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Abstract

Thisthesisinvestigatesthe application o acoustic measurementsin the deep and shallow
oceanto infer thesound velocity profile (svp) in the seabed. For the deep water ocean, an
exact method based on the Gelfand-Levitan integral equation is evaluated. The input
data is the complex plane-wave reflection coefficient estimated from measurements o
acoustic pressure in water. We apply the method to experimental data and estimate
both the reflection coefficient and the seabed svp. A rigorousinverson schemeis hence
applied in a realistic problem.

For the shallow ocean, an inverse eigenvalue technique is developed. The input
data are the eigenvaues associated with propagating modes, measured as a function of
source-receiver range. We investigate the estimation o eigenvaluesfrom acoustic fields
measured in laterally varying environments. We aso investigate the errors associated
with estimating varying modal eigenvalues, analogousto the estimation o time-varying
frequenciesin multicomponent signals, using time-varying autoregressive (TVAR) meth-
ods. We propose and analyze two AR sequential estimators, one for model coefficients,
another for the zerosd the AR characteristic polynomial. Thedecimationadf the pressure
fidd defined in a discrete range grid is analyzed as a tool to improve AR estimation.

The nonlinear eigenvalue inverse problem o estimating the svp from a sequence o
eigenvaluesis solved by iterating linearized approximations. The solution to theinverse
problem is proposed in the form d a Kalman filter. The resolution and variance o
the eigenvalue inverse problem are anayzed in terms d the Cramer—-Rao lower bound
and the Backus-Gilbert (BG) resolution theory. BG theory is applied to the design
d shalow-water experiments. A method is developed to compensate for the Doppler
deviation observed in experiments with moving sources.

Thesis Supervisor: George V. Frisk
Title: Scientist Emeritus, WHOI
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Chapter 1

| ntroduction

1.1 Background

This thesis deals with the problem of measuring geoacoustic properties of the ocean
subbottom, the region of the seabed close to the water interface, from acoustic mea-
surements in the water column. One important problem in Ocean Acoustics, as wdl as
other branches d Acoustics, isthe prediction o the sound field produced by a sourcein
a given environment, the so called f orwar d problem. The environment is characterized
by its geometry and the physical properties of the water and surrounding media. Inthe
ocean the geometry is determined by the bathymetry, the varying sea surface position,
and the location of source and receiver.

For sound propagation prediction purposes and at sufficiently low frequencies, the
sea surface is reasonably and simply modeled as a plane, pressure rel ease surface where
the acoustic pressure is zero. The water column and the seabed require a more complex
description. In the water, the most important parameters are the sound velocity and
absorption coefficient. Sediments may, in many cases, be also characterized as a fluid,
but shear speed and absorption become important depending on the frequency and how
close the source and receiver are to the bottom. More elaborate sediment models may

require 13 or more parameters[72]. The sensitivity o the acoustic field with respect to



these geoacoustic properties suggests theidea d usingsound measurementsto infer their
values, the geoacoustic inverse problem.

The ideais far from new. For decades marine geophysicists have used sound pro-
duced in the water to infer properties o the seafloor, and low frequency echo sounders
or subbottom profilers have been used to obtain pictures of the bottom structure|[10].
For the purpose o underwater propagation prediction, however, the subbottom must
be characterized down to tens o meters below the water interface, not the kilometers
geophysicists usualy focus on. In the eighties, for example, a set o experiments were
conducted in the Icelandic Basin, ultimately to characterize the seabed for application
to propagation modeling [21}. When the US Navy started focusing on littoral warfare,
the Office d Nava Research sponsored efforts to measure the properties o sediments
in shallow waters down to a few hundred meters[71]. The geoacoustic inverse problem
isan active area in Ocean Acoustics. The inversion for the sound velocity profilein the
subbottom, modeled as a fluid, from acoustic datain water is thefocus of the thesis.

Inverse methods can be broadly classified in three groups. One group includes tech-
niques that solveiteratively the forward problem. Starting from a background environ-
mental model, the forward solution is compared to a set of noisy measurements and the
environmental parameters are adjusted in order to minimize a measure o thefitting er-
ror. These parameter search/optimization methods may involve hundreds of thousands
d forward solutions, and are computationally intensive. They are the most used today
by the Ocean Acoustics community, as can be inferred from the large number of books,
articles, and conference presentations on the subject[9, 26, 74, 13].

On theother extreme are the methods based on arigorous or exact formulation of the
inverse problem[70, 45]. These theories relate some quantity inferred from the measured
field (e.g., reflection coefficient, normal mode characteristic wavenumbers) to the desired
property (sound velocity profile). Conditions for existence and uniqueness o solutions
are usually established. The exact methods are developed for idealized conditions and

require data whose measurement may not be feasible. Measurement error (noise) is not



usually considered.

Perturbative inverse techniques[43, 67, 61) provide a compromise between exact
methods and those based on parameter search/optimization. The perturbative ap-
proach relies on the fact that the typical range of sound velocities and densities in
the ocean and seabed are small compared to their mean value. Contrary to the pa-
rameter search/optimization methods, perturbative techniques are easily implemented
and computationally inexpensive (the solution of the wave equation is computed a small
number o times). One advantage over the exact methods is that measurement errors
can be easily dealt with.

12 Thesis Overview

Exact formulations may lead to effective sound velocity profile measurement techniques
that do not depend on initial guesses of the solution or its properties, and for which
the conditionsfor unigueness o the solution, if not attainable, are at least known. The
mathematical framework make them suitable candidates for reference inverse methods.

Chapter 2 discusses the application d an exact inversetheory to actual experimental
data. Theexact theory was devel oped by Merab[45] and isbased on thework o Gelfand
and Levitan[25] developed in the context of potential inversion from scattering data in
Quantum Mechanics. Theinput datarequired by Merab's method is the complex plane-
wave reflection coefficient o the bottom.

The measurement o the magnitude and phase of the bottom reflection coefficient is
an important issue in ocean acoustics by itself. In Chapter 2, a technique developed by
Frisk and co-workers[22, 46] is applied to the measurement of the reflection coefficient
using monochromatic acoustic data from the deep water experiment at the Icelandic
Basin described by Frisk, Doutt, and Hays[21].

Apparently, there is a view in the Ocean Acoustics community

"that there is a difficulty in applying rigorous inversion schemes in realistic



problem, as the latter require much more information thanis availableinthe

experiments[74, p. v.].”

Asshownin Chapter 2, thisis not necessarily true. The reflectioncoefficient is estimated
from actual experimental pressure data, which isthen used asinput to Merab's method.
The sound velocity profilein the seabed is recovered, and the errors explained.

In order to construct analytically tractable inverse problems, simplifying assump-
tions such as, for example, depth-only dependence o the geoacoustic parameters and
lack o shear rigidity, are made. The results of rigorous methods may be, despite the
simplifyingassumptions, satisfactory for applicationsin acoustic propagation prediction.
In addition, the inverted sound velocity profile may be used as the initial solution in
a non rigorous iterative inversion technique using a more realistic description of the
environment.

Normal modes are a dominant featureof the acoustic field in shallow water. Interms
d the wavenumber spectrum, most of the power is concentrated in certain characteristic
wavenumbers. Estimating the reflection coefficient required by Merab's method in such
conditions, for example, is still an open problem. In shallow-water it seems reasonable
to usethe modal characteristic wavenumbers, which depend on the environmental prop
erties, as the input data o an inverse method. Perturbative techniques that explore
this modal information have been developed by Rajan and co-workers[61]. Chapters 3
and 4 discuss the extension o Rajan’s method to environments whaose properties are
range-dependent.

Chapter 3 deals with the high-resolution, sequential eigenvalue estimation required
for the characterization of range-dependent environments. It shows that the modal sum
in a range-dependent environment can be exactly represented by a recursive difference
equation, which justifies the application o autoregressive (AR) techniques as proposed
by Becker[6]. Chapter 3 also shows, however, that the AR eigenvalue estimation is
biased in range dependent environments. Synthetic data from a workshop on inverse

techniques [9] is analyzed. The sequentia estimators, associated with a competitive

11



smoother{51], successfully estimate jumps in eigenvalues caused by abrupt environmen-
tal changes, a problem that motivated Chapter 3. Datafrom the Modal Mapping Exper-
iments (MOMAX)[18] are analyzed. The data consist of monochromatic acoustic fields
measured as a function o position in a shallow-water environment, where horizontal
synthetic aperture arrays areformed by drifting buoys or by a moving source.

Chapter 4 discusses the eigenvalue inversion problem. Backus-Gilbert theory[4] is
applied to the analysis o the trade-off between resolution and variancein the eigenvalue
inverse problem. The framework o estimation theory is also applied to the analysis
d the problem. Measurements o acoustic fields produced by moving sources result in
eigenvalue estimation biasdueto the Doppler effect. A method is developed to account
for these eigenvalue estimation errors directly in the perturbative formulation. Finaly,
a state-space formulation of the inverse eigenvalue problem leads to a Kalman filter
solution suitable for range-dependent environments. Sequencesd eigenvalues estimated
as a function of range with the techniques o Chapter 3 are then inverted for sound
velocity profiles in the seabed.



Chapter 2

Inverson for Subbottom Sound
Velocity Profilesin the Deep Ocean:
Application of an Exact |nverse
Method

2.1 Introduction

This chapter discusses the application o an exact inversetheory to actual experimental
data. The exact theory was devel oped by Merah[45] and is based on the work of Gelfand
and Levitan|25] on potential inversion from scattering datain Quantum Mechanics. The
input datarequired by Merab's method is the complex plane-wave reflection coefficient
at afixed frequency.

The measurement d the magnitude and phase o the reflection coefficient o the
ocean bottom is an important issue in Ocean Acoustics by itself. In this chapter, we
apply a technique developed by Frisk and co-workers[22, 46] to the measurement of the

reflection coefficient using monochromatic acoustic datafrom the deep water experiment



at the Icelandic Basin described by Frisk, Doutt, and Hays[21].

Section 2.1 reviews Merab's method and Frisk’s technique. Section 2.2 describes
the Icelandic Basin experiment. Section 2.3 analyzes the experimental data up to the
measurement d the reflection coefficient. We use simulated pressure fieldsto discussthe
dataanalysis procedure and to evaluatethe effectsd experimental factors not accounted
for in the underlying acoustic model, such as source depth variations with range. We
introduce the concept of residual pressure, an extension of Mook's[46] residual phase,
and apply it totheanalysis o the measured and simulated fields. The residual pressure
analysis adlowed us to identify measurement errors and recover the pressure data phase.
We estimate the complex, plane-wave reflection coefficient at the experimental site.

Section 2.4 applies Merab's method to the reflection coefficient measured in Section
2.3. Variousissues associated with theused thismethod in realistic ocean environments
are discussed and illustrated by examples. We introduce a density discontinuity com-
pensation procedure that allows the use o Merab's method in more realistic settings,
and correct an expression for the cutoff frequency for trapped modesin the subbottom.

Finally, we estimate the sound velocity profile at the Icelandic Basin experiment site.

2.1.1 Inversion from Reflection Coefficient Data

A plane wavel, p;,..(z) = e**%, incident from a homogeneous half-space onto a boundary
at z =0 (Figure 2-1) at an angle 4 is partially reflected and transmitted into the lower
half-space. The wavenumber vector ko = (k,, &) has a vertical component &, = & cosé
and horizontal component &, = kg sinf, where ko = w/cy is the magnitude o ky. The
ratio o reflected and incident wavesisthe plane-wave reflection coefficient Ry, afunction
o the frequency w, the incidence angle 8, and the geoacoustic properties of both half-
spaces, in particular of the sound velocity profile e(2) o the lower half-space.
Merab[45] developed a method for inverting reflection coefficient datafor the seabed
sound velocity profilein ahorizontally stratified media. The method is based on a work

1The time dependencee ! is assumed.
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Figure 2-1: Reflection coefficient

by Gelfand and Levitan[25] related to the potential inversion in Quantum Mechanics.
The input data is the complex plane-wave reflection coefficient as a function o the
vertical wavenumber k, measured in the water at the water-seabed interface at a single
frequency, Ry(k:).
The Fourier transform o the reflection coefficient, seen as a function of the vertical
wavenumber k.,
ro(2) = L f ” Ry(k.)e *=dk,, (2.1)

27 J_»

isrelated to theindex o refraction n{z) = co/c(z) through the Gelfand-Levitan integral

eguation
K(z,9) tr(zty) T f ro(t + yYK(z,t)dt=0, y < 2, (2.2)
-y
and the potential
Vi(z) = ZQ%’Z) =ki [l —n(z)], 2> 0, (2.3)

Note that the reference potential is V(z) = 0, z < 0, corresponding to the sound velocity

inwater, ¢(z) = ¢y, n(z) = 1,z < 0. Thecomputation of the Fourier transform, eq.(2.1),



is reduced to the interval 0 < k, < oo by using the conjugate-symmetry property
Ry(—k.) = Ri(k;), and smplifiesto

ry(2) = %ﬂ% { fa N Rb(kz)e'ik"dkz} : (2.4)

where {-} denotes therea part.

Equations (2.1) and (2.4) are valid strictly only in absence of trapped modes in
the seabed, which may be excited due to sound velocity profile minima smaller than
the water sound velocity. These trapped modes are analogous to the bound states of
Quantum Mechanicsthat may occur in regionsd negative potential V. When trapped
modes are excited in the seabed, an additional term in eq.(2.1) is required in order to
satisfy rp(z) = 0, z < 0. The term isrelated to the poles o the reflection coefficient
in the upper k., complex plane. The poles and their residues should, therefore, be also
measured.

As pointed out in [45], however, such trapped modes can be avoided by measuring

the reflection coefficient at sufficiently low frequencies given by the condition

Crnin /2
w < gV3 (1 - , (2.5)

Co

where g = dc/dz (sec™) isthe constant, positive sound velocity gradient and cpmin < ¢o
is the minimum sound velocity in the seabed. Equation (2.5) is valid for linear sound
velocity profilesin the seabed.

In Subsection 2.4.1 we show that eq.(2.5) is valid, in fact, when the sound velocity
minimum occur away from the boundary z = O, for a bilinear velocity profile (whereg is
the magnitude o the gradient above and below the minimum). We derive an expression
to account for the case when the minimum sound velocity occurs at the boundary.

One limitation o the Merab method is that the starting point is the standard wave

equation? over al domain —oo < z < oo, where density is assumed constant. Consid-

2We refer to the standard form o the time-independent, depth-dependent pressure wave equation



ering that density discontinuities may be present in the water-seabed interface, thisis
a major restriction o the method. In the presence d smooth density variations, the

acoustic wave equation can be reduced to the standard form with a modified index o

5 2
"2 2 —9 ldzp 3 1dp
. et LT N ,
() =n'+kK {:Zpdzz 2 \pdz (2:6)

refraction|45]

L

and Merab's method can be used to recover n'(z).

Density discontinuities, on the other hand, can not be directly dealt with. First, as
ksl — o0, Ry(k.) — O{k;?)[45] when the density is constant, but tends to a constant
in the presence of density discontinuities, and the Fourier transform in eq.(2.1) would
require a representation in terms o impulses. In fact, the time-independent, depth-
dependent pressure wave equation, which includes derivatives of density, is not valid at
points of density discontinuity. This is circumvented by introducing interfaces at these
points and imposing continuity of pressure and normal particle velocity. We discuss this
issuein Section 2.4.1.

Another important issue on the application of Merab's method is the truncation o
Ry(k.)toalimited aperturea < k, < b. In practice, thereflection coefficient will be usu-
aly available on a range corresponding to real angles o incidence0 < &, < k,, and the
Fourier integral must be truncated. In a seriesdf simulations, Merab[45] shows a degra-
dation of theinverted profile asthe &, range decreases, wherethereconstructed profileis
asmoothed verson o the original. The reconstruction was shown to be reasonably accu-
rate when the range includes the critical incidence region 0 < k, < K,criticat = ko COSO,,
where |Ry| = 1

Merab's method requires solving the integral equation (2.2) at each depth. In the
Nystrom method[29], the integral is approximated by a quadrature by setting ¢, =
—y tnlAz and K(z,y) isevaluated at the discrete points y,, = —z +mAz. If thedata

[r(z)] are availableat depths z, = ¢Az, q=0,,1, ..., the resulting linear system is

w’(2) T k2(2)u(z) = 0, as opposed to the nore general farm p(z)(u'(2)/p(2)) T k2(2)u(z) =0.



given by

K(zq, —24 + mAz) + ry(mAz)+

Aziwﬂmrb(nﬁz)ﬁ'(zq, zg—(m—n)Az)=0,m=1,..., 2 (2.7)
n=0
where, from eq.(2.2), K(z,~z) = —r{0). After solving for K(z,y), the derivative in
eq.(2.3) is computed numericaly. Noticethat the system (2.7) has dimensions 2g x 2g,
which increases with depth and requires ry{z) in therange 0 < z < 2gAz.
Another method that incorporates the computation of the derivatives of K(z,y) into
the linear system was introduced by Khanh[39] and is based on the Hermite corrector

formula of order two

b M 2
[ @ = Y3 ) + 9(6] + 5 0 (0) SO+ OGRS (28)

k=1

By differentiating eq.(2.2) with respect to aand y, including the mixed derivative, three

other integral equations are obtained. The discretization of the four integral equations

using eq.(2.8) leads to four coupled linear systems d dimensions (4g  2) x (4¢ + 2

where, in addition to K{z,y), the derivatives 8,K(z,y) and 8,K(z,y) are obtained.
The potential can be computed as [cf. eq.(2.3)]

V(zg) = 2[0.K (24, y) + 0, K (2, y)]

y=zq ’

which avoidsthe approximation o derivatives by finitedifferences. The main issueswith
Khanh’s method are (1) the linear system dimension growsfast with depth, and (2) the
use o the first and second derivatives of r:(z) imposes more restrictive requirements on
the behavior of Ry(k.) near infinity.

Other solution methods are described in [45]. One that avoids the solution of linear

18



systems is based on the series expansion o the integral equation (2.2), leading to

V(z) =VO(@) T vt v@) +. (2.9)
where
VO(z) = ~2%(2z) (2.10)

corresponds to the Born approximation, and the other two lowest order terms are
VO(2) = 4r,(22) (2.11)

and
. 2z i z 4 37‘5
V@) (3) = 4ry(22) f r2(t)dt + 2 / / nz + Or(t+m) (s + dnde. (2.12)
0 —z o =t

212 Measurement of the Reflection Coefficient
From Acoustic Pressure to Reflection Coefficient

The technique described here was developed by Frisk and co-workers|22, 46]. Figure 2-2
isa modéd for thereflection coefficient measurement setup in deep water, as described by
Frisk, Doutt, and Hays[21]. A monochromatic sound source drifts awvay from a receiver
closetothe bottom, in a homogeneouswater half-spaceoverlyingahorizontally stratified

seabed. The signal recorded at the receiver is given by the Hankel transform

e o]

p(r;z,z0) = fg(kr, z, 20} Jo (ko) dk,, (2.13)
0
where g(k,, #, z) is the depth dependent Green's function and & isthe horizontal com-
ponent of the water wavenumber ky = w/cy, whichis related to the vertical wavenumber
k, by k2 = k2t k2 (see Figure 2-1).
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Figure 2-2: Reflection coefficient measurement model: a homogeneous water half-space
overlayinga horizontally stratified seabed.

For the environment o Figure 2-2 the depth dependent Green's function is given by
glky; 2,20) = -]Z— [e*l==2l 1 Ry(k.) gkt (2.14)

Notice that the reflection coefficient R; is described as a function o k., not &k, as in

Merab's method.
Given the pressure as a function of range at constant source and receiver depth, the

Green's function can be computed as the inverse transform

o0}

g(ky; 2, 20) = fp(r; 2, 20) Jo(knr)rdr. (2.15)

0

The Hankel transform is performed numerically using the Fourier-Bessel series [76, 47)

s N
flz)= /f(y)Jo(my)y dy = % ;w(yn)f%%, fLe< X, (2.16)

wherethe function f to be transformed is given on the grid v, = A,/ X, A, is the n-th
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Figure 23: Reflection Coefficient Measurement Technique. (a) The basic method: from
ameasured pressure field asafunction of range » tothereflectioncoefficient. The Hankel
transform (H ) of the pressure isthe depth dependent Green's function, from which the
plane-wavereflection coefficient is calculated. (b) A more detailed description, including
the pressure normalization (computation of residual pressure to dow down the rate of
change of the phase with range), the interpolation for the ranges r,, required by the
Fourier-Bessel series, and the recovery o the pressure datafrom the residual pressure.

zeroo Jo(z), X isthebandwidth off, i.e. f(z) = 0for x > X, and w(y,) isawindowing
sequence.

Given the Green's function, the reflection coefficient is obtained as a function of the
horizontal wavenumber &, using eq.(2.14). In principle, the reflection coefficient can
be computed not only for real angles of incidence, where 0 < k,. < kg, but aso for
evanescent waves with &, > kq.

Thesteps o the reflection coefficient measurement technique areshown in Figure 2-3.
In order to compute the Hankel transform o the pressurefield using eq.(2.16), thefield
must be interpolated in arange grid determined by the zeros A, of Jo(z), rn = /K,
where K is the bandwidth o the Green's function g(k, ).

Although the magnitude o the pressure changes dowly with distance (as seen, for



example, in Figure 2-5), the phase isdominated by a geometric phase factor exp{iko Ry},
corresponding to a 2 radian variation in phase per wavelength change in the distance,
a reasonably fast change. In order to assist the interpolation process, the phase rate o
the pressure field is reduced by normalizing the pressure signal (the phase dow-down
block of Figure 2-3), resulting in the residual pressure. After interpolation, thesignal is

denormalized and transformed to obtain the Green's function.

Analysisof The Pressure Field - Residual Pressure

As described above, the rate of phase d the acoustic pressure signal is reduced for
interpolation. This is accomplished by removing the contribution exp{ikoRs} from the
field. This phase factor corresponds to the direct field that would be observed in the
absence of the seabed. By removingit, we obtain a signal, the residual pressure, whose
phase variations reflect the seabed contribution to the total field. We analyze properties
o the residual signal, which is useful in the interpretation o experimental data.

The pressure field given by egs.{2.13) and (2.14) can be decomposed into direct and

bottom interacting (or reflected) components as [23]

direct fidld bottom iQteracting
eikoRo X 1 "
p(r;2,2,) = 7 i f Eo(kr)e! (204203 (k. )k, di, (2.17)
O 0 z
eikoRo _
= + B(r; z, zg)e"##0), (2.18)
R,

where Ry = /72 + (2 — 2y)? is the slant distance source-receiver. Mook [46] introduced
the concept o residual phase, which is the phase of the pressure when the geometrical
phase component &, R, is removed. When this dominant phase component is removed,
the remaining phase variations, due to bottom interaction, change dowly with range.
This dowly varying pressure can be easily interpolated into the range grid required

by the Fourier-Bessel series, eq.(2.16). The residua phase is the phase of the residua



pressure obtained by normalizing the total pressure by the direct field. From eq.(2.17),

the residual pressureis given by

Pr(r;2,20) = Roe™" p(r; 2, z0) = 1+ B(r; 2, z9) Roe1ri%20) ~keFol (2.19)

with magnitude

[p(7; 2, 20)| = 4/ 1+ 2B(r; 2, 20) Ro cos [7(r; 7, 70) — koRo) + B*(r; 2, 0) R (2.20)

and (residual) phase

: = _B
¢r(r; 2, 20) = tan™? T r(ﬁ,gu’ls@}%x&[)s&r(: gom_ (2.21)

The behavior o the residual magnitude and phase as a function of range can be
qualitatively assessed by looking at two extreme conditions[23]. If the reflected fidd is
small compared to the direct fidld, then B issmall and BRy < 1. To thefirst order in

B Ry, the residual magnitude and pressure are given by
|pr(r; 2, 20)| =~ 1 + B(r; 2, 2) Ro cos [y(r; z, z0) ~ koRo) (2.22)

and
&r(r;2,20) ~ B(r; 2, 20) Rosin [v(7; 2, 20} — koRo] , (223

which indicates that variations d magnitude and residual phase with range are similar
and small in those conditions.

When the pressure magnitude goes through a minimum, eqgs.(2.20) and (2.22) indi-
cate that cos[y — k,Ro) =~ —1 and, therefore, v — k, Ry =~ (2n+ 1)7. Near the magnitude
minima, the argument (v—k,Ry) changesfrom somevalue [(2n+1)r—e&] to [(2n+1)m+<],

where ¢ is some small value. The change in residual phase around a minimum is, as a
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consequence,
B{r;z,zp)Rosine

Ady| =~ -t . 2.24
[Ag:|  12tan 1— B(r;2z,z0)Rocose (2:24)

When, in addition, BR, is small,
|Ady| ~ 2B(r; z, z0) Ro sine, (2.25)

a small change o phase for a small change in magnitude near a minimum. If, on the
other hand, BRy is closeto one, the minimum will be nearly a magnitude null and the

changein residual phase A¢ approaches =.

2.2 Thelcdandic Basn Experiment

The acoustic pressure data were obtained in 1981 in the Icelandic Basin. A detailed
description can be found in reference {21] (the data are from a region referred to as site
B4). Asshownin Figure 2-4, an acoustic source was towed away from two low-frequency
receiverslocated at 1.2 m and 54.6 m from the bottom. The whole system, including the
receivers, an 11 kHz pinger, and the 220 Hz source, was lowered on asinglecable. When
the mooring system anchor reached 35 m from the bottom, the receivers were released
with the anchors. The ship drifted away at about 0.5 knots. The average source height
during the experiment was 124.9 meters.

Every 12 seconds, the source emitted a 220-Hz, 4-slong CW pulse. Simultaneoudly,
the pinger transmitted a CW pulse o 11 kHz used to signal the receivers to start the
220-Hz pulse acquisition. The 11-kHz signal was also used for measuring the pinger-
recelvers propagating times, and, in conjunction with the towing ship's depth recorder,
the source depth. The 11 kHz receivers were located near the low-frequency units, at
2.54 m and 54.37 m from the bottom.

The receivers sampled the complex envelope o the 220 Hz signal at a 5 Hz sampling

rate and stored 30 pulse samples and the times o emission and reception o each pulse.
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Figure 2-4: The experimental setup in the Icelandic basin. The sound velocity near the
bottom was 1495 m/s and the gradient, 0.009 s~!. The average source height was 124.9
m. The source drifted away from the fixed receiversat 0.5knots. Every 12 s, a pulse was
simultaneously emitted from the source and the pinger. The distance between emissions
was, therefore, about 3.1 m, close to half-wavelength at 220 Hz[21, 23].



From this raw data, the posterior analysis used only one sample o each received pulse.
Thefourth sample was selected for the receiver at 1.2 m (that is, 4/5 s after the 11 kHz
pulse reception) and thefifth sample (1s after the 11 kHz pulse), for the 54.6 m receiver.
The surface reflected pulse arrived at the receivers after these chosen sample times (for
distances up to about 3700 meters). Therefore, these samples are representative d the
sum of the direct and bottom interacting field components.

In Figure 2-5 the magnitude d the samples are shown as a function of distance,
along with simulated fields. These simulated fields are based on a seabed model shown
in Figure 2-6, previously inferred from the magnitudes of the measured fields[21]. Mea
surements taken with a 3.5 kHz echo sounder suggests that the environment is range-
independent in the region o interest. The used the water half-space model of eq.(2.14)
isjustified by the small sound velocity gradient near the bottom and by the use o signal
samples free of the surface reflected signal.

The good fit between measured and computed fields in Figure 2-5 suggests that
the range—independent, fluid subbottom model of Figure 2-6 captures the essential en-
vironmental characteristics that influence the acoustic field at 220 Hz, for the given
experimental geometry.

One important deviation from the basic acoustic model of Section 2.1.2 during the
experiment is the source depth variation as afunction of range. Measured source height
variationsareshownin Figure 2-7. The source height changed by about 30 meters during
the experiment, a large change when compared to the wavelength o 6.8 meters.
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Figure 2-5. Magnitude d the Icdandic Basin recever outputs, one sample per pulse
(dots). The solid lines correspond to fields computed for a gecacoustic model d Figure
(2-6), obtained by matching the pattern d the measured magnitude[21]. The units
are dB relative 1 Volt. The computed fidd magnitudes are adjusted by the receiver
calibration factor (see Table 2.1 on page 45).



p= 1600 kg/m’
a=0.0039 dB/m at 220 Hz

Figure 2-6. Geoacousti® model of the Icedlandic Basin (sit~ Bf) based on direct mea-
surementsd water sound velocity and seabed density, 35 kHz echo soundings, and the
magnitude d the acoustic pressure measured at 220 Hz as a function of range[21].
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Figure 2-7: Source height variations observed during the Icelandic Basin experiment.



2.3 lcelandic Basin Data Analysis - Computing the
Reflection Coefficient

231 Smulated Field Analysis
The Ideal and Synthetic Smulated Fields

Simulated fields were generated for the Icelandic model shown in Figure 2-6, in order to
evaluate the measurement technique and compare with the experimental results. The
computed reflection coefficient and the Green's function for a source height o 124.9
m and receiver heights of 1.2 m and 54.6 m are shown in Figure 2-8. Notice the pole
in the reflection coefficient at a horizontal wavenumber nearly 0.08% above the water
wavenumber due to a trapped mode in the sediment near the water interface.

The pressure fields were computed using the Fourier-Bessel series, eq.{2.16), with an
uniform window w(k,.) = 1and X = rpez = 2 x 10*m, above which thefield is assumed
zero. The output of the Fourier-Bessal series was smoothed to remove oscillations (due
to aliasing) introduced by the assumption o null field for r > 744z

Two simulated (residual) pressurefields arein shown in Figure 2-9 as a function of
distance. Thefirst, herecalled ideal, was computed for a constant source height of 124.9
m and on therange grid required by the inverse Hankel transform, in order to avoid the
interpolation process shown in Figure 2-3 when inverting for the reflection coefficient.

The second field, called synthetic, was computed with the source height variations
shown in Figure 2-7 and on the range grid of the experimenta field, resulting in a
more realistic simulation o the experimental conditions. The magnitude of both fields
have the same general behavior—the differenceis the location o the magnitude and
phase extrema. Thisindicates that source height variations causes changesin the phase
difference between direct and reflected fields, as expected.

Corresponding fields with similar characteristics were computed for the 54.6 m re-

celver. Another set o fields were generated by interpolating the ideal field into the
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Figure 2-8. (a) Icelandic model (Figure 2-6) reflection coefficient at 220 Hz; (b) Green's
function magnitude and phasefor asourceat z, = 124.9m and areceiver a z = 54.6 m;
(c) Green's function magnitude and phase for a source at z; = 124.9 mand a receiver
at z = 1.2 m. All plots are versus the ratio &./ko (Sine d the angle o incidence for
k./ko < 1). Tota reflection starts at k-/ke = cofca = 0.6795, corresponding to a
critical angle d incidencedf 42.8". The minimum in sound velocity in the seabed results
in the pole d the reflection coefficient, observed at &, /kq ~ 1.0008.



experiment range grid, which alowed to verify the effect o the interpolation stage of
Figure 2-3.

The phase shown in Figure 2-9 excludes the geometric phase factor exp{ikesRo} and
isthe phase o the residual pressure at the output o the first block o Figure 2-36. In
order to assess qualitatively the effect d an error in the source position measurement,

the residual phase o thefield with source height variations is computed in two ways.

e Ignorethesource height variations. an average source height was used to compute
the slant distances R, in the phase dow-down step (first block of Figure 2-3b).
The result, shown in the lower plot o Figure 2-9, is alarge change in the residual
phase in thefirst 1000 meters.

e Use the correct, variable source heights to compute the slant distances. As shown
in the lower plot of Figure 2-9, the resulting residual phase has the same general
behavior o the constant height source. The large phase trend observed previously
is eliminated.

The effect o the source height variations (when correctly accounted for) on the residual
phase is observed mainly as a (non constant) shift in range o the phase and magnitude
extrema, as compared to the constant height case (compare the solid and dashed lines
in Figure 2-9).

When the wrong source height is used to dow down the phase, though, the residual
phase presents a large change as the distances increases from zero (about 12 radians in
thefirst 1000 meters), but the phase error tends to a constant at larger ranges, suggesting

that the depth variations have stronger effects at smaller ranges.

Migration - Compensating for Source Height Variations

Theidea and syntheticfieldsare used asinput for the reflection coefficient measurement
technique described in Section 2.1.2 and shown schematically in Figure 2-3. As shown
in eq.(2.15), the Green's function isthe Hankel transform of the measured pressurefield,
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Figure 2-9: Synthetic residua pressure at z = 1.2m. The upper plot shows the resid-
ual magnitudes for an ideal, constant source depth (124.9 m, solid line), and for the
source depth variations shown in Figure 2-7 (dashed line). The lowe plot shows the
corresponding residual phases. When source height variationsareignored in the compu-
tation d the residual phase and an average vaueis used instead, an error isintroduced,
as shown by the dash-dot line.



assuming both thesourceand receiver heights are independent o range. 1norder to apply
eg. (2.15) to the pressure field, a migration processwas implemented to compensate, at
least partially, the synthetic fields for the source height variations.

As described above, the effect o the height variations is to shift the residual mag-
nitude and phase extrema. It isreasonable to assume, therefore, that the residual field
can be approximately described as the fidd of a source at a certain constant height.
The migration process consists of using an average source height to compute the slant
distances R, when restoring the pressure after interpolation (third block of Figure 2-3b),
instead of the actual varying height.

As can beseen from Eq. (2.17), the direct field can be modified to any source height
by simply computing R, corresponding to that source height. This migration process
is, therefore, exact for the direct field. On the other hand, there is no simple relation
betweenthe phase o thereflected field and the slant distance R,, and the migration will
not compensate exactly the source height variation effect on the bottom reflected field.

If migration actually compensated for the height variations, the plots labeled "z,
variable" and ” z, constant” in Figure 2-9 would superimpose (the constant source height
in the later case and the average source height in the former are the same). This
migration method is a simplification of the compensation technique described in [23],
a report o an initial analysis o the Icelandic Basin data where the compensation for
the source height variations consisted in adjusting, separately, the phase o the direct
and bottom-interacted fields according to a geometrical acoustics approximation model.
Results using either technique are qualitatively indistinguishable.

The measured source heights at closer ranges, where the influence o the height
variationsisgreater, averages 136 m, and thisvalueis used for migration of the synthetic
and experimental fields.



Extrapolation of the Fields at Short Ranges

The experimental range grid started at nearly r = 26 m, which is larger than the
initial distance required by the Fourier-Bessdl series, eq.(2.16). In order to extrapolate
the measurements for these few points while minimizing numerica artifacts, computed
valuesfor the direct field alone (setting p,, = 1) were used.

As an alternative, we used values based on the geometric acoustics approximation
associated with a ssimple half-space model. At these small ranges, the geometrical inci-
dence angle is below 20° for both receivers, and we approximate the reflection coefficient
by that of normal incidence.

At normal incidence, the reflection coefficient for a plane wave incident from the
water (sound velocity c,, density p,) onto the boundary to a half-spacedf sound velocity

c1 and density p; is given by
p1/po — cofc
— _ 2.26
’ p1/po+co/er (2.26)

For a density ratio o 1.6 (as in the Icelandic Basin sites), and assuming ¢,/c1 = 1 (a
reasonable assumption for a sediment layer), the reflection coefficient at normal inci-
denceis Ry = 0.6/2.6 = 0.23. Therefore, the residual pressure field at those rangesis
approximately given, from eq.(2.19), by

. Ro .
r(r; 2, 20) = p(r; 2, 20) Roe™ ™% = 1 + 0.23R—je“““(R“R°), (2.27)

where R; is the distance from the source to the image of the receiver at the bottom,

Ri=[r3+ @ Tz)9V2

2.3.2 From Simulated Fields to Reflection Coefficient
Green's Function

The Green'sfunction is computed from the simulated fields using eq.(2.16), assuming a
bandwidth K = X = 1.8492 = 2k,. For the values o z, (= 125 m) and z (= 1.2 m)
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usd in the Icelandic Basin experiment, the magnitude of the Green's function g decays
fast to zero for &, > ko, as can be inferred from Eqg. (2.14) and shown in Figure 2-8.
A window based on the Hamming window o spectral analysis was employed to reduce

oscillations caused by the truncation o the pressure field, and is given by

w(r,) = 0.5+ 0.5cos(nr/Rimaz) = 0.5+ 0.5cos(mA,/An), n=1,..., N, (2.28)

wherer, = A/ K, Rme: = An/K, and N was chosento use all availabledata up to 3700
m, where the water half-space model is assumed valid, as discussed in Section 2.2.

Figure 2-10 showsthe Green's functions estimated from the simulated fields at z =
1.2m. The reference Green's function (used to compute theideal, constant source height
field and aso shown in Figure 2-8) is shown in the upper plots. There is no significant
difference between the ideal field result and the reference Green's function, indicating
that the implementation o the basic method (without interpolation, smoothing, or
migration) is correct.

The genera characteristics o the Green's function estimated from the synthetic
(varying source height) fields are similar to the ideal case, athough, because o the
different source heights, an exact agreement between thetwo (i.e., ideal versussynthetic)
is not to be expected. Figure 2-11 shows analogous results for the z = 54.6m simulated
fields. The quality o the results for the lower receiver (ascompared to the idea case)
Is better than the one at 54.6 m.

When analyzing these results, it should be taken into account that the synthetic
field was extrapolated for small distances (r < 26 m). From a geometrical acoustics
perspective, the data that supports results for low k. (lessthan 0.2k, for the 1.2 m

receiver; less than 0.14k, for the 54.6 m receiver) comes from that region.
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Figure 2-10: Green's functions (in Newton) obtained from computed fields at z = 1.2
m. gr.¢ IS the reference Green's function used to compute the ideal field (same as in
Figure 2-8). ¢izeat Was computed from the ideal (constant source depth) field. gsyn: Was
computed from the synthetic field and include effects of the interpolation and migration
o the pressure field.
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Figure 2-11: Green's functions (in Newton) obtained from computed fieldsat z = 54.6m.
gres ISthereference Green's function used to compute theideal field (sameasin Figure 2-
8). gizeas was computed from theideal (constant source depth) field. g, Was computed
from the synthetic field and include effectsof the interpolation and migration o the

pressure field.
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Reflection Coefficient Computation

Figures 2-12 (z = 1.2m) and 2-13 (z = 54.6m) show the reflection coefficientsestimated
from the simulated fields using eq.(2.14). For the ideal field, the result differs only
dightly from the reference reflection coefficient, which is an indication o the small
errors introduced by the approximation o the Hankel transform by the Fourier-Bessel
seriesd eg. (2.16).

A noticeable error in the ideal field result is the reduction in the magnitude of the
reflection coefficient in the neighborhood o & = k,. The dipinthe magnitude is caused
by the windowing o the pressure field [w(ry,) in eg. (2.28)}, which reduces the pressure
at the longer ranges that dominates the Green's function for high (near &,) k.. This
effect is negligible when using a uniform window jw(r,) = 1] (not shown), at the cost of
a poorer reflection coefficient estimate for low k.

The reflection coefficients obtained from the synthetic field can be regarded as a
reasonable estimate of the model reflection coefficient. Given that reliable results for
small k. could not be expected, as discussed in the last paragraph d Section 2.3.2 on
the Green's functions results, the synthetic reflection coefficient estimates are reasonably
good in that region.

Critical incidence on both results is near the true value o k. = 0.68k,. For larger
k., the estimated reflection coefficient has a behavior similar to the reference, both in
magnitude and phase. The main error isthelarge oscillation o the reflection coefficient
magnitude in the supercritical region, where, at some points, it is larger than one.

Results from a synthetic field computed with a constant source height (but at dis-
tancesr that required theinterpolation step) doe not show these large oscillations, which
suggests that they are caused by the wrong application of the Hankel transform to fields
that do not satisfy the assumption of a constant source height and also shows that the

migration processis an approximated compensation for the source height variations.
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Figure 2-12: Reflection coefficient inferred from the simulated fields. The upper plots
are the magnitude and phase d the reference reflection coefficient used to compute the
fields and shown in Figure 2-8. The middle plot is the reflection coefficient estimated
from the ideal, constant source height field. The lower plots are from the synthetic,
varying source height fidld and illustrate the effect d the partial compensation due to
the migration process.
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Figure 2-13: Reflection coefficient inferred from the simulated fields at » = 54.6m. The
upper plots are the magnitude and phase of the reference reflection coefficient used to
compute thefields and shown in Figure 2-8. The middle plot isthe reflection coefficient
estimated from the ideal, constant source height field. The lower plots are from the
synthetic, varying source height field and illustrate the effect of the partial compensation
due to the migration process.
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2.3.3 Analysis of the Measured Acoustic Field
Identifying Phase Measurement Errors

The residual pressure for the synthetic and experimental pressure fieldsat z = 1.2m
are plotted in Figure 2-14. The variations d magnitude and phase d the synthetic
field are in agreement with the qualitative analysis of residual magnitude and phase in
Section 2.1.2. For short ranges, the variations in magnitude and phase are small and
nearly equal. At these distances, waves near normal incidence dominate, the value of
the reflection coefficient is small and the field at the receiver is mainly the direct field,
that is, BR, issmall and egs. (2.22), (2.23), and (2.25) apply.

As the range increases, the variations o the magnitude and phase become larger,
againin agreement with the analysis o Section 2.1.2. For large distances, wavesreflected
at critical and above critical incidence dominate the reflected field (large BR,).

The measured field residual magnitude and phase variations are not compatible.
The magnitude variations are similar to those o the synthetic field, except in a region
of distances between approximately 50 m and 100 m, where the magnitude presents a
dip. The changesin magnitude of the experimental field are consistent with the picture
delineated above involving the reflected fields, magnitude o reflection coefficient and
distances. The residual phase, however, presents large variations (up to distances o
approximately 500 m) that are not compatible with the changes in magnitude, neither
in terms of value nor in terms of length scale®.

Notice that the measured source height variations were taken into account in com-
puting the experimental residual pressure, which was sufficient to eliminate the same
kind o phase variations observed in the synthetic field when source height variations

were initially neglected, as shown in Figure 2-9.

8The term length scalerefersto the range-varying distance between peaks of the residual magnitude
and phase plots.
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Figure 2-14: Residua pressure and unwrapped phase. (&) Synthetic, variable source
height field. (b) Experimental field, recelver at 1.2 m. In both cases the pressure
normalization took the source height variations into account. The vertical scales on
these plots, with exception of the experimental phase, are the same.
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Phase Error Compensation

As discussed above, the large and dow changes in residual phase with range are not
compatible with the residual pressure magnitude and, therefore, not consistent with the
physical model underlying the measurement process. These changescan be regarded as
resulting from measurement errors.

