levels appear enhanced

and this was probably due to relatively large concentrations still in

the seawater despite prestripping. A 50% recovery figure was probably

appropriate for pentadecane. No other evidence for nonlinearity of

recovery was seen within the 10-300 ng/kg range tested. Relative

variability of these recovery determinations was calculated to be

approximately 20%.

The standard deviation of the analysis of 21 samples from the

western Equatorial Atlantic for the l-chloro-n-decane internal standard

was + 20%. Other work on seawater samples collected in the coas tal

region near Woods Hole shows similar levels of reproducibility for other

compounds. Table 1-2 shows this result for an aromatic and an aldehydei

as well as for two internal standard chloro-alkanes.
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Table I-i. Recoveries (%) of standard compounds from seawater using
Tenax method relative to direct spikes of compounds in
solvent onto Tenax traps. Standard compounds were addéd to
seawater at concentrations from 12-290 ~g/kg. Also shown
are the mean recoveries (%) the standard deviations (%)
of the 8 samples about the mean (unless noted in parentheses)
and the deviation relative to the mean.

'.
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Table 1-2. Standard deviations of replicate analyses of seawater samples
by Tenax method. l~cl-n-hexane and -decane were added to 3
of 4 replicate samples, while o..xylene and decanal were
already present.

~.l
'I'

,



RUN NO. l-c1-nC
6

l-c1-nC
10

1

2 2.8 2.7

3 2.9 2.6

4 3.4 3.2

x 3.0 2.8

o 0.33 0.31

0/-x 11% 11%
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A Co-xylene)

2.3

3.3

3.3

3.8

3.2

0.63

20%

B (de canal )

0.94

0.81

0.94

0.88

0.89

0.06

7%
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Grob Methodology

The methods of Grob (1973), Grob and ZUrcher (1976) and Schwarzenbach

et al. (1978) were used to analyze seawater samples from the Peru upwelling

region. Briefly ~ this involved stripping a 2-1i ter seawater sample in a

o
recirculating fashion for 2 hours at 35 C and 1.5 literslminute flow.

Purged volatiles were trapped on a charcoal trap consisting of i mg charcoal

sandwiched between 2 stainless steel screens. After stripping, 20 ng l-

chloro-n-oc tane in 2 ~ i CS 2. was added to the trap and then the trap was

extracted w.ith is ~l CSZ' Further analysis was by GC or GCMS,

Method Tests

In order to investigate the effects of filtering and poisoning on the

Peru upwelling region samples~ 6 samples were drawn in replicate and

subj ected to different combinations of these treatments (Table 1-3). The

two deepest samples (6/1000 m and 5/900 m) suggest that the treatments do

not add significant volatile compound concentrations (i.e., less than about

2 ng/kg).

Shallow control samples suggest that filtering may remove some volatiles.
"

~

:l
This was particularly evident for the aldehydes in the 5~meter samples.

Filtered samples contained 40 to 70% lower aldehyde concentrations than did

unfiltered ones. Filtering experiments on coastal seawater samples conducted

before the cruise, indicated that only high~boiling nonpolar compounds such

as pentadecane and naphthalene were removed by filtration (about 50% removal).

Therefore, some volatiles may be associated with particles in seawater,

and caution must be exercised in comparing filtered and nonfil tered samples.

In an. experiment to assess the effects of seawater storage on the

volatiles, 30 liters of coastal seawater were collected in a Niskin sampler,
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Table 1-3. Volatile compound concentrations (ng/kg) in Peru upwelling
region seawater samples subjected different treatments
(i.e. .no~e, poisoning, or filtering and ~oisoning).
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compound m & p xylenes mw 108 nC15 hexanal heptanal octanal

sample
(stn/ depth)

treatment

6/1000 tr tr tr 1. 7 tr tr
6/1 OOOP tr tr tr 1.8 tr tr
6/1000FP tr tr tr 2.2 tr 2.2

5/900 tr tr tr tt tr tr
5/900P tr tr tr tr- tr tr
5/900FP tr tr 3.5 2.4 tr 2.3

2/5P 4.5 9.3 21. 8 10.0 9.9 4.5
2/5 FP 4.3 4.7 13.4 4.6 3.3 2.3

3/20P 2.9 2.5 14.9 3.9 3.2 2.0
3/20FP 2.7 2.7 10.1 3.5 2.9 3.3

4/340P tr tr tr tr tr tr
4/340FP 6.8 tr tr tr tr tr

5/5P 3.0 22.2 8.3 9.9 9.5 6.2
5/5 FP 2.8 18.4 10.3 ó.3 5.4 3.9

tr: trace (less than 2 ng/kg or 10% of the I. S.)
F: filtered
P: poisoned



-221-

glass fiber filtered by gravity into six 2-liter reagent flasks, poisoned

with mercuric chloride, and spiked with compounds exhibiting the same func-

tionality as those found in the Peru samples but with carbon skeletons not

seen in coastal seawater. Three of these samples were analyzed immediately,

while the other 3 were sealed in styrofoam chests and stored at 4°C for i

month (as were the cruise samples). At the end of that time, the samples were

analyzed and the resultant recoveries for the spiked compounds compared to

those exhibited by the unstored samples (Table 1-4). The three hydrocarbons,

an alkane, an olefin, and an aromatic, all showed approximately 60% relative

recovery at 1.5 times greater efficiency than a month earlier. Each tripli-

cate set showed less than 20% variation of these results.

The decreased recoveries of the hydrocarbons after storage may be due

to their removal from solution, i. e., a stripable state. Possibly these com-

pounds were adsorbed onto the walls of the glass flask (Kaiser, 1971) or were

incorporated into newly formed particulate matter (Riley, 1970). In keeping

with this, the more sgluble the hydrocarbon, the greater was its relative

recovery af ter storage.

On the other hand, 2-ethyl hexanal is relatively very solubl~ and may

be unaffected by these processes. In fact, these changes may have increased

the proportion of this compound in a stripable state and thus accounted for

the improved recovery after storage.

Comparison of Tenax and Grob Methods

The Tenax method offers several advantages. First, it is much faster

and is the only one capable of handling numerous samples as they are

returned from hydrocasts. Next, the traps are easy to prepare. It is

diff icul t to construct the charcoal traps of Grob, and we have always
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Table 1-4. Recoveries (ng/kg) of standard compounds added to 6 filtered
and poisoned replicates after no sample storage and after
one month sample storage. Also shown are the relative
recoveries (%) after one month as compared to no storage.

L
n

J
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Compounds

2,6-dimethyl- 2-ethyl- l-ethyl- tridecane
3-heptene hexanal 2-methyl-

benzene

Analysis

at time zero
1. 33.3 16.6 20.9 20.2
2. 29.1 12.0 19.5 19.3
3. 30.5 11. 9 18.7 18.1

i' .! a 31.0+2.1 13.5+2.7 19.7.1.1 19.2+1.1

at time one month
1. 17.1 20.3 12.6 10.4
2. 18.9 19.6 11. 9 11. 5

3. 20.2 20.6 13.9 11.4

- +
a 18.7+1. 6 20.2+0.5 13 . 3+0. 7 11.1+0.6x _

x(one month)
x 100%X(zero) 60% 150% 68% 58%
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purchased them. Tenax may be more inert than charcoal in terms of degrading

the volatiles. Thermal desorption of Tenax is efficient. On the other

hand, charcoal traps desorb only about 35% of naphthalene and about 60% of

l-octanol. The Tenax method may allow for greater sensitivity as the entire

sample is introduced into the GC? while the Grob technique limits this to

about 10-20% of the sample. If good storage methods are devised, Tenax

may allow the analysis of very low-boiling compounds. This is impossible

with the Grob method due to solvent interference.

On the other hand? the Grob procedures offer certain advantages.

Relatively involatile compounds are recovered more efficiently.. This,

in turn, facilitates greater reproducibility (1 sigma about 10% compared to

20% observed for Tenax). The gas recirculation method tends to maintain

the chemical character of the seawater sample (e.g., oxygen content). This

may help preserve the organisms in unfiltered samples. Helium? on the

other hand, would strip oxygen~ which may be useful for inhibiting oxidation

reactions during stripping. Methods for the introduction of internal stan-

dards are easier for Grob techniques and enable monitoring of two separate

steps in the procedure. Probably the most important advantage of the Grob

system is that multiple GC or GCMS analyses of the volatile concentrate

are possible. This allows analysis on more than one type of column.

Stream splitting of the purging gas onto several Tenax traps could poten-

tially provide similar multiple-analysis capability, but this has proved to

be an irreproducible procedure.

Both methods allow for good sample storage. In this work, Tenax

traps have retained their volatiles for many months; the problem we have

experienced with these traps is that, unless they are adequately isolated,

they will acquire high contamination levels, Grobmicrovialscan retain
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a solvent extract for many months, but occasionally poor fitting plugs

allow sample loss.

Neither method introduced water lnto the glass capillary columns at

a level which resulted in the rapid deterioriation of the columns.

~
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Appendix II. Hydrographic data from stations in the western Equatorial
Atlantic Ocean, March 1978.

~

.r
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Station Depth Potential Salinity Sigmae chl a P04 N03 Si02
Temperature

(0/00 ) (0/00 )
.. .

(M) (OC) (~g/kg) (~M/kg) (~M/kg) (pM/kg).-

0058.4'N x 39026.7'W
13 5 26.993 36. 140 23.618 0.4 0.11 0.08 1.42

0.12
87 25.574 36.510 24.330 2.4 0.16 0.19 1.28

25.378 24.389 0.l5
131 i 9. 043 36. 145 25 . 900 0.4 0.53 6.48 3.26

19.029 25 . 904
594 6.200 34.566 27.217 0.02 2.10 37.74 23.33

6.212 27.216
792 4.707 34.544 27.379 0.02 2.23 38.23 30.94

4 . 687 27.381
2376 2 . 900 34.988 27.902 0.02 l.l9 2l.88 22.60

2.922 27.900

00l.8'N X 34°0.0'W
l5 7 35.962 0.2 0.06 0.08 1.23

35.956 0.2 0.05 0.00 1.66
116 14.775 35.536 26.467 0.2 0.90 l4. 16 5.78

146 13.557 35.402 26.620 O.L 1.03 6.75

176 12.5l8 35.291 26.747 0.08 l.l5 19.77 8.06

750 4.729 34.498 27 . 340 0.05 2.18 38.94 30.l6
4.731 27.340

2255 3.038 34.965 27.872 0.01 1.18 22.57 21. 44
3.031 27.872

3030'N x 32002'W
17 5 27..358 35.876 23.305 0.03 0.09 0.08 2.25

0.12
83 20. 113 35.974 25.49l 1.8 0.l8 2.24 2.15

20.088 25.498
133 35.347 0.3 1.21 21. 69 7.87

l73 12.551 35 . 244 26. 703 0.1 1.28 23.28 8.60
12.548 26.703

631 34.579 0.03 2.23 38.98 26.63
26.67

64l 5.495 34.559 27.300 0.04 2.12 37.88 26.09
5.516 27.297 26.09

l896 3.528 36.104 28. 733 0.03 1.17 23.31 18.68
3.505 28.735
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Appendix III. Volatile organic compounds in coastal seawater.
Schwarzenbach, R.P., R.H. Bromund, P.M. Gschwend,
and O.C. Zafiriou. Organic Geochemistry, l, 93~107.
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Volatile organic compounds in coastal seawater*
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Abstract- T~e occurren~. and temporal variations of a variety of low to medium polarity organic
compounds in the volatility range bracketed by n-heptane and n-octadecane have been studied in
seawater from a station in Vineyard Sound, Massachusetts, and from a tidal creek in Sippewisset
Marsh, Massachusetts. The closed-loop vapoR phase stripping method of Grob and Zürcher (J. Chroma-
togr., v. i i 7, p. 285-294), high resolution glass capilary gas chromatography, and gas chromatography-
mass spectrometry were used. Approximately 50 compounds were found at ~ 2 ng/kg; most were re-
covered at less t?an 10 ng/kg, while the 20 ng/kg level was only rarely exceded by a few components.
The total material recovered was 0.2-1.0 pg organic carbon equivalent/kg seawater. The major com-
pound c~asses fo~nd were normal alkanes, ~ikenes, aromatic and alkylaromatic hydrocarbons, n-alde-
hydes, dimethyldisulfide and. dim~thyltrisulfr,Je, and a .few halogenated hydrocarbons. The preliminary
results suggest that bot~ biogenic and anthropogenic sources were represented. Also, air-sea gas
exchange and other physical processes may be important non-biological sinks.
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INTRODUcrON

SEAWATER contains an extremely complex, diverse,

and largely unidentified mixture of organic com-
pounds. Historically most studies of seawater organic
matter have focused on such properties of the mixture
as its concentration and distribution (Skopintsev,

1966,1971; Menzel and Ryther, 1970;.Menzel, 1974;
Williams, 1971; Riley, 1970; Wangersky, 1972, 1976;
among others), its size distribution (Sheldon et al.,
1972; Sharp, 1973; Ogura, 1974), or qualitative
properties such as cSI3C (Wiliams, 1968; Wiliams
and Gordon, 1970), absorption spectrum (Mattson et
ai" 1974), or biodegradabilty (Barber, 1968; Ogura,
1970, 1972; Zsolnay, 1975). Only a minor portion of
the organic matter in seawater has been characterized

structurally, principally as. amino acids and sugars
and their biopolymers, urea, fatty acids and alcohols
and their esters, sterols, hydrocarbons, parially char-

. acterized pigments, and vitamins (Wagner, 1969).
Recently, efforts have been made to obtain the mol-

ecular composition of some compound classes in sea-
.:iwater for numerous individual samples in order to
characterize the marine environment in terms of the
individual organic structures present and their spatio- .
temporal variabilty (e.g. Brooks and Sackett, 1973;
Lee and Bada, 1975; Gagosian, 1976). These studies
have obtained information regarding the sources,
transport, transformations, and sinks of organic
mattèr in the water column.
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No. 4079. .

t Department of Chemistry, Woods Hole Oceano-
graphic Institution, Woods Hole, MA 02543, U.S.A.

t Present address: EA WAG, 8600 Dübendorf, Switzer-
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Thus far methodological diffculties have prevented
the application of this molecular approach to sea-
water organic compounds over a structural range
broader than individual compound classes. The ana-
lytical task of determining these compound groups
routinely has been arduous enough to make wider
coverage by simultaneous use of several methods pro- .
hibitively diffcult.