In the analysis of the plotsin Figure 2-9, it was observed that errors in the source
height (that is, assuming the height is constant when computing the residual pressure)
lead to errors in the residual phase similar to those observed in Figure 2-14. Con-
sequently, errors in the measurement o the source position or, equivalently, receiver
synchronization could explain the observed residual phase.

The error in the residua phase is responsible for the poor results in the previous
analysis[23], even after the field was migrated using the measured source height varia-
tions. Errorsin the measured data preclude the estimation o the reflection coefficient.

However, these errors can be partially compensated for. Those phase variations
not compatible with the residua pressure magnitude can be regarded as trends due to
measurement errors. In Figure 2-15, the residual phase (from the measured pressure at
the 1.2 m receiver) isplotted along with a trend corresponding to those large dow phase
changes mentioned above. The phase after the remova of the trend is also shown. The
resulting de-trended field can be regarded as an estimation o the actual field.

The phase trend was obtained by fitting a 10-th degree polynomial to the phase in
theregion r < 500 m, which modelsthe large, dow change in the unwrapped phase. For
distances above 500 m, the trend was assumed a constant value equal to the polynomial
value at 500 m, which is a multiple o 27. Therefore, no further phase adjustment was
necessary.

Not all phase errors can be compensated for and the process is not unique. First,
as discussed above, only errors that cause phase variations incompatible with the model
can be identified. For example, the model predicts small residua phase variations at

small distances. In the present analysis, only the large, ow changes o phase at small
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Figure 2-15. Residual phase d the measured field and trend remova for the recaver at
12 m (cf. Figure 2-14). The dots are the residual phase; the dashed lineis a polynomial
fit by partsd the dow, large phase variations observed up to r =500 m, interpreted as
a measurement error; the solid line is the residua phase after the trend removal.

distanceswere discarded, as shown by the polynomial fit in Figure 2-15.

Second, the de-trend processis not unique because the exact form d the trend error
IS not known a priori. Depending on the chosen form d the polynomidl fit to the phase,
different, trend estimations may result.

The Fidd at the 54.6 m Receaiver

During the experiment, the receiving calibration factors (converson from measured Sg-
nal voltage to pressure) were measured while the system was being lowered from the
research vessdl, when the source and recelvers were on the same vertical and reasonably
far from both the surface and bottom. The magnitude d the measured and synthetic
fidds in the lower (1.2 m) recaiver show good agreement, after compensation for the
calibration factor, as shown in Figure 2-14. The removd d the phase trend left, essen-
tidly, a 2r rad differencein phase at long ranges, also suggesting that the phase d the
calibration factor was correct.

For the higher (54.6 m) recaiver, the calibration factor magnitude had to be adjusted



Table 2.1: Thecalibrationfactor go(Pa/V) isused to convert the voltage measured at the
receiver output to acoustic pressure. p(r)/qgo reduces the vaues recorded at the receiver
output p(r) (Volts) to the receiver input pressure (Pa) relative to a source level of 0 dB
ref. 1 Pa@1 m, [that is, equivalent to a sourceterm —4xd{r—rq) in the waveequation]. qo
was measured using data acquired while the mooring system was being lowered and the
source and receiverswere connected to the same cable from the research vessdl (column
measured). The values shown in the inferred column were estimated during the present
anaysis o phase and magnitude errors.

receiver (m) 0] Zgo (deg)
measured | inferred | measured | inferred
1.2 5277 — 127.9 1285
54.6 2424 4286 -74 -134.7

by about 5dB through comparison with the synthetic field. The phase was adjusted by
—127.3" using the difference in phase remaining at long ranges after the phase trend
removal. Both measured and inferred calibration factors are shown in Table 2.1.

A qualitative analysis of the residual pressure at the 54.6 m receiver, based on the
characteristics of the residual phase, as discussed in Section 2.1.2 and shown in Figure
2-16, reveds that:

¢ For » > 1000 m, phase and magnitude are o reasonable quality; below 1000 m,
the phase presents a dow, large change with distance, as observed (below 500 m)

for the1l.2 m receiver;

¢ Under 170 m, the measured phase seem degraded, and the rate d change of phase

islarger than above 170 m;

¢ Bdow 100 m, the behavior o the phase changes again, presenting even larger

fluctuations.

The de-trend process was implemented on the 54.6 m receiver data through four poly-

nomial fits, roughly according to the above regions:
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Figure 2-16. Resdua phase d the measured fidd and trend removd for the receiver at
54.6 m (cf. Figure2-15). Thedotsaretheresidual phase; thedashed lineisa polynomia
fit by partsd the dow, large phase variations observed up to r =1000 m, interpreted as
a measurement error; the solid line isthe residua phase after the trend removal.

e A polynomia d degree 15 for » <100 m;
e Two polynomidsd degree5for 100 < <170 m, and 150 < » < 500 m;

e A polynomid d degree 3 for 450 < 1 < 1600 m.

The polynomid fits were gpplied in the order given above. The overlap between regions
dlowed for reduced discontinuities in the transition points. Figure 2-16 illustrates the
process. The trend line eove 1000 m is a constant, as in the other receiver. The
constant, in the present case, wasnot an integer multipled 2=, which required afurther
phase correction in the complex calibration factor ¢, as shown in Table 21. The final
residua pressure, including the synthetic fidd for comparison, is shown in Figure 2-17.

Noticethat bdow 100 m the residual magnitudeis noticeably smaller than one, which
is not to be expected in a region where the direct fiddld dominates (cf. Figure 2-14 for
z = 1.2m). This may suggest an additional experimental error mechanism for the first
20 data samples.
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Figure 2-17: Residual pressure and unwrapped phase d the synthetic, variable source
height field and o the experimental fidd (after phase de-trend), recelver at 54.6 m. The
vertical scaes on these plots are the same.
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Figure 2-18: The complete reflection coefficient estimation includes compensation for
source height variations (migration) and phase measurement errors (phase de-trend), in
addition to the basic steps o Figure 2-3.

The Complete Reflection Coefficient M easurement Process

The processd estimation o the reflection coefficient that includes migration and phase

de-trend is shown in Figure 2-18 (cf. Figure 2-3). After the phase dow-down stage, the

estimated residual phase trend is removed and the residual pressure isinterpolated.
After the interpolation, the phase factor removed during the first stage is restored

using a new geometric phase factor based on a constant, average source height z,.,:

exp{iko Boawg } = exp{iko\/rz + (2 — Zoawg)?}

Thisis the migration process discussed in Section 2.3.1. The interpolated and migrated
pressuredataisthe input for the computation o the Green's function and the reflection

coefficient.



234 Reflection Coefficient from Experimental Data
Experimental Green's Function

The residual pressure was interpolated into the range grid required by the Fourier-
Bessdl series, eq.(2.16), associated to the zeros o Jo(-). A smoothing cubic spline was
used for the interpolation as implemented in Matlab®1 by the functions ¢saps.m and
spaps.m[12].

Results are shown for two degrees of pressure field smoothing, in order to verify its
effect on the final result, which is to obtain estimates with different degrees o smooth-
ness. When applied to the synthetic fields, the same degrees a smoothing do not affect
the result appreciably.

The smoothed/interpolated fields at the two receivers are shown in Figures 2-19 and
2-20. For small ranges, the fieldswere extrapolated using the geometrical acoustic model
o eq.(2.27), asexplained in Section 2.3.1.

The general characteristicsd the estimated Green's functions, shownin Figure 2-21,
arereasonably close tothesynthetic case (cf. Figures 2-10and 2-11). Ask. increases, the
magnitude goes from sowly to quickly changing with pronounced nulls. The behavior
d the phase is dso similar. The effect of the extra residual pressure smoothing is to
produce a smoother estimate of the Green's function, whichindicates that the additional

smoothed signal still captures some essential characteristics d the measured fields.

Inferred Reflection Coefficient;

Theinferred reflection coefficientsare shown in Figure 2-22 (cf. Figures 2-12 and 2-13).
Smoothing o theresidual pressure hasthe effect o also smoothing the estimated reflec-
tion coefficient and reducing its peaks. The phase of the reflection coefficient computed
from the 1.2 m recelver has, for k. > 0.55k,, a negative slope, as observed in the model

reflection coefficient and the synthetic field resultsfor large k. Thisisonly observed for

4Matlab is a registered trademark o The MathWorks, Inc.



r(m)

Figure 2-19. Experimental resdua fidds, z = 1.2m, original (dots) and smoothed and
interpolated (solid | i es) ; two degreesof smoothing areshown. Thefinal results preserve
the main features of the measured experimental fidd. |n order to preserve thesefeatures,
the total range was divided in up to 5 regionswith different smoothing parameters.
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Figure 2-20: Experimental resdua fidds, = = 54.6m, original (dots) and smoothed and
interpolated (solidlines); two degreesd smoothing areshown. Thefinal results preserve
the manfeaturesd the measured experimental field. | n order to preserve these features,
the total range was divided in up to 4 regions with different smoothing parameters.
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Figure 2-21: Green's function (in Newton, relativeto sourcelevel d 0 dB ref. 1Pa @ 1
m) estimated from the measured fieldsfor z = 54.6m (upper plot) and z = 1.2m. The
solid lines are resultsfrom the smoother sgnals shown in Figures 2-19 and 2-20.
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Figure 2-22: Reflection coefficient inferred from the experimental fields at z = 54.6m
(upper plot) and 1.2 m. The solid lines corresponds to the smoother fields shown in
Figures 2-19 and 2-20.

k. > 0.75k, on the 54.6 m recelves, which indicates a better quality of the 1.2 m reeeiver
estimate. The large magnitude oscillations in the supercritical region &, > 0.78k, issm-
ilar to those observed in the synthetic results, suggesting a smilar cause (degradation
o the Hankel transform due to source height variations).

The magnitude d the reflection coefficient estimated from the 54.6 m receiver data
has a pronounced change at k./k, = 0.78 typical o critical incidence, suggesting a
basement sound velocity of 1817 m/s, instead of 2200 m/s as previoudy obtained by

matching the fidld magnitude[21]. The 1.2 m receiver results present similar changes
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Figure 2-23. Reflection coefficient inferred from the experimental fields at » = 54.6m
(upper plot) and 1.2 m, using an alternate smoothing scheme, extrapolation o fields
using only direct field, and Fourier-Bessel series with uniform window.

in magnitude at k,./k, = 0.75, although not so well defined, resulting in a basement
velocity estimate of 1993 m/s.

Figure 2-23 showsthe resulting reflection coefficientswhen usingstill another smooth-
ing scheme on the experimental fields, where the field was extrapolated for small ranges
usingonly thedirect field, and a uniform window [w(r,) = 1] was used when computing
the Green's function.

The results using this simpler scheme are qualitatively similar to those shown previ-
ously (Figure 2-22), indicating a certain degree of insensitivity d the estimate to details



in the data processing. The more obvious features are:

a The magnitudeis closer to one near k. = k,; (caused by the use of the uniform

window);

a The critical region is better defined in the 1.2 m receiver result, although not as

wel as in the other receiver's.

Fields Computed from Inferred Reflection Coefficients

An assessment d the quality of the estimate can be achieved by comparing the mea-
sured field with a synthetic field generated from the inferred reflection coefficients. The
estimated reflection coefficients were first extended to high k, values (k, < k. < 2k,)
by assuming a constant value of -1 in that region.

In order to observetheeffect of such extension, fieldswere computed using the model
reflection coefficient truncated to &, = &, and then extended to &, = 2k, as described
above. The result is shown in the upper plot o Figure 2-24. A noticeable, but not
significant error in the magnitude o the field is observed only at large distances.

Theremaining plots show computed fieldsat 54.6 m using the reflection coefficient of
Figures 2-12 and 2-13, inferred from the synthetic fields. The deterioration observed on
theseother plotsis aso more pronounced at large distances, suggesting that the estimate
of the reflection coefficient is worse near k. = k. In addition, these plots suggest that
the reflection coefficient estimate is better from the z = 1.2m data.

Theanaogous resultsfor the experimental reflection coefficientsare shownin Figures
2-25 and 2-26. The mismatch at large distances is qualitatively similar to that observed
with the synthetic fields, suggesting a comparable quality o the reflection coefficient
estimate for large k,. At smaller distances, the fields differ more than in the synthetic

case, which can be explained by the phase errors at these distances.
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Figure 2-24: Magnitude (dB re 1V at the receiver output) d the original synthetic
fidd at = =54.6 m from the mode reflection coefficient (dashed lines) compared with
anew sat o synthetic fields computed from reflection coefficients inferred the origina
synthetic fields(solid lines) shown in Figures 2-12 and 2-13. The reflection coefficients
were extended to theregion &, £ k < 2k by assuming Ry = -1 in that regon. (a)

model R, truncated to ko, for reference; (b) A, inferred from the synthetic field at
z = 54.6m; (c) R, inferred from the synthetic fidd at z = 1.2m.
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Figure 225 Magnitude (dB re 1V at the receiver output) o measured (dots) and
synthetic (solid lines) fields generated from refl ection coefficientsestimated from experi-
mental data: (a) smooth Rb estimate from recaiver at 54.6 m (Figure 2-22, upper plot);
(b) smooth Rb estimatefrom receiver at 1.2 m ( F i e 2-22 lower plot); (C) alternate
smooth scheme, Rb from receiver at 54.6 m (upper plot d Figure 2-23); (d) altetnate
smooth scheme, Rb from receiver at 1.2 m (lower plot o Figure 2-23).
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Figure 2-26. Residual phase d measured (dots) and synthetic (solid lines) fields gen-
erated from reflection coefficients estimated from experimental data, corresponding to
Figure 2-25: (a) smooth Rb estimate from receiver at 54.6 m (Figure 2-22, upper plot);
(b) smooth Bb estimate from recaiver at 1.2 m (Figure 2-22 lower plot); (c) aternate
smooth scheme, Rb from receiver at 54.6 m (upper plot o Figure 2-23); (d) alternate
smooth scheme, Rb from receiver at 1.2 m (lower plot d Figure 2-23).



2.4 Inverson from Reflection Coefficient Data

24.1 Practical Issues Related to the Application of Merab's
Method

Merab's method is based on the exact inversetheory o estimating the potential from
scattering datain Quantum Mechanics. It requiresknowledge o the reflection coefficient
in the domain 0 < &k, < oo and, when trapped modes are present, the location and
residues of its poles in the upper haf-plane. In actual measurements, the reflection
coefficient is estimated only in a finite region o the real line, usualy in the range
0 < k, < kg corresponding to real angles o incidence, and no method to measure the
required information about its poles has yet been devised. Another issueisits validity

only in regionsfree of density discontinuities. This Section discussesthese issues.

Compensating for Density Discontinuity

As pointed out in Section 2.1.1, Merab's method is not valid in the presence o density
discontinuities, which is a major restriction d its application to the measurement of
sound velocity in the seabed.

A density discontinuity at the water-seabed interface can, however, be compensated
for by modifyingthe reflection coefficient[66]. The continuity o the vertical impedance
imposes a relation between the values of the reflection coefficient measured on each side
o theinterface [75] (see Figure 2-27)

&1 + Rbg(kzo) — ﬂ 1+ Rbl(kzl) (2 29)

k.ol ~ Rpo(k.0) ka1 — Rp(ks)’

where the subscript '0’ refers to the water side, and '1’ to the seabed side, and k.1 =
k(z = 07) = V/(w/c1)? — (w/co)2 T k2. If the density of the water were "increased"

to p1, the new measured reflection coefficient at z = 0™, Rio(k.o), would satisfy, from
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Figure 2-27: Density discontinuity compensation d the seabed reflection coefficient. If po
ischanged to py, the density discontinuity iseliminated, resultingin a different reflection
coefficient Ryo.

eq.(2.29), )
P11+ Ruo(k0) _ 1+ Ry (k1) (2.30)
kz(] 1-— Rw(kzo) kzl 1- Rbl(kzl).
Comparing egs.(2.29) and (2.30), one obtains
) 1-84 (1 + g_%) Ry (ko)
Ryo(k20) = (2.31)

142 + (1= 2) Rio(kno)

Equation (2.31) can be used to compensate the measured reflection coefficient, given the
seabed density at the interface.

Avoiding Excitation of Trapped Modes

For the Icelandic model of Figure 2-6, the water sound velocity is ¢o = 1495 m/s, the
minimum sound velocity in the seabed is ¢, = 1483.34 m/s, and the sound velocity
gradient isg = 0.62 s™*. For these parameters, eg.(2.5) predicts that frequencies below



248 Hz do not excite trapped modes, but the pole at the reflection coefficient in Figure
2-8 shows otherwise.

In [45], the starting point to establish the criterion for non excitation of trapped
modes, eq.(2.5), is an expression derived for bound states in a central field of force.
A more realistic criterion is obtained by using the WKB approximation for modes, in

which traveling waves have phase factors o the form
exp {:I:z' f kz(z')dz'} , (2.32)

where k, = y/[w/e(=)]? - k2 is redl.

For the Icelandic model, where trapped modes reflect at the surface and refract back
from below, a mode is defined by setting to 2wn, n integer, the total phase change of
a wave traveling from a reference depth to the lower turning point z, to the water

interface at z = 0 where it is reflected, and back to the reference depth[75]:
zr T
2/ k.(z)dz + 5 PR, =2, m=1,2, ..., (2.33)
0

where the first term corresponds to the WKB approximation o phase change due to
the propagation, /2 accounts for the total reflection at the lower turning point (when
contributions from other layers below zr are neglected), and ¢g,, IS the phase o the

reflection coefficient at the water interface, given by

/k:z _ kz
PR,y = —2tan-1" 4] : (2.34)

' k.

Equation (2.33) is solved for the modal eigenvaluesk,,,. Substituting eq.{2.34) into

eq.(2.33) and taking the tangent on both sides, one obtains the eigenvaluecharacteristic

2T k? _ 2
tan ( / ko(2)dz — %) = %—V”‘O (2.35)
0 0

k,

equation
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A closed form expressionfor theintegral can be obtained for the constant gradient profile
with a minimum at the water interface, ¢(z) = emin T g2, Which, upon the substitution

u = k,(2)/k(z), for which u(zr) = 0, becomes

7 1
f ka(2)dz = 2 (%mﬂ - y) ;
0 g l1—y

wherey = u(0) = k.(0)/k(0) isthe cosined the angle d incidence at the water interface.
Using the variable ¥, the characteristic equation (2.35) becomes, for a linear sound
velocity profile,

tan [i—‘; (0.51n i J_FZ — y) — %} = %#, (2.36)
where a = /1 — (¢min/co)?. Trapped modes are the roots o eq.(2.36) in the interval
0 <y < acorresponding to evanescent waves in the water (k, > ko).

In order to avoid trapped modes, eq.(2.36) can not have solutions. As shown in
Figure 2-28, the right-hand side of eq.(2.36) is a positive function in 0 < y < a that
decreases monotonically to zero at y = a. The left-hand side is (—1) at y = 0 and
increases monotonically to zero at the point g where the argument of the tangent
function becomes zero. Therefore, solutionsin the interval {0, a) will not exist if a < yo,

or, equivaently, if the left-hand side o eq.(2.36) is negative at y = a, i.e.,

w l+a T
E(O.Slnl_a—a) <Z’

from which the criterion for no trapped modesis

1
0.5ln X2 —a)

w < %g( (2.37)

For typical environments, cin/co ~ 1, 8= /1 — {€min/c0)? = vV24/1 — emin/co, and
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Figure 2-28: Termsd the trapped mode equation {2.36), illustrationd a singlesolution
(mode). Axis scales are arbitrary. No solution exists when a < yp.

eq.(2.37) smplifiesto®

—3/2
3 mnin
BT (1 =i ) , (2.38)

8/2 Co

which is nearly 52% below eq.(2.5). Back to the Icelandic Basin model d Figure 2-6,
eq.(2.38) predictsthat no mode is excited bdow 119 Hz, not the 248 Hz predicted by
eq.(2.5). Usng the KRAKEN[57] normal mode code, trapped modes were found down
to 112 Hz for that mode, 6% bdow eq.(2.38). Equation (2.38) isthe criterion that must
be applied when the sound velocity minimum is dose to the water interface.

If the sound velocity minimum is avay from the water interface and the modal
solutions have two turning points (instead d being reflected by the water interface),
eq.(2.33) is modified by taking ¢r,, = 7/2 (neglecting the effect d the water interface).

5The Taylor series expansion of the denominator in eq.(2.37) is

l1+a (.13 05
5L — B P < .
05].111 Q—3+5+ ,0 a<l




Following an analogous analysis, but now for a symmetric, bi-linear profile of gradient
+g near the minimum, modes with characteristic wavenumbers below that of the water
are avoided if

2 "y ~n/2
w< 2 gt {1 = G , 2.39
ol (1- ) (2:39)

which is just 4% below Merab's criterion, €q.(2.5). The present result suggests that his
"starting point" of acentral field of force mentioned aboveis related to the two turning
point case.

As shown in eq.(2.38), trapped modes can be avoided by using a sufficiently low
frequency that depends on the ratio e, /co between the minimum sound velocity in the
sediment and the velocity in water. If trapped modes are excited, but the information
about the bound state (that is, the poles of the reflection coefficient) is not included in
the inversion, as in eq.(2.4), the inferred sound velocity profile would not include the
corresponding minima.

For the Icelandic Basin model of Figure 2-6 trapped modes are excited at 220 Hz,
the frequency o the experiment. In order to avoid trapped modes at a given frequency,
the sound velocity in water should satisfy, from eq.(2.38),

Ciritn B
g/ ova] 8- Gl (240
wherew = 2xf . In order to avoid trapped modes in the Icelandic model seabed {ciin =
148334 m/s, g = 0.62 s7!) at f =220 Hz, the water sound velocity should be, from
eq.{2.40), smaller than 1491.07 m/s, which is not satisfied by the model.
If a measured reflection coefficient is modified to account for a smaller water sound
velocity, say ¢}, = ¢o — ¢, then the inverted profile may change to include sound velocities
down to this new water sound velocity, indicating a possible trapped modein theoriginal

environment®. Using the continuity condition of eq.(2.29) with the lower sound velocity

‘Joyce R. McLaughlin, Dept. of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY.



g, and the new vertical wavenumber

= VWG — 1 = /(] ch)? — (w/co) + K%, (2.41)

one obtains
po 1+ Rio(kly) _ p1 1+ Ru(ka)

Kol = Ryo(kly) kol = Ru(ka)’

which, when compared with eq.(2.29), resultsin

k:zo - kZO + (kfw + kzo)RbO(kzo)
k’zo + kZO o (kio - kzo)RbO(kzo) ‘

Rio(kyg) = (2.42)

The original reflection coefficient isavailablefor vertical wavenumbersk.o = 0. Themod-
ified coefficient can, therefore, becomputed, fromeq.(2.41), for k., > Vw/eg)? — (w/ee)?
w/eor/2€/co. Intheregion0 < k; < w+/2¢/co/co, which corresponds to information not

availablein the original measurement, the reflection coefficient must be extrapolated.

This suggests that ¢/co must be small.

2.4.2 Smulation Results
Inversion from a Numerical Reflection Coefficient

As afirst example, the reflection coefficientfor the Icelandic model shown in Figure 2-8
is used as input datato Merab's method. The reflection coefficient as a function o the
vertical wavenumber isshownin Figure 2-29 after the density discontinuity compensation
o eq.(2.31). The coefficient was computed at the Icelandic Basin Experiment frequency,
220 Hz, and at 50 Hz, for comparison of the recovered profiles. Only the region 0 <
k, < kg isshown and is used for the inversionin order toillustrate the smoothing effect
of the truncation to real angles d incidence.

Theinverted profilesare shownin Figure 2-30. The 220 Hz result tracks the gradient
better than the 50 Hz. The numerical solution of the Gelfand-Levitan integral equation
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Figure 2-29: Icelandic model (from Figure 2-6) and reflection coefficient at two fre-

guencies, after compensation for the density discontinuity at the seabed interface. The
vertical wavenumber &, isshown in rad/m.
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Figure 2-30: Profilesinverted from the Icelandic model numerical reflection coefficients.

becomes unstable below a certain depth, about 50 m for 220 Hz and 75 m for 50 Hz,
but both profiles show an abrupt increased the sound velocity near z =51 m.

A closer view d the sediment region 0 < z < 51Imisshown in Figure 2-30. The effect
d the trapped mode neglected in the 220 Hz inversion is a degradation d the recovered
profile near the minimum at the interface. The smoothing effect d the truncation in
k. is clearly shown. At 50 Hz no trapped mode is excited (cutoff is 112 Hz for this
environment) and the inverted sound velocity at z = 0 is below that d the water, close
to the actual value. This result suggests that, in the absence d trapped modes, the

velocity minimum is recovered.
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Gelfand-Levitan: Lossless Icelandic Model
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Figure 2-32: Profilesinverted from the Icelandic model numerical reflection coefficient at

220 Hz. By reducing the water sound velocity to 1490 m/s, the modified reflecti on coeffi-
cient inversiongivesanindication d a sound velocity minimum near the interface[68, 24].

Asdiscussed in connection with eq.(2.40), trapped modesare not excited if the water
sound velocity is, for the Icelandic model of Figure 2-29, below 1483.34 m/s. In order to
verify the effect & a small reduction in the water sound speed, we used egs.(2.41} and
(2.42) with ¢ = 1490 m/s to modify the "measured" reflection coefficient at 220 Hz.
The new inverted sound velocity is shown in Figure 2-32 together with the original

inversionresult. Theinverted velocity at the water interface was reduced, which indicates
the presence d trapped modesin the original data.
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d the vertica wavenumber k,, before density discontinuity compensation (solid line).
The dashed line shows the reference (numerical) reflection coefficient.

Inversion from a Synthetic Pressure Field Dat a

As a second and more redigtic example, the inverson is performed using the reflection
coefficient, shown in the lower plot d Figure 2-12, "estimated” from the synthetic field
that includes the effect d source height variations. In Figure 2-33, Ry is plotted as a
function d the vertical wavenumber together with the numerical reflection coefficient
used in Section 2.4.2.

As discussed in Section 2.3.2, source height variations manifest as high values (>1)
d the magnituded the reflection coefficient in the critical incidence region. In addition
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Figure 2-34: Reflection Coefficients d Figure 2-33 after density discontinuity compen-
sation and magnitude truncation.

to the dengity discontinuity compensation, the magnitude d the reflection coefficient is
hard-clipped to one prior to its use for inverson, as shown in Figure 2-34.

The inverted profile is shown in Figure 2-35. Compared to Figure 2-31, the errors
introduced by the source height variations manifest as oscillationsin the profile.

243 Inverson from the lcdandic Basin Dat a

The reflection coefficient estimated from the Icdlandic Basn experiment data, shown
in the lower plot d Figure 2-23, is used to recover the sound veocity profile. The

resulting R,, after density discontinuity compensation and magnitude hard-clipping to
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oneisshown in Figure 2-36.

Contrasted to the synthetic case above, the effect d density compensation on the
magnitude i& smal, suggesting that other environmental factors, such as additional
density variations (discontinuousa not), could be at play.

The recovered profileis shown in F | e 2-37. The general behavior is similar to
the synthetic cage of Figure 2-35, suggesting similar error mechanisms. truncation of
the reflection coefficient to real anglesd incidence and source height variations, and a

degradation d the integral equation solver result as depth increases.
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There are additional sources o error in the experimental data analysis, such as
the phase de-trend discussed in Section 2.3.3, and an apparently inaccurate density
compensation or, equivalently, lack o a more detailed information about the density
structure. The similarity with the synthetic, or even the fact that "reasonable” sound
velocity valueswere estimated, issomehow surprising. In fact, asdiscussed in relationto
eq.(2.6), the recovered profileis possibly contaminated by the density profile, and could

only be expected to be recovered by a measurement in a second frequency.

2.5 Summary and Conclusions

2.5.1 Reflection Coefficient

Section 2.3 analyzes the Icelandic Basin pressure data. We investigated the application
o the technique developed by Frisk and co-workers [22, 46 for the measurement o
the reflection coefficient to experimental data. We generated simulated fields in order
to assess the influence of the experimentally observed source height variations on the
technique and lack o dataat close range.

We showed that the residual pressure, essentially a normalization of the pressure
fidd by the direct field component, had characteristics that could be explored for the
analysis o experimental data. We used theresidual pressure to identify and compensate
for errorsin the experimental data.

We observed that the simulated field had residual phase and magnitude variations
similar to the one observed in the experimental data, which were compensated by mi-
grating the synthetic field to a constant depth by changing the direct field. The effect
d source height variations was observed mainly as fluctuations on the magnitude of the
inferred reflection coefficient in the total reflection region.

The synthetic results indicate that the adopted migration process does not entirely

compensate for the source height variations. Even without the phase error observed in



the actual data, the reflection coefficient obtained from the synthetic field (as opposed
to the ideal field) has magnitude larger than 1 for some angles o incidence. The wrong
(non-physical) relation between the direct and bottom reflected fields (caused by the
migration) reflects itself as this non-physical value o the coefficient. Nevertheless, the
general characteristics of the modd reflection coefficient used to compute the synthetic
fields, such as critical angle d incidence and behavior of the phasewith k.., are recovered
in the inferred reflection coefficients.

We showed that even after migration, the experimental field residual phasestill had
variations not compatible with the physical model, as indicated by comparing residual
phase and magnitude fluctuations. By estimating the phase trend and removing it
through a polynomial fit, we obtained a signal with compatible magnitude and phase
variations. In this process, we also identified apparent errors in one receiver calibration
factor. We proposed a modification o the basic methodology to takeinto account source
height variations and phase detrend.

Errorsin theexperimental reflection coefficientsare qualitatively similar totheerrors
observed (and explained) for thesynthetic case. Thissuggests asimilar error mechanism,
the source height variations with range. It also suggests that the de-trend pxocedure,
based on the analysis of the residual pressure, isa valid technique.

Phase error compensation (de-trend) and smoothing schemes are not unique and
influence, to some degree, the results. The large fluctuations o the experimental reflec-
tion coefficientmagnitudes and the behavior o its phase (ascompared to the synthetic
results) may result from imperfect phase de-trend associated with the ssimple range-
independent, fluid bottom model.

We tested the sensitivity of the method to dlight different analysis approaches. We
inferred the reflection coefficient using two smoothing and extrapolation schemes. The
results were mixed. The estimate from the receiver close to the bottom improved, as
observed by a better defined critical angle. The change in the estimate using the upper
recelver data was marginal.



2.5.2 Sound Veocity Profile Inverson

We extended Merab's method to deal with a density discontinuity at the water-seabed
interface, becoming more suitable to ocean environments. The criterion for trapped
modes was corrected for the case o reflection at the water interface, and a method for
checking for velocity minima after the inversion was tested.

We corrected the expression for the modal cutoff frequency when the seabed sound
velocity minima occurs at the water interface and verified that Merab's expression is
valid for modes that do not interact with the water interface.

We inverted for the sound velocity profilein the seabed using a reflection coefficient
inferred from experimental data (Figure 2-37), a result not previously available.

We showed, by simulation, that the effect d source height variationson the estimation
o the reflection coefficient is to introduce oscillations in the inverted profile, as long as
the magnitude d the reflection coefficient is clipped at one.

When inverting for experimental data, the density discontinuity compensation had
little effect on the reflection data, suggesting that the density o the seabed is not
constant. Measurements at more than one frequency, & suggested in [45], could be used
to test this hypothesis, if the density profile in the seabed is sufficiently smooth.

The recovered sound velocity profile has characteristics similar to the synthetic case,
suggesting similar error mechanisms, in addition to the possibledensity variationsin the
experiment site.

Merab's method reveas some o the advantages and restrictions of methods based
in exact theories. The requirements for uniqueness are well established, in the present
case, the reflection coefficient must be given on the half-line ¢ < k, < oo, and the poles
in the upper k, complex plane must be known (position and residue). Such requirement
on the input data is not realistic, in the sense that input data is measured only in a
limited finite region, and no information regarding the poles could be extracted from the
available data. The effects o truncating the domain to 0 < &k, < k¢ and o neglecting

the trapped modes are, nevertheless, wdl understood. Another issue is the effect of



measurement noise, not usually included in such theories.

Thisisaone dimensional theory, which requires that the environment be well approx-
imated by a range-independent model. The plane-wave reflection coefficient measure-
ment technique of Section 2.3 requires measurement in a reasonably large aperture where
the properties of the environment are assumed constant, and therefore, is restricted to
reasonably range independent environments.

Application to coastal, shallow-water environments presents two major difficulties.
First, the assumption o range independence over large apertures is usually not valid.
Spatial variations in the seabed structure and bathymetry, and temporal variations in
the water column induced by currents and internal waves, in particular tides and tide-
induced solitary waves, are the norm in such environments.

Second, the low-frequency acoustic field is usually dominated by normal modes, and
the continuous wavenumber spectrum, such as the one represented by the Green's func-
tions of Section 2.3, is small compared to the discrete, modal spectral lines.

In practice, even if the range independence assumption is valid, estimating the re-
flection coefficient at wavenumbersdifferent from the modesin such conditionsis, to put
it mildly, challenging.

Exact methods in shallow-water based on measurements o the continuous spectrum
o thefield may be feasible if, first, no modes are excited (requiring a sufficiently low
frequency in typical coastal environments), and second, the data can be acquired in
small regions in order to be considered representative o loca properties. In fact, by
requiring that no mode be excited, the field may fal-off fast enough with range to be
considered representative of the local environment. Stickler[70)] has proposed a method

for shallow-water whose requirement is that no mode be excited.



Chapter 3

Range-Dependent Modal Eigenvalue
Sequential Estimation

3.1 Introduction

This chapter investigates the high-resolution estimation of range-dependent modal eigen-
values. It extends the technique described by Becker and Frisk[7] and Becker, Rajan,
and Frisk([5], which uses a diding-window, autoregressive (AR) spectral estimator. The
use of AR techniguesisan improvement over the short-time Fourier transform proposed
by Ohta and Frisk[54], which requires large range apertures to resolve low order modes,
resulting in poor tracking of modal evolution in range.

When the environment changes rapidly with range, for example due to a sudden
change in the seabed type, the assumption, implicit in these techniques, o constant
modal content over a range analysis window is not valid, and the spectra degrade sig-
nificantly.

We propose the use of sequential AR estimation, where the properties are alowed
to change on a sample-by-sample basis, associated with competitive smoothing, which
combines estimates generated by different estimators and results in improved spatial

tracking characteristics. Synthetic and experimental data results are presented.



Section 3.1 reviewsthe normal mode representation of acousticfieldsin shallow water
and the estimation o modal eigenvalues. Section 3.1.3 describes the modal mapping
experiments (MOMAX), which providethe datato be analyzed. Appendix A discusses
the issue of acoustic data analysis in MOMAX.

In Section 3.2we raise the issue d the validity o modeling a sum of modes as an
AR process and investigate the errors associated with the use o the AR techniques in
estimating range-varying eigenvalues. The theory o the exact representation of a sum
of time-varying real sinusoids introduced by Kayhan [38] is reviewed, and we derive the
analogous model for complex exponentials. A detailed derivation is given in Appendix
B.

Section 3.3 presents two sequential estimator implementations, based on the Kalman
filter[2, 51] and an adaptive filter[48]. One of our motivations for this work was the
need to improve the estimation o eigenvalues when the environment changes abruptly.
For this purpose, we apply a technique developed by NiedZzwiecki, the competitive
smoother[49], which improves the tracking characteristics o the estimators. In Ap-
pendices C and D we discuss the design of the adaptive filter of Section 3.3 and a second
order Kalman filter.

In Section 3.3 we investigate, in addition, the application of signal decimation prior
to the eigenvalue estimation. Decimation alowsfor a reduction on the size o the AR
model, while maintaining or improving the tracking characteristics of AR estimators.
Smaller model size also resultsin reduced computational load. Ultimately, thediscussion
is about the selection of a suitable range sampling interval (Ar) for the pressure signal.

In Section 3.4 we present and discuss estimation results from numerical and experi-
mental data. |n particular, we show the improvement in the measurement o eigenvalues
that change abruptly.
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3.1.1 The Shallow Water Acoustic Channd

Consider the propagation d a time-harmonic wave d frequency w in the waveguide
shown in Figure 3-1. As afirst approximation the medium is considered horizontally
stratified, i.e., the acoustic parameters o interest, namely, the sound speed ¢ and den-
sity p, can be considered a function of depth only. The sea surface is modeled as a
plane pressure-rel ease boundary, and the basement (last layer in the seabed) as a plane
boundary characterized by the normal acoustic impedance £ or, equivaently, the reflec-
tion coefficient B, functions of the sound speed and density o the seabed.

Under these assumptions, the pressure field at a depth z and range » from a point

source localized at a depth z, is given by the Hankel transform[19)?

p(r, z; 2,) = f glks, 2 26 ) (koer ) iow A
0

e / ks, 7 2) HO (kY dber, (3.1)

(e o]

where the depth-dependent Green's function g is the solution o the boundary value
problem (BVP),

01a
[@;a + (K — &2)| g(kr, 2 2,) = —26(z — 2) (32)
g=0at z=0, (3.3)
1 dg _
g—ﬁﬁg—omz—h, (34)

where p= p(z) is assumed to be a smooth function o depth, k(z) = w/c(z), € = Elk.,),
and h is the depth o the basement.
If the basement isincluded in the problem domain, the radiation condition is applied

at z = oo, which imposes, for the waveguide in Figure 3-1, a decaying exponential

1The absorption coefficient & will be ignored in this discussion.
2 A time dependence e~** is assumed for the pressurefield.
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Figure 3-1. Theshallow water acoustic channel.

solution in the basement, g ~ exp{—7wz}, z > h, where v, = k2 — (w/cx)? > 0.
Such condition can aso be described as total reflection at the basement interface, i.e.,

by the reflection coefficient Ry(k.) = exp{i¢}, where

p(h”) Yoo

b U~ B2

o(k.) = —2tan™!

or yet, by the normal impedance £(k,) = —iwpes/Veo- Equation (3.1) and the BVP(3. 2)
to (3.4) arevalidinthe presenced density discontinuities, aslong as boundary conditions
o continuity o g and (1/p)dg/d= are imposed at the depth o the discontinuities.
Under typical conditions o interest in shallow-water acoustics, the pressurefield can
be modeled by the normal mode sum arising from the contributions of the poles of the

Green's function in theintegral in eq.(3.1), which at long ranges assumes the form

(3.5)




Ineq.(3.5), u, isthe n-th eigenfunction corresponding to the characteristic wavenumber
k. o the problem described by eqgs.(3.2) to (3.4), and N is the number of real charac-
teristic wavenumbers (or propagating modes). Contributions from branch line integrals
(that is, from the continuous spectrum of the BVP system), which decay rapidly with
distance, are neglected in eq.(3.5).

The mode functions ,,(z) and the associated eigenvalues® k;,, can also be obtained

as solutions o the Sturm-Liouville problem

d | d o
5 53 — K] nle) = ), (36)
u, =0at z2=0, (3.7)
Up, — E(kpn) ﬁ% =0at z=h, (3.8)

and both u, and w, /p are continuous across the domain.

If the environmental parameters (depth, sound speed, density) change with range,
eq.(3.5) can be still be considered, with slight modifications, a good approximation to
thefield. The adiabatic approximation, valid for a dowly range-dependent environment,
is obtained by replacing the phase term by the integral [ k,(r)dr and including range

as a parameter o the eigenfunctions:

gn/A [3 ¢t d 7 bonlr )i
P25 20) =~/ ﬂz; 20, 20)1tn(r, 2) ki (3.9)

Under the adiabatic approximation, the eigenvalues and eigenfunctions at each range

T are still obtained from the BVP in eqgs.(3.2) to (3.4), where, now, T is considered
a parameter of the Green's function g, and ¢ = ¢(r,z), p = p(r,z), h = h{r), and
‘S = g(kT"h 7").

3The modal characteristic wavenumbers k., will be referred to as the eigenvalues, although, strictly,
the eigenvalues associated with eq.(3.6) are A\, = —k2,.




3.1.2 Eigenvalue Estimation

In the adiabatic approximation, eq.(3.6) is solved at each range step, and its solution
depends on the local characteristics of the water and seabed. The eigenfunctions and
eigenvalues adapt to thelocal properties o the environment. For dow range variations,
the change in pressure is dominated by the modal phases exp{i [ k..(r')dr'}. Under
these circumstances, the estimation o thelocal eigenvalues isanalogousto theestimation
d theinstantaneous frequency o a multicomponent signal in time series analysis.

In range independent environments, the Green's function g is obtained from the
pressure by the inverse operation o eq.(3.1). For large distances, the inverse transform

reduces to

e'irr/4 oo

glkr, 2;2,) = N o(

which shows the Fourier transform F relation between the pressure and the Green's

T, 2 2,)\/re"* T dr, (3.10)

function,

g\/k_,, = e ip\/r. (3.11)

Along the real k, line, the magnitude o g{k,) has peaks (spectral lines) corresponding
to the eigenvalues associated with the propagating modes. Therefore, an estimate of the
propagating mode eigenvaluesis given by the position o the peaks in the magnitude of
the Fourier transformed pressure field (multiplied by /7).

In actual experiments, the pressure is measured over finite apertures, say r &€ [R;, Ry
An estimate of the Green's function is obtained by performing the integral o eq.(3.10)
over the availableinterval. Using the normal mode representation of eq.(3.5), the esti-

mate dof g is

. N R
. i 1 u*(zo)ﬂn(z)/ Y i(he o rdr
kr,z;zo _ 7 e 7'( T rn 7 )
g( ) p(zo) V- ﬁ VEkrn Ry

g PR ZN:“;(Z‘))“”(Z){ZM’(’%’W(Rl*Rz)Sa 0.5 (k, — krn) AR], (3.12)
p(zo)\/k_'f' n=1 \Y krn




where AR = Ry — R, istherange aperture and Sa(zx) = sinz/x isthe sampling function.
For sufficiently separate eigenvalues, the sampling function main lobes do not overlap
and |g| exhibits peaks at the eigenvalue positions, k. = k,.,. The peak positions are
estimates o the eigenvalues.

Theissues associated with these estimates are the same found in spectral estimation.
For example, windows can be used to reduce the sidelobe levei[30] at the cost of poorer
resolution. Figure 3-2 shows estimates of |§| for actual experimental data using the

rectangular window [as in eq.(3.12)] and the Hann (or hanning) window, given by

w(n)=0.5(1-cosz%”), n=0, .., N—1,

where, for an aperture B; < r < R;, thesignal is given on the discrete range points
rn = Ry + nAr, and AR= NAr.