In this paper we report the preliminary results of
analyses of volatile organic compounds (VC) in
coastal seawater samples. The compounds fallng into
the VC class constitute a little-investigated group of
compoUnds in seawater, which are too volatile to be
handled by conventional extraètion techniques, yet
not volatile enough to be determined by procedures

designed for the determination of very light organic
compounds, such as C1-C4 hydrocarbons (Swinner-
ton and Linnenbom, 1967; Brooks and Sackett, 1973).

We used the closed-loop vapor phase stripping
method of Grob and Zürcher (1976), in conjunction
with glas capilary gas chromatography (GC) and

combined gas chromatography-mass spectrometry
(GC-MS), for the rapid and routine recovery, separ-
ation, identification, and quantification of this chemi-
cally diverse group of marine organic compounds.
The method consists of removing those compounds
with appreciable vapor pressure over seawater from

a sample by purging it with a large volume of gas
as finely divided bubbles, followed by adsorbing the
compounds in the gas stream onto a charcoal trap.
Subsequent extraction from charcoal and high per-
formance GC and GC-MS analyses characterize and
quantify the volatile compounds. The method was
originally developed for drinking water quality assess-
ment and the study of pollutants in lakes and rivers
(K. Grob and G. Grob, 1974). We have applied the
method to studying volatile compounds at the nglkg .
leveL.

93
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Dr. Max Blumer proposed and initiated the appli-
cation of the methods used here to seawater samples
as one approach to unravelling the complexities of
marine organic chemistry (Blumer. 1975). He recog-

nized during his tragic ilness that he would be unable
to complete this effort, and requested not to be listed
as an author of this paper. While respecting this wish,
we emphasize that he made very substantial contribu-
tions to the underpinnings of this study.

METHODS

Sampling

Water samples were taken from sites near Woods
Hole, MA. Nearshore samples were taken approxi-
mately every two weeks beginning March 1977 at
high tide in fair weather from "Chemotaxis Dock"
(CD). This unused wooden pier extends about 10
meters into Vineyard Sound in 1.5-2.5 m water. The
salinity is roughly 32"r;". The area has weak to moder-
ate longshore currents, a sandy, rocky bottom, and
extensive seasonal benthic algal cover. No boats are
moored within 0.5 km and most ferry and recreational
boating is greater than 2 km away. The adjacent
shoreline is pebbly and only lightly used recrea-
tionally. A 50m band of forest vegetation separates
the beach from the nearest road.

During winter. 1976-1977 considerable ice formed
along the shores of Vineyard Sound and Buzzards
Bay. In late December, 1976 a sizeable spil of No.
2 fuel oil occurred at the head of Buzzards Bay. In
January. 1977 during partial breakup of the ice, oiled
ice was seen passing from Buzzards Bay through
Woods Hole and into Vineyard Sound (J. Farrington,
personal communication) a few km from our sam-
pling site.
A few samples were taken in Great Sippewisset

marsh on Buzzards Bay, Massachusetts at the con-
fluence of two small tidal creeks. One creek drains
an area of high blue-green algal mat density while

the other empties an area with high concentrations

of inorganic sulfur compounds and detectable sulfide
at times in the water (R. Howarth. personal communi-
cation).

Water samples at these shore sites were taken at
20 em (5 em for low tide marsh) depth by dipping

a 1 i round bottom flask attached to. a 2 m aluminum
pole by a PVC bracket. The water was poured into
a 5 i glass round bottom flask that was rinsed three
times before adding 41 of water. Repouring samples
between 5 i flasks did not greatly affect the volatiles
found. The sample was spiked with internal standards
(40 ng each I-chloro-hexane (No. 100), I-chloro-
decane (No. 3(0), and I-chlorododecane (No. 40) in
2,ul acetone (compounds are numbered for identifica-
tion on chromatograms). The sample flask was stop-
pered, swirled, and returned to the laboratory for
stripping within 1-4 hr after collection.

Offshore coastal waters were sampled from the R/V

Asterias by lowering a stoppered empty 5 I round bot-
tom flask in a PVC frame to 5- i 0 m. The stopper
was pulled from the flask by a line. After the flask
filled, the sample was retrieved and stoppered im-
mediately. Once ashore, i i of water was poured out
and dicarded at CD, the sample was spiked, and was
then brought to the laboratory for stripping. This
procedure entrapped CD air rather than ship or lab
air in the flask headspace. reducing erratic airborne
contamination. CD air and PVC do not add signifi-
cant volatile contamination to our samples. Chloro-
phyll a was measured using the fluorescence tech-
nique of Strickland and Parsons (1972). Nutrients
were measured using a Technicon Autoanalyzer.

Stripping and collecting VC

We term the organic compounds potentially recov-
erable from natural waters by stripping methods

'volatile compounds' (VC). VC were recovered from
seawater by stripping the samples using a slight modi-
fication of the closed-loop method of Grob and
Zürcher (1976). A larger sample flask and frit and

a different pump were used. In this technique, the
Teflon and stainless steel pump forces air through
a frit near the bottom of the water. The VC partition
between the bubbles and the water. The effuent air
is warmed to 60°C to drop it relative humidity and
then passed through a micro charcoal adsorptive trap

(Bender-Holbein AG, Reidlistr. 15,8006 Zurich, Swit-
zerland) before pump intake for recycling. We main-
tained the water temperature at 35°C,. and the air
flow rate at 1.5-2I/min for 2 hr through a 20 mm dia-
meter coarse porosity frit. Samples with 1.51 head-
space were stripped in the same five liter flask in
which they were collected. A stainless steel and Teflon
bellows pump, Model MB 1 18 purchased from Metal
Bellows (1075 Providence Highway, Sharon, MA
02067), was used.

Immediately after stripping, the VC were extracted
from the trap with a total of 15,ul of purified carbon
disulfide. Just prior to this extraction, 40 ng I-chloro-
octane (No. 2(0) in 2 ,Il. CSi were added onto the,
filter surface as an extraction recovery standard. The
samples were stored in microtubes in a refrigerator.
With the exception of increasing the sample and-
pump size, the methods of Grob and Zürcher

required no modification to deal with seawater

samples. However, the generally low levels of VC in
seawater relative to the waters previously investigated
by stripping necessitated numerous blank and control
analyses.