For a range-dependent environment, the eigenvalues must be associated with dis-
tance. Ohta and Frisk[54] used the short-time Fourier transform (STFT), where the
transform in eq.(3.10) is taken over afinite distance aperture (r,r'l'AR). By sliding the
aperture (that is, by changing r), a range-dependent wavenumber spectrum (spectro-
gram) is obtained and, again, the positions d the peaks are an estimate o the varying
mode eigenvalues. The aperture AR has to be short enough to localize variations o
the eigenvalues, but long enough to alow close eigenvaluesto be resolved, a classica
trade-off issue in time-frequency analysis[11]. As in the range-independent case, win-
dows are applied to improve the estimate. In order to resolve close eigenvalues using
smaller apertures, [54) processes the signal prior to the transformation through mode
filtering, in which modes are separated by using data from a vertical array installed in
a known environment.

Figure 3-3 depicts the spectrogram for an experimental data set. This figure should
be compared to Figure 3-2, where a single spectrum is computed for the full available

range aperture. Noticethat about 6 spectral lines can be observed in the spectrogram at
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Figure 3-2. The wavenumber spectruni correspondingto the experimental data labeled
along shelf in Figure 3-8. The vertical scaleisarbitrary, only the position o the spectral
linesare d interest. The spectra were computed usng the full range aperture available
(9736 m) usng rectangular (solid line) and Hann (dashed line) windows d spectral
analysis. Thethreepeaksintheregion046 < k. < 05 (thewater wavenumber iSroughly
0.53) are associated with the highest modes propagating to the receiver location. The
highest peak is probably the first mode, and the others doseto it We possibly changes
In the mode due to variability o the environment near the moving source. By using a
full aperture Fourier transform, the variability o the eigenvalues with range trandlates
into a broadening of the peaks or the appearanced multiple peaksin the spectrum.
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al ranges. Figure 3-2 has alarger number o spectral peaks, which may be an indication
that some of thelinesin Figure 3-2 are caused by variations of the modes with range,
suggesting that the range-independent assumption is not valid.

For low-frequency, shallow-water propagation, the eigenvalues tend to concentrate
near the wavenumber ko = w/co, Where ¢p iS a representative sound speed in water. In
order to resolvethe closed spaced spectral lines, one must resort to large range apertures
AR. The rate at which the environment changes its properties imposes a maximum
range aperture. These opposing requirements impose a limitation on the use o the
STFT technique.

Animprovement of the resolution and spatial tracking characteristicsis obtained by
using a high resolution method instead d the Fourier transform in the computation of the
spectrogram. Becker[6] (see also Becker and Frisk[7]} proposed the use o autoregressive
(AR) spectrum estimators. Figure 3-4 comparesthetwo spectrograms (STFT with Hann
window—cf. Figure3-3-and AR) for the sameexperimental data of the previousfigures®.
Despite the improvement of the AR method, the sliding window approach still assumes
that the eigenvalues do not change inside each analysis window. Systematic changes
and abrupt variations degrade the performance o the estimator as represented by bias
or asmearing o the spectra linesto the point where they disappear. The next logical
development, suggested in 6], is to incorporate the variability o the eigenvaluesinto
the spectral estimator. Candidate techniques are the available time-frequency analysis
tools [11}, including time-varying AR estimators [64].

In Section 3.2 we discuss theissue of validity o the AR model for the representation
d range-varying modal sums and estimate the errors introduced by associating the zeros

d the AR characteristic polynomia with the varying eigenvalues.

4Prior to the AR processing, the signal was filtered and decimated to an effective sampling range
of 60 m. The effect d decimation is to spread the AR model poles, wheose positions are related to
the spectral peaks, around the unit circle in the complex plane. This way, it would be easier for the
AR algorithm to resolve the peaks. For the case o a stationary process (constant spectrum), the
improvement in resolution (or reduction in the required AR model order) by decimation is justifiedin
Quirk[39].
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Figure 3-3: The wavenumber spectrum computed by sliding a 2048 m rectangular win-
dow along the 9736 m o available data. The gray scale in dB (arbitrary units) is
shown in the bar on the right. Compare to Figure 3-2. The three peaks in the region
046 < k. < 0.5 are still identifiable. However, in this analysisit is possible to observe
the variability d the peaks with range. In the region near thefirst mode, it is possible
to identify a strong peak just below &, = 0.52, as before, and a weaker, but consistent
peak below the strong one. The spatial resolution is not sufficient to observe in detail
the behavior o these two lower modes with distance.



Hanning Spectrogram (dB), 2048 m aperture; displacement 320 m
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Figure 3-4: Wavenumber spectrogram. The upper plot is a spectrogram computed using
Hann window periodograms. The horizontal axis isthe wavenumber, the vertical axisis
the source-receiver range along a track. The lower spectrogram was computed with the
modified covariance AR method. Both were computed using a 2048 m aperture every
320 m over the available pressure data. The data, at 125 Hz, isfrom the MOMAX III /
SWAT 2000 experiment. In order to reducetheorder of the AR model, theacousticdata
were filtered and decimated down to a range sample interval of 60 meters (see Section
3.3.5).



I'n Section 3.3we extend the concept d the sliding window-AR approach to sequential
estimation, where the AR parameters are updated at each range sample. The dliding
window approach treats each set of samples independently. Sequential estimators take
into account the effect of previous data when computing the AR parameters at a given
range, which may lead to better resolution or better spatial tracking.

Another extension isthe use d competition between the estimates obtained running
a signal twice through an estimator forward and backward in range, as described by
Nied#wiecki[51]. Competition improves spatial tracking and alows the localization of
abrupt changesin eigenvalues. Competition among different pairs o forward-backward
estimators tuned to different signal statistics alows the estimator to adapt to chang-
ing signal statistics. The design o individual estimators can, therefore, focus on the
resolution aspect of the resolution/spatial tracking trade-off.

313 The Moda Mapping Experiment (MOMAX)

The acoustic data analyzed in this chapter were obtained during the Modal Mapping
Experiments (MOMAX), in which a source emits a small number o pure tones in a
shallow water environment[18, 14]. The typical experimental configuration is shown in
Figure 3-5. A set d buoys equipped with a hydrophone, a GPS receiver and two radio-
frequency links (for the acoustic signal and the GPS data) drift and, in doing so, form
synthetic arrays that samplethe acoustic field. The data collected consist d time series
o GPS and acoustic signal from each buoy, al synchronized through the GPS clock.

During analysis, the GPS data are converted into (X,y) position and range r =
V2 + y? with respect to thesource. The acoustic time series are demodul ated generat-
ing a separatetime seriesfor each frequency corresponding to a modal sum. Appendix A
describesin detail the MOMAX raw acoustic data processing. The position and acoustic
time seriesare then merged, forming asignal that can be modeled as an adiabatic modal
sum, eq.(3.9).

Threesuch experiments have been conducted, two in the East Coast STRATAFORM
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Figure 3-5: The typica MOMAX configuration. From reference [20].



site, and onein the Gulf d Mexico. Tracksfrom experiment 2in MOMAX III are shown
in Figure 3-6. The source was towed at 2m/s, while a single buoy drifted at speeds
between 0.25 m/s and zero. In the SE track and in the NE direction o the NE track the
source transmitted a 125 Hz tone (between the points labeled (05:00 and 08:00). During
this period, the receiving buoy drifted in the general NW direction (shown SW o the
point $10).

Between 11:30 and 12:30, the source frequency was 50 Hz (NE track, in the SW
direction) and the recelving buoy was nearly stationary at the position indicated by a
triangle between the earlier buoy track and S10. The position o two temperature sensor
strings (T strings) are also shown. The 125 Hz acoustic time series corresponding to the
tracks in Figure 3-6 is shown in Figure 3-7. The corresponding pressure versus range

signal is shown in Figure 3-8.

3.2 Difference Equation Representation of a Sum of
Adiabatic M odes

The autoregressive methods assume that the signal is modeled by a recursive differ-
ence equation. Although the motivation for their use in eigenvalue estimation is their
characteristic high resolution, there is a basic question o how accurately can a sum of
range-varying modes (or, more generally, of complex exponentials with varying ampli-
tudes and frequencies) be represented by such a model.

Kayhan[38] analyzed the related problem d representation of a sum of real chirp
signals (sinusoidswith varying frequencies and amplitudes) by a time-varying difference
equation, after the works by Kamen, Khargonekar, and Poola[36], and Kamen{35, 34].
One o the main results of [38] is an exact formulation (in terms o an initial value
problem) for the computation o instantaneous frequencies and amplitudes, given the
time series o coefficientsd the difference equation.

A similar formulation isdevel oped in thissection for the case of complex exponentials.



SWAT/MOMAX Il Experiment 2 - Tracks for 50 Hz and 125 Hz Data
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Figure 3-6: MOMAX 1[I experiment 2, off the New Jersey Coast. Source and receiving
buoy tracks. Latitude and longitude shown in degree-minutes (DD MM.M) notation
and depth in meters. Along the source track (long SE and NE lines), some points are
labeled with the UTC time o the year 2000 Julian day 295. Marks on the tracks are
shown every 30 minutes. The buoy track is shown SW o the point labeled S10.



MOMAX Il Exp 2 - 125 Hz Demodulated Time Series
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Figure 3-7: Magnitude and residual phase o the acoustic pressure time series corre-
sponding to the tracks shown in Figure 3-6 at 125 Hz. The closest point o approach
source-receiver isindicated by the vertical dashed line on both plots. Cross-shelf refers
to the SE source track, while along-shelf refersto the NE track. The magnitude ex-
hibits the interference pattern characteristic of multiple propagating modes, which are
better depicted when the magnitude is plotted versus distance. The residual phaseis
obtained by multiplying the signal by a complex exponential exp{—ik,.sr}, where ks
IS a wavenumber close to the minimum characteristic modal wavenumber, in order to
dow down phase variations, allowingfor a better visualization.
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MOMAX Il Exp 2 125 Hz - Pressure vs Range
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Figure 3-8: Magnitude o the pressure as afunction of range, corresponding to the time
series shown in Figure 3-7.



Inthetraditional time-varying AR method, theinstantaneous frequenciesare estimated
from the roots d a characteristic polynomial formed with the coefficientsdf the difference
equation. Theerror introduced by this approach, as compared to the exact formulation,
isinvestigated.

Subsection 3.2.5illustrates the issues related to exact DE representation of modal
sums, and errors in eigenvalue estimation. The example is based on a realistic, range-
dependent, shallow-water waveguide.

The normal mode equation (3.9) describes the pressure field as a sum o exponen-
tials with range-varying amplitude and eigenvalues. Including the effects of absorption
[replacing ikpm DY (—am + ikrm), Where a.,, isthe modal absorption coefficient in m™)

in eq.(3.9), one can write,

M
y(r, z; 20) = p(r, z; 20)V/T = Z CroUn(r, 2, 20) exp{—An(r)} exp {i K (r)}, (3.13)

m=1
where C,,,q are complex constants,

enr/4

Gl = p(0, 2,)

oei o krm(r)dr’ o= [5° am(r')dr! (3.14)

Upn(r, Z,2p) arereal modal amplitudes,

U {0, 20)t (7, 2)

Ulr; %20} = T (3.15)
Al = f " e, (3.16)
Kp(r) = /T Erm{r )dr’, (3.17)

and ry is someinitial range.
The discretization of eq.(3.13) with 7, = ry T nAr, leads, alowing for a slight abuse



o notation where f (n) = f(r,), and omitting the explicit dependence on depth, to

M
y(n) = Z CrnoUn(n) exp {—An(n)} exp {iKn(n}}, n > 0. (3.18)

m=1

Thissection addresses the question of representing thissignal by arecursivedifference
equation such as theone that isthe basisd the autoregressive (AR) spectral estimation,
and the error incurred in using the roots o the AR characteristic equation to estimate

range-varying eigenvalues.

321 Rangelndependent Case
In the range-independent case, eq.(3.18) can be written as
M
y(n) = Z ConoUp exp {(—am T ikm) nAr}, N> 0. (3.19)
m=1

Theresults o this subsection are:

e Thesigna y{n) isthe solution to alinear, time-invariant difference equation (DE)

M
y(n) =Y ay(n—j), n >0, (3.20)

j=1
with suitableinitial conditionsy(—1),..., ¥(- M).

e The roots d the characteristic polynomial (1— a127! — ., -ay2=™) are given by
exp{(—am'l'z'km)Ar}. Their phases are the eigenvalues (times Ar) and their

magnitudes are the absorption factors exp{ —a.,Ar}.

In this sense, the DE (3.20) is a representation of the range-independent modal sum.
If the coefficientsof the DE (a;) are given, the eigenvalues and absorption coefficients

can be computed. The AR modd is basically eq.(3.20) with a source term. Fitting



a sum o complex exponentials to the AR model, and computing the zeros d the AR
characteristic equation is hence a valid way for the estimation d constant eigenvalues.

Thetool to be used in this analysisis the unilateral z-transform® o a sequence y{n)
defined as[55]

Y(2) = Zly(n)] = Y y(n)=", (3.21)

n=0
or, symbolically, y(n)«éY(z), a is a complex variable and the transform is defined in
a region of convergence {z| > R in the complex plane where the above sum converges.

The two properties needed here are

o linearity: if y1(n)ZY;(a) and y(n)ZYa(z), then

a1y (n) + agyg(n)éalYl(z) + apYa(2);

o delay: if y(n)ZY(z), then

y(n— kY2 z7%Y (2) + 27"y (1) + - - + 27 ly(=k + 1) + y(—k).

For a single mode ym(n), eq.(3.19) indicates that ym{n) = cym(n — 1), where
Cm = Ym(n)/ym(n — 1) = exp{(—a Tit;,) Ar}.

Applying the unilateral z-transform to thisfirst-order DE and using the above properties,
one obtains Y,,(z) = cm[Yim(2)27! + ym(—1)], and

You(2) = emtym(=1)/(1 = cz™).

5The independent variable range r is aways positive, and the unilateral (asopposed to the bilateral,
defined for —oco < n < oa) z-transform is suitablefor representing sequencesassociated with a discrete
range grid, asin the present case.
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The characteristic polynomial (1 - ¢,,z~!) has the single zero ¢,,. Hence, ¢,,, is the pole
o Y (z) from which the eigenvalue k., and the absorption coefficient a, are recovered.
Also, given ¢, and an initial value y,(n,), the whole signal can be recovered by direct
substitution into the first-order DE.

For two modes, ¥(n) = y1(n) T 42(n) = c1w1( n — 1) + cay2(n — 1) can be represented
by the DE

y(n) = awy(n — 1) + agy(n — 2) = a1y1(n — 1) + aryp{n — 1) + agyi(n — 2) + aaya(n — 2).
Substitute the 1 and y- first-order DE’s into this expression to obtain
y(n) = (a1 + ¢ an)yr(n — 1) + (a1 + 63 "az)ya(n — 1).
Comparing these two last expressions, one obtains the system
1 Cl_l a | | a
IRk

from which the coefficientscan be computed: a; = e1 T ¢; and az = —cice. Notethat ¢

: (3.22)

and ¢, are the zeros of the polynomia 1— a;2~ — az2~2. The z-transform of the second
order DE is

Y(z) = a127 'Y (2) + ayy(—1) + apz Y (2) + a2z 'y(—1) + azy(—2),

from which
_ay(=1) + agy(—2) + agz " 'y(—1)
- 1—a1271 —ayz—2

Y(2)

The polesd Y(z), are, as noted above, the first-order poles ¢; and e, i.e.,

l—azt —agz 2 = (1 — iz 1)(1 — ca272). (3.23)



Given the DE coefficients ¢; and a2, the first-order poles and the corresponding eigen-
values and absorption factors can be recovered. The signal itself can be also recovered
[giveninitial values y(nyg), y(no — 1)).

For the sum o an arbitrary number o distinet complex exponentials, the same

procedure above leads to the system

1 Cl_l CI_M-H aq (&)
- (3.24)
1 C;/Il CE[M-!-I ayr CM

Any row of this system can be written (after dividing by the corresponding ¢) as

1-aic;! —..-—apc;¥ =0, whichindicates that the e,,, arethe zerosof the polynomial
M —a;sM-1 — .. —ay. Atrivia generalization of the expression for ¥ (z) above shows

that thisis the DE characteristic polynomial. The first-order poles, eigenvalues and
absorption coefficients, as well as the signal itself [giveninitial valuesy(ng), ..., y{no —
M + 1)] can be recovered from the DE coefficients. The sum of complex exponentials is
exactly represented by the DE and aset o initial values.

The concept of representation o asum o complex exponentials by an exact DE and
the relation between its coefficients and the first-order polesis now generalized for the

range-dependent modal sum.

3.2.2 Range-Dependent Case: Single Mode

Kayhan[38] analyzed the representation of a sum of real chirp signals by arange-varying
difference equation. Here the interest is in the sum of complex exponentials, a more

general model. The main results d this and the following subsections are:

¢ Range-varying modes, in the adiabatic approximation, can be exactly represented
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by a DE with varying coefficients,
M
y(n) = a;(n)y(n - j5), n>0. (3.25)
i=1

Differently from the case of constant coefficients, the zeros of the now varying
characteristic equation are not thefirst-order poles associated with the signal y(n)
(from which the eigenvalues can be estimated). The zeros are, at best, an approx-
imation. The DE isthe basisfor thetime-varying AR (TVAR) model®.

e The first-order poles can be computed from a given series o coefficients a;(n) by
solving an initial value problem (1VP) that, except for thetrivial case of a single
mode, is nonlinear in the poles. The IVP issensitive to errors and is not a useful

tool for estimating the first-order poles.

e |n practice, the zeros of the AR characteristic polynomial are used to estimate
the varying eigenvalues. The error between polynomia zerosand first-order poles
is analyzed. The error is afunction of the sampling distance Ar, of the rate o
changeof themodal eigenvalueswith range, and of theseparation between adjacent

eigenvalues.

Each modal component in eq.(3.13),
Ym(n) = Un(n)exp{—Amn(n)}exp {iK (n)}, m=1,..., M,
can be represented by the first-order difference equation

ym(n) = Cm(n)ym(n — 1); (326)

For the present application, the modd is, in fact, "range-varying", but we keep the nomenclature
"time-varying AR” (TVAR)commonly found in the (mostly time-series analysis rel ated) literature.




cm(n) = Ym(n)/Ym(n — 1) = |cm(n)| exp {i6 Kn(n) }

- % exp {—6An(n)} exp {i6Kn(n)}, (3.27)
0Km(n) = Kp(n) — Kp(n—1) = /Tn K (r)dr, (3.28)

and
dAL,(N)=A,.(N)-A (n-D= Qo (1) (3.29)

By analogy with therange-independent case, ¢,,(n) iscalled thefirst-order poleof the
DE (3.26). Its phaseistheincrement of thesignal phase, called instantaneousfrequency®
by Kayhan, and its magnitude istheratio d the magnitudes of adjacent samples. Given
a sequence o coefficients ¢,,,(n), the local eigenvalues and modal amplitudes (except for

aconstant) d the original component signal y,,(n) are recovered.

323 Sum of Two Modes
Iteration for the First-Order Poles

The sum of two complex exponentials can be represented by a second order difference
equation
y(n) =) +1a(n) = ai(n)y(n — 1)+ ax(n)y(n — 2). (3.30)

Therelation between the coefficients{a1, a;} and theindividual first-order poles {¢1, ¢2}
is obtained by substituting the first-order difference equation (3.26) into (3.30}, leading

"Under the dow modal variation condition of the adiabatic modal approximation, and for typical
valuesd the absorption coefficientsam, |em(n)| ~ 1. Thefirst-order poles are closeto the unit circle,

8To the first-order in Ar, the phase of the pole c,,, is 6K,, = k,,(r,)Ar, a measure of the local
(instantaneous) modal eigenvalue.
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to[cf. eq.(3.22)]
!1 ¢ (n - 1)] {al(n) ] _ [Cl(”)] (3.31)
1 ¢ (n—1) az(n) cz(n)

The first-order coefficients are not zeros of the polynomial 1—a;(n)s~! —as{n)s2, asin
the range-independent case. Each row of eq.(3.30) can be written as 1 — ¢;}(n)a;(N)-
ct{n)c;{n — Dax(n) = 0, which does not reduces to the above polynomial equation
unless the first-order pole ¢,,, does not change from sample n —1ton.

The problem o interest isto obtain the first-order polesc;(rn) and cy(n) and, there-
fore, the local eigenvaluesand amplitudes, given a;(n) and az(n). Here, the z-transform
isnot used because the DE coefficientsare not constant. In [35], Kamen defined, instead,

an operator z and a product ’o’
la(n)z~]f(n) = a(n) f(n - j), (3.32)

la(n)z™] o £(n) = a(n)f(n— )=, (3.33)

where z can be seen as a delay operator related to the z-transform o a sequence f(n).

Equation (3.30) can, therefore, be written as
[1—ai(n)2z™" — as(n)z7%] y(n) = 0. (3.34)
Assume there are complex functions p;{n), p2(n) such that
[1 - ai(n)z™" — ax(n)z "] y(n) = [1 — pi(n}e ] o v(n) = 0

and

v(n) = [1 = pa(n)z""] y(n)

decompose the second order system in two cascade first-order systems with a left-pole



m(n) and a right-pole ps(n). Substitute the second expression into the first to obtain

[1—ay(n)z™" — ay(n)2?| y(n) = v(n) — p1(n)z~* ow(n),
= y(n) — pa(n)z " y(n) = pr(n)z~y(n) + pi(n)z7! o pa(n)z~ty(n),
=[1 = (p1(n) + pa(n)) 2 + pr(n)pa(n — 1)27%] y(n),

from which follows the relations

a1(n) = p1(n) + p2(n), (3.35)

az(n) = —p1(n)p2(n — 1).

Equation (3.35) is not arelation between polynomia coefficients and zeros, unless
pa(n) = pa(r — 1). If theright and left poles are constant, so are the coefficients, and we
recover the range-independent case. Given series d polynomial coefficients a;(n) and
as(n), and aninitial valuefor theright-pole p2(rs — 1), eq.(3.35) can be solved iteratively
for theleft and right-polesfor n > no.

A single recursion is obtained by multiplying the first eq.(3.35) by p»(n — 1) and

substituting the second equation to obtain
pa(n) = a1(n) + az(n)p; “(n — 1). (3.36)

Thisis the initial value problem for the right-poles. For a given series o coefficients
a;j{n), j = 1,2, different initial values pa(ng — 1) lead, in general, to different series of
right-poles p=(n). Iteration o theleft-polep; (n) isirrelevant for the present application.

The importance o iteration (3.36) for the somewhat arbitrary right—pole p,, is that
when the iteration is initialized with one o the first—order poles ¢,, representing the
modes, the sequence o first—order poles is recovered. In other words, set pa{ng — 1) =
cm(no — 1) to recover cpn(n), N > ng and, in consequence, the original signal ym(n)
[givensuitable initial conditions, see eq.{3.26)]. Similarly, a backward iteration recovers
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the first-order polesfor n < ny when ps(ng) isinitiadized to e, (ng). This result can be
verified by examining either row o eq.(3.31), en(n) = a1(n) + as(n)c;t(n — 1), which

shows that both first-order poles satisfy the iteration (3.36) o the right-pole.

From DE Coefficientsto First-Order Poles: Estimation Issues

Kayhan[38] introduced an estimator of instantaneous frequencies (our local eigenvalues)
and amplitudes based on the exact DE representation, in particular, iteration (3.36).
Giventhesignal y(n), the sum of two range-varying modeﬁg, estimate the coefficients of
the DE representation, a;(n). Then, for each mode m, use iteration (3.36) to compute
the series o first-order poles ¢,,(n), given an initia value c,,(n — 1).

Thelocal eigenvalues (instantaneous frequencies) k,,(n) are then estimated from the
phases of the ¢,,(n), using egs.(3.27) and (3.28). The loca amplitude of each mode
(coupled with the absorption factor) can aso be recovered using eq.(3.27), except for a
multiplying constant. A number of methods are available to estimate the varying a;(n)
[52, 38] and oneis discussed in Section 3.3

Iteration (3.36) requires an initial value o the first-order coefficient ¢,,, which may
pose a problem when analyzing an actual signal. If the first-order poles do not change
between a pair o adjacent samples, c¢n(n) = cm(n — 1) = ¢no, the second order coef-
ficients simplify to [cf. Subsection 3.2.1] a!?(n) = ¢10 + c20 and o (n) = —c10¢20
and, therefore, cio0 and czo arethe zerosd the characteristic polynomial [cf. eq.(3.34)]
s2—a{?(n)s—a{? (n). In aregion where the coefficientsare nearly constant, one should
expect the roots d the polynomial to be a reasonable approximation to the actual first-
order coefficients.

In order to illustrate the effects o a change in one o the complex exponentials

on those roots, let e1(n) = cio Tt e0. The exact expressions for the new polynomial

9See eq.(8.48) for the iteration of the right-polein the case of the sum o an arbitrary number of
modes.



coefficients a;(n) and az(n) are, from eq.(3.31),

a(n) = {a(n —1ea(n) —cn - e(n)} /le(n —1) — ca(n = 1)),

= (c10(c10 + €10) — Cgo) /{10 — ¢20),

3.37
= ago) (n) + cro€10/(c10 — €20), ( |
= a&o) (n) + ba1,

as(n) = caln — Dea(n = Dlea(n) — ex(m)] / [ealn - 1) — ealre = 1)),
= 620610(020 —C1o0 — 610)/(610 - C2O)y (338)

= a{?(n) — csoc10€10/(c10 — c20),

= a{2(n) + o2
These equations are an intermediate result for obtaining the perturbed roots. They show
that even small changesin the modal eigenvalues or magnitudes (and, thereforein the
first-order poles) may lead to large changesin the second order coefficients, depending
on the separation (difference) between poles.

Substituting egs.(3.37) and (3.38) into the equation s? — ai(n)s — as{n) = 0 with

[OOLS 5m(n) = cmo T 8am and using either standard perturbation methods[65], or solving

directly the second degree equation, one obtains

5. Cmobatda  cio  Gmo o
sm 9 (©) - e _ o (0) €10
Cmo — &y 10 20 2¢mo — G4

for the changes in theroots, leading to the perturbed roots

c
—————e€pp=c1{n) + 270510, (3.39)
C1o — C20 €10 — C20

€10
s1(n) = cio +

and
sa(n}) = ca0 = ca(n). (3.40)

Only theroot corresponding to the changing poleis affected: the second row o eq.(3.31)



guarantees that cy0 isaroot o the characteristic polynomial when ca(n — 1) = c3(n) =
a6

The error between the root and the actual coefficient is o the order of the change
in the coefficient relative to the difference between the poles. Notice, again, that even
small changesin ¢; may lead to large changes in the polynomial roots. Appendix B.3
discusses the case were both ¢;(n)and ey (n) are perturbed [seeeq.(B.27)].

In the frozen time approach of frequency estimation[38], after the polynomial coeffi-
cients are estimated, the roots o the polynomials at each sample are taken as estimates
of theactual polese; and ¢z. Equations (3.39) and (3.40) givetheerror in this approach
when only ¢;(z) is changing. [38] suggests to increase the sampling rate (decreasing
Ar) in order to reduce the change in the poles between samples, ¢,,0, When analyzing a
continuous signal.

Asan example, let the phase d ¢; change by exp{i3,{Ar)?} dueto an linear increase
in the eigenvalue o the first mode with range, i.e., ci(n) = ci(n — 1) exp{if (Ar)?},
€10 = a1(n) — cio = —c1o(l — exp{iB(Ar)*}). Also, let c1(n — 1) = 10 = exp{ik Ar}
and c;(n) = ca{n — 1) = cyo = exp{iksAr}. Using eq.(3.39), the error magnitude

|Aci| = [s1 — e1(n)| is

el = sl |y oy
1010 - C2O|

|1 _ giflan)?

= |1 eithahDAT|’ (3-41)

\/ 1 - cos [Bi(Ar)?]

F]

1 — cosj(ky — k1)Ar]’

As Ar — 0,
[Aci] — B1Ar/ (ke — k1) + O[(Ar)?] (3.42)

and indeed the error magnitude decreases with Ar.
The implicit assumption in Kayhan's suggestion [38] is that the estimation o the
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coefficients a;(n) from the signa y(n) is not affected as Ar decreases. An indication
that decreasing Ar may lead, instead, to larger errorsis that the lower bound on the
eigenvalue estimation error variance (the Cramer-Rao bound-CRB) [40, for constant
eigenvalues] is proportional to (dkAr)~2M-1 where M isthe number of modes and 6%
isthe (small) eigenvalue difference between the most widely spaced eigenvalues.

Hence, athough the decrease in Ar may reduce |Ac,|, errors in estimating a;(n)
may increase, offsetting the effect of a reduced change ¢ and, in fact, deteriorating
the estimation of the first-order poles. When the spacing between polesis large [(k; —
k1)Ar = 7 isthelargest distancein the cased two modes], the multiple eigenvaue CRB
approaches the CRB for the single mode[62, 69].

Another issuein using theright-poleiteration (3.36) isrelated to error evolution, i.e.,
how the first-order pole estimation error changes with n in a region, for example, were
the DE coefficients become constant. The right-pole may convergeto either first-order
poles or not converge at all, depending on the ratio of the pole magnitudes.

Following the method used in {35] regarding eq.(3.35), assume that a1(n) and ay(n)
are constant for n > no—1 or, equivalently, ¢,(n) = cmo. AsSume dsothat theiteration
at that point resulted in pa(no — 1) = c10 T . Usingeq.(3.36) with a, = e10 T ea0 and

as = —c10¢0, the evolution of the error &(n) is given by

p2(n) = a1(n) + az(n)p; '(n — 1) =

- _ C10C20
¢10 + 8(n) = cio0 + 0 —Clo+5(n— 1)’
8(n)s(n — 1)+ c106(n) — ca06(n — 1) =0, n > no, (343

with initial condition é(n, — 1) = &. Thisis a homogeneous Ricatti recurrence equation

linearized by writing it in terms o the inverseerror 1/6:

€0 €10 €0
dn) cpodn—1)

+1. (3.44)
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Thisfirst-order, linear, constant coefficient recursive DE has solution

+1
@0 (a0 l+1‘:2_0+1_(5£) _ 1 feo 1\ [(ao\™
5(’110 + l) Ca0 (50 1-—49e 1- 2o (50 1— 42 Coo ’

0 20 c20

In the steady state, as! — oo, if |ci0/c20]| > 1, then cx0/é — oo, the error § — 0, and
the right-pole convergesto ¢, at arate that increases with |ci0/cs0|. If, on the other
hand, |ci0/c20| < 1, c20/8 — c20/(c20 — c10), 8 — cap — €10, and the right-pole tends
to c20 at a rate that increases with |eap/c10|. Asa result, the right-pole is "attracted"
to the pole with the largest magnitude at a rate that depends on the ratio of the pole
magnitudes.

When |c10/c20! = 1 (an approximation compatible with the adiabatic mode approx-
imation), we can write ¢i0/c20 = exp{i(kic — k20)Ar}. In this case, the solutionto the

inverse error is

€0 _ _ : c20 _ 1 i+ 1) (k10 -kz0)Ar
6(n0 + l) 1 _ ei(klo—kgo)AT 60 1 — e'i(kloszo)AT )

1/d is oscillatory and the right-pole convergesto neither first-order poles.

3.24 Sum of an Arbitrary Number of Modes

Thegeneralization of theresultsd the above Section for an arbitrary number of complex

exponentials is obtained by substituting the first-order equations (3.26) into

y(n) = andzl ym(”):

(3.45)
= EJNil aj(n)y(n — j).

Following the procedure developed in [35] and described in Appendix B.1, one obtains

the expression for the M -th order coefficientsas [seeeq.(B.8))

D(n)a(n) = c(n), (3.46)
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wherea(n) = [a1(n), ..., apu(n)3".c(n) = [e1(n), ..., ex(n)]T , and theelements of the

matrix D(n} are obtained by the recursion [cf. eq.(3.31)]

1, =1
(D)) = _ , (3.47)
c,;l(n — i = 1)dm,j—17 2 < i < M.
In order to compute a{n), eq.(3.47) requires theseries {cn(n— M +1),..., cn(n)}, m=
, M, the present and M - 1 past first-order poles.
A recursion for the right-poles corresponding to a given series o coefficients a(n) is

obtained following the procedure described in [35] as [cf. eq.(3.36) and Appendix B.2,
eq.(B.10)]:

ay(n)
pM(n —M+1)

M-2
par(n) [ [ par(n - 3)
3=1

M-2 M-2
+ apr—1(n) + Z a;(n) H pu(n—k). (3.48)
i=1 k=i
The recursion for pps(n) requires initialization using the M/ — 1 past right-poles. Asin
the twc-mode case, if eq.(3.48) is initialized with {c(no — M T 1), ..., cm(no — 1)},
then ¢,,(ne) is recovered.
Also as in the second order case, initial first-order poles can be estimated from the

roots o the polynomial
M

— Y ai(n)sM, ag(n) = -1,

=0

provided that they are constant, or nearly so, for M signal samples (present and A/ — 1

past samples). In order to approximate the M — 1 past poles by roots, therefore, the

signa components should have constant poles for 2M — 2 samples, a requirement that
becomes more restrictive as the number M of distinct complex exponentials increases.

Appendix B.3 analyzes the error between characteristic polynomial zeros and first-

order polesfor M = 3 [eqs.(B.43) and (B.44)]. Theresults are qualitatively similar tothe



M = 2 case discussed in Subsection 3.2.3. Theratio between change in first-order poles
to distance between poles determines the error between roots and first-order coefficients.
Astheorder increases, the poles (limited to be closeto the unit circle) tend to be closer,
degrading the approximation o the poles by the characteristic polynomial zeros.

In addition, asthe order increases, the right-poleiteration involvesthe multiplication
d alarger number o past poles. A DEfor theerror when using the right-polein a region
o constant coefficients[seeeqs.(3.43) and (3.44)] isan M-th order non-linear recursion,
which can not belinearized for M > 3.

Where the adiabatic mode approximation is valid, the modes change sowly with
range and the roots o the characteristic equation themselves may be a reasonable ap-
proximation to thefirst-order coefficients.

Asshowninthe M = 2 case, right-poleiteration may not convergeor convergetothe
wrong first-order pole. In addition, the degree o nonlinearity o the right-pole iteration
increases with the number the modes. This combination o factorsimpose limitationsto
eigenvalue estimation through right-pole iteration as the number of propagating modes

increase.

3.2.5 A Realistic Example: Inverse Techniques Workshop

We illustrate the issues of representing modal sums by DE’s and estimating eigenval-
ues. As an example, modal amplitudes and eigenvalues were computed for a realistic
range-dependent, shallow-water waveguide, used as a test case for the NRL Inversion
Techniques Workshop (ITW) held in Gulfport, Mississippi, from May 15 to 18 d 2001.

Chapman and co-workers [9] give a detailed environmental description of the test
cases. The objective of the experiment was to estimate the (possibly range-dependent)
seabed geoacoustic properties given the sound velocity profilein the water column, the
bathymetry, and a set of pressure fieldsfrom a point source in the frequency range 25—
500 Hz. Acoustic data were available at two "horizontal arrays' (every 5 m from 5 m

to 5 kmin range) and a number o "vertical arrays" (depth 20-80 m every meter; range
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Figure 3-9: Range-Dependent environment, test case 2 o the Inverse Techniques Work-
shop, Gulfport, MS [9]. The water and seabed properties are range-independent, The
bottom slope is constant {~ 0.96°) up to r = 2.1 km, where the local depth becomes

constant (105 m).

500m to 5 km, every 500 m). In all cases, the source depth is 20 m (at » = 0) and the
sound speed in water is known.

The present example is based on test case 2 (T'C2) environment, shown in Figure
3-9. The environment consists d a range-varying geometry with a gentle slope followed
by a constant depth region. WWe computed the modal components at 50 Hz , for a source
at 20 m and a receiver 25 m deep, using the norma mode code KRAKEN|57].

The amplitudes and eigenvaluesd the modal components are shown in Figure 3-10.
A sixth mode becomes evanescent near » = 1.13 km and is not included in the example
to avoid the discontinuities caused by a modal amplitude decreasing to zero. In the
range-independent region, the modal amplitudes decrease due to absorption.

The first-order poles were computed as the ratio between adjacent samples d each
mode, as in eq.(3.27). The 5th-order DE coefficients were then are computed us-

ing eq.(3.46) and are shown in Figure 3-11. Except for the transition to the range-
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modal amplitude

eigenvalue (rad/m)

range (kr)

Figure 3-10: Amplitudes and eigenvalues of individual modal components for the TC2
environment at 50 Hz, source at 20 m and recelver at 25 m. The upper plot shows
the modal amplitudes U, (n) exp {—A,(n)} from eq.(3.13). The modesare identified by
number (lowest mode correpondsto the highest eigenvalue).
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range (km)

Figure 3-11: Exact DE example, Ar = 5 m - real and imaginary parts of the DE
coefficientsfor the sum of complex exponentials of Figure 3-10.

independent region at » = 2.1 km, the variations o the coefficients are smooth. It
was observed, however, that small discontinuities on the ratio d the modal component
amplitudes (of the order of 10~? in 1) cause large discontinuities in the DE coefficients.
In the present example, these discontinuities were caused by small variations between
range steps d the algorithm used to compute the modes. The amplitudes in Figure 3-10
were smoothed before computing the first-order pole and DE coefficients, eliminating
the problem.

In an actual eigenvalueestimation application, theindividual modal components are

not available, only the modal sum. The estimation o eigenvalues would comprise three
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steps: estimation o the DE coefficients, estimation d thefirst-order poles, and finaly,
the computation of eigenvaues from the phases of the poles. For the present example,
we start with the DE coefficients, computed to machine precision.

The first-order poles were estimated by two methods. First, we computed the roots
d the DE characteristic equation at each range step and considered them as estimates
o firs—rder poles. Thisis how the TVAR method (frozen-time approach) works. As
a second method, we used iteration of right—poles, eq.(3.48), which derives from the
theory o exact DE representation of modal sums.

In order toinitialize theiteration, we need four values (for a system o order M = 5)
d each first-order pole. We checked the accuracy o the DE coefficients by initializing
the iteration with the exact first—order poles (not available in actual applications). All
poles were recovered with negligible errors, within machine accuracy (about 10~12 or
better).

I'n actual applications, one could use, for initialization, the roots o the characteristic
eguation in a region where the environment is nearly range independent. Figure 3-11
shows that the DE coefficients are constant for » > 2.tkm. We used therootsat »r =5
km as initial values. As a third estimate, we used the iteration o right—poles, but
initialized by the roots at »r = 0 where the DE coefficients axe changing, in order to
assessthe effects o initialization errors.

Figure 3-12 showsthe estimated eigenvalues (plotson the left) and the corresponding
eigenvalueerror (ontheright, with logarithmicvertical scale). Thefirst roware"TVAR
estimates from the roots of the DE characteristic equation. The second row shows
estimates and errors from the iteration (3.48) initialized by the roots at » = 5 km.
Finally, the third row shows the results when the iteration is initialized by roots at
r = 0. Only the first and fifth eigenvalues are shown for this last case. The actual
eigenvalues are also plotted on the left (dashed curves), but are only discernible in the
third row o plots.

The eigenvalues estimated from the roots of the exact characteristic polynomial are
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Figure 3-12: Exact DE example, Ar =5m - estimation d eigenvaues. Plots on the left
show actual (dashed line) and estimated (solid line) modal eigenvalues. Semi-log plots
on the right show the estimationerror for selected modes (indicated by mode number),
where poditive values d error are represented by the solid portions o the lines, while
the dashed portionsrepresent negative error. Eigenvauesderived from first-order poles
estimated: (a) as DE characteristic polynomid zeros; (b) and (c) from iteration d right-
poles, eq.(3.48) initialized with polynomial zerosat (b) T = 5km, and, for modes 1 and

5, (c) r =0,
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in good agreement with the actual eigenvalues, except for someoutliersin thetransition
totherangeindependent region {r = 2.1 km). Theerror in therange-independent region
{r > 2.1km) is negligible, as expected.

Theoutliersat » = 2.1 km are not observed in the middle plots (iteration initialized
by roots in the range-independent region). The error in the range-dependent region is
smaller for the higher order modes, suggesting that the error in initial values (roots)
were smaller for the roots that are farther apart in the complex plane [the separation
between adjacent first-order polesis between 1 and 3.5 degrees near the unit circlefor a
sampling distance d 5 m).

In the lower set o plots, the right-pole iteration was initialized using the roots of
the characteristic equation near » = 0, in the range-dependent region. Only estimated
modes 1 and 5 are shown. The degradation in mode 1 estimation is apparent, but there
isstill a reasonable agreement with the actual eigenvalue.

Thefifth mode estimation, on the other hand, deviates significantly from the actual
value. This is the mode that changes the fastest with range, and the corresponding
error between roots (used for initialization o the right-pole iteration) and first-order
poles arethe highest. The small error in theinitialization o theiteration (3.48) caused
the estimation to diverge!®.

The right-poleinitially associated with the fifth mode diverges but its phase remains
in the neighborhood of the second and third modal eigenvalues. This suggests a parallel
with the behavior of the simpler two-mode example of error evolution from eq.(3.43),

wherethe right-poleis "attracted” to thefirst-order pole with the largest magnitude.

The phases of the roots themselves are in good agreement with the actual first-order poles(as
indicated by the first few points near t =0 in first row o plots of Figure 3-12). This suggeststhat the
right-pole iteration is sensitiveto initialization errors.



3.3 Sequential Autoregressive Estimate

3.3.1 Range-Varyi ng Autoregressive M odel

Therange-varying AR model isa simpleextension of the conventional, stationary process
model, where the AR coefficients are allowed to change at each range step. As before,
using the notation r,, = r, + nAr; y(n) = p(ra, 2)4/Tn, Wherer, is some initial range,
the range-varying, order-p [not to be confused with the pressure p(r,, z)] AR model is
given by
y(n) =ai(n)y(n - 1)+... +a(n)y(n - p) +v(n),
(3.49)

= a"{(n)p(n} +v(n),

wherev(n) isawhite noisesequence o variance a2, a(n) = [a1(n) ... a,(n)]T isthevector
o AR coefficients, and ¢(n) = [y(n — 1)...y(n — p)]7 is the vector o the past p signal
samples. The AR parameters are the set of coefficients a{rn) and the noise variance.
In the limiting case d no input noise (¢2 = 0), this model reduces to the exact DE
representation of a sum o modes when the order p isequal to the number of modes.
The power spectrum associated with this model can be defined as
0.2

Bk vyl = = 3.50
ot ) 1—a;{n)s~t—... ap(n)S‘PE:exp{mTkr} ( )

This expression is exact for range-independent AR models. Here, it is used as the
definition of local spectrum. These same definitions are used in the diding-window AR
method [6], where P,(k.;r,) is associated with the range o the center of the window,
and the AR parameters are computed over a number of samples larger than the order
p (usualy, 3 X p samples). The peaks in the spectra are associated, from eq.(3.50),
with the zeros o the characteristic polynomia {[1 — a;(n)s ! — ...a,(n)s7?] or [s? —
ai(n)sP™! — ...ap(n)]} close to the unit circle, which, as discussed in Section 3.2, are

approximations to thefirst-order poles.



The sequentia estimator o the DE coefficient vectors a{(n) is implemented as a
Kaman filter. For spectrum peak identification, the position of the peaks of P,{k.;rn)
or the zeros o the characteristic polynomials are computed at each range step™. In a
second example o sequential estimators, the zeros d the characteristic polynomial are
estimated directly by an adaptive filter with variable forgetting factor (VFF).

Both filters use eq.(3.49) to predict, at each "instant” n, the vaue o y{n), and
use the error in the prediction to update the estimate. Suppose an estimate &{ny—)
based on al.y(n), n < ng is available. From eq.(3.49), the next value of y should be
y(no) ~ a7 (no—)w(no). When y(no) is measured, the prediction error is computed,

e(no) = y(no) — 4" (no—)e(n).

The prediction error will be small if the a(ne—) is indeed a good approximation to
the actual coefficients. If it islarge, this estimate needsto be updated. Theideaisto

use the prediction error to drive the change in the estimate, such as in
a(no+) = a(no—) + Ke(ng),

where K is some gain matrix.

If the noisevariance a2 ishigh, the prediction error could belarge, evenif the estimate
iscloseto the actual value. Thefilter gain K may take into account the variance o? o
the noise. The higher the noise variance, the smaller the gain, so that correctionsto the
estimate occur over longer periods, taking into account a larger number o y{n) samples,
effectively integrating them in order to reduce the influence o the white noise v{n).

Another desired property o PCisthat the changesin 8 should improve the estimate,
decrease estimate errors. In other words, the direction o change must be related to the

negative o gradient o the prediction error, [—8¢/8a]. From the prediction error formula

UIn order to avoid that P, = 0 for deterministic signals (o2 = 0}, any positive number may be used
instead of ¢ in eq.(3.50). The qualitative properties o the power spectrum and the use of its peak
positions as estimates o eigenvalues are not affected by this change.
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above, the gradient is given by [—¢(n)]. In order to decrease the prediction error, K
should contain a factor [-+¢(n)].

The gain K is selected according to some criteria. One possibility, isto choose K
that minimizes the mean square prediction error E[e*(n)]. Thisis the principle of the
adaptive zero estimator described in Subsection 3.3.3 and, in some detail, in Appendix
C.

Another possibility isto choose K that minimizes the mean square estimation error
E{||a(n) — a(n/n)||%] between the estimate and the actual vector o coefficients, assumed
a random process in itself. Thisisthe principle o the Kalman filter discussed in Sub-
section 3.3.2 and Appendix D.

3.3.2 Kalman Filter Implementation

For the Kalman filter implementation, eq.{3.49) isinterpreted asthe measurement equa-
tion, relating the measured quantity, the sequence y(n), to the system date a. In
addition, the system state is assumed to evolve in range according to a Sate equation.

For the present example, a simple Gaussian random walk model will be assumed:
a(n) = aln — 1) + w(n), (3.51)

where the plant-noise w(n) is a white Gaussian noise vector o covariance 3" = p*/,
and I, isthe p X pidentity matrix.
From egs.(3.49) and (3.51), the Kalman identifier can be written as shown in Algo-
rithm 1 [51, 2], where,
§=p'/al, (3.54)

Ve(n/n® 1) and V¥(n/n) are the normalized error covariance matrices

Ve(n/n®1)=E { (a(n) —8%(n/n @ 1)) (a(n) - &®(n/n@ 1))} /2, (3.55)



Algorithm 1 Forward and Backward Kelman AR identifier [51]. Initialize the for-
ward filter with values a~(p/p) and V~(p/p), and estimate the coefficients for n =
p+1,..., N. Initidize the backward filter with " (N +1/N+1)and V- (N+1/N+1),
and estimate the coefficientsfor n= N, N — 1,..., pt 1. The only parameter in this
implementation is &, which controls the speed o convergence. The higher the &, the
faster the convergence and the larger the variance of the estimate.

1. Prediction

pmn) =[yn-1), ..., yln-p)],
®n/nol) =a2nal/nel), (3.52)
e(n) =y(n) - " ()a%(n/no 1).
2. Update
Ve(n/n® 1) =VE(nd 1/nodl)+ L,

Ve(n/n) =Ve(n/n®1)x I, — ¢"(n)e" (n)VE(n/n& 1))
/[ 1+ " (n)Ve(n/na 1)p*(n)],

a®(n/n) =2a%(n/n®1)T Ve(n/n)p*(n)e®(n)

(3.53)
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Ve(n/n) = B {(a(n) — 8°(n/n)) (a(n) - &%(n/m)" } /o?, (3.56)

and (-)* denotes complex transpose. We use the notation in [51]: the symbol & is a
binary operator or label that can assume the values {—, +} to designate, respectively,
forward and backward Kalman filters'?, allowing to refer to both simultaneously.

The only free parameter in thisimplementation is ¢, the ratio of state and measure-
ment noise variances. According to the description at the end of Subsection 3.3.1, we
should expect that the higher the measurement noise variance (small ¢), the smaller
should be the gain K§ o the filter and the corrections to the estimate a. The filter
should take along "time" to update estimates. On the other hand, if £ is high, indicat-
ing that variations in y(n) are mostly driven by changes in the state vector a, thefilter
should react quickly, through an increasein K}B.

This is accomplished by the Kalman filter through matrix V€(n,/n). The update
equations in Algorithm 1 indicate that the Kalrnan gain, the matrix that multiplies the
prediction error, is given by'?

K$(n) = Ve(n/n)p"(n).
The update of V€(n/n), eq.(3.53), can be written'* as
[Ven/m)]™ = [Vo(n/n® 1) + ¢ (n)p" (n),

where Ve(n/n®1)= VE(n®1/nad 1)t £I,. High ¢ (low measurement noise compared
to plant-noise) tends to "increase” V®(n/n @& 1) and V&(n/n), and, as a consequence,

the Kalman gain increases, as we expected.

12When all measurements y(n) are available, they can be processed either forward, i.e., starting at
n = 0, or backward, starting at the last sample. In Subsection 3.3.4 we combine estimates obtained
both ways, in order to improvethe tracking of changesin the AR coefficientsa.

13Note the factor ¢{n) in K, as discussed in Subsection 3.3.1.

4Use the matrix inverselemma[32] in the form A— ABDA/(A T DAB) = (A1 + BD/A)~1, for A
scalar.



The influence o the term ¢*(n)pT (n) on the V®(n) update is better understood
if we de-normalize the error covariance matrix V® and use the actual error covariance
P€(n/n) = ¢2V¥(n/n). Then, the update becomes

[PE(n/n)] "t = [PE(n & D] ¥ ¢ (n)¢T (n)/0}.

Under high signal-to-noise ratio conditions, the second term (¢ is a vector o signal
samples) is high. At each update, the inverse of P€(n/n) is increased, and P€(n/n)
decreased, indicating that the high SNR measurement isreducing the estimate error. If
the SNR is low, the second term in the above update is low, and the improvement in
error covariance due to measurement is small.

The standard Kalman filter is derived for models where ¢{n) in the measurement
eguation is independent of the data. The application of the Kalman filter as the AR

identifier, where ¢(n) isthe vector of past signal samples, results in the following [2]:

e V&(n) depends on the signal y through ¢(n), as shown in the update equation
(3.53). Under the Gaussian assumption, o2V®(n), can still be interpreted as an
error covariance matrix, but conditioned to the set o measurements. If the mea-
surement noise»(n) and plant noise w{n) are not Gaussian, ¢2V®(n) can not be

interpreted as error covariance,

e the correction to the state estimation, V®(n/n)g*(n)e(n) is a nonlinear function
d the measurements y.

The Kalman filter described in Algorithm 1 was developed based on the underlying
state-space model given by eqs.(3.49) and (3.51). From this point on, thefilter isseen as
an instrument to estimate DE coefficients, one whose response to changes is controlled
by the parameter £. In Section 3.3.4, estimates from filters with different parameters
are combined in such a way that the filter with the "best fit" to thelocal (in range)
properties o the signal is weighted more. This justifies the concept that eqs.(3.49) and
(3.51) do not, in fact, need to model the signal in a "global™ sense[51].



3.33 The VFF Adaptive Zero Estimator

Instead o polynomia coefficients, zeros s; of the polynomial can be estimated[48, 56).
As discussed in Section 3.2, the polynomial zeros have a simple physical interpretation:
to thefirst-order in the sampling distance Ar, their phases are directly related to the
eigenvalues' k;:

si = pjexp{i€;} = exp {(ik,; — as} A1), (3.57)

as long as the order o the AR model is the same as the number o propagating modes.
When the order is larger, we either search for zeros close to the unit circle (small |e;|)
or for peaks o the spectrum P,{k,;r,), as discussed in Subsection 3.3.1.

Therelation between theavailablesigna y(n) and the AR coefficientsa(n), eq.(3.49),
is linear. Now we are faced with the problem o estimating the roots (in fact, their

magnitudes and phases) o the associated characteristic equation (with ¢q = —1)

P _ P
- Zajs‘J = H(l —s1s;) =0,
j=0 =1
a nonlinear problem. In fact, estimating first the AR coefficients(linear estimation prob-
lem), and then finding theroots o the associated polynomial (anonlinear, but reasonably
wel understood problem), is how Subsection 3.3.2 solvesthis nonlinear problem!®.
Thezero estimator minimizesthe mean squareprediction error {(n;8) = E||e(n; 6){?]/2

with respect to the parametersto be estimated, the magnitudes and phases of the roots
grouped in the vector

e(n) = [p17 "-,pp7 Ql’ LELIL | QP]T (3'58)

15The magnitude o thefirst-order polec;, p; = [U;(n)/U4{ n- | ) Jexp{—a;Ar} [cf. eq. (3.27)], includes

the ratio of modal amplitudes. For simplicity, we incorporate al magnitude factorsin the exponential.

The a; of eq.(3.57), therefore, has a contribution from the ratio of modal amplitudes.
18 A concept developed by the eighteen century French engineer Gaspard Riche, Baron de Prony(32].




As discussed in Subsection 3.3.1, the minimization is carried out through the recursion

B(n — 1) + K(n)e(n). (3.59)

f(n)

The desired form o the gain K can be obtained by examining the Newton-Raphson
method. Recursion (3.59) is designed to find the zero of [3s{(n)] = e(n)dpe(n). In
the one-dimensional problem of finding the zero o f (x), the Newton-Raphson iteration
computes z,, = z,_14[—f'(x)]~1 £ (x). By analogy, the correction to 4 in eq.(3.59) should
be o the form [—-92((n)]'8s¢(n). Discarding the expectation operator, this correction
reduces to P(n)¥(n)e(n), where ¥(n) = —8ye(n), and P(r) is an estimate o the second
derivative o |e(n)[>. Hence, K{(n) = P{n)})(n) is thefilter gain. Note the similarity
with the Kalman gain in Algorithm 1, K¢{n) = V®(n/n)¢*{(n), where p(n) is —d,e(n).

In Appendix C we show that P(n) is updated at each step by a recursion o the
form P~1(n) = wPYn - 1) + y(n)yT(n), where 0 < w < 1 is the forgetting factor,
which controls the tracking characteristics o thefilter. If weset w =1, P~! growswith
n, the gain decreases, and at some point the filter stops updating the estimate. This
makessenseif # is constant and theinitial guessé, is sufficiently closed to the solution
o this nonlinear problem. For varying 8, we makew < 1, and past measurements!”
are weighted less, alowing the estimate to adapt to changesin 8. Asw increases, the
contribution from P~1(n—1) decreases, and P~!(n) ismorerepresentative o the present
data, allowing for quicker adaptation. w is analogousto the parameter £ in the Kalman
identifier.

The choice d w isrelated to the expected variability d 8 (just as the choice o &
is). We decided to use the variable forgetting factor proposed by Fortescue and co-
workers.[16], which is data adaptive. The basic principle is that, under low noise con-
ditions, changesin prediction or estimation errors (driven by changes in the measured

signal) must be related to changesin 8, and thefilter should respond quickly by reducing

]1;¢(n) = dga” (n)p(n) containsinformation of past measurementsthrough ¢(r) = [y(n—1), ..., y(n—
p)l*.
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Algorithm 2 VFF Adaptive Zero Estimator. Initialize the forward filter with 8- (p)
and P(p), and estimate the zerosfor n = pt1, ..., N. Initidize the backward filter
with 8*(V -+ 1) and P(N+1), and estimate the zerosforn=N, N —1,...,p+t1 The
parameter o thisimplementation is Jy [seeeq.(C.21) and related discussion].

pn)=[yln-1), ..., yln—p)]

e® (n) =y(n) — a" (n® )e(n).
_1Pme )y (n)y? (n)Prol)
2w(n) T 1o (n) P(n — 1) (n)
L Ly (n)yT (n) L
PO =L~ SR oy
0®(n) = P(n 1)t PR [v (n)e® (n)],
Prepare for the next step:

L=|Phol)

Jw(n), (3.60)

1. Compute a(n) using the zerosin vector #2(n), and Aa= a(r) — a(na 1);
2. Compute the gradient ¥ (n& 1) at 6 = 0%(n), egs.(C.9), (C.12), and (C.14);

3. Compute the forgetting factor

wnol)=1-[e(n) - AaT(n)cp(n)|2 /Jo. (3.61)

w. Appendix C describes the formulation. The forgetting factor w(n) is computed at
each step and its variations are controlled by a parameter .Jp, chosen according to the
measurement noise variance and the expected variability o the eigenvalues with range.

The design o the adaptive filter, based on a general recursive prediction error algo-
rithm described by Ljung[44l, is detailed in Appendix C. The estimator is described in
Algorithm 2in the form o forward and backward filters. The symbol & isthe comple-
ment o & (see Algorithm 1 and related text), ie., © = —® = {—, +).

There are differences between Algorithm 2 and the above simplified description o how
6 and P are updated. In the simplified description, the variables were assumed real. In

fact, y, ¢, a, ¥, and the prediction error are complex. For example, the two-step update



o matrix Pin theagorithm correspondsto P—1{n) = w(n) P~ (n— 1) R{w(n)v " (n)}.
The parameter J, in eq.(3.61) controls the speed of convergence. It ischosen accord-
ing to the measurement noise variance o2 and the number o samples over which the

eigenvalues are expected to be constant, Ny, as
Jo = O'gNo. (362)

Jo keeps w(n) near unit when thesignal is noisy (and needsto beintegrated over alarge

number d samples) or when the eigenvalues are expected to be constant.

3.3.4 Competitive Smoother

The algorithms described in the above subsections are controlled by a parameter, ¢ or
Jo, chosen according to the assumed eigenvaluevariability and measurement noise level.
Estimation errors should be smaller in regions were those parameters best match the
local characteristics of the signal. A different estimator (different £ or Jg) would track
better thesignal at different regionsif, for example, thelocal rate of change o eigenvalue
varies with range.

NiedZzwiecki [50] proposed combining a set of estimates according to the behavior o
the prediction error. Basically, the best estimate(as indicated by the lowest prediction
error) at each range is selected. Later, he applied this concept when developing the
theory o competitive smoothers to deal with identification of parameters that change
abruptly [51]. Oneof our main motivations toinvestigate eigenvalueestimation in range-
dependent environments was a shallow-water waveguide where the seabed had a sudden
change in properties that reflected in the modal content o a simulated pressure field.
This example is discussed in Section 3.4.

The competition involves a forward and a backward filter. Near a parameter jump
discontinuity, the estimates degrade in different ways, and so do the corresponding pre-

diction errors. Figure 3-13 describes the concept of competition and the resulting im-
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Figure 3-13: Competitivesmoother concept. (a) Red part d the test signal; (b) actual
(dashed line) and estimated phase rates, and loca prediction error energy from a for-
ward Kalman identifier with [ = 0.0004; (c) backward estimate and corresponding local
prediction error energy; (d) result d the competition.

provement o the tracking characteristics. The test signal is a complex exponentid
whose phase rate (eigenvaue) jJumps at samples 200, 600, and 900. The estimator isthe
Kaman identifier, Algorithm 1, with £ = 0.0004.

The forward filter estimate (second plot) degradesright after each jump due to the
finite "time" response d thefilter. The prediction error increases accordingly. Thecurve
|abeled error energy istheenergy, Ej, (n)= Zﬁ“ﬂ"l le=(n— | )|2, d the prediction error
computed over the past 11 and the present sample (over an analysis window d length
M, = 12). The change in egenvaue causes a pulse in the energy waveform after the
jump.

The backward estimate and corresponding prediction error energy are shown in the

third plot o Figure 3-13. The estimate transient and the error energy pulse are nearly a



mirror image o theforward case with respect tothe jump. Herethe energy iscomputed
for the future samples (past, from the perspective of the backward filter), E3; (n) =
St er(nt 7). The competition, in this example, consisted in choosing, at each
sample, theestimate with smaller prediction error energy. Theresult, shownin thelower
plot, is a significant improvement over the two previous estimates.

Niedzwiecki [51] developed the theory df competitive smoother for a moving average
process. In the AR model case, the agorithm is not strictly valid, but [51] indicates
that computer simulations, as the example in Figure 3-13, yield satisfactory resuits.

The competitivesmoother isdefined, interms d forward and backward Kalman filter

estimates, as the weighted average
a(n/M,) = p~(n)a (n/n) + u*(n)&* (n/n), (3.63)

where M, isthelength of the competition analysiswindow, ® arecredibility coefficients

given by
M.—1 ~1/2 My—1 Jﬁ%/( m$7 2 —Ma /2
& - C ® @ ] 7 n 1 364
e=C HlEe m} [E Bo(n &7 (569
Bn@)=1+¢"n®)Ve(najnojol)p' (nej), (3.65)

and Cis a normalization constant such that x~(n) t pt(n) = 1. When ¢ < 1 (Sowly
adapting Kalman filters), the smplified expression

Ma—1 —Ma/2
] (3.66)

p®=cC [Z 2o )|

results.

Equation (3.64) is restricted to Kalman filters. The simplified eq.(3.66), on the
other hand, was obtained in [49] for more genera prediction-error based identification
algorithms. It can be used with aset o forward/backward V FF adaptive zero estimators

(Algorithm 2) with different parameters Jp.



For sufficiently large M,, using the credibility given in eq.(3.66) corresponds to

switching between estimates according to the prediction error energy [51):

a (n/n—1), Ey (n)< Ey,(n),
a(n/M) = (3.67)
at(n/n-+1), Ef (n) < Ey (n),

where
M.—-1

EG. =Y |ete|. (3.68)
3=0

Thisistherule used in the example o Fig. 3-13, with M, = 12.

The competition can be extended to an arbitrary number of estimators. For example,
a set o Kaman identifiers with different parameters £ could be combined. At each
range, the identifier that best models the local behavior of the signal would tend to
"win" the competition. In order to reduce the estimate variance in regions where the
signal properties do not change, the mean estimate[49] {.5{a~(n/n) + &*(n/n)}] or a
higher order Kalman filter, can be included in the competition. High order filters are
useful in regions where parameters change systematically and the first-order Kalman
filter competition tends to introduce 'switching noise, increasing the estimate variance
(see Appendix D on page 278).

Asa guidelinefor the selection of control parameter (¢ or J) for multiple estimator
competition, [49] suggeststhat the memory doubl i ng ruleworkswell in practice. Memory
length isthe number o signal samples that effectively contributesto the estimate at any
given n. In Subsection 3.3.5 we show that the effective memory length o the Kalman
identifier, under conditions of low £, is inversely proportional to the square root o £,
Negg ~ ¢-1/2, For abank of Kalman identifiers, therefore, the ¢ must follow a geometric
sequence o ratio 4 & = 4€,_,. For the VFF zero adapter, eq.(3.62) suggests using a

geometric sequenceof ratio 2, Jo; = 2Jo,i-1.



3.35 Pressure Field Decimation and Eigenvalue and Range

Resolution

In range-dependent eigenvalue estimation, analogous to the time-frequency analysis o
time-varying signals, an important issue is the trade-off between eigenvalue resolution,
the ability to measure closed spaced eigenvalues, and range resolution, the ability to
track eigenvalue changes with range. Eigenvaue resolution improves by increasing the
range aperture over which the eigenvalue is estimated, while range tracking requires
small apertures. Another associated issue is the estimate variance, which also depends
on aperture.

We discuss briefly the issue o variance and elgenvalue resolution. We then propose
the decimation o the pressure signal as a way to improve the estimate, reducing the
order of the AR model (and the associated computational cost) without sacrificing either
eigenvalueor range resolution. The main issue regarding decimation is one of choosing
a suitable range spacing Ar for eigenvalueestimation.

Finaly, we analyze the effective aperture associated with the sequential estimators
o Subsections 3.3.2 and 3.3.3.

Eigenvalue Variance and Resolution

The variance o eigenvalueestimation depends on the sampling distance Ar, which, as
discussed in Section 3.2, determines the distance between first-order polesin the com-
plex plane. For constant poles (range-independent environments), as the pole distance
increases, the Cramer-Rao bound (CRB) for multiple modes decreases and approaches
that of a single mode, the lowest possible value it can attain, when the eigenvalue sep-
aration exceeds the critical value [62] Akg = 4x(NA7r)~!, where N is the number o
signal samples used in the estimation. This critical valueis twice the Fourier resolution
for a signal observed over an aperture NAr, which istypically large for shallow-water,

low-frequency acoustic signals.
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For the TC2 example shown in Figures 3-9 and 3-10, the closest eigenvalues are the
two first modes, with Ak = k; — k; =~ 0.003 rad/m in the range-independent region.
In order to attain 4r(NAr)~' ~ 0.003, the aperture should be NAr ~ 4200 m, which
is more than the available aperture in that region. In the range-dependent region, the
eigenvaluesare even closer, a problem compounded by their variability. These are the
main reasons that high-resolution methods were proposed|[6]. AR techniques can resolve
eigenvalues using smaller apertures than the Fourier resolution, possibly allowing to
track changes with range. The priceto be paid by using smaller apertures is increased

error variance bound (CRB).

Pressure Field Decimation

In Subsection 3.2.3, we pointed out that, when the first-order poles are close in the
complex plane, so that, for the most spaced eigenvalues, the first-order pole angular
separation 6kAr issmall, the CRB is proportional to N—1(6kAr)~2*-1) [40], where M
isthe number of modes. If Ar increases, the CRB improves (faster than increasing N).
When the spacing between adjacent eigenvalues reaches the critical value 4r(NA7r) 1,
Ar can still beincreased, and N reduced, without affecting the CRB. Thisis one moti-
vation for decimation. It improvesthe variance bound for very small Ak, and alow the
reduction in the number of processed samples N when Ak reaches the critical value.

Quirk and Liuf59] analyzed the effects of decimation on AR spectral estimation d
sum o o constant frequency sinusoids. The same spectral resolution is obtained with
a smaller order when the signal is decimated. Basically, down-samplingby D (that is,
increasing the sampling space to DAr) and using an order p/D has the same effect of
using an order pon the original signal, but at alower computational cost. The resolution
does not change because,for N « p, the aperture NAr = (N/D){Ar/D) isfixed.

The computational cost of sequential estimators is associated to the size of the pa-
rameter vector being estimated. For an AR model o order p, the parameter vectorsis

o sizepinthecased Algorithm 1 and 2p for Algorithm 2. For the AR spectrogram, in



6], the practical rule o setting the AR order to p= /3, for a range aperture o NAr,
was adopted. If N is decreased and Ar increased (decimation), an smaller order can be
used without changing the actual aperture.

Decimationis particularly advantageousfor the computationd the AR spectrograms.
An efficient modified covariance algorithm to compute order p AR coefficientsover N
data points requires Np+ 6p? operations (add/multiplies) [32]. If the N = 3p ruleis
used, the number of operations is 9p?. For the diding window spectrogram, this cost is
for each window position. If K total points are available and the AR coefficients are
estimated by sliding the window one range step at a time, then the total number o
window positionsis K — N + 1, leading to 9(K — N + 1)p? ~ 9(K — 3p)p? operations
to compute Al sets of AR parameters. If the signal is decimated by D, the number of
operations per window position drops to 9p%/D?, the total number o points to K/D
and the total number of operationsto 9(K — 3p)p?/D?, a significant reduction.

A question o practical interest isthe maximum decimation rate that can be achieved
for typical experimental data. As discussed in Appendix A, monofrequency acoustic
fields must be sampled at a few samples per wavelength, Ar = A/ny = 2x/{nxko),
where ko = w/¢p is some representative water wavenumber. The wavenumber spectrum
can represent modes in the range k.| < 7/Ar = nyko/2. On the other hand, modal
eigenvalues are restricted to the smaller interval between the water and basement (of
sound speed ¢;) wavenumbers, k, < k, < ko.

The Nyquist sampling distance for a complex signals o bandwidth (ky — k) is
27 /(ko — ks). The origina sampling space 2x/(n k) can, therefore, be reduced by
the decimation factor D = [27/(ko — ks)]/[27/(nako)] = na/(1 — co/cs). AS an exam-
ple, if ny = 3, co = 1490 m/s, and ¢, = 1800 m/s, the origina sampling space can be
increased 17 times. Higher n, are common.

The decimation process is shown in Figure 3-14. Initialy, the modal spectral lines
are concentrated in an interval (kmsn, kmas) around a wavenumber k,,,, and the corre

sponding polesin an angular sector {kmaz — kmin)Ar around the angle &,,,,Ar. Thesigna
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Figure 3-14: Decimation of the complex modal sum. A signal with energy concentrated
around the wavenumber k,,.s is band-shifted to zero, filtered, and down-sampled. The
effects of the process on the wavenumber spectrum and on the pole distribution in the
unit circleare illustrated.

is multiplied by the complex exponential exp{—ink.,,Ar}, resulting in a wavenumber
spectrum and pole phases shifted to a region around zero. The low-passfiltering stage
removes spectral components outside of the band o interest near &, = 0, such as noise,
and work as an anti-aliasing filter. In addition, filtering increases the signal-to-noise
ratio by decreasing the noise power. In the last stage, onein every D samples is se-
lected to compose the new signal, increasing the sampling distance to DAr and spread-
ing the poles in angle. The wavenumber spectrum is now concentrated in an interval
{Kmin — Kavgs kmaz — kaug) @round zero, and the poles are spread out in an angular sector
(Kmaz — Kmin) DAT.

The actual bandwidth of the modal sum islarger than the total eigenvalueexcursion

by an amount related to the eigenvalue rate of change. If thefiltering operation remove



spectral energy associated with the rate of change, then the estimated eigenvalue rate
d change will be reduced. A long aperture wavenumber spectrum, as the one shown in
Figure 3-2, may reveal the total bandwidth and is a helpful tool in selecting ., and
kmaz-

The maximum possible decimation factor D is the one that extends the spread of
polestothewholeregion (—T, 1) near the unit circle, i.e., (kyaz—FKavg) DAT = 0.5(kpae—
kmin)DAr <z and

D < 27 /[(kmaz — Kkmin)Ar].

For M propagating modes, this maximum decimation rate would roughly correspond
to have the first-order poles spread out from (kquy — kar) DAr = —7 + 7/M to (ky —
kawg)DAr =7 — /M.

For range-dependent media, atighter restriction is imposed by the estimation error
when the first-order poles are approximated by the AR characteristic polynomial zeros.
To thefirst-order in variations d the poles with range, the error magnitudeis given, for
M = 2 modes, by eq.(3.41). For dow eigenvalue variations such that ;(DAr)? « 1,

€q.(3.41) reduces to
8] (DAT)?

/2 — 2cos[(k; — k1) DAr]’

and the error increases with Ar in the region of interest [0< (kg — k) DAr < 7.

o~

|Acy| ~

As an example of the effect of decimation, consider the example of Figures 3-9 to
3-12 (2001 ITW test case 2), using the modes computed for the actual experiment. The
decimation factor is set to D = 4, increasing the sampling distance to DAr = 20 m.
The decimation process includes only the band-shift and down-sampling o Figure 3-14
and is done directly on the phases and amplitudes o each mode (nofiltering necessary).
As before, the DE coefficients are computed exactly using eq.(3.46).

Figure 3-15 showstheeigenval uesestimated astheroots d the characteristic equation
(upper plots) and by iterating the right-pole [eq.(3.48)] with the roots as initial values

(roots from the range independent region for the middle plots, and from the range-



dependent region for the lower plots).

Theresultsin the upper plots are qualitatively similar to those shownin Figure 3-12,
with a dlight increase of the error d the roots corresponding to the 5th mode (the one
with highest rate d change with range) in the range-dependent region.

The middle plots indicate errors smaller for the 1st mode right-pole iteration than
with the original Ar, possibly a consequence of the smaller error of the root in the
range-independent section.

The comparison d the middle plots o Figures 3-12 and 3-15 revealsan improvement
d the estimation when using decimated data, suggesting smaller errors between roots
and first-order poles at the initial iteration point » = 5 km. In the range-independent
region, where roots and first-order poles coincide, this improvement is an indication of
smaller errors in the computation o polynomial roots, a benefit o having them farther
apart in the complex plane{58], i.e., another advantage of decimation.

The estimates and the error in the lower plots are similar to those of Figure 3-12.
The decimation neither improves or degrades the behavior of the iteration in eq.(3.48)
when it is initialized with the polynomial roots at + = 0 (where the error between
characteristic polynomial roots and thefirst-order poles tends to be high because of the

eigenvaluerate-of -change).

Effective Memory Length

For the spectrogram methods discussed in Subsection 3.1.2, the aperture is roughly
defined by the length of the range window within which either the periodograrn or the
AR spectrum iscomputed at each range. For sequential estimation, the effective sample
size N depends on the particular algorithm.

Gustafsson and co-workers [28] defined a measure o time (range) resolution as an
effective number of samples or effective memory length N, ;% and obtained expressions

for different algorithms, basically variants d the Kalman filter described in Algorithm

18In [28] Nesy iscalled time resolution.
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Figure 3-15: Exact DE example, decimated signal, DAr = 20 m - estimation d eigenval-
ues [cf. Figure 3-12 beforedecimation, Ar = 5 m]. Plotson the left show actual (dashed
lines) and estimated (solid lines) modal eigenvalues. Semi-log plotson the right show the
estimation error for selected modes (indicated by mode number), where positive values
d error are represented by the solid portions d the lines, while the dashed portions
represent negative error. Eigenvalues derived from first—order poles estimated: (a) as
DE characteristic polynomia zeros; (b) and (c) from iteration d right-poles, eq.(3.48)
initialized with polynomial zerosat (b) r = 5 km, and, for modes1 and 5, (c) r = 0.
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1. For that algorithm, the effective memory length dependson k, and is given by

" 2 \/ﬁav
Mot ) & ) VAR S W ) (369)

where p is the order o the AR model, W(k,) = [ef*ra7, .... e 47T and, as before
3., = p*L, isthe state noise covariance matrix. Thisisan asymptotic result valid for
p — oc and ||Z,]] — O, ie., for large model orders and “slow filters". Using these

expressionsfor 3° and W, and £ = p?/o2 [cf. e.(3.54)], eq.(3.69) simplifiesto

e JP 2
Nets e r) & o ) VWG]~ JeBtry 10

This result is consistent with the analysis in {49, 51); the Kalman filter parameter ¢
controls its effective memory length. A set of competing filters corresponds, then, to
aset d memory lengths that should fit different range scales of signal variations, as
discussed in Subsection 3.3.4.

Equation (3.70) can provide a relation between the parameter ¢ and the signal pa-
rameters. M of thep zerosd the characteristic equation (those closest to the unit circle)
are estimates of the first-order poles ¢, = |cm| exp{ KmAr}, where typicaly {c.,| ~ 1.

Using the zeros, eq.{3.50) can be written as

4

Py(ky;7rn) = Zv : (3.71)
fn:l “‘ — 51 (n)sillizexp {iArk,}
where, without loss df generalization, s, = ¢, form=1,..., M. Let®® |¢,| =1— ¢,

and assume k. iscloseto K, for example. If theother zerosarefar enough, thevariation
o P, in the neighborhood of K is dominated by thefactor |I — ¢;(n)s~!| and one can

YFor ¢, ~ exp{—amAT}, €m ~ amAr.



assume that the remaining factors are constant, say

2

UU
AT = e T
a;
T AK) [1— (1— q)eitFa—k)an
a;
S BED L+ (1 —e)? — 2(1 — &) cos|(K1 — & )AT]”
oy

~

T ANK) {E + [(Ky — ky)Ar]2}

where the approximation cosx = 1 — x?/2 was used for k. near K;. Theterm A%(K))

accounts for the product o the other factors,
p .
Alk,) = H !1 — sme_‘k“m| :
m=2

Therefore, near k. = K3, the Kalmanfilter effective memory length is, from eq.(3.70),

P SRLL LD \/e% + — k)rp 372

which indicates that /€ scales with e1, the distance from the poleto the unit circle. In
casethereisapolecloseto ci, say ¢z, suchthat cos[(Kz— K1)Ar] & 1-[(K,—K1)Ar]?/2,
eq( 3. 72) becomes, near k, = K

MR oy e 20 \/ {6+ (Ko = k)ATPHE + (3 — k)ATR} g oy

; ;
where the term A' is does not contain the contribution o the zero s, = ¢, i.e., A =
P 3|1 — sme 27|, Theinfluenced the close pole depends on the angular separation

| K2 — K1|Ar and its distance to the unit circle, e;.
In [28], the memory length was obtained for a RLSfilter, seen as a particular case of
the Kalman filter. The RLS effective memory length is then shown to be independent



of k, and (asymptotically) given by

2
NRLS P
eff 1 —w(n)’

(3.74)

where w(n) is the (possibly variable) forgetting factor. The VFF filter of Algorithm
2 has an structure similar to the RLS filter. The expression for the VFF estimator
memory length from [16, eq.(9)] is consistent with the above expression [cf. eq.(C.20) in

Appendix C].

3.4 Numerical and Experimental Results

341 A Noteon Modd Orde Sdection

Order selection is an important issue in AR estimation discussed by Becker[6] in the
context o eigenvalueestimation. When computing AR spectrograms, wefollow the rule
of one-third of the number of samples in the range window, p ~ N/3, which must be
equal or higher than the number d modes. This rule gives very high orders, especialy
when the sampling distance Ar issmall.

When the Ar issuch that the first-order poles are spread over a large angular region
o the complex plane, setting the AR order to the number of expected modes, or slightly
above, may befeasible even for the spectrogram.

For the sequential algorithms, we set the minimum order as the estimated number
o modes from the wavenumber spectrum or AR spectrogram. Improved resolution
is typically observed with higher orders. Under the condition o large first-order pole
spread, the one-third rule was approximately applied t o sequential algorithms by setting
the order to three times the expected number of modes ¢ ~ 3M, which correspondsto

using 3M past samplesto predict y(n).



3.4.2 Abrupt Change of Eigenvalues. Synthetic Data

The initial motivation for the present development was the degradation observed with
the AR spectrogram d a synthetic acoustic data with an abrupt change in eigenvalues.

The 50 Hz signal used in the present analysis isfrom the ITW test case 3 (TC-3)
[cf. Subsection 3.2.5]. A detailed description o al test cases is given in [9]. Briefly,
the TC-3 environment consistsof "an intrusion o (high sound velocity) basement in the
(lower sound velocity) sediment to simulate an uplifted fault structure”. Figure 3-16
contains a succinct description o the environment. There are three range-independent
regions (sediment—intrusion—sediment)in the ranges, respectively, 0-1.1 km, 1.1-2.9 km,
and 2.9-5.0km. The receiver depth is 25 m and the source depth is 20 m.

Figure 3-16 shows the pressure signal and a wavenumber spectrum. Pressure magni-
tude multiplied by +/r isshown in the upper plot asafunction of range; thesolidlineis
theorigina signal at arange samplingd 5 m. The crossesrepresent pressure decimated
by 25. Residual phaseisshown in the middle. The residual pressureis obtained by mul-
tiplying the pressure by the complex exponential exp{—ik,esr}, Where k..s = w/cres,
and ¢,s isindicated in thefigure.

The lower plot showsthe order 100 AR wavenumber spectrum using all theoriginal
data (5000 m aperture). Four spectral lines corresponding to propagating modes are
observed at 0.1789, 0.1937, 0.2034, and 0.2088 rad /m. The decimation filter was designed
for a passband wavenumber range of 0.17-0.22rad/m [Ar < 27/(0.22—0.17) ~ 125.7 m].
Weset Ar to125m , resultingin an angular polespread of 125(.2088—.1789) rad = 214"
around the unit circle.

Figure 3-17 compares four eigenvalue estimates using the peaks o an order-4 AR
spectrogram, theroots of the order-4 AR coefficientsestimated by competition between a
single pair o Kalman identifiers, the rootsestimated by competition o a pair o the VFF
zero estimators, and the peaks of order-12 AR spectra obtained from the competition
among four pairs d Kalman identifiers. The eigenvauescomputed numericaly from the

actual TC3 environment properties are shown as dashed lines. The fifth mode in the
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Figure 3-16: ITW TC-3 environment and 50 Hz signal and spectrum. Upper plot: the
environment consists o an 100 m deep water layer overlaying two different subbottoms
(medial and 2) with sharp transitionsat » = 1.1 km and 2.9 km. In the expression for
sound velocity (m/s) in water, z isin meter. Two middle plots: magnitude and (residual)
phase o the 50 Hz signal: original (solid lines) and decimated (crosses). Lower plot:
order 100 AR wavenumber spectrum computed for the full 5 km aperture o the original
signal. Four strong peaks, corresponding to propagating modes, are observed.



surrounding media was found numerically, but not observed in any o the estimates.

The abrupt change in the computed elgenvalues mark thetransition between media.
A fifth mode was computed for the surrounding medium, but was not observed in any
estimate nor in thefull aperture spectrum o Figure 3-16.

All estimators used the decimated signal (AT = 125 m). For the AR spectrogram,
an order o four is equivalent to order 100 in the origina signa (At=5m) .

The improvement in spatial tracking o the order-4 AR. competitive smoother over
the AR spectrogram peaks is apparent in the highest mode (near 0.18 rad/m). The low
order mode estimates degradation, compared tothe AR peaks, isthe result of thelarger
aperture (1500 m, corresponding to a number of samples three times the order for the
AR spectrogram) associated with the lower variability of those modes.

The VFF zero estimator result issimilar to the AR spectrogram peaks, suggesting
comparable effective memory. The competition between a single pair o V FF estimators
resulted in a marginal improvement in the spatial tracking.

The competition among fiveorder 12 AR Kalman identifiersresultsin improved esti-
mation variance without any degradation in thetracking characteristics. The parameter
¢ was set at 102 for thefirst filter and divided by four for the next one, in a sequence
that translates into memory doubling. The change in eigenvaluecan be now observed on
the other modes. An AR spectrogram d order 12 would require at least 24 signal sam-
ples per window, corresponding to an aperture of 3000 m and a consequent degradation

in the tracking characteristics.

3.4.3 Single-Mode Eigenvalue Estimation: Experimental Data

An acoustic signal from SWAT 2000/MOMAX III experiment 1 is shown in Figure
3-18. In experiment 1 a stationary source transmitted a 20 Hz tone in 75 m deep
waters. The magnitude, phase, and a spectrum o a signal from one o the two drifting
buoys are shown in Fig. 3-18. The spectrum was computed for the raw data, which

includes strong, noise-like peaks. It shows a single mode, whichis also indicated by the



peaks of AR spectrogram order 4

5 T 1 T 1 1 T T
[ ] | ) L
4r 1 1 i { 1 T
1 i i ¥ 3.
3F | ':__. ! !:.. I 'L_.: { . -
i 3 i 1 ¥
2 i i i, P |
1} L hy 5 e -
[ "l ) I [
0 | 11 | 1 i |
. Kalman filter, E=1e-3, order 4, T=6
| 1 T Ly K
ar | ' F PR 1
! E L r ool
3t ! g p! i L .
L § I3 . . .
2 ¥ * 'T It
1 L e h:l . . l.|. ' W -]
5 | ‘e [ 1 e
iE‘, ol L £ 1 1 1
()]
g . VFF adaptive zero estimator, J,=3.256e-3, order 4, T=6
B '. 8 i S §
al | ' : : : |
. a Pl
| ’ K |
3t ot ¥ ,;.. E:
_ i i - 3
2 f Pl '
1 L ! " B ':- 1 f'n' .il . -
| . 5 F a8
0 [ | 1 1 1 1
5 Multiple Kalman filters, order 12, T=6
B ]
4+ | | i | H ]
! ! i H ]
| - » 4
3+ i I !: | EI i'l
" i f .
2 1 f 3 |'
1 Lo } ' { 1 I| I| _
| | | | 1
0 | 1| 1 ] 1 1
0.18 0.2 0.22
kr (rad/m)
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absence d an interference pattern in the magnitude. The fact that the phase became
nearly constant after removing a factor corresponding to asingle eigenvalueat 0.08 m—!
strongly suggests, by itself, a single mode.

For a single mode, p/* ~ exp{i " kn(r')dr'}, and the local eigenvalue can be

computed as the derivative of the pressure phase with respect to range, formally,

Enr) = -5 {In (o)}

where &{-} denotesthe imaginary part. The smoothness o the filtered phase in Figure
3-18 suggests that a reasonable numerical derivative can be computed. This is the
reference eigenvalue used to compare other estimation results.

Figure 3-19 shows the results. The dashed line indicates the eigenvalue computed
by numerical differentiation of the filtered pressure signal. The estimate indicated by
the jagged, solid line is formed by the peaks of order 1 AR spectra (window aperture
of 100 m, corresponding to 100/Ar = 2 pointsin range, the minimum possible window
size for AR spectrum estimation) computed every 50 m. The estimate indicated by
the triangular symbols was obtained by competition o three forward/backward Kalman
identifiers (with £ of 0.01, 0.001, and 0.0001) using a smoothing memory of T = 6.

Estimation o the varying single mode by the three methods gives essentially the
sameresult. The numerical differentiation of the phaseis equivalent to taking the phase
of theratio o adjacent samples. Thisratio is the first-order pole ¢1(n) = y(n)/y(n — 1)
that characterizes the single mode and whose phase, as discussed in connection with
eq.(3.27), is approximately &, (r)Ar.