Analysis

GC was performed on a Carlo Erba Model 2551

AC gas chromatograph equipped with FID and a spe-
cial splitless injector designed by Grob (personal com-
munication, 1976). Separations were penormed on a
20 m x 0.35 mm i.d. SE 54 glass capilary column
(Jaeggi, 9043 Trogen, Switzerland) of separation

number 34. An aliquot (usually 1 ,Il) of the VC in
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CSi was injected with the split closed (K. Grob and
K. Grob, Jr., 1974). The split was opened (10: I ratio)
after 30 sec. The helium carrier gas flow rate was
3 ml/min at 20°C. The injector and detector were
operated at 250°C. The temperature program was:

2Q-.22"C isothermal for 8 min, then 3°C/min to 250°C.
GC-MS analyses and structural identifications

were performed on a Finnigan Model 3200 equipped

with a Data System 600 computer. A Finnigan

Model 9500 gas chromatograph equipped with a Fin-
nigan splitless injector and a 25 m x 0.32 mm i.d.
glass capilary SE 52 column was interfaced to the
MS with an all-glass. transfer line, held at 250°C,
allowing coaxial introduction of reagent gases for
chemical ionization (CI-MS) (Blum and Richter,
1975, 1977). Mass spectra were recorded at the rate
of one per 1. sec from 35 to 350 amu at 70 e V and

90°C source temperature for EI; and at one per

1. sec over a range of 60350 amu at 130 e V and

90°C source temperature for CI. Methane was used
as the chemical ionization reagent gas. Compounds
were identified by comparison of GC and GC-MS
properties with those of authentic standards or library
spectra as indicated in Table 2.

Method characteristics

Blanks. Since most VC in seawater were present
below the 10 ng!kg level, much below the levels pre-
viously reported for other samples (K. Grob and G.
Grob, 1974), a premium was placed on achieving sen-
sitivity and low, reproducible blanks. Figure IA
shows a representative gas chromatogram ofthe trap
extract from stripping a moist 5 1 flask containing

prestripped air. As usual, 40 ng I-chloro-octane (No.
2(0) were added to the trap before extraction and

its peak height corresponded to 10 ng!kg in water
. usually processed. This typical instrument blank
shows quantitative recovery of the standard and the
presencè of very few peaks, corresponding to less than

. i ng each VC!kg seawater introduced by the stripping
. procdure from the apparatus iud by subsequent

manipulations. Contamination from laboratory air
can erratically be a serious problem. Pouring pre-

~ stripped water from one flask to another in the
laboratory introduced numerous contaminants at the
10 ng!kg leveL. However, stripping five liters of 'CD

air' (sampled by emptying a flask filled with pre-
stripped water at CD) does not give these laboratory
contamination problems.

Recovery. TIie. recovery of internal standard~ rela-

tive to I-chloro-octane (No. 200) was always above
85%. We restrip all samples immediately after the first
strip and again after 24 hr to monitor recovery and
compound generation. The internal standards are
never detectable in these restrips. Figure IB is typical
of additional recovery of VC on restripping a rela-
tively non-turbid water sample after initial strip
(Fig. 2C). For most compounds little material above
the blank occurs in the rest rip. However, substantial
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quantities of n-pentadecane (No. 417) and n-heptade-
cane (No. 515) frequently occur in the second strip,
and the yield of dimethyldisulfide (No. 37) and

dimethyltrisulfide (No. 149) typically increases, es-
pecially after 24 hr (Fig. i C). A few samples that were
especially turbid or contained -high total levels of
volatiles yielded substantial recoveries on restripping.
This is ilustrated in Fig. i D, the restrip of the turbid
sample shown in Fig. 2B. The VC concentrations
reported in this paper are those recovered in the first
2 hr stripping only.

Recovery experiments were also conducted in

duplicate using two different strippers, traps and ana-
lysts. Different seawater samples were spiked with a
test mixture of compounds encompassing a variety
of chemiCai functionalities and volatilities within the
expected range of the technique, Samples were spiked
at 5, 10, 50, and 100 ng of each compound!kg sea-
water. Acetone solutions of the mixture were used
to introduce the spike. The two lower level experi-
ments utilized exhaustively prestripped low-turbidity
CD water, whereas the two higher level experiments
used untreated CD water of low turbidity. The recov-
ery for each compound was determined by comparing
GC peak areas (normalized to I-chloro-octane, No.
200) determined by a Columbia Scientific Instruments
"Supergrator 3" electronic integrator for the sample
with peak areas from GC analysis of the test mixture.
The test mixture composition and the average reco-
veries are given in Table i. For each compound, the
fraction recovered was independent of the level added,
suggesting the absence of 'threshold effects' at these
levels. The poor recovery of the naphthalenes is en-
tirely due to poor extraction recovery from the char-
coal traps (35%) as shown by trap spiking experi-
ments. Although I-octanol is also lost to some extent

, on the traps (58% recovery), its extremely poor total
, recovery is probably primarily due to its high water
solubility.

Reproducibilty. In order to assess the reproducibi-

lity of sampling, stripping, and analysis as applied
to environmental samples, duplicate seawater samples
were obtained on five separate occasions and pro-
cessed concurrently on two different strippers by two
different analysts. Precision waS estimated by measur-
ing the heights of twenty of the larger peaks relative
to the I-chloro-octane (No. 2(0) peak height. With

the few exceptions listed below, these peak height
ratios did not vary between duplicates by more than
15%. Peak height ratio differences of up to 30% were
shown by dimethyldisulfide (DMDS, No. 37), de-
methyltrisulfide (DMTS, No. 149), nonanal (No. 225),
decanal (No. 275), and n-heptadecane (No. 515).

We find that removing salt and other deposits from
seawater samples from the charcoal traps by the pro-
cedure of Grob and Zürcher (1976) after every few
samples maintains good reproducibility. The moder-
ately large headspace over our samples was adopted
to minimize the salt spray transport onto the traps. .
We have experienced irreversible trap clogging from
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Fig. 1. Characteristics of the procdure. Peak No. 200 is the internal standard applied to the trap at the time of
extraction and corresponds to 10 ngjk¡ of seawater sample. For peak number identifications refer to Table 2.
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Table i. Recoveries of standard compounds spiked into
sea water

Compound Recovery (%)

I-octene ;:85
n-octane ;:85
n-pentadecane ;:85
n-heptadecane ;: 85

I-chloro-n-decane ;:85

ethyl benzene ;:85
i ,3,5-trimethylbenzene ;:85
n-butylbenzene ;:85

naphthalene 35
i -methylnaphthalene 35

n-hexanal 20
n-decana i 25

, . 2-octanone 35
methyl octanoale 60
I-octanol -: 5

accidental transport of large amounts of material to
the trap, as, for example, when samples foam.