For an order one AR model using two samples (window length = 2, overlap o 1
sample), the DE coefficient and the first—order pole are the same, and equal to the root
o thecharacteristic equation, 1—¢;(n)s~* = 0. Therefore, the order one TVAR method
(usingtheroot of the characteristic equation) estimates ¢, (), and gives the same result

as the differentiation of the phase. The three methods (differentiation, order one AR
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Figure 3-18: MOMAX 20 Hz signal and spectrum. Pressure magnitude multiplied by
/7 is shown in the upper plot as a function o range; the dotted line is raw data; the
solid line represents filtered pressure preceding the decimation down-sampling stage.
Residual phase (see Fig. 3-16) is shown in the middle. The lower plot shows the
order 100 AR wavenumber spectrum using the full range aperture o the upper plots,
and shows a single spectral line corresponding to a propagating mode at 0.07905 m™!.
The decimation filter was designed for an equivalent wavenumber range of 0.06-0.1 m™!
[Ar < 27 /(0.1 — 0.06) ~ 157 m; Ar =50 m was used].
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spectrogram using two samples with overlap of one sample between adjacent windows,
and order one sequential TVAR estimator) are computing essentially the same quantity,

c1(n), which explains the similar results.

3.4.4 Multiple Mode Estimation: Experimental Data - 50 Hz

The signal analyzed isfrom experiment 2 o MOMAX III and corresponds to the along-
shef portions of the tracks shown in Figure 3-6, where thelocal depth at the source was
about 82 meters.

The signa is shown in Figure 3-20. Both origina and filtered (preceding down-
sampling) are shown, together with two spectra using the full available aperture (13
km). A Hann window periodogram and an AR spectrum o order of 200 are shown in
the lower plot. Both spectra show two strong lines corresponding to propagating modes
and some small peaks, barely noticeable in the scale shown. The original series from
the processed MOMAX data has a non-uniformsampling space d 2.2 metersin average,
and was interpolated to an uniform grid of 2.6 m spacing. The signal was decimated by
D = 20, resulting in a final spacing o 52 m.

The AR spectrogram and the competitive smoother results are shownin Figure 3-21.
The order 10 AR spectrogram uses a window o 1976 meters, with an overlap of 1768
m between adjacent window positions. The two strong spectral lines from figure 3-20
are clearly seen. In addition, the AR spectrogram shows a third mode that is detected
at some ranges near k, = 0.185 rad/m, which suggests that the third mode was near
the transition between propagating and evanescent. Wesk transient spectral lines aso
appear near k, = 0.215 and 0.23rad/m. These eigenvaluescorrespond to phase speeds,
Cp = w/k, below the minimum sound speed in water (1494 m/s). These transient
spectral lines have been observed in other experimental signals and are not consistent
with a stationary, range-independent media model.

Thirteen forward/backward Kalman filters competed to obtain the results shown by
dots. The underlying AR model is o order 12. After obtaining the AR filter coefli-
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Figure3-20: MOMAX 50 Hz signal and spectrum. Pressure magnitude multiplied by /7
Isshown in the upper plot as afunction d range; raw data (dots) and filtered pressure
(solid lines) are shown. The filtered pressure precedes the decimation dewn-sampling
stage. Residua phase (see Fig. 3-16) is shown in the middle. The lower plot shows
the erder 200 AR wavenumber spectrum using the whole range aperture shown in the
upper plots, and shows a two strong spectral line corresponding to propagating modes
near k. = 0.2 and 0.21 rad/m. The decimation filter wasdesigned for an equivaent
wavenumber rangedf 017-021 rad/m [AT < 27/(0.21 — 017) ~ 157 M; Ar = 52 m was

used].

149



cients, the eigenvaues at each range were inferred by locating the positions d the AR
polynomial minima on the unit circle. The results in Figure 3-21 correspond to the 3
strongest spectral peaks at each range. The third mode is weakest o the three. The
corresponding spectral line has the smallest and most variable magnitude of the three,
again suggesting a barely excited or observed mode, as already suggested by the AR
spectrogram.

345 Multiple Mode Estimation: Experimental Data - 125 Hz

The pressure signal analyzed in thissubsection isfrom thesame MOMAZX III experiment
2 o the 50 Hz data, but acquired at a different time: the along—shelf portions o the
tracks shown in Figure 3-6, where the local depth at the source was about 82 meters.

The analyzed signa (p(r)+/r) isshown in Figure 3-22, and corresponds to the along-
shef (NE) track of Figure 3-6. The origina series from the processed MOMAX data
has a non-uniform sampling space o 20 metersin average, and was interpolated to an
uniformgrid of 2.6 m spacing. Thesignal was then decimated by I = 16 in two stages,
resulting in afinal spacing of 41.6 m, and a total wavenumber representation range o
0.1510 rad/m. Both origina and filtered (preceding down-sampling) signals are shown,
together with two spectra using the full available aperture (9.7 km).

The periodogram was computed using a Hann window. The AR spectrum is o
order 1000, slightly below the 1/3 o number o data points (3746 points at Ar = 2.6m,
rendering a Fourier resolution of 6.45 X 10~ rad/m ). For this large aperture, the
periodogram and AR resolutions are similar, as observed in the plots. Both spectra
show one strong spectral line corresponding to a propagating modes near k, = 0.515
rad/m. Other 10 to 11 peaks are visible, and some may correspond to modes.

As discussed above, one effect o decimation in the AR spectral analysisis the reduc-
tion in order requirement for the same resolution (which keeps the total range aperture
the same. This effect can be observed in Figure 3-23. The order 1000 AR spectrum
is the same o Figure 3-22, computed with a Ar of 26 m. After a decimation by 16,
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Figure 3-21:. MOMAX 50 Hz wavenumber estimation. The plot shows wavenumber
as a function of range, obtained by processing a decimated signal (Ar = 52 m). The
gray-scale (dB relative to an arbitrary reference) is shown in the left. The background
plot is the order 10 AR spectrogram computed with a window aperture o 1976 m
and 1768 m overlap between windows. The dots are eigenvaiues from 13 competing
forward/backward Kalman filter pairs, with & from 1.5625 x 105 to 10~ following a
geometric progression with a ratio of v/2. The AR model of the sequential estimator is
o order 12.
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Figure 3-23: MOMAX 125 Hz spectrum estimation before and after decimation. This
comparison is used to check the effect o decimation and to show that a significantly

smaller order may lead to improved resolution after decimation. The decimation factor
isD =41.6/2.6 = 16.

a similar resolution is expected for an order 1000116 ~ 62. The lower plot shows an
improved resolution using order 78. For example, the two peaks near k. = 0.52 rad/m
are better resolved. A peak near k, = 0.448is clearly detected. This peak isalso present
in the original spectrum, but its level istoo low to be observed in the scale presented.
The AR spectrogram o the decimated signal is shown in Figure 3-24. The order
12 AR spectrogram uses a window of 2163.2 m, with an overlap of 1788.8 m between
adjacent window positions. The dots mark the position d the six strongest peaks at

each range cell. The strongest spectral line near k. = 0.518 rad/m is the same as



observed in Figure 3-22 and 3-23. The highest wavenumber spectral line(k, =0.534
rad/m) corresponds to a phase-speed of 27rf /&, = 1470 m/s, below the minimum sound
speed in water of nearly 1490 m/s. As noted in the 50 Hz analysis, this spectral line
is not consistent with a stationary environment. In addition to these lines, there are
two weak ones around the strongest, and 3 stable linesin the range 047 < k, < 0.505
rad/m. Other wesker lines are observed below that range. The six linesin the range
0.47 < kr < 0.525 rad/m are possible stable modes. In order to reduce the interference
d the other spectral components when estimating the AR coefficients, the signal was
further decimated with D = 2 and then filtered with a passband filter with cut-offs at
0.465 and 0.530 rad/m.

The AR spectrogram and the competitive smoother results for the new decimated
signal (Ar = 83.2 m) are shown in Figure 3-25. The order 10 AR spectrogram uses a
window of 2163.2 m, with an overlap o 1747.2 m between adjacent window positions.
The six spectral lines in the interval 0.47 < k, < 0.525 rad/m from Figure 3-24 are
clearly seen.

As in the 50 Hz analysis, 13 forward/backward Kalman filter pairs, with £ from
1.5625x 10~° to 10—, competed to obtain the results shown by the dots. The underlying
AR model is of order 10. After obtaining the AR filter coefficients, the AR spectral
peaks at each range were found by locating the positions the AR polynomia minima.
The results in Figure 3-25 correspond to all spectral peaks at each range. This result
suggests that at least six stable modes were propagating. Figure 3-24 suggests that
higher order modes could also be present.

3.4.6 Soping Bottom: Synthetic Data

In the cases analyzed so far, the acoustic field was measured or computed in regions
o constant or nearly constant water depth. Changes in modal eigenvalues are caused
mainly by changesin the geoacoustic properties o the environment, either in the seabed,

or in the water column.
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Figure 3-24: MOMAX 125 Hz AR spectrogram (range versus wavenumber) computed
from the decimated signal (Ar = 41.6 rn). The shades of gray represent magnitude
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background plot is the order 12 AR spectrogram computed with a window aperture of
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shown (kmaz — Kmin = 27 /(DAr) = 0.1510 rad/m).
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Although the sequential eigenvalue estimators have not been designed to deal with
systematic changesin modes, such asthose expected t o occur over a sloping bottom, two
simpletests have been conducted. They are based on the Inverse Techniques Workshop
test case 2 discussed in Subsection 3.2.5and shown in Figure 3-9.

As a first test, a signal was generated by summing the second and fourth mode
components whose amplitudes and eigenvalues are shown in Figure 3-10. The exact
DE coefficients for this two-component signal were computed for comparison with the
estimated coefficients. The estimatesshownin Figure 3-26 were obtained from a bank d
second order Kalman identifiers (Appendix D) and an underlying AR model o order 2.
Thefirst forward /backward Kalman filter pair wasinitialized with an arbitrary set of AR
coefficients. The second pair o filters (with a different parameter £) wasinitialized with
the coefficientsestimated by the first backward filter, and so on. The set of parameters
& was selected empirically for convergence.

In therange-independent region, r > 2.1 km, the maximum relative error magnitude,
|&; — a;|/|a;|, isless than 0.00035, except near » = 5 km, whereit reaches 0.004. In the
range dependent region, therelative error magnitude never exceeds0.04. The maximum
error in eigenvalue (fromtheroots o the estimated characteristic equation) is 2.4 x 10~°
rad/m in the range-independent region, and 3.3 x 10~* rad/m over the slope.

In simulations with three or more modes, the Kalman filters did not converge, pre-
cluding estimation o the exact DE coefficients of Section 3.2. The problem may be
related to estimation o very low-noise (deterministic) range-varying (or time-varying)
signals, which may not be considered "dowly changing” (as measured, for example,
through the ratio of AR coefficient variances and measurement noise[52}), and, there-
fore, not amenable to estimation by adaptive systems. We have not pursued this issue.
Nevertheless, as shown in the next example, eigenvalues may still be estimated for the
TC-2 environment using sequential AR estimation of an order higher than the number
d modes.

Inthesecondtest, theactual TC2 50 Hz signal provided for the workshopisanalyzed.
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Figure 3-27 shows the magnitude and residual phase d the pressure datafor a receiver
depth of 25 m. Full aperture (5 km) spectrum estimations (AR and periodogram}
are show in the lower plot. The filtered signal preceding the last down-sample stage
of decimation is also plotted. The only noticeable difference between the original and
filtered signasisnear » = 0, where the contribution from the low k,. continuousspectrum
field was filtered out.

Figure 3-28 showstheorder 10 AR spectrogram and the actual TC2 eigenvalues. The
eigenvaluesin the range-independent region are clearly detected. In the range-dependent
region, thelower three modesarereasonably tracked, but thefourth and fifth eigenvalues,
the ones with largest variations, although discernible, are poorly tracked. The present
result is an improvement over a previous analysis using a model order 20 and a variable
20 to 66 order procedure, where only thefirst 4 modes were detected even in the range-
independent region. The AR analysis o the decimated signal with an AR order o 10
should be comparable to an AR order 100 with the original signal.

Figure 3-29 shows the spectrogram o Figure 3-28 and the order 10 AR competitive
smoother estimates. Thetrend of modes 3to 5can beobserved, whilethetwo lower order
modes results are poorer than those df the AR spectrogram. The combined results of the
spectrogram and the competitive smoother provide a clearer picture of the eigenvalue

variations.

3.5 Summary and Conclusions

Thischapter analyzed the exact representation of themodal sum by a differenceequation
(DE). Thisrepresentation providesa justification for the usedof time-varying AR (TVAR)
models for the adiabatic modal sum. In AR analysis, the roots o the characteristic
polynomia close to the unit circle at each sample (range) provide the estimates for
eigenvalues, the frozen-time approach.

We derived expressions for the error in computing the first-order poles (the exact
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Figure 3-27: ITW TC2 50 Hz signal and spectrum. Pressure magnitude multiplied by
/7 isshown in the upper plot asafunction of range; raw data (dots) and filtered pressure
(solid lines) are shown. Thefiltered pressure precedesthe last decimation down-sampling
stage (origina dataat Ar» =5 m wasdecimated toa DAr = 50 m). Residual phase (see
Fig. 3-16) is shown in the middle. The lower plot showsthe order 333 AR wavenumber
spectrum using the whole range aperture available, and the periodograrn computed with

a Hann window.
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Figure 3-28: TTW TC2, 50 Hz AR spectrogram. The background (in shades of gray)
is the order 10 AR spectrogram computed from the decimated signal with a window
aperture d 1500 m and 1300 m overlap between windows. The dots mark the positions
of the 5 strongest spectral peaks at each range. The crosses are the remaining detected
peaks. The actual eigenvaluesare shown & dashed lines.
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Figure 3-29: ITW TC2, 50 Hz AR spectrogram (from Figure 3-28) and competitive
smoother results (dotsfor the 5 highest magnitude, crossesfor the others). The Kalman
filter underlying AR model is o order LO, the same used for the spectrogram.
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representation o range-varying modes from which the eigenvalues should be estimated)
as theroots d the characteristic equation. We showed that the error increases with the
rate o variation of eigenvalues with range and with Ar, and decreases with separation
between eigenvalues.

A simulation suggested, however, that an improvement in the numerical computation
d polynomial rootswith increasing Ar can compensatefor theincreased roots—first-order
poleserror.

Through the analysis d the asymptotic Cramer-Rao lower bound for closed spaced
eigenvalues, we argued that, despite the prediction of reduced root—first-order pole error
when Ar decreases, the net effect should bethat of degradation o eigenvalue estimation,
possibly due an increase in the error of DE coefficientestimation from an actual signal.

We proposed two sequential eigenvalue estimators, one for the estimation of AR
coefficients, another for the estimation d polynomial roots directly. Competition among
estimators was introduced in order to improve spatial tracking o eigenvalue changes.
Decimation o the pressure field was introduced as a way to reduce the order o the AR
modelswithout reducingthe actual range aperture. For the AR spectrogram, decimation
results in significant reduction in computation cost and allowsthe use o larger effective
orders (larger range apertures), contributing for improved eigenvalue resolution.

We showed that the Kalman filter effective memory length, which dictates range res-
olution, isa function of the wavenumber and decreases as the first-order poles approach
the unit circle. Modes that decay faster with range are therefore associated with larger
memory lengths. Ideally, however, memory length should be associated with the rate
o change of eigenvalues. the faster they change, the smaller should be the effective
memory length. The competition of filters with diierent &, which scale with the square
o distance o the poles to the unit circle, can provide a compensation mechanism for
this behavior. The VFF adaptive zero estimator, on the other hand, has effective mem-
ory independent of wavenumber, which alows the estimator to fit the variability o the

signal without regard to specific mode behavior.
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The 2001 Inverse TechniquesWorkshoptest case 3, where eigenva ueschange abruptly,
was the initial motivation for this chapter. We showed that competition among sequen-
tial estimators resulted in a sharp definition o the abrupt eigenvalue change in this
environment. For the single mode case, three different methods provide essentially the
same estimate, an improvement over previous results. Eigenvalue estimates using the
sequential estimators for two sets of experimental data show agreement with the AR
spectrogram, if not improvement.

We showed that systematic eigenvalue change, asfor a sloping bottom, degrades the
performance d the AR estimator, a result previously observed [6]. In general, sequential
estimators can identify [52] nonstationary parametersthat drift dowly, or haveinfrequent
abrupt changes, or a combination o these two behaviors. Most adaptive identification
methodsfail with fast varying parameters. Apparently, thisisthecased TC2 with more
than two modes. For two modes, we showed by simulation that competition among
second order Kalman filters was able to track the DE coefficients. For more general
cases, other methods, such as representation of variations by basis functions, may prove
useful.

The MOMAX 20 Hz data anaysis shows that eigenvalue estimation for a single
complex exponential is a reasonably easy problem, provided the signal-to-noise ratio is
high. Three apparently different methods give the same estimate. In such conditions,
numerical differentiation from a densely sampled signal, a relatively simple algorithm,
may provide a nearly continuous range-varying eigenval ue estimate.

The MOMAX 50 Hz analysis illustrates the importance o using the full aperture
wavenumber spectrum, the spectrogram, and the AR sequential estimation in order to
interpret the eigenvalueestimation results. They all reveal the presenced athird mode:
week in the full aperture anaysis (Figure 3-20), with erratic range variations in the
spectrogram and sequential (Figure 3-21) estimates. The estimation o the two first
modes could still be improved by filtering out the "unstable" third mode, reducing the

range o eigenvauesto be represented, and alowing for larger sampling distances.



The behavior of thethird spectral lineindicates that the modeiseither near cutoff, or
the source or the receiver were located near a null o that mode. In both cases, this was
the highest observed mode and the associated phase speed (w/ k.3 ~ 1007 /0.185 = 1698
m/s) isthe closest to the 'basement’ sound velocity.

The MOMAX 125 Hz anaysis shows how decimation can contribute to improved
eigenvalueresolution by effectively separating thefirst-order polesin the complex plane.
The AR spectrogram o Figure 3-25 (spatial sampling o 83.2 m) has three strong lines
corresponding to the first three modes, while in Figure 3-24 (spatial sampling 41.6 m)
they are not well defined. The AR sequential estimation, when combined with the
spectrogram, as in Figure 3-25, give a clearer picture of the modal structure and its
variations with range.

Asan aside, the50Hz and 125 Hz MOMAX datawereacquired in thesame region, at
closetracks, although at dightly different times. As discussed above, the sound velocity
of the 'basement’ was estimated from the 50 Hz data as close to 1698 m/s. For this
velocity, modesat 125 Hz should have eigenvalues above roughly k. = 27 x 125/1698 =
0.4625 rad/m. The highest mode in Figure 3-25 is slightly above 0.47 rad/s, which is
consistent with the 50 Hz analysis.



Chapter 4

|nverson for Subbottom Sound
Veocity Profilesin the Shallow

Ocean: Eigenvalue Inverson

4.1 Introduction

This chapter investigates the estimation o the seabed sound velocity profile in shallow
water. The input is a series of eigenvalues measured as a function o range, as ob-
tained with the techniques of Chapter 3. Section 4.1 provides the motivation for the
eigenvalueinversion and gives an overview o the perturbative inverse technique o Ra-
jan and co-workers [61]. The problem o inferring a sound speed profile from a finite
set o eigenvaluesis ill-posed, a characteristic o many inverse problems. Solving this
problem requiressomeform o regularization. Section 4.1 givesan overview of regulariza-
tion techniques, culminating with Franklin's stochastic inverse[17]. Finally, Section 4.1
summarizes the Backus-Gilbert (BG) resolution theory [4], which provides a physicaly
meaningful measure o inversion quality for linear problems.

Section 4.2 investigates the inversion from sequences o modal eigenvalues. Building

on Franklin's stochastic inversion, a state-space model o the problem is constructed,



leading to a regularized Kalman filter solution d the problem. The inverse eigenvalue
problem is nonlinear. The linearization o the underlying mapping eigenvalue—sound-
velocity—profile, required for the iterative solution using the Kalman filter, is investi-
gated. Not surprisingly, linearization recovers the perturbative technique integral equa-
tion.

Section 4.3 analyzes the variance and resolution o the eigenvalue inverse. The
Cramer-Rao lower bound (CRB) is compared with the predictions o the BG theory
through an example o a shallow-water waveguide. We analyze the effects of frequency
and number o modes on the inversion from the perspective o the BG theory, which
provides a tool for acoustic experiment design.

Section 4.4 investigates the compensation o eigenvaues estimated from fields gener-
ated by moving sources. Source motion induces Doppler deviation that affect the modal
eigenvalues and, ultimately, the inversion results. We perform a perturbative analysis
of the modal ODE and propose a modification of the inversion technique to account for
source motion.

Finally, Section 4.5 applies the techniques developed in Sections 4.3 and 4.4 to two
environments, the shallow-water waveguide environment introduced in Section 4.3, and
the test case 3 (T'C3) o the Inverse Techniques Workshop described in Chapter 3.

4.1.1 Eigenvaluelnverse Problem
Accordingto Rundell [8], the modern starting point of theinverseeigenvaluetheory was
the proof that, if the eigenvaluesd the Sturm-Liouville problem

Lu=—2"*g(z)u= Xxu, «'(0)='(1)=0 {4.1)

are A, = n?x?, then the potential g(z) isidentically zero. Sincethen, general conditions
for the uniqueness o the solution o the inverse problem have been established. In a

recent paper, for example, Athanassoulisand Papanicolau [3] derived an inverse problem



related to a piecewise smooth potential g(z), a case o interest in Ocean Acoustics.
These theories can be regarded as exact in the sense that they describe the potential
g(z) interms d the problem eigenvalues. They are restricted to proper Sturm-Liouville
problems, which have only a discrete spectrum and whose eigenfunctions u,, form a
complete set.

These exact inverse theories can not be applied directly to the non-proper problems
of Ocean Acoustics. The depth dependent equation can be written (using operator

notation) as

D= — (E) 43, A w0y = 0, ulh) + Ad(R) =0, (4.2)
p p P
where q(z) = (w/cmin)? = E2(2), A = [w/Cmin)® — k2, A = i&/[p(h)w], cmin iS a reference
sound velocity (chosento make g(z) positive), k?(z) is the depth-dependent wavenum-
ber, &, isthe horizontal wavenumber and £ is the normal boundary impedance. The
coefficient A in the boundary condition at the lower interface is complex (when £ has
a nonzero real part) and depends on k,. Alternatively, the lower boundary is taken at
infinity (h —+ oo}, where the radiation condition applies. The boundary conditionsallow
for loss o energy through the lower interface and hence the problem is not proper, has
a continuous spectrum and, in low frequency shallow-water acoustics, a typically small

number of real eigenvalues®.

4.1.2 The Inverse Perturbative Technique

Despite the presence of a continuous spectrum, normal modes are typically the most
dominant feature in low-frequency, shalow water acoustic fields at long distances from
the source. Rajan and co-workers [61] used modal eigenvaluesin aninverseperturbative
technique to infer the sound velocity profile in the seabed. Basically, they construct a

1Here, as is usua in Ocean Acoustics, the horizontal wavenumber k... associated to the eigenvalue
Am = [w/Cmin|? — k2 isTeferred to as “eigenvalue”.
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background model o the seabed (the water column characteristics are assumed known),
compute the corresponding eigenvalues and find the correction to the background sound
velocity profile Ae{z) corresponding to the difference Ak, between the measured and
background eigenvalues. The method is based on the perturbation integral®-3

-1 /1 2 fwm\2 Ac
- O 2y == =
Akrm~k£%f0 p[um| (c<0)) iz m=1..., M, (4.3)
=/ 90 (2)Ac(z) dz
0

where the (0) superscript refers to the background model: sound velocity profile ¢((z),
eigenvalue ki, eigenfunction «{Y(z), and modal kerndl ¢ (z). In theinverse perturba-
tive technique, eq.4.3 is seen as an integral equation with unknown Ac(z).

In general, the number M of measured eigenvalues is small and the characterization
of the sound velocity profile requires a large number of points. The problem is under-
determined and hasan infinite number o least-squares (LS) solutions. A unique solution
can yet be obtained, if some form o restriction is imposed. The minimum-norm solu-
tion or the solution that satisfies some optimality criterion are often used. The choice
d solution may be somewhat arbitrary, not necessarily related to the physics o the
problem.

The discretization of eq.(4.3) leads to the linear system

d=GAc=Gq, {4.4)

where d isthe M Xx 1 vector o eigenvaluedifferences, Ac = qisan N x 1 vector o
sound velocity increments over somedepth grid, and Gisan M X N matrix. Asdiscussed

above, ingeneral M < N and G isd rank M (= number o measured eigenvalues). The

2 Appendix F analyzes the effect of small sound velocity and frequency perturbations on the eigen-
values.

3Throughout this chapter, the frequency w isindexed by the mode number, as in wy, in eq.(4.3), so
that eech mode is associated with a frequency, and modes at different frequencies can be used in the
same expression without the need to change notations.



corresponding |east-squares problem is given by G'd = G¥Gqrs and has, when the
system is underdetermined, an infinite number o solutions (any solution added to a
vector gy, in the null space of G isstill a solution). When the system is overdetermined
(M > N), the LS solution isqrs = (GTG)~1GTd. When the system is underdetermined
(M < N), the minimum-normsolution is§ s = G*(GG")~'d. In both cases G must be
full rank for the corresponding inversesto exist. When G is square and full rank, these
solutions reduce to G—d

The LS solution (minimum-norm when underdetermined) can be represented using
the singular value decomposition (svd) [1, 73, 32,331, G = U, A, V.7, through the Moore-

Penrose pseudo-inverse[32] G#

as = G*d=VAT'Ud,

= Z)\ (Vimul, (4.5)

which is valid irrespective d therank » of G, and reduceto the aboveforms when G is
full rank. In eq.(4.5), V. isan N x » matrix whose columns are right-singular vectors
v, Of G, A, isther X r diagonal matrix containing the singular values A  (assumed in
decreasing order), and U, isan M X r matrix whose columns are left-singular vectors
u, o G.

The sound velocity increment from eq.(4.5) is a combination of the right-singular
vectors v, weighted by the inverse of the corresponding singular values. Solution (4.5)
is minimum-norm because the right-singular vectors in V.. are orthogonal to the null
space o the system matrix G (or G'G), i.e., §rs does not include solutions of the
homogeneous system Gqy, = 0

Thisis atypical ill-posed problem characterized by singular values that decrease to

zero, rendering the solution (involving A,;! — oo unstable, sensitive to errorsin d. *

4We have observed that in perturbative eigenvalue inversion, the smaller [mcloseto = in eq.(4.5)]
singular values correspond to vectors v,, with greater variability and contribute to oscillationsin the
solution (seen as a sequence, function of depth, the v,,, become more oscillatory as m increases).



In order to limit the variance o the solution, small singular values can be discarded
altogether from the solution by truncating the sum in (4.5).

Alternatively, one can reduce the influence o small singular values by introducing
some form o damping to each singular vector component o the solution, asis donein
the Tikhonov's regularization method[27]. The regularization corresponds to choosing

g that minimizes the regularized LS cost function
Jrrs = (d - Gq)"(d — Gq) + p*q" Ha, (4.6)

where H is a suitably chosen matrix and 2 isa positive scalar that controls the amount
o damping. When 1 = 0, the problem becomesthe standard least-squares (LS) problem
whose minimum-norm solution is given by eq.(4.5). H is usualy associated with some
measure o the variations o the sound velocity increment, such as derivatives. In [61],

for example, qF Hq correspondsto the discretization of the smoothness measure

fo ” [d—zAc(z)] g, (47)

dz?

The solution d the regularized problem that minimizes the cost function (4.6) is
Grrs = (GTG + p2H)'GTd. (4.8)

When GTG is not full rank, # must be positive definite for the inverse in eq.(4.8) to
exist. When H istheidentity matrix (the standard form of the Tikhonov problem), the
regularization consists o loading the diagonal of GTG in eq.(4.8) with a small value p2.
Therank o the N x N matrix GT in this application is usualy equal to the number
o modes M < N, and GTG is not invertible. Diagonal loading increases the rank to N

and reduces the spread o eigenvalues, which tends to stabilize the solution.



Equation (4.8) with H = Iy can be written in terms of the svd o G as[1]

s = (GTG + 12 Iy)'GTd. (4.9)
= VA, (A2 + p2L,) 7 UZd,

=3 Dt/ (14 8)] (vt

Comparing egs.(4.5) and (4.9), theeffect of 12 isto reduce the weight of singular values,
the smaller the singular values, the larger the damping introduced. The net effect isthe
stabilization o the solution, which becomes smoother and less sensitive to data errors.

Another approach to solving theintegral equation (4.3) isreferred in [61] as the spec-
tral expansion method, where Ac(z) iswritten as alinear combination of basisfunctions
constructed from the modal kernels g..(z) of eq.(4.3). This formulation aso leads to a
minimum norm solution similar to the pseudo-inversesolution described above.

This chapter exploresthe representation o Acasasum o basisfunctions. We show
that the application of the simple trapezoidal rule to discretize the integral equation
{4.3), or the spectral expansion method above correspond to basis functions representa-
tions leading to the linear system (4.4) with different matrices G.

It should be clear by now that regularization, in the form o truncation of small
singular values, or the more sophisticated Tikhonov regularization, is critical to the
solution o eq.(4.4). Next, we present an overview d the stochastic inverse, which leads
to ageneralization o the cost function (4.8), and isthe basis for the sequential inversion

technique introduced in Section 4.2.3.

4.1.3 The Stochastic I nverse

In [17], Franklin proposed a regularization technique where g is considered a zero-mean
stochastic process with covariance R,. Measurement errors are modeled by a zero-mean

vector processe independent of . Thestochastic inverse G minimizesthe mean square



error E [7¢], where e = (q - Gsd).

The minimization o the mean square error can be alternatively described as the
orthogonalization d the error € with respect totheinput data. Thisisthe orthogonality
principle or projection theorem[37, p. 386], according to which the inverse operator is
the onethat satisfies

= G°Ry= Ry, (4.10)

where Ry is the autocorrelation matrix o the data vector d, and Ry is the cross-
correlation matrix between the true solution g and the data vector d. Using the linear
measurement equation d = Gg+e [cf. eq.(4.4)}, and taking into account the assumption

E [qe”] = 0, these two matrices can be computed in terms o the statisticsof g and e

as.
Ry =E[ddT],
—E [(Gq +e) (Gg+ e)T]
=F [G’quGT + Ggel +eqGT + eeT]
= R;=GR,G" +R,, (4.11)
and
qu =F [QdT] y

=Ea(Ga+e)],
=E [qq"G" + qe”],

= R, = R,G". (4.12)



Inserting egs.(4.11) and (4.12) into eq.(4.10), we obtain the stochastic inverse®

ds = G5d = R,G" (GR,GT + R,) ™" d,

(4.13)
= (GTR;'G + R;1)7'GTR;\d.

The second form in eq.(4.13) is obtained from the first by applying the matrix inverse
lemma/[32]
(BCD+ A)'=A1- AT'B(DAT'BTC)1DA™. (4.14)

The stochastic inverse, eq. (4.13), is aso the solution o the regularized wei ght ed

deterministic least-square problem that minimizesthe cost function [cf. eq(4.6}]
Jrwrs = (d— Gq)" R;1(d - Gq) + 4" R, 'q. (4.15)

When the weight matrices R;* and R;l are diagonal, this cost function alows an
easy interpretation of the effectsdf data and model varianceson the result. The higher
the variance o a component d; o the data vector d, the smaller is the contribution to
the cost o the corresponding component o (d— Gq). High variance datatend to have
less effect on the (optimum) solution. The same rationale applies to how much q may
deviate from zero. The larger the variance of a component of the solution vector, the
smaller its contribution to the cost and the lesser its effect on the minimization process.
High variance solution components may deviate from zero without affectingsignificantly
the cost.

Cost function (4.15) is a generdization o eq.(4.6) associated with the Tikhonov
regularization (make R, = 021y and R;' = o, %;i> H). Imposing asmoothness constraint
through H isequivalent, in the stochastic sense, to choosing a suitable covariance matrix

for g. When R, = o2l (errors from different eigenvalues are uncorrelated and have

5Up to this point, we have used thetildein vector § to represent |east-squaressolutions of the linear
system Gq = d. From now on, the circumflex & designates estimates o the vector q obtained from
measurements contaminated by noise. The least-squares solutions we have discussed so far can be used
as estimates. We will keep using G to represent any generalized inverse of a matrix G.
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same variance) and R, = oIy (components o the solution have same variance and
are uncorrelated), the stochastic solution reduces to eq.(4.9) with y* = ¢2/0?. The
higher u2, the larger the diagonal loading of matricesGG' or G'G in eq.(4.13), and the

smoother the solution.

4.1 4 The Backus-Gilbert (BG) Resolution Theory

This section reviews the Backus-Gilbert (BG) theory [4] related to the resolution and
error variance o solutions to inverse problems described by the integral equation (4.3),

which, when including the effects o measurement noisee,,,, becomes
b
A = / gm(2)Ac(z)dz +em, m=1, ..., M. (4.16)

The integral is explicitly restricted to the interval [a,b] where the sound velocity is
unknown.
Givenaset o M measurements d,,, one seeksto estimate some property p(z,) o the

environmental quantity Ac(z) as alinear combination of the measurements:

M
Ac(z)dz+ Y am(zo)em, — (4.17)

m=1

M v [ M
z) = - an(zudn = [ [z AT

or, in vector notation,
b
B(z) = a¥(z,)d = f (a7 (2)8(2)] Ac(z)dz + a7 (z.)e, (4.18)

where a(zo) = [61(20), ca ,aM(ZO)]T7 d = [dla . JdM]TJ g(Z) = [gl(z): v 19M(Z)]T1 and
e=ler,...,em|” If p(z,) isan estimate of Ac(z), eq.(4.18) shows that such estimate
is a weighted averaged value over the interval (ab), with the weights given by the

resolution kernel M

Alz,20) = 8" (2)8(2) = D am(20)gm(2)- (4.19)

m=1



In order to estimate Ac(zg), ideally we should have an impulsive kernel i.e., A{z, zp) =
8(z — 20), corresponding to the best possible resolution. A measure o the actual kernel
resolution is defined in [4] as the gwread o A from 2p

salz) = 12/ (z — 20)2A%(2, 20)dz, (4.20)

where A is assumed o unit area. For an unit area rectangular pulse centered at zo,
sa(zo) is the pulse width, which is an intuitive measure of the resolution power o A.
Poor resolution occurs when A is nearly constant, in which case p(z,) is an estimate of
a depth-averaged value o Ac.

The other measure of the quality o the estimate isthe variance o 5(z,), given, from

eq.(4.18), by
M

o2(z0) = Y Y ai(2)aj(z0)(Re)iy = a7 (z0) Re a(20), (4.21)

i=1 j=1

where R, = Elee”] isthe covariance matrix of the measurement error vector e, assumed
zero mean. In [4], Backus and Gilbert solved the optimization problem o obtaining a
unit area resolution kernel A(z, z9) that minimizesthe spread s 4(z) for a given variance
level. This corresponds to the minimization of Jpg = o4(z0) T a3 (7o) constrained to

f:A(z,zo)dz = 1. In vector notation, find a(zp) that minimizes

Jpe = aT(2)8(2) a(z) + aa¥(20) R. az) (4.22)
under the constraint
al(z)u=1, (4.23)
where
s4(20) = a”(20)S(20) a(20), (4.24)

(S(20))ij = 12/a (z — 20)%gi(2)g;(2)dz, (4.25)



b
(U)i:/ gi(z)dz, (426)

and a is a positive scalar chosen to set the variancelevd. The solution o this optimiza-

tion problem is given by

wWlu
alz0) = —prrmae (4.27)
where
W = S(ZD) + C!Re, (428)

As a in eq.(4.28) increases, the minimum estimate variance reduces monotonically
with increasingspread. Figure4-1 (dashed line) illustratesthe variance-resolutiontrade-
df curve’™ o2(z)/ 0?7 versus spread s4(zo), wherethe measurement error for the different
eigenvalues are assumed to be independent and of same variance, i.e., R, = 62I. The
curveis obtained by varying aiin eq.(4.28) in the interval (0, o).

One characteristic o the trade-off curve is the high variance associated with the
best resolution. For the present example (0)max ~ 10'70? (for a spread d 6.4 m) at
that point. If a sound velocity variance o 100 (m/s)? is required, the measurement
error variance should be 10712 (rad/m)?, an unreasonably low vaue. Improvement in
variance can only occur at expense o increased spread, but a large improvement from
the worst case estimate variance is obtained with little resolution degradation (note
the logarithmicvertical scale). Similarly, significant improvementsfrom the worst case
resolution are obtained at little cost to the variance.

Figure4-1aso showsa plot d another measure d spread around the point zp (solid

5The trade-off curvesin Figure 4-1 were computed for the shallow-water waveguide discussed in
Section 4.3.3and shown in Figure 44. The inversion problem consists o estimating the sound velocity
in the sediment region 0 < z, < 40 m using 13 "measured" eigenvalues at 25, 50, 75, and 100 Hz.
In Figure 4-1, zp = 8 m, and the trade-off curves relate two measures o the quality (resolution and
variance) d theinferred sound velocity increment at that depth.
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Figure 4-1: Backus-Gilbert spread-versus-variance trade-off curve for a fixed z and
R, = 0'21' .

line), the devi ation

b 2
oa(z0) = J 12fa (z — 29)2A%(z, z9)d2 _ \/12aT( sa(z0) (4.29)

[P AX(z, 29)dz 2)S®a(z)’

where S© is the scaled Gram matrix (matrix of inner products of g;)
b
(™), =12 / ai(2)g;(2)dz. (4.30)

Measures s4 and o4 coincide for a unit area rectangular pulse centered at z; and give
comparable results for pulse-like functions A(z, zp). Contrary to the spread s4, which
is defined for an unit area kernel A(z, ), the deviation o4 does not rely on any par-
ticular property o the kernel. When % coincides with the mean o the distribution
A2(i,z)/ ff A?(z, z)dz, the deviation correspondsto /12 times its standard deviation.
As shown in Figure 4-1 the spread and the deviation trade-off curves have the same

general behavior.
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Figure 42: Resolution kernel A{z, 20 = 8m) corresponding to the two extremes and an
intermediate point d the trade-off curve, Figure 4-1. Theratio d variancesis shown in

(m/s)?/(rad/m)?.

Figure 4-2 shows the resolution kernels A(z, zp) corresponding to the two extremes
and an intermediate point of the trade-off curve. Notice the variability d the kernd
corresponding to the highest possible resolution, obtained by setting a = 0. For the
present example, where R, = ¢2I;, o controls the amount o diagonal loading d the
matrix Sin eq.(4.27). For a = 0, there is no diagonal loading, and the oscillationsin
the plot  Figure 4 2 are an indication o the ill-conditioningd S, which leads to the
high variance o—g at the point o best resolution in Figure 4-1. As aincreases, the kerne

becomes smoother (and ¢ decreases), resultingin poorer resolution.

4.2 The Inverse Eigenvalue Problem

This section anayzes the inverse eigenvalue problem d inferring the sound velocity
profile from measurementsdf seriesd normal mode eigenvalues, estimated as a function
d source-receiver range. The eigenvaues may change with range, alowing for inversion

In range-dependent environments.



4.2.1 The Measurement Equation

The eigenvalue measurement is described by
yv(r) = k.(c(z;7);7) + e(r), (4.31)

where k, isan M-dimensional real vector o distinct normal mode eigenvalues, ¢(z;r) is
the local sound velocity profileto be estimated, and e is the measurement error. The
discrete variabler =1, 2, ... represents points over a uniform range grid.

For a dowly varying media, the sound velocity profile is related to the eigenvalue
k., o the m-th normal mode through the local (that is, for a fixed range) adiabatic
eigenvalue ODE

p) A p

where un,,, p, and carefunctions of the depth z, u,,(0) = 0, u.,(z) and «,(z)/p(z) satisfy

’ 7 2
(“—’”) ot kfm%”, 0<2z< o0, (4.32)

continuity conditions at interfaces (where p may be discontinuous), and the eigenfunction

oo . 2
/ Ym _ 1, (4.33)
0

The region z > h isan homogeneous medium (basement) with constant sound velocity

%, 1S Normalized so that

Ce and density p

The nonlinear measurement equation (4.31) issolved iteratively starting with profiles
¢o(z;7) using a linearized measurement equation relating sound velocity increments to
elgenvalue changes. In order to linearize the measurement equation {4.31), the issue of

derivatives o eigenvalues with respect to sound velocity is discussed next.
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4.2.2 The Derivative of the Modal Eigenvalues
Layers of Constant Sound Velocity Variation

The eigenvalues are functionals d the sound velocity. The mapping ¢(z) — kem iS
established through the boundary value problem of eq.(4.32). The derivatives of modal
eigenvalues can be found by perturbing the eigenvalue equation (4.32) [see Appendix
F]. A standard result relates a perturbation Ac(z) in the sound veocity profile to the
resulting change in the characteristic wavenumber [cf. eqs.(4.3) and (4.16)]:

b2Ac

b
Akrin = — ——d +0 [(Ac)?] = /a gm(2) Acdz T O[(Ac)Y. (4.34)

T‘FH-

where
_ ul(z) 1
(e = "% o) )

ris

(4.35)

is the same defined in the integral equations (4.3) and (4.16).

In order to obtain an expression for the derivatives d the eigenvalues, divide the
integration interval into segments A, = {z|zn-1 < 2 <z, < h},n=1,...,N and apply
a perturbation Ac that is zero everywhere except in A,, where the sound velocity is

incremented by a constant dc,. The partial derivativeis computed using (4.34) as

Oenlerm{c) = lim Okiem =f gm(2)dz, de; =0, 7 #n. (4.36)
-0 6C'n Ay

If the basement z > h is perturbed as a whole, the above procedure gives, for the

exponentially decreasing eigenfunction in the basement,

Um(z) = U (h) exp {_'Ym(z - h’)} )

wi ui(h)  gm(h?)
krm 2YmPooC,  2Um

Oy g1 Kirm(c) = — : (4.37)

where Ym = /K2, — w2 /c2..



Define the N-dimensional vector q = [dcy, ..., dey]T as the perturbation of the
sound velocity profilein the depth grid defined above. The derivative d the vector o

measured eigenvaluesis, from eq.(4.36), the M x N matrix

(G)mm = (0ckr),, , = Ocpfirm = / gm(2) dz. (4.38)

T

Different discretization schemes lead to different expressions for the elements o matrix
G.

Arbitrary Discretization of the Sound Vdocity Increment

The sound velocity variations can be represented by a combination o basisfunctions as
N

Acz) =Y be;p5(z) = @7 (2)q, (4.39)
j=1

where ®(z) = [¢1(2), ..., dn(2)]7. Ineq. (4.38), for example, ¢, isthe unit rectangular
pulse [1 for z,.1 < z < z,, zero otherwise]. Inserting eq.(4.32) into (4.34), and setting,

as before, all c; to zero except dc,, we obtain a more general form of equation (4.38):

«mmaf%@m@w, (4.40)

or, using vector notation, .
G= / g(2)®7(2)dz. (4.41)

If the sound velocity increment is approximated by a series of linear segments, the



basis functions are the unit triangular pulses

’

(2 — 2n-1) /(20 — 201), Zn-1 < 2 < Zn,
n=2,...,N
qb”(z) = 9 (Zn-!-l - z) / (zn+1 - Zn), Zn < 2 < Zntl, (4'42)

n=1 .., N-1,

L 0, otherwise.

Theresulting M X N matrix is given by

2 1 — Zj+1 —
(G)m,jzf gm(2)3 rTE ,:/‘|'/JJr ZJ-H Zd,’z. (4.43)

i1 nga — Zj-1 Z;a+1

A set o basis functions can be defined in terms o the integrand modal kernel g,

. (4.35), using the Gram matrix S o eg. (4.30)". S© is symmetric, positive
semidefinite®, and can be decomposed as 5 = 12I'T” = 12QAQ7T, where T’ = QA
A = diag(Aq, ..., Ay} isthematrix o theeigenvalues o 5 /12, and Qistheorthogonal

matrix whose columns are the eigenvectors. The basisfunction is given by

M
= X3 Qimm(2), (4.44)
m=1
or, in vector notation,
®(z) = A"12QTg(2). (4.45)

Notethat these basis functions are not localized in depth, i.e., the components o vector
g, dc, of eq.(4.39), do not represent alocalized sound velocity change, asin the case of
rectangular and triangular pulse bases.

With thisset o basisfunctions, the M x M derivative matrix G becomes, from eqgs.

"This is the spectral expansion method mentioned in Section 4.1.2 [61).
8For any M x 1 vector x, x78@x = [’ xTgglxdz= [’ (xTg)’dz >0Q



(4.41) and (4.45),

4

G b 37 (z2)d b T()QAV2dz = = SOQA-V2 = T
— [ e@97(e)z ~ [ e@eT @A = ZSUQATE ST (4ds)

The trapezoidal rule is an easily implemented, common way to discretize eq.(4.34),
particularly whenit isseen astheintegral equation d the inverse perturbative technique.
We show that this discretization can also be represented through a basis function.

One approximation consistent with thetrapezoidal ruleisthat Ae¢(z) changeslinearly
between depth grid points. Therefore, the triangular pulse representation o eq.(4.42)
over the dense grid required by the trapezoidal rule would be valid. Another possible
assumption isthat the product g,.(z)Ac(z) o the integrand islinear between depth grid
points. Appendix E shows that this assumption leads to [cf. eq.(4.39)]

4

(2= 2a1) [ (2 — 21}, Zn-1 < 2 S Zn,
=24 555 IV,
M 3 3 ]
m=1 m(Zn
Pa(2) = 222371;% 3 (Znt1— 2) [ (Zng1 — 2n) Zn < 2 < Zny, (4.47)
m=1 JM
n=1...,N=-1,
| 0, otherwise.

for Som_, gm(z) # 0, a light modified triangular basis.

A Formal Functional Differentiation

The above a hoc approach to the derivative d modal eigenvalues with respect to the
sound velocity profileis consistent with the more rigorous definition of functional differ-
entiation.

Seen asafunctional of thesound velocity, the eigenvalue k... (¢(2)) isdefinedfor sound
velocity profiles from some domain X in a Hilbert space H, formally, k., : XC H — R.

In this context, the concept o derivative is generalizedto functional differentiation. For



example, k., issaid to be Fréchet-differentiable® if one can find Dx,, € H such that
km(CT Ac) = k() T (D, Ac) T Rin(Ac), (4.48)

for some {|A¢|| < ¢ and with Rn{Ac)/ |Ac)l — 0. (u,v) indicates the inner product
defined in H.

The perturbative integral (4.34) isin the form described in (4.48), from which the
Fréchet derivative Dy,, o ky, is given by Dy, = g..(2). The underlying (real) Hilbert
space is Ly(a, b) with inner product {u, v)=f:)uv da. For the vector o eigenvaluesk,,
the derivative is constructed as the vector formed by the derivative of each eigenvalue,
D=1[D, ..., D)7

Using the basis function representation o Ac, eq.(4.39), the vector version o (4.48)

k(ct Ac)=k.(c) T Cq+ O [(Ac)], (4.49)

which showsthat the use o matrix G asa representation o thederivative of eigenvalues
is consistent with the more rigorous notion of functional differentiation, and leadsto a
convenient representation d the mapping k, in the neighborhood o a "point" [of the
space La(a,b)] c(z).

Linearizingthe Measurement Equation

Let the sound velocity profile be given by c(z;7) = co(z:1) T Ac(z;r) = cofz;r) T
®T(2)q(r), where ep(z; 1) and ®7(z) are known. Neglectingthe high order termsin Ae,
the measurement equation (4.31) becomes, after substituting eq.(4.49),

do(r) = y(r) — ks (co(z; 7)) = Go(r)q(r) + e(r), (4.50)

where the subscript 0" indicates quantities related to the profile co(z;r).

“Rajan [60] showed that k,, is Fréchet-differentiable with respect to the sound velocity in ffuids.



At this point, one should suspect that the linearized equation (4.50) is equivalent
to the discretization o theintegral equation (4.16) [or (4.3)] o the inverse perturbative
technique. In fact, if the basis function representation o Ac(z) is exact, the two are one
and the same. From egs. (4.16), (4.39), and (4.40),

b
' =/ Im(2)Ac(2)dz + e,

N N
= Z&q/ gm(2)(2)dz + e, = Z (G), ¢+ €m, (4.51)
t=1 Bi t=1

which isthe scalar version of thelinearized measurement equation (4.50). The integral

equation of the perturbative inversetechnique (4.3) isthelinearized eigenvalueequation.

4.2.3 The Range-Varying Eigenvalue I nver se

Nonlinear estimation is an iterative process. The measurement equation is linearized

around a profile ¢;_1(z), and the equation

di_1(r) =y(r) — ke(ci1(z1) ;1) = Gioa(r) qi(r) +e, i=12, ..., (4.52)

is solved for q;. The sound velocity profile is updated, ¢;(z) = c;_1(z) T ®7q;, and
the process is iterated with the new sound velocity profile. This iterative process is
the approach d the perturbative inverse technique [61] described in Section 4.1.2. In
principle, this process should be repeated at each range step.

The goal o theiteration processin nonlinear problems!® isto minimize a cost func-
tion related to the actual error [y — k-{ci(2))}], the new eigenvalue difference d;. At
each iteration, solving eq.(4.52) involves minimizing a cost function associated with
{di—1 — Gi—14;), which, as discussed in Sections 4.1.2 and 4.1.3, requires some form of

regul arization.

WA survey o algorithms can befound in[58].



Extrapolating Franklin's stochastic inverse technique, assume that q;(r) is described

as a Gaussian-Markov process evolving in range according to
q(r+1) =q(r)+wir), r=1,..., N, (4.53)

where w;(r) is a white process (in r ) with covariance R, :(r).

Equations (4.52) and (4.53) are a state-space description o the inverse problem.
Under additional assumptions of independence between the processes w; and e, that
both are zero-mean Gaussian, and theinitial value q;(0) is also Gaussian, the solution to
thislinear problem isthe Kalman filter described in Algorithm 3. The forward /backward
notation of Chapter 3 is used here.

The above approach o iteration and range evolution corresponds to a nonlinear
Kaman filter that solves the actual measurement equation (4.31) in a preset "range
trajectory” ¢;_1(z;7){33]. Thetrajectory is updated at each iteration using the Kalman
filter solution to the linearized equation,g;(r|r).

Theconnection with Franklin's method isthat eq.(4.53) definesa (now range-varying)
covariance for the "process’ g;{r). Assuming that theinitial value g;(0) has covariance

Ry, the covarianced q;(r) is given by[2]
r—1
Roi(r) = Rpi+ Y Rui(n). (4.54)
n=0

Equation (4.54) may be seen as a statement o the uncertainty of the knowledge of the
sound velocity profile, which increases with range. Thiswould be the case, for example,
when inverting a series & modal eigenvalues measured in the neighborhood o a point
where the sound velocity profileis reasonably wel known (as quantified by Ry ;). One
would expect that, in a range-dependent environment, the uncertainty regarding the

profile increases with the distance from the position where the profileis known.



Algorithm 3 Kaiman filter solution to the range-dependent stochastic perturbative in-
verse. Initial values o the solution q and associated covariance 2, must be provided.
Forward filter: initialize with values §(1|0) = qo and P~(0|0) = Ry, and estimate the
gforr=1,...,N. Backward filter: initialize with §*(¥, + 1|N, + 1) = qu,.; and
P*(L,|L. t1) = R,x,, and estimate theq for r = N,,, N, - 1,..., 1.

1. Prediction: given the background profile and measured eigenvaluesat r, compute
G(r), d(r), and

Q@rrel) =¢®¢ralrel),

(4.55)
€(r) = d(r} - G(r)a®(r|r ® 1).
2. Update
Pe(rlr@1)= P2(r®llr®1)+ Ry,
Po(r|r) = P®(rjr & 1)x (4.56)

{In = GT(r) [R. + G(P2(rlr & )GT(r)] " G(r)P(rir ® 1)},

a®(rfr) = 4°(rlr & 1) + PO(r{r)G" () B e®(r).

4.3 Variance and Resolution of the Inverse Eigen-

value Problem

431 Cramer-Rao Bound for the Eigenvalue Inversion

Intuitively, one can expect that a smaller measurement noise level (variance), resultsin
a better estimate. Assuming a zero mean measurement noise, the probability density
function of the measurement y in eq. (4.31) will be that o the noise e, but with
mean k. (c(z))-the density o y isa function of the unknown profile. Figure 4-3 shows
hypothetical distributions for a scalar measurement y. The more peaked the density
(smaller variance) the more the measurement is sensitive to the sound velocity i.e.,
small variations in the mean k,,(¢{z)) are more easily detected. Therefore, the second

derivative o the distribution function (w.r.t. the profile) near the mean can be used as
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Figure43: Anillustration o the distribution density function o the measurement for
3 vauesd noise variance.

a measure of how sensitive the measurement is to the sound velocity.

In order to reduce the problem to a finite dimenson N, assume that the sound
velocity profile is exactly given, for a known set o functions {¢n(2)} and a known
profile cg(2), by the basisfunction representation of Section 4.2.2, i.e.,

o(2) = co(2) + @* (2)q. (4.57)

The eigenvalue vector is afunction o the N X 1 vector g and, allowing for a dight abuse
d notation, write k,(¢(2)) = k.(q). The derivative g k., is given by eq.(4.41).

The Fisher information matrix I,(q) is defined as the expected value o the second
derivativeof thelogarithm of thedensity o y, py (Y,q), seen asafunction the parameter

g to be estimated:
IL{q) = ~E {[02Inpy (v,q)] } (4.58)

I,(q) isa measure d how much information the measurement y has d that parameter

g. An equivalent expression involving only first derivativesis given by [56)



Lq=F {[aq Inpy (qu}]T [aq Inpy (Y,Q)]} . (4.59)

Assuming a zero mean Gaussian measurement noise e with covariance R., py (¥, q)

is obtained from the measurement equation (4.31) as

b0 = —r——en{ L - k@ R k@], (460

. (]
(2m)™/% | RoJ1/2

where M is the number o modes, the dimension of k,. The derivative d the logarithm
d the density function in (4.59) is, therefore,

dqlnpy (v,q) = [y — k(a)]” R0k (q).

(4.61)
= [y - k(a))" R;2G.,
and the N x N Fisher information matrix becomes, from {4.59),
Iy(q) = GTR;'G.. (4.62)

The subscript ¢ in G, indicates that the derivatives are computed at the actual sound
velocity profile.
Any estimator §(y) o q based ony has a covariance bounded by [56)

T4 > ML (M, (4.63)

where M = Iy 84b, and b(q) = E[d] — q is the estimator bias. When the estimator
isunbi ased, b=0, M = Iy and eq.(4.63) reducesto the Cramer-Rao inequality

Sq > I7'(q) = (GTRI'G.) . (4.64)

This matrix inequality is interpreted in terms o quadratic forms, i.e., for any N x 1
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vector X, xTEgx > x' 17 (q)x. In particular, the diagonal elements of I*(q) are the
Cramer-Rao lower bounds (CRB) on the variance d each element o the estimated vector
g. An efficient estimator, one whose variance is given by the CRB, does not exist due
to the nonlinearity d the relation k.(q).

If Ng independent measurements of the eigenvalue vector are available, and if the
measurement noise covarianceisthesamefor all measurements, then the CRB isreduced

by afactor Np.

4.3.2 Sound Veocity Vari ance and Resolution

The CRB isa bound on the covarianceof the estimated vector q. At an arbitrary depth

zg, the sound velocity increment estimate is obtained from eq.(4.39) as
Aé(z) = T ()4, (4.65)
with mean E[Aé(z)] = 7 (%) E[§] and variance

o2(20) = B [(A&(z0) — E[A&(20)])"]
= 37 (2)04®(20) > 97 (20) (GTR;1G.) ™ ®(z), (4.66)

where the inequality follows from eq.(4.64). Equation (4.66) defines a bound, derived
from the CRB, on the variance o the sound velocity increment estimate at zo and, from
eq.(4.57), on the sound velocity estimate itself.

When thecomponents d q represent actual sound velocity increment at points=z; on a
depth grid (rectangular, triangular, or trapezoidal rule bases), then Ac(z;) = (a); = d¢;,
®(z;) isaunit vector and eq. (4.66) reducesto

o2(z) = (Ba)y; 2 |(G"R'G) ] . (4.67)

Ji



Therefore, for these localized basis functions, the sound velocity variance bound at the
depth grid pointsis given by the CRB.

Theresolution associated with Aé(z;) ismeasured by thedeviation defined in eq.(4-29).
The Backus-Gilbert theory assumes a linear relation between the eigenvalue differences
and the sound velocity increment. Assuming the estimated sound velocity profile is
close to the actual one and the linear approximation is valid, the depth resolution can
be obtained using the estimated profile. The best BG resolution computed from the
estimated profile can be considered as an estimate of the actual resolution.

Alternatively, the resolution can be estimated directly from the inverse operator. If
the last iteration inverseis &, then Aé(zo) = ®7(20)d = ®7(2)Gd, which, by compari-
son with eq.(4.18), leads to

a(zp) = GT®(z) (4.68)

as the analogous o the BG inverse. The resolution kernel from eq.(4.19) becomes
Az, 20) = 7 (20)Gg(z) (not necessarily of unit area), and the deviation, from eq.(4.29),

becomes

(4.69)

Galz) = 12]:(2 — 20)2A%(z, zp)dz _ Q@T(ZO)GS(Zo)éT‘P(zO)
{20 f: A2(z, z0)dz ‘I’T(Zo)é 5(0) éTq)(Zo) )

where matrices S(zp) and 5 are given, respectively, by egs.(4.25) and (4.30). For a
localized basis function (rectangular and triangular pulses, or trapezoidal rule), ®(z;) is
the unit vector ¢.(z;) = 6., then a(2;) = (Peotwmnj and A(z, z;) = (GT)row ;8(2).

4.3.3 Analysisd a Prototype Problem

This section analyzes the typical shallow-water waveguide d Figure 4-4. We show that
the CRB is high, leading to the requirement of unreasonably low eigenval uemeasurement
variance in order to achieve small sound velocity variance. This is consistent with the
BG trade-off curve of Figured-1, where the best resolution (analogous to the unbiased
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Figure 4-4: Shallow-water environment for the inverse problem analysis example.

estimate) is attained at a cost d high variance. As in the BG analysis, one should
expect to reduce the variance by decreasing the resolution, i.e., by introducing bias in
the estimator. Thisisillustrated in Section 4.3.3 through the stochastic inverse.

Another objective of the present section isto shown how the BG analysis can be used
in the design o experiments for eigenvalue inversion. It isshown that, asthe number of
modesincreases, the best resolution and minimum BG varianceimprove. The analysisis
atool for the choice dof frequenciesand to establish goalsfor the eigenval ue measurement
error and expected sound velocity variance and resolution.

The shalow-water waveguide o Figure 4-4 consists of an isovelocity water layer
overlaying a sediment layer of increasing sound velocity and a homogeneous basement.
The "data" are the 13 modal eigenvalues at 25, 50, 75, and 100 Hz, which should be
inverted for the sound velocity in the sediment, 0 < z < 40 m. The measurement error
isassumed to be uncorrelated and equally distributed, i.e., R, = ¢2I, asin Section 4.1.4,
Figures 4-1 and 4-2.

Figure 4-5 shows the normalized modal functions at the frequenciesd interest. The
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Figure 45: Mode functions for the prototype environment.

vertical, dashed lines represent the zero axis for each mode. The horizontal, dash-dot
linesindicatethe interfaces at 0 and 40 m depth. The mode magnitude scaleisthe same

on all plots.

Cramer-Rao Lower Bound

Assuming the sediment layer thickness of Figure 4 4 is known, the sound velocity profile
is characterized by only two parameters, the velocities at zero and 40 m, for example.
The inversion involves the estimation o these two parameters. In order to alow for
a more general example, assume that the sediment profile is represented by the sound
velocity at 11 depths. The region 0 < 2 < 40 m is divided into 10 segments where
the sound velocity is assumed to change linearly, the triangular pulse basis function
representation of eq. (4.43). For this basis function, the CRB for the sound velocities
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Figure 4-6. The Cramer-Rao bound for the variances of the sound velocity estimate in
the sediment layer shown in Figure 4-4 [CRB in (m/s)?, o2 in (rad/m)?].

at the grid pointsis given by eq.(4.67).

The CRB (relative to ¢2) isshown in Figure 46. It was computed using the exact
sound velocity profileand all 13 eigenvalues. The CRB at z =8mis3.8x 10702 (m/s)?,
comparable to the 1.7 X 101762 (m/s)? obtained by the Backus-Gilbert analysis at the
best resolution {cf. Figure 421. The error variance bound varies with depth between
101¢ and 3 x 10*° timesthe measurement variance. If the required estimate error isto be
below 5% (approximately 80 m/s) in the first three sub-layers, the required eigenvalue
measurement standard deviation should be a = 80/4/3 x 10 ~ 1.5 x 10~7 rad/m.
In order to reach a more reasonable figure of a, = 10~* m~!, nearly 700 independent
measurements of the 13 eilgenvalues would be required. In typical experiments, just a
single measurement is available at a given range.

Large variances are typical o the eigenvalue inverse problem, unless some form o
regularization is imposed, as discussed in Sections 4.1.2 and 4.1.3. In the linear case,
large oscillations in the solution are related to the large spread of the singular values

o the matrix G. In the present example, the derivative o eigenvalues, matrix G,, is



full rank, but only the first six singular values are "reasonably large”, above 1% o
the largest one. As discussed below, reducing the effect o low singular values has the
effect of reducing the variance bound (that is, regularizing the problem) at the cost o
introducing bias.

In order to obtain estimate variances smaller than the (unbiased) CRB, bias has to
be accepted. Thisissuggested by eq.(4.63): a “reduction” in M.I;(q)M” fromthecase
M = I (the CRB), can only be achieved by some non identity M, i.e., by introducing

bias. Thisis achieved when the problem is regularized.

Regularized Inverse

In order toillustrate the effect o bias on variance, the standard form o the Tikhonov
regularization!', eq.(4.9), isused with G,, the actual eigenvaluederivative, to obtain the
inverse operator G,

q=Gd = (GTG. + 12Iy)'GTd. (4.70)

As in Section 4.3.3, the sediment layer of the environment o Figure 4-4 is divided in
10 intervals and the sound velocity profile described by the triangular pulse basis. The
rank o 13 x 11 matrix G, is11L
The expected value for the linear estimator (4.70) is given, from the linear measure-
ment equation (4.50), by E[§] = G.E[d] = G.G.q, the bias by b = (G.G. — Ix)q and
the covariance by
%; = G.R.GY = 62G.GT. (4.71)

When 2 = 0, G. = (GTG,)'GT, E[§) =q, b=0, and &; = ¢2(GTG,)™*, which isthe
CRB, eq.(4.64). The parameter . scaleswith the singular valuesdof G,, as suggested by
the svd representation in eq.(4.9). As discussed in Section 4.1.2, there is a significant
damping d the singular values smaller than .

We compare changes in variance with the BG resolution, which has a more direct

or, equivalently, the stochastic inverse of eq.(4.13) with R, = 021y and Ry = o2u21y.



physical interpretation than estimator bias. For the present example, § represents sound
speed increment at the grid points z;. From eq.(4.68), a(z;) = (Go)eotamn 5. ONCE G, iS
computed, the resolution kernel is obtained from eq.(4.19), A(z, z;) = a'(z;)g(z) and
the deviation o 4(z;) from eq.(4.69).

The variances, resolution kernels and associated deviations are shown in Figure 4-
7 [cf. Figure 4-2] for u set to zero (CRB) and the 3rd, 5th and 7th largest singular
values. For reference, the maximum singular value of the matrix G is1.12 x 10 *(using
the triangular pulse basis). As g increases, variance decreases, deviation increases, and
resolution, the ability to resolve details o the sound velocity profile, decreases. For
= 3.5X 1077, the seventh largest singular value, the estimate variance is considerable
smaller than the Cramer-Rao bound and the degradation in resolution from the optimum
predicted in the trade-off curve of Figure 4-1iscomparatively small.

Noticethat the resolution kernel corresponding to the CRB differ significantly from
the optimum BG kernel in Figure 4-2. Infact, either as described by the deviation, or by
examining the plot of the kernel directly, the unbiased estimator has a poor resolution
performance. In this sense, deviation is more meaningful than bias to describe estimate

quality.

BG Resolution and Variance

Figure 4-8 shows the BG resolution as a function of depth for different combinations
of eigenvalues. Plots on the right show the minimum possible deviation o4 (m) for
different combinations of "measured” eigenvalues. The minimum deviation is obtained
fromeq.(4.24) when aineq.(4.28) isset to zero (no contributionfromtheerror covariance
R, to theinversion). The corresponding plots on theright are for the resolution kernel
at zo =8 m corresponding to the minimum deviation.

The vauesd relative estimate variance (¢?/c2 in (m/s)?/(rad/m)? indicated in the
plots correspond to the minimum possible variance (worst resolution) for a unit area

resolution kernel. Minimum variance is obtained from eq.(4.21) when a in eq.(4.28) is
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Figure 4-7: Simplified stochastic inverse for the example from Figures 4-4 and 46. (a)
estimate variances o3(z;) /o2 and (b) resolution kernel A(z, z) for zo = 8 m (indicated
by the vertical line), normalized for a maximum vaue d unit for plotting.
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set to infinity, leading to o3(z) = (' R_Tu)~L, independent of zp. The last two plots
at the bottom of Figure 4-8 correspond to the ones shown in Figures 4-1 and 4-2, where
all 13 eigenvalues are used in the inversion.

The upper plots o Figure 4-8 show the poor resolution and high estimate variances
that can be expected when using a single mode (note the different scale on the plot for
thesingle, 25 Hz mode inversioncase). The resolutionisnearly equal to the wholedepth
interval, indicating that the inversion will result in an average sound velocity increment.
Thisisbetter illustrated by the plot of the resolution kernel A(z, zp = 8 m) on the right.

In general, as the frequency and the number o modes increase, the resolution and
the minimum variance decrease. There are two cases with 4 modes, one involving two
frequencies (25 and 50 Hz) and the other a single frequency (75 Hz). The resolution
near the lower interface, zo = 40 m, improves remarkably when using two frequencies.
The mode plots in Figure 4-5 indicate that the 25/50 Hz combination has 3 modes
with significant magnitude at that depth, while, at 75 Hz, only 2 modes are significantly
differentfrom zero. On the other hand, an examination of the resolution kernels suggests
improved performance of the 75 Hz data over the 25/50 Hz combination

The influence o the contribution of the number d modes to resolution is aso il-
lustrated by comparing the 75 Hz and 100 Hz single frequency cases. At the 40 m
interface, both give roughly the same resolution, despite the larger number o 100 Hz
modes. The mode amplitude plot reveals that, in fact, both frequencies have two modes
with significant magnitude at that depth.

This suggests that the number o modes with significant magnitude at a certain
depth isan indicator of improved resolution at that depth, albeit not the only one. The
apparently monotonic decrease d deviation with increasing number o modes at the
upper interface suggests other factors are at play, possibly, the degree o independence
between the different modal kernels g,,(z) near z =0 m.



4.4 Source Speed Compensation

4.4.1 Eigenvalue Bias due to Doppler Deviation

Effects of source motion in the modal representation is discussed by Hawker [31], and
Schmidt and Kuperman [63]. Source motion introduces, due to the Doppler effect, a

deviation in the eigenvalue:

oz

o T O(u2), (4.72)

w

kfm = krm(w + wp) = krm(w) + wp

where k2, is the measured eigenvaluefor mode m, w isthe sourcefrequency, wp = k&,vs
is the Doppler deviation, and v, is the component of the sound velocity in the direction
o the receiver. The derivative is the inverse o the modal group speed V,,.(w) and, to

thefirst order in wp, this expression reduces to
kgm = k-rm((.U) + kfmvsvfr;l (w) (473)

In experiments wheretherange apertureisobtained by towing thesource, eigenvalues
are shifted and should be compensated for source motion when inverting for sound
velocity. The actual group speeds depend on the unknown profile and the eigenvalues
can not be correctly compensated.

One possible compensation scheme is to invert for a sound velocity profile using
the measured eigenvalues, then compute the group speeds, and iterate the inversion
with compensated eigenvalues. Depending on the method o inversion and the amount
o deviation, some inversion algorithms may fail to converge” Another simple pre-

12Kazuhiko Otha, private communication regarding the use of a genetic algorithm.



compensation is to use some velocity ¢, instead of the group speed, resulting in??

ket ~ Krm (@) + i/ co,
(4.74)

= k(W) ~EE (1= v,/c,) .

Here, we propose to include the correction in the inverseformulation itself.

4.4.2 Perturbative Formulation

The eigenvalueequation is given in eq.{4.32), repeated here for convenience:

(“in<z>)’ PLAC . WS

p p

oC 2
0 < z < 00, u,(0) =0, / ;)“d =1. (4.75)
0

Interfaces are introduced at density discontinuities where the boundary conditions of
continuity o w,, and u,,/p are imposed. The medium wavenumber is perturbed by
small variationsin the sound velocity profile and frequency,

+ Aw)?
E*(w+ Aw,c+ Ac) = %‘Ai:’))?’

2 2 :

2
VWQ (1_2.‘_ﬁf+2&_4§3‘ﬂ )
C w

= k2 + eki, + nkd, + enkl,, + O [(Ac/c)?],

where ky = k(w,c), and the dummy variables ¢ and » (which assume value 0, when

Ac=0or Aw = 0, respectively, and 1 otherwise) were introduced for bookkeeping. The

130tha proposes a single correction using the phase speed evaluated at the source frequency, Cr, =
W[k (W), TESUIING TN kppm (W) = k&, / (14 k2 vs/w).



subscriptsin k? indicate the order o the corresponding perturbation and which quantity
is being incremented. For example, k2, designates a second order perturbation: first
order in both frequency and sound speed. As usual, small means Ac/e, Aw/w < 1.

Thedetails of the perturbative analysis are given in Appendix F. The final result is
that the perturbative integral becomes [cf. eg.(4.34)]

Akpm = K2 = Eopmn (1 = vekrmVi3) ;“i" (1 i 2”f;m) /0 ” %%dz . (47
where k..., u., Vi are, respectively, the unperturbed eigenvalue, eigenfunction, and
group speed at frequency w,,. This approximation is valid for very low Mach numbers
v,V,-L. Thesubscript m is added to the frequency to alow for eigenvalues measured at
different frequencies.

The meaning o the terms involving group speeds in eq.{4.77), as compared to
eq.(4.34) becomes clear when one recognizes the approximations, valid for small Mach
NUMDEXS, krm (k2L — kpm) =~ 0.5[(k% )2 — k2], 1F 20,k /wm = (1F vekym/wm)?, and
1+ 20,V 1~ (AF 4,V1)2, under which eq.(4.77) can be rewritten as

(k&) — k2, (14 vV 1) = —2u0? (1 + “Sk"m)z /w %gdz. (4.78)
o o " ™ Wm o p
Doppler deviation is introduced in the unperturbed eigenvalue (using group speed) and
frequency (using phase speed).
Using eq.(4.77), the modal kerndl g.(z) used to compute the eigenvalue derivative
matrix G becomes [cf. eq.(4.35)]

W Vekipm \ u2,(2) 1
gm(z) = T (1+2 o ) et (4.79)

The difference in eigenvaluesin the linear measurement equations (4.50) and (4.52)

becomes d,, = ¥m — krm (1+ VsV )-



4.5 Data Analysis

4.5.1 Prototype Problem with Source Speed Compensation

As the first example, we invert the eigenvalues d the prototype, shallow-water envi-
ronment of Figure 4-4 for the sound velocity profilein the intermediate sediment layer.
First, asinglerealization d a zero-mean uncorrelated Gaussian noise vector is added to
the 13 eigenvalues at 25, 50, 75, and 100 Hz. In the second inversion, we use only the
eigenvalues at 50 and 75 Hz, and compare the results with the richer data set. A third
example, where we invert eigenvalueswith and without the source speed compensation
o Section 4.4, illustrates the effect of the source speed. We show that the result with
source speed zero is recovered when speed compensation isapplied. Finally, wesimulate
a series of measurements by adding 20 realizations o a white Gaussian noise vector to
the computed eigenvalues at 50 and 75 Hz.

For theinitial background, the sediment sound velocity is constant, 1600 m/s. Table
4.1 showsthe eigenvaluesand group speeds (in increasing mode order) o the prototype

environment and the initial background.

Single Stochagtic Inverson - 13 Eigenvalues

For this example, we added a single realization d a zero-mean, uncorrelated Gaussian
noise vector of variance o2 = 10~1° (rad/m)? to the M = 13 eigenvalues at frequencies
25, 50, 75, and 100 Hz. The sediment layer is divided into five intervals where Ae(z)
is assumed to change linearly with depth [triangular pulse basis of eq.(4.42)], for a
total o N = 6 depth points (one each at the water and basement interfaces, and four
intermediate, uniformly spaced depths). We used the stochastic inverse, eq.(4.13), with
R. = 02Iy Ry =01y, and o} = 100 (m/s)?, which reducesthe inverseto eq.(4.9), with
I = o?/al.

In order to control convergence, we varied u2 logarithmically from 1084575 to 1012
starting at the square d the 4th singular value o thefirst (initial background) system



Table 4.1: Prototype and background environment eigenvaluesand group speeds

[ He |

eigenvalues (rad/m)

|

group speeds (m/s)

actual

background

actual

background

25

9.6888703e-02

9.6092233e-02

1.4496980e+-03

1.4682446e+-03

50

2.0407988e-01

2.0267080e-01

1.4771008e+03

1.4789501e+4-03

1.8810603e-01

1.8815864e-01

1.4736053e+03

1.5267036e+03

1.7495476e-01

1.7515289e-01

1.5474714e+03

1.4744818e+-03

75

3.1000870e-01

3.0862886e-01

1.4871434e+03

1.4855094e+-03

2.9555055e-01

2.9188322¢-01

1.4560558e+03

1.4825096e+-03

2.8277135e-01

2.8466005e-01

1.4700669e+03

1.4920331e+03

2.6610607e-01

2.6715294e-01

1.4866457e+03

1.4772420e+03

100

4.1545598e-01

4.1421381e-01

1.4916451e+03

1.4896005e-+03

4.0324674e-01

3.9933974e-01

1.4626610e+03

1.4565425e+4-03

3.8898459%¢-01

3.8678277e-01

1.4813835e+03

1.5626671e+03

3.7397136e-01

3.7444496e-01

1.4436658e+-03

1.4517155e-1-03

3.6057555e-01

3.6306981e-01

1.4490004e+03

1.4210734e+4-03

matrix G and ending at ¢2/02. In addition, we updated the sound velocity profile, at
each iteration, using only half of the computed increment Ac(z). Large p? and reduced
Ac help convergence by reducing large sound velocity corrections in thefirst iterations,
when the background may be far from thefinal solution.

Figure 4-9 shows theinversion result after 10 iterations. The dashed, thin lineisthe
constant sound velocity initial background. Two intermediate iterations are shown by
dash-dot lines. The actual sound velocity profile (thick dashed line) and thefinal result
(solidline) are almost indistinguishable.

The convergence o the inversion is shown in Figure 4-10. lteration zero refers to
theinitial background. The upper plot is the standard deviation o the sound veloc-
ity error at the six depths (inverted - actual). The error decreases monotonically with
the iterations. The middle plot illustrates convergence in terms of the magnitude o
components d the eigenvaluedifference vector d; = k.(¢(2)) — k.(c(2)). Asthe solu-
tion converges, these components decrease. In the presence o measurement noise (also

plotted for reference), d can not reduce to zero.
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A criterion for convergenceis to alow the eigenvalue differencesto reach the level of
the measurement noise, which isthe case o the 10th iteration. Thelower plot illustrates
the convergence through the standard deviation of the components o d; (viewed as a set
o numbers that approach zero). At iteration 10, it reaches 10~° rad/m, the standard
deviation o the added noise. All three plots indicate that the solution converges at
iteration 10, but only the third can be used in practice, when the actual profile and
measurement noise realization are unknown.

Figure 4-11 shows the resolution (plot at left) and error covariance matrix of the
solution at the six depths o the inversion grid. The deviation ¢4 (m) was computed
through eq.(4.69), using the last iteration inverse. The covariance matrix was computed

using eq.(4.71).



Asexpected, thedeviationislarger thanthe minimumvalue predicted by the Backus-
Gilbert theory, shown in Figure 4-8, which, as predicted in the theory, is the price to
be paid for lower error variance. For the profile d the prototype problem, without any
small (depth) scale variations, the high valuesd deviation are not an indication o poor
performance. In addition, it should betaken into account that the definition of deviation
in eq.(4.29) is /12 larger than the standard deviation (for a distribution centered at the
reference depth zp). The low values of the covariance matrix are, for this example, a
better indicator o the quality o the result.

Single Stochastic Inverson - Seven Eigenvalues

In actual experiments, a small number of frequenciesand eigenvaluesare available. In
MOMAZX, for example, one or two frequencies are transmitted at a time. As a second
example, we inverted only,the 7 eigenvaluesat 50 and 75 Hz. The inversion parameters
are the same as before, except the number o iterations, 12, and u2, which was varied
from 10~8799 to 10-'2. Figure 412 shows the inversion result. Despite the smaller
number o eigenvalues, the inferred profileis a reasonable approximation to the actual
profile.

Figure 413 shows that convergenceis attained at the 12th iteration. A comparison
with Figure 4-10 reveals that, for this environment and set o inversion parameters, the
convergence characteristics, in terms of final eigenvaluedifferences, are unaffected by the
smaller number o eigenvalues.

The resolution and covariance d the estimate are shown in Figure 4-14. The higher
deviation near the basement interface at 40 m is consistent with the poorer result in

Figure 412 at those depths, as compared with the 13 eigenvalue inversion.

Sour ce Speed Compensation

The effect of sourcespeed ontheinversionisillustrated by adding a Doppler deviationto

the "measured" eigenvalues o the previous example, using eq.(4.73) with vs = —3m/s
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(sourcespeed a 3 m/s moving away from the receiver). Figure 4-15 shows the results.
The upper plot is the inversion from the previous example (vs = 0), using the 7 eigen-
values at 50 and 75 Hz, repeated from Figure 4-12.

The middle plot showsthe degradation in the inverson when the Doppler deviation
isnot compensated for in the inversion algorithm, i.e., when eq.(4.35) is used to compute
the eigenvaluederivativeat eachiteration. Asshown in the lower plot, when the Doppler
compensated background is used [eq.(4.79)], the results is indistinguishable from the

vsg = 0 case.
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Sequential (in Range) Inverson

We added 20 realizations d an uncorrelated noise vector to the prototype environment
eigenvalues at 50 and 75 Hz. The noise variance is 20 times larger than in the example
above, 02 = 20 x 107'° (rad/m)?. These "measured" eigenvalues simulate estimates as
afunction o range for an horizontal aperture generated by a drifting receiver, or atime
seriesd estimated eigenvalues at a fixed horizontal array, for example. The background
isthe same as before, with sound velocity 1600 m/s in the sediment. Figure 4-16 shows
the set o measurements and the corresponding initial background eigenvalues.

Asin the single stochastic inversion, the sediment layer isdivided into five segments



where the sound velocity differenceis assumed to change linearly with depth [triangular
pulse basis, eq.(4.42)]. The measurement noise covariance matrix is R, = o2l and
the state noise covarianceis R,, = o2 Iy, with o2 = 1 (m/s)?. The initial solution is
assumed to be gqq = 0 with covariance Py = 0% Iy, and 0% = 100 (m/s)*.

First, we inverted one set o 7 noisy eigenvalues using the stochastic inverse, as
described in Section 4.5.1. The final result was then used as the initial background for
theremaining inversions, usingthe Kalman filter. Figure4 17 showstheinversion result,
and, for comparison, the inversion at each range step using the stochastic inverse. The
dashed, thin lineistheinitial background, the actual sound velocity profileis the thick
dashed line. Twenty final profiles (one for each "range" step) are shown by thin solid
lines.

Thesequential inversion result is comparable to that of inverting each eigenvalue set,
albeit with smaller variance. The individual inversionstook 12 iterations each (1+ 20 x
11 = 221 eigenvalue computations). The sequential inversion needed 12 iterations o a
single profile plus 3 iterations o the Kalman Filter (53eigenvalue computations: 12 for
the stochastic inverse plus 1 + 2« 20 = 41 for the 3 Kalman filter iterations).

In order to control convergence, we updated the sound velocity at the end of each
iteration using 1/3 o the computed increment. This is simpler than the adjustment of
covariance matrices described in Sections 4.5.1and 4.5.1 and, for the present example,
hassimilar results. Inad tion, the Kalman filter was run threetimesin cascade at each
iteration, twice forward and once backward, with the last solution g at each run used
toinitialize the next filter. This alowsthefilter to converge to a solution (at al range
steps) at each iteration and offsetsthe small number of availablerange samples. Most of
the inversion computational cost isdueto the evaluation of background eigenvalues (20
backgrounds, once per iteration). Running the Kalman filter multiple times contributes
little to the overall cost.

Figure 4-18 illustrates the inversion convergence. The upper plot is the standard

deviation of each component o the forward {¢~) and backward (¢*) prediction errors
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Figure 418: Prototype 50/75 Hz sequential inversion: convergence.

(not including the first Kalman filter processing at each iteration). The dashed lineis
the standard deviation of the measurement noise (4.5 X 10~ rad/m), for reference. At
each iteration, the prediction errors have nearly equal standard deviation, an indication
that convergence was attained. Asthe number o iterations increases, the forward and
backward standard deviations decrease until they are at, or dlightly below the noise

standard deviation of 4.4721605 rad/m.

The lower plot shows the magnitude o the components of one o the eigenvalue
differencesat each iteration [cf. Figure 4-13]. Convergenceisindicated by the reduction
d the eigenvaluedifferencesto aleve comparableto that of the noisestandard deviation.

The Kalman filter was run for nine iterations, but convergence (in the sense that the
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Figure 4-19: Prototype 50/75 Hz inversion: eigenvaluesd sequentially inverted profiles

standard deviation o the prediction error covarianceor eigenvaluedifferencereached the
noise standard deviation) was attained at the third iteration, whose results are shown in
Figure 4-17. Figure 4-19 showsthe eigenvaluesfor the actual, background, and inverted
profiles[cf. the "measured” eigenvaluesdf Figure 4-16].

The resolution and covariance d the estimate are shown in Figure 4-20. The higher
deviation near the basement interface at 40 m is consistent with the poorer result in
Figure 4-17 at those depths.
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Table 4.2: TC3 Eigenvalue sample variances

| modenr. |  variance (rad/m)?

| | regionl | region 2
3.0x 107 | 4.6 x 10~
4.16 x 107° | 4.56 x 10~°
125x107° | 6.4 x 10717
224 x 1078 { 1.18 x 107®

IS NI Nl e

4.5.2 Synthetic Data: Abrupt Modal Change

The Inverse Techniques Workshop test case 3 (TC3) is discussed in Chapter 3, Figure
3-16. The eigenvalues measured at 50 Hz are shown in Figure 4-21. A sequence o 28
eigenvalue vectors were estimated from a signal sampled at 125 meters, using an AR
model o order 12. The abrupt transition between two different media, as described
in Chapter 3, is readily identified. Only the second transition is shown. The first one
occursat 1.1 km, inside the region where the pressure datawas used toinitialize the AR
algorithm. The region below 1.1 km and above 3 km (called here ‘region 1°) have same
properties. Region 2, between 1.1 and 3 km, is called the "intrusion” in the description
o thistest case. The eigenvaluevariances are given in Table 4.2. The covariance was
computed as the sample covariance in each region where the estimated eigenvalues are

nearly constant.

Blind Inversion

The inversion based solely on the measured eigenvaluesis blind, in the sense that no
geoacoustic information about the seabed was available. The next example shows an
application where prior sound velocity profilesand some geoacoustic information isavail-
able, and the eigenvalue measurements are used to update the estimate.

The 28 inverted profiles are shown in Figure 422, obtained after 9 iterations of the
Kaman Filter. On the left, asingleinitial background, shown as a dashed line, is used
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for al ranges. The background density and absorption coefficient are at 18 g/cm® and
0.2 dB/A, independent d depth. The basement sound speed d 1.82 km/s was selected,
based on the wavenumber spectraat different frequencies, asdightly above the maximum
observed modal phase speed ki /win.

We set the initial covariance R, = 100Iy (m/s)?, and the state noise variance,
R, = Iy (m/s)2. The veocity increments are approximated by 8 triangular basis
functions equally distributed between 100 and 130 m At each iteration, we divided
the computed velocity increments by three. The average d the forward and backward
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Kalman filters were used.

We obtained improved estimates, shown on the right panel o Figure 4-22, when
the initial background wasfirst inverted using a nonlinear estimator whose input data
were the eigenvalues sample means on each region. The two resulting profiles were used
as background fox the inversion in range. The final profiles are comparable with the
previous single background result, but provide a better approximation to the actual
environments. The improved result suggests this to be a better approach when regions
d nearly constant eigenvalues are identified.

Both approachesindicate the presence of two regionsd different sound velocities, as
suggested by the eigenvalue variations with range. The thin low velocity layer (1.3 m
thickness) was not identified, which isto be expected at this frequency, and is consistent
with theestimated resolution, shown in Figure 4-23. The sharp change in sound velocity
at the basement interface (near » = 122 m) was not identified, which is also consistent
with the resolution at that depth, where the deviation is larger than 70 m.

The estimate covariance, given by the Kalman filter last iteration, is shown on the
right panel o Figure 423. The standard deviation o the estimated sound velocity is
/55 = 7.4 m, whichis much smaller than the differencein estimated velocitiesat thetwo
regions. The separation o the inverted profilesin two regionsis, therefore, statistically
significant.