RESULTS

Figure 2A-C shows chromatograms selected from
an on-going year-round study of VC at the CD site.
Sample A was taken just after the melting and
breakup of ice cover (March 1977), sample B was
taken at the height of the spring buildup of chloro-

phyll a, and sample C was taken on 19 July 1977,

a few weeks after the Memorial Day increase in rec-
reational activity on Cape Cod. Figure 20 shows VC
sampled several km from shore in Buzzards Bay on
21 June 1977. The chronological variation in selected
peak height ratios and chlorophyll a for the period

March-August 1977, is shown in Fig. 3. Figure 4
shows VC from the marsh creek sampled at low and
high tides.

We have identified most peaks with height equival-
ent to ~ 2 ngjkg of I-chloro-octane (No. 2(0) by glass

capillary GC and by GS-MS (EI and CI) characteri-
, zation and comparisOn with authentic materials or

EI library spectra. The compounds identified are
listed in Table 2, which also lists estimates of the
concentration ranges found at CD. Concentration

estimates were corrected according to the recoveries

given in Table 1 for those compounds and close ana-
logs to them. Other compounds are reported as the
chloro-octane (No. 2(0) peak height equivalent and

are thus not corrected with recovery and FlD re-
sponse factors.

Examination of the GC-MS data revealed that
most of the peaks sen by GC are predominantly or
entirely single compounds; the larger peaks are
almost totally resolved on the glass capilary column.
Furthermore, specific ion-series searches did not
reveal the presence or additional compound types.

O.G. 1/2-(
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DISClJSSION

The stripping method enabled us to recover a var-
iety of compounds from seawater in a volatility range
that has heretofore been little investigated. Several
major features stand out. About. fifty compounds are
routinely detected, belonging to several major struc-
tural classes. These are primarily: alkanes, alkenes,
aromatic hydrocarbons, aldehydes, methyl suirur
compounds, and some halogenated compounds. Most
of the individual compounds are recovered in the con-
centration range traceI 0 ngjkg. Only toluene (No. 45)

routinely occurs at :; 10 ngjkg; other peaks very
rarely exceed 20 ngjkg. By summing the estimated
recoveries or by planimetry of chromatograms, we
estimate that the typical total detector response is

equivalerlt to 3001500 ngjkg of VC, or approxi-
mately 0.2-1.0 jlgjkg volatile organic carbon (VOC),
as discussed later.

Although the VC are operationally defined and
their levels are low, their behavior is relatively consis-
tent. Duplicate samples rrom CD and the marsh
creeks were quantitatively similar for a wide variety
of compounds at high and low concentration levels.
Restrips of most samples yielded very little additional
materiaL. Furthermore, in other experiments (R. M.
Bromund and P. M. Gschwend, unpublished) in
which CD samples were stripped at 25 or 60°C with

. inert ga~, and the VC trapped on and thermally
desorbed from Tenax (Applied Sci. Tech. Bull. No.
24; Novotny et ai., 1974; Bertsch et aI., 1975; Zlatkis
et al., 1973; Bellar and Lichtenberg, 1974), a similar
picture of VC was obtained. Thus, major changes in
technique result in only moderate, rather than drastic
changes in the observed VC distributions. The recov-
ery of spikes (5-100 ngjkg) from seawater is reproduc-
ible, leve,l-independent, and generally fair to excellent,
even for labile compounds such as aldehydes.

Thus, by the criteria of reproducibility, level-in-
dependence, insensitivity to minor changes in method-
ology, and spike recovery, the VC are a relatively well-
behaved subclass of materiaL. However, the com-
ponents bf VC recovered do not necessarily represent
the total quantity of those structures in the sample,

since these compounds may also be present in forms
that do' not exert significant vapor pressure. For

example, we know nothing about the stripability or
potentially volatile compounds within living and dead
biological structures, which spiking cannot simulate.
With further work, the behavior of compounds on
restripping may yield useful indications concerning

sources and speciation of VC in natural waters.

Non-aromatic hydrocarbons

Aside from samples with a major oil-derived com-
ponent, ~he predoninat aliphatic hydrocarbons were
n-pentadecane (No. 417) and n-heptadecane (No. 515).
During the period of oil contamination, other hydro-
carbon peaks and an "unresolved complex mixture".
of comppunds were also present (Fig. 2A).
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Table 2. Volatile compounds in coastal seawater samples

Concentration range.
Compound (ngfkg) Identification§

number Structure CD Marshl method

37 dimethyldisulfide (DMDS) '! 2
45 toluene ::10 ::10 i

60 tetrachloroethylene 5 5 2
61 ii-hexanal 5-100 tr~IO 1

100 I-chloro-ii-hexane (10) (10) standard
101 ethylbenzene 5-25 2-20 1

103 1,3-dimethylbenzene 15-50 6-40 i

104 1,4-dimethylbenzene I

109 bromoform ') ? 2
112 1,2~dimethylbenzene 5-25 2-20 1

121 ii-heptanal 5-40 tr-IO I

142 ii-propylbenzene tr-3 0-2 I

148 C 3-benzene 4-20 1-12 2
149 dimethyltrisulfide (DMTS) '! ? 2

151 i J.5-trimethylbenzene 3-15 1-8 1

156 C rbenzene 2-10 1-6 2
163 C 3-benzene 5-25 2-15 2
174 ii-octanal 5-40 tr-IO 2
177 C 3-benzene 2-10 1-6 2
193 C4-benzene 1-5 tr-2 2
196. C4-benzene 2-10 tr-4 2
199 C4-benzene 1-5 tr-2 2

200 I-chloro-ii-octane (10) (10) standard
206 C4-benzene 2-10 tr-4 2
209 C4-benzene 2-10 tr-4 2
219 C4-benzene 2-5 tr-2 2
224 C4-benzene 2-5 tr-3 2

225 ii-nonanal 5-70 tr-20 2

226 C 4-benzene 2-10 tr-4 2
240 C,oH,i 2-10 tr-4 2
242 C4-benzene 2-10 tr-4 2
258 naphthalene 5-40 tr --10 I

275 ii-decanal 5-50 tr-20 I

300 I-chloro-n-decane (10) (10) standard
309 2-methylnaphthalene 2-25 tr-5 i

316 I-methylnaphthalene 1-20 tr-5 i

320 ii-tridecane 0-5 tr i

357 2-ethylnaphthalene 0-15t 1

362 2.6-dimethy Ina phthalene 0-20t 1

369 ii-tetradecane 0-10 tr I

370 C i-naphthalene 0- 20t tr 2

371 C i-naphthalene tr-20t 2
397 acenaphthalene tr-15t 2
40 I-chloro-ii-dodecane (10) (10) standard
405 C'sH30 . tr-5 3

410 C 3-naphthalene tr-IOt 2
413. C'sH30 1-3 3
417 ii-pentadecane 5-100 5-15 4
421 C 3-naphthalene tr-IOt 2
423 C 3-naphthalene tr-Wt 2
430 C 3-naphthalene tr-IOt 2