As shown in Figure 4-24, the eigenvaluesfor the inverted profiles match closday the
actual values. Thefifth eigenvaluecomputed for the actual environment in region 1 was

not detected in the pressure field, and hence not included in the inversion.

Updating an Available Environment M odel

One possible application d the inversion technique isto update a previously estimated
velocity profile using a new set & measurements. In order to test this application, the
TC3 datawere inverted usi ng initial backgrounds closer to the two actual environments,
as shown in Figure 4-25. The thin (1005 z 5101.3 m) low velocity (1485m/s) layer of
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the actual environments was incorporated into the backgrounds.

Both regions are modeled, below the initial low velocity layer, by an isovelocity layer
down to 125 m, overlaying an 1.82 km/s basement. In region 1 this intermediate layer
has a velocity o 1.60 km/s, and region 2, 1.80 km/s. These are values that correspond
roughly tothevelocitiesd the actual environments near the surface, as could have been
measured, for example, by sampling the materials near the water interface.

As in the case o the blind inversion, the basement sound velocity was estimated
from the analysis d phase speeds associated with the wavenumber spectra at different
frequencies. The density was set to 2.0 g/cm?, and the absorption coefficient, 0.2 dB/A.

This example also illustrates the use o a smoothing constraint in the sequential
inversion. As mentioned in Section 4.1.2 and suggested by comparing the cost functions
in eqs.(4.6) and (4.15), we set the inverse of the covariance o q to the sum of the
inverse covarianced the background a,;,ZI ~, and amatrix H that modelsthe smoothing
constraint. Here, as the sediment layers are believed to be isovelocity or nearly so, the
constraint imposed is related to the first derivative of Ac{z) = ®7(z)q measured by

b 2 b T
d d® dd
] —Ac) dz=q" | ———dzq=qTHq.
. \dz dz dz

a

For the triangular pulse basis function of eq.(4.42), the N x N matrix H is given by

[ 1 -1 0 0 0 ]
-1 2 -1 0 0
- 0 -1 2 -1 0
0 -1 2 -1

| 0 0 -1 1 !

A constraint based on H penalizes deviationsof Ac from a constant. Finally, the initial



covariance matrix is set to
1

Ry = (ot In T AH)™
For this example, 62, = 20 (m/s)? and A = 0.5. The state covariance noise R,, is set to
zero.

The results in Figure 4-25 were obtained after 40 iterations of the Kalman filter,
although no change was observed after the 30th iteration. The sound speed increments
were the average of the forward and backward filter outputs. The profile in region 2
was correctly adjusted. In region 1, the sound velocity for most of the depths was also
correctly adjusted, but not the reduction in sound velocity at the top of the layer. The
agreement or disagreement o the resulting profilesin both regions are consistent with
the constraint imposed o low |dAc¢(z)/dz|.

4.6 Summary and Conclusions

This chapter investigated the estimation of subbottom sound velocity profiles in the
shallow ocean. We proposed a sequential estimator, whoseinput data are modal eigen-
values measured as a function o range. This nonlinear problem is solved iteratively by
first linearizing the measurement equation at a given initial background velocity profile.

The linearization d the eigenvalue measurement equation lead to the perturbative
technique integral equation. We formulated the linearization by first representing the
profile as a sum of basis functions, a process akin to the finite element method. Pre-
viously proposed perturbative integral solvers, including the spectral expansion method
and the discretization o the integral equation using the trapezoidal rule, are shown to
be particular cases of the basis function representation. We showed that the derivative
d elgenvalues with respect to sound velocity variations, obtained from the perturbative
integral using the basis function representation, is consistent with the formal Fréchet
differentiation.

We proposed a description d the sound velocity increment g as a Gaussian Markov
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process, which corresponds to attributing a covarianceto the sound velocity increments,
as in Franklin's stochastic inverse, that regularizesthis ill-posed problem. The covari-
ance d the sound velocity increment is defined by the initial and state-noise covariance
matrices. Smoothingconstraints can be imposed through modification of these matrices.
The state-space description of the inverse problem lead to a Kalman filter implementa-
tion. The solution to the nonlinear inverse problem consists of solving the problem in
range for a given set of background profiles ¢;(z; r) though the Kalman filter, updating
the profiles to the new set ¢;,1(z;r) and iterating until the solution converges.

We analyzed the characteristics d the eigenvalue inverse problem from the perspec-
tive o estimation theory and the Backus-Gilbert (BG) resolution theory. The results
from both perspectives are consistent. The lower bound on the unbiased estimator vari-
ance, the Cramer-Rac bound, CRB, and the BG estimate variance for the best possible
resolution are both very high. Biasor reduction in resolution have to be introduced in
order to reduce the estimate variance to acceptablelevels. Thisisaccomplished through
regularization, as exemplified by the stochastic inverse of a prototype shallow-water
waveguide problem.

We illustrated the use of the BG theory for the design of experiments. We showed
that resolution and variance improve, in general, with frequency and number of modes,
and by combining eigenvaluesfrom different frequencies.

We developed a method to compensate for eigenvalue Doppler deviation introduced
by source motion. It consists of a modification o the linear perturbative integral and
the eigenvalue derivatives. We show the effectiveness of this formulation through an
example.

The proposed sequential techniqueisfor inversion of sound velocity profiles, and as
sumes that the seabed density structure is known. We show that blind inversion, where
no geoacousticinformation is available, may, nevertheless, provide trendsin the velocity
profile, in particular with range, that are compatible with the BG resolution. The tech-

nique is most useful for updating previous estimates when a reasonable description is



given, particularly including details o the profile that can not be resolved by the tech-
nique but affect the results. We aso showed the application o a smoothing constraint

by a modification o the assumed initial covariance matrix.
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Chapter 5

sSummary

5.1 Contributions

511 Chapter 2

Chapter 2 investigated the application of Merab's exact inverse theory to infer the
sound velocity profile from complex, plane-wave reflection coefficients estimated from
monochromatic experimental data. We investigated the application of the technique de-
veloped by Frisk and co-workers |22, 46] for the measurement of the reflection coefficient.
A sound velocity profileves inferred from the Icelandic Basin experiment data.

In Chapter 2 we extended Merab's method to deal with a density discontinuity at the
water-seabed interface, an important extension for ocean environments. The criterion
for seabed trapped mode cutoff was corrected for the case o reflection at the water
interface, and a method for checkingfor velocity minima after the inversion was tested.

We inverted for the sound velocity profile in the seabed using a reflection coefficient
inferred from experimental data, a result not previously available. The recovered sound
velocity profile has characteristics similar to the synthetic case, suggesting similar error
mechanisms, in addition to the possible density variations in the experiment site.

Merab's method reveals some of the advantages and restrictions of methods based



in exact theories. The requirements for uniqueness are well established, and the effects
d not fulfilling the requirements can be easily understood. In the present application,
the lack of information about the residue o the reflection coefficient polesin the lower
k. complex plane leads to absence of sound velocity minima in the inferred profile. In
practical applications, information about poles are not required if the source frequency

is below the expected mode cutoff.

512 Chapter 3

In Chapter 3 we demonstrated the applicability o AR models with varying coefficients
(the time-varying AR model-TVAR) to represent adiabatic modal sums. We derived
expressions for the error between the AR characteristic equation roots and the actual
first-order poles that represent range-varying modal sums. In AR analysis, the roots
o the characteristic polynomial closeto the unit circle at each sample (range) provide
the estimates for eigenvalues. We analyzed the influenced spatial sampling, eigenvalue
spread, and eigenvaluerate of variation on theerror between roots and first-order poles.

Chapter 3 proposestwo sequential eigenvalueestimators, a Kalman filter for the esti-
mation of AR coefficients, and an adaptive filter for the estimation of polynomial roots.
Competition among estimators was introduced in order to improve spatial tracking of
eigenvaluechanges. We examined the relation between the Kalman identifier and modal
parameters that affect the effective memory length and dictates range resolution. The
adaptivefilter effectivememory length isnot dependent on the specific modal structure.

Decimation of the pressure fild was introduced as a way to reduce the order o the
AR models without reducing the actual range aperture. For the AR spectrogram, we
show that decimation results in significant reduction in computation cost and allows
the use o relatively larger orders, contributing for improved eigenvalueresolution. We
established a criterion for maximum sampling distance Ar that imposes a limit on the
amount o decimation. In all AR spectrograms showed in the data analysis section o

Chapter 3, we obtained improved results using orders equal or slightly abovethe number



of eigenvalues.

The 2001 NRL Inverse Techniques Workshop (ITW) test case 3 was theinitial moti-
vation for Chapter 3. We showed that competition among sequential estimators resulted
in asharp definition o the abrupt eigenvaluechangein this environment. Previously, the
eigenvalue jump was detected through a degradation in the estimated AR spectrogram.

For the single mode case, three different methods provide essentially the same esti-
mate, an improvement over previous results. Eigenvalueestimates using the sequential
estimators for two sets d experimental data show agreement with the AR spectrogram,
if not improvement.

We showed through simulation that systematic eigenvalue change, asin sloping bot-
tom environments, degrades the performance o the AR estimator, confirming a previ-
ously observed result [6].

Appendix A analyzes the MOMAX raw acoustic data processing, and establishes
conditions to minimizedistortions o the modal content of the fieldsin terms of spatial
sampling and selection of spectral analysis windows. We show that, under these condi-
tions, the processed MOMAX data, such as the ones used in the data analysis section
o Chapter 3, actually represent modal sums.

513 Chapter 4

Chapter 4 investigated the estimation of sound velocity profiles in the shallow ocean.
We proposed a sequential estimator whose input data are modal eigenvalues measured
as a function o range. This nonlinear problem is solved iteratively by first linearizing
the measurement equation at a given initial background velocity profile.

The linearization o the eigenvalue measurement equation led to the perturbative
technique integral equation. We formulated the linearization by first representing the
profile as a sum o basis functions, a process akin to the finite element method. Pre-
viously proposed perturbative integral solvers, including the spectral expansion method

and the discretization o the integral equation using the trapezoidal rule, are shown to



be particular cases of the basis function representation. We showed that the derivative
of eigenvalues with respect to sound velocity variations, obtained from the perturbative
integral using the basis function representation, is consistent with the formal Fréchet
differentiation.

We proposed a description o the sound velocity increment g as a Gaussian Markov
process, which corresponds to attributing a covarianceto the sound velocity increments,
asinthe stochastic inverse. The covarianced the sound velocity increment isdefined by
theinitial and state-noise covariance matrices. Smoothing constraints can be imposed
through modification of these matrices. The (state) equation for g and the eigenvalue
measurement equation form a state-space description o the inverse problem that lead
to a Kalman filter implementation. The solution to the nonlinear inverse problem we
implemented solves the problem in range for a given set o background profiles c;(z; r)
though the Kalman filter, updates the profilesto the new set ¢;.1{z; r) and iterates until
the solution converges. Other implementations, such as the Schmidt extended Kalman
filter (EKF)[33], where the background profile is updated at each range step using the
previous range result, may be possible.

We analyzed the relation between spatial resolution, variance, and bias o the eigen-
value inverse problem. With the Backus-Gilbert resolution theory as a background, we
anayzed theinfluenced frequency and number of modes on the best possibleresolution
for a given environment, and showed, by example, how to apply this analysis to the
design of experiments. We showed that resolution and variance improve, in general, by
increasing frequency and number of modes, and by combining eigenvalues from different
frequencies.

We developed a method to compensate for eigenvalue Doppler deviation introduced
by source motion. It consists of a modification of the linear perturbative integral and
the eigenvalue derivatives. We show the effectiveness of this formulation through an
example.

We proposed a technique for sound velocity inversion. The seabed density structure



is, in principle, assumed known. Nevertheless, using the ITW test case 3 mentioned
above,we show that blind inversion, where no geoacoustic information is available, may
providetrendsin the velocity profile, in particular with range, that are compatible with
the expected depth resolution.

Theinfluence d the water column variability is critical when analyzing experimental
data acquired in coastal waters. In [6], for example, simulations suggested that the net
effect of internal waves is to excite, through weak mode coupling, modes that would
not be otherwise observed, without affectingthe eigenvalues. In the presence o strong
fluctuations, such as those caused by tides or tide induced solitary waves, on the other
hand, the eigenvalues can fluctuate, assuggested by Field and co-workers [15).

The technique proposed in Chapter 4 assumes the sound velocity profilein water to
be known. In shallow-water experiments, it isnot possibleto havean accurate picture of
thetime and spatial variations o the sound velocity profile in water, which compounds
the problem of fluctuating environments.

One way to circumvent this problem isto includethe water columnin theinversion.
When the background profile is closer to the actual solution in some depths (asis to
be expected in the water, compared to the seabed), smaller corrections can be imposed
through the solution covariance matrix. Lower sound velocity increment variances should

be imposed at those depths.

5.2 Suggestionsfor Future Work

Merab's method is based on the time-independent Schr odinger wave equation, equiva-
lent to the depth—-dependent acoustic wave equation when density is constant or varies
smoothly with depth. As pointed out in [45], the effect of smooth density variations
on the velocity profile can be compensated for by measuring the reflection coefficient
at two frequencies, an extension of the input data requirement o the original Gelfand-

Levitan theory. Density discontinuities have to be taken into account for applications.



In Chapter 2, we proposed a simple compensation technique for the water-seabed dis-
continuity and showed that it worked in simulations. On the actual data, however, we
did not observe any significant effect, suggesting that other density discontinuities may
be present.

The method has to be extended in order to dea with density discontinuities that
may be present at various depths. This extension may require the reformulation o the
origina theory using the acoustic wave equation. Another possibility is to investigate
the Riccati equation for the evolution of the reflection coefficient with depth [75], whose
boundary condition led to the compensation technique proposed in Chapter 2.

The techniques o Chapter 3 have to be extended to deal with systematic modal
changestypical of coastal waters near the continental slope. In general, as stated in [52],
adaptive estimators can identify nonstationary parameters that drift dowly, or have
infrequent abrupt changes, or a combination of these two behaviors. Most adaptive
identification methods fail with fast varying parameters. Apparently, thisisthe case of
thel TW test case 2 analysisd Chapter 3 with morethan two modes. For two modes, we
showed by simulation that competition among second order Kalman filters was able to
track the DE coefficients®. For more general cases, other methods, such asthe expansion
d eigenvalue and modal amplitude, or AR. coefficient variations by basis functions, may
be useful. The "fast" variations are modeled by the bases, and the problem is reduced
to the estimation o constant, or nearly constant expansion coefficients.

As mentioned in Chapter 4, exact (in fact, asymptotic) inverse eigenvalue theories
have been developed for the proper (self-adjoint) Sturm-Liouville problem. One possi-
bility for applying such results to shallow-water inverse problemsisto define a totally
reflecting interface deep enough not to interfere with actual propagating modes in the
water and upper sediment layers. Another possibility isto definea Hilbert space, through
the definition o a suitable inner product, that renders the shallow-water problem seli-

adjoint. Such an approach has been investigated for laser cavities[41, 42]. Application

In [38] only results for parameter estimation for sums of two chirp signals are presented.



o exact methods when a small number o eigenvaues are available can aso be found in
the literature(53)].

Exact methodsin shallow-water can al so be based on measurementsd the continuous
spectrum o the field, asin Merab’s method. They may be feasible if, first, no modes
are excited (requiring a sufficiently low frequency in typical coastal environments), and
second, the data can be acquired in small range apertures in order to be considered
representative of local properties. In fact, by requiring that no mode be excited, the
field may fdl-off fast enough with range to be considered representative o the local
environment. Stickler{70], for example, has proposed a method for shallow-water whose

requirement is that no mode be excited.

237



Appendix A

MOMAX Raw Data Sgnal

Processing

A.1 Introduction

This appendix analyzes the medal mapping experiment (MOMAX) acoustic signal pro-
cessing algorithm and establishes conditions under which the processed signal represents
asum o normal modes. The main results are eq.(A.25), which describes the operations
required to extract monofrequency signalsfrom the raw data p(t, r;r,), and Figure A-2.

The MOMAX raw acoustic data consist of acoustic pressure time series. Sources
aboard a ship (either moored or moving) emit continuous tones of known frequencies.
The receivers (hydrophones) are mounted on drifting buoys.

The position o the source and buoys is measured using gl obal posi tioning system
( GPS) receivers. Time seriesdf either latitude and longitude, or E N distances referred
to the source are also available. From the acoustic and GPS time series, monofrequency
data is generated in the form of pressure versus range or pressure versus 2-D position,
suitable for spatial processing.

As implemented, the raw signal processing algorithm generates, for each frequency

and for each acoustic receiver, timeseriesof complex {quadrature demodul ated) acoustic
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signals at lower sampling rates than the raw data. For a source emitting F tones

(4,... Q) , the raw data can be modeled, in terms of complex envelope, as

F
plte, i) = 3 R { Falte,mima)e ™k b 4 v(t), (A1)

n=]

wheret; isthe timeinstant correspondingto the &-th raw datasample, r is the receiver
position, r, isthe source position, R{g} is the real part o g, f» is the complex envelope
o the received signal corresponding to the transmitted frequency 2., and v(tc) is the
noise, assumed uncorrelated to the signal. The god o the MOMAX raw data signal
processing is to obtain the complex timeseries f,, n=1...F.

The processing algorithm consistsd computing the discrete Fourier transform (DFT)
d windowed segments d the data; selecting DFT frequencies (bins) close to the trans-
mitted frequencies, generating new, decimated time series; and demodulating the new
time series (multiplication by a complex exponential). For each transmitted frequency

€}, the algorithm generates a time series

' Nppr—1 .,
Pﬂa (mT! L I‘s) = %eﬂmmT Z arp(te, 15 [‘s)el'ND‘;'T'qk’
k=0
= 2 griomT (DFT ot i)}, ) (A.2)
NpFpr 4

tk:mT"i‘kTs, kZD.A.NDFT—]_,

where T is the sampling interval o the new time series;, Npgr isthe number of samples
in each segment o raw data; 7T is the raw data sampling period (in MOMAX | to
III, T, = 1077 x 6 x 512 seconds = 307.2 microseconds, corresponding to a sampling
frequency o 3255.2 Hz); ax is the window; q < Nprr/2, isthe selected DFT frequency
bin corresponding to wy = 2mq/(NprrT,) (close to the source frequency €); and ™’
indicates complex conjugate. Usudly, T is taken as NprrTs/2, corresponding to an

overlap o haf data segment, and an effective decimation factor (raw-to-processed) of



Nppr/2. In the present analysis, no overlap is considered and, therefore, T = NpprTs.
The effect of overlappingdata segmentsis just to interpolate the processed time series.

Asan exampleadf complex envelope, consider thecasedf arange-independent, shalow-
water environment. During the time interval NpprT; corresponding to an analysis win-
dow, the source is assumed to move at a constant depth z, with a constant speed vg
toward a receiver that moves at a constant speed vg away from the source, at a constant
depth 2. Thesource-receiverrangeisr(t) = ro— (vs —vr)(t —to). The complex envelope
of the received signal at the source frequency §2,, has a normal mode representation (for
large K,(Jf)r)

; po(d)
Faltasr(te), 73.2) = Sa, 3 e~ Hemtvs—unltu=ta)
m

2 .
0@ ()0 (z,) — B ro-m/4) (A.3)
TKy'r

where Sg, is a function d the source strength and phase, and receiver response; and

@ and u{%(z) are, respectively, the eigenvalues and eigenfunctionsevaluated at the

Doppler-shifted frequencies 2, T K% v, [63). The complex envelope f, consists o a set
d tones, one for each propagating mode, located at the frequencies Kf(ﬁi(vs — vg). His
bandwidth depends on the source and receiver speeds.

For a waveguide with a basement haf-spaced sound speed ¢, and wavenumber k, =
Q. /¢y, and a water column o sound speed ¢q < ¢, and wavenumber ko = Q,/co > ke,
the eigenvalues correspondingto the propagating modesarein the range ks < K9 < kg
and, therefore, the complex envelopewill contain tonesin theregion ks jvs — vr} < |w| <
ko lvs — vg|, at any given instant. The momentary bandwidth (rad/s) can be roughly
defined as

Qn Ci
Bunom = [vs — vl (ko — k) = — |us — vgl (1 - —") . (A4)
Co Cp

During an experiment, however, the source can be towed toward to or away from

the receiver, which can also be drifting toward to or away from the source. The total



bandwi dt h that the complex envelope can occupy during an experiment is, therefore, not
larger than

Vg — v Vs — v
_ 5 195~ VRlune _ g [t5 ~ 0l

o, (A.5)

B ~ 2k, |vs — VRl max

wherejus — vg|,,,, is the maximum possiblemagnitudeof therangerate, and Ag = 27 /ko
is the wavelength in water. B is aso the Nyquist rate for the complex envelope, from
which the required sampling interval T [same as time aperture o raw data segments,

NprrT, in eq.(A.2), when no overlapis used], can be estimated:

2 ey Ao
T=NpprT, < — ~ = A6
DET B b1 |US = URIma,x 2 I'U’S = UR!ma.x ( )
Note that eq.(A.6) predicts that a processed signal sampleis needed every
NDFTTs X "vs o URImax < )‘0/2 (A.7)

meters, i.e., more than 2 samples per wavelength must be measured, which can be
interpreted as a spatial Nyquist rate.

For a typical towed source experiment, |vs| = 1.5 m/s, [vg| = 0.25 m/s, ¢ = 1500
m/s, and the total bandwidth d the complex envelope at €, is, from €q.(A.5), B =
2.333 x 107%Q,,. MOMAX experiments typically use frequencies between 20 Hz and
500 Hz, resulting, for the above towed source experiment, a total bandwidth between
0.04667 Hz (20 £ 0.0233 Hz) and 1.167 Hz (500+ 0.583 Hz), for the different source
frequencies. For suitable spatial sampling at 20 Hz, the processed sampling period (raw
segment size to be processed) is, from eq.(A.6), NprrT, <21.43 seconds {~ 1 point
o processed data for every 69,750 points or less o raw data, Nprr < 69,750). At
500 Hz, NpgrT, <0.8571 seconds (~ 1 point of processed data for every 2,790 points
or less o raw data, Nprr < 2,790). For a moored source experiment (vs = 0), the

bandwidths would be seven times smaller, and the required maximum sampling periods



d the processed data, seven times larger.

After thetimeseriesdf eq.(A.2) isobtained, and beforefurther processing, additional
filtering may be used to increase the signal-to-noiseratio. The subsequent anaysis of
the processed signal isusually restricted to regionswhere the range-rate and the Doppler
deviation are nearly constant. In these regions, the effectivesignal bandwidth iscloseto
the momentary bandwidth By,.,. The bandwidth B, as computed in eq.(A.5), is much
larger that the momentary bandwidth. From egs.(A.4) and (A.5},

B _ Qk(} |US - UR'mam _ 2]’1}5 - ’URimam 1 > 9

Bmam h |US - URl (k’g o kb) - |'US — ’URl 1- Cg/cb

(typically, B/ Bmom > 1).

After Npgr is chosen, the frequency domain representation o the signal is limited
to a range o frequencies 2z /(NpprTs) > B [from inequality (A.6)]. Therefore, the
ratio Dyqe o processed signal bandwidth to signal momentary bandwidth, follows the

inequality
Dyor = w (A.8)
_ ZW/(NDFTTS)
[vs — vr| (ko — ks)
B |vs — vg| 1
> > 2 maz > 2.
Bm,,m |’U'S o ’UR| 1-— Cg/cb

If decimation in time is applied, the decimation factor should be smaller than Dez.

Dy 1S ds0 the maximum decimation factor for the processed signal seen as a
function of range (assuming vs — vg is constant over the whole analysis aperture) [cf.
Section 3.3.5]. For agiven Npgr, the spatial sampling spaceis Ar = NpprTs|vs —vg| =
Xa/mx, ma > 2 Inorder to represent the range of eigenvalues ky < kqm < ko in the
wavenumber domain, the spatial sampling can not be larger than DAr = 2n/(ko — ks),
leading to a (maximum) decimation rate of DAr/Ar = [2r /(ko—ks))/[NprrTs|vs —vgl],
which iseq.(A.8).



A.2 The Short-Term Fourier Transform of the Raw
Data

Theoperation indicated in eq.{A.2) can beinterpreted in terms o theshort-term Fourier
transform
t+AT o,
Psrrr(wy; t) = ] a(t—t — AT/2)p(tr;xs)e*" dt', (A.9)
t +

where a(t) is a window, a dowly-varying, rea-valued, even function of t with support
on |t| < AT/2; and AT = NpprT,. Substituting eq.(A.1) into eq.(A.9), neglecting the
noise component for simplification, and using R {z} = (= + 2*)/2, one obtains

F 1 t+AT - . ,
Psrpp(wy;t) = Z 3 f a(t' —t — AT/2) fu(t', 1;15)ewa M gy 1.
n=1 t

1 t+AT . ) ,
5/‘ a(t’ —t — AT/2) f2{t', 1 ;1) e wat ) gy’ (A.10)
t

The complex envelopeis, by hypothesis, a dowly-varyingfunction of time. Assume,
for simplification, that it isconstant along theinterval o integration (thisapproximation
is discussed below). The above expression then simplifiesto

F —~
A " (t+ AT/2,r:1s) AT ,
PSTFT(Wq;t) - Zez(wq—ﬂn)tf ( + 2/ r ) / a(n _ AT/Z)B'L(M'-’_Q"')"dT]-l-
0

n=1

(il + )t falt+ 4T ]2, v,
2

) AT )
] a(n — AT/2)etwetsningy (A.11)
0

The above integrals are the Fourier transform d the shifted window function evaluated
at the frequencies (w, £ Q,). For example, the rectangular window

1, |t < AT/2
arect(t) = (A.l?)

0, otherwise



has transform

AT/2

Arect(w) =F {arect} = / (A13)

-aT/2 €%dny = ATSa [AZT ]

where Sa [z] = sinz/z is the sampling function. For the rectangular window, eq.{A.11)
becomes

F
PSTF’Trect(wqa Zez wq—Qn )(t+AT/2) ATfn(t + ZAT/Q b 4 I's) Sa |:£ (wq n):| +
n=1
(ilaQn)(t-AT/2) ATfx(t + AT/2,1;14) [_( +0 )] (A.14)
5 .
One additional assumption is that the source frequencies§?,, n=1,..., F are suffi-

ciently far apart that we can consider theindividual samplingfunctions Sa [% (w,F 2,)]
to be zero, except the one corresponding to a source frequency £2; close to the analysis
frequency w, (that is, for w, — & ~ 0). Therefore, the operation o selecting a DFT bin
{wq) close to the source frequency (+£2;) correspondsto obtaining a time-series

pSTFTrect(t; Ql) = ﬁ(t + AT/Qa r; rs)/2>< [envelope/Z]
ATSa [&F (w, — )] x  [filter gain’] (A.15)
i wa— ) (E+AT/2) [oscillations].

The first term in eq.(A.15) is the desired (scaled) complex envelope. The second
term, filter complex gain {= A,eqt(w, — )], is the Fourier transform of the rectangular
window. Its magnitude decreasesasthe chosen frequency w, moves away from the source
frequency €. Noise, not included in the analysis, will impose acost in terms o reduced
signal-to-noise ratio as this filter gain magnitude decreases. The analysis frequency w,

must be chosen as close as possible to the source frequency €2;. The third factor isan
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oscillatory term that can be easily compensated for because its frequency is known.
The complex envelope can be recovered from eq.(A.15) as [2psrer(t, S4)+ filter
gain' X exp{—i{w, — )(t T AT/2)}]. We substitute a generic filter gain A(w) for the

rectangular window filter gain factor in eq.{A.15) to obtain
= . 2
. = p—Hwe—U)(t+-AT/2) . ] .
fl(t + AT/2, ) I‘s) e 4 ———_A(wq — Q,)pSTFT{t i QI) (A 16)
As an example d another filter gain factor, consider the Hamming window

[ 054+ 0.46c0s (22), |t] < AT/2
aHamm(t) = (Al?)

l 0, otherwise

whose transform is

Aftamm{w) = 0.08AT (A.18)

2772 — AT%A AT
a2~ AT22 20 |72 ¢

Equation (A.18) with w = w, — ¥ isthefilter gain factor in egs.(A.15) and (A.16) when
a Hamming window is used. Figure A-1 on the next page compares the spectrum of
the rectangular and Hamming windows. As mentioned above in relation to eq.(A.14),
the contribution d the individual sampling functions is considered negligible for source
frequencies far from the analysis frequencies. This is better approximated by the Ham-
mingwindow duetoitslower sidelobes (local magnitude maximaaway fromw=0). The
broader main lobe of the Hamming window helps reduce the distortion of the complex
envelopein the processed signal, as discussed below. In general, the lower the sidelobes,
the broader the main lobe, resulting in better measurements o the complex envelope,
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Figure A-1: The Fourier transform of the rectangular and Hamming windows (normal -
ized magnitude). The vertical dot-dash linesindicate the position of the neighbor DFT
frequency bins

as long as the signal-to-noise is high (see, for example, [30] for a detailed discussion of
windows used in spectral analysis). In order to verify the validity o the assumption
o constant f in eq.(A.15), we use the normal mode representation of eq.(A.3). For
notational simplicity, rewrite eq.{A.3) as

Jz;.(t', rrg) = Z e_iKv(lﬂ(vs—vR)t'hnm(""n 2, %). (A.lQ)

Substituting eq.{A.19} into (A.10} and neglecting the contribution of the sampling func-

tions corresponding to analysis frequenciesw, far from the selected source frequency (X,
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one obtains the output time series [cf. eqs.(A.10) and {A.15)):
sgal @ , g ;
psTrr(t; ) = Zh;m(r Bt f a(t' —t — AT/2)e™ Kim s—VRI gilwg=MW)F' gyt
- 581(“;.,—91 tZe—wKl )(’US vR)thl (T z, Zs)X
AT ,
/ a(n — AT/2)e (K ws=vr)ng, (5 90)
0 .

The integral in the above expression is the Fourier transform of the window function
evaluated at w = w, — Q — K2 (vs — vg). The processed time seriesis, therefore, given
by [cf. eq. {A.15)]

psTrr(t: ) = el M)(E+AT/2) [oscillations]
—t ( vg—v
Xy g e G-I AT him(r, 2,25) [envelope (A.21)
and
x Afwg ~ 4 — (vs — vR)KId)}/Z] filter gain']

It is not possible to isolate the effect o the window (filter gain), from the complex
envelopeitself, asin eq.(A.15). Instead, a distorted version o the complex envelopeis
obtained, as seen by comparing egs.(A.19) and (A.21).

Asdiscussed in Section A.l regarding shallow water waveguides, the complex enve-
lope frequencies (vs — vR)K,E_‘f,’ are spread, at any given instant, in the bandwidth B.om
given by eq.(A.4). The main lobe width of the rectangular window spectrum [seeFigure
A-1 and eq.(A.13)] is 4n/AT = 4n/(NprrTs). Asshown in eq.(A.8), Bmom issmaller
than the width o the main lobe by, at least, a factor o 4. In fact, it is usually much
smaller. For example, using co = 1490 m/s, ¢, = 1800 m/s, the momentary bandwidth
isabout 24 timessmaller than the main lobe width. For the broader Hamming window,

the ratio is twice that value and the momentary bandwidth is at most 2% of the main



lobe width. If the complex envelope spectrum is not near the main lobe null, theterm A
insde the summation in eq.(A.21) can be considered constant (independent of the mode
number m), and the approximation of eq.{A.16) isvalid. A better approximation takes
into account the Doppler d the source frequency, leading to

- 26—i(wq—ﬂz)(t+AT/2)
HETAT/2,r0) ~ Alwe — 0 = (v UR)kO)pSTFT(t 3 €h), (A.22)
. — -

where ky is some significant wavenumber. The broader the main lobe, the better the

approximation.

A.3 DFT Implementationof the Short-Term Fourier
Transform

The short-term Fourier transform of the raw dataisgiven by eq.(A.9), repeated herefor
convenience;

t+AT o
Peppr(wet) = / a(t' —t — AT/2)p(t!, ;7)™ dt. (A.23)
t

In order to obtain the discrete version o this expression, let t = mAT, m = 0,1,...
(assuming no overlap between adjacent segments), ¢ = t, = t+ kT, AT = NperTs,
dt' =T, wg = ¢bu, Ted = 21 /Nppr, Withk,q=0,... Nppr — 1. Theresult is

Nprr—1

Psrpr{wgt) = Popr(wet) = Tee™t Y~ axp(ti, ; ra)e orr®, (A.24)
k=0
where ay, = a{kT; — AT/2) isthe discrete version of the window function.
From the analysis o the previous section, the desired complex envelope is obtained
by selecting the frequency bin q closest to the chosen source frequency, i.e., wq =~ €,
multiplying the resulting time series by exp{—i(w, — Q;)(t + AT/2)}, and compensating



for the "filter gain." Equation {A.22), when using the DFT, eq.(A.24), becomes

2e—i(wq—ﬂg)(t+AT/2)
X
A (wq — Qg = (‘US - ’UR)ko)

o~

filt + AT/2,r;15) =

) Nprr—1 . 5
T gt Z akp(tk,r;rs)e‘”nmqk.
k=0
Inthemain lobe, thetransform d the window can bewrittenas A{w) = b(w)NprrTs,
where |b| is maximum at w = 0 [see Table A.l, column maz ’filter gain', for |5(0}|].

Therefore,

e~ iweAT/2 2

Rt AT/2,rr) = X
fl( / ) b(wq—ﬂg —(US - UR)"CO) NDFT
A Nprr—1 . o
iU (t+AT/2) 2 axp(ty,T;Ts)e NoFT qk, (A.25)
k=0

which, except for amultiplicativecomplex constant, isthe operation described in eq.(A.2).
The additional phase ;AT'/2 can be discarded by associating the result of each DFT to
theinstant t ¥ AT/2 =t + Nppr T, /2, the center of the window, instead o its beginning
[thatis, substitutet" = mAT+AT/2for t-+AT/2 in eq.(A.25)]. Theterm bdependson
the Doppler deviation, which changes during an experiment. Asafirst approximation,

b can be set at its value at the bin center w = 0 (given in Table A.1 for 4 windows,

together with the worst-case magnitude error in dB). Another level of approximation is
to compute b at w = wy — . Further accuracy can be achieved by computing b as a
function d timefor agiven experiment and window, and usingit as a variable correction

factor for the different portions of the data.

A.3.1 Sdection of the Trandorm Sze and Window Function

The transform size is constrained by the required spatial Nyquist rate, as expressed in
eq.(A.7). For a spatial sampling At < Ag/n, (that is, nx range points per wavelength),
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the criterion for the selection o transform size becomes, after substituting Ao/ for
Ao/2 ineq.(A.T),
Co

Nprr < (A.26)

where f; = /2 is the source frequency in Hz. Figure A-2 shows plots o the relation
in eq.(A.26), for the valuesdf raw sample period T; used in MOMAX | to IIL
The choice d window function affects the distortion o the complex envelope and the
signal-to-noise ratio o the processed signal. In order to reduce changes in the magni-
tude response o the analysis system, the frequency response should be flat for received
frequencies in the band €, £ B;/2, where B; is the maximum bandwidth excursion of
the complex envelope at frequency € during an experiment, as given by eq.(A.5). The
DFT bin separation &, isgiven by 4, = 2x/(NprrTs), as discussed above [seediscussion
preceding eq.(A.24)]. In terms of bin separation, the criterion of eq.(A.26) becomes,
using eq.(A.5),
P 2 M {vs — VRl _ g (A.27)

o

W= NprrTy — o 2

The worst-case scenario in terms d signal attenuation occurs when the source fre-
quency falls exactly midway between two bins, Q; = w, + 4,,/2, there is an up-Doppler
d By/2, and the minimum bin separation is used [equality in eq.(A.27)]. The signa
frequency would be close to w, + 8,/2 T 8,,/ns. Using, for example ny = 4 samples per
wavelength the signal would be 3é.,/4 away from the bin center, closer, in fact, to the
next bin. From Figure A-1, the attenuation due to the window would be about 10 dB
below the maximum response for the rectangular, and 4 dB for the Hamming window.

Once the transform size is selected according to the above criterion, the processed
value[eq.(A.25)] at the bin closest to the sourcefrequency represents the desired complex
envelope at a suitable sampling rate. In this sense, overlapping data for the Fourier
transform only adds to computation cost. If closer samples are required, one should
select a smaller Npgr, With the advantage o broader 4., a smaller worst-case loss, and
a smaller complex envelope distortion, as discussed in connection to eq.(A.21).
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10

maximum range rate {m/s}

Figure A-2: This plot reflects the criterion of eq.(A.26), for the particular values
T, = 3G7.2ps and ¢y = 1500 m/s. The x-axis is the maximum source-receiver range
rate during an experiment; the y-axisis the source frequency to be analyzed times the
desired number o samples per wavelength. The line just above a point (range rate,
frequencyxnr. samples /A ) givesthe maximum size d the raw data DFT. For example,
at 1 m/s, source frequency 100 Hz, and 4-points-per-wavelength spatial sampling (f X
nr. samples /A = 400): the point (1, 400) fals below the Ny 4x = 8192 line, which is
the maximum size of DFT that should be used. If different frequenciesare processed

simultaneously, the smallest Npg should be used.
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A.3.2 Four Discrete Windows

Thediscrete version and the characteristics of 4 windows are presented here. In addition
to the two windows already discussed, rectangular and Hamming, the Hann and the 4
term Blackman-Harris windows are presented. The Hann window has been used in
the MOMAX raw data processing. The Blackman-Harriswindow, with its broad main
lobe (4 4,,) and extremely low side-lobe levels (-92 dB), is well suited for the present
application. A detailed analysisd these and many other windows is presented in [30).
The windows are defined for n = 0, ..., Nper — 1. The ones presented here are
caled "DFT-even" or simply “DFT” in [30]. Some d them are defined as "periodic” in

Matlab®. Their expressions are

¢ Rectangular:
= 1; (A.28)

¢ Hamming window:

a, = 0.54 — 0.46 cos ( 21 n) : (A.29)
DFT
a Hann window:
2
an = 0.5 — 0.5 ¢0s ———; (A.30)
Nprr

¢ minimum 4-term Blackman-Harris:

2
a, = 0.35875 — 0.48829 cos ( il n)
Nprr

4
+ 0.14128008( il

n) _ 0.01168005( ba
Nppr

NDFT

n). (a3

Figures A-3 and A-4 show the Fourier transform o these windows. Table A.1 shows
somed the windows characteristics. Twenty bins are represented in Figure A-3 in order
to show the sidelobes (except for the 4-term Blackman-Harris, whose -92 dB sidelobe

levd isoff-scal€). In Figure A-4only onebinisshown. Thevertical lineat (bin number—
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Figure A-3: Normalized Fourier transform magnitude (in dB) o four windows. The
horizontal axisscale is normalized (bin numbers): zero correspondsto wg, 1 corresponds
to wyt1 (thetotal horizontal axis range correspondsto 20 bins-a bandwidth of 204,,).

q) = 0.75 corresponds to the worst-casesignal attenuation discussed above (with ny =4
samples per wavelength). When the source and receiver pass through the point o
closest approach, the signal frequency changesthe mest and, in the worst-case scenario,
it changes from the 0.75 to the 0.25 line, causing a sudden variation of the processed
signal magnitude.

In Table A.1 the worst-case additional attenuation isindicated in the last column.
The column maximum ‘filter gain' corresponds to the signal gain at the bin center
(that is, when the signal and bin frequency coincide). Notice that the maximum gain
is afraction o the number o DFT points [this fraction is the maximum value d 6 in
eq.(A.25)]. The equivalent noise bandwidth (ENBW)is a measure of how much noiseis
reflected in the bin output. For example, a value d 2 indicates that if white noise of
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Figure A-4: Normalized Fourier transform magnitude o four windows (zoom). The
vertical lines represent a variation o £4,,/4 around the middle point between bins, cor-
responding to the (worst case) total frequency variation during an experiment (assuming
the criterion NpprTs < Ao/4 is obeyed).
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Table A.l: Characteristics of four analysiswindows. The maz filter gain is the value of
thewindow transform magnitude at the center frequency; the equivalent noise bandwidth
(ENBW, in number o bins) isa measured the bandwidth o the window that indicates
how large the responseto noise is (it isroughly the 3 dB bandwidth, but include effects
d the whole Fourier transform); the sidelobe column indicates the maximum sidelobe
level; the maz attenuation isthe worst-case scenario o extra attenuation dueto Doppler
deviation (when n, = 4 samples per wavelength).

window max ‘filter gain' | ENBW | sidelobe | max attenuation
rectangular Nppr 1.00 -13 9.95
Hamming 0.54Nprr 1.36 -43 4.03
Hann 0.50Nppr 150 -32 3.21
min 4-term BH | 0.35876Nper | 2.00 bins | -92 dB 1.80 dB

noiselevel Ny "power units" per unit bandwidth is present in the signal, the bin output
noise power is 24, Np.

The rectangular window has a large maximum attenuation and high sidelobe leve,
and should not be normally used. The bin closest to the source frequency must be
selected in order to reduce distortions and magnitude variations due to changing range
rates, and to improve the signa-to-noise ratio. The 4-term Blackman-Harris window
is well suited for the MCMAX raw data processing. It has an extremely low sidelobe
level and nearly constant magnitude over one bin. The increased noise power due to its
broad main lobe (larger ENBW in Table A.1) can be compensated for by filtering the
processed signal in regions where the Doppler is constant, before additional analysis.
The Hann window also offers a reasonable compromise. Considering that MOMAX
source frequencies are typically far apart, the Hann window larger sidelobe level (which
decaysfast away from the bin center) should not be an issue.

If signal-to-noiseratio becomesan issue, a window with smaller ENBW (and, conse-
quently, smaller main lobe width and larger maximum attenuation) could beselected. In
thiscase, the worst-casescenario can be avoided and the distortion caused by the sharper
main lobe variation minimized by reducing Npgr (increasing =,). Post-processing fil-
tering can be used later to compensate for the larger resulting analysis bandwidth.
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Appendix B

Difference Equation (DE) for a Sum

of Varying Complex Exponentials

This appendix developsthe expression for the coefficients of the DE that representsthe
sum d an arbitrary number o time-varying complex exponentials, and for the initial
value problem d computing the first-order poles given the seriesd DE coefficients. We
follow the procedurein [38]. We also analyzethe errorsbetweentheroots d the DE char-
acteristic equation and the actual first-order poles, m issueimportant in understanding

the errors in time-varying autoregressiveanaysis d these signals.