440 C 3-naphthalene tr-IOt 2
466 ii-hexadecane 1-20 1-3 i

505 C17H34 1':12 3

509 C i 7H34 f-3 3

515 ii-heptadecane 1-30 5-30 i

517 pristane tr-5 2

· Based'on peak heights relative to I-chloro-ii-octane, corrected for ineffcient recovery where necessary.
t Assuming same recovery as naphthalene. .
l Sampled in late June and July 1977
§ i. GC-MS using EI and CI spectra aiid by conjection with authentic standards; 2. GC-MS using

.EI and CI spectra; 3. tentative (GC-MS-CI spectra). All EI spectra were compared to library spectra.
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Some of the chronological changes in hydrocarbon
concentrations shown in Fig. 3 were major. For
example, in early March, several samples taken before
a period of severe storms showed considerably higher
levels of n-alkanes and aromatic hydrocarbons, pre-
sumably derived from a single source (oil contami-
nation). After this stormy period, the concentrations
were markedly reduced. Chemical or biological
removals seem unlikely to produce such an abrupt

change, but mixing, air-sea exchange, and particulate
adsorption followed by sedimentation from the water

column may all have been involved. Later in the year,
pentadecane and heptadecane showed separate major
concentration changes, suggesting that specific (bio-
logical?) procsses had become dominant.

Most of the pentadecae and heptadecane observed
probably came from biogenic sources. We suggest
that they were primarily derived from the local ben-

thic algae, rather than the phytoplankton. The stand-
ing crop and productivity of the benthic algae were
much greater in this shallow nearshore zone (average
depth about three meters for several hundred meters
offshore) than that of the phytoplankton (Blinks,
1955). Also, the phytoplankton produce unsaturated

. hydrocarbons along with pentadecane and heptade-
cane (Blumer et al., 197 I), and we would expect to
see these if the phytoplankton were responsible for
the hydrocarbons in the water. Youngblood et at.
(1971) found that local brown benthic algae contained
predominantly pentadecane, while green and red ben-
thic algae contained mainly heptadecane. They

reported that these compounds occurred at about
0.02% of the total algal dry weight. If we assume a
spring-summer benthic primary productivity in this
area of 10 g C/m2/day (Kanwisher, 1966) and a g C/
dry weight ratio of 0.5, then the growing season

production of these compounds is about 4mg/m2/
day. The standing stock near CD of these compounds
determined by stripping was about 10 ng¡kg seawater,

or about 30 ¡iglm2. These very rough estimates imply
that if all the primary production of these hydro-
carbons passed through a stage accessible as VC, the
standing stock could be turned over many times per
day. Alternatively, if most of this material cycles

through the marine environment in forms inaccessible
to determination as VC, a slower turnover of these
VC is required.

If these and other alkanes are present in the dis-
solved state or a weakly complexed form in seawater,
they should be subject to air-sea gas exchange pro-

cesses. By extrapolating the data of McAuliffe (1966)

and Button (1976), we estimate the thermodynamic
solubility of pentadecane in distiled water is 2Q-0
ng¡kg and heptadecane is 1-2.5 ng¡kg. Thus, we sug-
gest that at 10 ng¡kg pentadecane is probably at the
borderline of its thermodynamic solubilty in sea-
water, while heptadecane is probably not all present
in a simple, aqueous solution. The possibility that
many other forms of hydrocarbons exist in seawater
is well-known, from the cellular material suggested
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above through material sorbed on clays (Meyers and
Quinn, 1973), or hydrophobically bonded to other
organic materials (Boehm and Quinn, 1973), Never-
theless, an approximate maximum air-sea gas
exchange flux can be estimated by assuming that
these compounds are truly dissolved in seawater at
10 nglg, the approximate levels found for extended

periods in calm weather. The extremely low water
solubilities of these compounds (and other alkanes)
in combinations with their known vapor pressures at
20°C lead to partition coeffcients (w/v in air per w/v
in water) in the range of 104_105. Since we could

not detect these compounds in CD air, we will assume
the atmosphere is thermodynamically a perfect sink,
and use the stagnant boundary layer model (Broecker
and Peng, 1974) to estimate the flux across the air-sea
interface. Assuming a 100 ¡im stagnant boundary
layer thickness (corresponding to mean windsped
-9 kts.), and molecular diffusivity for this non-polar
compound similar to that of radon (10-5 cm2/s):

Fluxmax = - D ( ~~)

(- IO-Scm2s-I)(0~il gcm-3)

10- 2 Cm

_ 1O-14g/cm2/s

= _ 10- 10 g/m2/s. (I)

For gas exchange in the extensive shallow area .c3 m
deep:

t(!:ichangc =
A

- dA/dt

(10- i i g/cm3)(.c 3 x 106 cm3/m2)
10-10 g/m2/sec

.c 3 x 105 s or less than 4 days. (2)

If alkanes are present in solution in shallow waters,

they wil exchange rapidly into the atmosphere. In

fact, any dissolved VC for which the atmosphere can
be presumed to be a perfect sink, wil have similar
residence times with respect to air-sea exchange inde-

'pendent of concentration.
: The absence of numerous other hydrocarbons at

CD (in the absence of petroleum contamination)

deserves comment. Most notably, the terpenes
released to the atmosphere in large quantities from
terrestrial vegetation (Went, 1960), do not appear to
be transferred to the coastal waters we have studied.
(We have achieved excellent recoveries of limonene
and pinene spiked into seawater at about 100 ng¡kg,)

The unfavorable partition coeffcients for alkanes
could prevent effective gaseous input to the water.

The absence of nearby rivers minimizes waterborne

transport of land-derived materials. Moreover, pro-
duction of such compounds as pentadecene and hep-
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tadecene ()'oungblood et al.. 1971), C¡ i alkenes (dic-
tyopterenes, Moore, 1977) and pristane (Blumer et al..
1964) at CD is probably much less than that of n-C i 5
and /J-C 17' Assuming the same turnover time with
respect to air-sea gas exchange (Equation (2)), the
resultant steady-state concentrations can be expected
to be undetectably low. Additional sinks, such as

adsorption and mixing with offshore waters can only
lower the steady-state levels even further.

Aromatic hydrocarhons

Toluene and many of the isomeric C2 to C4 alkyl
benzenes are present; together they form the group
of compounds most abundant and consistently
present at CD. They are found in all samples, despite
our precautions to minimize or eliminate contami-

nation by these compounds. They are absent in the
blanks and in five liter samples of air from CD.
Therefore we believe that they are not artifacts, but
are actually present in the samples. Toluene (No. 45)
is often a major peak; the other alkylated benzene

concentrations covary. The isomer distributions are
conveniently displayed as (M + 1)+ mass chromato-
grams of. the CI (methane) mass spectra data files.
Making the reasonable assumption that these isomers
show similar proton affnities, the normalized

(M + i) + mass chromatograms give the isomer distri-
butions directly. Figure 5 shows the CI-MS spectra
of representative Ci-, Ci-, and C4-alkyl benzenes.

Figure 6 shows (M + 1)+ mass chromatograms

revealing the relative isomer distribution. Relative

ratios can be seen less definitely in the reconstructed
chromatograms themselves. Similar patterns were
found for aII CD samples, suggesting that similar pro-
cesses determine the concentrations of aII these

related compounds. Ethylbenzene (No. 101) and pro-
pylbenzene (No. 142) show changes in relative con-
centration, perhaps due to an enhanced ease of biode-
gradability. Many of these compounds have been
reported before in municipal and natural fresh waters
(Grob, 1973; K. Grob and G. Grob, 1974; Grob et
al., 1975; Bertsh et aI., 1975; Saunders et al., 1975;
Giger et al., 1976) and in air (Bertsch et aI., 1975).

K. Grob and G. Grob (1974) have suggested that
atmospheric transport of gasoline-derived compounds
was the source. The estimated (wlv air per wlv water)
partition coeffcients foralkylbenzenes are - 0.1- i, so
atmòspheric transport and subsequent dissolution is
reasonable if wlv air concentrations are greater than
or equal to 0.1-1.0 times the observed wlv water con-
centrations (see Table 2). However, since we detected
no VC in a preliminary measurement of air, the
atmosphere would appear to be an insignificant or,
at best, irregular source. The ubiquitous toluene has
obvious potential anthropogenic sources, but may
also be of natural geochemical origin. Moderately

high toluene levels have been found in Recent sedi-
ments (J. Whelan, personal communication).

Naphthalene (No. 258) and the methylnaphthalenes

(No. 308, No. 316) both showed concentration max-
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Fig. 5. Selected chemical ionization (methane) mass spec-
tra of alkylated benzenes (A) 1,2-dimethylbenzene, (B)

1,3,5-trimethylbenzene, and (C) C4-benzene.

ima during the period of oil contamination (Fig. 2A)
and also again late in April, suggesting multiple in-
puts. The Ci- and Ci-alkylated maphthalenes were

only found in the samples presumed to contain petro-
leum-derived hydrocarbons. Figure 7 shows CI (meth-
ane)-MS (M + 1)+ mass chromatograms for these
compounds. The isomer distribution is similar to that
found in a No.2 fuel oil sample analyzed (see Figure 7).
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Oxygeii compouiids

The normal six- to ten-carbon aldehydes (Nos. 61.
12 i. 174, 225, 275) were the only oxygen-containing
compounds identified. No other peaks had MS
properties suggestive of oxygen functionality. At
times, these aldehydes were major constituents of the
Vc. especially just after the spring chlorophyll a
maximum (Fig. 3). At that time hexanal (No. 61)
reached approx 100 ngjkg and heptanal (No. 121)

about 40 ngjkg. These compounds have been detected
berore in fresh water samples (Zürcher and Giger,
1976). They are known constituents of fresh water dia-
toms (Kikuchi et al. 1974), fresh water yellow-green

algae (Collins and Kalnins, 1965), and of marsh grass
(Miles et al., 1973). Hexanal has been suggested to
arise from the metabolism of linoleic and linolenic
acids (Jadhav et aI., 1972). Nonanal (No. 225) and
decanal (No. 275) show poor quantitative reproduci-
bility and are found in traces in some blanks. It is
therefore diffcult to assess their concentration in sea-
water. They have been found as constituents of essen-
tial oils of terrestrial plants (Guenther et al., 1975).

Aldehydes are recovered in only moderate yield in
our system (Table i). Model ketone and ester com-
pounds were recovered in better yield, yet no repre-
sentatives of these compound classes have been found
in our coastal water samples. The balance of sources
and sinks for these compounds apparently does not
favor their reaching detectable levels. While esters

may rapidly hydrolyze (preliminary work suggests a
half life with respect to hydrolysis in seawater of a
few days-Po M. Gschwend. unpublished .results).
ketones would be expected to be chemically more

stable than aldehydes. Alcohol and phenols are very
diffcult to strip from seawater. and for practical pur-
poses our method is insensitive to them.

Sulfur compounds

The sulfur compounds dimethyldisulfide (DMDS,
. No. 37) and dimethyltrisulfide (DMTS. No. 149) were
found at moderate concentrations in many of the
CD water samples. Their concentrations tended to
increase in restrips (Fig. I B). especially after 24 hr
(Fig. i C). Therefore. there seems to be a biological
or chemical source within the water. In contrast, these'
two peaks were invariably present at low tide in'
marsh creek water (Fig. 4A). often as the largest
peaks. They occurred at lower levels in marsh water'
restrips. We suggest that the same process forms these
compounds in both environments. While this forma-
tion process is virtually complete in the marsh waters
before sampling, it continues to occur in CD water
during our analysis.

DMDS has been reported as a major component
in the gaseous emission from bacteria and fresh water
blue:-green and green algae isolated from various soil
types (Banwart and Bremner, 1974) and from eutro-
phic and less productive natural waters (Rasmussen,

1974), and from blue-green algal cultures (Jenkins et

al., 1967). Kadota and Ishida (1972) postulated methyl
mercaptan asa 'precursor to DMDS from micro-
organisms. DMTS has been found in lake waters
(Grob and Grob. 1974). waste waters (Keith. 1976).
and in a variety of terrestrial plants, especially veg-
etables (e.g. Carson and Wong. 1961). These com-
pounds may be related to the cyclic polysiilfides
reported in a red alga (Wratten and Faulkner, 1976).

These sulfur compounds may have special potential
as procss tracers if their source can be more specifi-
cally understood. Their flux from marshes to the at-
mosphere may be significant in the S budget in these
environments (Maroulis and Bandy, 1977).

Miscellaneous compounds

Selected mass searches were made in an effort to
identify other compound èIasses, especially those
which might be expected on the basis of previous
work on marine samples or fresh water stripping.
Tetrachloroethylene (No. 60) and bromoform (No.
109) were frequently present. but other volatile halo-
genated compounds found in marine organisms

(Moore. 1977) were not detectable in our samples.
Most of the many unidentified peaks in our samples
are currently recovered in such low concentrations

( -: I ngjkg) that blank and GC-MS sensitivity prob-
lems prevent us from quantifying them or identifying
them unambiguously.

Marsh creeks

The tidal influence on VC composition at CD is
negligible. In contrast. it is major in the marsh creek
studied (Fig. 4). At high tide (Fig. 4B), the chromato-
grams resemble those of Buzzards Bay water, with
some trace of the components seen in marsh water
at low tide as weIl (Fig. 4A). At low tide, the C i 5
and CI7 monoenes (No. 405. 413. 505, 509), DMDS
(No. 37), and DMTS (No. 149) are very prominent
components. The alkylated benzene concentrations
varied considerably in marsh samples at low tide
(1-10 ngjkg total), and the isomer distribution always
differed from CD. Mesitylene (No. i 51) was present
in higher relative amounts in the marsh at low tide
(Fig. 6B and 60). Further work may reveal more
about the processes responsible for this difference.