B.I DE for a Sum of M Complex Exponentials[35]

The signal to be represented is a sum o complex exponentials ., () whose phase rates

and magnitudes are varying. Thesignal and the corresponding DE are given by

M

M
y(n) = Z Ym(n) = Z cm(n)ym(n — 1),
m=1

m=1

= >y -) B.1)

M M
= Zﬂj(n) Z: ym(n — J),
i=1 m=1
where the individual complex exponentials are given by
Ym(n) = Un(n)exp {—An(n) + iKp(n)}, m=1, ..., M.
Thefirst-order DE, M = 1, is given by:

Ym(n) = em(NYm(N- 1), (B.2)

where

cm(n) = |cm(n)| exp {i0Km(n)}

= —U_m[%:b_({)’)_lj exp{—d0A,(n)}exp {i6K,n(n)}, (B.3)
§Kom(n) = Km(n) — Kp(n—1) = / " (), (B.4)
§An(n) = An(n) — Ap(n —1) = f " (r)dr, (B.5)

km(r) is the range-varying eigenvalue associated with mode m, and «,,(r) is the corre-
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sponding absorption coefficient. For the present application, typicaly k., > a. Inthe
aboveexpressions, the index n refersto points along a uniform range grid r,, = ro+naAr,

corresponding to the discretization of a continuous range signdl, i.e., y(n) = y(r)|

From thefirst-order DE, one obtains
Ymin—3) = c;Hn—7+ Dymln—3+1)
= ¢ ln—j+ e {(n-j+2)-c;l(n—1ym(n—1)
= dmyj(n)ym(n - 1)7 (B’G)
where
1, j=1
dm j(n) = ' ' (B.7)
clin—j74+Ddn;1, 2<j< M

Substituting eq.(B.6) into eq.(B.1), one obtains

M M
y(n) = Y gm(n—1) Y dmjas(n),

j:l

which. Comparing the first line of eq.(B.1} with the above expression, one obtains the

system
M
> dmjai(n) = cm(n),
§=1

that relatesfirst-order poles and DE coefficients. In matrix form,
D(n)a(n) = c(n), (B.8)

where (D);; = dij, a(n) = [a1(n), ..., an(n)]”, and e(n) = [e1(n), ..., eu(n)]".
Note that each of the rowsin the system (B.8) can be written, after multiplying by



the corresponding d;.},, = HM Yem(n — ), as arecursion in the first-order poles:

M M-I
em(n—f)ar(n) + [] em(n— faa(n) + -+
j=1 j=2
Ml
+en(n— M+ Day 1(n) + apm(n em(n — 7). (B.9)
_;u=1

B.2 From DE Coefficientsto First-Order Poles

Inorder tofind arecursionfor the right-poleanal ogoustoeq.(3.36), [35] used a procedure
similar to the onefollowed in Section 3.2 for thesum o 2 signals. Using the a operator
defined in €qg.(3.32), [a(n)z~7]f(n) = a{n)f (n — j), and the product [a(n)z"7] o f(n)=
a{n)f(n— j)z4, the DE (B.I) can be written as

M
1 —ai(n)zt — - ap(n)z™My(n) = !1 - Zaj(n)z“j] y{n) = 0.
The polynomial in z can be decomposed as
M M1
!1 - Zaj(n)z_’} y(n) = !1 - Z ej(n)z ’] o [1=pu(n)z™"] y(n)

which is used to obtain a recursive system involving the g;’s, e;’s, and the right poles
pum, and, finally, a recursion for the right pole, analogousto egs.(3.35) and (3.36).

The resulting right-pole iteration is, not surprisingly, the same shown for the first-

order polesin eq.(B.9}, i.e.,

T paa(rn— 3) = ane(m) + pasln — M + Darg_s(m)

=1
- M-1
—I—Zaj(n HpMn— . (B.10)
k=j



When initialized with pa(n, — 1) = em(no — 1) 10 par(no — M+ 1) = ¢u(ng — M + 1),
eq.(B.10) recovers the series ¢, (n) for n > no. A backward recursion can be similarly

implemented.

B.3 Error Between DE Characterigtic Polynomial
Roots and Firg-Order Poles

When a first-order pole ¢, (n) is constant over aninterval no — Mt 1 < n < ny, say

em(n) = cmo, eq.(B.9) becomes
M, — ay(ng) M5t — - — apr(ng) =0, (B.11)

and ¢, (ng) = emo coincide with one of the roots of the M-th degree characteristic

eguation

M
M — ay(ng)sM~' — - — am(mo) = — Z ar(no)s™ * =0, (B.12)

=0

where ag(ng) = —1. A varying first-order pole c,,(r) will differ from the characteristic
polynomial roots. In order to compute the poles, one should usethe recursion (B.l1O).

Nevertheless, the roots o the characteristic equation play an important rolein fre-
guency estimation. For example, initial values could be estimated in a region where the
polynomial coefficients are nearly constant. In such region, one would expect that the
characteristic equation roots are a reasonable approximation to al first-order poles. In
fact, in the frozen-time analysis approach, the roots are taken as the first-order poles,
even when the coefficients are not constant.

We analyze the error between the polynomial roots and thefirst-order poles by first
expanding the roots o the characteristic equation in a Taylor series. first-order poles of

the form given by egs.(B.3) through (B.5) are used, as an example, with range variations



given locdly (that is, rn, a1 <7 < 7p,) by

km(r) = kmO + ﬁm(rr - Tno—M—!»l) (Blg)

and a = ano.

Theregion rp,_ a1 < 7 < 1y, COrrespondsto the sequence ,,(n) o first-order poles
involved when iteratingfor ¢,,(ng) accordingto egs.{B.9) or (B.I0). If these polesarethe
same (g,, = 0), they coincidewith oneroot o the characteristic polynomial. If thereisa
small relative change among them, then ¢,,(no) will differ from that root. Only relative
variationsin that set will influencethe error between ¢,,(n) and the corresponding root.
We expand theroots d the characteristic polynomial in a Taylor series essentially in the
neighborhood d 3., = 0.

For simplicity, it is assumed that the moda magnitudesarelocally constant, resulting
infirst-order polesd the form [after integrating eq.{B.13), seeeq.(B.3)]

Cm(n) = e~OmoAT pi[Emo AT+8m (n—no+M~3/2)(Ar)?] (B.14)

An analysisfor thetwo simplest cases, M = 2 and M = 3, leadsto reasonably smple
expressions that revea the issues in approximating the first-order coefficients by the
roots o characteristic equation. Higher M can be dealt with using the same procedure,
but the algebraic manipulations and fina expresson become quickly cumbersome and

unrevealing.



B.3.1 Error for Sums of Two Complex Exponentials

Let M = 2. Without lossd generdlity, let us analyze the characteristic polynomial zero
corresponding to the firss mode, m = 1. Start with

Clo = C&OJ(TLD) = Cl(no = 1) = egagoAreiKloAr’ (815)

0 =i (no) = ca(ng — 1) = e~22087¢ 04T (B.16)

where, from eq.(B.14}, Kino = kmo — B Ar/2, which is the eigenvalue ki (rn,_,,,) at
the intermediate point (e — 3/2). Theseinitial poles are theroots o the second degree
unperturbed equation [cf. eq.(B.12)]

s — a{?(no)s — a (no) =,

where a{? (ng) = c10T 20 and a'® (No) = —c1020. Keep theinitial coefficientsfixed at

em(no — 1) = c¢mo and let the coefficientse,(no) change from their unperturbed values

according to*

ci{no) = cio+ €, (B.17)
Cz(nO) = Cgo'l'EgD, (B18)

From eq.(B.14) with n = n,, M = 2, one obtains

¢m (N0) = exp{—amoAr} exp{i(kmoAr T B (Ar)?/2}

'In the following development the double subscript notation in the change €,,; identifies the mode
and how far back the affected sample isfrom g, the most recent in aseries. For example, ez refersto
a perturbation o the first-order pole ez (ng). The second subscript isirrelevant for M = 2, [only 0’ is
used because ¢, (g — 1) isfixed] but is kept for consistencewith the general case.




which, when compared to egs.(B.15) and (B.16), gives the perturbations
i = (efﬁm(m)” = 1) . (B.19)
Assume the new root s{ci(no), c2(n0}) can be represented by the Taylor expansion

s = c10 + (0108) €10 + (D208) o €20

1 1
+ 5 (8%05)0 E?U + 5 (5’%03)0 E%O =+ (8208108)0 €10€20 + HOT, (BQO)

where 8, = d/dcm(np), the subscript O in ()o indicates derivatives computed at the
unperturbed condition, and H.O.T. stands for higher order terms.
For the present case M = 2, the roots have a closed form [omitting the argument

(ng) for simplicity],

¢ = a1+\/a-¥+4a2
N 2

Theactual, perturbed coefficientsa; (n) and ax(n) can be computed exactly from eq.(B.8).
The derivatives in the Taylor series could be computed from the above formula for the
roots.

A more general approach, one that does not rely on a closed formulafor the roots,
isto takethe derivatives o the characteristic equation (B.12) (which has to be satisfied
as the first-order poles change), leading, for k,m =1, 2, to

80mo01 + Omots

Bmos = , (B.21)

23—0,1

(—251c08 + 51;0“1) Omos + (31:05) Omo@1 + 80k00moa1 + FroOmoas

OroOmos = 9
S - a1

(B.22)

The derivatives o the coefficientsz; can be obtained directly from eq.(B.8), which,



using eq.{B.9), can be written as
cifno ~1) 1 a1(nqo) _|a (no)er(no— 1) ] (B.23)
ca(ng ~ 1) 1 az(no) ca{no)ca(no — 1)

or
D,a=c,. (B.24)

Taking the derivatives o eq.(B.24), considering that D, isindependent of ¢,(ne), and

assuming [, to be full rank, one obtains [recall 8,0 = d/den(10)]

DrOmoa = c(ng — 1)en,

= Omoat = (=1)" { - ] , (B.25)
Cm(

ci(no — 1) — ca(no — 1) np — 1)

where e, is the unit vector with one at position m: e; = [1, 0], e; = [0, 1]*. Finally,
the derivative dmoa isindependent o al ¢;(nyg), leading, for al k and m, to

Dwakoamoa =0= 8kg6mga = 0. (B.26)

At theinitial point O = (10, c20), s = 10 and egs.(B.21), (B.22), (B.25), and (B.26)

give the only non-zero derivatives (up to second order) as

C10
0108) H = ——
( 10 )O C10 — -3207

—C10C20
—_—
(Clo - C2O)

Substituting these expressionsinto the Taylor series, eq.(B.20), and using ¢;(ng) =

(8]03205)0 =

c10-+€10, theerror in estimating thefirst-order polee; (ng) astheroot d the characteristic
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equation is given by

Ca0 C10C20
Aey = 5 — =0 . _ _10%20 +
¢ =8 — ¢i(ng) p—— €10 e 620),610620 H.O.T. (B.27)

This equation indicates that the ratios e/ Ac between the change in thefirst-order poles
and theinitial pole distance are significant parametersin the root-pole approximation,
an intuitive result.

When both changes €10 and ey are small, the error magnitude is obtained by sub-
stituting the expressionsfor the poles e,,0 and perturbations e, egs.(B.15), (B.16), and
(B.19), into eq.(B.27), and retaining only the first term?:

|€10]

Acy| ~ —————
(el lero/e20 — 1|

e—awm\/z — 2cos B (Ar)2]
V1 — 2e~(m0-220)8r cos [(Kyp — Ka0) Ar] + e=He10-a20)Ar

(B.28)

Thisexpression clearly indicatesthat, if At and the remaining parameters are fixed, the
error isminimized when (K10 — Ka0) Ar = =, in which case the denominator reduces to
1+e(mo-a20)Ar 1 and Ae¢; ~ lero] . Thisisthefarthest theinitial polescan bewhen
close to the unit circle (or restricted to any finite region o the complex plane, for that
matter) and leads to the smallest error magnitude, which is that of the perturbation
itself.

Asthe sampling distance Ar decreases, theinitial poles become closer, which would
tendtoincreasetheerror, but the perturbations e themselvesdecrease. Tothefirst-order
in Ar, the magnitude of the error, now including both the €10 and e0e2 terms, isgiven,
after expanding eq.(B.27) and using egs. (B.15) , (B.16), and (B.19), by

ﬂ% 2 Q10 — Q20 ‘/5‘1| Ar
Acq| ~ +4 +1 ] B.29
[Aci \/(Klo Rl T R Kol Ko Ko Ko K] &)

2At this approximation level, K,.0 = kmo, the eigenvaueat r,, 1.



where the absorption coefficients a's are neglected compared to the corresponding K's.
It becomes apparent that the significant parameter is the ratio between the change in
eigenvaue |81 |(Ar)? (ameasure d ¢;) and the polesinitial angular "distance”, |Kyo —
Ky0|Ar. Theinfluence d the "other” eigenvalue rate o change amounts to atypically

small correction factor to Ac;.

B.3.2 Taylor Expansion of the Roots- General Case

Before proceeding with the M = 3 case, let us generdizethe expressionsfor the deriva-
tives o roots and polynomial coefficients with respect to the first-order poles. As be-
fore, the first poles ¢m(ng — M + 1) are kept constant at ¢,,0 and the remaining poles
{em(mo—MT2), ..., em(ng)} [for atotal of M (M — 1) variables] are allowed to change
from the initial value cmo t0 em(no ~ K) = cmo T ems.-

The general form of the Taylor expansion d the root [again, expanding the root

correspondingto ¢;o without loss d generality] is given by

s =cio+ {(e1,m-201,0-2 + - - - + €00m0) 5]

1
o [(e1,m 201, M2 + - -~ + er00810)s] , + HO.T. (B.30)

From the assumed localy linear eigenvalue variation in eq.{B.14), the perturbation o
thefirst-order poles are given, for k=0, ..., M - 2, by

Emk = Cm(nO - k) — Cno

= Cm(ng = ]C) = Cm(’n() - M + 1) = Cmo (eiﬁm(M—k—l)(Ar)z — 1) (Bgl)

Asin the M = 2 case, the derivatives are obtained directly from the characteristic



equation (B.12), for k,k m=1,...,Mandj,I=0,...,M -2 as

M M-t
Zt=1 5" Omiay

= Yoo (M = t)sM=t-lg,’

amgs = (B.32)

OkjOmis = {(am;s) [(ijs) Z_(M — (M —t —1)sM 2+

M-1 M-—1
> (M = )sM 1 Ga,| + (Brgs) D (M — )M 100, +
t=1 t=1

M

M-t 1
E s T O i Omia , (B.33
t—1 oo t} Ef‘iEI(M t)sM=t-lq, ( )

which reduces, for M = 2, to egs.(B.21) and (B.22).
The generalization o the eq.(B.23) for the vector o coefficients ais, again from
eq.(B.9) [cf. eq.(B.8)],

D,a=c, (B.34)

with
e —1), j=1 .. M-1
(Dﬂ')mj _ { t=j cm(n )7 J ) ’ ? (B35)
1, j=M,
and
M-1
(€a)m = ] amin—3). (B.36)

t=0

Taking the derivativesdf eq.(B.34) one obtains

Dvramla = - (amEDvr) a-+ amlcv'rr

i M-1 M-1
=|-(1-80Y & [] ecntn=D+ [] enln—1i)|em, (B.37)

t=1  i=tgAl i=0,i5l



D0j0mia = — (Okj0miDr) @ — (Ok; Dx) Omua — (OpuDr) Oy + OjOmiCa,

min(j,} M1

= 5k,m(1 - 5£,j)(1 - 5j,0)(1 - 5;,0) Z ay H em(n—1)| em

t=1 i=t,is£g,l

—{ dio Z(@mlat) H ck(n—z}

i=t,i7#]

M-1
[ (1—5;0)2 (Ok;a:) H em(n — %) + k(1 — 8;,) H cm(nmi)] en, (B.38)

i=t z;él 1=0,i%7,

where d,, ., iSthe Kronecker delta,

1, n=m,
6'n,m =
0, n#m,
and e,, isthe unit vector with one at position m: € = [6,1, ..., d;ma]’. The com-

putation o the derivatives involve the solution o the linear systems in egs.(B.37) and
(B.38), which is simplified by noting that D 'e; = (D;!

T )columnj #

At theinitial point O = (cio, - .., cuo), S= cio, egs-(B.32) and (B.33) reduce to®

E aO)Mtl
t=1+1 % Cmo

(Omis)p =6 , B.39
R v A p—— (B3
M-2

(OkiBmis) = {al,m (Bmis) o lal,k (Bki8)o 3 (M — t)(M —t — 1)el5*2a{+
=0
M-1 M1
Y (M =05 (Brjar)o | + 1k (Bris)o 3 (M — E)el™ ™ (Bpar) o +
t=1 =1
ZC (OrsOomis) b . (B.40)
thz(CIO - ctO)

$Notice that theinfluence d the difference (distance) between ¢, and the others polesin theinitial
configuration, as observed in the M = 2 casg, is also manifested explicitly in the computation o the
derivativesin the general case.
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and egs.(B.37) and (B.38) reduceto

Dy (Oma)y = [ (1—dio) Z o Am/‘f - -I—C%Ol] ©m (B.41)
= e Z a(O)anfOtv
t—-l+1

min(7,[)
D) (Dr;0ma)p = — {&c,m(l — 8 ) 1= 8i0)(1—di0) > a5t 2} em

- !(1 — &50) ZJ: (Omian) o o+ 1} ex

t=1

t=1

i
- [(1 —810) Y (Bhjar)o cﬂom} emn + endim(l — 8;,)cM5% (B.42)

B.3.3 Error for Sums of Three Complex Exponentials

For M = 3, substituting ci{ns) = c10 + €10 and the derivatives given in egs.(B.39) to
(B.42) into the Taylor expansion {B.30), one obtains [cf. eq.(B.27)]

1

Acy = s — cl(no) = ) {*(Czo + 630)4310511

(CIO = Czo)(Cw — C30
(c20 + c30)coct; ~ [(coo + c30)c10 — c20C30] C1O€11€10
(010 - 020)(010 - 030)

+ [(c20 + ¢30)c10 — C20C30] €10 +

_|_

C10€ ¢ C30)C
10¢11 {( 10+ cso)eo [—(c10 + c30)€a1 + c20€20]

(c20 — cs0) | (c10 — c20)?
(c10 + c20)e30
+m [(c10 + cao)esr — caoeso)
s | o leso-+ caolen = ol
c
+(CTBOC—;)—2 [*(610 + (320)631 + 03063()]] Gy H.O.T.} ; (B.43)
— L3

Substituting the expressions for the perturbations ek, eq.{B.31) with M = 3, in



the above expression, and expanding |Ac;| in terms o Ar (including the first-order
terms €19 and €11 ), one obtains [neglectingthe absorption coefficientsa's relative to the
elgenvaues K’s|, for small Ar,

|(&20 — Kio) + (K30 — K10)||81|Ar

Acy| ~
[Aci| K10 — Kool K10 — K30

(B.44)

Compared to eq.(B.29), the relevant parameter is aso the ratio between the change
of the eigenvalueand the pole angular distances. Here the relative position d the poles
aso play arole [through the term (K20 — K10) + (K30 — K1) in the numerator]. The
correction factor due to the rate of change d the other poles [suchas 3, in eq.(B.29)] is
not included in eq.(B.44) because only thefirst-order terms (in ;o and €1;) d Ae¢; were

included in the expansionin Ar.
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Appendix C

The VFF Adaptive Zero Estimator

Design

C.l Basc Design

The design o the adaptive filter follows the design of a general classd algorithms pro-
posed by Ljung[44]. In the present application, the parameter to be estimated is the
vector formed by the magnitude and phase of the zeros of the characteristic polynomial,
0= [p1,-..,Pp, S0, .., 27, wherethe zeros are given by s; = p;expif};, j=1,...,p.
For a given #(r — 1), the polynomial coefficientsa(8(n— 1)) axe computed. The esti-

mation error is given by

e (n,6) =y(n) — §(n,0) = y(n) — " (n)a(9). (C.1)

The estimator must minimize the mean square prediction error V(n,0) = E {|e(n, 8)[*}.
Instead of minimizing directly this measure, solve 8V (6)/30 = 0. Using eq.(C.1), the
equation to solve is E {R [—¢7 (n, 8)e*(n,8)] } =0, where 7 = 95/36 = —de/086 (3 is
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a 2p X 1vector). The recursive solution o this equation is given by [44, p. 93]
B(n) = a(n — 1) +y{n)R [w (n, B(n — 1)) €* (n, g(n - 1))] ;

where, for a constant parameter vector 8, y(r) is a sequence o positive scalars tending
to zero. [44] proposes to use the Newton direction, for which the gradient is multiplied

by an estimate o the inverse o the second derivative o V(8), whose approximation
R(m) = Y B(n k)R [ (k, 0k ~ 1)) 9 (,806 - 1)), (C.2)
k=1

is valid for dowly varying §(n). This matrix and, more important, its inverse can be

computed recursively for the particular choice of weighting coefficients

V(&) Tipes L= Y0}, K <nm,
B(n, k) = (C.3)
7(”)7 k= n,

with y{1) = 1. Theresulting expressions are
R(n) = [ = 1(m)] B(n — 1) + 1R [¢ (0,00~ 1)) 9" (n,8n - 1))]  (C4)
and, after applying the matrix inverse lemma[32] twice,

vy AT, a(n-1)) 47 (n, Bln — 1)
2 1420y (n, §n - 1)) A- 1 (m, O - 1))

R ln)=A"1- (C.5)
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LR (n — 1)y (n f(n — 1)) WH (‘n Bn — 1)) RYn - 1)|

AT = |1 -5 =50+ 3yt (n fin— 1)) B-Hn— D (m,6(n 1)) |
(C.6)
Thefinal recursive solution is, therefore,
B(n) = 8(n — 1) + 7(N)R ()R [¢ (n B(n — 1)) ¢ (n)} , (C.7)
where the prediction error is given by
e(n) = y(n} - a” (B(n - 1)) ¢(n) (C.8)

Equations (C.5), (C.6), (C.7), and (C.8) form the adaptive zero estimator. These equa-
tions correspond to the algorithm described in Table | of [48] using P{n) = v(n)R~1(n),
L =v{n)A'(n), and w(n) = 1 — v{n). The algorithm proposed in [48] uses an exact
expressionfor the derivative ¥, which is derived below. The forgetting factor w(n) used

in the present estimator is data adaptive, as proposed in [16)].

C.2 Error Gradient

The expressions for the error gradient vector are obtained following the procedure in
[48). From eq.(C.1),

[ aaT/Bpl ]
9 — [ae(n, 01" _saT(np) ) daT [0p, (n) (@9)
—¥(n.0) = | =55 - 8 V= daT /59, o '
| 62T /8%, |
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where, for convenience, the arguments o awere dropped in the last term. The deriva-
tives o the coefficient vector can be obtained by using the two representations of the

characteristic polynomial:
p
As™h) = Zaj =T - s7"p; exp{iy;}), (C.10)
j=1

where ag = —1, and it isassumed that theroots are distinct and do not form conjugate

pairs. The derivatives w.r.t. the root magnitudes are given by

b
Z Dag s = —s Lexp{iQ%} H (1—s71p; exp{i€);}).
j=lj#k
Multiply the above expression by the missing factor (1 — s~ px exp{iQ2:}) and substitute
eg.(C.IO) to obtain
6a, R £

“texp{iQ} Z a;s~,

=0

—(1 — 57 pr exp{il}) Z
from which, after sometrivial algebraic manipulation, followsthe recursion
‘9‘% 1 a’J -1,
Z — exp{iwi } Z a;js 7 + p expliwi}) Z i (C.11)

or, explicitly,

ag = —1, Bag/apk = 0,
(C.12)

Oa;/Opr = exp{i€} (—a;—1 + pedaj_1/0p), j=1,...,p.

The same procedure leads to the recursion for the derivatives w.r.t. the root phases,
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Qki
dA 80,J o

P
F e BQ —ip, exp{iQi}s~! H (1— s p;exp{iQ;}),

j=Li#k

P

3, ,
—(1—5"p exp{iﬂk}) L e = ippexp{iQ}s Zajs 4,

BQ e
da; _; P Ba; . ¥
—Lsi = _ip, exp{zﬂk}ZaJs Ty prexp{ih}) Y = LsT (C.13)
3=0 =0 3=0
ap — —1, Bao/aﬂk = O,

(C14)
0a; /0, = pexp{i%} (—iaj—1 + da;_1/dpr), J1=1,...,P.
Equations (C.9), (C.12), and (C.14) arethe analytical expressionsto be used in the

adaptive algorithm, eqs.(C.5) to (C.8), to evaluate the error gradient at range step n
with 6 = (n — 1).

C.3 The Variable Forgetting Factor (VFF)

The forgetting factor w(n) = 1 — ~4(n) [0 < w(n) < 1] in egs.(C.5) and (C.6), controls
the speed o convergenced the adaptive estimator. As shown eq.(C.4), it controls the
weight of past data on the update of the matrix R, and, through eq.(C.7), the influence
o past data on the parameter update. In the origina adaptive zero estimator|[48],
the forgetting factor w(n) is variable, computed through a fixed rule, function o two
parameters, fwg, W], and an initial value w(1), asw{n) =w —[w, —w{n - 1) we.
These forgetting factor parameters must be chosen to match the expected evolution o
the parameter to be estimated, 8(n).

Fortescue and co-workers|16] introduced aself-tuning estimator, wheretheforgetting
factor isupdated at each step as afunction of the square prediction error, becoming data-

adaptive. For high signal-to-noiseratio signals, thestrategy isto have aforgetting factor



closeto one (use most past information) when the signa statistics, as indicated by alow
prediction error, is stationary, improving the estimator variance. When the prediction
error increases dueto changesin signal parameters, the forgetting factor should decrease
(use mostly new information), allowing the estimator to adapt quickly to the changing
statistics. The algorithm assumes that the measurement noise statistics do not change.

The measure of information content in [16] is the weighted sum of squares d the a

posteriori errors
&) = y(n) - 2% (0(n)) ¢(n) (C.15)

[compare with the prediction error, eq.(C.8)}, given by

J(n) =% Bln k) €K,

= Sa1 Bl ) (k) ~ o (808)) (8|

(C.16)
=3 E(n, k) |y(k) -~ [aT (5(1: — 1)) + AaT(k')] (,o(ﬁc)l2 :
= Yo B(n, k) e(k) — AaT (R)e(k)[*,
where, in the last step, eq.(C.8) was used,
H?:M»lw(j): k<mn,
B(n, k) = (€.17)

1, k=mn

?

and Aa' (k) = a”(k)—aT(k—1). Substitute eq.(C.17) into (C.16) toobtain therecursion
relation
J(n) = w(n)J(n — 1) F |e(n) — Aa(n)(n)|".

At step n, when the forgetting factor w(n) is needed, the new coefficient vector a™(n) is



not known. Use, instead, the a posteriori error fromthe previous step,
J(n) = w(n)J(n—1) + |e(n — 1) — AaT(n — Lp(n — 1)|*. (C.18)

In order to maintain a constant amount o information at each step, requirethat J{n) =

J(n-1)=..- = Jp, resulting, from eq.(C.18), in the VFF
w(n) =1-|efn— 1) — Aa"(n - 1)p(n — ].)lz/.]g. (C.19

For a constant forgetting factor w, the effective number o past samples used by the
estimator is Negs = 1/(1 —w). In the cased the VFF,

Negs(n) = 1/ [1 — w(n)] = Jo/ |e(n— 1) — AaT(n — L)p(n — 1) (C.20)

can be interpreted as an asymptotic memory length if w = w(n) were used during the
operation of the estimator{16]. If the process were stationary, then Aa— 0, E {[¢[*} —
o2 asn — oo, Where o2 isthe measurement noise variance, and eq.(C.20) indicatesthat
a choicefor the effective memory length would be Ny = Jy/o2. Thisistherule used in
[16] for choosing the parameter J;, using an estimated measurement noise variance and
an initial Ny based on a desired speed of adaptation:

Jg = O'gNQ. (CZ])
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Appendix D

The Second Order Kalman Filter

When the AR coefficientstend to change continuously with range, the competition be-
tween the first-order Kalman filter described in Algorithm 1 tendsto havelarge variance.
For example, if a coefficient is increasing linearly with range, the forward filter tendsto
lag the actual value variations, while the backward filter tends to lead them, as shown
in Fig. D-1. Theerror o the two estimators is comparable and the competition result
tends to switch between the two, resulting in an large estimate variance.

To counter this effect, [51} suggests introducing a higher order Kalman filter in the
competition, which tends to win when the coefficients are changing continuously. The
estimate from a forward second order Kalman filter is also shown in Fig. D-1, for com-
parison. The filter order is given by the state equation. The first-order state equation,
eq.(3.51), is equivalent to Aa(r) = a(n) — a{(n — 1) = w{n). The generalization for a
k-th order filter is

A*a(n) = w(n), (D.1)

where w*) is ap x 1 white Gaussian noise vector, as before. A first-order equation
describes a system whose parameters are locally constant (difference between adjacent
steps state is a zero mean white noise). A second order describes a system whose

parameter variation islocally linear (with respect to the step number). Expanding the
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Figure D-1: Switching noise caused by a continuously varying parameter. The competi-
tion between forward and backward Kalman identifiers tends to introduce jitter in the
estimate. In this example, a linear frequency modulated signal (LFM chirp) is modeled
as a order one AR process. The plots show estimates o the AR coefficient phase, from
which the instantaneous frequency is computed. The forward Kalman estimate (lower,
solid line) tendsto lag the actual AR coefficient by nearly the same amount as the back-
ward (upper, dash-dot line) tendsto lead it. The competition is ‘won' aternatively by
each estimate, resulting in the jagged line shown (solid line with circles). For compar-
ison, the figure shows the estimate by a single forward, second-order Kalman identifier
(symbol X' close to the actual vaue, the center dashed line) which, if included in the
competition, would have won.
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state equation (D.1), one obtains[51]

- —hly —flp - - fely — (]
a(n) I 0 0 a(n—1) g
=| o I, 0 : + w®(n),
aln—(k—-1)) : a(n—k)
% - . i 0
AR (n) i 0 0 0 AR (n—1) ——
~ , G
(D.2)
where
k
fm = (=1)" ( ) = (=1)* fiem, (D.3)

and the zeros are matrices of appropriate size. The k-th order Kalman filter can be
implemented, therefore, by using the augmented vector A%) as the quantity to be esti-
mated, where the state equation is given by eq.(D.2), the measurement equation is given
by

y(n)= ABT (np(nyt o(n),

and ®(n} = [ yln—1), -+, yln—p), 0, -..y 0 ]T. The desired estimate a(n)
can be recovered by the simpleoperation a(r) = [ I, 0 .-. 0 ]E(‘“)(n) = GTA®)(n).
Thesecond-order Kalman identifier is described in Algorithm 4. The matricesVE{n/n®
1) and V¥{(n/n) have definitions analogousto eqgs.(3.55) and (3.56), and

a®(n)
A®(n) = :
& ': a®(na 1) jl
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Algorithm 4 Forward and Backward second-order Kalman AR identifier. Initiaize
the forward filter with values A=(p/p) and V~(p/p), and estimate the coefficients for
n=p+1,..,N. Initialize the backward filter with values A*(N + 1/N + 1) and
V(N +1/N *1), and estimate the coefficientsfor n= N,N - 1,...,pT 1. The only
parameter in this implementation is £, which controls the speed o convergence, as in
the first-order identifier.

1. Prediction
®(n) =[yln-1), -+, yln—p), 0, ---, 0],
A(nnel) =FAnol/nal), (D.4)
e(n) =y(n)— 2" (n)A®(n/ne 1),
2. Update

Ve(n/ndl) =FVenel/ndl) FT+¢ “;’ g]

Ve(n/n) =Ve(n/nd 1) x [I, — ®*(n)dT(n)Ve(n/nd 1)], (D.5)
/ [1+ @T(n)Ve(n/n® 1)@*(n)],

A®(n/n) = A%(n/n® 1) + Ve(n/n)®*(n)e®(n).
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Appendix E

Trapezoidal Rule and the Basis

Function Representation

This appendix shows that the basisfunction representation of sound velocity variations
in egs. (4.39)and (4.40) isvalid when the integral in eq.(4.34) is computed through the
trapezoidal rule. The case where the sound velocity increment Ae(z) can be represented
by aset o first degree polynomials was treated in Section 4.2.2 as thetriangular pulse
basis functions.

In the present discussion, the integrand g..{z)Ac(z) itself (g, is defined in eq.(4.35)]
isapproximated by a first degree polynomial in each depth grid interval. The trapezoidal

rule isimplemented as.

b
Akm=/ gm{(2)Ac(z)dz

N
= angm(zn)Ac(zn) = [wigm(21), .-, Wngm(2zn)la, (E.1)

n=1
Wherewl = O.5h1, Wy = O.5h]v,1, Wy = O.S(hn_l—i-h.n), n=2,..., N—l, h = Znt+l— 2n,
q = [dey, ..., bey), and de, = Ac(z,). The equdlity sign in eq.(E.1) indicates the

assumption that the integrand can be described by a linear-by-parts function, which



usually requiresa relatively dense sampling grid.
The assumption, thereforeis that, in eechinterval z; < z < z;44, 7=1,..., N =1,

gm(2)Ac(z) = agf')(z - 2i)+ ag?). (E.2)

The coefficientsthe linear representation, ag"), are obtained by setting = = z; and

z = zj1 in eq.(E.2), resultingin

Zip1 — 2 Z— 7 dc;
gm(2)Ac(2) = J+;11A gm(25), h—jgm(zju)] [ ! ] ~ (E.3)
This result can be seen as arepresentationfor Ac{z) interms o sums d basisfunctions,
but depends only on one function in the set {g.,}. Adding (E.3) over all modal kernels

9m ONe obtains, for SM_ g.(2) # 0,

Ac(z) = lzjﬂ — 2 1 9m(%) 7% T gm(zj-;.l)] oc; (E.4)
h; Zgzl Im(2) h; Eff:l gm(2) 0¢jt1
This expression can be written, in terms d basis functionsas
5Cj
Acz) = [¢5(2), ¢41(2)] » 2 < 2 < Zjy,
Cj+1
which must be represented as Ac(z) = 3.V, ¢n(2)dc,. Therefore,
(
(2 — 2n-1) / (#n — 2n-1), Zn1 < 2 < Zn,
n=2,..., N,
ZM_lgm(zn)
¢"(z)=—m_—< Zpn+l — R Zn+l T Zn), Zn<Z<Z'n. 3 E5
S G2 G 2) <as,  (BS)
n=1..., N—-1,
0, otherwise.




In order to verify that this basis function results in the trapezoidal rule given in

eg.(E.1), compute

sk = [ stractzyiz = [ [ g7 ] a= {fj wjg(zj)cbi“(zjﬂ 0

j=1

where {w;} are the trapezoidal weights defined in eq.(E.1). At the grid points z = z;,
eq.(E.5) gives ¢;(z;) = 1, and ¢;(z,) = 0, n # j. The vector ®(z;) is, therefore, the

unit vector [81, ..., dn |7, where ,, ., is the Kronecker delta. Therefore,

g)87(%) =[0 - glz) - 0],
amatrix o zeros, except for the j-th column. The aboveintegral then becomes
b b
| ez = | [ ge7 0] a
- [ w1g(21), -, wng(zn) ]q, (E.6)

which is the matrix version of the original expression, eq.(E.1). In conclusion, eq.(E.5)
describes a set of basis function representation d the sound velocity variation Ac corre-

sponding to the application o trapezoidal rule when computing AK,.
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Appendix F

Analysis of Sound Ve ocity and

Frequency Perturbations

The eigenvalue equation is

)
00 .2
0<z< o0, um(0)=0,/ —dz=1. (F.1)
o P

Interfaces are introduced at density discontinuities where the boundary conditions of
continuity of ., and u. /p are imposed. The medium wavenumber is perturbed by

small variations in the sound velocity profile and frequency,

(w+ Aw)?
(c+ Ac)?’
w2t 2wAc(§) + (Aw)?

B (w+ Aw, e+ Ac) =
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where the dummy variables e and n (which assume vaue 0, when Ac =0 or Aw = 0O,
respectively, and 1 otherwise) were introduced for bookkeeping. The subscripts in k?
indicate the order of the corresponding perturbation and which quantity is being in-
cremented. For example, &g, designates a second order perturbation: first order in
both frequency and sound speed. As usual, snall means Ac/c, Aw/w < 1. In the per-
turbative inverse technique, the zero-th order quantities correspond to the background

environment.

F.1 B genval ues

The eigenvalues® k2, and eigenfunctions u,, in eq.(F.1) are expanded &s [cf. eq.(F.2)]
krzn(w + Awﬁ ¢+ AC) = k?n.o + Ekfnlc + nkrznlw + Enkvznﬂwc +---, (FS)

and

Um (w + Aw’ c+ A‘C) = Umo + €Unmlc + TUmlw + ENUm2we + (F4)

where all terms in the eigenfunction expansion satisfy the same boundary conditions
as u,(z) and the radiation condition at infinity. The normalization is imposed to the
zero-th order eigenfunction as defined in eq.(F.1).

Substitute the above expansions into eq.(F.1) and collect similar terms up to order
1inthe dummy variables [i.e, up to O ((Ae¢/e)(Aw/w))] to obtain

,1° 1 (upo/p) + (k2 — kZ,) tmo/p =0, (F.5)
61; 770 . (u;nlc/p)l + (kg - kgm) umlc/p = (k%c - k?nlc) UmO/P, (FG)
60’ nl : (u;nlw/p)’ + (kg - kfno) 'U:mlw/P = - (k%u o kv?nlw) umo/P; (F7)

1The subscript » of the eigenvaluesk,.,, is dropped here for simplicity



61: 771 : (uﬁni!wc/p)[ —I_ (kg - k?no) um2wc/p —

- kﬁﬂuc) umo/p - (k%c - kfnlc) uﬂllh—’/p - (k’l%u - k?nlm) umlc/p'
(F.8)

The perturbative equation for k2, is obtained by multiplying eq.(F.5) by 2. and

— — (K2

2we

eq.(F.6) by u.,,, subtracting the result and integrating over the whole domain.The |eft-
hand side becomes, after integrating by parts twice,

!

o0 , B -
f [('U,:na/p)’ Umle — (ufmlc/p)’ umo] dz = Uothmle — UmoUp,1, _ 07
0 P) .

as a consequence of the boundary conditionsimposed to the solutions. Therefore,

00 u?
0= [ (- ) "o,
0 P

and, due to the normalization imposed t0 uy,,

® g, ® w? Acul,,

Note that, from eq.(F.3),
k2, = ki (w,ct Ag) — k2, T O [(Ac/)?] . (F.10)

Equations for &2, and k2, aresimilarly obtained:

oo, 2 2
K21 = (W + Aw,¢) — Ky + O [(Aw/w)?] = 2 / %%“;"%zz, (F.11)
0



*1
kgﬂwc = V/O E [kgwcu?no & (kfc - kTinc) UmoUm 1w

+ (K2, — K210,) tmottmac] dz - (F.12)

Thislast expression can be smplified. Multiply eq.(F.6) by %1, and eq.(F.7) by wmie,

again subtract and integrate to obtain

0= [T (k) Bt (1, - ) Ptee]
0 p P

and, upon substitution into eq.(F.12), one obtains

kfnch = ./Qg % [kgucugno +2 (kfw - kfnlu) umoumlc] dz:

oo 2 2
_ / % [_ %%A—:{ufm +2 (2%%“3 - kf,ﬂw) umumk} dz. (F.13)
0

F.2 Group Speeds

The group speed for the unperturbed (background) problem is given by

. _ Ok (w,c) 1 Ok2 (w,c)
V 1 —_ V 1 - 3 _ ™ i
mo = Vi () B Yom(w, € Ow

The derivative o the sguare eilgenvaue is given by

k2 (w, c) kB (wT Aw,c) - k2 (w,0)
———— = lim ,
Ow Aw—D Aw

where k2 (w + Aw, ¢) isobtained from eq.(F.3) settinge = 0 and = 1: kfn(w+Aw, c)=
k2, +k2,, T O [(Aw/w)?], and K2 (w,c) = k2, isthe unperturbed eigenvalue (s = = 0)

mlw



[seeeq.(4.76)]. Asa result,

1.kl a1 et
pim B v 2 2 22, (F.14)

where eq.(F.11) was used.
For the perturbed sound velocity profile, the group speed is given by

2 (0, cF
VWZI(W,C+Ac)km(w,c+ Ac) — %‘akm(wé‘i AC)’

where

k2 (w,ct Ac) _ im Kl + Aw,c+ Ac) — k] (w, ctAc)
Ow - Aw—0 Aw !

and k2 (w,c+ Ac) is obtained by settinge = 1 and 7 = 0 in eq.(F.3). The subtraction
in the above expression will leave the terms with an  multiplier [i.e., termsin Aw and
(Aw)z]. Keeping the terms up to order 1in Aw (the onesin order 2 will be set to zero
when Aw — 0) and order 1in Ac, the group speed V,,,; is obtained as

2 2
Vo tkm(w,ct Ac) 2 :-ZL Jim kfnm—Ai-VkanM

Using egs.(F.11), (F.13), and (F.14) one then obtains

w? Acu?,
e p

2
(§- ot =] 0

—9 [
Virlkm(w, ¢t AC) = ko Vo) + U/ [
0

c? P



F.3 Perturbative Integral with Source Speed Com-
pensation

Equation (4.73) suggests that the measured, Doppler shifted wavenumbers be corrected
using

k3 = km(w + Aw,ct Ac) = ky(w, ct Ac) kv, VL

ml>s

which, to thefirst order in v,V 7}, resultsin

ml
ke = k(w, et Ac) (- v,V ) 7' = kn(w, e+ Ac) (1 +0.V1) (F.16)
Tothefirst order in Ac, thecorrectioninthe eigenvaluedueto achangein sound velocity
alone is k2, as given by eq.(F.3):

w? Acul,,

2 + - - + — ~ "
km (\Ni C AC) kmo ~2 [km (\N’ C AC) Ikmo] Fmo = 2/0 2 e P dZ,

-1 [*w?AcuZ
- ™ ———2dz. F1
= (ot AQ ko [ G (F17)

Thisisthe usua perturbative integral [cf. eq.(4.3)]. What is needed for source motion
compensation is the difference between the background and measured eigenvalue, k2, —
k. Usingegs.(F.16) and (F.17), one obtains

k;dn — ,’Gmo = k}m(&), C+ AC) - kma + km(w: c + AC)IUSVW:f

i o, 2 2
~ 1 / _Q_J__éfyﬂdz + km(w, ¢+ AC)’UsVn:]_l-
0 P

ko 2 ¢
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Neglecting the contribution from u.,;. in eq.(F.15), the above expresson becomes, after

afew manipulations,

— o2 2
k,i—kmogk—l(1+2v"zm) f B AU g kol (FAS)
RO 0

which is the desired result.
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