Temporal variations

In addition to inventorying VC at CD, it was our
purpose to elucidate the processes affecting these

organic compounds at this coastal site. To this end,
we sought temporal correlations among VC concen-
trations and other environmental parameters.

Although marked variations in specific VC concen-
trations were found (Fig. 3), no direct or inverse cor-
relations were observed with nutrients (PO~-, SiOi,
NOi-, NOi-, NH3) or temperature. The decline of the
spring phytoplankton bloom, as demonstrated by

chlorophyll a, may correspond to a period of organic
remineralization, and this in turn., may be reflected

ih the pronounced increase in aldehyde concen-
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trations, as demonstrated by hex anal in Fig. 3. Except
for such uncertain features, related trends in temporal
variations of the VC were not apparent.

This situation may simply reflect inadequacies in
the amount or spatial and temporal resolution of
these preliminary data. Alternatively, it may be that
individual organic compounds typically have rather
specific biological sources and sinks. In that case, bio-
logically relevant parameters such as nutrient concen-
trations. chlorophyll level. and temperature. which are
highly non-specific, would not show strong correla-
tions with individual VC levels; instead. compound
levels would correlate best with their specific sources
and sinks. These may frequently be the metabolic ac-
tivities of individual genera, species, or even sub-
populations of the same speies. The likelihood of
these and other such complexities has been discussed

(Blumer. 1975). Despite these potential problems, the
variations observed in VC levels suggest that they are
intimately involved in various coastal marine pro-
cesses.

VC al1d VOC

Although it was not our purpose to assess the
amount of seawater organic matter which is 'volatile',
the rather low levels of individual and total VC that
ocur in the coastal waters of Cape Cod is rather
striking. Early Russian work (Vityuk, 1965 quoted in
Skopintsev, i 966) had suggested that the VOC repre-
sented i 2% of the TOC in . seawater. MacKinnon

(1977, personal communication), utilizing an
approach which he felt provided an upper limit to
the amount of volatile carbon in seawater, stripped
HgCli-poisoned unfiltered samples with Ni using
varying temperatures and times. Subsequently, he

determined the Tenax adsorbable volatiles by thermal
desorption and combustion analysis. He found about
I % of the coastal TOC was volatile by this procedure
at 35°C. Thus MacKinnon recovers about 10-30 ¡ig
VOC/kg. .

In contrast. we find only about 0.2- 1.0 ¡ig/kg by

summing the concentrations of the VC and convert-
ing to VOc. There are several possible explanations
for this discrepancy:

(i) Volatiles are non-uniformly distributed and data
cannot be intercom Pared.

(2) Volatiles do not survive some steps in our pro-
cedure (charcoal trap, active or hot GC surfaces).

(3) Low boiling volatiles are included in MacKin-
non's measurement, while they are masked by the sol-
vent peak in ours.

(4) MacKinnon's procdure provides an overesti-
mate.

While all of these factors maybe involved to some
degree, the first is unlikely to be responsible for the

. major part of the discrepancy, as we both see a
moderate degree of spatiotemporal homogeneity

within our respective methods. We doubt that factor
two is dominant, as we obtain chromatograms using
thermally desorbed Tenax similar to our routine char-
IUi. I ~ (.,
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coal trap chromatograms. Also we have found that
some standards diffcult to determine by low-level GC
(polysulfides and aldehydes) survive our techniques
at low levels. However, by prolonged stripping
MacKinnon may measure relatively polar compounds
which we do not determine. Also, low-boiling com-
pounds may exist in seawater at high levels; our CSi
peak obscures compounds boiling below 100°C. We
have observed large amounts of carbon dioxide, pen-
tane, hexane, methylene chloride, acetone, and ben-
zene in samples analyzed by the 'Tenax' method.

While much of these materials is likely to be labora-
tory contamination, micrograms of these compounds
may come from the sample. In summary, it is diffcult
to compare our results with the results of other
workers who use different methodological
approaches.

SUMMARY AND CONCLUSIONS

The 'stripping' method is a viable and useful

approach for studying the volatile organic com-

ponents in coastal seawater samples, marine marshes,
etc. It has been feasible to attain the blanks, reco-

veries, reproducibility and sensitivity required for
quantitation and identification of a structurally varied
set of organic compounds. Potentially this set in-
cludes compounds within the boiling range
I1-C,-I1-C18 that are not too water soluble or reactive.

The method is relatively trouble-free, rapid. and
shows good repr(Kucibility under realistic environ-
mental sampling conditions. Incomplete recovery of
volatiles from highly turbid samples may complicate
interpretation, but also yields information about VC
adsorption and formation processes.

About 50 compounds have been identified in
samples from the coastal waters of Cape Cod,

Massachusetts with individual abundances of

- I-i 00 ng/kg; individual levels above 20 ng/kg are
rare. These compounds include alkanes, alkenes, aro-
matic and alkyl-aromatic hydrocrbons, l1-aldehydes.
methyl sulfur compounds, and some halogenated

compounds. No ketones, esters, or terpenoid hydro-
carbons were recovered. With the possible exception
of compounds attributed to petroleum contamination,
l1-alkanes in the C,-Cii range, branched alkanes, and
alkenes were also absent or present only in trace
quantities.

Some sources of individual compounds have been
suggested. Within the biological realm, there are
examples of compounds that are probably derived
from different classes of benthic algae (n-C i 5. n-C 17)'
marsh algal mats (alkene Nos. 405, 413, 505, 509) and
bacterial procsses (e.g. DMDS and DMTS). Several
classes of compounds that might be expected to have
an atmospheric source were not found, such as

branched saturated hydrocarbons from gasoline and
terpenoid compounds from terrestrial vegetation.

The time variability of the data suggest that sources
and sinks may change volatiles levels within the
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course of a few days. Air/water partition coeffcients
and exchange estimates suggest. that gas evasion from
shallow water may be an important sink, especially
for alkanes. Since water insolubility, rather than high
volatility, is the major factor determining the large
air/water partition coeffcients for many non-polar
compounds. adsorption on particles and sediment is
a physico-chemically parallel potential sink. Ineff-
cient rL"Covery of VC in turbid samples also suggests
an association between particles and these com-
pounds. No obvious biological effects were revealed
by a search for correlations of concentrations of VC
with nutrients. The nearly constant isomer patterns
and similar time behavior of numerous C2-C4 alkyl
benzenes demonstrates that the available sinks do not
discriminate within this class of compounds, despite
variations in physical properties.

The total amount of VOC recovered by this
method is about 0.2-1.0 tlgjkg, considerably below the
VOC content of seawater determined by other
methods. It is likely that part of the cause of this
discrepancy is that we analyze a fraction of the

organic matter in seawater with different volatility
limits than that studied by other workers.
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Appendix iv. Physical chemical data for C2- and C ~benzenes taken from
Handbook of Chemistry and Physics (1~69) and from Sutton
and Calder (1975).
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Appendix V. Mass spectra of some hydrocarbons and halomethanes released by
benthic algae into seawater.
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